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Evaluating Transatlantic Flight Emissions and
Inefficiencies Using Space-Based ADS-B Data

Junzi Sun∗, Aidana Tassanbi∗, Piotrek Obojski†, Philip Plantholt†

∗Delft University of Technology †Spire Global, Inc.

Abstract—The increasing demand for global air travel has
intensified the urgency to mitigate aviation’s carbon emissions.
Continuous monitoring of aircraft fuel efficiency and emissions
has become an important task in aviation. One of the main
challenges has been the lack of surveillance data for flights
across oceans, specifically in the North Atlantic region, where
numerous flights occur. Recently, space-based ADS-B data has
been made available by new space companies like Spire Global,
enabling flight surveillance for aircraft in remote regions, includ-
ing transatlantic flights. In this study, we utilize several months
of space-based ADS-B data from Spire, combined with ground-
based ADS-B data from the OpenSky Network, to demonstrate
increased accuracy in flight trajectory and emission estimations.
We introduce the use of wind data to improve emission quantifi-
cation. Utilizing these accurate trajectories, we quantify excess
emissions by comparing actual flight paths with their optimal
alternatives. Our approach provides a robust methodology that
benefits future policy for carbon emissions assessments.
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I. INTRODUCTION

The aviation sector is a significant contributor to global
carbon emissions. Although advancements are being made in
design optimization and the search for alternative fuels [1], op-
erational improvements remain an important aspect to address
for greener flights. Over the past year, research has focused
on accurately assessing flight missions and discovering the
potential for mitigation through operational optimizations.

Several research studies focus on assessing aviation emis-
sions at an aggregated level to build emission inventories [2],
[3], [4]. However, these studies often have to rely on lower-
fidelity models that sometimes cannot capture variations in
flights caused by different flight paths and speed profiles. They
also fail to incorporate meteorological conditions into their
analysis.

Since 2020, we have initiated a series of research studies
that aim at accurately reconstructing flight trajectories using
ADS-B data. This approach allows for the estimation of
emissions from individual flight trajectories. In [5], the openly
available ADS-B data gathered by the OpenSky network
is used for the first time at the European level to assess
aviation emissions. The study establishes a workflow that
integrates large-scale open surveillance data with the open
aircraft emission model, OpenAP, which can be effectively
deployed to assess flight emissions. Currently, it supports 35
most common aircraft types and an additional 23 aircraft types
through a similar aircraft type.

In a subsequent study [6], we propose a new methodology
to interpolate long-range flights, where parts of the trajectories
are not covered by ADS-B. This is particularly valuable for
transatlantic flights, where only the beginning and end of a
flight can be observed by ground-based ADS-B receivers from
the OpenSky network. We also investigate the effect of wind
and propose its integration with ADS-B trajectory data to
provide a more accurate estimation of emissions.

Over the years, research into modeling and quantifying
flight inefficiencies, along with the development of associated
performance metrics, has gained momentum. The study [7],
[8] suggests evaluating flight efficiencies by comparing the
actual trajectory with an optimal reference trajectory. The
study [9] employs aircraft surveillance data to generate cost-
based indicators that quantify flight inefficiencies.

In our study [10], we explore ways to study inefficiencies
in terms of excess emissions using open data and models. A
fully open flight trajectory optimizer, TOP, is developed as
an extension of OpenAP. These inefficiencies are identified
as the differences between emissions from actual and optimal
flight trajectories. One limitation is that wind conditions are
not considered in the emission analysis.

There are three main challenges in flight emission analysis
and inefficiency assessment: 1) limited coverage from ground-
based ADS-B receivers; 2) the complexity of incorporating
wind data into emission estimates; and 3) the computational
speed required for optimal trajectory generation.

With the advent of space-based ADS-B, this paper focuses
on merging space-based and ground-based aircraft surveillance
data to offer a more accurate method for assessing flight
emissions. We use a large dataset of transatlantic flights to
demonstrate this approach. Additionally, we address uncer-
tainties arising from the absence and availability of wind
measurements. Specifically, we incorporate wind data from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5 dataset to quantify the impact of upper-level
wind components on emission analysis. Beyond quantifying
carbon emissions, we also study and quantify flight inefficien-
cies by comparing them to fuel-optimal 4D trajectories that
consider wind conditions.

The structure of the paper is organized as follows: Section II
addresses the data sources of this study. Section III explains
the process of data fusion to generate complete transatlantic
trajectories. Section IV provides insights into how we perform
the emission estimations with the enhanced flight trajectories



and wind information. Section V explores the possibility of
using the same trajectory data to study the emission ineffi-
ciencies. Finally, Sections VI and VII describe the discussions,
recommendations, and conclusion of this study.

II. DATA SOURCES

The data for this study originates from multiple sources, in-
cluding space-based ADS-B information from Spire satellites,
ground-based ADS-B information from the OpenSky Network,
and reanalysis weather data from ECMWF ERA5. In total, we
employ three months of data covering each March from 2020
to 2022 for the analysis presented in this paper.

Spire’s Low Earth Multi-Use Receiver (LEMUR) satellites
provide a network of space-based receivers that capture ADS-
B data over remote areas, such as North Atlantic flight
corridors. However, these satellites’ low Earth orbit yields dy-
namic coverage. To augment this dataset, we retrieve historical
information from the OpenSky Network, enhancing coverage
at lower altitudes.

Fig. 1 illustrates OpenSky receiver coverage within the
area of interest, which primarily encompasses continental and
coastal regions. Atlantic coverage is notably absent, except
around some islands outfitted with ADS-B receivers.

Figure 1. ADS-B coverage of OpenSky Network on 10 March 2021.

Fig. 2 depicts ADS-B coverage from Spire satellites. Here, 
we observe more extensive coverage over both land and ocean. 
However, the data appears less dense due to the satellites’ rapid 
orbits and slower data downlink rates, compared to ground 
communications.

When we amalgamate both data sources, Fig. 3 reveals 
significantly e nhanced a ircraft s urveillance c overage. This 
improved dataset enables high-resolution tracking of continen-
tal flights a nd c omprehensive m onitoring o f o ceanic flights. 
Utilizing a specialized data fusion algorithm, we construct 
complete flight trajectories.

Wind data from ECMWF is extensively employed in various 
studies. For data visualization completeness, we also present 
the 1-degree grid ERA5 wind coverage in Fig. 4. For subse-
quent calculations in this study, a grid with 0.25 degrees of 
resolution is utilized.

Figure. 2. ADS-B coverage from Spire satellites on 10 March 2021.

Figure 3. Combined ADS-B coverage from OpenSky and Spire on 10 
March 2021.

Figure 4. ERA5 wind coverage

For emission estimations involving wind, we employ a 
regular grid interpolator to determine wind components from 
the nearest wind grid point. This approach offers higher 
computational efficiency t han i nterpolation m ethods while 
delivering comparable results.

In the excess emission analysis, we use wind data to 
generate optimal trajectories. The wind information is modeled 
by a second-order polynomial, enabling its use for gradient
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calculations in the non-linear optimal control optimizer, TOP,
from OpenAP. In this context, a distinct polynomial model is
constructed for each flight based on wind data near the great
circle paths.

III. DATA FUSION

The primary objective of this study is to identify an efficient
method for merging sparse space-based ADS-B data with
dense ground-based ADS-B data. Subsequently, we aim to
provide filtered and properly resampled complete trajectories
for subsequent analysis.

Utilizing the traffic library [11], we initially segment the
trajectory data into multiple flights. This set comprises all
flights within the region of interest, including intracontinental
flights.

To pinpoint flights that have traversed the Atlantic Ocean,
we first identify flights detected at latitudes between -45
degrees and -25 degrees, as well as at a maximum altitude of
approximately 30,000 ft. This region is depicted in Fig. 5. We
extract all relevant transponder codes (ICAO 24-bit addresses)
from this region and subsequently filter out all corresponding
flight data from the combined dataset, as shown in Fig. 6.

Figure 5. Filtering cross-Atlantic flights

Figure 6. All cross-Atlantic flights

Lastly, to focus on flights f rom t he b eginning o f t he climb 
to the end of the descent, we ensure that only those with data

below an altitude of 6000 ft are included. These trajectories
are then filtered and resampled to a 15-second resolution for
subsequent research steps. A final set of one-day trajectories
is presented in Fig. 7, comprising approximately 200 complete
flights, which only counts for the flights between the east coast
of North America and Western Europe.

Figure 7. Full trajectories of around 200 cross-Atlantic flights, constructed 
based on the combined Spire and OpenSky data on 10 March 2021. The 
green trajectories represent eastbound flights, and the orange trajectories 
represent westbound flights.

These complete flights from all days in the dataset serve as 
the basis for subsequent emissions analysis and investigation 
into flight emission inefficiencies.

IV. EMISSION ANALYSIS

The emission analysis primarily builds upon the methodol-
ogy proposed in our previous work [6]. However, unlike in [6], 
where emissions are estimated solely based on ground speed, 
this study integrates weather data with ADS-B data for a more 
accurate wind approximation.

Utilizing the ground speed and approximated true airspeed, 
we estimate flight e missions u sing t he O penAP m odel [12]. 
This model incorporates multiple variables, such as aircraft 
mass, aircraft types, altitude, and speed, to estimate fuel 
consumption and emissions for each flight.

As the take-off masses of the aircraft are not available from 
the surveillance data, we treat them as an interval during the 
emission quantification p rocess. F or e ach fl ight, th e initial 
mass is considered to fall between 70% and 90% of the 
maximum take-off weight for the corresponding aircraft type.

For each flight, t wo s ets o f t otal e missions a re calculated. 
The first s et i s b ased o n m easured g round s peed f rom ADS-
B data and varying initial mass. The second set employs the 
approximated true airspeed, as previously mentioned.

Fig. 8 displays an example of an eastbound flight, with 
trajectory segments from Spire and OpenSky data labeled in 
red and blue, respectively. The direction and magnitude of the 
wind along the trajectory are also indicated.

A. Examples of Eastbound and Westbound Flights
Fig. 9 presents an eastbound example flight from KMIA

to LFPG. Tailwinds along the trajectory can be observed.
The lower plot displays CO2 emission rates along the trajec-
tory, with confidence intervals representing uncertainty due to
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Figure 8. An example flight trajectory combining both space-based and 
ground-based ADS-B data

varying take-off weight assumptions. In this case, emissions 
estimated under true airspeed conditions are lower than those 
based on ground speed. Total emissions are approximately 
290 and 310 tons, respectively. The difference of 20 tons 
constitutes around 6.5% of the total emissions for this flight, 
which is quite a significant error.

In Fig. 10, a westbound example flight i s d epicted. Here, 
emissions estimated with wind are higher than those based 
on ground speed. The difference is minimal at the flight’s 
commencement due to calm winds but increases later due to 
stronger headwinds.

B. Aggregated Emission Analysis

A comprehensive analysis is conducted on a dataset of
21,674 complete flight trajectories, comprising 10,940 east-
bound and 10,734 westbound flights. This dataset spans flights
from March in three consecutive years, from 2020 to 2022, of-
fering a robust evaluation of emission estimations considering
the influence of wind on ADS-B trajectories.

Fig. 11 illustrates the difference in CO2 emission estimates
when using ground speed and true airspeed. Negative values
indicate that emissions estimated with airspeed are lower than
those with ground speed. For eastward flights, average CO2

emissions can be overestimated by about 10 tons, with a
variation of up to 1.5 tons depending on the assumed take-
off mass. This constitutes approximately 5% of the total

Figure 9. An eastbound flight from KMIA to LFPG

Figure 10. A westbound flight from EDDK to KSDF
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carbon emissions per flight. Conversely, for westbound flights,
emissions tend to be underestimated by around 6 tons.

Figure 11. Differences in CO2 calculations when considering wind. The 
results include all flights for the months of March from 2020 to 2022.

This figure a lso r eveals t he o verall i mpact o f different 
take-off mass assumptions on emission estimates. Higher 
assumptions generally yield smaller wind-induced differences. 
However, the significance o f o ver- a nd u nderestimation for 
eastward and westward flights r emains c onsistent a cross dif-
ferent mass assumptions.

V. INEFFICIENCY ANALYSIS

The inefficiency analysis focuses on examining excess car-
bon emissions caused by suboptimality in all flights. For 
each flown t rajectory, w e c onstruct i ts o ptimal alternative 
considering a 3D wind field a nd t he t ime a t t he s tart of 
the flight. I nefficiency is  th en qu antified as the  additional 
emissions from the optimal trajectory compared to the flown 
one.

To handle uncertainties in take-off mass, we adopt a strategy 
similar to previous emissions analyses for mass initialization. 
Optimal trajectories are constructed using different initial 
masses ranging from 70% to 90% of the maximum take-off 
mass.

When wind is factored in, optimizing a complete trajectory, 
which includes climb, cruise, and descent, becomes noticeably 
slower than without wind consideration. To simplify the com-
putational effort, only the optimal cruise trajectory, assuming

the same origin and destination, is generated for comparison
in this study. We note this is a simplification made to improve
the computation speed for optimal trajectory generation.

A. Generation of Optimal Trajectory

The optimal trajectory is generated using the open-source
OpenAP.top trajectory optimizer [13]. This optimizer employs
a non-linear optimal control approach to create the best
trajectory based on various cost functions, including fuel, cost
index, and other climate metrics. In this study, we opt for the
fuel-efficient objective, which is synonymous with emission
efficiency.

Formulating the optimal flight trajectory is treated as an
optimal control problem, where the ideal combination of
parameters such as position, speed, and altitude must be
determined at each time interval.

Considering a simplified point-mass aircraft performance
model, the following flight states are involved in this control
process:

xt = [xt, yt, ht,mt] (1)

where (x, y), h, and m are the position, altitude, and mass of
the aircraft. The control states include:

ut = [Mt, vst, ψt] (2)

where M , vs, and ψ are Mach number, vertical rate, and
heading of the aircraft. The dynamic, or evolution, of the
states, can be defined by the following ordinary differential
equations:

dx

dt
= vt sin(ψt) cos(γt) + wx,t (3)

dy

dt
= vt cos(ψt) cos(γt) + wy,t (4)

dh

dt
= vst (5)

dm

dt
= −fft(mt, vt, ht) (6)

where vt is the true airspeed, γt is the flight path angle, and fft

is the fuel flow model that is dependent on the aircraft mass,
speed, and altitude. wx,t and wy,t are wind speed components.
True airspeed is calculated based on Mach number (M ) and
altitude (h) assuming the international standard atmosphere
(ISA) conditions:

γt = tan−1

(
vst
vt

)
(7)

vt =Mta0
√
ΓRTht

(8)

where a0 is the speed of sound constant at sea level, Γ is the
ratio of specific heat, R is the gas constant for air, and Th is
the air temperature at altitude h.

Knowing states, controls, and the dynamics of an optimal
control system, the next task is to formulate the problem in

5



a way that can be solved by non-linear programming that
consists of a set of constraints and an objective function. The
generalized form of an objective function (J) can be expressed
as:

J(x,u, t0, tf ) := E(t0, tf ,xt0 ,xtf )+

∫ tf

t0

L(xt,ut, t)dt (9)

where E(·) and L(·) are the Mayer and Lagrangian terms.
They correspond to the cost at the endpoints, as well as the
cost along the trajectory, respectively. The minimization of the
objective function is:

min
xt,ut

J(x,u, t0, tf ); t0 < t < tf (10)

is subject to the following constraints:

ẋt = f(xt,ut) (11)
h(xt,ut) < 0 (12)

e(t0, tf ,xt0 ,ut0 ,xtf ,utf ) = 0 (13)

where ẋ is the first-order dynamic constraint represented
by the earlier system equations, h(·) represents the path
constraints, and e(·) represents the conditions at endpoints.

The solution for such an optimal control problem can be
computed numerically. The direct collocation approach from
OpenAP.top discretizes the continuous problem into segments
that consist of a predefined number of time intervals. Within
each interval, the states are approximated using polynomials
at collocation points in each time interval.

Finally, a numeric solver is adopted to derive the optimal
control states (and related flight states). The numerical solver
is an open-source library called CasADi [14], a symbolic
framework for numeric optimization.

Fig. 12 illustrates a real-world flight alongside its optimal
trajectories under varying initial mass assumptions.

B. Aggregated Inefficiency Analysis

The analysis of inefficiencies demands elevated computa-
tional resources due to the necessity of generating optimal tra-
jectories. Optimizations for all trajectories over a three-month
period, taking into account wind conditions and varying initial
masses, are performed on a high-performance computing node
and completed in approximately 30 hours.

Fig. 13 presents the reasonable differences between the
optimal and estimated emissions from flown trajectories with
corresponding initial masses. In this figure, it is evident that
there is a wide range of emission inefficiencies, which can
reach up to 25 tons of CO2 per flight. Different initial mass
assumptions exert only a minor influence on the overall
emission inefficiency distribution.

However, a noteworthy number of optimal trajectories result
in greater emissions than their estimated counterparts from
actual flights. This has significant implications for trajectory
optimization, which will be discussed in the subsequent sec-
tion.

Figure 12. An example of an actual trajectory (in red) and its 
optimal alternatives, depending on the initial mass

Figure 13. The discrepancy in CO2 emissions between optimal 
trajectories and estimations from actual flights. Note that there are also 
negative values, visualized in Fig. 14.

VI. DISCUSSIONS

A. Space-based ADS-B Data

The first part of this paper focuses on maximizing the utility
of space-based ADS-B data for trajectory-based analyses.
Although our primary focus is on emission analysis, this
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data can also be employed for other research areas, such as
efficiency and safety in oceanic airspace.

Space-based surveillance systems offer unparalleled cover-
age across global airspaces. However, they come with limita-
tions. Compared to ground-based ADS-B data, the data rate
from space-based systems is significantly lower due to the
limited communication downlink capacity of satellites. Addi-
tionally, ADS-B observations are often provided in patches,
influenced by the dynamic orbits of the satellites.

As more satellites are deployed and integrated with ground-
based ADS-B systems, these challenges are likely to be
mitigated. In this study, we have developed a workflow using
the traffic library to aggregate data, segment flight legs, filter
outliers, and resample trajectories at a fine resolution for in-
depth analyses.

B. Complete Trajectories

It is important to note that our analysis does not encompass
all transatlantic flights. We have restricted our focus to flights
departing and arriving at the east coast of North America and
Europe, based on a bounding box defined between longitudes
of -90 and 15 degrees.

The construction of full trajectories excludes flights that lack
observations below 6000 ft during either ascent or descent,
regardless of whether the data is ground or space-based. In
cases where a flight is not observed by Spire satellites, it is
reconstructed using only OpenSky data. The oceanic segment
is interpolated based on available data at the beginning and
end of the flight.

C. Emissions Variability Due to Wind Components

This study aims to analyze emission variations in east-
bound and westbound flights considering wind components.
Eastbound flights generally exhibit reduced emissions due
to tailwinds (up to around -20%), while westbound flights
tend to show increased emissions (up to around 10%) due
to headwinds.

We have performed this analysis considering different initial
masses, revealing that the variability in total emissions is
consistent across mass assumptions. In this study, ERA5 wind
data was used, although wind data from Spire satellites could
further enhance the analysis.

D. Policy Implications

The rationale behind this study is to provide a more accurate
method for quantifying individual flight emissions, aiming to
inform future policy decisions. The incorporation of space-
based ADS-B and upper wind components into emission
models could substantially influence policy recommendations
and corporate carbon emission strategies.

E. Limitation of Emission Inefficiency Analysis

The emission inefficiency in this paper should be considered
as a preliminary study, as we do observe anomalies in the
final results. Previously, we have shown the statistics of
inefficiencies in Figure 13, which is observed in the majority
of the flights.

However, there are still a significant number of flights that
seem to produce more emissions with the optimal trajectory,
shown as white bars in Figure 14. For different flights, the
appearance of negative inefficiency can also depend on the
initial mass. But at the aggregated level, the trends are similar.

Figure 14. The emission inefficiencies estimated based on optimal 
trajectories. Negative inefficiencies are shown as white bars.

With some investigation, it seems the main issue lies with 
the optimization process when the wind field i s considered. 
In the following Figure 15, the negative inefficiencies are 
mostly related to the westward flights. It is very likely that the 
optimizer failed to find m ore a ggressive d iverted fl ight paths 
with very strong headwinds, which occur due to jet streams.

Figure 15. The inefficiencies grouped by the flight directions. The 
generation of optimal trajectories for westward flights seems to have failed.

To cope with this issue, we will need to revisit the con-
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struction and constraints in the TOP optimizer from OpenAP.
Currently, only a 3D wind field can be considered in the
optimization; for transatlantic flights, a 4D wind field should
ideally be considered in future updates.

Another potential issue caused by the wind is the regularized
polynomial model assumed for the wind field. The regularized
model may not be able to capture the large changes in the wind
due to jet streams, which in turn provides an overly smoothed
wind model. As a realistic wind gradient is important for
generating the optimal trajectory, this would also affect the
optimizer and produce non-optimal flight trajectories.

The final approach to improving the convergence of the op-
timizer could consider the actual trajectory, instead of the great
circle, as the initial condition. This is because many westbound
trajectories have been observed to have large differences from
the great circle due to strong headwinds. The change in the
initial condition could potentially reduce the number of locally
optimal trajectories.

VII. CONCLUSION

In this research, we bridged a gap in aviation emissions
assessment by integrating both ground-based and space-based
ADS-B data, specifically targeting transatlantic flights. This
was complemented by the inclusion of ECMWF ERA5 wind
data, introducing a new layer of precision into the emission
estimation process. The overarching aim was to address gaps
in surveillance coverage and meteorological data integration,
thereby offering a more robust methodology for quantifying
aviation emissions.

Our primary finding indicates that the fusion of ground-
based and space-based ADS-B data significantly enhances the
trajectories, and thus improves emissions estimates. This is
particularly crucial for policymaking and corporate decision-
making in aviation, as it provides a reliable foundation for
emissions evaluations, especially for future aviation carbon
offset programs. The study also reveals that wind conditions,
often overlooked, play a critical role in emissions variability. In
particular, eastbound flights generally show reduced emissions
estimations with wind information, while westbound flights
experience elevated emissions due to the influence of head-
winds.

While the study brings several advancements, it also un-
covers certain limitations, notably in the optimization algo-
rithm for westward flights. Addressing these constraints and
considering the integration of 4D wind data are essentially
the next steps. Subsequent research may focus on refining
optimization algorithms. In this study, we do not consider
the North Atlantic Organized Track System that ensures the
safety of flight operations. Thus, this optimal trajectory-based
inefficiency approach shows only the theoretical emission
inefficiency.

In summary, this research stands as a milestone in emissions
assessment using open models and ADS-B data, offering a

robust, comprehensive methodology at individual flight levels
with potential policy implications on emission assessment.
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