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Abstract

Large, long-term coastal imagery datasets are nowadays a low-cost source of
information for various coastal research disciplines. However, the applicability
of many existing algorithms for coastal image analysis is limited for these large
datasets due to a lack of automation and robustness. Therefore manual quality
control and site- and time-dependent calibration is often required. In this paper
we present a fully automated algorithm that classifies each pixel in an image
given a pre-defined set of classes. The necessary robustness is obtained by
distinguishing one class of pixels from another based on more than a thousand
pixel features and relations between neighboring pixels rather than a handful of
color intensities.

Using a manually annotated dataset of 192 coastal images, a Structured
Support Vector Machine (SSVM) is trained and tested to distinguish between
the classes water, sand, vegetation, sky and object. The resulting model correctly
classifies 93.0% of all pixels in a previously unseen image. Two case studies are
used to show how the algorithm extracts beach widths and water lines from a
coastal camera station.

Both the annotated dataset and the software developed to perform the model
training and prediction are provided as free and open-source data sources.
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1. Introduction

Coastal imagery nowadays is a valuable and low-cost source of information
for coastal research in a variety of disciplines. Characteristics such as beach
width, water line dynamics, wave breaking and runup, vegetation cover, aeolian
dynamics and beach usage are visible to the naked eye from a simple coastal
image (e.g. Figure 1, A). Further analysis of the acquired images can provide us
with derived information like bathymetries, flow patterns and sediment trans-
port trajectories. Coastal image analysis is not restricted to ordinary visible
light imagery, but can be applied to (near-)infrared, multi- or hyperspectral
imagery and video as well, increasing the number of coastal features that can
be distinguished.

Figure 1: Example of a coastal image taken on July 1st, 2013 in Kijkduin, The Netherlands
(A) and the corresponding manual annotation (B).

Since investments to install a coastal camera station and corresponding data
storage are low compared to most other monitoring alternatives, the amount of
coastal camera stations worldwide is increasing steadily. With the increasing
amount of coastal imagery data, an increasing number of coastal image analysis
algorithms is being developed with a variety of applications. Pioneering work on
swash runup estimates from coastal images was done by Holland and Holman
(1991). The extraction of runup lines inspired many authors to map intertidal
bathymetries from series of runup lines obtained from a series of coastal im-
ages (e.g. Plant and Holman, 1997; Aarninkhof et al., 2003; Quartel et al., 2006;
Plant et al., 2007; Uunk et al., 2010; Osorio et al., 2012). Many shoreline ex-
traction algorithms are available, including those that use multispectral images
for increased precision (e.g. Sekovski et al., 2014). Subsequently, coastal images
were used to estimate surfzone currents (e.g. Holland et al., 2001; Chickadel
et al., 2003) and later subtidal bathymetries (e.g Aarninkhof et al., 2005; van
Dongeren et al., 2008; Holman et al., 2013). The global presence of coastal
camera stations makes it possible to monitor long-term coastal behavior (Smit
et al., 2007) and sparked several applications for coastal zone managers, like
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estimating coastal state indicators (Davidson et al., 2007), deriving beach usage
statistics (Jimenez et al., 2007; Guillén et al., 2008), tracking sandbar positions
(Lippmann and Holman, 1989; van Enckevort and Ruessink , 2001; Price and
Ruessink , 2011) and rip current detection systems (Bogle et al., 2000; Gallop
et al., 2009).

The size of the coastal imagery archive grows rapidly. New camera sta-
tions are deployed every year, adding to the diversity of the total dataset. The
data intake per station is increasing, which makes the total dataset harder to
analyze. The applicability and performance of these algorithms on the large
coastal imagery datasets that are presently available depends on two charac-
teristics in particular: automation and distinctiveness of relevant pixels. Many
algorithms need some kind of manual pre-selection of relevant pixels (the region
of interest) or manual quality control, which often hampers analysis of large,
long-term coastal imagery datasets (e.g. Holland and Holman, 1991; Aarninkhof
et al., 2003; Jimenez et al., 2007). Algorithms that do not rely on a manual
quality control need to distinguish between classes of pixels based on a lim-
ited number of intrinsic pixel features, usually the color channels Red, Green
and Blue (RGB) or Hue, Saturation and Value (HSV) (e.g. Aarninkhof et al.,
2003; Quartel et al., 2006). Consequently, feature characteristics for different
classes are very likely to overlap and automated classification of large, long-term
coastal imagery datasets becomes unreliable if not unfeasible without site- and
time-dependent calibration, limiting the applicability of the algorithm.

To the best of our knowledge, this paper presents the first fully automatic,
high-quality algorithm for the supervised segmentation of coastal images into
image regions containing major classes such as water, sand, vegetation, sky, and
objects (Figure 1, B). In contrast to prior work, this algorithm does not rely on a
few color features with limited discriminability between classes, but aggregates
over more than a thousand features that contain information on color, texture,
and visual appearance. In addition, the algorithm uses a machine learning
framework that allows us to leverage thousands of features for high-accuracy
classification and enables the use of structured learning where relations between
neighboring pixels are taken into account. The algorithm is not tailored to
any specific classification task, but is merely a general classification framework
that can be applied on large, long-term coastal imagery datasets or on parts
of individual images. Nonetheless, it produces substantially better results than
obtained by tailored algorithms that rely on color features alone and omit the
use of structured learning. In addition, we present a manually annotated dataset
of coastal images that can be used for training and testing of machine-learning
based systems such as ours, and we present an open-source Python toolbox for
performing coastal image analysis tasks.

2. Methodology

Automated classification of regions in coastal images is done using a classi-
fication model. Classifying image regions into various meaningful classes based
on a set of properties (features) shows similarities to regression models (e.g.
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linear regression). Regression models are used to predict the value of a tar-
get parameter based on some input samples. In principle, classification models
are regression models, which use a threshold value for the target parameter to
distinguish between a set of discrete classes.

Supervised classification models (as opposed to unsupervised models, which
are not treated here) require training. During training the optimal threshold
values are determined based on an annotated dataset. Optimization is done
by minimizing a cost function. The definition of this cost function is the main
factor that distinguishes between various model types. For example, a linear
regression model usually minimizes the mean squared error of the predicted
target parameter over all training samples. Artificial neural networks, which are
basically a network of regression models, are occasionally used for classification
purposes as well (e.g. Kingston, 2003; Verhaeghe et al., 2008). In this study a
method closely related to a Logistic Regressor (LR) is used (e.g. Vincent , 1986;
Dusek and Seim, 2013). A LR is, although the name suggests regression, a
classification method that optimizes the logistic loss function.

The workflow adopted in this study consists of four steps: 1. a manually
annotated dataset of coastal images is oversegmented into superpixels; 2. for
all images in the dataset an extensive set of features is extracted; 3. a suitable
classification model is trained using the manually annotated data; 4. this model
can be used to automatically classify future images. The workflow is visually
presented in Figure 2. In this section these four steps are described. In the
next section the performance as well as a first application of the algorithm is
presented.

2.1. Dataset

The ArgusNL dataset with manually annotated coastal images consists of
192 images obtained from 4 coastal camera stations located along the Dutch
coast (Egmond, Jan van Speijk, Kijkduin and Sand Motor), each containing 5
to 8 cameras.

Each camera that is part of the coastal camera stations used in this study
takes a snapshot image twice an hour. Apart from snapshot images, also 10
minutes mean, variance, min and max images are stored, but these are not used
for classification. Also, any images that were obscured and thus did not contain
any valuable data are discarded. Images can be obscured either because the
image was taken before sunrise or after sunset or because of the presence of
rain, fog, sun glare in the water or dirt on the camera lens.

From all suitable snapshot images taken during the summer of 2013 by these
cameras 192 images are randomly selected. The images are automatically over-
segmented (see subsection 2.2) and one of the following classes is assigned man-
ually to each segment: 1. sky; 2. water (sea); 3. water (pool); 4. sand (beach);
5. sand (dune); 6. vegetation; 7. object (sea); 8. object (beach); 9. object (dune).
In this study the classes are aggregated to the most relevant ones, being: 1. sky;
2. water; 3. sand; 4. vegetation; 5. object.

The ArgusNL dataset, including the images, oversegmentation and annota-
tion, was published by Hoonhout and Radermacher (2014).
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Figure 2: General workflow of classification algorithm with the four main steps as explained
in section 2. Splitting the dataset in a training and test set is repeated multiple times to
limit the dependence of the actual split and results in a set of model scores. Each step in
the algorithm is numbered for referencing in the main text. The thumbnails provide visual
references to the figures presented in sections 1 and 2.

2.2. Oversegmentation

Segmentation is the process of subdividing the image in functional segments,
like dunes, beach and sea. Oversegmentation is the process of subdividing the
image in smaller segments of similar pixels, which are called superpixels, that
do not necessarily constitute a functional part of the image1. Oversegmentation
into superpixels enables us to boost the number of features that can be used
for classification (Figure 3 and Figure 2, step 1). The automated segmentation
algorithm SLIC (Achanta et al., 2012) is adopted for this purpose.

The SLIC algorithm is a computationally inexpensive algorithm that projects
each pixel in an image to be segmented into a 5-dimensional space based on 2
image coordinates (U and V) and 3 intensity or color dimensions (usually using
the perceptually linear CIELAB colorspace rather than RGB). Subsequently,
a predefined number of cluster centers is chosen in this space. Each cluster
center will form a superpixel. Initially, the cluster center locations are chosen
as an equidistant regular grid over the image. 600 superpixels are used for this

1The terms segmentation and oversegmentation are used indiscriminately in the remainder
of this paper. In both cases the process of oversegmentation is referred to.
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Figure 3: Original image (left) and oversegmented image (right).

dataset, although the exact number may vary per image depending on its dimen-
sions since a regular grid is to be assured. Each pixel is assigned to the closest
cluster center. Subsequently, like in K-means clustering (Lloyd , 1982), the RMS
distance in the 5-dimensional space from each pixel to its corresponding cluster
center is then iteratively minimized by moving the cluster centers each iteration
step to the centroids of the current cluster and updating the cluster assignments.

The SLIC algorithm deviates from the standard K-means algorithm in the
treatment of the spatial dimensions U and V. First, the area in an image that
can be covered by a single superpixel is limited. A superpixel can therefore not
stretch from one corner of the image to another. Second, the importance of the
spatial dimensions is weighed compared to the intensity dimensions using a user-
defined compactness parameter. A high compactness results in relatively square
and heterogeneous superpixels, while a low compactness results in homogeneous,
but scattered superpixels. A compactness of 20 is used throughout this study.

The SLIC algorithm does not prevent a superpixel from comprising distinct
image structures. Such scattered superpixels may have undesirable effects. For
example, white-capping of waves may become part of a single superpixel together
with white sand at the beach. Along the color dimensions these pixels are very
close and possibly equal. Along the spatial dimensions these pixels may be very
close as well, but not connected. In order to prevent these ambiguous superpixels
from appearing, the superpixels are forced to be connected by running a region
growing algorithm to post-process the segmentation result. The region growing
algorithm simply determines if all pixels within a superpixel are interconnected.
If not, the largest cluster within the superpixel is preserved and the other,
smaller clusters are assigned to the surrounding superpixels. If more superpixels
surround a cluster, the one that shares the largest boundary is chosen.

2.3. Feature extraction

The success of classification depends on the distinctive quality of the different
features. The color features that are in common use (Quartel et al., 2006;
Aarninkhof et al., 2003) are not sufficient to separate the different classes that
occur. Features are not very distinct when only looking at intrinsic features,
like Red, Green and Blue (RGB) or Hue, Saturation and Value (HSV), alone.
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Figure 4 shows an image in which three superpixels are selected from the classes
water, sand and object. The intrinsic features for these superpixels show very
limited variability over the classes, which makes reliable classification difficult.
A key property of the proposed algorithm is the use of many derived features
that can distinguish classes over a range of different conditions.

Figure 4: Coastal image from Kijkduin, The Netherlands, with three selected superpixels
from the classes water, sand and object (left, red dots). Color intensities alone show limited
variability over the classes (middle), while derived features provide much more distinctiveness
(right).

After transformation of the image from pixels with only color to superpixels,
these additional features become available. Superpixels have variance, patterns,
texture, color, shape and topological relations that can be transformed into
features. This allows to generate more than a thousand of different new features
(Figure 2, step 2a). The challenge is to find a set of features that describe the
classes that are of interest uniquely.

By using location features obvious information is learned, for instance sky
is generally above the sea and sea is often above the beach. Shape features can
for example help separate breaking waves as these tend to be eccentric and have
highly irregular superpixel shapes. Some areas require texture features that
describe the spatial variation and structure of colors and intensities. Vegetation
can be inferred from a Grey Level Co-occurrence Matrix (GLCM, Haralick et al.,
1973) applied to the green channel (Lu, 2005).

The proposed classification algorithm uses 1727 features from the categories
1. position 2. intensity 3. shape 4. texture . Figure 5 shows a selection of features
from these categories. The features of position and intensity are computed using
trivial functions. The shape and texture definitions represent more complex
characteristics. For example, the holeyness is defined as the superpixel convex
hull area divided by the total pixel area. The eccentricity is the ratio of the
minor and major axis of an ellipse fitted to the shape of the superpixel and shape
is defined as the area divided by the squared perimeter. The gray correlation
correspond to the correlation with a Grey Level Co-occurrence Matrix with
interval of 5 and 17 pixels. In the full feature set the gray patterns are varied by
angle. Figure 5 shows that shape features distinguish breakers and vegetation
from beach, sky and deep sea, while texture features mainly separate beach
from sea. The whole set of features combined provides information on how to
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distinguish classes individually.

Figure 5: A selection of features from the four main categories used for classification extracted
from Figure 3. Low values are light, high values are dark.

One of the categories that is hard to separate is water from wet or dry
sand. This can be done more accurately using additional channels, like near-
infrared (Hoonhout et al., 2014), but additional channels can also be added arti-
ficially (Figure 2, step 2c). Here extra channels are created based on difference
of Gaussian filtering (Crowley and Parker , 1984) and Gabor filtering (Gabor ,
1946). Difference of Gaussian filtering enhances areas in an image with large
pixel intensity gradients, for example areas which are darker (or lighter) than
their surroundings, such as wet sand. Gabor filtering is a method to enhance
image texture at various scales and orientations. Figure 6 shows an impression
of these extra artificial channels. Each of these channels is added to the original,
segmented image and for each of these channels features are extracted.

Both channels and features are postprocessed to make sure that features are
invariant for scale of the image and/or superpixel. For example, the area of
a superpixel can be a feature, but is expressed in number of pixels. Since the
average number of pixels in a superpixel varies depending on the image size, the
feature value depends on the image size as well. Such a feature value is divided

8



Figure 6: A selection of artificial channels extracted from Figure 3: Gabor kernel (left) with
corresponding filter response (middle) used to detect textures that are shore-parallel and
Gaussian difference response (right) used to detect relatively dark and lighter areas.

by the total number of pixels in the image to make it invariant for the scale
of the image. Moreover, some features may produce much bigger values than
others due to the nature of the feature. This may cause a preference for large
features by the classification model. To prevent this, all features are scaled to a
standard-normal distribution based on the range of feature values found in the
training dataset (Figure 2, steps 2b and 2d).

2.4. Model definition

The actual classification of regions in coastal images is done using a classifi-
cation model (Figure 2, step 3). As discussed in the introduction of this section,
various model types are suitable for this learning task (Koller and Friedman,
2009). In this study a model closely related to a Logistic Regressor (LR) is
used. A LR is an example of an unstructured model that performs classification
of individual superpixels without looking at the rest of the image. A Support
Vector Machine (SVM) is very similar to a LR, but optimizes the hinge loss
function rather than the logistic loss function. The difference between the two
cost functions is actually very minor. Alternatively, a structured model that
performs classification of individual superpixels by taking their spatial context
into account can be used. A Conditional Random Field (CRF) and a Structured
Support Vector Machine (SSVM) are both examples of structured models. The
former optimizes the logistic loss function, whereas the latter optimizes the hinge
loss function. Generally, unstructured models are less complex, but structured
models perform better on image classification tasks. In this study, a SSVM
is used, because of the increased performance compared to unstructured mod-
els and the availability in the pystruct toolbox (Mueller and Behnke, 2014).
The description of the model as presented below can be found in Nowozin and
Lampert (2011).

For any of these models, the class of a superpixel is inferred by choosing the
class such that the prediction function is maximized, see Equation 1.

argmax
y∈Y

ωT Ψ(X, y) (1)

Here, y is the field of predicted class labels for all superpixels in the image, Y
is the output space consisting of all valid class labels, ω is a learned parameter

9



Figure 7: Structure of the model used for coastal image classification in this study. Every
superpixel is associated with a set of features through unary potentials (red dots) and to its
neighboring superpixels through pairwise potentials (red lines).

vector, T denotes the transpose and X is the n×m matrix containing m feature
values for all n superpixels in the image. The joint feature function Ψ depends
on the specific type of model that is applied. In case of the SSVM used in this
study, the product ωT Ψ(X, y) is given by Equation 2.

ωT Ψ(X, y) =

n∑
i=1

ω(b)
yi

+

n∑
i=1

m∑
j=1

ω
(u)
j,yi

xi,j +

n∑
i=1

m∑
j∈Ni

ω(p)
yi,yj

(2)

From this equation, it follows that the vector ω consists of three different types
of parameters: 1. a bias ω(b) for every valid class label, which expresses the
prevalence of a class over the other classes without looking at a specific image
or superpixel 2. a unary potential ω(u) for every possible combination of class
and feature, expressing the degree to which a feature characterizes a certain
class 3. a pairwise potential ω(p) for every possible combination of two class
labels. The latter is evaluated over each superpixel’s connectivity neighborhood
N and expresses the credibility of two classes being assigned to neighboring
superpixels. In the case of the coastal imagery dataset, this will for example yield
that the class vegetation is less likely to border sea than sand. The structure
of the SSVM used in this study is visualized in Figure 7. In this study, the
connectivity neighborhood of a superpixel consists of the four superpixels it
shares direct borders with, but can generally take any shape.

The parameter-vector ω has to be trained using a set of ` training examples.
To this end, the training dataset of annotated coastal images is used (Hoonhout
and Radermacher , 2014). The actual learning is done by minimizing the regu-
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larized cost function given in Equation 3.

min
ω

(
1

2
‖ω‖2 +

C

`

∑̀
k=1

max
y∈Y

{
∆(yk, y) + ωT Ψ(X, y)− ωT Ψ(X, yk)

})
(3)

Note that y denotes the trained field of class assignments to each superpixel,
whereas yk refers to the annotated field of class assignments to each superpixel
in the kth image of the training set. The function ∆(yk, y) computes the zero-
one loss, which evaluates to zero when y equals yk and one otherwise. The
regularization parameter C can be chosen freely and goes to reduce the risk of
overfitting the training dataset. It controls the balance between the two terms
in Equation 3. A lower value of C assigns a relatively larger penalty to the sum
of ω (the first term), which reduces the range of values in ω and reduces the
difference in importance of individual features (ω(u)) and class combinations
(ω(p)) accordingly. Hence a lower value of C means more regularization and,
following a similar reasoning, a higher value of C means less regularization.
As Equation 3 is not differentiable everywhere, the one-slack formulation of the
regularized cost function as implemented by Mueller and Behnke (2014) is used.
Finally, the optimization is performed using the cutting plane algorithm. More
details can be found in Nowozin and Lampert (2011).

2.5. Model evaluation

The performance of the model can be expressed as a percentage of superpixel
classes that have been predicted correctly by the trained SSVM with respect to
the manual annotation. However, doing these predictions on images that have
been part of the model training dataset would result in a too high percentage of
correctly predicted superpixels, as these images have actually been used to fit ω.
The key to model evaluation is determining to what extent the model generalizes
to unseen images. Hence, the full dataset of 192 annotated coastal images is split
into a part that is used for training the model (75% of all images) and a part that
is used for testing (25%) as done in many machine learning applications (Koller
and Friedman, 2009). As the performance of the trained model on predicting the
validation set might depend on the specific train-test partition that is chosen,
five different partitions have been applied in this study. This provides a way of
expressing the model performance as a statistical parameter with a mean and
standard deviation depending on the exact partitioning (Figure 2, step 4).

2.6. Software

The methodology used is implemented in an open-source Python toolbox
called flamingo (Hoonhout and Radermacher , 2015). The toolbox provides
tools for (over)segmentation, classification and rectification (projection in real-
world coordinate system, see subsection 3.2) of images. It also provides a file
and configuration structure for storing datasets and corresponding analyses and
a graphical user interface for manual annotation of images. Among others,
the toolbox relies on the pystruct toolbox (Mueller and Behnke, 2014), the
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scikit-image toolbox (van der Walt et al., 2014) for image classification and
the opencv toolbox (Bradski , 2000) for image rectification. The toolbox is also
published through the OpenEarth initiative (http://www.openearth.eu, van
Koningsveld et al., 2010).

3. Results

In this section, the performance of the model described in section 2 is eval-
uated based on the 192 image ArgusNL dataset (Hoonhout and Radermacher ,
2014). Furthermore, two case studies are assessed as to demonstrate the capa-
bilities and applications of the trained model.

3.1. Testing

A common way to summarize the results of a classification task is the con-
fusion matrix, which presents counts of all testing instances (i.e. individual
superpixels in all testing images) based on their actual class (ground truth la-
beling by manual annotation) and the class predicted by the model. Summed
over all partitions, this yields approximately 140,000 testing instances as shown
in Figure 8. The percentages in the figure are normalized per row. All entries on
the diagonal of the confusion matrix represent correct predictions by the model,
accounting for an average accuracy of 93.0% with a standard deviation of 0.7%.

Figure 8: Aggregated confusion matrix over all partitions. The percentages represent the
sensitivity of the model. The values between parentheses are absolute superpixel counts.

These percentages can be elaborated further to evaluate the models ability
to correctly predict specific class labels. To this end, various measures are used,
among others precision and sensitivity. The precision of a model with respect
to class X is the percentage of superpixels, out of all superpixels predicted as X,
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Table 1: Model precision, sensitivity, F1-scores and occurrence. Values are averaged over all
partitions. Standard deviations are between parentheses.

Prec. Sens. F1 Occ.

Object
85.1 85.6 85.3 12.4
(2.0) (3.1) (3.2) (2.3)

Sand
94.1 93.6 93.8 32.5
(0.8) (0.6) (0.6) (3.9)

Sky
97.7 95.7 96.7 11.1
(1.2) (1.3) (0.5) (1.0)

Vegetation
93.4 92.3 92.8 16.2
(1.9) (0.6) (0.92) (3.4)

Water
93.5 94.3 93.9 27.8
(1.0) (1.8) (1.3) (5.0)

that actually has the ground truth label X. It can be computed by normalizing
every entry in the diagonal of the confusion matrix with the sum of its column.
The sensitivity of a model (also known as recall) with respect to class X is
the percentage of superpixels, out of all superpixels having ground truth label
X, that have been predicted as X. To compute sensitivity, every entry in the
diagonal of the confusion matrix should be normalized with the sum of its row
(as was already done for the percentages given in Figure 8).

In the first two columns of Table 1, precision and sensitivity of all 5 classes
are presented, averaged over the 5 partitions. The standard deviation is given
between parentheses. It is noted that evaluating these parameters for every
partition and presenting the average value leads to slightly different values than
the sensitivity as evaluated for the cumulative confusion matrix in Figure 8. In
order to combine precision and sensitivity into a single performance metric, the
F1-score was proposed by van Rijsbergen (1979). Simply taking the average of
both values would mask cases where one is very high and the other is very low,
e.g. in a model that monotonously predicts every superpixel as sand, the class
sand has 100% sensitivity, but very low precision. Instead, the harmonic mean
is taken according to Equation 4, where P is precision and S is sensitivity.

F1 = 2
PS

P + S
(4)

The third column in Table 1 lists the average F1-scores for all classes, including
their standard deviation between parentheses. The occurrence (i.e. the percent-
age of the ground truth data having class label X ) is added to characterize the
composition of the testing dataset. Altogether, the model is specifically good at
recognizing sky, water, sand and vegetation and has most difficulties in recogniz-
ing objects. The confusion matrix shows that, at most occasions, vegetation or
sand were erroneously recognized as objects and vice versa. None of the classes
exhibit discrepancy between precision and sensitivity values, which implies that
the model is well-balanced.
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Table 2: Top 5 features of class water. Values are averaged over all partitions. Standard
deviations are between parentheses.

Feature ω(u)

mean intensity 1 -3.82 (0.58)
min intensity 3 -3.20 (0.40)
max intensity 2.52 (0.52)
weighted moments normalized 7.2 2.48 (0.51)
mean intensity 3 2.47 (0.28)

The trained unary potentials ωu give information about the strength of ev-
ery feature in distinguishing every class from the other classes. A full analysis
of feature strength would involve too much detail to treat within the scope of
this study, but as an example the top 5 features of the class water are given
in Table 2. Features are ranked by absolute value of the unary potential. The
overbar denotes averaging over all 5 partitions. The associated standard de-
viations over the partitions are shown between parentheses. The top feature,
mean intensity.1, represents the superpixel-averaged intensity of the first image
channel, being the red channel. The strong negative unary potential indicates
that superpixels of class water tend to have low redness, a property that was
employed by Turner and Leyden (2000) for their shoreline detection algorithm.
Furthermore, the fifth ranked feature reflects a property of water that corre-
sponds most with the human perception: water is blue. However, the negative
potential of the second feature indicates that uniformly blue pixels are not likely
to be of class water. The third feature, the maximum brightness in a superpixel,
averaged over the three intrinsic color channels, might refer to the presence of
bright foam patches associated with wave breaking. The fourth ranked feature
describes a far more complex property that is less intuitive to humans, but,
judging from its strong unary potential, is of great help in distinguishing water
from other classes.

In addition, the pairwise potentials can be studied to obtain information
about the likelihood of class-pairs being assigned to neighboring superpixels.
The upper half of the symmetric pairwise potential matrix is given in Table 3.
Several intuitive inter-class relationships can be derived from the matrix, like
the fact that sand is likely to border water, vegetation and objects, but not
likely to border sky. However, some of the pairwise potentials require a more
complicated interpretation, that goes to show the sophistication of a structured
classification model like a SSVM. For example, the class sky only has negative
pairwise potentials, implying that predicting sky next to any other superpixel
is penalized by the model. Apparently, the model is very capable of predicting
sky solely based on the unary potentials, such that it can afford the penalty
from the pairwise potentials. By setting a penalty on the pairwise potential,
the model prevents sky from being erroneously predicted at a location where
the superpixel features are only vaguely representing sky, but where the classes
of surrounding superpixels make the prediction of sky fairly likely.
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Table 3: Pairwise potentials

Object Sand Sky Vegetation Water
Object 3.32 2.16 -2.63 2.72 -0.74
Sand 3.19 -4.60 2.12 1.60
Sky -3.56 -3.58 -3.77

Vegetation 2.99 -1.70
Water 2.50

To illustrate the performance of the model, two examples of predicted images
are given in Figure 9. The top row represents an image that was well predicted
by the model, having 97.6% of its class labels predicted correctly. The snapshot
was taken on a bright day with a very calm sea, resulting in unambiguous
and low noise feature values. The bottom row illustrates what happens if the
model makes predictions on a snapshot with more difficult weather conditions.
Raindrops and dirt on the camera lens obscure the image, leading to significantly
different feature values than those that dominate the training dataset. Although
the main outline of the predicted image is still correct, the model performance
breaks down around class interfaces and clusters of erroneous predictions appear
in the multicolored residential area.

Figure 9: Examples of good (top) and bad (bottom) model performance. The original image
is shown in the leftmost column, together with the ground truth labeling (middle column)
and model prediction (rightmost column).

As mentioned in subsection 2.4 the model can be fine-tuned using a regular-
ization parameter C. In this study a moderate regularization of C = 1 is used
without further optimizing this parameter. Optimization of the regularization
parameter would require, next to the training and test dataset currently used,
an additional validation dataset with manually annotated images. The test set
could be split into a validation and test set, but it was chosen not to do so to
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prevent the sets from becoming too small. Training the model using different
values for C, however, shows that the chosen value of 1 is not far from the
optimal value and that the model does not suffer much from under- or overfit-
ting (Figure 10). It should be noted that applying the algorithm on a different
dataset using images from different stations and/or with different classes may
cause problems with under- or overfitting and hence may require optimization
of the regularization parameter.

10-2 10-1 100 101

regularization parameter C

80

85

90

95

100

m
o
d
e
l 
sc

o
re

 [
%

]

train set

test set

Figure 10: Model performance over a single partition depending on the value of the regular-
ization parameter C.

3.2. Case study: Beach width and waterline

The range of possible applications of semantic classification of regions in
coastal images is very wide. Two case studies are treated in this section to
illustrate the application of the algorithm. In the next section alternative ap-
plications are discussed.

3.2.1. Beach width

Beach width is regarded one of the most important parameters for coastal
managers (Kroon et al., 2007). Eroding beaches and, thus, decreasing beach
width raise concerns about coastal safety against flooding at locations all over
the world. Furthermore, many coastal regions owe the biggest part of their rev-
enue to recreational tourism at their beaches. Generally a wider beach provides
higher safety and can accommodate a larger number of visitors.

For this case study, a two year dataset of fortnightly images with water levels
around mean sea level (MSL) was composed, using images from the Kijkduin Ar-
gus station. The trained SSVM presented in subsection 3.1 was used to classify
these images. Using camera physics, the classified images were projected onto
a horizontal x-y plane at MSL (Holland et al., 2001), as depicted in Figure 11.
Beach width was determined in every transect of the projected image by taking
the cross-shore distance spanned by superpixels of class sand (constrained to
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the central part of the projection, where the full cross-shore extent of the sub-
aerial beach is covered in the projected image). The predicted beach width was
reduced to a single value per image by taking the median over all transects, so as
to reduce scatter by erroneously classified superpixels. The resulting evolution
of beach width over time is presented in Figure 12. Without any quality control,
a linear trend is fitted through the data points using least squares (solid line in
the figure). The trend line coincides with the main body of the data and indi-
cates a slightly eroding trend (8.4 m/year). Groundtruth data determined from
RTK-DGPS measurements with an all-terrain vehicle were added to Figure 12
for reference. To avoid randomness of the exact cross-shore transect location,
7 in-situ transects coinciding with the image view were selected. Beach width
was extracted from these data by taking the distance between the C.D. +4m
and 0m marks. The mean beach width over 7 transects is shown in the figure,
including error bars of 2 times the standard deviation on either side. The beach
width derived from coastal imagery coincides fairly well with the in-situ data,
although the linear eroding trend of the latter (dashed line) is twice as strong
(16.9 m/year).

Scatter in the extracted beach widths is caused by several error sources.
First, erroneous class assignments, which either predict non-sand superpixels
as sand (overprediction of beach width) or vice-versa (underprediction of beach
width), cause a limited number of distinct outliers up to O(100m). Second, by
using (generic) snapshot images the image data include variations in hydrody-
namic conditions. Variations in water line position due to the tidal phase are
canceled out by using only images with water levels around MSL. Variations
in water line position due to wave run-up are limited to O(10m) during the
observed period based on an empirical run-up formulation (Hunt , 1959) and
measured wave heights and periods. Third, inaccurate segmentation may cause
the algorithm to fail providing pixel precise results, which introduces errors of
O(1m) considering that the image resolution around the water line is O(0.1m).

Figure 11: Original coastal image (left) and rectified coastal image that is projected on a
horizontal x-y plane (right), including classification result (shaded colors).
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Figure 12: Trend in beach width determined using image classification (black dots and line),
compared to in-situ measurements (red triangles and line) in Kijkduin, The Netherlands. Red
error bars indicate a range of plus or minus one standard deviation of the in-situ beach width
found over the stretch of beach in the camera view.

3.2.2. Waterline

Although the primary product of coastal image classification is the separa-
tion of different areas, the border between two areas is often a useful product as
well. The instantaneous waterline, being the border between the sea and beach
area, is an important indicator for coastal science. By tracking the waterline
over a sequence of images the width of the intertidal area can be determined.
Also, relating the instantaneous position of the waterline to the tidal elevation
provides a three-dimensional bathymetry of this area (e.g. Aarninkhof et al.,
2003; Quartel et al., 2006; Uunk et al., 2010; Osorio et al., 2012).

A series of images from the Kijkduin Argus station at May 4th, 2014 is used
for this case study. The Kijkduin Argus station consists of 6 cameras, 4 out
of which have the intertidal zone in view with sufficient resolution to extract
instantaneous water lines. The trained SSVM presented in subsection 3.1 was
used to classify these images. The images are projected into a horizontal x-y
plane at MSL (Figure 11) and the waterline is simply determined by finding
the first beach pixel seen from offshore. For each of these pixels the bed level
is determined based on RTK-DGPS measurements obtained frequently in this
area. Consequently a series of points is obtained in three-dimensional space
that are supposedly located on the instantaneous waterline. From these points
the median value is taken in order to exclude outliers, caused by erroneously
classified pixels, to obtain an estimate of the instantaneous water elevation at
the water line.

Figure 13 shows the astronomical tide measured in Scheveningen (5km north
of Kijkduin) and the waterline estimates based on a 24-hour sequence of coastal
images from the Kijkduin Argus station. The course of the astronomical tide
is captured reasonably well, but also some scatter is observed. The scatter can
partially be explained by physical processes that decouple the instantaneous
water level from the position of the water line. Wave setup and runup cause an

18



additional elevation of the water line compared to the still water level. Local
differences in morphology influence the wave propagation and hence the along-
shore and temporal differences in water line location. Also, the classification
procedure provides us with a location of the water line in a horizontal plane. In
order to compare this location to the vertical tide the bed level along this line
is determined based on a measured bathymetry. This bathymetry has a much
coarser resolution (20m alongshore) than most of the image pixels. Therefore
this conversion is an approximation and a source of errors.
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Figure 13: Waterline estimates based on a 24-hour sequence of coastal images in Kijkduin,
The Netherlands

Despite the very generic approach, without any focus on particular classes or
regions of interest, and without any form of quality control, the proposed clas-
sification technique already provides sensible and useful data from raw coastal
images. Yet several improvements, that are outside the scope of this study, can
be made. For example, both case studies were based on raw snapshot images
that contain considerable noise, like variations in hydrodynamic conditions and
anthropogenic activities. By using derived image products, like time-averaged
images much noise can be removed and more homogeneous classes can be learned
improving the classification performance.

Another example is that the superpixels used in these case studies are large
compared to the width of the intertidal beach area and may cover 10 meter
or more. Using a finer segmentation is expected to improve the performance
considerably. Superpixels that constitute the border of the waterline might
even be classified on a pixel-by-pixel basis to overcome initial errors made in
the segmentation step. Moreover, the segmentation step itself may be improved
as well by using the fact that a series of images with temporal correlations
between them is observed, to ensure that water line movement is continuous in
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time. Supervoxels2 can be used for this purpose rather than superpixels. All of
these improvements can be applied within the proposed algorithm.

4. Discussion

The development of the algorithm initially started to track beach widths
over time and improve the robustness of algorithms for waterline detection and
intertidal bathymetry determination. The genericity of the algorithm, however,
sparked many possible additional applications within the very same framework.
Among these are vegetation coverage determination, people counters, aeolian
feature detection, digital elevation map correction, quality control, et cetera.

Obviously no algorithm is perfect and also this algorithm has some pitfalls.
First the segmentation step is recognized as a weak link in the procedure. The
segmentation step determines in an early stage what pixels will be assigned the
same class. An error made in this step can cause a wrong classification on pixel
level easily. For example, when a white patch of foam is clustered together
with a white portion of the beach, it will be impossible to accurately detect
the instantaneous waterline. Currently, segmentation is only done based on
the intrinsic image features (RGB, HSV, etc.) and is therefore susceptible to
errors. Another pitfall is that the algorithm is particularly good at classifying
areas. Due to the structured learning (the inclusion of pairwise potentials) it
is unlikely that classification errors are made in the center of such an area, for
example, that a white patch in the middle of the sea is predicted to be beach.
Hence, most errors are made in the vicinity of the borders, which is important
to realize when, for example, applying the algorithm to waterline detection
(see also Figure 9). For applications like waterline detection one can think of
performing a-posteriori reclassification. After a superpixel boundary has been
classified as a sand-water boundary, binary classification (sand-water) can be
applied to smaller superpixels or individual pixels surrounding the boundary.

Despite these pitfalls that still exist, the algorithm is proven to be generic
and robust and shows unprecedented capability of classifying arbitrary pixels in
coastal imagery. Moreover, most pitfalls have still potential for improvement.
Segmentation is now based on intrinsic image features, but the filter channels,
including information on edges and textures, can also be used in the segmen-
tation procedure. Similarly, superpixels bordering an area may be classified
on a pixel-by-pixel basis using the very same algorithm to obtain pixel precise
classification.

The genericity of the algorithm is also apparent from the fact that very sim-
ilar algorithms are used in other fields of research that cope with large amounts
of image data, like remote sensing (Mountrakis et al., 2011). Satellite images
are automatically classified according to land use or vegetation type (e.g. Fig-
ure 14) and in medical sciences, automated classification of histology imagery

2A supervoxel is a segmentation of the space-time domain, while a superpixel is a segmen-
tation of the space domain alone
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is used to find malignant tumors in an early stage (e.g. Belsare and Mushrif ,
2012).

Figure 14: Satellite image (left) and Land-use classification (right) of prefecture of Chania on
the island of Crete, in Greece (Petropoulos et al., 2012)

Compared to existing coastal image analysis techniques the proposed algo-
rithm uses an abundance of pixel features and relations between neighboring
superpixels to distinguish one class of pixels from another. Figure 15 shows
a simplified representation of the algorithms evolution with respect to its per-
centage of correctly predicted pixels in the testing dataset, starting from clas-
sification using intrinsic pixel features only. After segmentation the number of
features is boosted, increasing the overall model performance considerably. The
introduction of complex texture and filter features, filter channels and struc-
tured learning made the algorithm perform on the 93.0% accuracy level it is
now.
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Figure 15: Evolution of model scores averaged over all 5 partitions after increasing the num-
ber of features, filter channels and introducing structured learning. Note that the actual
effectiveness cannot be determined from this graph since the order of improvements matters.

Another major difference between the proposed algorithm and existing algo-
rithms for coastal image analysis is the fact that it fully operates in pixel space,
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rather than in real-world coordinates. For many coastal science and manage-
ment applications it is useful to map an image to real-world coordinates, but
from the algorithms perspective it is not necessary. This enables additional
applications that do not require image rectification, like people counting, auto-
mated cropping and quality control. Moreover, objects and regions in an image
are deformed differently during rectification depending on their position in the
camera view due to varying real-world pixel resolution throughout the image.
This effect might deteriorate the performance of classification algorithms that
are based on rectified images.

5. Conclusions

The applicability of many existing algorithms for coastal image analysis is
limited for the large, long-term coastal imagery datasets that are presently avail-
able for coastal research, since they generally lack automation and robustness.
Site- and time-dependent calibration is often required. In this paper a fully
automated algorithm is presented that can cope with these large coastal im-
agery datasets and classifies each pixel in a given image into a pre-defined set
of classes.

The key to success of the approach presented here is the abundance of im-
age information that is used for discrimination of pixel classes. This increase is
achieved by combining oversegmentation of the images with extensive feature
extraction. Instead of relying solely on intrinsic pixel information, a set of 1727
pixel features is extracted for every pixel in the dataset and used to distinguish
between five classes of pixels: object, sand, sky, vegetation and water. Further-
more, a structured machine learning approach was adopted in order to take
relations between neighboring pixels into account. Using a manually annotated
dataset of 192 coastal images, a Structured Support Vector Machine (SSVM) is
trained and tested to cast predictions on the class of every pixel in the dataset.
The resulting model correctly classifies 93.0% of all pixels in an unseen image on
average with a standard deviation of 0.7% computed over 5 train/test partitions.
The model performs well over all classes, which is indicated by the F1-score of
93% or more for all classes, except for the versatile class objects that is still
reasonably accurate with 85%.

By analyzing the trained feature weights it was shown that the model uses
class characteristics that are very similar to human intuition, like water is blue
and heterogeneous, but also relies on more sophisticated features that are less
obvious for humans to interpret.

The application of the algorithm was illustrated using two case studies that
showed how this generic algorithm can be applied to extract useful data like
beach widths or water lines from a coastal camera station without any form of
manual quality control. This opens up new possibilities to analyze large, long-
term datasets of coastal imagery and to apply these algorithms to different types
of coastal images, including webcams and mobile cameras. Both the annotated
dataset and the software developed to perform the model training and prediction
are provided open-source and free of charge.
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SVM Support Vector Machine

SSVM Structured Support Vector Machine
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