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Summary 

The current design of multiphase fiow through pipelines is based on one-dimensional steady state or 
dynamic simulation methods. However, there is an increasing interest from a wide range of industries 
to use Computational Fluid Dynamics (CFD) codes for design purposes. Recently some journal papers 
were published, which claim that current commercial CFD codes are able to predict the different mul­
tiphase flow regimes in a horizontal two phase flow. Due to the complexity of multiphase flows and the 
lack of fundamental understanding of these kind of flows, CFD could be very advantageous. However, 
the question is whether existing CFD codes are indeed reliable enough to model such multiphase flows. 

Consequently the present study was started to investigate the reliability of a selected commercial 
CFD code, FLUENT, to model multiphase flow in pipelines. For this assessment two benchmark cases 
were considered. The first benchmark case was the simulation of the Benjamin bubble, which is a 
single bubble moving into a stagnant liquid in a horizontal pipe or channel. Secondly, the Dumitrescu 
or the Taylor bubble was modeled. This is a single bubble, which rises in a stagnant liquid in a vertical 
pipe. The reason for specifically selecting these two benchmark cases is twofold. Firstly both cases are 
closely related to the slug flow regime, which is a common flow regime in pipelines found in the oil and 
gas industry. Secondly analytical solutions exist for the two benchmark cases when the effect of vis­
cosity and the effect of surface tension are neglected, which makes the assessment more straightforward. 

The Volume of Fluid (VOF) multiphase model, implemented in FLUENT, was used to model the 
benchmark cases. Both 2D and 3D simulations were performed and the simulation results were com­
pared with the analytical solutions and with experimental data fi-om the literature. For convenience 
the simulation results for the Benjamin bubble and the Dumitrescu/Taylor bubble are summarized 
separately. 

Summary of the simulation results for the Benjamin bubble 

The analytical value for the dimensionless bubble velocity and the dimensionless liquid height for the 
2D channel flow was derived by Benjamin (1968) to be Vb/^/gïï = 0.5 and y/H = 0.5, respectively. 
The FLUENT simulations for the 2D Benjamin bubble with zero viscosity and zero surface tension 
with the finest grid gave a dimensionless bubble velocity of Vb/s/gH = 0.494, where Vb is the bubble 
velocity, g the gravitational acceleration and H the channel height. This value for the dimensionless 
bubble velocity is in good agreement with the analytical value of 0.5. The corresponding dimensionless 
liquid height, which is the thickness of the liquid layer beneath the bubble, was y/H = 0.495. The 
latter is also in very good agreement with the theoretical value of 0.5. Benjamin (1968) also derived 
an analytical expression for the dimensionless bubble velocity and the dimensionless liquid height for 
the 3D pipe flow when the flow was inviscid and the effect of surface tension was neglected. The 
analytical value for the dimensionless bubble velocity and the dimensionless liquid height was given 
by Benjamin (1968) to be Vbl\fgD = 0.542 and y/D = 0.563, respectively. In the latter D is the 
diameter of the pipe. The FLUENT simulations for the 3D Benjamin bubble with zero viscosity and 
zero surface tension wi th the finest grid gave a dimensionless bubble velocity of Vb/\/gD = 0.516. This 
value is in fair agreement wi th the analytical value of 0.542. The corresponding dimensionless liquid 
height was y/D = 0.551, also in good agreement with the analytical value of 0.563. Extrapolation of 
the simulation results to a zero grid size gives a value of 0.531 and 0.554 for the dimensionless bubble 
velocity and the dimensionless liquid height, respectively. Thus the simulation results are in good 
agreement with the analytical solutions of Benjamin (1968). 
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l i l addition to ttiese special conditions of zero viscosity and zero surface tension, simulations were per­
formed to investigate the effect of viscosity and surface tension on the 2D and 3D Benjamin bubbles. 
Several simulations, wi th corresponding experimental conditions from the literature, were performed. 
The dimensionless number used in this study to account for surface tension was either the Eötvös 
number Eo = pgl? ja or the inverse Eötvös number defined as E = 4ajpgl?. The dimensionless 
numbers used to account for the viscous effects were either the Morton number Mo = gp^jpa^ or the 
Reynolds number defined as either Re = pv^L/p or as Re = pLsfgLjp. The dimensionless number 
to account for inertial effects was the Froude number defined as v^j \fgL- In these equations p and p 
are the density and the viscosity of the liquid, respectively, and g the gravitational acceleration, cr the 
surface tension, V}, the bubble velocity and L the characteristic length. The characteristic length L 
was the channel height H in the 2D simulations and the pipe diameter D in the 3D simulations. The 
simulation results for low surface tension or low E are in good agreement with the experimental data. 
For example the simulation for the 2D Benjamin bubble with E = 3.0x10-^ and Mo = 2.53x10"" 
gave a dimensionless bubble velocity of v\,l\fgH = 0.459, which is in good agreement with the exper­
imental value of 0.468. Simulations for the 3D Benjamin bubble wi th E = 0.01 and Re = 9290 gave 
a dimensionless bubble velocity of v^j\fgD = 0.494 in fair agreement with the experimental value of 
0.462. However in flows dominated by the surface tension the simulation results do not agree with 
the experimental data. For example the simulation for the 2D Benjamin bubble with E = 246x10"^ 
and with Mo = 2.53x10"^^ gave a dimensionless bubble velocity of Vb/s/gH = 0.349, while the exper­
imental value was 0.2. The reason for the deviation of the simulation results from the experimental 
data when the flow is dominated by the surface tension is due to the presence of the so-called par­
asite currents in the CFD simulations. These parasite currents are vortices in the neighbourhood of 
interface region despite the absence of any external forcing. I t is known from the literature that these 
parasite currents scale with the viscosity and the surface tension. Thus the parasite currents are a 
numerically artifact when the Continuum Surface Force (CSF) method is applied, appearing in flows 
dominated by the surface tension. Furthermore the simulations shows that the bubble velocity de­
creases as the surface tension (or .Eo) is increased, which is in agreement with experimental observation. 

The simulations results for the 2D and 3D Benjamin bubble with a very high viscosity show that 
the bubble velocity decreases with increasing time when the bubble moves along the length of the 
pipe. The comparison of the simulation results for this case was not straightforward, since the bubble 
velocity was measured at a single position in the experiments. No experimental data in the litera­
ture could be found which report the bubble velocity along the length of the pipe. Furthermore, as 
expected, the bubble velocity decreases when the viscosity increases. 

Summary of the simulation results for the Dumitrescu or Taylor bubble 

The Dumitrescu or Taylor bubble has an axisymmetric nature, but both 2D axisymmetric and 3D 
simulations were performed. By neglecting the effect of viscosity and the surface tension Dumitrescu 
(1943) was able to obtain an analytical expression for the dimensionless bubble velocity and the radius 
of curvature close to the bubble nose. The analytical value of the dimensionless bubble velocity is 
Vb/VgD = 0.352 and the value for the radius of curvature is g/D = 0.75. The simulation results 
for the 2D axisymmetric bubble with zero viscosity and zero surface tension do not agree with the 
analytical result of Dumitrescu (1943). For example the simulations for the 2D axisymmetric bubble 
with a second order scheme gave a dimensionless bubble velocity of Vb/^/gD = 0.409 on a coarse mesh, 
while this value was 0.427 for the finest mesh. The corresponding radius of curvature was q/D = 0.56 
for the coarse mesh and q/D = 0.25 for the finest mesh. The disagreement between the simulations 
and the analytical solutions is most likely due to the existence of multiple solutions for the inviscid 
problem. The existence of multiple solutions is also reported in the literature by Mao and Dukler 
(1990), in which the authors claim that the surface tension is responsible for obtaining the physically 
relevant solution. Keeping this in mind a simulation with a small surface tension and viscosity (Eo = 
200 and Mo = 1.6x10"^^) corresponding with the experimental conditions of White and Beardmore 
(1962) was performed. This simulation gave a dimensionless bubble velocity of Vb/\/gD = 0.344, which 
is in very good agreement wi th the experimental value of 0.345 given by White and Beardmore (1962) 
and the analytical value of 0.352. This result supports the claim of Mao and Dukler (1990) that the 
surface tension is most likely responsible for obtaining the physically relevant solution. 
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In addition to the 2D axisymmetric simulations also 3D simulations were performed. These 3D simula­
tions show that the bubble becomes unstable at a certain bubble length. In the present simulations this 
critical length was about 6D, where D is the diameter of the pipe. Furthermore the instability causes 
the bubble to become asymmetric and as a consequence the bubble velocity increases. Obviously, the 
instability and the asymmetry are not seen in the 2D axisymmetric simulations. 

One simulation wi th an Eötvös number of 100 and a Morton number of 0.015, corresponding with 
the experimental conditions of Bugg and Saad (2002), was performed. The results of this simulation, 
e.g. the axial and radial velocities at several locations relative to the bubble nose, are in excellent 
agreement with the PIV measurements of Bugg and Saad (2002). 
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Chapter 1 

Introduction 

This introductoiy chapter wi l l give a short overview of multiphase flow in pipelines, together wi th the 
related problems. Further, a summary of an extensive literature study is given and the project goals 
are outlined. 

1.1 Multiphase flow in pipelines 

Multiphase flows may be defined as flows that consist of two or more phases, which can be combinations 
of gases, liquids and solids. In this project we wil l confine ourselves to gas-liquid multiphase flow 
systems, specifically in pipelines. Gas-liquid flow in pipelines can adopt different flow structures, also 
known as flow patterns or flow regimes. The nature of these flow regimes is very complex and this 
explains why most of the research relies on experiments. However, these flow regimes are of importance 
in pipeline design and a short overview is given below. 

1.1.1 Flow regimes in multiphase flow 

The main flow regimes in vertical and horizontal pipeflow are given in figure 1.1 and flgure 1.2, 
respectively. These flow regimes are dictated by the pipeline configuration (e.g. diameter, inclination) 
and by the operating conditions (e.g. superficial gas and liquid velocities, pressure and temperature). 
A useful tool to find the relevant flow regime at certain conditions is the well-known flow pattern map. 
An example of this flow pattern map can be seen in figure 1.3. I n figure 1.3(a) the superficial gas 
velocity Ugs and the superficial liquid velocity uis are used to define the transition boundaries between 
the flow regimes. In figure 1.3(b) dimensionless quantities [K, X, T or F) based on Ugs and u;^, 
are used. The idea of the flow pattern map is that for given flow conditions one easily can obtain 
the corresponding flow regime. Other types of flow pattern maps can be found in the literature, for 
instance the Baker chart after Baker (1954), but the key idea behind them is the same. 

(a) (b) (c) (d) 

Figure 1.1: Flow patterns in vertical upward two-phase flow; (a) Bubbly flow, (b) Slug flow, (c) Churn flow, 
(d) Annular flow (Taitel and Barnea, 1980). 
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(a) (b) (c) (d) 

Figure 1.2: Flow patterns in horizontal two-phase flow; (a) Stratified (wavy)flow, (b) Slug or intermittent 
flow, (c) Annular flow , (d) Bubbly flow. 
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Figure 1.3: Flow pattern map 

1.1.2 Flow description in vertical pipes 

As stated earlier, the different flow regimes are very complex in nature and the actual mechanisms 
that are responsible for the transition between flow regimes are not exactly known. However, several 
(simplified) models based on physical mechanisms are suggested to predict flow pattern transitions, 
see Taitel and Dukler (1976), Taitel and Barnea (1980) and Barnea (1987). A qualitative description 
of the flow regimes is given below: 

• Bubbly flow: smaU bubbles are approximately uniformly distributed in the continuous liquid 
phase. This regime occurs at low gas velocities and an increase in gas flow wil l cause a transition 
to slug flow. 

• Slug flow: contains large bullet-shaped bubbles with a diameter almost equal to the pipe diameter. 
These large bubbles are also called Taylor bubbles. These Taylor bubbles are separated by 
liquid slugs, which contain small bubbles. The suggested transition mechanism that governs the 
transition from bubbly flow to slug flow is coalescence of smah bubbles to form large bubbles. 
Increasing the gas flow further wil l cause a transition to churn or froth flow. 

• Churn flow: is a flow of chaotic nature. The Taylor bubbles are ruptured continuously and the 
flow becomes totally disordered. Due to this rupturing of the Taylor bubbles, hquid slugs wiU faU 
downward and wi l l be lifted again by the gas. This oscillatory behaviour of the liquid is typical 
for churn flow. A higher gas flow rate, at this point, wi l l result in a transition to the annular 
flow pattern. 

• Annular flow: in this regime gas flows in the core of the pipe, while the liquid flows as a thin 
film around the perimeter of the pipe. The liquid film can be wavy and liquid droplets can 
be entrained in the gas core. The gas rate should be sufficient to l i f t the entrained droplets, 
otherwise these droplets wil l fall back and accumulate to cause a transition to churn or slug flow. 

1.1.3 Flow description in horizontal pipes 

The flow patterns observed in a horizontal pipe are different, due to gravitational effects, from the 
corresponding vertical flow patterns. The responsible mechanisms that cause the transition from one 
regime to the another are also different. A description of the horizontal flow regimes is given below: 

2 
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• Stratified (smooth or way) flow: this flow regime is observed at low gas and liquid velocities. 
The liquid flows over the bottom of the tube and the gas flows over i t maintaining the gas-liquid 
interface smooth. By increasing the gas velocity the smoothness of the interface is disturbed 
resulting in a wavy pattern. In the wavy regime liquid droplets may be entrained in the gas and 
increasing the gas velocity further wi l l cause a transition to the slug flow regime. 

• Slug flow: this flow regime contains large gas bubbles that cover almost completely the cross-
section of the pipe. These large bubbles are separated by liquid slugs, which may be aerated at 
certain conditions. Higher gas velocities wi l l result in a transition from slug flow to annular flow. 

• Annular flow: in this flow pattern gas flows in the core of the pipe and the liquid forms a 
continuous film around the perimeter of the pipe. The liquid film at the top of the pipe may be 
thinner than the liquid film at the bottom of the pipe. 

• Bubbly flow: this flow regime occurs at low gas velocities in which gas bubbles are dispersed in 
the continuous liquid phase. Due to buoyancy most of the gas bubbles wil l flow along the upper 
part of the pipe. 

Al l these flow regimes may occur simultaneously in long pipelines or transition between flow regimes, 
due to changing operating conditions in time, may take place. The latter is very common in oil and 
gas production. Since, the pressure of an oil reservoir is high at the beginning of the field life, initially 
dispersed bubble flow may occur. When the weU becomes older, however, the pressure drops and this 
wil l cause a transition to slug or churn flow. The predominant flow regime is slug flow in oil production 
and annualr flow in gas production. 

1.2 Problem description 

Multiphase flow is not restricted to oil and gas transport in pipelines, but it is found in a wide variety 
of industrial applications. Examples are: bubble columns, vapour-liquid contactors or absorbers, re-
boilers, spraying systems, gas-liquid separators, chemical reactors and others. The design of all these 
industrial multiphase systems is based on simplified models, due to the complexity and lack of funda­
mental understanding. For instance, the current design of multiphase flow through pipelines is based 
on one-dimensional steady state or dynamic simulation methods. These methods are validated with 
experiments within a certain range of often idealized operating conditions and may be inaccurate for 
operating conditions outside this range. For example, Jepson and Taylor (1993) investigated the slug 
flow transitions in large diameter horizontal pipes and concluded that the transitions are not accurately 
predicted by the widely used Taitel and Dukler map (Taitel and Dukler, 1976). Probably, this was 
often overlooked, because smaller diameter pipes were used to validate the Taitel and Dukler map. 

Clearly, a better understanding of multiphase flow is needed to improve the design of multiphase 
systems. Here, Computational Fluid Dynamics (CFD) may be a valuable tool. The advantage of 
CFD is that any operating conditions can be used and detailed information, which is often difficult 
to achieve in experiments, can be extracted. This is one of the reasons for the increasing interest, 
from a wide range of industries, to use CFD for design purposes. This is also noticed by the oil and 
gas industry, but application of CFD is still often restricted to the research environment. Reasons 
for the limited use of CFD for multiphase flow in pipehnes are: (i) the large computer times, (ii) the 
complexity of the flow requiring proper turbulence models and interface models, (iii) the uncertainty of 
the reliability of the CFD predictions. In a recently published journal paper (De Schepper et al., 2008) 
the authors claimed that current CFD codes are able to predict the different multiphase flow patterns 
and transitions in a horizontal pipe. This claim seems to be somewhat premature, since not many 
vahdation studies, speciflcally to model multiphase flows in pipelines, can be found in the literature. 
Actually, much more validation is required to give a sensible judgement on the performance of current 
CFD codes for modeling multiphase flows in pipelines. This is the main motivation for the present 
project. 

3 



1.2. Problem description 1. Introduction 

In the present study benchmark simulations are performed to assess the reliability of a selected CFD 
code for modeling multiphase flows in pipelines. The focus is on flow structures related to the slug 
flow regime. Hence, two benchmark cases, both closely related to the slug flow regime, are considered. 
The two cases are the so-called: 

1. Benjamin bubble, which is a single large bubble in a stagnant or flowing liquid in a horizontal 
pipe and 

2. Taylor bubble, which is a single large bubble in a stagnant or flowing liquid in a vertical pipe. 

An example for both can be seen in flgure 1.4 and may be compared wi th the slug flow pattern in 
figure 1.1 and figure 1.2, respectively. The structure of the bubble in slug flow is very similar to the 
structure of a single Benjamin or Taylor bubble. For instance, the velocity of Taylor bubbles in moving 
liquids can be expressed as: 

Ut = CoU,n + Ub (1.1) 

where Ut is the translational velocity of the Taylor bubble in a flowing liquid, Cq is a dimension­
less coefficient, Um the mixture velocity and Ub the bubble velocity in stagnant hquid. Note that Ub 
ecjuals the drif t velocity of a Taylor bubble or Benjamin bubble. The same expression (1.1) is used to 
model slug flow. This explains our choice for the two benchmark cases. The dimensionless coefficient 
Co, also known as the distribution parameter, depends on the velocity profile of the liquid ahead of 
the bubble. For turbulent flows CQ = 1.2 and Co = 2 for laminar pipe flow (Polonsky et al., 1999). 
The relation 1.1 was first recognised by Nicklin et al. (1962) and since then it is used in slug flow models. 

Validation of a CFD code can be done for problems that have an analytical solution or when highly 
detailed experimental data are available. Indeed, the two benchmark cases considered here have ana­
lytical solutions under some idealized conditions and experimental data can be found in the literature. 
Furthermore the quality of the numerical solutions can be assessed through successive grid refinement. 

Figure 1.4: Example of; (a) Benjamin bubble (Eager, 1999), (b) Taylor bubble (Mandal et al, 2008) 
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1.3 Project motivation and goals 

The motivation for the present project is the journal paper published by De Schepper et al. (2008), 
in which they claim that current CFD codes are able to predict the transition between the different 
flow regimes in a horizontal pipe. This can be very interesting for the oil and gas industry, since up 
to now the design of pipelines for multiphase flows are based on simplified I D models, which could 
be improved i f the claim is justified. This claim seems to be somewhat premature, because not many 
validation studies for modeling multiphase flow in pipelines can be found in the literature. Therefore, 
more research is required to be able to assess the reliability of CFD codes for modeling multiphase 
systems and to be able give a sensible judgement on the claim. Consequently the present project was 
started. 

The goals of this project are as follows: 

• Study the literature on multiphase flow to understand the physics; 

• Model two benchmark cases, namely the Benjamin bubble and the Taylor bubble, wi th the 
commercial CFD code FLUENT. Compare the results of FLUENT with analytical solutions and 
with experimental data; 

• Investigate the effect of viscosity and surface tension on the bubble motion; 

• Give an overall assessement of current CFD codes for modeling multiphase flows in pipelines. 

1.4 Literature review 

An extensive literature study reveals that the problem associated with the motion of a single bubble 
in a stagnant liquid has been investigated in great detail in the past. A wide literature exists on the 
subject and a summary of selected papers can be found in table 1.1-1.3. A trend may be seen in these 
tables: until the eighties the problem was mostly investigated theoretically or experimentally, but since 
the eighties the computers became faster and researchers started to use numerical tools to study the 
problem. 

The study on large bubbles was started almost one century ago by Gibson (1913). Gibson devel­
oped an empirical equation for the bubble rise velocity and reported the remarkable fact that the 
bubble velocity does not depend on the length of the bubble. Barr (1926) investigated the applica­
bility of large bubbles as a tool for measuring viscosity of the liquid in which the bubble rises. Sir 
G.I. Taylor, after Davies and Taylor (1950), is oft;en credited for the theoretical description of a single 
large bubble (Taylor bubble) that rises in a vertical tube in stagnairt liquids, but in fact Dumitrescu 
(1943) was the first to solve the problem theoretically. Dumitrescu obtained an analytical expres­
sion for the bubble rise velocity and the bubble shape by neglecting viscous and surface tension effects. 
Experiments of various authors, listed in the tables below, support the theoretical result of Dumitrescu. 

The first theoretical treatment for the motion of a large bubble in a horizontal pipe was given by 
Benjamin (1968). Assuming inviscid flow Benjamin obtained analytical solutions for the bubble ve­
locity and the bubble shape. Benjamin's theory is also supported by experiments, see Zukoski (1966) 
and Gardner and Crow (1970). However, the experimental results in the somewhat older literature 
(before the eighties) are restricted to the terminal bubble velocity. The obvious reason for this is the 
available technique to do measurements in that specific time period. After the eighties several more 
sophisticated measurement techniques, such as laser Doppler velocimetry (LDV) (Kvernvold et al., 
1984), photochromic dye activation (DeJesus, 1997) and particle image velocimetry (PIV) (Polonsky 
et al., 1999), (van Hout et al., 2002), (Bugg and Saad, 2002), (Nogueira et al., 2006a) and (Nogueha 
et al., 2006b), were used to study the motion of single large bubbles. Hence, detailed information on 
the velocity field around a large bubble and the bubble shape could be obtained. 

5 



1.4. Literature review 1. Introduction 

Table 1.1: Literature summary and research history for a bubble moving into a liquid 

Author (year) 
Pipe/channel 
configuration 

Nature of 
study 

Results of investigation 

Gibson (1913) 

Barr (1926) 

Hattori (1935) 

vertical 
Theoretical & 
Experimental 

Developed empirical equation for 
bubble rise velocity and described 
the shape in terms of tube size. 

Described the effect of bubble 
vertical Experimental length, tube size and viscosity 

on the bubble rise velocity. 

Found that the rise velocity of a 
vertical Experimental cylindrical bubble is independent of 

its length and zero for Eo < 3.36. 

Dumitrescu (1943) vertical 

Davies and Taylor (1950) 

Laird and Chisholm (1956) 

Harmathy (1960) 

Bretherton (1961) 

vertical 

vertical 

vertical 

horizontal & 
vertical 

Theoretical & 
Experimental 

Theoretical & 
Experimental 

Experimental 

Theoretical & 
Experimental 

Theoretical & 
Experimental 

Calculated the bubble rise velocity 
and shape assuming inviscid flow 
and a spherical nose of the bubble. 

Calculated the bubble rise velocity 
assuming inviscid flow. 

Studied the forces and pressures 
acting on a large bubble. 

Gave an empirical correlation 
for the bubble rise velocity. 

Studied large bubbles in capillary 
horizontal tubes and found that the 
bubble wil l not rise for Eo < 3.37. 

White and Beardmore (1962) ^fncfinec^ 

Goldsmith and Mason (1962) vertical 

Nicklin et al. (1962) 

Brown (1965) 

Brown and Govier (1965) 

Zukoski (1966) 

Benjamin (1968) 

vertical 

vertical 

vertical 

Experimeirtal 

Theoretical & 
Experimental 

Theoretical & 
Experimental 

Theoretical 

Theoretical 

Investigated the influence of fluid 
properties on the bubble velocity. 

Described the motion of a 
single large bubble in viscous 
and inertial flow regime. 

Described two-phase slug flow 
for bubbles rising in both 
stationary and flowing liquid. 

Developed correlation for bubble 
rise velocity in viscous fluids by 
modifying Davies-Taylor results. 

Developed a correlation for the 
voidage in two-phase slug flow. 

horizontal. Investigated the effect of surface 
vertical k Experimental tension, viscosity and tube 

inchned inclination on the bubble velocity. 

Derived analytical expressions 
horizontal Theoretical for the bubble drif t velocity and 

shape assuming inviscid flow. 
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Table 1.2: Literature summary and research history for a bubble moving into a liquid (table 1.1 continued) 

Author (year) 
Pipe/channel Nature of 
configuration study 

Results of investigation 

Gardner and Crow (1970) 

Collins et al. (1978) 

Wilkinson (1982) 

Bendiksen (1984) 

Baines (1985) 

Bendiksen (1985) 

Weber et al. (1986) 

Markovich (1988) 

Campos and 
Guedes de Carvalho (1988) 

Meiron (1989) 

Mao and Dukler (1990) 

Mao and Dukler (1991) 

Tomiyama et al. (1993) 

Alves et al. (1993) 

horizontal 

vertical 

horizontal 

inclined 

horizontal 

vertical 

inclined 

Nickens and Yannitell (1987) vertical 

horizontal 

vertical 

vertical 

vertical 

vertical 

rtical 

inclined 

Investigated the effect of 
Experimental surface tension on the 

bubble velocity and shape. 

Described the motion of large 
Theoretical bubbles rising in both laminar 

and turbulent liquid flows. 

Investigated the effect of 
Experimental surface tension and throttling 

of the flow at the outlet. 

Experimental 

Experimental 

Experimental 

Theoretical & 
Numerical 

Theoretical 

Experimental 

Numerical 

Numerical 

Experimental & 
Numerical 

Numerical 

Theoretical & 
Experimental 

Developed a correlation for bubble 
rise velocity in inclined pipes. 

Described three regimes of motion 
of bubbles in horizoirtal tubes. 

Extended the work of 
Theoretical Dumitrescu by taking surface 

tension into account. 

Developed a correlation for bubble 
rise velocity in inclined tubes. 

Studied the effect of surface tension 
and viscosity on the rise velocity by 
extending the work of Dumitrescu. 

Investigated the effect of 
surface tension on the 
free outflow of a liquid. 

Described the wakes of slugs in 
terms of the Reynolds number 
and the slug length. 

Studied the stability of gas 
bubbles rising in inviscid fluids. 

Calculated rise velocity and shape 
of Taylor bubble and showed 
that multiple solutions exist. 

Simulated Taylor bubbles in 
laminar and turbulent flow. 

Analyzed bubble motion 
using the VOF method. 

Extended Benjamin's work to 
calculate bubble drif t velocity in 
inclined and vertical pipes. 
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Table 1.3: Literature summary and researcii liistory for a bubble moving into a liquid (table 1.2 continued) 

Author (year) 
Pipe/channel 
configuration 

Nature of 
study 

Results of investigation 

Tomiyama et al. (1996) 

Monies (1996) 

Ubbink (1997) 

Bugg (1998) 

vertical 

vertical 

vertical 

irtical 

Hager (1999) horizontal 

Shosho and Ryan (2001) inclined 

Bugg and Saad (2002) vertical 

Viana et al. (2003) vertical 

Clanet et al. (2004) vertical 

Taha (2006) vertical 

Nogueira et al. (2006a) vertical 

Nogueira et al. (2006b) vertical 

Gokcal (2008) horizontal 

Lu and Prosperetti (2009) vertical 

Ben-Mansour et al. (2010) horizontal 

Experimental & 
Numerical 

Theoretical & 
Expenmental 

Numerical 

Numerical 

Theoretical & 
Experimental 

Experimental 

Experimental & 
Numerical 

Experimental 

Experimental 

Numerical 

Experimental 

Experimental 

Experimental 

Numerical 

Numerical 

Examined the feasibility of VOF 
method to model Taylor bubbles. 

Described the transition to 
a free-surface flow at the 
outlet of a horizontal pipe. 

Developed the CICSAM scheme 
and simulated the Taylor bubble 
as a validation case. 

Investigated numerically the 
rise of a Taylor bubble 
through stagnant liquids. 

Described cavity formation at 
the outlet of a horizontal pipe. 

Investigated the effect of pipe 
inclination on the bubble velocity 
for (non-)Newtonian fluids. 

Measured the velocity field around 
a Taylor bubble with PIV. 

Provide a correlation for 
the bubble rise velocity. 

Studied the bubble rise velocity 
in pipes of arbitrary cross-section. 

Used a commercial CFD 
tool to model slug flow. 

Used PIV to determine velocity 
profiles in the nose region and 
annular film of a Taylor bubble. 

Studied the wake and near wake 
region of a Taylor bubble. 

Investigated the effect of 
high oil viscosity on 
the bubble drif t velocity. 

Simulated Taylor bubbles with 
an in-house code. 

Investigated the effect of pipe 
diameter and high oil viscosity 
on bubble drift velocity. 
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1.5 Report structure 

The introduction was meant to give some general information on multiphase flow in pipelines and to 
formulate the problem. Next, in chapter 2 the basic equations of fluid dynamics are summarized, which 
can be helpful in later chapters. Chapter 3 and 4 describe the theory of the two benchmark cases, the 
Benjamin bubble and the Taylor bubble, respectively. Chapter 5 gives an overview of the numerical 
methods used to model the benchmark cases. In chapter 6 the results for the Benjamin bubble are 
presented, while chapter 7 contains the results of the Taylor bubble. I n the final chapter conclusions 
are drawn and recommendations are given for future work. 
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Chapter 2 

Flow equations 

The intention of this chapter is to state some of the basic equations of fluid mechanics that wi l l be 
useful in the upcoming chapters. The detailed derivations of these equations can be found in advanced 
fluid mechanics textbook, see for example Lamb (1932) or Batchelor (1967). 

2.1 Governing fluid dynamics equations 

The governing equations of fluid dynamics are based on the laws of conservation of mass, momentum 
and energy. These conservation laws are derived using the continuum hypothesis, which assumes that 
on macroscopic level fluids behaves the same as if they were perfectly continuous in structure. Fiu'-
thermore the continuum hypothesis implies that the physical quantities such as mass and momentum 
associated with the fluid are uniformly distributed within a small volume. In reality this is not exactly 
true, for example mass is concentrated in the nuclei of a atom of a certain fluid and not uniformly 
distributed over the volume occupied by the fluid. In this report the focus wil l be on the macroscopic 
behaviour of the fluids, therefore the continuum hypothesis can be applied without any problem, see 
Batchelor (1967). 

2.1.1 Continuity equation 

The continuity equation follows from the fact that it is impossible to create or destroy matter in any 
process (although it is possible, in nuclear reactions, to convert mass into energy). The continuity 
equation is given by, see e.g. Bird et al. (1960) 

where the term on the left hand side of equation 2.1 denotes the rate of change of mass per unit 
volume. The term on the right hand side of equation 2.1 describes the net rate of mass addition by 
convection per unit volume and (V • pv) is called the divergence of p\. The bold symbols refer to 
vector quantities. 

Incompressible fluid flow 

When the density of a fluid does not change due to pressure changes during the motion, the fluid is 
said to be incompressible. The compressibility of a gaseous fluid is related to the Mach number (Lamb, 
1932), which is a dimensionless number defined by: 

where v / is the speed of the fluid and c the speed of sound in the fluid. Hence, the Mach number 
is the ratio of the speed of the fluid and the speed of sound in this fluid. Incompressibility can be 
assumed when Ma<Cl. Practically all liquids can be regarded as incompressible, since large pressures 

- p = - (V • pw), (2.1) 

(2.2) 
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2.1. Governing Buid dynamics equations 2. Flow equations 

are required to compress liquids. In the case of an incompressible fluid the continuity equation 2.1 

takes the simple form 
V - v = 0. (2.3) 

The Mach number in all the cases in this study is expected to be much smaller than unity and equation 

2.3 can be applied. 

2.1.2 Equation of motion 
The equation of motion describes the motion of a fluid particle under influence of surface and body 
forces. The equation of motion in its general form is given by, see e.g. Bird et al. (1960) 

d 
—pv = - [V • pyy] - Vp - [V • r ] + pg. (2.4) 

The term on the left hand side of equation 2.4 denotes the rate of change of momentum. The first term 
on the right hand side of equation 2.4 describes the rate of momentum addition by convection, the 
second and the third term on the right hand side describe the rate of momentum addition by molecular 
transport. The last term in equation 2.4 accounts for the action of an external force, such as gravity. 
Ah the terms in equation 2.4 are evaluated per unit volume. The symbols [V • pw], Vp and [V • f ] 
are all vectors and are often called the divergence of pvv, the gradient of scalar p and the divergence 
of the viscous stress tensor f , respectively. The viscous stress tensor f for a Newtonian fluid is given 

by 

f = - p f V v + ( V v ) ^ ) + ( I P - k ) { W - y ) 5 (2.5) 

with p the dynamic viscosity, V v the velocity gradient tensor, (Vv) '^ the transpose of the velocity 

gradient tensor, K the dilatational viscosity, V • v the divergence of the velocity vector and 6 the unit 

tensor. 

2.1.3 Equations in terms of the substantial time derivative 

The equation of continuity 2.1 and the equation of motion 2.4 can be expressed in terms of the 
substantial derivative, D/Dt = d/dt + v • V , which denotes the time rate of change relative to an 
observer that is travelling with the fluid particle. The continuity equation and the equation of motion 
in terms of the substantial derivative are, see Bird et al. (1960) 

| ^ = - p ( V - v ) , (2.6) 

P ^ = - [V • ^1 + Pë- (2-7) 

2.1.4 Navier-Stokes equation 

In the case of constant p and p and by inserting equation 2.5 in the equation of motion 2.7 leads to 

the Navier-Stokes equation: 

Dt 
= -Vp + p V \ + pg. (2. 

This can also be written as 
Dv 

Dt 
where V = p + pgh, and is called the modifled pressure 

= - V P + / / V ^ v , (2.9) 

2.1.5 Stokes flow equation 

The Stokes flow equation is obtained by neglecting the acceleration terms in the Navier-Stokes equation 

2.8, that is p{Dv/Dt) = 0, which gives 

0 = - V p M V ^ V p g . (2.10) 

Stokes flow is obtained when the flow is extremely slow (or more precisely: when the Reynolds number 

is very low). 
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2.1. Governing üuid dynamics equations 2. Flow equations 

2.1.6 Euler equation 

The Euler equation for inviscid fluids is obtained by neglecting the viscous forces in the Navier-Stokes 
equation: 

Dv 
(2.11) 

In real life there exist no inviscid fluids, but there are many flows in which viscous forces are negligible 
and equation 2.11 applies. In flows with high Reynolds number the viscous forces are often negligible 
in most parts of the domain, except close to walls. This fact is easily seen by making the Navier-Stokes 
equation dimensionless with a characteristic length IQ , a characteristic velocity VQ and a characteristic 
modified pressure 7^0=^0+ pgho. Then the following dimensionless quantities can be found: 

V 

v = — 

y 
y = j-

V 

V2 

V~Vo 

PVo 
t 

Inserting these dimensionless quantities in the Navier-Stokes equation 2.9 gives 

to 
vpt 

lo 
D_ _ 

Dt ^ Vo Dt 

Dv 

'd! 
- V P P 

[lovop 
y'v 

in which one immediately can recognize the Reynolds number, which is defined as 

Re 
loVoP 

(2.12) 

(2.13) 

The Reynolds number is a dimensionless number that gives an indication of the relative importance 
of inertial forces versus viscous forces in a system. Indeed, at high Reynolds numbers the second term 
or viscous term on the right hand side of equation 2.12 wiU be negligible. 

2.1.7 Bernoulli equation 

The Bernoulh equation for steady flow is obtained by omitting the time derivative in the Euler equation 
2.11 and using the vector identy [v • Vv] = | V ( v • v) - [v x [V x v]] to rewrite the equation as 

pW^v'^ - PIv X [V X v]] = - V p - pgVh. (2.14) 

The g in equation 2.11 is expressed as - V $ = - f f V / i (Landau and Lifshitz, 1987), where h is the 
elevation in the gravitational field. The vector v x [V x v] is perpendicular to the velocity v, hence 
perpendicular to the streamline. A streamline is a line such that the tangent to that line at any point 
gives the direction of the velocity at that point. So from this v x [V x v] wil l be zero along a streamline 
and equation 2.14 gives 

y{^pv^+p + pgh)=0. (2.15) 

I t follows from equation 2.15 that \pv'^+p+pgh is constant along a streamline and Bernoulh's equation 
follows as 

-pv'^ + pgh^C. (2.16) 

In general the constant C in equation 2.16 is different for different streamfines, but when the flow is 
irrotational, which means that V x v = 0 everywhere, the constant C has the same value everywhere 
in the flow. 
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Chapter 3 

Benjamin bubble 

The motion of a gas bubble or an empty cavity in a stagnant liquid in a horizontal flow is called the 
Benjamin bubble (Benjamin, 1968). The name is due to Benjamin, who was the first to describe the 
characteristics of such a flow and the related phenomena. In this report we will only consider gas 
flowing in a liquid, although the equations derived by Benjamin are applicable more generally to two 
immiscible fluids, where a lower density fluid replaces a heavier fluid. First the 2D channel problem 
will be illustrated followed by the 3D pipe flow. Analytical expressions of these two cases are given 
by Benjamin under the specification that the flow is steady and irrotational everywhere. Furthermore 
the effects of viscosity and surface tension are ignored. In addition it is assumed that the density of 
the lighter fluid p2 is much smaller than the density of the heavier fluid pi. 

3.1 Two-dimensional flow 

The flow under consideration is illustrated in flgure 3.1. In the actual conflguration the bubble is 
moving to the left into a stagnant liquid. A Galilei translation is used to find a stagnant bubble in a 
moving liquid. The bubble is kept stationary by imposing a liquid velocity Vi, which equals the bubble 
drift velocity. The liquid flows between two infinite horizontal plates separated by a height H. Far 
upstream the liquid fills the space between the planes and has a constant velocity Vi. Far downstream 
at height h the flow with a free boundary is uniform and the velocity is V2. The mass and momentum 
balances are used to derive analytical expressions for the liquid velocity «2 and the liquid height h. 

« 2 

0 P. 1 

Vl 
H 

y ^ 

X 

H 

h 
V2 

Figure 3.1: Analogous steady flow for a bubble momng into a stagnant liquid in a horizontal channel (Ben­
jamin, 1968). 

3.1.1 Mass and momentum balance for 2D flow 

As the flow is incompressible, equation 2.3 can be used. By neglecting the velocity gradient in the 
?/-direction continuity requires 

ViH = V2h. (3.1) 

The assumptions for the flow under consideration reduce the Navier-Stokes equation to the Bernoulli 
equation. The point 0 in figure 3.1 is a stagnation point, i.e. the velocity of the fluid is zero here. 
Applying the Bernoulli theorem, i.e. assuming no viscous dissipation, along the free surface (the free 
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3.1. Two-dimensional How 3. Benjamin bubble 

surface is a streamline) gives for the heavier fluid 

Ph = Po-\v'pi+giH-y)pi. (3.2) 

Similarly applying Bernoulli's equation for the stationary bubble gives 

Pi=Po + g{H -y)p2. (3.3) 

There is no pressure drop across the interface, since surface tension is neglected, and therefore P/,, 
should be equal to P;. Therefore equating equation 3.2 and equation 3.3 gives the liquid velocity at 
the interface 

2 g { H - y ) ^ ^ ^ . (3.4) 
Pl 

Since we are considering a gas bubble here {p2 ^ Pi) equation 3.4 yields 

Vi = ^2g{H-y). (3.5) 

The analysis of Benjamin starts from here. Benjamin assumed that the flow far downstream becomes 
uniform at a depth fi and with velocity V2. Subsequently, he applied Bernoulli's equation along the 
free surface between the stagnation point (point 0 in figure 3.1) and a point far downstream, point 2 
in figure 3.1 

j+9ho + lv'o = j+9h2 + \vl (3.6) 

The pressure P 2 along the free surface is constant and equal to PQ, whereas the velocity at the stagnation 
point is equal to zero. The density was already assumed to be constant and with ho is H and /12 is h 

equation 3.6 yields: 

vl = 2g{H - h). (3.7) 

Applying Bernoulli's theorem between point 1 and stagnation point 0 along the upper boundary gives: 

- + 9 h , + \vl = ?^+gho + \vl (3.8) 
p 2 p 2 

W i t h h\ = HQ = H and PQ is zero equation 3.8 gives the pressure at he upper boundary far upstream 

Pl = -\pv\ (3.9) 

and the pressure in the liquid below has a hydrostatic variation with depth. The flow far downstream is 
uniform and the pressure variation with depth is again hydrostatic. Therefore the momentum balance, 
per unit span, between point 1 and point 2 is given by 

H H h 

j Pidy + ƒ pgydy + pv'lH= j pgydy + pv^h, (3.10) 

0 0 0 

P,H + ^pgH^ + pvlH = + pvlh- (3.11) 

Inserting equation 3.9 into equation 3.11 gives 

2vlh-\'vlH = g{H^ - h ' ) . (3.12) 

Making use of the continuity equation 3.1 we obtain 

2_giH'-h^)H 

2 {2H-h)h • 

By equating equations 3.7 and 3.13 an quadratic function for h is obtained, 

_ {H - li){H + li)H 

{2H - h)h ' 

2h^ -3Hh + H"^ = 0. (3.14) 

(3.13) 

2{H - h) 
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3.1. Two-dimensional Bow 3. Benjamin bubble 

The roots of equation 3.14 are h = H, which is an trivial solution, and the non-trivial one is 

A - 1 
H~2' 

(3.15) 

This means that in the non-trivial case the flow downstream should occupy half of the space between 
the two parallel plates. Substitution of equation 3.15 into equation 3.7 and into the continuity equation 
3.1 gives the following expression for the bubble velocity 

The dimensionless bubble velocity is given by 

Vl 

gH. (3.16) 

(3.17) 

The Proude number for the downstream liquid flow, which is the ratio of the inertia force and the 
gravity force, can be found by inserting equation 3.15 into equation 3.7: 

Fr 
V2 

V2. (3.18) 

Since the Froude number is larger than unity, the flow is supercritical. This flow may be realized 
by filling a channel of rectangular cross section with liquid and closing both ends. After the channel 
is fixed horizontally, one end is opened and under the action of gravity the liquid discharges freely 
from this end. Gas from the ambient enters the channel at the same time by replacing the volume of 
the discharged liquid. Similar experiments were done by Gardner and Crow (1970) and by Wilkinson 
(1982) and two photographs are given below. The experiments were done under well defined conditions 
to minimize the effect of viscosity and surface tension. 

1 
J 

f l ll 
Figure 3.2: Motion of a large bubble in a horizontal channel (Gardner and Crow, 1970). 

Figure 3.3: Motion of a large bubble in a horizontal duct (Wilkinson, 1982). 

The flow shows the same characteristics as described by Benjamin, except for the nose of the bubble 
near the top wall. A surface elevation is seen and both authors attribute this to surface tension effects. 

3.1.2 Intersection angle near the stagnation point 

The angle of intersection, 6 in figure 3.1, should be 60° as determined by von Karman (1940). Von 
Karman used a similar reasoning as employed by Stokes (1847) for the determination of the highest 
possible slope occurring in waves of finite height. Consider the complex variable z = x + iy and an 
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analytical function of z, namely f = 4> -\- iip, where (j) denotes the velocity potential and V the stream 
function. Then the complex velocity potential for the flow in the neighbourhood of the stagnation 
point z = x-\-iy = 0 has the form (Batchelor, 1967) 

ƒ = Az" (3.19) 

where A and a are real constants. The magnitude of the velocity is given by \df/dz\ = ylal^'^"^! , 
hence v is proportional to y ° " ^ According to equation 3.4, v is proportional to and we must have 
a — l = i o r a = | . Then from equation 3.19 we have 

(3.20) 

The streamline ^ = 0 consist of the top wall and the free surface, where ƒ = 0 corresponds to the 
point of intersection, i.e. point 0 in figure 3.1. The angle between the two branches (the top wall and 
the fi-ee surface) of the streamline ^ = 0 is the change in the value of the imaginary part of log z = 
flog i f / A ) , when passing from ^ < 0 to <ji > 0, that is equal to 27r/3 = 120°. Thus the angle 6 should 
be 60°. 

3.2 Three-dimensional flow 

Consider the liquid draining fi-om a horizontal pipe with circular cross section, as shown in figure 3.4. 
This 3D pipe flow problem will be treated in the same manner as done for the 2D channel problem. The 
flow is again assumed to be steady, inviscid, irrotational and free of energy dissipation. Furthermore 
surface tension effects are ignored and the density of the heavier fluid pi is much greater than the 
density of the fighter fluid p2. The pipe has a radius r and the flow is uniform far upstream and far 
downstream. Moreover, the liquid height far upstream and far downstream is 2r and /i, respectively. 

: 1 

Ih 

1 2r 

\ 1 

f2 ^ 1 

Figure 3.4: Steady flow in a horizontal pipe with circular cross section (Benjamin, 1968). 

3.2.1 Mass and momentum balance for 3D flow 

The free surface far downstream intersects the pipe wall at an angle of 2a from the centre of the pipe. 
Therefore the width h of the fi-ee surface is given by 

b = 2rsina 

and the cross sectional area A 2 beneath it is given by 

A 2 = (TT - a + ^sin2ay = 777-̂ (1 - C), 

where ( = (a - ^ sin2a)/7r. The continuity equation leads to 

which can also be expressed as: 

AiVi = A2V2 

! ^ ^ ^ = i - C . 
V2 V2 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Similar to the 2D problem, application of the Bernoulli theorem along the free surface, between the 
stagnation point 0 and point 2, gives: 

— + fl/io + = — +9h2 + \vl. (3.25) 
P ^ P ^ 

The pressure along the free surface and the velocity at the stagnation point is zero. The heights /lo 
and / i 2 are 2r and h, respectively. Therefore equation 3.25 yields: 

vl = 2g{2r - h). (3.26) 

The liquid height h far downstream is given by 

h = r{l+cosa). (3.27) 

Inserting equation 3.27 into equation 3.26 gives 

vl = 2gr{l - cosa). (3.28) 

Applying the Bernoulli theorem between point 1 and point 0 gives the pressure at the uppermost point 
of the cross section far upstream. This is equivalent to equation 3.8 and results again into: 

Pl = -Ipvl- (3.29) 

The momentum balance between point 1 and point 2 is given by 

TT 

(Pl + pgr + pvl)'Kr'^ - j pgr{cosa - cos e)b(\e - pvlA2 = 0. (3.30) 

The integral term in equation 3.30 represents the hydrostatic force far downstream and since the width 
h is varying with 6 the a in equation 3.21 is replaced by 6. Therfore the integral term in equation 3.30 
can be written as 

2pgr'^ j {cosa - cos6)sin^ed0 (3.31) 

Q 

which can be integrated by splitting the integral into 

IT IT 

2pgr^ cosa j sin^Ode - j cos esin'Ode . (3.32) 

a a 

The first integral in equation 3.32 can be solved by using the goniometrie relation 

, 2 . 1 - cos2e 
sin^e = ^ (3.33) 

and the second integral by substitution. Therefore the solution of equation 3.31 is 

2pgr'^ j {cosa - cos 9)sin'^ed9 = pgr ^A2C0SQ; + ^r'^sin^a^ . (3.34) 

a 

Inserting the result of equation 3.34 into equation 3.30 yields 

/ 2 \ 
(Pl + pgr + pvl)'Kr'' - pgr ( A2Cosa + -r^sin^a - pvlA2 = 0. (3.35) 

\ 3 / 

Equations 3.24 and 3.28 are used to efiminate vi and V2 in equation 3.35 and finally this leads to 

2 
C^(l - cosa) -\- (cosa - —sin^a = 0. (3.36) 
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The last equation 3.36 is only a function of a and is solved numerically to yield a = 82.78°, for 
which the corresponding ( = 0.42. Now « 2 can be calculated from equation 3.28, which is given in 
dimensionless form by 

0.935. (3.37) 

Accordingly the bubble velocity vi can be calculated using equation 3.24. In dimensionless form the 
bubble velocity is given by 

0.542. (3.38) 

The dimensionless hquid height far downstream is obtained by using equation 3.27 

= 0.563. (3.39) 

The Froude number of the flow can be defined by 

F r = | (3.40) 

where C is the speed of long infinitesimal waves relative to the liquid. In the case of shallow water 
waves, C is given by (Lamb, 1932) 

0 . 9 3 5 / ^ ^ (3.42) 
0 . 7 0 4 v ^ ^ 

Therefore equation 3.40 gives 

The Fi'oude number is again larger than unity, so the flow is again supercritical. 

The Benjamin bubble in a pipe is obtained by fifling a horizontal pipe with liquid. The pipe is 
initially closed at both ends. Then one end of the pipe is suddenly opened and liquid flows freely out 
at this end. Similar to the 2D case, gas from the ambient will replace the volume of the discharged 
liquid. When the starting effects have disappeared the motion of the bubble wil l appear to be steady. 
Figure 3.5 shows two experimental pictures (Hager, 1999). Here the conditions were such that surface 
tension and viscosity effects were negligible. 
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3.3. Summary 3. Benjamin bubble 

3.3 Summary 

The problem of a single large bubble in stagnant liquid in a horizontal pipe (Benjamin bubble) has 
an analytical solution when the flow is irrotational and inviscid. In addition this analytical solution 
requires that the effect of surface tension is negligible and that the density of the gas is much smaller 
than the density of the liquid. Using these flow features Benjamin (1968) was able to solve the problem 
analytically. For a 2D channel flow Benjamin obtained a dimensionless bubble velocity of vjsJgH = 
0.5 and a dimensionless liquid layer, which becomes constant away from the bubble nose, being equal 
to hjH = 0.5. For the 3D pipe flow a dimensionless bubble velocity of v/^/gD = 0.542 was obtained 
by Benjamin. The corresponding liquid height, which has a constant value far downstream from the 
bubble, is equal to h/D = 0.563. The theoretical results of Benjamin are supported by experimental 
data. 
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Chapter 4 

Dumitrescu or Taylor bubble 

The motion or rise of a single large bubble in a stagnant liquid in a vertical pipe is called a Taylor 
bubble, after Davies and Taylor (1950). Although Dumitrescu's investigation (Dumitrescu, 1943) on 
the motion of a large bubble in a vertical pipe vî as earlier and very similar to Taylor's analysis, i t 
seems that his contribution is not sufficiently acknowledged. 

4.1 Analytical solution 

The flow is regarded to be inviscid, steady, irrotational and axisymmetric. Furthermore, the effect of 
surface tension is ignored and the density of the gas is much smaller than the density of the liquid. 
Although the problem and assumptions might seem to be similar to the Benjamin bubble problem, the 
solution for the Dumitrescu bubble is more complex. Consider a vertical pipe completely fllled with 
liquid and closed at both ends. Now the lower end of the pipe is opened to the atmosphere and due 
to gravity the liquid freely flows out of the pipe. At the same time gas, in the form of a bubble, enters 
the pipe replacing the volume of the discharged liquid. The bubble obtained in this way may look hke 
the one given in figure 4.1(a). I t should be noted that in this case the bubble does not have a lower 
surface followed by a wake region as in figure 4.1(b). The problem solved by Dumitrescu and Taylor 
was for a type of bubble as shown in figure 4.1(a), which does not have a complex lower surface and 
wake. In fact the theoretical treatment of Dumitrescu and Taylor applies for an infinitely long bubble 
that rises in an infinitely long pipe of circular cross-section. 

The problem is solved in a frame of reference attached to the bubble. This means that the bub­
ble is kept stationary by applying a downward velocity, which is equal to the bubble rise velocity, to 
the whole system. The coordinate-system is given in figure 4.2. 

A 

(a) (b) 

Figure 4.1: Rise of a Dumitrescu bubble;(a) infinitely long bubble (Clanet et al, 2004), (b) finite bubble with 
a wake (Viana et al., 2003). 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 
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Figure 4.2: Coordinate-system of tiie Dumitrescu bubble (Dumitrescu, 1943). 

Applying the Bernoulli equation along the liquid side of the interface gives 

Pr I I 1 2 -Po , , 1 2 /,( 1 \ 
ö h = + ö ^ = — + 9 ^ 0 + 7^1^ (4.1) 

Pl 2 Pl 2 

where ZQ = 0 is the stagnation point, PQ the pressure at ZQ, pi is the density of the liquid, g the gravity 
constant and w the liquid velocity at the gas-liquid interface. From equation 4.1 follows that 

Pi = Po+pi9\z\-^piw^. (4.2) 

Similarly, applying Bernoulli equation to the stationary bubble and requiring that P 2 = Po for z = 0 

gives 

9\z\ = —- (4.3) 
P2 P2 

From equation 4.3 follows that 

P 2 = Po + P2g\z\ (4.4) 

and the assumption of zero surface tension requires that Pi = P 2 , which states that there is no 

pressure drop across the interface. Equating equation 4.2 and equation 4.4 gives the velocity at the 

bubble interface 

(4.5) 
V V PU 

With p2 ^ Pl equation 4.5 reduces to 

w = V W l (4-6) 

So far the easy part of the problem has been discussed, but the main difficulty is to obtain the shape 
of the bubble and to satisfy equation 4.6 simultaneously. This is not an easy task as it wi l l become 
clear soon. However, to solve this issue Dumitrescu formulated the problem as finding a solution to 
the Laplace equation V^tp = 0 such that 

1. equation 4.6 is satisfied on a yet to be determined streamline or bubble shape, and 

2. where the walls of the pipe are streamlines themselves. 

This problem turns out to be an eigenvalue problem and the solution procedure applied by Dumitrescu 

(also by Taylor) wiU be summarized below. 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 

4.1.1 Series expansion for the potential 

The flow is irrotational and axisymmetric, hence the Laplace equation V^<p=0 in cyhndrical coordinates 
takes the form 

and the corresponding Stokes streamfunction is given by (Lamb, 1932) 

d^ip d'^i) 1 ö^t/. _ 

The general solution for equation 4.7 and equation 4.8 for r = i? is given by (Lamb, 1932) 

J2^iJo{Pi~)e-''-f^, (4.9) 

i=l 

i = l 

7A = r ^ C i J i ( A - ) e " ^ - - ^ , (4.10) 

where JQ and J i are Bessel functions, /3j is a root of the equation J i ( /3 ) = 0 and c,; is an arbitrary 
constant. The flrst two roots of J i ( /3) = 0 is for (3 = 3.832 and = 7.016. By applying a downward 
velocity Woo, to keep the bubble steady, the equations 4.9 and 4.10 become 

n 

^ = - u . ^ z + ^ c , J o ( A - ^ ) e" ' ' '^ , (4.11) 
1=1 

i>=^w^r^ + rJ2ciJi (Pi^) e-l^'Ti. (4.12) 
i=l 

Equation 4.6 should hold at the interface and the following condition should be satisfied: 

= V? + v'^ = 2g\z\. (4.13) 

Equation 4.13 is equivalent to 

So far the solution approach of Dumitrescu and Taylor is the same. First the procedure of Taylor wi l l 
be discussed and after that we wil l continue with the approach of Dumitrescu. 

Solution procedure by Taylor 

Taylor used only one term in the series of equation 4.11 and equation 4.12. Doing this equation 4.11 
takes the form 

f> = -w^z + C l Jo (3-832-^) e"3.832^ .̂ 5̂  

and equation 4.12 is reduced to 

^ = Iw^r^ + rciJi (3.832-^) e-^-^^^i. (4.16) 

The bubble surface is chosen to coincide with V = 0 and Taylor required the vertex of the air bubble 
to be at 2 = 0. To fu l f i l this requirement the coefficient of in the expansion of 'tp should be zero. 
Hence, 

WaoR 

The consequence of taking only one term in the series expansion of equation 4.15 is that the condition 
4.13 can not be satisfied at more than one point. To proceed, Taylor assumed that the condition 
4.14 is satisfied on the bubble surface (ip = 0) when r = ^. This is a very crucial assumption, since 
the solution for the bubble velocity depends strongly on which radius r is selected (Zukoski, 1966). 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 

However, with this assumption the bubble velocity can readily be obtained by setting the following in 

equation 4.14 

c i = - ^ , - = 0 = 0. (4.18) 
^ 3.832' R 2' ^ ^ ^ 

W i t h Jl [i(3.832)] = 0.580 equation 4.16 gives 

3.832 
e 4(0.580) 

Equation 4.19 gives the z value at the arbitrary chosen r 

3 . 8 3 2 * _ _ ^ g5 (4 19) 

4 = -0 .131. (4.20) 
R 

Note that in the chosen coordinate system the value of z at the interface is always negative (except 
for z = 0), hence equation 4.20 is positive. Since JQ [|(3.832)] = 0.273 equation 4.14 gives 

^ ( 0 . 1 3 1 ) = [1 - (1.65)(0.273)]^ + [(0.580)(1.65)]2 . (4.21) 

The dimensionless bubble velocity follows from equation 4.21 

0.464. (4.22) 
gR 

Although the method applied by Taylor for obtaining the bubble velocity is very rough, the result 4.22 
is in good agreement with experimental data. However, as was pointed earlier the result 4.22 depends 
on the chosen radius r at which the boundary condition 4.14 is satisfied. Thus a different choice of r 
wi l l give a different bubble velocity. The result of Taylor can be improved by increasing the number 
of terms in the series of 4.11. Dumitrescu solved the problem by retaining three terms in the series 
expansion. The related difficulty and solution approach of Dumitrescu wih be discussed next. 

Solution procedure by Dumitrescu 

In this part the solution approach of Dumitrescu wil l be discussed. We wil l continue with his procedure 
just after equation 4.13. I t follows from dimensional analysis (see Appendix A) that the bubble rise 
velocity should be proportional to the square root of the radius of the pipe and the gravity as 

w^=XVgR, (4.23) 

where A denotes a dimensionless constant, g the gravitational acceleration and R the radius of the pipe. 
Hence, all equations are non-dimensionlized with equation 4.23 and R. The dimensionless numbers 
are 

If , lb u " 
Lp* = W* = ; U* = ;= V* 

A v W 
z _ Cj r _ 

Using these dimensionless numbers the velocity potential equation 4.11 and the streamfunction equa­

tion 4.12 can be written as ^ 

V* = -V+jJ2''^-^om)e-^-\ (4.24) 

^ * = ? + T E ^ ^ ^ i ( / 3 « 0 e - ^ ^ ' ' - (4-25) 
^ ^ i = i 

The dimensionless velocity components u* and v* are given by 

n* = ^ = = 4 t fc,AJr m)e-^-\ (4.26) 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 

" - ^ - i f ^ - l - l E W . W . O . - " " . (4.27) 

Point 0 ((̂  = 77 = 0) in figure 4.2 is a stagnation point. Hence, ttie velocity components are zero 
{u = V = 0) and equation 4.27 with Jo(0) = 1 requires that 

n 

X = -J2hP^• (4.28) 
i = l 

Pi'oin eciuation 4.28 it is clear that the dimensionless bubble velocity A or the Froude number wi l l depend 
on the coefRcients fcj. Inserting equation 4.28 in the stream function equation 4.12 and dividing the 
result by ( gives the shape of the bubble 

^ = X^fc,:Ji(AC)e-^^' ' - = 0. (4.29) 

Equation 4.16 follows from the fact that the bubble shape is (or should be) a streamline and this 
streamline is chosen to be coincide with the iso-hne ip*=Q. The condition that still has to be satisfied 
is equation 4.13, which in dimensionless form is written as 

+ y*2 ^ | r? | . (4.30) 

Inserting equation 4.26, equation 4.27 and equation 4.28, respectively for u*, v* and A in equation 
4.30 gives 

Y.hldiJMOe-''-'' + -Y.^iPi + Y.^A.hm)e-'''A =\2v\. (4.31) 
\ i = l / \ i = l i = l / 

The problem is now to determine the coefficients ki such that the corresponding values of ^ and 
ri satisfy equation 4.29 and equation 4.31, simultaneously. After determining the coefhcients ki, the 
bubble velocity and the bubble shape can be obtained by equation 4.28 and equation 4.29, respectively. 

4.1.2 Determination of the coefficients 

To determine the coefficients fcj we need to express 7? as a function of (. For this purpose, the Taylor 
series expansion method is used. The required terms and their corresponding series expansion are 
given below 

W i C ) - i - Y ^ ( ^ y J C + ( ^ ^ - ^ J C ' (4.32) 

J m Q - ^ ^ ) C l ! 2 ! U y ' ^ + 2 ! 3 ! U ; ^ " ^ 7i!(7i + 1)! ' ^^'^^^ 

l2 2 00 

Inserting these expressions in equation 4.29 gives 

t t M M K " ' - \ i t ^ A = ( - ^ C ^ + i f f ' - I k f i " + 

1=1 i=\ ^ 

I V 1!2!̂  2!3!̂  3!4!̂  (435) 

^2! r ^ - ï ! 2 ! ^ +2!3!^ " Ïï!4!^ ^ ' - ' h 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 

The first term on the left side of equation 4.31, inside the parenthesis, can be written as 

«=1 i=i ^ ^ 

?L (B c - —t^ + -
1 V 1!2! 2!3!^ 

1 V 1!2! 2!3! 

+ Y r ^ ^ - Ï ! 2 ! ^ +2!3!^ 

Similarly, the second term on the left side of equation 4.31 can be written as 

J2 fcift JoCAOe-^'" - è = 2 E fci f f ) Jo (AC) e-^'" - 2 fe, f 
i = i i = i i = i V ^ / V ^ / 

12 ^ (2!)2^ (3!)2^ 

^ / ^ ^ _ ^ ^ 2 , _ 5 ^ . 4 _ ^ . 6 , A (4.37) 

1 V 1 12^ (2!)2^ (3!)2'= 

2! ^ 1 12^ ^ (2!)2^ (3!)2^ ^ 

where Bjn is given by 

^ - = E ^ M y ) • (4-38) 
i = l ^ ^ 

The symmetry of the bubble requires that the interface be expressed in tenns of even degrees of ( and 
Dumitrescu used 

oo 

x=l 

where ax are constants. This expression for r] can now be inserted in equation 4.35, 4.36 and 4.37. 
After this, the equations 4.29 and 4.31 are, respectively given by 

i (4^201 - Bs) + ^ {Bs - UB^ai + 2 4 ^ 3 0 ? + 24S2«2) + • • • = 0, (4.40) 

+ ( - S 2 S 4 + '^Blai + Bl)C^^--- = \ {aiC + a^C + • • • ) • (4.41) 

The values of Bi in equation 4.40 and 4.41 can be found by comparing the coefficients of the corre­
sponding ( degrees. For a given ai equation 4.41 gives B^ = a i /2 and with this Bi equation 4.40 can 
be used to find S3. In this way all the B^ can be determined, provided that the coefficients ax are 
known. Subsequently, equation 4.38 wiU result in a system of n linear equations with n unknowns as 

(4.42) 
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4.1. Analytical solution 4. Dumitrescu or Taylor bubble 

For n —> oo the system 4.42 wih result in infinitely many equations with infinitely many unknowns. 
The problem now is to determine the coefficients A;,, which are functions of the arbitrary coefficients 
üx- The coefficients fcj can be determined from equation 4.42, but this requires the bubble shape to 
be known (i.e. the a^)- However, the shape is unknown in advance and the problem seems to be 
unsolvable. However, Dumitrescu observed two facts in his experiments: 

1. close to the nose the bubble has a spherical shape and 

2. the flow has an asymptotic behaviour for 77—>-oo. 

Using these two facts Dumitrescu was able to solve the problem completely. The first fact is used to 
approximate the shape of the bubble in the vicinity of the nose. Hence, the shape of the bubble close 
to the nose is given by 

V = Q\ \ 1- [ - ] - 1 with C<g<l (4.43) 

where g denotes the radius of curvature. Using the Taylor series expansion, equation 4.43 can be 
approximated as 

r? = - e U - + « - + T 7 - + • • • • (4.44) 

Equation 4.43 has a similar form as equation 4.39 and by comparing these two the unknown coefficients 
Qx can be determined as a function of the radius of curvature g as 

(2f ) 

Subsequently, the values for Bm can be determined from equation 4.40 and 4.41 as explained earlier. 
Then, the coefRcients fcj can be obtained from equation 4.42. Finally, the bubble velocity can be found 
by using equation 4.28. However, this procedure requires the radius of curvature close to the bubble 
nose to be known. Consequently, Dumitrescu had to impose an additional boundary condition for 
77 —>-oo. Thus Dumitrescu assumed that close to the bubble nose the shape can be approximated by 
a sphere and the shape far away from the nose by an asymptotic function. For the latter asymptotic 
reconstruction he assumed the volumetric flow rate (Q = 'kD'^Woo/'^) between the bubble and the wall 
to be the same for every cross-section. Furthermore, he assumed a fully developed steady flow in the 
film far away from the bubble nose. Hence, continuity requires that 

I {{2Rf - { 2 r f ) ̂ \ = \ { 2 R f \ ^ , (4.46) 

where •^2g\z\ is the relative velocity at the bubble surface as given by equation 4.6 and iWoo = ^Vd^ 
is the bubble rise velocity with R being the radius of the pipe. The dimensionless form of equation 
4.46 is given by 

Tj = ^. (4.47) 
' 2 ( 1 - C ' ) ' ^ ' 

Note that A depends on the radius of curvature. Finally, Dumitrescu connected the two solutions, the 
spherical nose equation 4.44 and the asymptotic equation 4.47, together with the requirement that 
the derivative at the point of intersection of the two curves should be continuous. Note that only for 
one radius of curvature the requirement of the continuous derivative is met, which implies that the 
solution is unique. In this way Dumitrescu uniquely determined the radius of curvature to be equal 
to 0.75 and the corresponding dimensionless bubble velocity to be given by A = 0.496. This result 
of Dumitrescu is in agreement wi th experimental data reported by himself and by several other authors. 

I t is clear that the problem is much more complex than one might think at a first glance. Although 
the solution approach of Dumitrescu is more sohd than the result of Taylor, the latter should at least 
be credited for the simphcity in obtaining the solution. Later Bendiksen (1985) extendend the work of 
Dumitrescu by retaining six terms in the series expansion and by taking surface tension into account. 
Further, Bendiksen showed that, when surface tension is taken into account, i t is not necessary to 
make an apriori assumption on the bubble shape in order to solve the problem. 
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4.2. Summary 4. Dumitrescu or Taylor bubble 

4.2 Summary 

An analytical approximation of the solution for the rise of a single large bubble in stagnant hquid in 
a vertical pipe (i.e. for the Dumitrescu or Taylor bubble) is possible under the assumption that the 
flow is axisymmetric, irrotational and inviscid. Dumitrescu (1943) was the first to solve the problem 
by neglecting the effect of surface tension and by assuming that the shape of the bubble is spherical 
near the nose. In this way Dumitrescu obtained the bubble shape and the dimensionless bubble 
velocity of Waa/\/gR = 0.496. Davies and Taylor (1950) used a similar approach as Dumitrescu, the 
only difference being that they used one instead of three terms in the series expansion. In this way 
they found a dimensionless bubble velocity of 0.464. Later Bendiksen (1985) extended the work of 
Dumitrescu by taking surface tension into account, but the complexity was increased and the result 
for the bubble velocity was similar to what was found by Dumitrescu. The analytical approximation 
of both Dumitrescu and Davies & Taylor is in close agreement with experimental data. 
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Chapter 5 

Numerical methods 

Analytical solutions for the governing equations of fluid dynamics are restricted to some simple cases 
only. For more complex problems the solutions, if there exist any, should be obtained numerically. 
There are several numerical (i.e. finite difference, finite element and spectral) methods to discretize 
the governing equations. The commercial CFD code FLUENT, used for the modehng throughout 
this work, utilises the Finite Volume Method (FVM) to discretize the governing equations. In this 
study the focus is on the modeling of multiphase flow systems. Hence, a numerical multiphase model 
was required and the Volume Of Fluid (VOF) model as implemented in FLUENT was used for this. 
This chapter wil l give an overview of the F V M and of the VOF method as implemented in FLUENT. 
Further, a detailed explanation of the simulation setup is given. 

5.1 Finite Volume Method 

In the Finite Volume Method (FVM) the domain is sub-divided into a number of smaller sub-domains 
or control volumes. Subsequently the governing equations of fluid flow are integrated over each of the 
control volumes of the domain. Then the resulting integral equations are discretized to obtain a system 
of algebraic equations. Finally the algebraic equations are solved by an iterative method. Most of the 
commercial CFD codes use the F V M , because it is also applicable to unstructured meshes, which are 
frequently used for complex geometries. Below a summary of the discretization schemes is given, see 
Versteeg and Malalasekera (2007) for a detailed overview of the Finite Volume Method (FVM). 

5.1.1 Discretization of the transport equations 

In the F V M approach a transport quantity 0 entering or leaving the control volume is described as 
a flux of that quantity entering or leaving the domain. The F V M is conservative, which means that 
the flux of (j) entering the control volume has to be equal to the flux of 0 leaving control volume, if no 
source or sink is present in the control volume. The general transport equation for a quantity 0 can 
be described by, see FLUENT (2006) 

^ ( p 0 ) + V-(p07;) = V - ( r ^ V 0 ) + 5 ^ , (5.1) 

where F^ denotes the diffusion coefficient and S^j, the source term. Integration of equation 5.1 over a 
control volume V gives 

ƒ + j> p(j>v-dA = j v<^ • + ƒ ^'^'^^^ (^-2) 

where A is the surface area vector. The first term on the left hand side of equation 5.2 represents 
the change of (j) in time in the control volume. The second term on the left hand side represents 
the convective flux of <p across faces of the control volume V. The first term on the right hand side 
represents the diffusive flux of cf) across the faces of control volume V and the last term on the right 
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hand side accounts for the contribution of source terms. Discretization of equation 5.2 gives, see 
FLUENT (2006) 

E Pf^l't'f A, = J2 r^V<Pf Af + S^V, (5.3) 

ƒ ƒ 

where Nfaces is the number of faces enclosing the control volume, (f>f the value of (p convected through 

face ƒ, pfv} • Af the mass flux through face ƒ, Af the area of face ƒ, V(j)f the gradient of (j) at face ƒ 

and the volume of the control volume. 

For transient simulations the term in equation 5.3 has to be discretized in time, which is re­
ferred to as the temporal discretization. Thus in transient simulations the governing equations have to 
be discretized in both space and time. Temporal and spatial discretization of the governing equations 
are discussed in section 5.1.2 and section 5.1.3, respectively. After the discretization of the governing 
equations in time and space, the linearized form of equation 5.3 wifl be 

ap(i>p = E dnfc'/'nfc + b, (5.4) 
nb 

where Gp and a„b are the linearized coefficients for (pp and (pnb respectively and b the constant part 
of the source term. The subscripts p and nb refer to the central point and the neighbouring cells, 
respectively. In general the number of neighbouring cells wil l be equal to the number of faces of the 
control volume, with the exception of the control volumes that coincide with the boundaries. One can 
easily write a linear set of equations for each grid cell. These equations are solved simultaneously for 
all the grid cells within the domain, using an algebraic multi-grid (AMG) solver, see FLUENT (2006). 

5.1.2 Temporal discretization 

As mentioned earlier, the transport equations have to be discretized also in time for a transient 

simulation. This discretization is referred to as temporal discretization. In the temporal discretization 

the transient term in the transport equations is integrated over a time step. A general expression for 

the time evolution of a variable ip is given by 

where F{4i) is the function that incorporates the spatial discretization of equation 5.3. Using backward 
differences, the first-order temporal discretization is given by, see FLUENT (2006) 

^ ^ (5.6) 

The second-order accurate discretization is given by FLUENT (2006) 

Here <̂  is a scalar quantity, n-\-\ is the value at the next time level, n the value at the current time 
level and n — 1 the value at the previous time level. can be evaluated at the new time level 
(implicit time integration) or at the current time level (explicit time integration). The explicit time 
integration method is not available in FLUENT when the pressure-based solver is used. Hence in all 
the simulations the first order imphcit time integration was used. The main advantage of the implicit 
discretization is that i t is unconditionally stable with respect to the time step size, unlike the explicit 
discretization, where F{(j)) is evaluated at the current time level (FLUENT, 2006). 
The first order implicit time discretization of F{4)) is thus given by 

A / =n<i>''^')- (5.8) 

This can be solved iteratively at each time level by 

0 " + M 0 " + A i F ( , ^ " + i ) . (5.9) 
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5.1.3 Spatial discretization 

FLUENT stores by default discrete values of the scalar quantity 0 at the cell centres (FLUENT, 2006). 
In order to obtain face values, as required for the convection terms in equation 5.3, the quantity cj) 
has to be interpolated from the centre values. This interpolation is accomplished by using an upwind 
scheme. Upwinding means that the face value (f>f is derived from quantities in the cell upstream 
(upwind), relative to the direction of the fluid flow. FLUENT has the following upwind schemes: 
first-order upwind, second-order upwind, power law and QUICK. In this study the first-order upwind, 
the second-order upwind and the QUICK scheme was used. These schemes wih be discussed below. 

First-order upwind scheme 

In this scheme quantities at cell faces are obtained by assuming that the cell-centre values of any field 
variable hold throughout the entire cell. In other words the face quantities are identical to the cell 
quantities. Thus the face value (f)f is set equal to the cell-centre value of (f> in the upstream cell. This 
scheme has first-order accuracy only. 

Second-order upwind scheme 

For second-order accuracy, quantities at the cell face are computed using a multidimensional linear 
reconstruction approach. This approach achieves higher-order accuracy at cell faces through a Taylor 
series expansion of the cell-centered solution. The face value is computed by, see FLUENT (2006) 

4>f,sou = <i> + y(P-f, (5.10) 

where (j) and Vtp are the cell-centered value and its gradient in the upstream cell, respectively, and r 
is the displacement vector from the upstream cell centroid to the face centroid. 

Q U I C K upwind scheme 

For a higher accuracy in the spatial discretization the third order scheme QUICK can be used. The 
QUICK scheme uses a three-point upstream weighted quadratic interpolation for the cell face values. 
The face value is obtaines from passing a quadratic function through two downstream nodes and one 
upstream node, see Versteeg and Malalasekera (2007). The interface value of cj) at face e can be 
evaluated as , see (Versteeg and Malalasekera, 2007) 

1 6 3 
$e = -^^W + -^P + -^E for Ue>0 (5.11) 

0 O Ö 

1 6 3 
-̂e = - g ^ B E + + for Ue < 0 (5.12) 

The QUICK scheme in FLUENT is available only for quadrilateral and hexahedral meshes, due to 
the requirement of specific upstream and downstream interface cells. Therefore the QUICK scheme 
cannot be used in unstructured and hybrid grids (FLUENT, 2006). 
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5.2 Volume Of Fluid Method 

The Volume Of Fluid (VOF) model is an Euler-Euler type of multiphase model (also known as a 
two-fluid model) and is based on the work of Hir t and Nichols (1981). Actually, the VOF model is 
a surface tracking technique applied at a fixed Eulerian mesh and it is used to model two or more 
immiscible fluids where the interface between the fluids is of interest. In the VOF model a single 
momentum equation is solved and the volume fi-action for each of the phases is tracked throughout 
the domain. Moreover, the fields for all variables and properties are shared by the phases and are 
connected through the local volume fraction of the phases. Let now ct, be the volume fraction of the 
qth phase in a computational cell then 

• a = 0 represents a cell that is empty of the qth fluid and 

e Q = 1 represents a cell that is ful l of the qth fluid and 

e 0 < a < 1 represents the interface between the qth phase and one of the other phases. 

Based on these three possibilities of a,, appropriate properties and variables wi l l be assigned to each 
computational cell. 

5.2.1 Volume fraction equation 

The interface between two or more phases is tracked by solving a continuity equation for the volume 
fraction of one or more of the phases. The ecjuation for the volume fraction for the qth phase is given 
by (FLUENT, 2006) 

g^iaqPq)+ y • (agPgVg) = Sa^, (5.13) 

where a is the volume fraction of the gth phase, pg the density of the qth phase and Sa^ a source 
term, which is usually zero. I f there are two phases equation 5.13 for the volume fraction is solved only 
for the secondary phase and the volume fraction for the primary phase is obtained by the following 
constraint: ^ 

E « a = l - (5.14) 
9=1 

Equation 5.14 simply states that sum of the volume fractions of all the phases in a control volume 
must be equal to unity. The volume fraction equation 5.13 may be solved through implicit or explicit 
time discretization: 

" ''"V + Y: {P7ur<f) = SaV, (5.15) 

where m = n+l when the implicit scheme is used and m = n when the explicit scheme is used, n + l 
is the index for the current time step, n is the index for the previous time step, agj is the face value of 
the qth volume fraction, V is the volume of the cell and Uf is the volume flux through the face based 
on the normal velocity. In the implicit approach FLUENT's standard finite difference interpolation 
schemes are used to obtain the face fluxes agj for all cells, including those near the interface. In the 
explicit approach the face fluxes can be interpolated either using the interface reconstruction scheme or 
using a finite volume discretization scheme. The geometric reconstruction scheme, which is an interface 
reconstruction scheme, was used in all the simulations. This scheme wfl l be discussed in more detafl 
below. 

5.2.2 Geometric reconstruction scheme 

The geometric reconstruction scheme is used when the cell is near the interface between two phases. 
In the geometric reconstruction scheme the interface is represented by a piecewise-linear approach. In 
this approach the interface between the two fluids has a hnear slope within each cell, see figure 5.1. 
This linear shape is then used for the calculation of the advection of the fluid through the cell faces. 
This scheme is the most accurate one available in FLUENT and it is generalized for unstructured 
meshes from the work of Youngs (1982). 
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/ 
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Figure 5.1: (a) Actual interface shape, (b) Interface shape represented by the geometric reconstruction scheme 
(FLUENT, 2006). 

The reconstruction scheme is a three step process, see FLUENT (2006): 

1. Calculation of the position of the hnear interface, based on information for the volume fraction 
and its derivatives. 

2. Calculation of the amount of advected fluid through each face computed from the linear interface 
representation and from information on the normal and tangential velocity distribution at the 
face. 

3. Calculation of the volume fraction in each cell by balancing the fluxes calculated during the 
previous time step. 

5.2.3 Momentum equation 

As mentioned earlier a single momentum equation is solved in the VOF model and the obtained velocity 
field is shared by the phases. A consequence of this is that the standard output of FLUENT contains 
only results for the mixture phase (i.e. pressure, velocity and density). The momentum equation, 
which is equivalent to equation 2.4, is given by 

d 

—pv + [V • pw] = -Vp + V -[p (Vv + Vv'^)] + pg + F , (5.16) 

where p and p are defined through equation 5.17 and equation 5.18, respectively. 

5.2.4 Properties of the phases 
The properties that appear in the transport equations are volume-fraction-averaged properties. For 
instance the density for an n-phase system is given by 

n 

9=1 

Similarly, the viscosity is calculated as 
n 

5.2.5 Surface tension 

The fact that small air bubbles in water or small liquid droplets in air take up a spherical form is due 
to the surface tension. Surface tension is a result of the movement of molecules that are located at an 
interface. Consider an air bubble in water. Inside the bubble, the net force on a molecule due to its 
neighbours is zero. However, the molecules at the interface experience, due to lack of neighbours, an 
unbalanced cohesive force and tend to move inwards. This tendency is equivalent to the contraction 

(5.17) 

(5.18) 
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of the interface, thereby increasing the pressure on the concave side of the interface. Surface tension 
is a force that only acts on a surface to balance the radially inward intermolecular cohesive force wi th 
the radially outward pressure gradient force across the interface. The reason that small air bubbles in 
water have a spherical shape is that surface tension acts to minimize the free energy by decreasing the 
area of the interface. 

Continuum Surface Force model 

The surface tension model used in FLUENT is the Continuum Surface Force (CSF) model proposed 
by BrackbiU et al. (1992). W i t h this model the surface tension is modeled as a source term in the 
momentum equation. The origin of the source term can be understood by considering the special case 
where the surface tension is constant along the surface. Then it can be shown that the pressure drop 
across the interface depends upon the surface tension coefficient a and the surface curvature as 

P2-Pi = (5.19) 

where pi — p2 is the pressure difference across the interface, Ri and R2 are the surface radii in two 
perpendicular directions. In the CSF model the surface curvature is obtained from local gradients in 
the surface normal at the interface. The surface normal n is defined as the gradient of the volume 
fraction of the qth phase: 

n = Vag. (5.20) 

The curvature K is defined as the divergence of the unit normal n, see Brackbill et al. (1992): 

K = V - n , (5.21) 

where 
n = / \ . (5.22) 

\n\ 

The surface tension can be expressed in terms of the pressure jump across the interface. The force 
at the interface can be expressed as a volume force using the divergence theorem, see Brackbill et al. 
(1992). This volume force is added to the momentum equation as a source term. For two phases the 
volume force has the following form 

F.oi=<r.,^^^, (5.23) 

where p is the volume-averaged density. 

5.3 Simulation setup 

The simulation setup was based on the 'Best practices for the VOF model' document, see ANSYS 
FLUENT (2006) and ANSYS FLUENT (2007). Furthermore, chapter 23 of FLUENT (2006) for 
modeling multiphase flows was studied carefully before the simulations were started. The simulation 
setup for the Benjamin bubble and the Taylor bubble wi l l be discussed separately. 

5.3.1 Simulation setup for the Benjamin bubble 

Prior to the simulation the numerical mesh was genererated by the CAD tool GAMBIT. A l l the 2D 
simulations were done with a uniform grid, which means that the grid spacing was A x = Ay . Subse­
quently the mesh was loaded in FLUENT and the problem was defined. The double-precision version 
of FLUENT was used in all the simulations. Since the VOF model is not available for the density-
based solver the pressure-based solver was used for the simulations. Furthermore the simulations were 
transient and with the inclusion of the gravity. Moreover the VOF model was selected for the modeling 
of the two phases. In all the simulations the primary phase was air and the secondary phase was water 
or ofl. Obviously, the inviscid model was selected in FLUENT for the modeling of the inviscid (and 
zero surface tension) flow. 
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Boundary/ ini t ia l conditions 

The boundary and initial conditions are shown in figure 5.2: blue is liquid and red is gas. The diameter 
and length of the pipe or channel were 0.05 m and 3.0 m, respectively. One end of the channel or 
pipe was closed, while the other end was open to the atmosphere. The boundary conditions used for 
the 2D channel flow and the 3D pipe flow were the same. At the outlet an atmospheric pressure was 
specified. Inflow through the outlet, if any, is always gas. Initially the left part of the channel or pipe 
was filled wi th liquid (blue) and the right part was filled with gas (red). Thus the two phases were 
initially separated by a virtual dam. Starting the simulation (i.e. removing the dam) allowed the liquid 
to fall to the gas side and at the same time the gas in the form of a bubble replaces the volume of the 
discharged liquid. There wi l l be no inflow of gas at the outlet until the liquid has reached the outlet. 

YVaU I ~ Pressme 
^ oullst 

WaU 

Figure 5.2: Boundary and initial conditions for the Benjamin bubble (blue is liquid and red is gas). 

Two structured mesh configurations were used for the 3D simulations of the Benjamin bubble, see 
figure 5.3. The first mesh type has a cubic core and the second mesh type has a hexagonal core. A 
definition for the grid refinement is shown in figure 5.3(b) and in figure 5.3(d). X, Y and Z denotes 
the number of grid cells on the edges as defined in figure 5.3(b) and in figure 5.3(d). Grid refinement, 
which is equivalent to increasing the number of X, Y and Z, was done in all the directions. 
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Figure 5.3: (a) and (b) Mesh type 1, (c) and (d) Mesh type 2. 
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Convergence criterion 

The scaled residual was used as the convergence criterion. The scaled residual in FLUENT is defined 
as 

^ T,ceUs P I T,nb"-nb4>nb + b- aptpp] 

Ecells P \apM 
Here ap is the centre coefficient, a„(, are the influence coefRcients for the neighbouring cells, and b 
is the contribution of the constant part of the source term S^. For the momentum equations the 
denominator term apcpp is replaced by apVp, where vp is the magnitude of the velocity at cefl P, see 
FLUENT (2006). The unsealed residual for the continuity equations is defined as 

P'̂  = E \rate of mass creation in cell P|. (5.25) 

cells p 

The scaled continuity residual is defined as 

R's = (5.26) 
iteration 5 

where the denominator is the largest absolute value of the continuity residual in the first five iterations. 

The value of the scaled residual was set to be 10"^ as a convergence criterion in the 2D simula­
tions. In the 3D simulations the value of the scaled residual was set to 10"^. The time step used in 
the simulations was 0.001 s, which always gave a Courant number (Co) number with a value much 
lower than unity. Furthermore, the PISO scheme was used for the pressure-velocity coupling. For the 
pressure interpolation the PRESTO scheme was used and the momentum equation was discretized 
either with the first order upwind scheme or with the QUICK scheme. 

5.3.2 Simulation setup for the Dumitrescu or Taylor bubble 

The boundary and initial conditions for the simulation of the 2D axisymmetric Dumitrescu bubble are 
shown in flgure 5.4(a). The upper end of the pipe was closed, while the lower end was open to the 
atmosphere. A constant atmospheric pressure was specifled at the pressure outlet. Since the flow is 
axisymmetric only the domain between the wall and the centre line was modelled. The diameter and 
the length of the pipe in the 2D axisymmetric simulations was 0.1 m and 1.5 m, respectively. I t was 
necessary to disturb the interface in the 2D axisymmetric simulations in order to have a flow. The 
interface was disturbed by setting the gravity in the opposite direction for a smafl time of period. After 
the interface was disturbed the gravity was set in the normal downward orientation again. Immediately 
thereafter a bubble was seen to move upward as the liquid was falling downward. 

In contrast to the 2D simulations the 3D simulations were started with a pre-defined bubble shape. The 
bubble shape was initialized by a cosine function, see figure 5.4(b) and Appendix B. In this case it was 
not necessary to disturb the interface. Note that the bubble shape was initialized with an arbitrarily 
chosen cosine function. However it turns out that the initial bubble shape is not important, since the 
bubble adopts very quickly to its equilibrium shape after the simulation is started. Furthermore the 
diameter and length of the pipe in the 3D simulations was 0.05 m and 3.0 m, respectively. 

The simulation settings were similar as for the Benjamin bubble case, except for the time step and 
the discretization scheme used for the momentum. The time step was 0.0001 s and for the momentum 
either the first order upwind scheme or the second order upwind scheme was used. 
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Figure 5.4: Boundary and initial conditions for the; (a) 2D axisymmetric Dumitrescu bubble, (b) 3D Du­
mitrescu bubble (blue is liquid and red is gas). 
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Chapter 6 

Simulation results for the Benjamin 
bubble 

In this chapter, the simulation results for the Benjamin bubble wil l be given. First, the results of the 
inviscid two-dimensional flow are given. Then, the results for the effect of viscosity and surface tension 
are presented. Finally, the results of the inviscid three-dimensional flow will be given followed by the 
results of the effect of viscosity and surface tension. 

6.1 Results for the 2D Benjamin bubble 

In order to calculate the bubble velocity, the liquid height and the intersection angle, an iso-surface of 
a = 0.5 was created. Here a is the volume fraction of the gas phase. Since in the VOF method the 
interface is represented by all values between a = 0 and a = 1, the iso-surface of a = 0.5 represents 
an average interface. The results below are presented in dimensionless form and the dimensionless 
parameters are defined hereafter. The bubble velocity is calculated as 

where xi and X2 are the coordinates of the stagnation point at an old ( i i ) and new(i2) time level, 
respectively. The dimensionless bubble velocity is given by 

where g is the gravitational acceleration and H the channel height. The dimensionless liquid height is 
described by 

y* = | . (6.3) 

where y is the coordinate at the interface. The asymptotic liquid height, with reference to figure 
3.1, is found by replacing the y coordinate in equation 6.3 by h. The length of the interface is non­
dimensionalized by 

I* = ^ > (6.4) 

where x is the coordinate on the interface and Xs is the coordinate of the stagnation point, i.e. point 
0 in figure 3.1. The dimensionless time is given by 

(6.5) 

where t is the physical time. The grid size is non-dimensionlized as 

A- = ^ , (6.6) 
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where A j is the grid size and i = x, y or z. The intersection angle, 9, near the stagnation point is 
calculated by 

9 = tan- ( ^ ) , (6.7) 

where and 6y are dehned in figure 6.1. The interface is represented as a dashed line and the points 
0 and 1 correspond with the stagnation point and the numerical point closest to the stagnation point 
on the interface, respectively. 

0 

Figure 6.1: Intersection angle near tiie stagnation point. 

The results for the dimensionless bubble velocity as a function of the dimensionless time for the two 
numerical schemes are given in figure 6.2. The results for the dimensionless liquid height as a function 

f * (-) 

Figure 6.2: Comparison of tiie bubble velocity for the 2D Benjamin bubble. 

of the dimensionless length for t* = 56, is given in figure 6.3. The results for the different grid sizes 
for the first order upwind scheme and for the QUICK scheme are summarized in table 6.1 and 6.2, 
respectively. The values for vl given in table 6.1 and table 6.2 are averaged values. The averaging is 
done between i * = 5 and t* = 10. The reported values in table 6.1 and table 6.2 for h* are averaged 
values along the horizontal part of the interface. The results are also shown in figure 6.4 and in fig­
ure 6.5. In figure 6.4 the dimensionless bubble velocity is plotted versus the dimensionless grid size, 
whereas in figure 6.5 the dimensionless liquid height is plotted versus the dimensionless grid size. The 
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Figure 6.3: Comparison of tiie liquid lieigfit for tfie 2D Benjamin bubble at t* = 56. 

tables 6.1 and 6.2 also contain extrapolated values for a zero grid size. A linear extrapolation, using 
the last two solutions on the finer mesh, is performed. The results on the finest mesh and the values of 
the extrapolation to zero grid size are in excellent agreement with the theoretical result of Benjamin. 
The experimental data in table 6.1 are also in good agreement with the simulation and theoretical 
results. Note that there are no inviscid liquids in real life and that surface tension cannot be neglected 
completely. However the experiments were done under conditions to minimize viscosity and surface 
tension effects. 

Furthermore a striking result is observed in figure 6.4 and in figure 6.5. The first order upwind 
scheme gives always a better result than the QUICK (third order) scheme. No reason could be found 
for this. 

Table 6.1: Dimensionless bubble velocity, liquid height and intersection angle for the 2D Benjamin bubble with 
the first order upwind scheme. 

[A*]x A ; Total number of grid cells h* 9 (degree) 
[0.2] X [0.2] 1500 0.415 0.463 64.8 
[0.1] X [0.1] 6000 0.455 0.475 71.2 

[0.05] X [0.05] 37500 0.476 0.484 74.5 
[0.02] X [0.02] 150000 0.485 0.488 76.9 
[0.01] X [0.01] 600000 0.494 0.495 77.6 

Extrapolation 0.503 0.502 -
Analytical solution Benjamin 0.5 0.5 60 
Experiment Wilkinson (1982) 0.48 0.48 -

Experiment Baines (1985) 0.47 0.47 -
Experiment Gardner and Crow (1970) 0.49 0.48 -

The bubble profile in the neighbourhood of the nose, for the finest grid and for the different numerical 
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Table 6.2: Dimensionless bubble velocity, liquid height and intersection angle for the SD Benjamin bubble with 
the QUICK scheme. 

[A.*]x A ; | Total number of grid cells h* 9 (degree) 
[0.2] X [0.2] 1500 0.395 0.405 72.6 
[0.1] x [0.1] 6000 0.444 0.449 78.1 

[0.05] X [0.05] 37500 0.472 0.474 82.5 
[0.02] X [0.02] 150000 0.483 0.484 83.8 
[0.01] X [0.01] 600000 0.493 0.493 84.3 

Extrapolation 0.503 0.502 -

T ' 1 ' T 1 — ' — I — ' — I — ' — I — ' — r 
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Figure 6.4: Convergence of the numerical solution for the 2D Benjamin bubble: bubble velocity versus grid 
size. 
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Figure 6.5: Convergence ofthe numerical solution for the 2D Benjamin bubble: liquid height versus grid size. 
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schemes, is given for t* = 56 in figure 6.6 together with experimental data and the analytical solution 
of Benjamin. A good agreement between the predicted, experimental and theoretical shape is found. 
Although the numerically obtained overall bubble shape is in good agreement with the theoretical 
profile of Benjamin, the intersection angle 6 is not consistent wi th the theoretical value of 60°: the 
numerical solution gives a significantly larger angle of about 80°. 

The evolution of the interface in time, for the two schemes and the finest grid, is given in figure 
6.7. Clearly, the interface becomes more and more uniform (horizontal) for increasing time. 

Benjamin's analytical shape 

6.0x10^ cells (first order) 

6.0x10^ cells (QUICK) 
A Gardner* Crow (1970) 

Maneri (1970) 

0.2 h 

/ * ( - ) 

Figure 6.6: Comparison of the bubble profile at t* = 56 for the 2D Benjamin bubble. 

Figure 6.7: Evolution of the interface for the 2D Benjamin bubble:(a) QUICK scheme, (b) first order upwind 
scheme. 

6.1,1 Effect of viscosity and surface tension 

In this section the effect of viscosity and surface tension on the bubble rise velocity, liquid height and 
the shape of the bubble wfi l be investigated for the 2D Benjamin bubble. Where possible the results 
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of these simulations will be compared with experimental data. The dimensionless groups that can 
be used for correlating experimental data (White and Beardmore, 1962), when the viscosity of the 
light phase is negligible, are the Froude (Fr) number, the Eötvös (Eo) number and the Morton (Mo) 
number. These dimensionless numbers are defined as 

Eo = (6.9) 
a 

M . ^ i 0 f . (6.10) 

where v is the bubble velocity, g the gravitational acceleration, D the tube diameter (replaced by 
H for channel flow), p the heavy phase density, Ap the density difference, a the surface tension and 
p the heavy phase viscosity. However, i t is also possible to use the Reynolds number (Re), instead 
of the Morton number, as a measure for viscous effects (see Appendix A) . In the experiments, to be 
discussed below, some authors used a dimensionless surface tension parameter E, instead of the Eötvös 
number to account for surface tension effects. This dimensionless surface tension parameter is in fact 
the reciprocal of the Eötvös number and was defined by Gardner and Crow (1970) as 

The experiments were carried out in a channel, and therefore the channel height H was used as the 
characteristic length. Several cases were modeled with varying viscosity and surface tension. Table 6.3 
gives an overview of the simulated cases. For convenience also a characteristic Reynolds number was 
defined as 

\Mo J p ^ ^ 

where \/gH is a characteristic velocity. Equation 6.12 is also referred to as Galileo (Ga) number. The 

Table 6.3: Overview of tiie modeled cases 

Case 
Density 
(kg/m3) (Pa-s) 

cr 
(N/m) 

S 
(xlO-3) Mo 

Re 
(eqn. 6.12) 

Eo 

1 998.2 0.00036 0.0184 3.0 2.53x10-11 99045 1333 

2 998.2 0.00063 0.04 6.5 2.53x10-" 55136 615 
3 998.2 0.00154 0.13 21.2 2.53x10-11 22718 189 
4 998.2 0.00968 1.51 246 2.53x10-11 3613 16 
5 873 0.121 0.02 3.74 3.01x10-1 253 1071 
6 889 0.692 0.02 3.67 3.16x10^ 45 1090 

7 889 1.200 0.02 3.67 2.86x10^ 26 1090 

first case in table 6.3 is similar to the experiment of Wilkinson (1982) in a channel with H = 100 mm. 
The cases 2 to 4 in table 6.3 correspond with the experimental study of Gardner and Crow (1970), 
where they investigated the effect of the surface tension on the bubble velocity and on the bubble profile 
in a channel. Wilkinson and Gardner & Crow used air and water in the experiments and therefore 
the Morton number (or the Reynolds number) was fixed. Gardner & Crow varied the dimensionless 
surface tension parameter E (or the Eötvös number) by varying the height of the channel. As all 
the simulations were done in a channel with H = 5 cm, the viscosity was set accordingly to keep the 
Morton number (or the Reynolds number) similar as in the experiments. The last three cases in table 
6.3 are randomly chosen, but the aim was to investigate the effect of viscosity on the bubble velocity 
and on the bubble profile. I t should be noted that the chosen viscosities of 0.121, 0.692 and 1.2 Pa-s 
are quiet high (i.e. viscosity of water is 0.001 Pa-s), but not unusual for heavy oil production. A 
surface tension of 0.02 N / m was used, which is typical for an air-oil system. 
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Results for the effect of surface tension 

The results for the effect of surface tension on the bubble velocity for the 2D Benjamin bubble are 
given in figure 6.8. Average values are reported in table 6.4. Clearly the surface tension reduces the 
bubble velocity. For low and moderate surface tension the bubble quickly reaches its final velocity 
which remains constant thereafter. However for a high surface tension a fluctuation in the bubble 
velocity is seen. The authors of the study with the experiments in case 1 to 4 also reported a minimum 
dimensionless liquid height h^, which is the minimum liquid height just after the bubble nose, as 
deflned in figure 6.10. 

A comparison between the experimental data of Wilkinson (1982) and of Gardner and Crow (1970) 
and the simulation results for the bubble velocity and for the minimum liquid height is given in figure 
6.9 and figure 6.10, respectively. Good agreement between the simulation results and the experimental 
data is observed for the cases 1 to 3. The simulation results for case 4 are not in agreement with 
the experimental data. The reason for this disagreement is the so-called spurious or parasite currents, 
which occur in regimes dominated by the surface tension. The nature of these parasite currents wil l 
be discussed in more detafl below. 

Figure 6.8: Comparison of the bubble velocity for the 2D Benjamin bubble. 

Table 6.4: Results for the effect of the surface tension on the 2D Benjamin bubble. 

Case 
h* 

Case 
Experiment Simulation Experiment Simulation 

1 0.468 0.459 0.48 0.47 
2 0.44 0.462 0.48 0.475 
3 0.42 0.449 0.45 0.464 
4 0.2 0.349 0.47 0.435 
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Figure 6.9: Comparison of the velocity for the 2D Benjamin bubble. 
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Figure 6.10: Comparison of the minimum liquid height for the 2D Benjamin bubble. 
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Parasite currents 

The spurious or parasite currents in the simulations are vortices which appear in the neighbourhood of 
the interface region despite the absence of any external forcing (Scardovelli and Zaleski, 1999). These 
parasite currents are clearly seen in figure 6.11(a) for the simulations for case 4. The bubble shape, 
figure 6.11(b), is also influenced by these parasite currents, which tend to destroy the interface. The 
parasite currents scale with the surface tension and wi th the viscosity, see Lafaurie et al. (1994). A 
dimensional analysis (Lafaurie et al., 1994) reveals that 

^Tnaxfl 
K (6.13) 

Here Umax is the maximum velocity due to the parasite currents, fj, the viscosity, a the surface tension 
and K is a dimensionless constant without any physical meaning, but characteristic for these parasite 
currents. The magnitude of the parasite currents increases with decreasing viscosity and increasing 
surface tension, see Ubbink (1997) and Lafaurie et al. (1994). Thus parasite currents may be observed 
in flows dominated by the surface tension, as in case 4 of table 6.3. The origin of these spurious currents 

(a) (b) 

Figure 6.11: (a) Plot of velocity vectors, (b) bubble shape close to nose (Case 4 table 6.3). 

lies in the Continuum Surface Force (CSF) model of Brackbill et al. (1992), which is implemented in 
FLUENT to account for the surface tension. The spurious currents are a well-known drawback of the 
VOF method. They originate from the calculation of the interfacial curvature in the CSF model. Since 
the interface is smeared out over several cells the curvature becomes oscillatory and as a consequence 
these spurious currents arise. 

Effect of surface tension on bubble profile 

An increasing surface tension results in a decreasing bubble velocity, as observed in the experiments 
and in the simulations . However, Gardner and Crow (1970) observed that also the bubble profile was 
influenced for 0.02< E <0.105 and large waves were formed downstream of the bubble nose. Case 2 of 
table 6.3 lies in this range and a photograph of the experiments for this case was provided by Gardner 
and Crow. A comparison between the experimentally obtained bubble profile and the simulation is 
given in figure 6.12. Although the bubble velocity and the minimum liquid height (see table 6.4 case 
2) are in fair agreement with the experimental data, the bubble profile is not consistent wi th the 
experiments. A possible reason for this deviation is how the experiments were performed. Gardner 
and Crow (1970) used a sill at the end of the channel to have a better drainage. Furthermore, one end 
of the channel was closed by a flxed wall while the other end was sealed with a flap. Releasing this flap 
allowed the hquid to flow out, but at the same time this allowed air to enter the channel. However by 
releasing the flap a disturbance might be created. Gardner and Crow report that a surface elevation 
was created by releasing the flap, but that i t decayed rapidly. Since the flow, under the conditions 
of case 2, is subcritical according to Gardner and Crow (1970) small disturbances in the form of a 
wave may travel upstream. The sill used for a better drainage may also create some disturbances. 
In order to check the influence of downstream disturbances one additional simulation, corresponding 
with the experimental conditions in the study of Wilkinson (1982), was performed. The results of this 
simulation are discussed below. 
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(a) Experimental profile (Gardner and Crow, 1970) 

(b) Simulation 

Figure 6.12: Comparison of tiie 2D bubble profile for S = 0.0212. 

Effect of downstream disturbances 

The experimental setup of Wilkinson is shown in figure 6.13. Wilkinson used a control weir at the 
outlet of the channel to control the outflow. Except for the weir the experimental setup was the same 
as for case 1 of table 6.3. The height of the weir was iJ/3, where H denotes the height of the channel. 
The weir was modeled as a wall in the simulation. Figure 6.14 compares the bubble profile of the 
simulation with the experimental profile at different time instants. 

J Filling cock 
Air cavity 

Air cock Scaling 

gate 

-^-^^ / / / / / / 
Sharp-creasted 
control weir 

Figure 6.13: Experimental setup for tlie 2D Benjamin bubble (Wilkinson, 1982). 

Clearly, disturbances are created at the outlet that travel upstream in the form of a wave. The qualita­
tive flow behaviour in the simulations is in good agreement with the experiments. The bubble velocity 
in the cases with or without weir is plotted in figure 6.15. The bubble velocity is not influenced by 
the travelling waves, which is in agreement with the observation of Wilkinson. Furthermore, Wilkin­
son observed that the length of the frontal region of the bubble was increasing with time. This fact 
is also seen in the simulation in figure 6.16. A more quantitative comparison is given in table 6.5. 
The simulation results are not only qualitatively, but also quantitatively in good agreement with the 
experiments. These results suggest that the change of the bubble profile for case 2, mentioned in the 
previous section, is likely due to disturbances created at the outlet during the experiments and not 
due to surface tension as presumed by Gardner and Crow (1970). However, i t is clear that high quality 
measurements and well defined boundary conditions in the experiments are required to be able to 
validate a CFD code. 

\ 

Table 6.5: Comparison of simulation results with experimental data for the 2D Benjamin bubble. 

Case K h* 
Case 

Experiment Simulation Experiment Simulation 

without weir 0.468 0.459 0.48 0.47 

with weir 0.46 0.462 0.48 0.472 
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6.1. Results for the 2D Benjamm bubble 6. Simulation results for the Benjamin bubble 

Results for the effect of viscosity 

The effect of viscosity on the bubble velocity of the 2D Benjamin bubble is shown in figure 6.17. The 
cases correspond with the cases given in table 6.3. I t can be seen in figure 6.17 that the bubble velocity 
decreases with increasing viscosity. Furthermore, the bubble velocity decreases in time for all the three 
cases and wil l probably never reach a constant value. Instead the bubble wil l come to standstill after 
a long time. Case 7 of table 6.3 wil l be analyzed here, but the characteristics for the other two cases 
with viscosity are similar. The decrease in bubble velocity can readily be understood, since the energy 
losses, due to boundary friction, increases as the liquid layer beneath the bubble increases in time. 
This is in agreement with a viscous experimental observation of Wilkinson (1982). The bubble profile 
at different time instants for ca.se 7 is shown in figure 6.18. Clearly the liquid layer beneath the bubble 
cannot be regarded as uniform and as a consequence of this the bubble velocity changes. Furthermore, 
as we can see in figure 6.18 the bubble becomes thinner and thinner in time. We can also observe in 
this figure that the liquid drainage close to the bubble nose is incomplete, hence a thin liquid layer 
is observed above the bubble in the neighbourhood of the nose. Note that this is not strange since 
Wilkinson (1982) and other authors also observed this fact in experiments. What seems to be strange 
is the falling droplets, as can be observed in figure 6.18(b). This might be a numerical artifact. 

—'—'—'—'—'—^—'—'—'—'—'—' ' ' ' 
— inviscid & zero surface tension 
— Case 5, table 6.3 

Q 4 _ — Case 6, table 6.3 -
— Case 7, table 6.3 

,1 , I , \ < \ I 1 1 1 1 1 ' 1 ' 1 > 1 
0 50 too 150 200 250 300 350 400 450 

f* (-) 

Figure 6.17: Ejject of viscosity for tlie 2D Benjamin bubble. 

(c) r = 420 

Figure 6.18: Bubble profiles at different time instants for the 2D Benjamin bubble (case 7, table 6.3). 
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6.2 Results for the 3D Benjamin bubble in a pipe 

The results will be presented in dimensionless form. The dimensionless numbers are the same as de­
fined for the two dimensional channel flow, except for the height H which is replaced by the diameter 
D of the pipe. Two mesh types, see figure 5.3, and discretization schemes were investigated. The 
reason for using two mesh types may become clear while discussing the results. 

The results for the bubble velocity for the flrst mesh type with different grid sizes are given in figure 
6.19. The bubble velocity tends to approach the theoretical value of Benjamin (1968) as the grid is 
refined. Furthermore, the bubble reaches very quickly, after t* > 2.5, its final velocity. The results 
for the liquid height are given in figure 6.20. Clearly the interface consist of small waves, but the 
amplitude of these waves becomes smaller when the grid is refined. This suggests that the observed 
waves are of numerical nature, instead of being physical. However a second mesh type, see figure 5.3, 
was used to check the influence on these waves. The waves were also seen on this mesh configuration. 
The results of the first mesh type are summarized in table 6.6 and table 6.7 for the first order and 
second order scheme, respectively. Although the results on the second mesh type were comparable 
with the results on the first mesh type, it was decided to report also those results, see table 6.8. Note 
that the mentioned wavy interface was seen on both mesh types and the mentioned liquid height in 
tables 6.6, 6.7 and 6.8 are average values. In the case of the second mesh type only the QUICK scheme 
was explored. Although the interface is wavy, due to numerical artifact, the average liquid height is 
very close to the analytical value of Benjamin. Further, the tables 6.6, 6.7 and 6.8 contain extrapolated 
values for zero grid size. The difference between these extrapolated values and the analytical values are 
less then 3%. The experimental data given in table 6.6 is also in good agreement with the simulation 
results. However it should be realized that viscosity and surface tension cannot be ignored completely 
in real life experiments. 

Figure 6.19: Comparison ofthe bubble velocity for the 3D Benjamin bubble in a pipe. 

For convenience the results are also shown in figure 6.21(a) and figure 6.21(b), in which the results are 
plotted versus the dimensionless grid size. The grid size was non-dimensionalized as 

A* = . (6.14) 

where D is the diameter of the pipe and n the number of grid cells in the cross-section of the pipe. 
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Benjamin's solution 

1.382xl0'cells (QUICK) 
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• 0 2 4 6 8 10 
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Figure 6.20: Comparison of tiie liquid lieigfit for the 3D Benjamin bubble in a pipe. 

Table 6.6: Dimensionless bubble velocity and liquid height for the 3D Benjamin bubble in a pipe (cubic mesh 
and first order scheme). 

Interval [X] x [Y] x [Z] Total number of grid cells h* 
[4] x [2] x [300] 14400 0.462 0.539 
[8] X [4] X [600] 115200 0.499 0.549 

[10] X [5] X [900] 270000 0.507 0.55 
[12] X [6] X [1200] 518400 0.511 0.5504 
[16] X [8] X [1800] 1382400 0.516 0.5513 

Extrapolation 0.531 0.554 
Analytical solution Benjamin 0.542 0.563 

Experiment Gokcal (2008) 0.5 0.62 
Experiment Hager (1999) 0.6 0.63 

Experiment Zukoski (1966) 0.53 -
Experiment Bendiksen (1984) 0.53 -

Table 6.7: Dimensionless bubble velocity and liquid height for the 3D Benjamin bubble in a pipe (cubic mesh 
and QUICK scheme). 

Interval \X] x [Y] x [Z] Total number of grid cells Vb h* 
[4] X [2] X [300] 14400 0.448 0.504 
[8] X [4] X [600] 115200 0.492 0.532 

[10] X [5] X [900] 270000 0.501 0.537 
[12] X [6] X [1200] 518400 0.507 0.538 
[16] X [8] X [1800] 1382400 0.513 0.542 

Extrapolation 0.531 0.554 
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I 

i 

Table 6.8: Dimensionless bubble velocity and liquid iieigiit for tlie 3D Benjamin bubble in a pipe (hexagonal 
mesh and QUICK scheme). 

Interval [X] x [Y] x [Z] Total number of grid cells Vb h* 
[2] X [1 ] X [300] 9600 0.428 0.485 
[5] X [3] X [500] 110000 0.495 0.532 
[8] X [5] X [750] 432000 0.51 0.543 

[10] X [7] X [900] 864000 0.517 0.546 
Extrapolation 0.541 0.556 
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Figure 6.21: Convergence of the numerical solution for the 3D Benjamin bubble:(a) bubble velocity versus 
grid size , (b) liquid height versus grid size. 
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6.2. Results for the 3D Benjamin bubble in a pipe 6. Simulation results for the Benjamin bubble 

6.2.1 Effect of viscosity and surface tension for the 3D Benjamin bubble 
in a pipe 

In this section the influence of viscosity and surface tension on the bubble velocity wil l be investigated. 
The results of the simulation wiU be compared with the experimental work of Zukoski (1966) and 
Gokcal (2008). Zukoski investigated the effect of viscosity and surface tension in a vertical, horizontal 
and inclined pipe. Gokcal investigated the effect of high viscosity oil on the bubble velocity in a 
horizontal pipe. In presenting the experimental results Zukoski used the Reynolds number (Re), based 
on the bubble velocity, as a measure for viscous effects and he dehned this by 

R e = ^ , (6.15) 

where p and p are the density and viscosity, respectively, of the liquid in which the bubble is propa­
gating, Vb is the bubble velocity and a the tube radius. The parameter that accounts for the surface 
tension was dehned by Zukoski as 

which is the reciprocal of the more commonly used Bond (Bd) or Eötvös (Eo) number. Although the 
dehnition of the Reynolds number is correct for correlating experimental data, i t is not convenient 
for simulation purposes. The reason for this is that the bubble velocity is a result of the simulation 
and is unknown prior to the simulation. Five cases, listed in table 6.9, are simulated to check the 
influence of viscosity and surface tension on the bubble velocity. The first three cases in table 6.9 are 

Table 6.9: Overview of tiie modeled cases for the 3D Benjamin bubble in a pipe 

Case 
Density 
(kg/m3) (Pa-s) 

a 

(N/m) 
E 

(xlO-3) 
Re (eqn. 6.15) 

Experiment 
R e = 

M 
1 998.2 0.00087 0.061 10 9290 40217 

2 998.2 0.00352 0.392 64 1787 9925 

3 998.2 0.0102 1.64 268 205 3412 

4 873 0.121 0.0325 6.07 - 253 

5 889 0.692 0.0325 5.96 - 45 

meant to investigate the effect of the surface tension and correspond with the experimental work of 
Zukoski (1966) in the sense that E is kept the same as in the experiment. Zukoski used different tube 
diameters to infiuence the dimensionless surface tension parameter E. However, in all the simulations 
a 5 cm diameter pipe was used and the surface tension, a, was changed to match the experimental 
S. The experimental Reynolds numbers, based on equation 6.15, are mentioned in table 6.9. I t is not 
possible to keep the Reynolds numbers exactly identical as in the experiments. The reason for this, as 
explained earher, is that the definition of the Reynolds number (eqn. 6.15) contains the bubble velocity, 
which is a result of the simulation itself and unknown in advance. To overcome this problem, it was 
assumed that the simulation wifl reproduce the experimentally obtained dimensionless bubble velocity, 
hence also the Reynolds number. Then, the viscosity was changed accordingly as given in table 6.9. 
In the case that the simulation fails to predict the experimental dimensionless bubble velocity, the 
experimental Reynolds number will differ from the simulated Reynolds number. The last two cases in 
table 6.9 are identical to the experimental investigation of Gokcal (2008) and numerical simulation of 
Andreussi and Bonizzi (2009). I t is evident that in the last two cases the effect of surface tension is 
minimal and that the flow is dominated by viscous forces. 

Results for the effect of surface tension 

The results of the simulations to account for the surface tension effects on the bubble velocity are shown 
in figure 6.22. In the first two cases the bubble reaches, within five dimensionless time units, a constant 
velocity. In contrast to this, in the third case the dimensionless bubble velocity is fluctuating from 
almost zero to 0.5. Note that Zukoski also observed an unsteady propagation rate of the bubble for 
E>0.1, simflar as we found in the third case. Zukoski observed in his experiments that the bubbles did 
not propagate steadily if, owing to surface tension, v^ was lower than about 0.35. The reason for this is 
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tH-) 

Figure 6.22: Simulations for the bubble velocity for the 3D Benjamin bubble in a pipe. 

that the fiow beneath the bubble becomes subcritical (i.e. Fr < 1) for <0.35. This implies that small 
disturbances at the outlet or downstream of the bubble can travel upstream and overtake the bubble 
and therefore no steady flow can be established. For >0.35 the flow is supercritical (i.e. F r > l ) the 
disturbances cannot travel upstream and a steady flow must evolve. Note that for the inviscid case, 
without surface tension, the Froude number was given by equation 3.40 and the associated flow is 
supercritical. A comparison between the experimental data of Zukoski and the simulations is given in 
table 6.10. In the third case an average value for the bubble velocity is reported. I t is clear from table 

Table 6.10: Comparison of the bubble velocity for the 3D Benjamin bubble in a pipe. 

Case 
S 

(x lO-3) 
Re 

Case 
S 

(x lO-3) Experiment Simulation Experiment Simulation 
1 10 0.462 0.494 9290 9934 
2 64 0.36 0.423 1787 2099 
3 268 0.12 0.234 205 399 

6.10, that the dimensionless bubble velocity predicted by FLUENT is somewhat higher in the first two 
cases and almost two times higher in the third case. Thus, the initial assumption that the simulation 
wifl reproduce the experimental dimensionless bubble velocity is not satisfied and hence the simulation 
Reynolds number is somewhat higher. However, the differences between the simulated dimensionless 
bubble velocities and the experiments is not due to the differences in the Reynolds numbers. This 
conclusion is based on the observation of Zukoski, who found that for Re>200 the viscous effects 
were negligible. Since, in all the cases Re>200 it is unlikely that viscous effects play a role. Instead 
differences in the bubble velocity in the three cases are solely due to the effect of surface tension. The 
reason for the large difference in the third case is the presence of the parasite currents. As explained 
earlier this parasite currents appear in flows dominated by the surface tension, as in case 3 of table 
6.9. The velocity vectors are plotted in figure 6.23(a) and again vortices are seen at the interface. The 
explanation for the difference between the simulation and the experiment for the first two cases in 
table 6.10 is less obvious, but the results may be improved by using a finer mesh. 
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Figure 6.23: (a) Plot of velocity vectors, (b) bubble shape close to nose (Case 3 table 6.9). 

Results for the effect of viscosity 

The results for the bubble velocity as a function of the length for the cases 4 and 5 are given in hgure 
6.24, together wi th the simulation results of Andreussi and Bonizzi (2009). The bubble velocity versus 
the dimensionless time together with the experimental data is given in figure 6.25. Clearly, the bubble 
velocity decreases in time for the two viscous cases, while the velocity in the inviscid case reaches a 
constant value. This means that the velocity measured by Gokcal (2008) should be considered as the 
bubble velocity at a given distance and time after starting the experiment. The reported values in 
figure 6.25 was measured by Gokcal (2008) after three seconds, which corresponds with t* = 42. The 
bubble velocity reported by Gokcal for case 5 is in good agreement with the simulation, while the 
agreement for case 4 is less satisfactory. The reason for this disagreement is not known. However it 
should be noted that the bubble velocity decreases in time, and hence the actual time of measurements 
and the initial (boundary) conditions to initiate the bubble motion should be the same to be able to 
make a meaningful comparison. 

0.8 I ^ \ ^ \ ^ \ ^ \ r 

nl ^ \ ^ \ ^ \ ^ \ ^ \ ^ \ ^ \ ^ I 
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/ * ( - ) 

Figure 6.24: Bubble velocity along the length of the pipe for the 3D Benjamin bubble. 
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Figure 6.25: Bubble velocity versus dimensionless time for tfie SD Benjamin bubble in a pipe. 

For the 3D pipe, a similar behaviour of the bubble as in the viscous 2D Benjamin bubble flow is 
observed. The bubble profile at different time instants for case 5 is shown in figure 6.26. The liquid 
layer beneath the bubble is again not uniform. As explained earlier the energy losses due to pipe wall 
friction increases as the liquid layer beneath the bubble (or equivalently the bubble length) increases. 
Consequently, the bubble velocity drops along the length of the pipe. Again a thin liquid layer remains 
at the roof of the pipe close to the bubble nose. This was also observed in the simulations of Andreussi 
and Bonizzi (2009) and of Ben-Mansour et al. (2010). 

(c) t* = 84 

Figure 6.26: Bubble profiles at different time instants for the SD Benjamin bubble (case 5, table 6.9). 
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6.3 Conclusions 

The so-cahed Benjamin bubble, which is a Single inhnitely long bubble that moves into a stagnant 
liquid in a horizontal pipe, was modeled with the VOF model in FLUENT. The two-dimensional flow, 
which is in fact a channel flow, has an analytical solution for the case of negligible viscosity and neg­
ligible surface tension. The dimensionless bubble velocity and hquid height should be 0.5, as derived 
by Benjamin (1968). The simulation with the finest mesh produced a dimensionless velocity of 0.494, 
while the corresponding scaled liquid height was 0.495 in agreement with theory and experiments. 
Three-dimensional simulations, which is in fact pipe flow, were also performed. This 3D problem has 
an analytical solution for the bubble velocity and liquid height when the effects of viscosity and sur­
face tension can be neglected. The dimensionless bubble velocity and liquid height, which is uniform 
beneath the bubble, should be 0.542 and 0.563, respectively. The simulation for the finest grid gives a 
value of 0.516 and 0.55 for the dimensionless bubble velocity and liquid height, respectively. Extrapo­
lation of the results to a zero grid size gives 0.531 and 0.554 for the bubble velocity and liquid height, 
respectively. These values are within 3% of the theoretical results by Benjamin. 

Furthermore, the effects of surface tension and viscosity on both 2D and 3D Benjamin bubble were 
investigated. For low and moderate surface tension the simulation results are in good agreement with 
experimental data from the literature. However, for large surface tension the so-called parasite cur­
rents are observed. These parasite currents are vortices in the neighbourhood of the interface despite 
the absence of any external forces. These parasite currents arise as a consequence of local change 
in curvature, which is inevitable within the CSF model as implemented in FLUENT. Due to these 
parasite currents the bubble velocity deviates from the experiments and the interface becomes ripply. 

Simulations with high viscosities reveal that the bubble velocity decreases with increasing viscosity. 
Moreover, the bubble velocity decreases along the length of the pipe. The physical explanation for this 
is that the frictional losses increases as the liquid layer beneath the bubble increases. Furthermore, 
the liquid layer beneath the bubble is not uniform as it is in the inviscid case. Comparison of the sim­
ulation results with experimental data is not straightforward, since most of the authors measured only 
one velocity at a certain distance and time after the experiment was started. Hence it is difficult to 
compare the simulation results, in which the bubble velocity decreases continuously along the length 
of the pipe, wi th a single velocity measurement at a certain distance and time in the experiments. 
However, the reduction of bubble velocity along the length of the pipe was also observed in a single 
experiment by Wflkinson (1982), but no details were given in that study. 
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Chapter 7 

Simulation results for the 
Dumitrescu or Taylor bubble 

In this chapter the simulation results of the Dumitrescu bubble will be given. First, the results for 
the 2D axisymmetric Dumitrescu bubble wil l be given followed by the results for the 3D Dumitrescu 
bubble. The Dumitrescu bubble in a vertical pipe, with circular cross-section, can be regarded as 
axisymmetric. Thus it might seem meaningless to do timeconsurning 3D simulations. However, the 
results to be discussed below show some interesting phenomena that are not captured in the 2D 
axisymmetric simulations. The results will be compared with the (semi)analytical solution as discussed 
in chapter 4 and with experimental data. A l l results wil l be presentend in dimensionless form and the 
dehnitions, if not given here, can be found in chapter 4. 

7.1 2D Axisymmetric Dumitrescu bubble 

In this section the simulation results for the 2D axisymmetric Dumitrescu bubble wil l be given. First 
the simulation results for the inviscid case with zero surface tension will be presented. After this the 
results of one simulation with small viscosity and surface tension will be given as well. 

7.1.1 Bubble velocity 

The bubble velocity is calculated by tracking the position of the nose in time. This is done, as for the 
Benjamin bubble case, by creating an iso-surface with a = 0.5, where a denotes the volume fraction 
of the gas phase. Then the coordinates of the nose of the bubble were tracked in time to calculate the 
(average) bubble velocity. The dimensionless bubble velocity is given by 

The radius of the curvature at the bubble nose is calculated by the following formula 

1 + 

af2 
(7.2) 

where rj and C, are dimensionless coordinates as dehned in chapter 4. The rise velocity of the Dimutrescu 
bubble for the different grid sizes and schemes is given in hgure 7.1. The shape of the bubble is com­
pared with the theoretical shape of Dumitrescu in hgure 7.2. The average values for the bubble velocity 
and the radius of curvature, together with experimental data and analytical solutions, are given in ta­
ble 7.1 and table 7.2. A graphical representation of the results can be seen in hgure 7.3, where the 
hnal bubble velocity is plotted versus the dimensionless grid size. 
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Figure 7.1: Comparison of bubble velocity for the 2D axisymmetric Dumitrescu bubble (inviscid and zero 
surface tension). 
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Figure 7.2: Comparison of 2D axisymmetric bubble shape (inviscid and zero surface tension). 
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Figure 7.3: Bubble velocity versus dimensionless grid size for the 2D axisymmetric Dumitrescu bubble (inviscid 
and zero surface tension). 

Table 7.1: Bubble velocity and radius of curvature for the 2D axisymmetric Dumitrescu bubble (first order 
upwind scheme). 

[ A * ] x A ; Total number of grid cells K g/D 
[0.1] X [0.1] 3000 0.465 0.17 

[0.05] X [0.05] 12000 0.452 0.22 
[0.02] X [0.02] 75000 0.485 0.1 

Analytical solution Dumitrescu (1943) 0.352 0.75 
Approximate solution Davies and Taylor (1950) 0.328 -

Experiment Dumitrescu (1943) 0.346 0.75 
Experiment White and Beardmore (1962) 0.345 -

Experiment Zukoski (1966) 0.34 -

Table 7.2: Bubble velocity and radius of curvature for the 2D axisymmetric Dumitrescu bubble (second order 
upwind scheme). 

[ A : ] X A* Total number of grid cells vt g/D 
[0.1] X [0.1] 3000 0.409 0.56 

[0.05] X [0.05] 12000 0.397 0.63 
[0.02] X [0.02] 75000 0.427 0.25 
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Clearly, the simulation results dó not agree with the theoretical result of Dumitrescu (1943) and Davies 
and Taylor (1950). The difference in bubble velocity at the finest grid for both schemes is more than 
20 percent. I t is remarkable that the results on the coarser grids relative to the finest grid are in better 
agreement (10 percent difference) with the theoretical solution, as can be seen in figure 7.3. Note 
that the agreement between the theoretical result of Dumitrescu and the experimental data is not just 
coincidence, since Dumitrescu used, as explained in chapter 4, experimental facts to solve the problem. 
However, in real experiments there wi l l always be a small effect of viscosity and surface tension. 
A possible reason for the discrepancies between the simulation results and the theoretical solution of 
Dumitrescu is the existence of multiple solutions to the inviscid problem. To the best of our knownedge, 
only one paper by Mao and Dukler (1990) reports the existence of multiple solutions to the problem. 
However multiplicity is also described in papers on vertical channel flows, see Birkhoff and Carter 
(1957), Garabedian (1957), Collins (1965), Vanden-Broeck (1984a), Vanden-Broeck (1984b), Couët 
et al. (1986) and Daripa (2000). In the same paper Mao and Dukler gives a criterion for selecting the 
physically observable (experimental) velocity from the infinite many solutions. The criterion is based 
on the fact that for any nonzero surface tension, no matter how small, the bubble must have a spherical 
shape in the immediate vicinity of the nose vertex. Consequently, the gradient of the curvature should 
be zero at the nose and this was used by Mao and Dukler (1990) as a criterion for obtaining the 
physically realistic velocity. The additional requirement of zero gradient of the curvature near the nose 
is only satisfied at one rise velocity. This selected rise velocity turns out to be in excellent agreement 
with the experiments. This suggests that the surface tension is responsible for obtaining the physical 
solution. Therefore one simulation was done with a small viscosity and surface tension. The results 
for this simulation can be found in the next section. 

7.1.2 Effect of surface tension 

To check the effect of a small (but finite) surface tension a simulation with an Eötvös number (Eo) 
of 200 and a Morton number (Mo) of 1.6x10"", corresponding with an experiment of White and 
Beardmore (1962), was performed. Under these conditions both viscous and surface forces are smafl. 
The dimensionless numbers Eo and Mo are dehned by equation 6.9 and by equation 6.10, respectively. 
The simulations for these parameters were done on all the three grids with a second order scheme. 
Results for the bubble velocity are given in hgure 7.4 and the resulting bubble shape is given in 
figure 7.5. The average values of the final bubble velocity and the experimental result of White and 
Beardmore (1962) are given in table 7.3. 

Table 7.3: Comparison of tiie bubble velocity for tiie 2D axisymmetric Dumitrescu bubble (second order upwind 
scheme). 

[A*]x A ; Total number of grid cells Eo Mo < 
[0.1] X [0.1] 3000 200 1.6x10^" 0.345 

[0.05] X [0.05] 12000 200 1.6x10"" 0.359 
[0.02] X [0.02] 75000 200 1.6x10"" 0.344 
Experiment White and Beardmore (1962) 200 1.6x10"" 0.345 

Although a peculiar behaviour is seen in hgure 7.4 for 3< t* <6, the final bubble velocity for afl 
the three grids is in good agreement with the theoretical result of Dumitrescu and the experiment of 
White and Beardmore (1962). As we would expect, since the bubble velocity and shape are related, 
the bubble shape for all the grids are also in good agreement with the theoretical shape. The problem 
now is to decide upon which of the three solutions is most accurate, since all the three are in good 
agreement with theory and experiment. Since no peculiarity is seen on the finest mesh one can say, 
with a reasonable confidence, that the solution on the hnest mesh is most accurate. The conclusion 
that can be drawn from this simulation is that the statement by Mao and Dukler (1990), that a small 
surface tension is required for obtaining the physically observed bubble velocity, seems to be correct. 
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Figure 7.5: Comparison of tfie bubble sfiape for tfie 2D axisymmetric Dumitrescu bubble (Eo = 200, Mo = 
1.6x10-"). 
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7.2 3D Dumitrescu bubble 

In addition to the 2D axisymmetric simulations a few 3D simulations were done. In this section the 
simulation results for these 3D simulations will be given. First the results of the inviscid and zero 
surface tension case will be presented. After this results of one simulation, in which surface tension 
and viscosity were included, wih be given. Simulation results wil l be compared with theoretical and 
experimental data. 

7.2.1 Bubble velocity 

In contrast to the 2D axisymmetric simulations, the 3D simulations were started with a pre-dehned 
bubble shape. A User Dehned Function (UDF), see Appendix B for an example, was used to initialize 
the bubble shape. The initial shape was dehned by an arbitrarily chosen cosine function with a period 
of 2D, where D denotes the pipe diameter. The length of the bubble (amplitude of the cosine function) 
was randomly chosen, but since the mesh consists of hexahedral cells a certain length was required 
to obtain a curved bubble nose. However, the initial shape of the bubble is not important: after the 
simulation is started, the bubble quickly adopts an equilibrium shape of a Dumitrescu bubble. The 
initial shape of the bubble is shown in hgure 7.6(a). The bubble velocity is calculated by hrst creating 
a plane at the centre of the pipe, as shown in hgure 7.6(b). Subsequently an iso-surface of 0.5 for the 
volume fraction was created on this plane and the position of the bubble nose was tracked in time to 
calculate the velocity. 

(a) (b) 

Figure 7.6: (a) Initial bubble shape, (b) Symmetry plane 

The grids used for the simulations are similar to the grids for the 3D simulations of the Benjamin bub­
ble, see table 6.6. The diameter and the length of the pipe were, 0.05 m and 3.0 m, respectively. The 
hnest mesh contained 518400 grid cells and the simulation was run until t* = 17.5. The computational 
time for this simulation, wi th four processors (Dual Core A M D Opteron'^'^'Processor 275), was in the 
order of two weeks. 

The dimensionless bubble velocity versus the dimensionless time is plotted in hgure 7.7. Clearly, 
the results of the 3D simulations are different from the 2D axisymmetric simulations. The bubble 
velocity in the 2D axisymmetric case reaches a constant value after a short time and is independent 
of the bubble length. However, in the 3D simulations the bubble becomes unstable when the length 
of the bubble is more than QD, where D denotes the diameter of the pipe. Only the results for the 
hnest grid wil l be analyzed here, but the instability is seen for all the grid sizes when the bubble 
exceeds a certain length. This length is QD for the hnest mesh. The bubble velocity is initially more 
or less constant and close to the theoretical velocity of Dumitrescu, but after some time {t* > 6) the 
bubble becomes unstable and the velocity starts to increase. The instabUity appears at the tail of 
the bubble and causes the bubble to become asymmetric. This instability and asymmetry is clearly 
seen in hgure 7.8 for t* > 6. The increase in the bubble velocity can readily be understood, since 
an asymmetric bubble rises faster than a symmetric bubble, see Zukoski (1966) and Mao and Dukler 
(1990). Of course this instability and asymmetry is not captured in the 2D axisymmetric simulations. 
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and hence the bubble velocity is not altered for any bubble lengths. The question remains whether 
the instability is due to a numerical artifact or due to the physics. This instability is also observed in 
experiments, see Gibson (1913) and Nigmatulin (2001), for very large, but hnite bubbles. However, 
an inhnitely large bubble, which is experimentally obtained by emptying a vertical tube, is simulated. 
In this case the liquid him around the Dumitrescu bubble becomes thinner and thinner as the bubble 
becomes larger. I t is evident that at a certain bubble length, the him becomes such thin that the 
numerical mesh may become inappropriate and further grid rehnement would be required. However, 
the instabilities are seen on all the three grid sizes approximately after t* = 6 and for a bubble length 
of 6D. This suggests that grid rehnement has no or minor influence, showing that the phenomena 
may have a physical nature. This problem should be investigated further to draw a more dehnite 
conclusion on the nature of the instabilities. One way of doing this is by rehning the grid further, but 
the computational time wil l then increase considerably. 

Analytical result Dumitrescu 

— 5.184.ilo'cells (second order) 

'* (-) 

Figure 7.7: Comparison of bubble velocity for the 3D Dumitrescu bubble (inviscid and zero surface tension). 

(a) f = (b) f = (c) f = (d) t* = (e) t* = (f) t* = 
2.8 4.2 5.6 7.0 11.9 14.0 

Figure 7.8: 3D bubble surface (iso-surface of 0.5) at different time instants for the finest grid (inviscid and 
zero surface tension). 
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7.2.2 Effect of viscosity and surface tension 

In order to investigate the effect viscosity and surface tension on the bubble velocity a simulation, 
corresponding with the PIV measurements of Bugg and Saad (2002), was performed. Bugg and Saad 
(2002) provide detailed information on the velocity held around a Dumitrescu or Taylor bubble. This 
kind of experimental work is of major importance, due to the high quality and accuracy, for the vah­
dation of CFD codes. Similar experiments were done by Polonsky et al. (1999), van Hout et al. (2002), 
Nogueira et al. (2006a) and Nogueira et al. (2006b). A l l these authors used PIV to measure the velocity 
held around a Dumitrescu bubble. Some measurement results by Bugg and Saad (2002) are given in 
hgure 7.9. 

The dimensionless bubble velocity versus the dimensionless time t* is plotted in hgure 7.10. The 
average hnal dimensionless bubble velocity is compared with the experiment in table 7.4. Note that 
Bugg and Saad (2002) used a 0.019 m diameter tube, while the simulation was done with a 0.05 m 
diameter tube. Hence, the material properties were changed accordingly to keep Eo and Mo constant. 
The Reynolds number based on the bubble velocity is also given in table 7.4. The simulation bubble 
rise velocity is in good agreement with the experiment. The velocity held around the Dumitrescu bub-

Table 7.4: Comparison of tlie dimensionless bubble velocity for tlie Dumitrescu bubble. 

Experiment/simulation 
D 

(m) (kgV) (Pa-s) (N/m) 
Eo Mo v; Re 

Exp. Bugg and Saad (2002) 0.019 911 0.084 0.0328 100 0.015 0.303 27 
Simulation 0.05 911 0.359 0.227 100 0.015 0.292 26 

ble will be compared in the upcoming hgures. The results of the simulation and the PIV measurements 
for the axial velocity along the tube axis above the bubble are given in hgure 7.11. The axial velocity 
Vz is nondimensionlized by the bubble rise velocity Vi,. The simulation results are in good agreement 
with the PIV measurements. Figure 7.12 compares the axial and radial velocity, at a position z/D = 
-0.111. This position corresponds with location A in hgure 7.9, just above the bubble nose. Again, 
the simulation results are in good agreement with the PIV measurements. Figure 7.13 compares the 
axial and radial velocity, at a position z/D = 0.504. This position corresponds with location B in 
figure 7.9, just below the bubble nose. At this point the him is stih developing and has a small radial 
velocity component. Good agreement between the experimental data and the simulation is seen. Be­
yond the section B in hgure 7.9 a fully developed him is formed. The radial component of the velocity 
in this fully developed him is zero and the axial velocity profile does not change anymore. Figure 
7.14 compares the axial velocity prohle in the fully developed falling him. No PIV measurements are 
available close to the interface, due to excessive laser light reflection from the bubble surface. In hgure 
7.14 also the theoretical result of Brown (1965) is given. Brown modihed the potential flow theory of 
Dumitrescu in the him region assuming laminar flow in the him. By applying a material balance (see 
Appendix C) Brown obtained the following expression for the velocity distribution in the him 

(R-S)^, R 
:r-^ln — (7.3) 

Here is the axial velocity component, p the liquid density, g the gravity parameter, p the liquid 
viscosity, R the tube radius and S the him thickness. Brown also provided a general correlation for 
the him thickness 

, -i + Vï+mR ^^^^^ 

and the bubble velocity 

where 

N 

N 

- 1 + ^/l + 2NR 

'14.5 

(7.5) 

(7.6) 
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Figure 7.9: PIV measurements of tiie velocity field close to the bubble nose in a 19 mm diameter tube, Eo = 
100 and Mo = 0.015 (Bugg and Saad, 2002). 

The shape of the bubble at different time instants is given in hgure 7.15. I t can be seen that the bubble 
shape does not change in time after i t has adopted an equilibrium shape. The initial bubble shape 
and the shape given by Dumitrescu for the potential flow is also depicted in hgure 7.15. The shape 
of the bubble, close to the nose, is similar to the shape for the potential flow. This is in agreement 
with the observation of Brown (1965). The analysis of Brown (eqn. 7.4) predicts a dimensionless him 
thickness {5/R) of 0.249, while the simulation predicts a dimensionless film thickness of 0.25. Equation 
7.5 predicts a dimensionless bubble velocity (vb/s/gD) of 0.304, while the simulation predicts 0.292. 
In conclusion the simulation results are in good agreement with the PIV measurements of Bugg and 
Saad (2002) and with the theoretical resufi of Brown (1965). 

0.4 

0.35 
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0.25 

r 0.2 
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"o 2 4 6 8 io i2 14 
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Figure 7.10: Dimensionless bubble rise velocity (Eo = 100 and Mo = 0.015). 
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z/D (-) 

Figure 7.11: Comparison of simulation results with PIV measurements for the axial velocity along the tube 
axis above the Dumitrescu bubble. 

r/R (-) 

Figure 7.12: Comparison of simulation results with PIV measurements for the axial and radial components 
of velocity at z/D = -0.111 for the Dumitrescu bubble. This location corresponds to section A in figure 7.9. 
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r/R (-) 

Figure 7.13: Comparison of simulation results with PIV measurements for the axial and radial components 
of velocity at z/D = 0.504 for the Dumitrescu bubble. This location corresponds to section B in figure 7.9. 

-2.5 h 

.3 I > \ > \ I \ < \ , I 
0.75 0.8 0.85 0.9 0.95 1 

r/R (-) 

Figure 7.14: Comparison of .simulation results with PIV measurements and analytical solution of Brown 
(1965) for the axial component of velocity in the fully developed falling film for the Dumitrescu bubble. 
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Figure 7.15: Siiape of tiie bubble at different time instants. 

7.3 Conclusions 

A single large bubble, i.e. Dumitrescu or Taylor bubble, which rises in a stagnant liquid in a vertical 
pipe was modeled in FLUENT with the VOF model. This problem has an analytical solution for the 
bubble velocity when the viscosity and surface tension are neglected. The theoretical dimensionless 
bubble velocity {vb/\/gD) should be 0.352. The problem can be regarded as axisymmetric, but both 
2D axisymmetric and 3D simulations were performed. The bubble velocity of the 2D axisymmetric 
simulations on three different grid sizes, wi th zero viscosity and surface tension, does not agree with 
the theoretical resuh. The deviation in the bubble velocity is more than 20 percent. The reason for 
this is most likely due to the existence of multiple solutions to the inviscid problem. Mao and Dukler 
(1990) showed that muhiple solutions exist and claimed that the surface tension is responsible for ob­
taining the physical relevant solution. Hence, a simulation with a small viscosity and surface tension 
was performed. The dimensionless bubble velocity for this simulation was 0.344, which is in good 
agreement with the experimental value of 0.345 and also in very close agreement with the theoretical 
value of 0.352. Thus the prosposition by Mao and Dukler (1990) that the surface tension is possibly 
responsible for the physically observable solution, seems to be correct. 

In addition to the 2D axisymmetric simulations also 3D simulations, with zero viscosity and sur­
face tension, were performed. The 3D simulations show that the bubble becomes unstable when the 
bubble exceeds a certain length. Instabüities at the tail of the bubble were observed for a bubble 
length of approximately 6D or larger. Due to this instability the bubble becomes asymmetric and the 
bubble velocity starts to increase. This shows the importance of 3D simulations, since the instability 
and asymmetry of the bubble are not captured in the 2D axisymmetric simulations. One extra 3D 
simulation, with viscosity and surface tension, corresponding with the experimental work of Bugg and 
Saad (2002) was done. The results of this simulation, axial and radial velocities at several locations, 
are in good agreement with the PIV measurements of Bugg and Saad (2002). 

72 



Chapter 8 

Conclusions and Recommendations 

In this chapter the study is concluded and recommendations are given for future research. Furthermore, 
the intention of this chapter is to clarify the questions (or goals) stated in the introductory chapter. 

8.1 Conclusions 

Two benchmark simulations, namely the Benjamin bubble and the Dumitrescu or Taylor bubble, were 
performed in order to investigate the reliability of a selected commercial CFD code FLUENT for mod­
eling multiphase hows in pipelines. The Benjamin bubble is a single large bubble that moves into 
a stagnant liquid in a horizontal pipe. The Taylor bubble is a single large bubble, which rises in a 
stagnant liquid in a vertical pipe. Both bubbles are important in the modeling of slug how, which is 
a common flow regime in pipelines found in the oil and gas industry. The Volume Of Fluid (VOF) 
muhiphase model was used to model the two phases. Both 2D and 3D simulations were performed for 
several grid sizes in order to assure grid independence. The two benchmark cases have an analytical 
solution when the effect of viscosity and the effect of surface tension are neglected. In addition to 
these special conditions, simulations were performed to investigate the effects of viscosity and surface 
tension on the bubble motion both in horizontal and vertical pipes. 

The following conclusions can be drawn for the Benjamin bubble: 

• The dimensionless bubble velocity obtained in the simulations for the finest grid size for the 2D 
Benjamin bubble (inviscid) was Vb/\/gH = 0.494, which is in good agreement with the analyt­
ical value of 0.5. The corresponding dimensionless height was y/H = 0.495, which compares 
favourably with the analytical value of 0.5. 

• The dimensionless bubble velocity obtained in the simulations for the hnest grid size for the 3D 
Benjamin bubble (inviscid) was Vb/^/gD = 0.516, which is in good agreement with the analytical 
value 0.542. The corresponding dimensionless height was y/D = 0.551, which is also in good 
agreement with the analytical value of 0.563. Extrapolation of the FLUENT resuhs to a zero grid 
size gives a value of 0.531 and 0.554 for the dimensionless bubble velocity and the dimensionless 
liquid height, respectively. 

• Simulations were performed to investigate the effect of the surface tension on the Benjamin 
bubble. The results were compared with available experimental data. The simulations show 
that the VOF model accurately models flow with low or moderate surface tension, but parasite 
currents appear in flows dominated by the surface tension. These parasite currents are vortices in 
the neighbourhood of the interface, which tend to destroy the interface. These parasite currents 
originate from the calculation of the interface curvature in the Continuum Surface Force (CSF) 
model, which is implemented in FLUENT to model the surface tension. 

• Simulations to account for the effect of viscosity on the Benjamin bubble reveal that the bubble 
velocity decreases as the viscosity increases, as one would expect. However, the simulations show 
that the bubble velocity also decreases wi th increasing time when the bubble moves along the 
length of the pipe. The reason for this is that the frictional losses increase when the length of 
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the hquid layer beneath the bubble (or equivalently the bubble length) increases. Extrapolation 
of the results show that the bubble comes to a stand-still after long time (shorter wi th increasing 
viscosity). 

• In contrast to the expectation, the hrst-order upwind scheme in FLUENT gives more accurate 
solutions than the QUICK scheme. 

The Taylor bubble has an axisymmetric nature, but both 2D axisymmetric and 3D simulations were 
performed. The following conclusions can be drawn for the Dumitrescu or Taylor bubble; 

• The simulation results for the bubble velocity for the inviscid, zero surface tension and 2D 
axisymmetric how are not in agreement with the analytical solution. The analytical dimensionless 
bubble velocity is vt/\/gD = 0.352, but the simulations give a value of approximately 0.4 for the 
coarse mesh and 0.43 for the hnest mesh. The difference is more than 20 percent and the reason 
for this is most likely the existence of muhiple solutions for the inviscid equations. Existence 
of muhiple solutions is also reported in the hterature by Mao and Dukler (1990), in which the 
authors claim surface tension to be responsible for obtaining the physically relevant solution. 

• Simulations including a small surface tension in the 2D axisymmetric flow gave a dimensionless 
bubble velocity olvt/\/gD = 0.344, which is in good agreement with the analytical value of 0.352. 
This result supports the claim that the surface tension is most likely responsible for obtaining 
the physically relevant solution. 

• In addition to the 2D axisymmetric simulations 3D simulations were performed. These 3D 
simulations show that the bubble becomes unstable at a certain bubble length. In the present 
simulations this critical length was about 6D, where D is the diameter o f the pipe. Furthermore 
the instability cause the bubble to become asymmetric and as a consequence the bubble velocity 
increases. Obviously, the instability and the asymmetry are not seen in the 2D axisymmetric 
simulations. 

• The simulation results for a case with viscosity and surface tension are in good agreement with 
the highly detailed experimental data of Bugg and Saad (2002). 

We can conclude that the selected CFD code FLUENT can accurately model the Benjamin bubble 
and the Taylor bubble with the VOF model. Problems may arise when the how is dominated by the 
surface tension. I t is not the inability of the VOF model to model such flows, but the existence of 
parasite currents when the flow is dominated by surface forces. The origin of these parasite currents 
lies in the determination of the interfacial curvature in the Continuum Surface Force (CSF) model 
implemented in FLUENT to include the surface tension. 

More simulations are required to be able to verify the work of De Schepper et al. (2008) who carried 
out CFD simulations for various fully developed flow regimes in a horizontal pipe. They claimed that 
the current commercial CFD codes are able to predict the transhion between the different muhiphase 
flow regimes in a horizontal pipe. No transitions between flow regimes were modeled in our study, but 
FLUENT can at least accurately model the simplihed form of slug flow, namely the Benjamin bubble 
or the Taylor bubble. 
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8.2 Recommendations 

The fohowing recommendations for future research emanate from the present study: 

• Investigate the effect of high viscosity on the Benjamin bubble experimentally with well dehned 
conditions. Since the bubble velocity decreases along the length of the pipe it is important 
to measure the velocity prohle along the pipe, rather than measuring the velocity at a single 
position. This would make the comparison with CFD simulations easier. 

• Investigate the nature of the instability observed in the 3D simulations for the Taylor bubble. I t 
is good to know whether the instabilities are due to a numerical artifact or due to the physics. 

• Investigate the effect of high viscosity on the Taylor bubble. The bubble velocity decreases along 
the pipe for the Benjamin bubble. I t should be investigated whether this is also the case for the 
Taylor bubble. 

• Investigate the so-called plane Taylor bubble. This is a Taylor bubble that rises between two 
vertical planes, rather than in a pipe. I t is shown in the literature that this problem has multiple 
theoretical solutions if the inviscid equations are considered. This would shine more light on the 
multiplicity of solutions in the "normal" Taylor bubble problem. 

• Carry out CFD simulations for the transition between the different flow regimes and compare 
the results with the one-dimensional models or with experimental data. This wih allow to give 
a more dehnite judgment on the claim of De Schepper et al. (2008). In addition carry out CFD 
simulations for the various fully developed flow regimes in horizontal and vertical pipe how, which 
should include: stratihed flow, slug flow, annular flow, and bubbly flow. 

• Carry out benchmarking simulations for the Benjamin bubble and for the Dumitrescu/Taylor 
bubble with other commonly used commercial CFD codes, such as CFX, STAR-CD and Open-
FOAM. 
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Appendix A 

Dimensional analysis for rise of a 
Dumitrescu or Taylor bubble 

Dimensional analysis is a very powerful tool in physics that can be used to reduce the number of 
variables required to describe a problem. Moreover, dimensional analysis is used to simplify and 
understand a complex problem without solving the problem in advance. In general the bubble rise 
velocity w may depend on the following quantities (White and Beardmore, 1962) 

w{Ap,p,ij,,pg,a,g,R,Lb). (A.1) 

Here p is the density of the fluid in which the bubble rises, Ap the density difference between the 
phases, p the viscosity of the liquid phase, pg the viscosity of the gas bubble, a the surface tension, 
g the gravity parameter, R the pipe radius and L the length of the bubble. The problem has nine 
variables and three fundamental dimensions. By applying the 7r-theorem of Buckingham (Buckingham, 
1914) six (9-3) nondimensional parameters are obtained. Equation A.1 can also be written as 

'W 

The units of all the variables are 

[pnApf[pr[pg]i[armRnLb]\ 

m' kg 
a 

\ kg' p 
' kg' 

7 kg' kg' 
UJ 

'm' 

s . TV? ms ms s2 m m 

Balancing the units in equation A.3 gives 

m : 1 = -

s : - 1 = -

kg:0 

- 3 a - 3/? - 7 - C + + 5 + TT, 

- 7 - C - 2a; - 2r], 

a + P + -j + C+Lo. 

(A.2) 

(A.3) 

(A.4a) 

(A.4b) 

(A.4c) 

Now three independent variables should be chosen to express the other variables in terms of the 
chosen variables. I t is important to choose the right variables in order to obtain physically meaningful 
dimensionless numbers. The chosen independent variables were Ap, g and R. Therefore, equation 
A.4b and A.4c gives 

1 1 1 
V (A.5a) 

a = —p — 7 — ( — w. 

Substituting equation A.5a and A.5b in equation A.4a gives 

;c 1 3 3 . ^ 
0 = 7 C — 2uj — -K. 

2 2 ' 2^ 

Inserting these three variables into equation A.2 results 

w = [Ap] - /3 -7 -C-w [RY-

(A.5b) 

(A.5c) 

(A.6) 
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A. Dimensional analysis for rise of a Dumitrescu or Taylor bubble 

By collecting similar terms the following six dimensionless numbers are obtained 

n4 = f (A.10) 

n . . J^ .F , (A.12) 

I t is possible to construct different dimensionless groups by combining two or more dimensionless 
groups. For example, 

UiUe pwR 
and 

Bg = ^ = ^ = Re (A.15) 
J-I3 M 

The Eötvös number (Eo) and the R-oude number (Fr) represent the ratio of surface forces over gravity 
forces and the ratio of inertial forces over gravity forces, respectively. While, the Morton number (Mo) 
is dehned as the ratio of viscous forces over surface forces and the Reynolds number(Re) is dehned as 
the ratio of inertia forces over viscous forces. In the case of gas bubbles rising through a liquid, the 
density and the viscosity of the gas are much smaller than the values for the liquid. Hence, Ap/p is 
close to unity and the viscosity ratio Pg/p is of minor importance. Furthermore, it is shown that for 
cylindrical bubbles the rise velocity is practically independent of the length of the bubble (White and 
Beardmore, 1962). In this case dimensional analysis wih lead to three groups, namely the Eo, Fr and 
the Mo group. In the special case of inviscid how and zero surface tension, the bubble rise velocity w 
depends only on three parameters (Dumitrescu, 1943) as 

w = Xffg^R'' (A.16) 

where A is a dimensionless constant. In this case the 7r-theorem of Buckingham wih lead to one (4-3) 
dimensional group. The physical units of all the variables are 

[m/s] = [i^g/m^Y [m/s^]" [m]" . (A.17) 

Balancing similar units 
[m] : 1 = 

[ s ] : - l = -2g ) (1=1 (A.18) 
[kg] : 0 = 

2 

and substituting the result of equation A.18 in equation A.16 gives 

w = Xp°g'/^R'/\ (A.19) 

Hence, w is proportional to the square root of the radius and the gravity 

w = A v ^ . (A.20) 

The dimensionless number that can be obtained from equation A.20 is the R-oude number dehned by 
equation A.12. I t is remarkable that the rise velocity of the bubble does not depend on the density of 
the fluid in which it rises. 
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Appendix B 

User Defined Function 

The User Dehned Function (UDF) used to patch an initial bubble shape for the Dumitrescu bubble 
is given below. Details of the DEFINEJNIT function can be found in the UDF manual of FLUENT. 
Note that the amplitude of the cosine function was arbitrarily chosen, but it should be large enough to 
have a curved bubble nose. Further, the diameter of the pipe (0.05 m) appears in the cosine function. 

# i n c l u d e " u d f . h " 
# i n c l u d e " sg_mphase . h" 
# d e f i n e P I 3.141592654 

/ * UDF f o r i n i t i a l i z i n g the bubble shape 

D E F I N E . I N I T ( m y _ i n i t _ f u n c t i o n , domain) 

{ 
Thread * t ; 
Thread * * p t ; 
Thread ** st ; 
c e l l . t c ; 
Domain *pDomain = DOMAIN^UBJDOiVIAIN(domain ,P_PHASE); 
Domain *sDomain = DO]VMIM^UBJDOMAIN(domain , S_PHASE); 

r e a l xc [NDJNfD] , y , x , z ; 

mp_thread_loop_c ( t , domain , p t ) 

i f (FLUID_THREAD_P(t)) 

{ 
Thread * t p = p t [P_PHASE]; 

b e g i n _ c _ l o o p (c , t ) 

{ 
C _ C E N T R O I D ( x c , c , t ) ; 
x = x c [ 0 ] ; 
y = x c [ 1 ] ; 
z = x c [ 2 ] ; 

i f ( z < 0.005 + 0 . 0 5 * c o s ( P I * s q r t ( x * x + y * y ) / 0 . 0 5 ) ) 
C . V O F ( c , t p ) = 1; 
else 

C _ V O F ( c , t p ) = 0; 

} 
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B. User Defined Function 

end_c_loop (c , t ) 

} 

mp_thread_loop_c ( t , domain , s t ) 

i f (FLUID.THREADJ>( t ) ) 

{ 
Tl i read *sp = st [S_PHASE] ; 

b e g i n - C . l o o p (c , t ) 

{ 

C _ C E N T R O I D ( x c , c , t ) ; 
x = x c ( 0 ] ; 
y = x c [ 1 ] ; 
z = x c [ 2 ] ; 

i f ( z < 0.005 + 0 . 0 5 * c o s ( P I * s q r t ( x * x + y * y ) / 0 . 0 5 ) ) 

C . V O F ( c , s p ) = 0; 

else 

C . V O F ( c , s p ) = 1; 

} 

end_c_loop (c , t ) 
} 

} 
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Appendix C 

Analysis of the falling film around a 
Dumitrescu bubble 

The analysis of Brown (1965) for a single large gas bubble that rises in a stagnant and viscous liquid 
wih be discussed below. Consider hgure C.1. The analysis of Brown applies to the fully developed him 
region, which is marked with a circle in hgure C.1. Moreover, the flow in the him is assumed to be 
laminar. The density and the viscosity of the gas can be neglected. In addition the effect of surface 
tension is assumed to be small. These assumptions imply that there is no pressure gradient along the 
film and that the interfacial shear stress Tj is equal to zero. The material balance for the flow of the 

Figure C.1: Equilibrium film (Brown, 1965). 

liquid in the film region relative to the bubble is given as 

VbB' = {vb + VF){R^ -Rl) 

or 

VbRl = VF{R' - Rl) 

(C.1) 

(C.2) 

where Vb is the bubble rise velocity, Vf is the average liquid velocity in the him. The force balance on 
an element in the film is given by 

''^'"-^ P9 = 0. (C.3) 

r2 - R2 

r dr 

Integration of equation C.3 from Rc to R gives 

r r = pg-

For laminar flow of a Newtonian liquid the shear stress can be expressed as 

T = p dr 

(C.4) 

(C.5) 
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C. Analysis of the falling him around a Dumitrescu bubble 

Equation C.5 is substituted into equation C.4 and upon integration tlie velocity distribution in the 
him is obtained 

^ M V 4 2 r 

The average velocity of the liquid in the him can be obtained by integrating the velocity distribution 
across the him as 

R 

R, 

Inserting equation C.6 into equation C.7 and integrating gives 
pg ( Rj Rc ml R^\ 

Brown (1965) expressed equation C.8 in terms of the relative him thickness, ( = 5/R and obtained 

Substitution of equation C.9 into equation C.2 gives the relation between the bubble velocity and the 
him thickness 

Neglecting all terms of order greater than fourth gives 

Furthermore Brown (1965) observed in his experiments that the frontal radius of the bubble, when 
the coordinates were normalized with R^ was the same for the investigated liquids. Subsequently he 
showed that the bubble velocity correlates well by the equation 

Vb = QAms/gRc. (C.12) 

Note that equation C.12 is a modihcation to the potential How result of Dumitrescu (1943). Equation 
C.12 and equation C.11 both relate the film thickness and the bubble velocity. Hence eliminating the 
bubble velocity between these two equations gives the expression 7.4, in the main text, for the film 
thickness. Substituting this expression back into equation C.12 gives the bubble velocity equation 7.5 
in the main text. 
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P224 Multiphase Flow 

Exercise with Shell Flow Explorer 

Note: conditions are the same as in the On-line Exercise number 3. 

Oil and gas are transported in a pipehne with a diameter of 0.2 m and a hydraulic wall 
roughness of 0.06 mm. The pipeline can assumed to be fu l ly horizontal. A t pressures 
of 50, 30, 20 and 10 bara the superficial gas velocities are 1.4, 2.4, 3.6 and 7.2 m/s 
and the gas densities are 35, 21, 14 and 7 kg/rn^, respectively. The gas viscosity is 
0.02 mPa.s. The liquid flows at a superficial velocity of 0.8 m/s and has a density of 
800 kg/m? and a viscosity of 10 mPa.s. The surface tension is 0.025 N/m and the 
gravitational acceleration is g = 9.8 m/s^. Effects of condensation and evaporation can 
be neglected here. Also the acceleration contribution to the pressure gradient can be 
neglected. 

a) Use the SEE tool to calculate the f low regime, pressure drop, and hquid 
holdup for the 4 system pressures. Fi l l in the numbers in the table below. 

b) Compare SFE results with predictions using the homogeneous model and the 
Lockhart-Martinelh model. Explain the differences. Which model is most 
accurate and why? 

c) The 'manual' calculations of on-line exercise 3b assumed stratified f low for 
10 bara pressure, which gave a liquid holdup fraction of 0.4 and a pressure 
drop of 111 Pa/m. Compare this with the SFE results. What happens i f the 
superficial gas velocity is shghtly increased f rom 7.2 m/s to 8 m/s. Explain the 
behaviour. 

d) Assume that the hquid volume fraction is fixed. Place the pipe with 10 bara 
system pressure under an upward inclination of 10 deg. What w i l l happen with 
the liquid accumulation i f the production rate is gradually decreased further 
and further. Same question for 10 deg downward inclination. 

Homogeneous model LM model Shell Flow Explorer 

p 

bara 

liq. holdup 
alpha,. 

minus dp/dx 

Pa/m 

liq. holdup 

alphaL 

minus dp/dx 

Pa/m 

Flow regime liq. holdup 

alphaL 

minus dp/dx 

Pa/m 

50 0.36 88 0.54 247 
30 0.25 119 0.49 317 
20 0.18 155 0.46 381 
10 0.10 258 0.42 527 
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