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Local Rational Modeling for Identification Beyond
the Nyquist Frequency: Applied to a

Prototype Wafer Stage
Max van Haren , Lennart Blanken , Koen Classens, Graduate Student Member, IEEE,

and Tom Oomen , Senior Member, IEEE

Abstract—Fast-rate models are essential for control design,
specifically to address intersample behavior. The aim of this
article is to develop a frequency-domain nonparametric identi-
fication technique to estimate fast-rate models of systems that
have relevant dynamics and allow for actuation above the
Nyquist frequency of a slow-rate output. Examples of such
systems include vision-in-the-loop systems. Through local rational
models over multiple frequency bands, aliased components are
effectively disentangled, particularly for lightly damped systems.
The developed technique accurately determines nonparametric
fast-rate models of systems with slow-rate outputs, all within a
single identification experiment. Finally, the effectiveness of the
technique is demonstrated through experiments conducted on a
prototype wafer stage used for semiconductor manufacturing.

Index Terms—Frequency response function (FRF), local para-
metric modeling, sampled-data systems, system identification.

I. INTRODUCTION

SYSTEMS with actuation and dynamics that exceed the
Nyquist frequency of the sensor are becoming increas-

ingly more common in mechatronics, for example, in hard disk
drives [1] and vision-in-the-loop applications [2]. The Nyquist-
Shannon sampling theorem [3] implies that these systems are
usually identified up to the Nyquist frequency of the slow-rate
sensor. On the other hand, fast-rate models are often necessary
for tasks such as control design [1], [4] and intersample
performance assessment [5].
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Control design and performance evaluation of linear
time-invariant (LTI) systems often involves nonparametric
frequency-domain models. Techniques such as manual loop-
shaping [6] and parametric system identification [7] commonly
employ nonparametric frequency-domain models. Frequency
response functions (FRFs) are widely used to represent sys-
tems in the frequency domain, and can be directly identified
from input-output data, providing a quick, accurate, and cost-
effective solution [8], [9]. Furthermore, FRFs enable the direct
analysis of stability, performance, and robustness [10].

Recently, more advanced FRF identification techniques have
been developed, including the local polynomial modeling
(LPM) method [11], [12]. LPM essentially estimates a polyno-
mial model in a local frequency window using a least-squares
cost function. LPM generally leads to an improved estimate of
the FRF, which is mainly enabled by the concurrent estimation
and suppression of transient contributions. Following the LPM
method, the local rational modeling (LRM) technique has
been developed. Unlike LPM, LRM estimates a rational model
within a local frequency window [13], [14], which is shown to
be more effective for lightly damped resonant dynamics [15].

Irrespective of the identification approach, identifying fast-
rate models using slow-rate outputs is challenging due to
aliasing. Aliasing occurs when a signal is sampled at a rate
that is insufficient to capture the fast-rate dynamics of a
system, preventing the unique recovery of the associated fast-
rate model [16].

Substantial research has been done on the identification of
fast-rate models using slow-rate outputs, with a primary focus
on continuous-time and multirate parametric system identifi-
cation. First, continuous-time system identification identifies
a continuous-time parametric model using input-output data
[17]. These methods typically constrain the input signal, such
as zero-order hold or band-limited signals [18], [19]. Second,
parametric identification of fast-rate models using multirate
data has been developed, including impulse response [20],
ARX [21], [22], and output-error [23] model estimation.
Furthermore, state-space models of multirate systems are
generally identified using the lifting technique [24], [25]. All
these methods focus on parametric models, in addition, require
intersample assumptions on the input signal, and do not take
full advantage of fast-rate inputs, thereby failing to disentangle
aliased components.
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A recent study introduced a novel nonparametric approach
for identifying fast-rate models beyond the Nyquist of a
slow-rate output, where aliased contributions are disentangled
by assuming locally smooth behavior of the FRF [26]. The
resulting method identifies FRFs in a single identification
experiment beyond the Nyquist frequency. However, [26]
models the FRF locally using a finite-order polynomial, which
is not capable of modeling resonant behavior accurately [13].

Although methods for identification beyond the Nyquist
frequency of slow-rate outputs have been developed, there is
a need for an efficient and systematic methodology for single-
experiment FRF identification of fast-rate models, which
disentangles aliased components with broadband input signals.
In this article, fast-rate models are identified with broadband
excitation signals and slow-rate outputs, where, through the
use of local rational models over multiple frequency bands,
aliased components are disentangled from each other. The
use of local models is at the foundation of modern FRF
identification for LTI single-rate systems, such as the LPM and
LRM techniques. In fact, both LPM and LRM for LTI single-
rate systems are recovered as a special case of the developed
framework. The key contributions of this article include the
following.

C1 Formulation of a nonconvex optimization for FRF iden-
tification beyond the Nyquist frequency based on LRM
across multiple frequency bands to disentangle aliased
components.

C2 A solution approach through an appropriately weighted
linear least-squares criterion, which has a closed-form
minimizer. Furthermore, the accuracy of the weighted
cost is improved through the use of iterative reweighted
solutions.

C3 Validation of the developed framework on an experi-
mental prototype wafer stage used for semiconductor
manufacturing.

The approach in [26] is recovered as a special case of the
developed framework. While the method in this article is
applicable to all systems, including highly-damped systems,
it is particularly suitable for systems with lightly damped
resonant dynamics in contrast to [26]. This is validated using
experimental data of a lightly damped prototype wafer stage.

Notations: Fast-rate signals are denoted by subscript h, and
slow-rate signals with subscript l, which have been downsam-
pled by a factor F ∈ Z>0, with integers Z. Fast- and slow-rate
signals consist of, respectively, N and M = (N/F) data points.
The N- and M-point discrete Fourier transform (DFT) for
finite-time fast- and slow-rate signals is given by

Xh (k) =

N−1X
n=0

xh (n) e− jωknTh ,

Xl (k) =

M−1X
m=0

xl (m) e− jωkmTl

=

M−1X
n=0

xh (nF) e− jωknTl , (1)

with, respectively, sampling times Th and Tl = FTh, discrete-
time indices for fast-rate signals n ∈ Z[0,N−1] and slow-rate

Fig. 1. Photograph of experimental setup, containing the wafer stage.

signals m ∈ Z[0,M−1], and frequency bin k ∈ Z[0,N−1], which
relates to the frequency grid

ωk =
2πk
NTh

=
2πk
MTl

. (2)

The complex conjugate of A is denoted as A and the complex
conjugate transpose as AH . The expected value of a random
variable X is given by E{X}.

II. PROBLEM FORMULATION

In this section, a motivating application and the identifica-
tion setting are shown for identification beyond the Nyquist
frequency of slow-rate outputs. Finally, the problem treated in
this article is defined.

A. Motivating Application

The problem addressed in this article is directly motivated
by the considered prototype wafer stage in Fig. 1, which is
used in semiconductor manufacturing. Specifically, the over-
actuated test rig (OAT) is a prime example of a mechatronic
system with a slow-rate output.

The objective of the OAT is to accurately control the vertical
position ν of the point of interest on the wafer, which is
the point on the wafer during lithographic exposure. Directly
measuring the vertical displacement of the point of interest
on the wafer is not possible using linear encoders. The chuck
of the OAT has internal lightly damped structural modes, and
hence, measuring the vertical displacement on the outside of
the chuck does not coincide with the vertical displacement at
the point of interest on the wafer [27], [28]. Therefore, an
external capacitive sensor that directly measures the point of
interest is employed, as denoted by the scanning sensor in
Fig. 2. The external capacitive sensor is sampled at a reduced
sampling rate compared to the actuators.

The OAT, characterized by its slow-rate sensor and
lightly damped resonant behavior, directly motivates the need
for rational identification techniques beyond the Nyquist
frequency.
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Fig. 2. Schematic overview of the experimental setup, where the fast-rate
input uh is distributed over the four corners of the chuck. The outputs used
for feedback yi ∀i ∈ {1, 2, 3, 4} are measured using encoder scales and heads,
which is schematically depicted for y3. The performance output zl is measured
using an additional capacitive scanning sensor, which is suspended less than
1 mm above the wafer and sampled at a reduced sampling rate.

Fig. 3. Open-loop identification setting considered. The fast-rate system G
with fast-rate input uh and output yh have sampling times Th. The slow-
rate output yl is downsampled and disturbed with measurement noise, i.e.,
yl = Sdyh + Hεl, and has sampling time Tl = FTh.

B. Identification Setting

The goal is to identify a nonparametric FRF of fast-rate
system G using slow-rate outputs yl and fast-rate inputs uh, as
shown in Fig. 3. The set of systems G, which is considered,
is described by the LTI discrete-time rational transfer function

G (q) =
B (q)
A (q)

=

Pnb
i=0 biq−iPna
i=0 aiq−i , (3)

where q−1 denotes the lag operator q−1x(n) = x(n − 1). The
fast-rate output yh of system G under input uh is given by

yh (n) = G (q) uh (n) + t (n) , (4)

with transient contribution t(n), which includes leakage and
occurs due to finite-length signals [11], [14]. Taking the DFT
on both sides of (4) results in

Yh (k) = G (Ωk) Uh (k) + T (Ωk) , (5)

with generalized frequency variable Ωk = e− jωkTh for discrete-
time systems and transient contribution T (Ωk). Since G is
assumed to be LTI and described according to (3), the fast-rate

output Yh(k) is only influenced by a single frequency of Uh(k),
commonly denoted by the frequency-separation principle. The
fast-rate output is downsampled, as shown in Fig. 3, into

Yl (k) = SdYh (k) + Vl (k) , (6)

with noise Vl(k) = H(Ωk)E(k), where E(k) is zero-mean
independent and identically distributed noise. The transient of
the noise system H is typically neglected since it is negligible
compared to its steady-state response Hεl [8, Sec. 6.7.3.4]. The
downsampling operation in (6) is equal to the time-domain
operation yl(m) = yh(nF) + vl(m). The DFT of the slow-rate
output is found by expanding the downsampling operation in
(6) [29], i.e.,

Yl (k) =
1
F

F−1X
f =0

Yh (k + f M) + Vl (k) . (7)

By substituting the fast-rate output from (5) into (7), the slow-
rate output results in

Yl (k) =
1
F

F−1X
f =0

�
G
�
Ωk+ f M

�
Uh (k + f M) + TG

�
Ωk+ f M

��
+ Vl (k) . (8)

C. Problem Definition

The downsampler results in the DFT of the output (8)
being affected by F contributions from the system G(Ωk+ f M)
and transient T (Ωk+ f M). Therefore, the fast-rate FRF G(Ωk)
can, in general, not be uniquely identified beyond the Nyquist
frequency of the slow-rate using fast-rate inputs uh.

The problem considered is given as follows. Given fast-rate
inputs uh and slow-rate outputs yl from the system SdG in
Fig. 3, identify a fast-rate FRF bG(Ωk) for the frequencies
Ωk ∀k ∈ Z[0,N−1], i.e., up to the fast sampling frequency
fh = (1/Th). Throughout the article, requirements on the fast-
rate input signal uh are investigated as well.

III. LRM BEYOND THE NYQUIST FREQUENCY

In this section, local rational models across multiple fre-
quency bands are developed to identify fast-rate models
beyond the Nyquist frequency of a slow-rate sensor under
broadband excitation, leading to contribution C1.

The rational description of G in (3) motivates parameteriz-
ing a model within the local frequency window r ∈ Z[−nw,nw],
with 2nw + 1 being the window size, as

bG �Ωk+r+ f M
�

=
n
�
Ωk+r+ f M

�
d
�
Ωk+r+ f M

� ∀ f ∈ Z[0,F−1], (9)

where each (k, r, f ) results in the independently parameterized
local models

n
�
Ωk+r+ f M

�
= bG �Ωk+ f M

�
+

RnX
s=1

ns (k + f M) rs,

d
�
Ωk+r+ f M

�
= 1 +

RdX
s=1

ds (k + f M) rs. (10)
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Similarly, the transient T is parameterized as

bT �Ωk+r+ f M
�

=
m
�
Ωk+r

�
d
�
Ωk+r+ f M

� , (11)

where the same denominator is used as for the system G since
G and T share the same poles [13]. Solely, the contribution
of the transient in the slow-rate output Yl is of interest, and
hence, the numerator of the transient m(Ωk+r) is modeled at
the slow-rate and independently of the frequency band f, i.e.,

m
�
Ωk+r

�
= bT (Ωk) +

RmX
s=1

ms (k) rs, (12)

which allows to suppress the transient contribution. The poly-
nomial degrees Rn, Rd, and Rm influence how accurately the
local model can approximate the system’s FRF. Higher values
allow for more flexibility in the approximated FRF, enabling
the model to capture high-order effects in the frequency
response such as lightly damped resonances.

The slow-rate output in window k+ r is estimated using the
local models of the system and transient bG and bT , given the
input signal U(k + r), as

bYl (k + r) =
1
F

F−1X
f =0

�bG �Ωk+r+ f M
�

U (k + r + f M)

+bT �Ωk+r+ f M
��
. (13)

The local parameterization of the system and transient in (9)
and (11) leads to the estimated output

bYl (k + r) =
1
F

F−1X
f =0

bT (Ωk) +
PRm

s=1 ms (k) rs

1 +
PRd

s=1 ds (k + f M) rs

+
1
F

F−1X
f =0

bG �Ωk+ f M
�
+
PRn

s=1 ns (k + f M) rs

1 +
PRd

s=1 ds (k + f M) rs

× U (k + r + f M) . (14)

The parameters are gathered in a vector bΘ(k) ∈

C1×(F(Rn+1+Rd)+Rm+1), i.e., (15), as shown at the bottom
of the page, where

θbG =
1
F

�bG (Ωk) bG �Ωk+M
�
· · · bG �Ωk+(F−1)M

��
,

θN =
1
F

�
θn1 θn2 · · · θnRn

�
,

θD =
�
θd1 θd2 · · · θdRd

�
, (16)

and

θni =
�
ni (k) ni (k + M) · · · ni (k + (F − 1) M)

�
,

θdi =
�
di (k) di (k + M) · · · di (k + (F − 1) M)

�
. (17)

The decision parameters bΘ are determined by optimizing an
objective function, i.e.,

minbΘ(k)
J
�bΘ (k)

�
. (18)

As an objective function, the least-squares residual between
estimated and measured outputs Yl within the local frequency
window k + r is given by

JLS

�bΘ (k)
�

=

nwX
r=−nw




Yl (k + r) −bYl

�
k + r,bΘ (k)

�


2

2
. (19)

Remark 1: LRM for single-rate LTI systems with a nonlinear
cost function [14] is recovered as a special case of the
framework by setting F = 1. Furthermore, if F = 1 and
d(Ωk+r) = 1, i.e., Rd = 0, LPM for single-rate LTI systems
[11], [12] is recovered.

Optimizing the cost function (19) is challenging because
1) it involves a summation due to the downsampling operation
and 2) the system and transient are rationally parameterized,
as shown in (14). Given the rational model structure and the
downsampling operation, the cost function in (19) is nonlinear
with respect to the parameters bΘ(k). As a result, it is generally
nonconvex and does not have a closed-form solution.

IV. FRF IDENTIFICATION BEYOND THE NYQUIST
FREQUENCY WITH LOCAL RATIONAL MODELS

In this section, a solution approach for unique and convex
identification of local rational models beyond the Nyquist
frequency is presented, leading to contribution C2. The key
idea is to appropriately weight the nonlinear cost (19), leading
to a linear least-squares criterion. The unique existence of the
closed-form solution is guaranteed through design conditions
on the input and local models. In addition, the closed-form
solution enables to approximate the variance of the FRF.
Subsequently, the accuracy of the weighted cost is improved
through the use of iterative reweighted solution methods.
Finally, the developed approach is summarized in a procedure.

A. Linear Least-Squares for LRM Beyond the Nyquist
Frequency

By appropriately weighting the nonlinear cost function
(19), a linear least-squares criterion is obtained, as shown in
Lemma 1.

Lemma 1: By multiplying the residual Yl(k + r) − bY(k +
r,bΘ(k)) in (19) with

e
�
Ωk+r

�
= 1 +

ReX
s=1

es (k) rs ≡

F−1Y
f =0

d
�
Ωk+r+ f M

�
, (20)

resulting in the linear least-squares criterion

JW
�eΘ (k)

�
=

nwX
r=−nw







 

1 +

ReX
s=1

es (k) rs

!

·

 
Yl (k + r) −bYl

�
k + r,bΘ (k)

�!





2

2

=

nwX
r=−nw



Yl (k + r) −eΘ (k) K (k + r)


2

2 , (21)

bΘ (k) =
�
θbG θN bT (Ωk) m1 (k) · · · mRm (k) θD

�
, (15)
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where K(k + r) is the regressor vector of the least-squares
problem and will be defined in (28).

Proof: By expressing the sum (14) as a single fraction, and
substituting

QF−1
f =0 d(Ωk+r+ f M) = e(Ωk+r), the estimated output

is (22), as shown at the bottom of the page,with polynomial
coefficients gs(k + f M), ts(k) ∈ C and

Rg =Rn+Rd (F−1) ,Rt =Rm+Rd (F−1) ,Re =RdF (23)

result in the same model as in (9) and (11). Furthermore, the
numerator polynomials gs and ts are obtained by multiplying
ns(Ωk+r+iM) and ms(Ωk+r+iM) from (9) and (11) with all
d(Ωk+r+ f M) ∀ f , i, i.e., bG �Ωk+iM

�
+

RnX
s=1

ns (k + iM) rs

! Y
f∈Z[0,F−1]\i

d
�
Ωk+r+ f M

�
rs

≡ bG �Ωk+iM
�
+

RgX
s=1

gs (k + iM) rs, (24) bT (Ωk) +
RmX
s=1

ms (k) rs

! Y
f∈Z[0,F−1]\i

d
�
Ωk+r+ f M

�
rs

≡ bT (Ωk) +
RtX

s=1

ts (k) rs. (25)

Then, by substituting (22) in the residual Yl(k + r) − bY(k +
r,bΘ(k)) and multiplying with e(Ωk+r) from (20), the linear
least-squares criterion (21) is obtained.�

The capability of the local model to approximate the
system’s FRF is determined by Rn, Rd, and Rm, which, together
with F, determines appropriate polynomial degrees Rg, Rt, and
Re using (23).

Remark 2: LRM for single-rate LTI systems in the sense of
[13] is recovered by setting F = 1.

The linear least-squares criterion (21), with output (22) and
local models (20), (24), and (25), is formulated using the
parameter row vector eΘ(k) ∈ C1×((Rg+1)F+Rt+1+Re), i.e., (26),
as shown at the bottom of the page,with θbG from (16) and

(27), as shown at the bottom of the page. The input matrix
K(k + r) in (21) is given by

K (k + r) =

24K1
�
r,Rg

�
⊗ U (k + r)

K1 (r,Rt)
−K2 (r,RdF) Yl (k + r)

35 , (28)

with the Kronecker product ⊗, K1(r,R) =
�
1 r · · · rR

�>,
K2(r,R) =

�
r · · · rR

�>, and the input vector

U (k + r) =

26664
U (k + r)

U (k + r + M)
...

U (k + r + (F − 1) M)

37775 . (29)

The linear least-squares criterion (21) resolves the nonlinear
optimization challenges in Section III with its closed-form
minimizer, which is discussed next.

B. Closed-Form Minimizer for LRM Beyond the Nyquist
Frequency

In this section, a closed-form minimizer to the linear least-
squares criterion (21) is determined. The summation in (21)
is removed by gathering the data in the window r as

JW
�eΘ (k)

�
=


Yl,nw −

eΘ (k) Knw



2
2 , (30)

where Knw ∈ C
((Rg+1)F+Rt+1+Re)×(2nw+1) and Yl,nw ∈ C

1×(2nw+1)

are constructed as (31), as shown at the bottom of the page.The
minimizer to the cost function (30) leads to a least-squares
closed-form solution for LRM beyond the Nyquist frequency,
that is, eΘ (k) = Yl,nw KH

nw

�
Knw KH

nw

�−1
. (32)

Remark 3: The matrix inversion in (32) can be numerically
unstable, especially for ill-conditioned problems. In practical
implementations, numerically stable alternatives such as the
singular-value decomposition [8, Sec. 7.2.2.5] are recom-
mended.

bYl
�
k + r,eΘ (k)

�
=

1
F

bT (Ωk) +
PRt

s=1 ts (k) rs

1 +
PRe

s=1 es (k) rs
+

1
F

PF−1
f =0

��bG �Ωk+ f M
�
+
PRg

s=1 gs (k + f M) rs
�

U (k + r + f M)
�

1 +
PRe

s=1 es (k) rs
(22)

eΘ (k) =
�
θbG θg bT (Ωk) t1 (k) · · · tRt (k) θe

�
, (26)

θg =
1
F

�
g1 (k) g1 (k + M) · · · · · · gRg (k + (F − 1) M)

�
θe =

�
e1 (k) e2 (k) · · · eRe (k)

�
. (27)

Knw =
�
K (k − nw) K (k − nw + 1) · · · K (k + nw)

�
,

Yl,nw =
�
Yl (k − nw) Yl (k − nw + 1) · · · Yl (k + nw)

�
. (31)

Authorized licensed use limited to: TU Delft Library. Downloaded on October 24,2025 at 12:39:51 UTC from IEEE Xplore.  Restrictions apply. 



VAN HAREN et al.: LOCAL RATIONAL MODELING FOR IDENTIFICATION BEYOND THE NYQUIST FREQUENCY 2057

The fast-rate models at the frequency bands k + f M ∀ f ∈
Z[0,F−1] are jointly estimated by26664

bG (Ωk)bG �Ωk+M
�

...bG �Ωk+(F−1)M
�
37775
>

= FeΘ (k)
�
IF 0F×RgF+Rt+1+Re

�>
,

∀k ∈ Z[0,M−1], (33)

and similarly for the transient bT (Ωk).
Necessary conditions for the uniqueness of the closed-form

solution (32) to linear least-squares criterion JW in (21) are
given by

2nw + 1 ≥
�
Rg + 1

�
F + Rt + 1 + Re, (34a)

2nw + 1 ≤ M, (34b)
|U (k + r1 + iM) − U (k + r2 + jM)| , 0,
∀r1, r2 ∈ Z[−nw,nw] ∀i, j ∈ Z[0,F−1],

∀r1 + iM , r2 + jM. (34c)

In practice, it is observed from experimental data that the
conditions (34) generally lead to the existence of unique
solutions (32). The conditions (34) are to be interpreted as
design criteria on the input and local models as follows.

1) For each frequency bin k, the amount of estimated
parameters (Rg + 1)F + Rt + 1 + Re in eΘ should be
less than the number of data points 2nw + 1, leading
to (34a). This intuitively explains how the local models
with (Rg+1)F+Rt+1+Re parameters eΘ in (32) enable
disentangling F aliased contributions through the use of
2nw + 1 outputs Yl(k + r).

2) The window size 2nw +1 should not exceed the amount
of data points M in Yl,nw , leading to (34b).

3) Knw is full (row) rank if all inputs in the local and aliased
windows U(k + r) are sufficiently “rough,” which is
formalized for a single local window in [11]. For (32),
this requires that the spectral difference |U(k+r1+iM)−
U(k+r2+ iM)| in (34c) does not vanish. This is satisfied
with high probability for random-phase multisines [8],
[11], except for rare degenerate cases. In addition, the
spectral difference condition can be verified before the
identification experiment, enabling the generation of new
realizations until a sufficiently rough signal is obtained.

Remark 4: To prevent the Vandermonde structure in the
matrix Knw from becoming ill-conditioned, Rg, Rt, and Re

should not be chosen excessively high. Alternatively, the
numerical conditioning can be improved according to [14].

Remark 5: Identification of FRFs beyond the Nyquist fre-
quency using slow-rate outputs with LPM [26] is a special case
of the developed framework by setting Re = 0 and Rg = Rt.

Remark 6: The windows for the left and right frequency
borders are k+r ∈ Z[0,2nw] ∀k ≤ nw and k+r ∈ Z[M−2nw,M] ∀k >
M − nw similar to [8, Sec. 7.2.2.6].

In addition, the closed-form solution enables approximating
the variance, which is presented in Lemma 2.

Lemma 2: Let the system and transient be modeled using
(9) and (11). Then, the estimated variance of the FRF bG(Ωk),
determined with (33), is given by

var
�bG (Ωk)

�
≈ F2S HS bCv (k) ∀k ∈ Z[0,M−1], (35)

which is an estimate of the true variance of the identified FRF

var
�bG (Ωk)

�
= F2E

�
S HS

�
Cv (k) + F2Oint,H

�
n0

w

M

�
, (36)

with variance of the noise Cv and its estimate bCv, noise
interpolation error Oint,H [8], and

S = KH
nw

�
Knw KH

nw

�−1
h
1 01×F(Rg+1)+Rt+Re

i
, (37)

and similarly for the FRF at the frequency bands k+ f M ∀ f ∈
Z[1,F−1].

Proof: The results of [8, Appendix 7.E] and [26] apply,
respectively, for F = 1, and Re = 0 and Rg = Rt. Furthermore,
for arbitrary F, Re, Rg, and Rt, the system output for window
nw for the local models in (9) and (11) is given by

Yl,nw = eΘ0 (k) Knw + Vl,nw , (38)

where eΘ0(k) has the same structure as eΘ(k) in (26) but
containing the true parameters of the system. Rewriting (38),
multiplying by S, and combining with (32) result in�

Yl,nw −
eΘ0 (k) Knw

�
S = Vnw S ,eΘ (k)

�
1 0

�>
−eΘ0 (k)

�
1 0

�>
= Vnw S ,

1
F
bG (Ωk) −

1
F

G (Ωk) = Vnw S ,bG (Ωk) = G (Ωk) + FVnw S , (39)

where the variance is calculated as var(bG(Ωk)) =

E(bG(Ωk)bGH(Ωk)).�
The variance of the noise Cv(k) = var(Vl(k)) =

E(Vl(k)VH
l (k)) is estimated using the residual of the least-

squares fit [8, Appendix 7.B], i.e.,

bCv (k) =
1
q

�
Yl,nw −

eΘ (k) Knw

� �
Yl,nw −

eΘ (k) Knw

�H
, (40)

with degrees of freedom q = 2nw+1−((Rg+1)F+Rt+1+Re).
Remark 7: The polynomial degrees Rg, Rt, and Re and the

window size nw should be appropriately chosen for the system
at hand while satisfying conditions (34a) and (34b) and can be
tuned to minimize the estimated variance (35). Since there are
aliased dynamics, it is recommended to use slightly higher
degrees than 2, which is recommended in [8, Sec. 7.2.2].
Alternatively, the degrees could be optimized using a heuristic,
as shown in [30], which is not the scope of this article.

The linear least-squares criterion (21) is obtained by appro-
priately weighting the nonlinear cost function in (19), which
has closed-form solution (32). Generally, this method is effec-
tive, especially for practical applications [14], [31]. In addition,
iterative reweighted solutions further enhance the accuracy of
weighted linear least-squares.
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Fig. 4. Experimental feedback scheme used, where the equivalent systems in
(47) are to be identified.

C. Iterative Reweighted Solutions

The accuracy of the weighted least-squares criterion (21)
is improved through iterative reweighted solutions. Both the
Sanathanan-Koerner (SK) and Levenberg-Marquardt (LM)
algorithms are employed for this purpose.

1) Sanathanan-Koerner Algorithm: The SK algorithm [32]
iteratively counteracts the weighting from (21) by reweighting
with its inverse determined in the previous SK iteration.
Hence, the iteratively minimized cost function is

JSK
�eΘ〈 j〉 (k)

�
=

nwX
r=−nw








 

1 +

ReX
s=1

e〈 j−1〉
s (k) rs

!−1

×

 
1 +

ReX
s=1

e〈 j〉s (k) rs

!
×
�

Yl (k + r) −bYl
�
k + r,eΘ〈 j〉 (k)

�� 






2

2
(41)

which is minimized until convergence or a stopping criterion
is met. As initial guess, the closed-form solution from (32)
can be used, i.e., eΘ〈0〉 (k) = eΘ (k) ∀k. (42)

Conveniently, the iterative solution is determined similar to the
closed-form solution in (32), that is,

eΘ〈 j〉 (k) = Z〈 j−1〉
l,nw

�
L〈 j−1〉

nw

�H �
L〈 j−1〉

nw

�
L〈 j−1〉

nw

�H
�−1

, (43)

where Z〈 j−1〉
l,nw

and L〈 j−1〉
nw are constructed similar to (31), i.e.,

L〈 j−1〉
nw

=
�
L〈 j−1〉 (k − nw) · · · L〈 j−1〉 (k + nw)

�
,

Z〈 j−1〉
l,nw

=
h
Z〈 j−1〉

l (k − nw) · · · Z〈 j−1〉
l (k + nw) .

i
(44)

with their components

Z〈 j−1〉
l (k + r) =

 
1 +

ReX
s=1

e〈 j−1〉
s (k) rs

!−1

Yl (k + r) ,

L〈 j−1〉 (k + r) =

 
1 +

ReX
s=1

e〈 j−1〉
s (k) rs

!−1

K (k + r) . (45)

While the SK algorithm does not guarantee monotonic con-
vergence, it has been successfully applied in the system

Procedure 1 Identify Fast-Rate FRF Using Slow-Rate Outputs
and Fast-Rate Broadband Inputs With Local Rational Model

identification literature with attractive convergence properties,
specifically in practical situations [33]. The accuracy of the
solution with respect to the original cost function is further
increased via the LM algorithm.

2) Levenberg-Marquardt Algorithm: Second, a nonlinear
optimizer can be used to optimize the original cost function
(19) with parameters eΘ, i.e.,

JLM
�eΘ (k)

�
= JLS

�bΘ (k)
�

=

nwX
r=−nw




Yl (k + r) −bYl
�
k + r,eΘ (k)

�


2

2
, (46)

where bYl(k + r,eΘ(k)) is calculated using (22). The LM
algorithm, which is a damped Gauss-Newton algorithm, has
been successfully applied for local modeling in [14]. Until
convergence or a stopping criterion is met, the parameters are
updated based on the Jacobian of the residual with respect to
the parameters. As an initial guess, the closed-form solution
from (32) can be used. Alternatively, the LM algorithm can
be used complementary to the SK algorithm by using the
result from the SK algorithm as an initial guess. The LM
algorithm optimizes the original cost function, and hence, a
local minimum of the original cost function is found. However,
since the cost function is nonlinear, the LM algorithm does not
guarantee convergence to the global minimum, and its result
is strongly dependent on the initial guess.

With this in mind, it is recommended to start with solution
(32) of the linear least-squares criterion (21) and perform SK
iterations. Subsequently, the result of the SK algorithm serves
as a good initial guess for the LM algorithm.
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Fig. 5. Developed LRM method bGLRM(Ωk) ( ) identifies the true system Gy4 (Ωk) ( ) accurately, even beyond the Nyquist frequency ( ) (second row) and
the lightly damped resonant dynamics (enlarged in top row). Both bGLPM(Ωk) ( ) and bGSA(Ωk) ( ) identify the true system Gy4 (Ωk) ( ) significantly less
accurately, which is confirmed by their corresponding relative FRF errors |Gy4 (Ωk)− bG(Ωk)|/|Gy4 (Ωk)| (third row). Estimated standard deviation of bGLPM(Ωk)
( ) and bGLRM(Ωk) ( ), calculated using the square root of (35), shows similar behavior as the FRF error (bottom row).

D. Procedure for LRM Beyond the Nyquist Frequency

The main results in Sections III and IV are summarized in
Procedure 1.

V. EXPERIMENTAL VALIDATION

In this section, the developed framework is validated on a
prototype wafer stage used for semiconductor manufacturing,
leading to contribution C3. The experimental setup is intro-
duced, followed by the results. Finally, the FRF is refined
using the iterative procedures from Section IV-C.

A. Experimental Setup

The experimental setup is the OAT shown in Fig. 1. The
chuck is levitated and actuated by four Lorentz-type actuators
on the corners of the chuck. In addition, the vertical displace-
ment is measured at the corners of the chuck by means of four

linear encoder heads and scales, and is used as inputs to an
internal feedback controller as y = (1/4)(y1+y2+y3+y4). For
the case study, the fast-rate excitation uh is equally distributed
over the four actuators and is considered a disturbance to the
plant. The scanning sensor is suspended above the wafer and
can be moved in the horizontal plane. The scanning sensor is
positioned in the bottom left corner of the wafer, 110 mm in
both directions from the center. A schematic overview of the
control scheme is shown in Fig. 4.

The goal is to identify fast-rate (equivalent) models using
slow-rate outputs. Specifically, FRFs are identified for the
displacement of the point of interest zh, in addition to one
of the corners of the chuck y4, i.e.,

Gy4 (Ωk) = Py4 (Ωk)
�
I + C (Ωk) Py (Ωk)

�−1 : uh 7→ y4,

Gz (Ωk) = Pz (Ωk)
�
I + C (Ωk) Py (Ωk)

�−1 : uh 7→ zh, (47)
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Fig. 6. Developed LRM method bGLRM(Ωk) ( ) identifies the true system Gz(Ωk) ( ) accurately, even beyond the Nyquist frequency ( ) (middle) and
the lightly damped resonant dynamics (enlarged in top row). Both bGLPM(Ωk) ( ) and bGSA(Ωk) ( ) identify the true system Gz(Ωk) ( ) significantly less
accurate, which is confirmed by their corresponding relative FRF errors |Gz(Ωk)− bG(Ωk)|/|Gz(Ωk)| (third row). Estimated standard deviation of bGLPM(Ωk) ( )
and bGLRM(Ωk) ( ), calculated using the square root of (35), shows similar behavior as the FRF error (bottom row).

are identified using the fast-rate input uh and slow-rate outputs
Sdy4 and zl.

The excitation signal is a single period of a random-
phase multisine, exciting all frequencies with a flat amplitude
spectrum, and having a root mean square value of 1.44 N.
The signal-to-noise ratio, which is the ratio of the variance of
the output zl to the noise vl, is estimated to be around 45 dB.
Further experimental settings are shown in Table I.

The following methods are compared.bGLRM The developed approach using the closed-form solution
(32), with settings shown in Table I.bGLPM The approach from [26], i.e., the developed approach
with Rd = Re = 0, Rg ≡ Rt = 2, and nw = 18.bGSA A traditional approach using spectral analysis (SA) with
a Hanning window.

The SA assumes that the DFT is periodic in the slow sampling
frequency, i.e., bYh(Ωk+iM) = FYl(Ωk) ∀i ∈ Z, which, in the

TABLE I
EXPERIMENTAL SETTINGS

time domain, is equivalent to interpolating zl with zeros asbzh =
�
zl(0) 0 0 zl(1) · · ·

�> and similarly for y4. SA averages
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Fig. 7. Developed LRM method ( ) achieves the lowest cumulative FRF
error from (49) for Gz(Ωk) compared to the LPM method from [26] ( ) and
the SA method (48) ( ).

the FRF over 11 segments of the data as

bGSA
�
Ωp
�

=

P11
i=1
bYh,i

�
Ωp
�

Uh,i
�
Ωp
�P11

i=1 Uh,i
�
Ωp
�

Uh,i
�
Ωp
� ∀p ∈ {0, 6, 12, . . .} ,

(48)

where Xi is the DFT of the ith segment of X, multiplied
with a Hanning window, where each segment contains 200
samples with 100 samples’ overlap. For validation purposes,
the outputs zl and Sdy4 are recorded at the fast sampling
rate as well, i.e., zh and y4 are available. In particular, a
validation FRF is constructed using these signals, N = 50 000
samples, and the LRM method from [13], with rational degrees
Rn = Rd = Rm = 4 and a window size of nw = 150, which is
considered to be the ground-truth FRF. The cumulative FRF
error for the first n frequencies is defined as

1
N

nX
k=1

ˇ̌̌
G (Ωk) − bG (Ωk)

ˇ̌̌
. (49)

B. Experimental Results

The true and estimated FRFs of Gz4 and Gy are shown in
Figs. 5 and 6, with the cumulative error (49) of Gy in Fig. 7.

The following observations are made.
1) From the FRFs of Gy4 and Gz in, respectively, Figs.

5 and 6, the following is observed.
a) The developed method bGLRM estimates FRFs

Gy4 and Gz accurately, even beyond the Nyquist
frequency and including resonances and antireso-
nances.
i) The deviations around 650–690 and

800–840 Hz occur due to a low “signal-
to-signal” ratio. To disentangle aliased
contributions, the FRF at these frequencies
is estimated jointly with significantly higher
gains around 0 Hz and the resonant behavior
at 490–530 Hz, which dominate the slow-rate
output Yl compared to the gains at 650–690
and 800–840 Hz.

Fig. 8. Mean SK ( ) (left axis) and mean least-squares cost ( ) from (50)
when estimating Gy4 (right axis). After 30 SK iterations ( ), additional 300
iterations are done based on the LM algorithm per frequency.

b) The LPM method bGLPM estimates the FRFs of Gy4

and Gz adequately. However, the lightly damped
resonant dynamics are not captured accurately due
to the polynomial model structure.

c) The SA method bGSA estimates the FRFs Gy4

and Gz poorly; resonances and antiresonances are
modeled incorrectly, specifically above the Nyquist
frequency. In addition, the frequency resolution is
a factor of 6 lower compared to the LPM and LRM
methods.

d) The developed LRM method results in a signif-
icantly lower standard deviation compared to the
LPM approach, particularly around resonances and
their aliased frequencies. This is expected, as ratio-
nal models are more suitable for lightly damped
resonant dynamics.

2) Fig. 7 clearly shows that the LRM method achieves the
lowest cumulative error of Gz.

The observations show that the LRM method is most suitable
for identifying fast-rate FRFs of (lightly damped) systems
using slow-rate outputs. The LRM method is effective because
it disentangles the aliased components through local models,
and the rational model structure is capable of estimating the
(lightly damped) resonant dynamics accurately.

C. Iterative Analysis

The iterative reweighted solutions described in Sec-
tion IV-C are analyzed for experimental validation. The mean
SK cost and mean least-squares cost for all frequencies are
defined as

µSK =
1
N

N−1X
k=0

JSK
�eΘ (k)

�
,

µOE =
1
N

N−1X
k=0

JLS
�eΘ (k)

�
, (50)

where JSK and JLS are calculated with (41) and (19), with
estimated output bYl from (14). The mean SK and least-squares
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Fig. 9. FRF determined with closed-form solution (32) ( ) and the FRF after 30 SK and 300 LM iterations ( ) both identify the true FRF Gy4 (Ωk) ( )
accurately.

cost and the FRF after 30 SK and 300 LM iterations are shown
in Figs. 8 and 9.

The following observations are made with respect to the
iterative reweighting of the experimental FRF.

1) Both the mean SK and mean least-squares cost in Fig. 8
are decreasing, as expected.

2) After iterative reweighting, the resonant behavior around
500 Hz is estimated slightly more accurate compared to
the closed-form solution, as observed from Fig. 9.

3) The mean least-squares cost in Fig. 8 decreases by
almost 12% after 30 SK and 300 LM iterations. On the
other hand, the FRF after 30 SK and 300 LM iterations
in Fig. 9 shows no significant difference compared to the
FRF of the closed-form solution, indicating that iterative
reweighting is not strictly necessary.

It is concluded that the weighted linear least-squares (21) is
suitable for identifying fast-rate FRFs beyond the Nyquist
frequency of a slow-rate output of the OAT. This can be
explained because weighting the cost function only has a
minor effect in the local windows, which was also observed
in [14].

VI. CONCLUSION

The results in this article enable the identification of fast-
rate FRFs where aliasing occurs due to slow-rate outputs.
The key idea is to parameterize the system and transient
FRFs through multiple local rational models, which allows to
appropriately disentangle aliased contributions when exciting
the full frequency spectrum. The local rational models are
effective in modeling rational systems, especially with lightly
damped resonant dynamics. A linear least-squares criterion
with a unique closed-form solution is determined by appro-
priately weighting the associated nonlinear cost function. The
closed-form solution does not suffer from local minima, in
contrast to nonlinear optimization, and additionally enables

estimating the variance of the identified FRF. Furthermore,
the estimation accuracy of the weighted linear least-squares is
improved by means of iterative reweighted solutions, including
the Sanathanan-Koerner algorithm. Finally, the framework is
validated through experiments on a prototype wafer stage,
demonstrating accurate identification of lightly damped res-
onant dynamics beyond the Nyquist frequency. The developed
approach plays a crucial role in the identification and control
design of closed-loop, multivariable, and parametric systems,
especially for systems with slow-rate outputs, such as vision-
in-the-loop systems.
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