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The author regrets a mistake made in Kraaij [2]. We summarize the results which remain valid and those 
whose validity is now unclear.

1. An overview of the status of the main results

Let X be a separable metric space. On X we consider the space of bounded continuous functions 
(Cb(X ), β) equipped with the strict topology, cf. Sentilles [3]. In addition, let Mτ (X ) = (Cb(X ), β)′ be 
the space of τ -additive Borel measures on X and let σ be the weak topology on Mτ (X ) induced by Cb(X ).

In Kraaij [2], four additional topologies were considered on Mτ (X ):

• σlf , the finest locally convex topology on Mτ (X ) that coincides with σ on all β-equicontinuous sets in 
Mτ (X ),

• σf , the finest topology on Mτ (X ) that coincides with σ on all β-equicontinuous sets in Mτ (X ),
• kσ the finest topology on Mτ (X ) that coincides with σ on all weakly compact sets in Mτ (X ),
• β◦ the polar topology on Mτ (X ) generated using all pre-compact sets in (Cb(X ), β), cf. Köthe [1].

The main result of Kraaij [2] is Theorem 1.7 that states that σlf = σf = kσ = β◦. The following result 
remains true:
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Proposition 1.1. σf = kσ and σlf = β◦.

As a consequence of the missing identification σf = σlf , it is unclear whether (Cb(X ), β) is infra-Pták 
by using Proposition 1.2. This in turn leads to the failure of establishing Corollaries 1.10, 1.11 and 1.12. 
Proposition 1.6 and Lemma’s 1.8 and 1.9 are established using results in the literature and remain valid as 
it is.

2. The mistake and an overview of its consequences in the proof sections

The proof that σf = σlf was based on the observation that as σlf ⊆ σf it suffices to verify that σf is 
locally convex.

This was carried out in two steps.
Step 1: σf was explicitly identified as a quotient topology T and it was shown that kσ = T = σf . This 

part remains valid.
Step 2: The explicit characterization T was then used to establish that T is locally convex. This part 

contains an error in the proof of Lemma 2.7. As a consequence, is unclear whether Lemma 2.8 and Propo-
sition 2.6 remain true.

The error: The proof that addition is a continuous map for T is mistaken, the proof that scalar multi-
plication is continuous remains valid.

The exact mistake in Lemma 2.7 is the claim that H ⊆ U . Let ⊕ : M2
τ,+ × Mτ → M2

τ be the map 
defined by ⊕(μ, ν, ρ) = (μ +ρ, ν+ρ). Let A, B be σ+ open subsets in Mτ,+ for and let C be σ open in Mτ . 
Finally let (μ0, ν0) ∈ A ×B.

The sets H and U were defined as

H := (μ0 + C) × (v0 + C),

U := ⊕(A×B × C).

The issue is that ⊕ adds the set C interpreted as the diagonal {(ρ, ρ) | ρ ∈ C} to the set A × B, whereas 
the construction to obtain H adds the much larger product space C × C to (μ0, ν0). As a consequence the 
claim H ⊆ U remains unproven.
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