
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Automatically Extracting Class Diagrams
from Spreadsheets

Felienne Hermans, Martin Pinzger and Arie van Deursen

Report TUD-SERG-2010-013

SERG

TUD-SERG-2010-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 24th European Conference on Object-Oriented
Programming (ECOOP 2010), Lecture Notes in Computer Science, Springer-Verlag, 2010.

c© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Automatically Extracting Class Diagrams from
Spreadsheets

Felienne Hermans, Martin Pinzger, and Arie van Deursen

Delft University of Technology
{f.f.j.hermans,m.pinzger,arie.vandeursen}@tudelft.nl

Abstract. The use of spreadsheets to capture information is widespread in in-
dustry. Spreadsheets can thus be a wealthy source of domain information. We
propose to automatically extract this information and transform it into class di-
agrams. The resulting class diagram can be used by software engineers to un-
derstand, refine, or re-implement the spreadsheet’s functionality. To enable the
transformation into class diagrams we create a library of common spreadsheet
usage patterns. These patterns are localized in the spreadsheet using a two- di-
mensional parsing algorithm. The resulting parse tree is transformed and enriched
with information from the library. We evaluate our approach on the spreadsheets
from the Euses Spreadsheet Corpus by comparing a subset of the generated class
diagrams with reference class diagrams created manually.

1 Introduction

To design and implement a software system a high degree of familiarity with the domain
of the software is needed. We conjecture that a significant portion of this domain know-
ledge is already available in digital form. In particular spreadsheets, which are widely
used for many professional tasks, are likely to contain a wealth of implicit knowledge
of the underlying application domain. It is the purpose of this paper to make this know-
ledge explicit.

Spreadsheets were introduced in the early 1980’s with the first spreadsheet tool
called VisiCalc. This tool was then followed by SuperCalc and Lotus 123 and later on
by Excel which currently is one of the most prominent spreadsheet tools. Since their
introduction, spreadsheets are heavily used in industry. A study from the year 2005
shows about 23 million American workers use spreadsheets, which amounts to about
30% of the workforce [24].

Spreadsheets can be a rich source of information concerning the structure of the un-
derlying domain. They contain groups of data, computations over these groups, and data
dependencies between them. In our approach, we will attempt to make this structure
explicit, by representing it as a class diagram. Groups of data are turned into classes,
formula’s into methods, and data dependencies into associations. The resulting class
diagram can be used by software engineers to understand, refine, or re-implement the
spreadsheet’s functionality.

The research community noticed the importance of spreadsheets and devoted con-
siderable research effort to them. This research mainly aims at two directions: 1) the

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 1

localizations of errors within existing spreadsheets [1–5, 18] and 2) the development
of guidelines on how to create well-structured and maintainable spreadsheets [10, 14,
15, 21, 22]. Both directions share the goal of improving spreadsheet quality, which is
necessary because the current state of spreadsheet use leads to numerous problems as
described in several papers, most notably in the work of Panko [20].

While some guidelines for designing spreadsheets and algorithms for detecting er-
rors in spreadsheets exist, the elicitation of the domain information stored in spread-
sheets for developing software systems has, to the best of our knowledge, not been
addressed, yet (See Section 10 for a discussion of the most directly related literature).

To illustrate our approach, we will use the example presented in Figure 1, taken
from Abraham and Erwig [1].

Fig. 1: Fruit example taken from [1].

This spreadsheet is used to list the number of different fruits (i.e., apples and or-
anges) that have been harvested in May and June. It also provides functions to calculate
the total numbers per fruit, per month, and a function for the calculation of the overall
number of harvested fruits. The structure of this spreadsheet is a common pattern that
occurs in many spreadsheets. Taking a closer look at this spreadsheet, the information
it contains could be represented by the class diagram shown in Figure 2.

name
Fruit

name
Month**

value
Amount

total(Fruit)
total(Month)
total()

Reporter

*
1

Fig. 2: Class diagram extracted from the fruit example.

For the extraction of this class diagram, we first identified the two classes Fruit
and Month, with instances Apple and Orange and May and June respectively. The two
classes are linked with each other by the cells B3 to C4 that specify the amount of fruits
(instances of class Fruit) for each instance of the class Month. This link is represented
by the association class Amount with an attribute value. Furthermore the spreadsheet

2

Automatically Extracting Class Diagrams from Spreadsheets SERG

2 TUD-SERG-2010-013

contains operations to calculate the Total per fruit, per month, and the overall total
number of fruits. These operations can be provided by a Reporter class that we added
to the class diagram. The resulting class diagram contains the core design elements to
represent this spreadsheet and might be used by a developer, for example, to design
a simple fruit-statistic application, or to reason about (errors in) the structure of the
spreadsheet.

In this paper we focus on the automation of the extraction of such class diagrams
from spreadsheets. We propose a systematic approach, called Gyro, which is supported
by a tool capable of analyzing Microsoft Excel sheets. Gyro transforms spreadsheets
into class diagrams automatically by exploiting commonality in spreadsheets, like the
pattern in Figure 1. To that end we create a library containing common spreadsheet
patterns, inspired by both related work in the field of spreadsheet design and analysis
of a range of existing spreadsheets. These patterns are located within the spreadsheet
using a combination of parsing and pattern matching algorithms. Each pattern in the
library is associated with a mapping to a class diagram.

In order to evaluate our approach we made use of the Euses Spreadsheet Cor-
pus [11]. This corpus contains over 4000 real world spreadsheets from domains such
as finance, biology, and education. In our evaluation we demonstrate that our patterns
can be found in around 40% of the spreadsheets. Furthermore we provide a systematic
comparison of the generated class diagrams for a random selection of 50 spreadsheets
for which we manually derived class diagrams.

The remainder of this paper is structured as follows: Section 2 introduces the neces-
sary background information on modeling spreadsheets and two-dimensional language
theory. The Gyro approach is presented in Section 3 with details of the parsing and
transformation described in the Sections 4, 5 and 6. Section 7 gives a brief description
of the current implementation of the Gyro prototype. The evaluation of the approach is
presented in Section 8. The results are discussed in Section 9 followed by Section 10
that presents an overview of the work in the field of spreadsheets. The conclusions can
be found in Section 11.

2 Background

Before presenting our Gyro approach for recognizing spreadsheet patterns, we provide
a brief survey of the preliminaries we build upon. These originate from the realm of
spreadsheet testing and analysis [1, 18], as well as from the domain of two-dimensional
languages [12].

2.1 Cell types

Most papers on spreadsheet analysis distinguish between different cell types [1, 18].
Abraham and Erwig [1] for instance identifies header, footer, data and filler cells. Mit-
termeir and Clermont [18] on the other hand defines empty cells, formulas and constant
values. We mostly follow the approach of the former, but we replace filler cells by empty
cells. We do so because we use patterns to identify structure in a spreadsheet. Therefore
we are not interested in filler cells, which usually occur between patterns. With this, the
following basic cell types are recognized by our approach:

3

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 3

Label A cell that only contains text, giving information about other cells (called header
in [1])

Data A cell filled with data
Formula A cell containing a calculation over other cells (called footer in [1])
Empty An empty cell

We prefer the terms label and formula over header and footer, because the latter
have some kind of intrinsic meaning concerning their position. We want to be able to
freely define any pattern, including some with ’footers’ on top. To determine the type
of a cell, we use a simple strategy, that basically follows the approach of [2]. This
algorithm is described in Section 4.3.

2.2 Pattern languages for two-dimensional languages

To define patterns over spreadsheets we use of existing notations from the theory of two-
dimensional languages [12] which is a generalization of the standard theory of regular
languages and finite automata.

Let Σ be a finite alphabet. Then we define:

Definition 1 A two-dimensional pattern over Σ is a two-dimensional array of elements
of Σ.

Definition 2 The set of all two-dimensional patterns over Σ is denoted by Σ∗∗. A two-
dimensional language over Σ is a subset of Σ∗∗.

Given a pattern p over an alphabet Σ, let l1(p) denote the number of rows of p and
l2(p) denote the number of columns of p. The pair 〈l1(p), l2(p)〉 is called the size of
p. Furthermore, if 0≤ i < l1(p) and 0≤ j < l2(p) then p(i, j) denotes the symbol ∈ Σ
on position (i, j). The pattern with size 〈0,0〉 is called the empty pattern and is denoted
with λ. Pictures of the size 〈0,n〉 or 〈n,0〉 with n > 0 are not defined.

Next we define concatenation operations used to combine patterns. Let p be a pat-
tern over Σ of size 〈m,n〉 and q be a pattern over Σ′ of size 〈m′,n′〉. We first define the
rectangle we can obtain by putting q to the right of p, assuming p and q have the same
number of rows, resulting in a rectangle of size 〈m = m′,n+n′〉
Definition 3 The column concatenation of p and q (denoted by p : q) is a partial op-
eration, only defined if m = m′, is a pattern over Σ∪Σ′ given by

(p:q)(i, j) =
{

p(i, j) if j ≤ n
q(i, j−n) otherwise

Similarly, we define how we can position q directly below p if p and q have the
same number of columns, resulting in a rectangle of size 〈m+m′,n = n′〉

Definition 4 The row concatenation of p and q (denoted by p	q) is a partial operation,
only defined if n = n′, is a pattern over Σ∪Σ′ given by

(p	q)(i, j) =
{

p(i, j) if i≤ m
q(i−m, j) otherwise

4

Automatically Extracting Class Diagrams from Spreadsheets SERG

4 TUD-SERG-2010-013

We will refer to these two operations as the catenation operations. Catenation op-
erations of p and the empty picture λ are always defined and λ is the neutral element
for both catenation operations. The catenation operators can be extended to define con-
catenations between two-dimensional languages.

Definition 5 Let L1,L2 be two-dimensional languages over alphabets Σ1 and Σ2 re-
spectively, the column concatenation of L1 and L2 is a language over Σ1 ∪Σ2 denoted
by L1 :L2 is defined by

L1 :L2 = {p:q|p ∈ L1∧q ∈ L2}
Similarly the row concatenation of L1 and L2 is a language over Σ1∪Σ2 denoted by

L1	L2 is defined by

L1	L2 = {p	q|p ∈ L1∧q ∈ L2}

Definition 6 Let L be a pattern language. The column closure of L (denoted by L
∗:

) is
defined as

L
∗:

=
⋃

i≥1

Li:

where L1: = L and Ln: = L:L(n−1):. Similarly, the row closure of L (denoted by L
∗	

)
is defined as

L
∗	

=
⋃

i≥1

Li	

where L1	 = L and Ln	 = L	L(n−1)	.

We will refer to these two operations as the closure operations. With respect to
priorities we define that closure operations bind stronger than catenation operations.

2.3 Pattern grammars

To describe common spreadsheet patterns, we make use of pattern grammars. Pattern
grammars are a two-dimensional generalization of ordinary grammars. This general-
ization is based on the observation that a production rule of the form S→ ab actually
means that S may be replaced by a followed by b. In regular rewriting, the ’followed by’
can only occur in one direction, so this is not expressed in the grammar. To define pro-
duction rules in two dimensions, we use two symbols from two-dimensional language
theory that express direction, 	 and : and their closure operations ∗	 and ∗:

Definition 7 The set of all two-dimensional pattern languages over Σ is a subset of Σ∗∗
called L(Σ) is inductively defined by:

λ ∈ P (Σ)
a ∈ P (Σ) , if a ∈ Σ

L
∗	 ∈ P (Σ) , if L ∈ L(Σ)

L
∗: ∈ P (Σ) , if L ∈ L(Σ)

L1	L2 ∈ P (Σ) , if L1,L2 ∈ L(Σ)
L1 :L2 ∈ P (Σ) , if L1,L2 ∈ L(Σ)

5

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 5

To avoid ambiguity we use the convention that closure operations bind stronger than
catenation operations.

Definition 8 Just as a normal grammar, a pattern grammar G is defined as a quadruple

G = (V,T,S,P)

where V is a finite set of non-terminals, T is a finite set of terminal symbols, S ∈V is a
special symbol called the start symbol, and P is a finite set of productions.

Productions are tuples (v, p) of a non-terminal v and a pattern p, denoted as v→ p.
v is also indicated with lefthand side, whereas p is called righthand side. Since we only
allow non-terminals on the lefthand side, this is a context free grammar. The pattern
grammars in the paper will always consist of the basic cell types, thus the alphabet of
terminals is always equal to {Label,Empty,Formula,Data}, therefore we will omit T
in definitions of grammars. Unless indicated otherwise, Pattern is the start symbol S of
any grammar in this paper.

3 The Gyro Approach to Spreadsheet Reverse Engineering

The goal of this paper is to distill class diagrams from spreadsheets. To that end we pro-
pose the Gyro approach, in which typical spreadsheet usage patterns can be specified,
automatically recognized and transformed into class diagrams.

When investigating the way people use spreadsheets, we noticed that there are some
common ways in which people represent information in spreadsheets. Typically data
that concerns the same topic is found grouped together in rows or columns separated by
empty cells. These spreadsheet patterns are found in all kinds of spreadsheets, indepen-
dent of the business area the spreadsheet originates from. We exploit this commonality
by introducing a library of common spreadsheet structures. The transformation into
class diagrams is done in two steps, as shown in Figure 3.

Fig. 3: Overview of the Gyro approach showing the two basic steps Parsing and Trans-
formation to transform spreadsheets into class diagrams

We start by localizing patterns from the library in the spreadsheet, by using a two-
dimensional parsing algorithm. If a pattern is found the result of this algorithm is a parse

6

Automatically Extracting Class Diagrams from Spreadsheets SERG

6 TUD-SERG-2010-013

tree. Each of the patterns in the library contains additional information that defines how
the parse tree is transformed into a class diagram. This transformation represents the
second step of our approach. The parsing is explained in more detail in Section 4 and
Section 5 describes the transformation step.

The use of a library of patterns was greatly motivated by the need for flexible infor-
mation extraction. We do not believe the current library contains all pattern grammars
needed. So when we encounter a common spreadsheet that is not part of our library, we
can add it to the library. Gyro is then able to recognize it immediately, without adapta-
tion of the implementation. The patterns in the library are based both on existing work
on spreadsheet design patterns [14, 21, 22] and on the analysis of patterns encountered
in the Euses Corpus [11].

4 Pattern recognition

4.1 Overview

In order to identify regions in a spreadsheet that adhere to a given pattern, we follow
the pattern recognition approach outlined in Figure 4. First, we identify rectangles in
the spreadsheet that are filled with Data, Formula or Label cells, by using an algorithm
to determine bounding boxes (Section 4.2). In Figure 1 for instance, this bounding box
is given by the cells A1 × D5. Because we assume occurrences of pattern are sepa-
rated by empty cells, we evaluate these rectangles as possible occurrences of patterns.
Next each cell is assigned one of the basic cell types: Data, Formula, Label or Empty
(Section 4.3).

Fig. 4: Overview of the pattern recognition process

In parallel, the grammar is normalized to a form that only contains catenation opera-
tions, in order to simplify the parsing step (Section 4.4). Then a filtering step is applied,
in which we check the type of the left-most upper-most corner of the bounding box. We
determine which of the patterns in the library have this symbol as a possible first ter-
minal (Section 4.5) We only start the parsing algorithm if this is the case. The parsing
algorithm is an adaption of standard recursive descent parsing [6] adjusted to handle
two-dimensional grammars (Section 4.6).

It is possible several patterns are applicable for processing the cells of a bounding
box. In such cases the algorithm returns the set of all matched patterns.

7

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 7

4.2 Finding bounding boxes

A bounding box is defined as the smallest rectangle containing a connected group of
cells of type Data, Label or Formula. Two cells are connected if they touch each other
horizontally, vertically or diagonally. To find such a bounding box, we apply the fol-
lowing strategy: Find the left-most upper-most non-empty cell that is not yet contained
within a bounding box. The initial bounding is set to contain only this cell. Next this
bounding box is expanded until the size remains stable. Expanding is done by inspect-
ing all cells that connect to the bounding box. If one of these cells is non empty, the
bounding box is enlarged to include this cell. In Figure 4 the identified bounding boxes
are marked grey.

4.3 Cell classification

To distinguish between cell types, we use the cell classification strategy described by
Abraham and Erwig [1]. This algorithm starts with identifying all cells containing a
formula and mark them as type Formula (green cells in Figure 4). Next we look at the
content of the formula’s. Cells that are referred to a formula are marked Data, unless
they also contain a formula (orange cells in Figure 4). In that case they are marked as
Formula as well. Remaining cells that are empty are identified as Empty (white cells in
Figure 4); all others are recognized as a Label (grey cells in Figure 4).

4.4 Normalization

To simplify the parsing algorithm, we assume that the pattern under consideration only
consists of 	 and : symbols. Therefore, we first transform the pattern to this form,
that we call catenation normal form. Every possible pattern has an equivalent pattern
in catenation normal form. To obtain this normal form row or column concatenation
closures are replaced by right recursion. For instance

Pattern→ (Label :Data)∗	

becomes

Pattern→ A

A→ Label :Data

(A→ Label :Data)	A

This strategy is applied repeatedly until the grammar does not contain any closure
symbol.

8

Automatically Extracting Class Diagrams from Spreadsheets SERG

8 TUD-SERG-2010-013

4.5 Filtering

In two-dimensional pattern matching filtering is a widely used approach [7, 8, 26]. Fil-
tering reduces the problem of finding a pattern P in an array T to finding a substring p
in string t, where a detected match of p in t corresponds to a possible match of P in T .
We use this idea by calculating all possible first terminals of a given pattern grammar.
Next we determine whether there is a detected bounding box that has this symbol in its
upper-left corner. We only start parsing the given pattern for these bounding boxes.

4.6 Parsing

To determine whether a given bounding box complies with a given pattern Q, we ap-
ply a recursive descent parsing strategy with some small modifications to handle two-
dimensional structures.

Algorithm 1 provides an outline of our approach. This procedure takes a bounding
box B and a pattern grammar G as its parameters. We begin with the start symbol of the
grammar and expand it until the first symbol is a terminal. Expanding means replacing
the left-hand side of a production rule by a corresponding right-hand side. (Algorithm
1, lines 7-12) If a non-terminal occurs as the left-hand side of multiple production rules,
all of them are evaluated. If a terminal is found, we examine whether this is the expected
terminal. If it is, the parsing continues, otherwise it fails. (Algorithm 1, lines 14-19)

This process requires some administration, for which we introduce a datatype Posi-
tion, containing an x- and y-coordinate, representing a position in the spreadsheet, and
a string T that has to be parsed at that position. The set S represents all Positions that
still have to be evaluated. At the start of Algorithm 1, S is initialized to contain only
one Position with coordinates (i, j) and string X . (i, j) is the upper left corner of the
bounding box B and X is the start symbol of grammar G. The set T represents all suc-
cessfully parsed patterns, so if parsing succeeds for a given pattern at a given position,
this position is added to the set T .

The evaluation of a Position P is done in the body of the While-loop on lines 6-21
and works as follows. If P starts with a non-terminal, say Y , a new Position is added to
S for every possible right-hand side r belonging to Y . That new Position has the same
coordinates as P, and contains string T , where the first occurrence of Y is replaced by
right-hand side r. Since S now contains all possible scenarios from the parsing of P, we
can remove P from S. Evaluation continues with the remainder of set S.

If P starts with a terminal, say t, the actual parsing happens. (Lines 14-19) We
determine if the symbol at position (x,y) is equal to t. If that is not the case, parsing for
this particular position fails, and P is removed from S. If (x,y) is equal to t, t is removed
from T . Since terminals are always followed by a catenation symbol, the first symbol
of T is a catenation symbol, say c. The cursor is then moved according to c. If this is
a column catenation symbol, the cursor moves to the right, if it is a row concatenation,
the cursor moves downward. This moving is aware of the size of the bounding box and
will fail if the cursor is about to go out of bounds. After that the evaluation continues
with the modified P.

9

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 9

Algorithm 1 Two-dimensional Parsing(BoundingBox B, Grammar G)

1: Position P← (B.i,B. j,G.X)
2: Set T ← /0
3: Set S←{P}
4: while S 6= /0 do
5: P← a position from S
6: while P.T 6= ”” do
7: if FirstSymbol(P.T) is non-terminal Y then
8: for all Productions Y→ r do
9: Create new Position Pl ,

10: with x = P.x, y = P.y and T = r ·Rest(P.T)
11: Add Pl to S
12: end for
13: else
14: if FirstSymbol(P.T) == B(P.x,P.y) then
15: Remove First Symbol of P.T
16: Move Cursor according to FirstSymbol(P.T)
17: else
18: Remove P from S {Parsing fails for this position}
19: end if
20: end if
21: end while
22: Add P to T
23: Remove P from S
24: end while

5 From patterns to class diagrams

5.1 Using Annotations

Given a pattern and a spreadsheet, the two-dimensional parsing algorithm just described
can identify rectangles in the spreadsheet that match the pattern. The result is a parse
tree, representing the full content of the rectangle, as well as the hierarchy of produc-
tions applied to match the rectangle to the pattern.

In order to turn this parse tree into a class diagram, our primary interest is in the
structure of the spreadsheet, not in the actual cell contents. Therefore, our next step
consists of identifying those nodes in the parse tree that can help to reveal this structure.
We do so by offering the possibility to add annotations to pattern definitions, which will
subsequently guide a transformation of the parse tree into class diagram.

Using annotations to turn a parse tree into a class diagram is done in two steps,
as depicted in Figure 5. First, the annotations are used to prune the parse tree into
a representation tree only containing relevant nodes. Next, this representation tree is
enriched so that a meaningful class diagram can emerge.

To see annotations in action, consider the simple spreadsheet shown in Figure 6.
In this spreadsheet, one can recognize a class “Customer”, with fields “Surname” and

10

Automatically Extracting Class Diagrams from Spreadsheets SERG

10 TUD-SERG-2010-013

Fig. 5: Overview of the Transformation step to transform a parse tree into a class dia-
gram

Fig. 6: Simple Customer spreadsheet

“Address”. Thus, we define a pattern that can recognize spreadsheets like this one:

G :
Pattern→ Headerrow	 (Datarow

∗	
)

Headerrow→ Label:Empty

Datarow→ Label:Data

In this pattern definition, the classname can be obtained from the headerrow, and
the field names from the data rows. Thus, we add annotations to capture exactly this:

G :
Pattern : class→ Headerrow	 (Datarow

∗	
)

Headerrow→ Label : name:Empty

Datarow→ Label : f ield :Data

Here we see that the Label of a header row represents the name of the class, and
that the Label of a data row represents the field name.

Annotations are permitted on both terminals and non-terminals. For terminals they
are an indication that the content of the cell contains relevant information (such as
the name of a field). For non-terminals they are an indication that the non-terminal in
question should be kept in the representation tree. Note that an annotation for the root
is not required: Hence the result of the transformation can be either a tree or a forest.

11

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 11

Algorithm 2 Tree transformation
1: Remove all non-annotated leaves
2: Remove all non-annotated nodes without annotated descendants
3: Remove all non-annotated nodes, their (annotated) children become children of their lowest

annotated ancestor

The annotations can be used to prune the parse tree as described in Algorithm 2.
The original parse tree, with annotations marked in grey, is depicted in Figure 7; the
corresponding pruned representation tree is shown in Figure 8.

Fig. 7: Parse tree generated for the Customer spreadsheet

Fig. 8: Representation tree after the transformation of the Customer parse tree

5.2 Class Diagrams

In this paper, the output of the transformation step are class diagrams. Therefore, the
annotations that can be used to define the transformation represent the basic building
blocks of class diagrams: class, name, field, and method. Since the latter three are prop-
erties of a Class, they can be used as annotations of terminals, and Class itself occurs

12

Automatically Extracting Class Diagrams from Spreadsheets SERG

12 TUD-SERG-2010-013

as annotation of non-terminals. Referring to the Customer example the class diagram
contains a class Customer with two fields Surname and Adress.

5.3 Enrichment

The transformation step results in one or more classes. In most cases there is a relation
between the different classes. In the second part of the annotation we can describe
the relation between the resulting trees. The following relations can be defined in the
pattern:

Association(C1, C2, m1, m2, C3) This defines an association between two classes, C1
and C2. Optionally, we can define multiplicities m1 and m2 for this association. The
last argument is again a class and represents an association class of this association.

Merge(C1,C2) The operation merges two classes into one class containing all fields and
methods of both classes. If fields or methods with equal names are encountered both
will appear in the new class. To distinguish between them their original class name
will be appended to the method of field name. The Merge-operation is useful if
class information is scattered around the spreadsheet and can not be easily captured
within one production rule.

Reference(C1,C2) A reference is used in the creation of the class diagram, but will not
appear in the class diagram itself. A reference between two classes is added when
information about the names of fields and methods of C1 can be found in C2. This
is used when information from the spreadsheet has to be used in multiple classes.

We will see examples of the use of these relation declarations in the next section.

6 Spreadsheet patterns

By inspecting the Euses spreadsheet corpus [11], and looking at related work in spread-
sheet design [14, 15, 21, 22] we have identified a number of reoccurring patterns in
spreadsheets into a pattern library. In this section, we describe the syntax of a selection
of the most interesting spreadsheet design patterns in this library.

6.1 Simple class

The simplest pattern in the library is a list of instances as shown in Figure 9. The column
headers provide the names of the fields, as captured in the following pattern.

Pattern : class→ X
∗:

X → Label : Field	Data
∗	

Note that the spreadsheet content provides no clue about the name of the class. The
class diagram that corresponds to this pattern is shown in Figure 10.

13

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 13

Fig. 9: Simple class spreadsheet pattern

Fig. 10: Class diagram extracted from a Simple class spreadsheet pattern

6.2 Simple class including name

If there is a row above a simple class pattern with only one label, we assume this is the
name of this pattern, as described by the second pattern in the library.

Pattern : class→ Label : name:Empty
∗: 	X

∗:

X → Label : Field	Data
∗	

6.3 Simple class including methods

If one of the columns contains formula’s, this column is likely to represent a method
of the class. To include this, we add the following production rule to the simple class
pattern (with or without class name).

X → Label : method	Formula
∗	

6.4 Aggregation

If there is a formula below a simple class, this represents a calculation over all instances,
which we catch in a Reporter Class that references all the instances. For each Formula

14

Automatically Extracting Class Diagrams from Spreadsheets SERG

14 TUD-SERG-2010-013

we encounter, we introduce a nameless method in the reporter class.

Pattern→ Simple	Reporter

Simple : class→ Label:Empty
∗: 	X

∗:

X → Label : f ield	Data
∗	

X → Label : method	Formula
∗	

Reporter : class→ Label:Formula
∗	

: method

The methods of the Reporter class are empty in this case, but they correspond one
on one to the names of the fields of the simple class. Therefore a Reference clause
is added, in the enrichment step the names will be copied to the Reporter class. The
relation between the simple class and the reporter class is defined by the Association
clause.

Re f erence(Reporter,Simple)

Association(Simple,Reporter,∗,1)

All of the above patterns can also occur vertically, rotated 90 degrees. Figure 6
shows an example of a spreadsheet in which the rotated version of the ”Simple class”
pattern is applied. Our library also contains the vertical variants of all above patterns.

6.5 Associated data

The final pattern in our library concerns two different classes, with data associated to
both of them. This pattern represents two classes with an association between the two
classes that contains the data.

Pattern→ C1 : (C2	C3)

C1 : class→ Empty	Label∗	

C2 : class→ Label:Empty∗:

C3 : class→ (Label	Data∗)∗:

The relation between the classes is defined by the following clause.

Association(C1,C2,∗,∗,C3)

Furthermore, there could also exist aggregations over this data, like in the fruit ex-
ample in Figure 1. In that case we add an association between a Reporter class con-
taining the aggregation methods and the association class, as shown in Figure 2. We
model this in the representation tree as an Association with methods. To recognize this
the following pattern is included in the library. This pattern also occurs in one direction

15

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 15

only, in that case either D1 or D2 is omitted.

Pattern→ (C1 : (C2	C3):D1)	D2

C1 : class→ Empty	Label∗	

C2 : class→ Label:Empty∗:

C3 : class→ (Label	Data∗)∗:

D1 : class→ Label : method	Formula∗	

D2 : class→ Label : method :Formula∗:

In this case, the classes D1 and D2 both represent the Reporter Class, but it is not
possible to catch them within one production rule because of the structure of the spread-
sheet. Therefore, we need a Merge-clause in this case. Furthermore one more associa-
tion needs to be defined, between the reporter class and the association class.

Merge(D1,D2)

Association(C1,C2,∗,∗,C3)

Association(C3,D1,∗,1)

7 Implementation

The approach for extracting class diagrams from spreadsheets as described in the pre-
vious sections has been implemented in the Gyro tool suite,1 targeting Microsoft Excel
spreadsheets. Gyro users can specify the directory they want to analyze. Gyro loads all
.xls and .xlsx files from that directory and ignores other files. Furthermore the user can
specify in which directory the patterns can be found. Patterns are just plain text files
containing a pattern grammar. Options of the current implementation include the col-
oring of a spreadsheet representing the basic cell classification, the search for patterns
within spreadsheets, the visualization of the parse tree and the pruned parse tree, and
the full transformation into class diagrams.

Gyro is subject to continuous development; at the moment we are in the process of
enriching the Gyro user interface, and providing a web interface in which a spreadsheet
can be simply uploaded, relevant spreadsheet patterns can be selected, and spreadsheets
can be analyzed “as a service.”

Gyro is implemented in C#.net using Visual Studio 2010, beta 1. We use of the Mi-
crosoft SQL Server Modeling platform (formerly ”Oslo”) and its MGrammar language
to specify the grammar for our pattern definitions.

8 Evaluation

We evaluated the strength of our approach by testing the Gyro approach on the Euses
Spreadsheet Corpus [11]. The evaluation was twofold, first we tested the quality of the

1 Gyro can be downloaded from http://www.st.ewi.tudelft.nl/˜hermans/Gyro.

16

Automatically Extracting Class Diagrams from Spreadsheets SERG

16 TUD-SERG-2010-013

Table 1: Number and percentage of spreadsheets of the Euses Spreadsheet Corpus that
can be processed with the current Gyro pattern library

Type Number of sheets Pattern found Success percentage
Cs101 10 4 40.0%
Database 726 334 46.0%
Filby 65 31 47.7%
Financial 904 334 36.9%
Forms3 34 14 41.2%
Grades 764 307 40.2 %
Homework 804 375 46.7%
Inventory 895 125 14.0%
Jackson 21 7 33.3%
Modeling 692 334 48.3%
Personal 7 6 85.7%

patterns, by determining how often the chosen patterns occur in the Spreadsheet Cor-
pus. This way we can check whether the patterns we chose are really frequently used.
Secondly, for the patterns that were found, we checked whether the generated class-
diagram is a faithful representation of the underlying domain. This second evaluation
was done by comparing generated class diagrams to class diagrams that were manually
created.

8.1 The data set

The Euses Spreadsheet Corpus is a set of spreadsheets created to help researchers to
evaluate methodologies and tools for creating and maintaining spreadsheets. It con-
sists of 4498 unique spreadsheet files, divided into 11 categories varying from financial
spreadsheets to educational ones. Many papers on spreadsheet analysis use the Corpus
to test their methodologies and algorithms, among which are [2] and [9].

8.2 Quality of chosen patterns

The first part of the evaluation focusses on measuring the number of spreadsheets that
can be processed with our pattern library. For this we applied Gyro to the Corpus and
counted the number of worksheets which in which at least one pattern could be applied.
A worksheet is an individual sheet within a spreadsheet. We ignored protected, empty
and invisible worksheets, as well as worksheets containing a VBA-macro. The results of
this experiment can be found in Table 1. The results indicate that the patterns we chose
are indeed quite common. There are 4 categories with a score in the 45-50% range, 3
in the 40-45% range, 3 in the <40% range and there is one (small) category scoring
85%. We noticed that spreadsheets originating from the inventory and financial cate-
gories score lower than spreadsheets from the other categories. The inventory category
mainly consists of empty forms, spreadsheets in which the data still has to be filled in.
Since our approach focusses on spreadsheets filled with data, the algorithm logically
performs less on these inventory-sheets. The lower score on financial spreadsheets is

17

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 17

percentageClasses
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y
40.0

30.0

20.0

10.0

.0

Mean = .8125
Std. Dev. = .30188
N = 5 0

(a) Matched classes

percentageFields
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y

30.0

20.0

10.0

.0

Mean = .7504
Std. Dev. = .31377
N = 5 0

(b) Matched fields

percentageMethods
1.201.00.80.60.40.20.00

Fr
eq

ue
nc

y

30.0

20.0

10.0

.0

Mean = .6661
Std. Dev. = .42523
N = 5 0

(c) Matched methods

Fig. 11: Histogram of correctly matched classes (a), fields (b), and methods (c)

probably caused by the complexity of financial spreadsheets in general. The lack of fi-
nancial knowledge of the authors of this paper could also play a role. Since we are no
financial experts, we do not have knowledge of common financial structures that could
occur within spreadsheets, making it more difficult to design suitable patterns for this
category.

8.3 Quality of mapping

The second evaluation measures the quality of extracted class diagrams. For this we
randomly selected 50 spreadsheets from the Euses Spreadsheet Corpus in which one of
the Gyro patterns occurs. We divided these 50 sheets among the three authors. For these
spreadsheets, each author created a class diagram by hand, by looking at the structure
and content of the spreadsheet. We refer to these class diagrams as reference class
diagrams. They were created without looking at the generated class diagrams. In this
evaluation we compared the generated class diagrams to the reference class diagrams
and counted the number of matched classes, fields and methods.

18

Automatically Extracting Class Diagrams from Spreadsheets SERG

18 TUD-SERG-2010-013

Figures 11a, 11b and 11c depict the results of this experiment.2 In the majority of
the spreadsheets (32), Gyro found all classes and in about half of the cases all fields and
methods were also extracted correctly. In the most cases in which the right pattern was
selected, all methods and fields were correct. Considering the methods, we see that there
is a significant number of spreadsheets in which no methods were found. This is mainly
due to the fact that values in the spreadsheet can have a numerical relation that did not
result from a formula. This typically occurs when data is imported into a spreadsheet
from another software system where the value was calculated. A human quickly notices
this relationship and decides that a column represents a method. Since Gyro only takes
into account the cell types, it does not recognize this implicit relationship. We keep this
as a point for future work.

Furthermore, we divided the results into four categories to get an overall view on
the quality of extracted class diagrams. These categories are:

Perfect All classes, fields and methods correspond
Structure OK All classes are present, but their names, fields or methods are missing

or incorrect
Classes missing Some classes are present, but others are missing
Useless The generated diagram does correspond to the the reference diagram at all

This results of this evaluation are listed in Table 2. In 20 cases Gyro produced ex-
actly the same class diagram as the one created by the authors. In 13 cases the structure
was correct. There were 6 cases in which the result generated by Gyro was classified
useless. We believe these results are promising since Gyro performs just as well as a
human on a large portion of the spreadsheets. However there are also some generated
class diagrams that do not represent the underlying domain. These spreadsheets con-
tained difficult calculation structure the Gyro toolkit is not able to process yet, like
financial calculations or use a very specific layout that does not occur in the pattern
library.

Table 2: Overall view on the quality of extracted class diagrams
Number of sheets Perfect Structure OK Classes missing Useless

50 20 13 11 6

9 Discussion

The current implementation of Gyro, while still a prototype, enables software engi-
neers to derive domain knowledge, in the form of a class diagram, from a collection of
spreadsheets. In this section, we discuss a variety of issues that affect the applicability
and suitability of the proposed approach.

2 Selected spreadsheets and reference class diagrams can be found at http://www.st.ewi.
tudelft.nl/˜hermans/Gyro

19

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 19

9.1 Spreadsheet limitations

There are some spreadsheet concepts the current implementation can not handle prop-
erly. Most importantly Gyro uses only one spreadsheet as input for the detection al-
gorithms. There often exist multiple spreadsheet files with a similar structure within a
company. Imagine a spreadsheet form to record the data of an order. There will probably
be one file or worksheet for every order, all having the same structure. The performance
of our methods could be improved by applying the pattern matching techniques de-
scribed in this paper to multiple instances. This approach has several benefits. A higher
degree of certainty could be achieved about the type of a cell. If a cell contains the
same value in multiple spreadsheet files, it is very likely to be a label. There is also the
benefit of gathering more information making it possible to do statistical analysis on
the results. Furthermore, the current cell classification of only four cell types is quite
coarse-grained. Improvements could for instance be made by refining the Data type
into Text data and Number data.

9.2 Class diagram limitations

The most important class diagram feature that is currently not supported by Gyro is the
inheritance relationship between classes. Inheritance is a difficult design concept per se
and is typically not modeled in spreadsheets explicitly. This is also the main reason why
Gyro can not extract it directly from spreadsheets using its pattern library. However,
there exist approaches that can derive inheritance relationships by normalizing class
diagrams. Such an approach is, for example, the FUN-algorithm [19], which we plan to
integrate into Gyro.

9.3 Beyond class diagrams

In the current paper we only focussed on creating class diagrams, but the information
contained in spreadsheets could also be represented in a different format. Possibili-
ties include generating a database scheme, generating General Purpose Language code
or generating more specific code, like WebDSL [13] code. The extracted domain in-
formation could also be used to create a domain-specific language tailored towards a
particular business domain, since important domain concepts are present in the output
of our algorithm.

We also envision the use of our algorithms to support the migration of a spreadsheet-
based style of working to one where a commercial ERP (Enterprise Resource Planning)
or CRM (Customer Relationship Management) solution is used. This requires under-
standing to what extent the data and business processes reflected in the spreadsheets
can be mapped onto the models imposed by the ERP or CRM tools, for which we ex-
pect that our approach can deliver very useful information.

9.4 Dealing with spreadsheets errors

As we mentioned in the introduction, spreadsheets are hardly ever free of errors. This
could raise the question how our approach deals with errors in spreadsheets. We be-
lieve errors mostly occur within formula’s; the wrong cells might be referenced or a

20

Automatically Extracting Class Diagrams from Spreadsheets SERG

20 TUD-SERG-2010-013

copy-paste-error is made. Since the cells still are Formula typed in this case, this does
not concern the patterns and our methods will still be able to find the right pattern. It
would be interesting to compare the results of error-finding algorithms on the Euses
spreadsheet with our results to gain more confidence in this assumption. Furthermore
our approach allows the option to introduce a tolerance for minor errors within the
pattern, so if some cells do not fit within the pattern, it can still be recognized. More
research is needed however to determine a tolerance level that is neither to strict, nor
too tolerant.

9.5 Meaningful identifiers

Spreadsheet do not always contain all information needed to create a perfect class dia-
gram. Consider the spreadsheet from the introduction again, in Figure 1. In the spread-
sheet the value of the numbers is not expressed. We might assume it is the amount of
fruit sold in a particular month, but it could also be the price of the fruit or the number
of customers that the farmer sold to.

Because not all information in the spreadsheet is named, the naming of methods and
fields is not always perfect. We do not believe this is a big problem, because the class
diagram still reveals the structure of the data if some names are missing or incorrect. in
this case Gyro sketches the basic diagram and users can fill in the blanks.

9.6 Threats to validity

A threat to the external validity of our evaluation concerns the representativeness of
the Euses Corpus spreadsheet set. This set, however, is large (over 4000 spreadsheets),
and is collected from practice. Furthermore, for the manual comparison of the class
diagrams we randomly picked 50 spreadsheets from this set.

With respect to internal validity, one of the threats is the fact that the reference class
diagrams were only created by three people, who were also involved in the paper. The
outcome might have been different if other people had created the reference diagrams,
because experience, education and personal taste influence how a person creates class
diagrams. This effect can be decreased by using a larger test group in future experi-
ments. We however believe the current test group serves as a good reference group, as
the persons involved all have years of experience in software engineering and model-
ing. Furthermore, the collection of 50 spreadsheets and accompanying class diagrams
is available from our web site, allowing other researchers to challenge our reference set.

With respect to threats to reliability (repeatability), the Gyro tool, the pattern library
used, the selected spreadsheets from the spreadsheet corpus and the reference set of
class diagrams are available from our web site, enabling other researchers to redo our
experiments.

10 Related work

Spreadsheets analysis is a subject of ongoing research. Most papers in this field focus on
testing spreadsheets and certifying their correctness. Abraham and Erwig have written a

21

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 21

series of articles on unit inference [1–4]. Their units form a type system based on values
in the spreadsheet that is used to determine whether all cells in a column or row have
the same type. Their work was of inspiration to us, but their objectives differ from ours.
They focus on error finding, where we aim at extracting information. However, their hex
and vex groups - similarly shaped rows and columns - inspired us in defining patterns
in the library. Ahmad et al. [5] also created a system to annotate spreadsheets, however
their approach requires users to indicate the types of fields themselves. Mittermeir and
Clermont [18] investigate the possibility of structure finding, but their aim again was
localizing errors by finding discrepancies within the structures found.

Another group of papers presents best practices in spreadsheet design [14, 15, 21,
22], which gave us more insight into the patterns that had to be included in our library.
Fisher et al. [10] suggest a systematic approach to building a spreadsheet, but their
methods are used to create spreadsheet from scratch, and not to analyze existing ones.

Besides the goal also the approach of existing work differs from ours. Where ex-
isting papers recognize structure bottom up, by building up their knowledge of the
spreadsheet cell by cell, we apply a more top-down approach, by checking whether
a spreadsheet complies with a given structure.

For the recognition of patterns our initial approach was to use techniques from two-
dimensional pattern matching. However they match patterns of fixed size within an ar-
ray. Although this does not suit our purpose, these algorithms did provide us with some
valuable ideas. For instance, there is a class of filter-based algorithms, like Baker [7],
Bird [8] and Takaoka-Zhu [26]. This class of algorithms is based on the reduction of
two-dimensional matching to one dimension. Another useful principle we took from
existing algorithms is the notion of approximate matching, where small differences be-
tween patterns and arrays are allowed. In this variant of matching an integer k is intro-
duced that indicates how many mismatches are allowed with respect to a given distance,
like for instance the Levenshtein distance [17].

Because the two-dimensional pattern matching approach was not applicable in our
case, we started to investigate two-dimensional parsing. There have been some at-
tempts to generalize parsing to two dimensions. First there is array parsing [23]. In
this paradigm, rewriting may be applied to subarrays of the equal size. Because of that
property it is never possible to generate an array from a single start symbol. Hence the
use of these grammars does not solve the problem of variable size matching. Secondly,
there are matrix grammars [25], which generate arrays in two phases, a horizontal and
a vertical phase. Although they are better applicable than array grammars, matrix gram-
mars are not able to recognize patterns that are a combination of rows and columns.

The idea to transform spreadsheets into databases has been described in [9]. Their
goal is to transform spreadsheets into relational databases by using the FUN algo-
rithm [19] to find functional dependencies within rows. Therefore their approach is
limited to spreadsheet resembling non normalized databases.

Due to the use of spreadsheets as simple databases, our work also connects to the
problem of Object-Relational Mapping. In particular, we attempt to map from two-
dimensional relations back to object structures.

Last but not least, reverse engineering class diagrams from regular programs written
in, e.g., Java has been studied extensively. An overview is provided by [16], who also

22

Automatically Extracting Class Diagrams from Spreadsheets SERG

22 TUD-SERG-2010-013

include a comparison with existing roundtrip engineering tools. The key problem in
these approaches is to reverse engineer class associations from class implementations,
which differs from our purpose of extracting class diagrams from spreadsheet logic.

11 Concluding Remarks

The goal of this paper is to underline the importance of spreadsheet analysis as a means
to better understand the business domain of companies and users. To that end we have
designed an approach to describe common spreadsheet design patterns, and we imple-
mented the Gyro tool to extract the domain information automatically. The key contri-
butions of this paper are as follows:

– A notation for expressing spreadsheet patterns, as well as two-dimensional parsing
algorithm capable of recognizing these patterns (Section 4);

– A systematic approach to transform recognized patterns into class diagrams (Sec-
tion 5);

– A library of frequently occurring patterns (Section 5);
– An implementation of the proposed methods and library in the Gyro system (Sec-

tion 7);
– An evaluation of the proposed approach on a corpus of over 4000 spreadsheets

(Section 8).

The results of our evaluation with the Euses Spreadsheet Corpus showed that Gyro
can extract valuable domain information from 40% of the given spreadsheets. The eval-
uation further showed that extracted class diagrams are of reasonable quality—out of
50 spreadsheets 20 class diagrams were extracted perfectly, 13 contained minor flaws,
in 11 cases classes were missing, and in only 6 cases the extracted class diagrams were
rated as useless. This clearly underlines the potential of the Gyro approach.

We see several avenues for future research. First the description of patterns could be
improved. Pattern grammars might be a convenient way of describing spreadsheet pat-
terns for users with experience in programming and formal languages, but it is probably
not that easy for users from the business domain. To make Gyro easier for this kind of
users, we intend to create a visual editor for patterns. Furthermore spreadsheets do not
have to be replaced by software in all cases. A possible other use for Gyro could be to
aid users in creating structured spreadsheets, by offering pattern-based edit assistance,
comparable to the discovery-based assistance in [9]. Finally we have several ideas to
speed up the implementation of the algorithm. For instance, the filter-based part of the
algorithm now only checks the left-most upper-most cell of the pattern. It might be bet-
ter to look at the first row or the first column or a combination of both, to determine
earlier that there is no match. The current parsing approach is recursive descent, which
is known to be very inefficient in some cases. We would like to explore the possibilities
of using an LR-like parsing strategy on the recognition of pattern grammars.

References
1. Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets through

spatial analyses. In Proceedings of the IEEE International Symposium on Visual Languages
and Human-Centric Computing(VL/HCC), pages 165–172, 2004.

23

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 23

2. Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In Proceedings
of the 28th International Conference on Software Engineering(ICSE), pages 182–191, New
York, NY, USA, 2006. ACM.

3. Robin Abraham and Martin Erwig. Mutation operators for spreadsheets. IEEE Transactions
on Software Engineering, 35(1):94–108, 2009.

4. Robin Abraham, Martin Erwig, and Scott Andrew. A type system based on end-user vo-
cabulary. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 215–222, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

5. Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A type system for statically
detecting spreadsheet errors. In Proceedings of the IEEE International Conference on Auto-
mated Software Engineering, pages 174–183, 2003.

6. Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

7. Theodore P. Baker. A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978.

8. R. S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168 –
170, 1977.

9. Jácome Cunha, João Saraiva, and Joost Visser. Discovery-based edit assistance for spread-
sheets. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 233–237. IEEE, 2009.

10. M. Fisher, Mingming Cao, G. Rothermel, C. R. Cook, and M. M. Burnett. Automated test
case generation for spreadsheets. In Proceedings of the International Conference on Software
Engineering(ICSE), pages 141–151, 2002.

11. M. Fisher and Gregg Rothermel. The EUSES spreadsheet corpus: A shared resource for
supporting experimentation with spreadsheet dependability mechanisms. In In 1st Workshop
on End-User Software Engineering, pages 47–51, 2005.

12. Dora Giammarresi and Antonio Restivo. Two-dimensional finite state recognizability. Fun-
damenta Informaticae, 25(3):399–422, 1996.

13. Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser. WebDSL: A
domain-specific language for dynamic web applications. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
779–780, 2008.

14. Diane Janvrin and Joline Morrison. Using a structured design approach to reduce risks in
end user spreadsheet development. Information & Management, 37(1):1–12, 2000.

15. Brian Knight, David Chadwick, and Kamalesen Rajalingham. A structured methodol-
ogy for spreadsheet modelling. Proceedings of the European Spreadsheet Risks Interest
Group(EuSpRiG), 1:158, 2000.

16. Ralf Kollman, Petri Selonen, Eleni Stroulia, Tarja Systä, and Albert Zündorf. A study on the
current state of the art in tool-supported uml-based static reverse engineering. In Proceedings
of the Working Conference on Reverse Engineering (WCRE), pages 22–, 2002.

17. Vladimir I. Levenshtein. On the minimal redundancy of binary error-correcting codes. In-
formation and Control, 28(4):268–291, 1975.

18. R. Mittermeir and M. Clermont. Finding high-level structures in spreadsheet programs. In
Proceedings of the the Ninth Working Conference on Reverse Engineering (WCRE), page
221, Washington, DC, USA, 2002. IEEE Computer Society.

19. Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining functional and
embedded dependencies. In Proceedings of the International Conference on Database The-
ory(ICDT), pages 189–203, 2001.

20. Raymond R. Panko. What we know about spreadsheet errors. Journal of End User Comput-
ing, 10(2):15–21, 1998.

24

Automatically Extracting Class Diagrams from Spreadsheets SERG

24 TUD-SERG-2010-013

21. Raymond R. Panko and Richard P. Halverson Jr. Individual and group spreadsheet design:
Patterns of errors. In Proceedings of the Hawaii International Conference on System Sciences
(HICSS), pages 4–10, 1994.

22. Boaz Ronen, Boaz Ronen, Michael A. Palley, Michael A. Palley, Henry C. Lucas, and
Henry C. Lucas. Spreadsheet analysis and design. Communications of the ACM, 32:84–
93, 1989.

23. Azriel Rosenfeld. Array grammars. In Graph-Grammars and Their Application to Computer
Science, volume 291 of LNCS, pages 67–70. Springer-Verlag, 1986.

24. Christopher Scaffidi, Mary Shaw, and Brad A. Myers. Estimating the numbers of end users
and end user programmers. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 207–214, 2005.

25. G. Siromoney, R. Siromoney, and K. Krithivasan. Abstract families of matrices and picture
languages. Computer Graphics and Image Processing, 1(3):284–307, 1972.

26. Rui Feng Zhu and Tadao Takaoka. A technique for two-dimensional pattern matching. Com-
mununications of the ACM, 32(9):1110–1120, 1989.

25

SERG Automatically Extracting Class Diagrams from Spreadsheets

TUD-SERG-2010-013 25

Automatically Extracting Class Diagrams from Spreadsheets SERG

26 TUD-SERG-2010-013

TUD-SERG-2010-013
ISSN 1872-5392 SERG

