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Abstract

In this thesis, we give a primal-dual interior point method specialized to clustered
low-rank semidefinite programs. We introduce multivariate polynomial matrix programs,
and we reduce these to clustered low-rank semidefinite programs. This extends the
work of Simmons-Duffin [J. High Energ. Phys. 1506, no. 174 (2015)] from univariate
to multivariate polynomial matrix programs, and to more general clustered low-rank
semidefinite programs.

Clustered low-rank semidefinite programs are programs with low-rank constraint ma-
trices where the positive semidefinite variables are only used within clusters of constraints.
The free variables can be used in any constraint, and can be used to connect clusters.
The solver uses this structure to speed up the computations in two ways. First, the low
rank structure is used to reduce matrix products to products of the form uTMv, where
M is a matrix and u and v are vectors, as already suggested by Löfberg and Parrilo in
[43rd IEEE CDC (2004)]. Second, an additional block-diagonal structure is introduced
due to the clusters. This gives the possibility to do operations such as the Cholesky
decomposition block-wise.

We apply this to sphere packing and spherical cap packing. For sphere packing, the
speed of the solver is compared to the often used arbitrary precision solver SDPA-GMP,
showing the theoretical speedup in time complexity. We give a new three-point bound
for the maximum density when packing spherical caps of N sizes on the unit sphere.
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1. Introduction

A polynomial optimization problem can be stated as follows: given n-variate polyno-
mials p, g1, . . . , gm, compute

inf{p(x) | x ∈ Rn with gi(x) ≥ 0 for i = 1, . . . ,m} ,

or, equivalently, compute

sup{λ ∈ R | p− λ ≥ 0 on S} , (1.1)

where S = {x ∈ Rn | gi(x) ≥ 0 for i = 1, . . . ,m}. These kind of problems, although
usually in a more difficult form, can for example be found in robust optimization for
control theory [27] and extremal geometry [1, 2, 10]; see [25] for more applications. In
general, the problem (1.1) is NP-hard, see [21] for an overview of instances. Therefore,
it is common to relax the problem using weighted sums of squares of polynomials, which
are polynomials of the form

s(x) = s0(x) +

m∑
i=1

gi(x)si(x) ,

where si(x) =
∑mi

j=1(q
j
i (x))

2 are sums of squares of polynomials. Weighted sums of
squares of polynomials are trivially nonnegative on S, hence this can be used to relax
(1.1) by requiring p − λ to be a weighted sum of squares. In general, this relaxation is
strict: a nonnegative polynomial is not necessarily a weighted sum of squares of polyno-
mials. Hilbert for instance characterized the cases for S = Rn for which a nonnegative
polynomial can always be written as a sum of squares polynomial:

Theorem 1.1 ([16]). Any nonnegative, n-variate polynomial of total degree d is a sum
of squares polynomial if and only if n = 1, d = 2, or (n, d) = (2, 4).

For (n, d) = (2, 6), a famous example is the Motzkin polynomial

M(x, y) = x4y2 + x2y4 − 3x2y2 + 1,

which can be proven to be nonnegative by the arithmetic mean-geometric mean in-
equality, but cannot be written as a sum of squares of polynomials. When S is compact,
Putinar showed that strictly positive polynomials on S can always be written as weighted
sums of squares of polynomials if N −

∑
j x

2
j can be written as a weighted sum of squares

[26]. Note that this is an algebraic certificate that S is compact.
These relaxations are useful, because optimization over sums of squares of polyno-

mials can be done using semidefinite programming. Suppose s is a sum of squares of
polynomials, i.e., s(x) =

∑
i qi(xi)

2. Then, given a basis of polynomials b(x), we can
write

s(x) =
∑
i

b(x)T qiq
T
i b(x) = b(x)T (

∑
i

qiq
T
i )b(x) = b(x)TQb(x) = Tr(Qb(x)b(x)T ) ,
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where qi are the coefficients of qi(x) with respect to the basis b(x), and Q =
∑

i qiq
T
i is

by construction positive semidefinite. Conversely, by the spectral decomposition, every
positive semidefinite matrix Q gives rise to a sum of squares polynomial s(x).

We can use this to rewrite a relaxation to a semidefinite program (SDP), which is a
program of the form

inf{〈C, Y 〉 | 〈Ai, Y 〉 = bi for i = 1, . . . ,m, Y � 0} ,

where 〈A,B〉 = Tr(BTA) is the trace inner product. An often used method for this
translation is coefficient matching, based on the principle that two polynomials are equal
if they have the same coefficients when written as

∑
k ckpk(x) for a basis of polynomials

{pk}k≥0. In this way, we can write

d∑
k=0

cskpk(x) = s(x) = Tr(Qb(x)b(x)T ) =

d∑
k=0

Tr(QBk)pk(x) ,

where each element of Bk is the kth coefficient of the corresponding element of b(x)b(x)T
with respect to the basis {pk}k≥0. This reduces to constraints

〈Bk, Q〉 = csk for k = 0, . . . , d .

A different method is sampling: two univariate polynomials of degree d are equal
when they evaluate to the same value on d+ 1 distinct points. More generally, one can
choose a set of sample points {xk ∈ Rn | k = 1, . . . ,K} such that the values of n-variate
polynomials on these sample points uniquely determine the polynomial in the space of
n-variate polynomials up to a certain degree d. An example of such points is the set of
rational points in the unit simplex with denominator d [22]. Such a set of sample points
allows us to write

s(xk) = Tr(Qb(xk)b(xk)
T ) for k = 1, . . . ,K ,

which directly gives semidefinite programming constraints.
Both methods have different properties which can be exploited while solving the SDP.

The first method, coefficient matching, leads to sparse constraint matrices. Suppose that
the basis {pk}k≥0 and the vector b(x) consist of polynomials of strictly increasing degree,
such as the monomials where pk(x) = xk. Then (b(x)b(x)T )ij has degree at most i + j,
and hence (Bk)ij = 0 when i + j < k. This sparsity can be exploited when solving the
SDP by reducing the cost for matrix products, as is done in for example in the SDP
solver SDPA [32, 33].

Sampling has the advantage that it leads to rank one constraint matrices b(xk)b(xk)
T .

This can be exploited to speed up certain computations [22, 29] because matrix vector
products can be used instead of matrix products; see also Chapter 3.

In the Chapter 2, we will focus on the inner workings of an SDP solver for the following
SDP, with free variables y:

inf{〈C, Y 〉 | 〈Ai, Y 〉+By = bi , for i = 1, . . . ,m} .
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To connect to (1.1), the free variable can be used to model the λ in p−λ. More generally,
an SDP can be used to model constraints of the form

〈A(x), Y 〉+ b(x)T y ≥ 0 on S ,

where Y is a (positive semidefinite) matrix variable, y are scalar variables, A(x) is a
polynomial matrix and b(x) a polynomial vector.

Recall that, if the method of sampling is used to obtain semidefinite programming
constraints from polynomial constraints, the constraint matrices Ai are of a very specific
form. They have a rank 1 block which corresponds to the variable matrix of one polyno-
mial constraint, and are zero on blocks not corresponding to that polynomial constraint.
This generalizes to what we call a clustered low-rank semidefinite program:1

sup

J∑
j=1

Lj∑
l=1

Tr(Cj,lY j,l) + bT y with Y j,l ∈ SUj,l , y ∈ RN

s.t.
Lj∑
l=1

Tr(Aj,l
∗ Y j,l) +Bjy = cj for j = 1, . . . , J ,

Y j,l � 0 ,

where Tr(Aj,l
∗ Y j,l) denotes the vector with elements Tr(Aj,l

i Y j,l), and the matrices Aj,l
i

have low rank. Note that the only connection between the clusters j are the variables
y. This is a more general version of the SDP used for the arbitrary precision SDP solver
SDPB [29], where Lj = 2 and the constraint matrices Aj,l

i are of a specific rank 1 or rank
2 form.

In Chapter 3, we use the structure of the clustered low-rank SDP to speed up the
main computations in the solver given in Chapter 2. This is done mainly in two ways.
Firstly, we use the low rank structure to reduce matrix products to products of the form
uTMv, where u, v are vectors and M is a matrix. Secondly, the clustered nature gives
block structures during the solving, which allows for computations on smaller matrices
and parallel computing. This extends the work of Simmons-Duffin [29]. The solver has
been named CLRS for clustered low-rank solver. We give an implementation of CLRS2 in
Julia [4], which is a readable, high-level programming language with a Just-In-Time (JIT)
compiler. In addition, we derive the time complexity and compare this to SDPA-GMP,
to the extend possible.

In Chapter 4, we introduce a multivariate polynomial matrix program (MPMP), and
give a derivation from the MPMP to the clustered low-rank SDP. This is an extension
from the univariate polynomial matrix programs introduced by [29]. An MPMP can be
seen as an SDP with linear polynomial matrix inequalities as constraints:

∑
i yiAi � 0

where Ai ∈ R[x1, . . . , xn]
m×m. Note that this also includes polynomials (m = 1) and

normal linear matrix inequalities (n = 0).
1Note the difference between low-rank semidefinite programming (i.e., semidefinite programming with

a rank constraint on the solution matrix), and solving low-rank semidefinite programs (i.e., semidefinite
programs with low-rank constraint matrices).

2The code is available via github: https://github.com/nanleij/Clustered-Low-Rank-SDP-solver

https://github.com/nanleij/Clustered-Low-Rank-SDP-solver
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Chapter 5 uses the problem of packing spheres of N different sizes in Rn as example
of an MPMP. This is used to compare the speed of SDPB and CLRS as well as the
commonly used arbitrary precision SDP solver SDPA-GMP, using results of [10].

Another example of an MPMP can be found in Chapter 6, where we consider the
problem of packing N sizes of spherical caps on a unit sphere. Both two and three-point
bounds on the maximum density are given; the two-point bound for N sizes of caps in
[10] and the three-point bound for equal sized caps [1, 2, 13, 23] are extended to a three-
point bound for N sizes of caps. A more general k-point bound, an extension of results
of [11], is also obtained. Symmetry reductions as in [13, 23] are used, for which the
possibility of using low ranks in the solver is imperative. The symmetry reductions lead
to new research questions regarding the combination of sampling for SDPs and invariance
theory.
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2. A primal-dual interior point method for
SDPs with free variables

In this chapter, we discuss a general primal-dual interior point method for semidefinite
programs (SDPs) with free variables, following the discussion from [29]. This will be
specialized in Chapter 3 to a clustered low-rank SDP, similar to the clustered rank 1
structure of SDPB [29], giving a speed up. We consider programs of the form

sup Tr(CY ) + bT y with Y ∈ SM , y ∈ RN (2.1)
s.t. Tr(A∗Y ) +By = c ,

Y � 0 ,

where

C,A1, . . . , Ap ∈ S
M ,

B ∈ RP×N ,

c ∈ RP ,

b ∈ RN .

Here Tr(A∗Y ) is the vector with entries Tr(AiY ) for i = 1, . . . , P .
In the next section, the dual to this program is given and weak duality is proven. We

use this in Section 2.2 to obtain the algorithm.

2.1 Duality
Program (2.1) is usually referred to as the dual program D, with the following primal
program P:

inf cTx with x ∈ RP , X ∈ SM (2.2)

s.t. X =

P∑
p=1

xpAp − C ,

BTx = b ,

X � 0 .

Using that X and Y are positive semidefinite, it is easy to prove weak duality.

Theorem 2.1 ([29, Theorem 2.2]). Given a feasible point (x,X) of P and a feasible
point (y, Y ) of D, the duality gap cTx−Tr(CY )− bT y is nonnegative. If the duality gap
vanishes, then (x,X) and (y, Y ) are both optimal and XY = 0.
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Proof. Suppose (y, Y ) and (x,X) are feasible solutions of D and P respectively. Using
the constraints of P and D gives the duality gap

cTx− Tr(CY )− bT y = cTx− Tr(
∑
p

xpApY ) + Tr(XY )− xTBy

= xT (c−By − Tr(A∗Y )) + Tr(XY )

= Tr(XY ) ≥ 0 .

Suppose the duality gap vanishes. As the primal gives an upper bound on the value
of the dual, and the dual a lower bound on the value of the primal, both bounds are
attained and optimal. Furthermore, Tr(XY ) = 0, implying that XY = 0.

2.2 The algorithm
The general structure is modelled after SDPA [32, 33], using a Newton search direction.
The main difference is the existence of free variables; with SDPA these variables require
an extra diagonal block and slack variables.

As is common in primal-dual algorithms, the optimality condition XY = 0 is de-
formed to XY = µI. This can be interpreted in terms of the logarithmic barrier function
X 7→ − ln detX. For µ ∈ R+, this defines together with the constraints in P and D a
unique family of solutions, the central path. A primal-dual method follows this path to
the optimum (µ = 0).

2.2.1 The search direction
Here we will use the Newton search direction to approximately move to the point on
the central path corresponding to µ. In the algorithm, µ will decrease at each iteration,
thus following the central path to the point with µ = 0. The search direction is defined
by replacing the variable q = (x,X, y, Y ) by q + dq in the constraints and optimality
condition, and solving the resulting equations linearized in dq. Following [29], we have:

X + dX =
∑
i

(xi + dxi)Ai − C ,

BT (x+ dx) = b , (2.3)
Tr(A∗(Y + dY )) +B(y + dy) = c , (2.4)

XY +X dY + dX Y = µI .

Defining the residues

P :=
∑
i

xiAi −X − C ,

p := b−BTx ,

d := c− Tr(A∗Y )−By ,

R := µI −XY , (2.5)
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gives

dX = P +
∑
i

dxiAi ,

dY = X−1(R− dX Y ) . (2.6)

We use this together with (2.3) and (2.4) to obtain a system of equations for dx and
dy. Substituting the expressions for dY and dX in (2.4) gives

Tr(A∗(Y +X−1(R− (P +
∑
i

dxiAi)Y ))) +B(y + dy) = c .

Hence

−Tr(A∗X
−1

∑
p

dxpApY ) +Bdy = c−By − Tr(A∗Y )− Tr(A∗X
−1(R− PY ))

= d+Tr(A∗X
−1(PY −R)) .

Let Z = X−1(PY −R), and S ∈ RP×P the so-called Schur complement matrix defined by
Sij = Tr(AiX

−1AjY ). This then results, together with (2.3), in the system of equations

T

(
dx
dy

)
=

(
−d− Tr(A∗Z)

p

)
, with T :=

(
S −B
BT 0

)
. (2.7)

Note that (2.6) gives a dY which is not necessarily symmetric, hence we take

d̂Y =
1

2
(dY + dY T )

instead.

2.2.2 Predictor-Corrector directions
Forming the matrix S is often the most costly operation, due to the matrix products which
need to be computed for elements Sij = Tr(AiX

−1AjY ). Therefore it is common practice
to reuse the left-hand side of the system (2.7) in the following way, due to Mehrotra [24].
First the search direction as explained in the previous section is computed. This results
in the predictor direction dqp = (dxp, dXp, dyp, dYp). This is used to refine the corrector
search direction by improving the approximation of the linearized system by solving the
equations corresponding to the constraints together with

XY +X dY + dX Y + dXp dYp = µI .

This only affects the definition of R, which becomes

Rc := µI −XY − dXpdYp ,

instead of (2.5). Note that this only changes the right hand side of (2.7), hence most of
the work done in solving the system of equations can be reused.
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2.2.3 The full algorithm
Given the input, the algorithm consists of the following steps [29].

1. Initialize q = (x,X, y, Y ) = (0,ΩpI, 0,ΩdI), where Ωp and Ωd are parameters
chosen by the user.

2. Compute the residues and terminate if they satisfy the termination criteria.

3. Take µ = Tr(XY )/K, where K is the number of rows of X. Define µp = βpµ,
where

βp =

{
0 if q is both primal and dual feasible,
βinfeasible otherwise.

The parameter βinfeasible ∈ (0, 1) is chosen by the user.

4. Compute the predictor search direction dqp = (dxp, dXp, dyp, dYp) with Rp = µI −
XY .

5. Compute µc = βcµ as follows: define r = Tr((X + dXp)(Y + dYp))/(µK). Let
β = r2 if r < 1, and r otherwise. Then, with βfeasible ∈ (0, 1) chosen by the user,
we set

βc =

{
min(max(βfeasible, β), 1) if q is primal and dual feasible,
max(βinfeasible, β) otherwise.

(2.8)

6. Compute the corrector search direction dqc = (dxc, dXc, dyc, dYc) with R = µcI −
XY − dXpdYp.

7. Determine steplengths by

αp = min(γα(X, dXc), 1) ,

αd = min(γα(Y, dYc), 1) ,

where α(M,dM) is the largest number such that M + α(M,dM)dM is positive
semidefinite.

8. Update the primal and dual variables:

x← x+ αpdxc ,

X ← X + αpdXc ,

y ← y + αddyc ,

Y ← Y + αddYc .

9. Repeat from step 2.
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An example of a termination criterion [29] is that the primal and dual error (max{|Pij |, |pi|}
respectively max{|di|}) , and the duality gap, defined by

|PrimalObjective− DualObjective|
max(1, |PrimalObjective + DualObjective|)

,

are ‘small enough’. The maximum size is quantified by the user.
For the step length we need to determine α(M,dM). This can be done by a Cholesky

decomposition M = LLT in combination with the computation of a minimum eigenvalue:
M +α(M,dM)dM = L(I+α(M,dM)L−1dML−T )LT is postive semidefinite if and only
if α(M,dM)λmin ≥ −1, where λmin denotes the minimum eigenvalue of L−1dML−T .
Hence computing λmin gives directly the value of α(M,dM)
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3. A primal-dual interior point method for
clustered low-rank SDPs

In this chapter, we will introduce the clustered low-rank semidefinite program, and
show how the structure can be used to speed up the computations of the search direction
in the algorithm of Chapter 2. Furthermore, the time complexity will be derived. We
compare this to the complexity of SDPA-GMP, a general purpose arbitrary precision
semidefinite programming algorithm.

The general structure of the clustered low-rank SDP is similar to the structure of the
SDP which can be solved with SDPB [29, 20]. However, a clustered low-rank SDP is
more general. The solver, called CLRS for clustered low rank solver, can be seen as a
customized version of SDPB, and is programmed in Julia. Both SDPB and CLRS use
arbitrary precision arithmetic; this is inherent to the problems considered (the conformal
bootstrap and problems in extremal geometry). Some other solvers such as SDPT3 [31]
can also use low-rank structures, but do not use the structure of the clusters and use
machine precision.

It should be noted that there is a difference between low-rank semidefinite program-
ming, where the solution is required to have low rank, and solving a low-rank semidefinite
program, where the constraint matrices have low rank but the solution can be of any
rank.

3.1 The clustered low-rank SDP
The SDP is called

• Clustered, because the constraints are divided into J clusters. The clusters use
different positive semidefinite matrix variables, and are only connected through
free scalar variables.

• Low-rank, because the constraint matrices are assumed to have low rank.

This leads to the following form of the program:

sup

J∑
j=1

Lj∑
l=1

Tr(Cj,lY j,l) + bT y with Y j,l ∈ SUj,l , y ∈ RN (3.1)

s.t.
Lj∑
l=1

Tr(Aj,l
∗ Y j,l) +Bjy = cj , for j = 1, . . . , J , (3.2)

Y j,l � 0 ,
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where

Cj,l, Aj,l
1 , . . . , Aj,l

Pj
∈ SUj,l , for j = 1, . . . , J, l = 1, . . . , Lj ,

Bj ∈ RPj×N , for j = 1, . . . , J,

cj ∈ RPj . for j = 1, . . . , J.

As before, Tr(Aj,l
∗ Y j,l) is the vector with entries Tr(Aj,l

i Y j,l). Furthermore, Aj,l
i are

assumed to have low rank, i.e.,

Aj,l
i =

ηj,l∑
r=1

Hj,l
i,rv

j,l
i,r(v

j,l
i,r)

T , (3.3)

where ηj,l typically is less than or equal to 4. In fact, sampling normal (non-matrix)
polynomial constraints will give a rank equal to 1. Note that, because Aj,l

i is symmetric,
the vectors and Hj,l

i,r can be chosen to be real. Although the algorithm will work also for
full rank matrices, the time complexity is quadratic in the rank. This makes the solver
only useful for low rank matrices. For efficiency, a slightly different input format is also
allowed. We will expand on this in Chapter 4, where this structure appears.

Note that this formulation fits into the more general case given in Chapter 2 by
placing the Y j,l as blocks on the diagonal of Y , and Aj,l

i in the corresponding blocks for
constraints (j, i). Hence the algorithm for general SDPs with free variables can be used.

As will be shown in Chapter 4, this structure is particularly suited for polynomial
(matrix) constraints which are modelled through sampling. However, the solver can
in principle also be used for other problems with a low-rank structure and clustered
constraints.

3.2 Speedups obtained by the structure
In this section, the speedups which can be obtained by exploiting the structure of a
clustered low-rank SDP are explained. This is partly an extension of the methods used
in SDPB [29].

3.2.1 Solving the system - exploiting the clustered structure
We use the decomposition of [29] to solve the system of equations for the search directions.
Recall the system of equations in the general case:

T

(
dx
dy

)
=

(
−d− Tr(A∗Z)

p

)
, where T =

(
S −B
BT 0

)
and S is defined by Spq = Tr(ApX

−1AqY ). Recall that the clustered low-rank SDP can
be seen as special case where A(j,i) consists of the blocks Aj,l

i for l = 1, . . . , Lj , and Y is
block diagonal with blocks corresponding to (j, l).

In general, S is dense. However, in the case of clustered constraints, p and q range
over tuples (j, i), and A(j,i) is only possibly non-zero in blocks corresponding to (j, l) for
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l = 1, . . . , Lj . Furthermore, Y and X are block diagonal, which means that products
X−1A(j

′
,i)Y cannot have non-zeros on a block j 6= j′. Hence S(j,i),(j

′
,i) = 0 whenever

j 6= j′, i.e., S has a block diagonal structure with blocks corresponding to the clusters.
As in SDPB, we can use the following decomposition for T to reduce the solving to

solving several triangular systems of equations. Let CCT be the Cholesky decomposition
of S. Note that this can be computed block-wise because S is block diagonal. Then(

S −B
BT 0

)
=

(
C 0

BTC−T I

)(
I 0

0 BTC−TC−1B

)(
CT −C−1B
0 I

)
.

Because C is lower triangular, the outer matrices are lower or upper triangular and hence
can be solved in quadratic time. Furthermore, the matrix Q = BTC−TC−1B is positive
semidefinite, hence a Cholesky decomposition can be used to solve the middle matrix.
Although it depends on the problem, the dimension of T (which equals N +

∑
j Pj) is

often much larger than dimQ = N , giving a speedup. Numerical conditioning can be
an issue if either S or T is ill-conditioned. This is advised to be solved in SDPB by
increasing the precision [20]. Note that the clustered low rank structure is not necessary
for this decomposition. However, without the structure of the the clusters S would be
dense, and thus the complexity would only decrease from O((P +N)3) to O(P 3 +N3),
which does not make much of a difference when P � N .

3.2.2 Computing S - exploiting the low-rank structure
Recall that, due to the clusters, we only need to compute S(j,i),(j

′
,i

′
) for j′ = j. Fur-

thermore, using the linearity and the cycle property of the trace as well as the low-rank
structure of the constraint matrices, we can write

S(j,i1),(j,i2)
=

Lj∑
l=1

Tr(Aj,l
i1
(Xj,l)−1Aj,l

i2
Y j,l)

=

Lj∑
l=1

ηj,l∑
r1=1

ηj,l∑
r2=1

Hj,l
i1,r1

Hj,l
i2,r2

Tr
(
vj,li1,r1

(vj,li1,r1
)T (Xj,l)−1vj,li2,r2

(vj,li2,r2
)TY j,l

)

=

Lj∑
l=1

ηj,l∑
r1=1

ηj,l∑
r2=1

Hj,l
i1,r1

Hj,l
i2,r2

(
(vj,li1,r1

)T (Xj,l)−1vj,li2,r2

)(
(vj,li2,r2

)TY j,lvj,li1,r1

)
.

This shows that S(j,i1),(j,i2)
is a sum over products of so-called bilinear pairings uTMv,

which can be precomputed. Furthermore, the precomputing can be done efficiently be-
cause the bilinear pairings are of the form vTi Mvj . For each vj , we can compute Mvj
(with the cost quadratic in the length of vj), after which we can compute a simple
vector inner product for each vi. Hence with P vectors of size M , the cost will be
O(PM2 + P 2M). Note that the number of bilinear pairings is quadratic in the rank of
the constraint matrices Aj,l

i .
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3.3 Time complexity
In this section, the time complexity for the main steps of CLRS will be determined, as
well as the complexity for SDPA-GMP. The complexities will be compared in Section
3.3.3.

We will use the notation introduced in Section 3.1: Let N be the number of free
variables, which connect the clusters indexed by j = 1, . . . , J . Let cluster j consist of Pj

constraints, with Lj matrix variables. Let Uj,l and ηj,l denote the sizes respectively the
rank of the constraint matrices.

In practice, N,Pj and Uj,l are often related, and Lj and ηj,l are fixed. This yields a
more compact expression for a specific problem, giving more insight in how the solving
time scales with the problem size in one or two variables.

3.3.1 CLRS
The complexities of the most important operations in CLRS are summarized in Table 1.
Due to the block structure of the Schur complement matrix S, nearly all operations on
different constraints j are completely separate, except for the Cholesky decomposition of
the matrix Q. Therefore, the complexity of all other operations are given per constraint.
Note that the separation of the constraints allows for easy parallel computations.

To compute S, one needs to compute
∑Lj

l=1 η
2
j,lP

2
j bilinear pairings for each cluster j.

As noted in Section 3.2.2, this can be done by computing for each constraint the products
Y j,lvj,li,r after which the products can be combined into bilinear pairings through vector
inner products. This takes a total of O(

∑Lj

l=1 ηj,lPjU
2
j,l) operations for the matrix vector

products, and O(
∑Lj

l=1 η
2
j,lP

2
j Uj,l) operations for the vector inner products.

The matrix S has blocks of size O(Pj). A full Cholesky decomposition of an n × n

matrix costs 1
3n

3 operations, resulting in O(P 3
j ) operations for a block Sj . Computing

C−1
j Bj amounts to solving N triangular systems, one for each column of Bj , where Cj is

the j-th Cholesky block of S. This costs in total O(N(dimCj)
2) = O(NP 2

j ) operations.
Multiplying the resulting matrix with its transpose costs O(N2Pj) operations, obtaining
the matrix Q of size N×N . The final Cholesky decomposition of Q costs 1

3N
3 operations.

Solving the system can now be done by back- and forward substitution, which has a
complexity of O(N2 +

∑
j P

2
j ), which is subdominant to the cost of computing C−1

j Bj

and Q. Therefore this will not be taken into account in the final complexity.
Summarizing, this gives a total complexity of

O
(
N3 +

J∑
j=1

(N2Pj +NP 2
j + P 3

j +

Lj∑
l=1

(ηj,lPjU
2
j,l + η2j,lP

2
j Uj,l))

)
.

3.3.2 SDPA-GMP
In SDPA-GMP, the variables y need to be incorporated in the variable matrix Y as a
diagonal block. Therefore, the matrix Spq = Tr(ApX

−1AqY ) becomes dense; for each
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Operation Complexity Reason
Matrix vector products per (j, l) O(ηj,lPjU

2
j,l) ηj,lPj products of dimension Uj,l

Vector inner products per (j, l) O(η2j,lP
2
j Uj,l) η2j,lP

2
j products of dimension Uj,l

Forming Sj O(
∑Lj

l=1(ηj,lPjU
2
j,l + η2j,lP

2
j Uj,l))

Cholesky decomposition Sj = CjC
T
j O(P 3

j ) Per block of size O(Pj)

C−1B O(NP 2
j ) N triangular systems with Pj variables

Q = BTC−TC−1B O(N2Pj) Matrix sizes N × Pj and Pj ×N

Cholesky decomposition of Q O(N3) dimQ = N

Solving the complete system O(N2 +
∑

j P
2
j ) triangular systems of size N and Pj

Total complexity O
(
N3 +

∑J
j=1(N

2Pj +NP 2
j + P 3

j +
∑Lj

l=1(ηj,lPjU
2
j,l + η2j,lP

2
j Uj,l))

)
Table 1: Complexity per iteration for CLRS. Each row gives the complexity for one operation,
acting on one constraint j (except for the Cholesky decomposition of Q, which combines all
constraints), possibly using earlier formed expressions. This is accumulated in the last row.
Because solving the system is subdominant to computing C−1B and Q in all cases, it is not
included in the total complexity.

pair (p, q), the diagonal block is used, whereas for CLRS this is encoded in the B matrix.
The complexities for computing S and calculating the Cholesky decomposition of S are
summarized in Table 2, where the cost of computing S is split into contributions of the
diagonal block and the remainders of the blocks.

Computing an element Spq requires computing X−1(AqY ). This cost O(N) opera-
tions for the diagonal block for any combination of tuples p = (j1, i1) and q = (j2, i2).
When j1 6= j2, the nonzero blocks of Ap and Aq do not overlap except for the diagonal
block. Therefore SDPA-GMP does not calculate the corresponding matrix products, but
only the diagonal block [33]. The diagonal block has to be used for every pair of tuples.
This costs a total of O(N(

∑
j Pj)

2) operations, O(N) for each pair of tuples p, q. When
j1 = j2 = j, both have Lj blocks at the same positions. These blocks each have a size
of Uj,l × Uj,l, giving a total complexity of O(

∑Lj

l=1 U
3
j,l) for the product X−1AqY , dis-

regarding the cost of the diagonal block. The product can be computed per row q, and
then be used to compute 〈X−1AqY,Ap〉 for each column in that row. Hence the com-
putational cost is O(

∑Lj

l=1(U
3
j,lPj + P 2

j U
2
j,l)) for a constraint j: Pj rows, each needing a

product of three matrices of size Uj,l×Uj,l, and the inner product costs O(U2
j,l) per pair

of constraints with the same j.
To solve the system, a Cholesky decomposition is used. This costs O(dimS3) =

O((
∑

j Pj)
3) operations because S is dense. In total, this gives a time complexity of

O(N(
∑
j

Pj)
2 +

∑
j

Lj∑
l=1

Pj(U
3
j,l + PjU

2
j,l)) + (

∑
j

Pj)
3) .

This complexity analysis uses the dense mode of SDPA-GMP. In case the matrices Aj,l
i

are sparse, the computational cost is decreased. SDPA-GMP uses three different formulas
to compute the elements of the Schur complement matrix S, depending on the sparsity
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of the constraint matrices. As some problems, especially polynomial constraints, can
be modelled as an SDP with sparse constraint matrices, the complexity corresponding
to calculating the Schur complement matrix might not be fully applicable anymore.
Constraint matrices with O(Uj,l) elements may reduce the complexity of computing S
by a factor Uj,l. As accessing elements in a sparse matrix format has some extra overhead,
the constant in front of the expressions may be increased. Furthermore, it is well possible
that not all matrices are sparse, thus that the practical time complexity of computing S
with SDPA-GMP is between the given complexity and the reduced complexity.

Operation Complexity Reason
Contribution of diagonal blocks to S O(N(

∑
j Pj)

2) (
∑

j Pj)
2 tuples with cost N

Products X−1AqY , no diagonal block O
(
Pj

∑Lj

l=1 U
3
j,l

)
Lj blocks of size Uj,l × Uj,l

Matrix inner products 〈Ap, X
−1AqY 〉, no diagonal block O

(
P 2
j

∑Lj

l=1 U
2
j,l

)
Lj blocks with U2

j,l elements per Ap

Forming S
O
(
N(

∑
j Pj)

2

+
∑

j

∑Lj

l=1 U
3
j,lPj + P 2

j U
2
j,l))

Cholesky decomposition of S O((
∑

j Pj)
3) dimS =

∑
j Pj

Total complexity O(N(
∑

j Pj)
2 +

∑
j

∑Lj

l=1(PjU
3
j,l + P 2

j U
2
j,l) + (

∑
j Pj)

3)

Table 2: Complexity per iteration for SDPA-GMP. Each row gives the complexity for one
operation, possibly using earlier formed expressions. This is accumulated in the last row. It
should be noted that the second term may differ in the case of sparse constraint matrices.

3.3.3 Comparison between CLRS and SDPA-GMP
The first thing to notice when comparing the complexities of CLRS and SDPA-GMP
for clustered low-rank SDPs is that the constraints are completely separated in CLRS,
whereas they interfere in SDPA-GMP. This gives products of sums over j in the complex-
ity of SDPA-GMP. This can be especially important for programs with a large number
of clusters, each with a moderate to large number of constraints.

Furthermore, the factor U3
j,lPj+U2

j,lP
2
j (in SDPA-GMP) is decreased to U2

j,lPj+Uj,lP
2
j

at the expense of extra terms with higher powers of N (in CLRS). As noted before, this
term in the complexity of SDPA-GMP can be reduced in the case of sparse constraint
matrices.

The required precision also needs to be considered. Calculations with a factor 2
more precision cost about twice as long, hence a larger precision gives an overall slow
down. The solver CLRS may require a higher precision, because in addition to the matrix
T , which is of similar conditioning as the Schur complement matrix in SDPA-GMP, the
matrix Schur complement matrix S of the specialized solver can have a bad conditioning.
Experiments show that polynomial constraints may require a precision of at least 350
bits, while SDPA-GMP requires up to 200 bits [23].

Lastly, in CLRS, nearly everything can be easily parallellized because of the block
structures. Although parallellization is also possible for computing the Schur comple-
ment matrix in SDPA-GMP, it has not been implemented.1 As most, if not all, current

1In several other solvers of the SDPA family, the computation of S is parallellized [33]



16

computers have multiple cores, parallellization is a great asset of a solver.
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4. Multivariate polynomial (matrix) programs

In this chapter, we introduce the multivariate polynomial matrix program (MPMP).
The notation is partly similar to the notation of Simmons-Duffin in [29], where a specific
case (univariate polynomial matrix programs on R+ (PMP)) was introduced. In addition,
we derive the translation to a clustered low-rank SDP, using a form of Putinar’s theorem
for polynomial matrices originally proven by Scherer and Hol [27, 19]. This leads to a
relaxation of the problem, with a convergence guarantee.

Although everything is done with matrices, it should be noted that everything still
holds for polynomial constraints, as well as ‘polynomial’ matrix constraints where n = 0.
The case of polynomial constraints is already widely used.

4.1 Preliminaries

Let R[x] denote the ring of polynomials, and R[x]m×m the ring of polynomial matrices
of size m × m in variables x = (x1, . . . , xn). Unless otherwise stated, we assume that
x ∈ Rn. Let G ⊆ ∪mSym(R[x]m×m), where Sym(R[x]m×m) is the set of all symmetric
m ×m polynomial matrices in n variables. Define Sm := Sym(Rm×m), the special case
where n = 0, and let Sm�0 denote the set of all m×m positive semidefinite matrices.

We define the semi-algebraic set generated by G as

SG := {x ∈ Rn | g(x) � 0 ∀g ∈ G} .

The quadratic module generated by G is given by

MG := Cone({pT gp | g ∈ G ∪ {1}, p ∈ R[x]tg×m}) ,

where tg is the size of the corresponding g. MG is said to be archimedean if

∀p ∈ R[x]m×m ∃N ∈ N : NI − pT p ∈MG .

This is equivalent to the definition which can be used to verify that a quadratic module
MG is archimedean: ∃N ∈ N : (N −

∑
i x

2
i )I ∈MG, see [19, Lemma 8].

A polynomial matrix f ∈ Sym(R[x]m×m) is positive semidefinite (positive definite)
on S if f(x) is positive semidefinite (positive definite) for all x ∈ S. This is denoted by
f � 0 (f � 0) on S.

4.2 The multivariate polynomial matrix program

Let Gj ⊆ ∪tSym(R[x]t×t) be finite for j = 1, . . . , J , P j
i ∈ Sym(R[x]m×m) for i = 1, . . . , N

and j = 1, . . . , J , and b ∈ RN . We define the multivariate polynomial matrix program
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(MPMP) as

sup bT y with y ∈ RN (4.1)

s.t. P j
y := P j

0 +

N∑
i=1

yiP
j
i � 0 on SGj

, for j = 1, . . . , J .

For n = 1, Gj = {x}, this is the PMP introduced in [29]. When n = 0, this is a normal
primal semidefinite program [32] except for the objective which maximizes instead of
minimizes.

We call program (4.1) strictly feasible if there is a feasible solution y such that P j
y � 0

on SGj
for all j = 1, . . . , J . Note that, for any feasible yf and strictly feasible ys, a conic

combination αyf + βys is a strictly feasible solution whenever β > 0.

4.3 Relaxation of the program
The translation of (4.1) to an SDP relies on the following theorem, originally proven by
Scherer and Hol in [27]. We give a detailed proof following [19] in Appendix A. Note
that f ∈MG implies that f � 0 on SG.

Theorem 4.1 ([27, 19]). Let f ∈ R[x]m×m, G ⊆ R[x]. Suppose MG is archimedean. If
f � 0 on SG, then f ∈MG.

In the univariate case, the theorem can be strengthened for SG consisting of R, R≥a or
[a, b], when reducing G to its simplest form. In these cases we have equivalence between
f ∈MG and f � 0 on SG. See Appendix B for the relevant theorems and proofs.

Theorem 4.1 allows us to approximate the constraints by elements of MG, which can
in turn be approximated by elements of the truncated quadratic module

MG,d := Cone({FT gF | g ∈ G ∪ {1}, F ∈ R[x]tg×m, deg(FT gF ) ≤ d}) .

In this expression, we use deg(F ) for the maximum total degree over all elements of a
polynomial matrix F . This gives the relaxed problem:

sup bT y with y ∈ RN (4.2)

s.t. P j
y = P j

0 +

N∑
i=1

yiP
j
i ∈MGj ,d

for j = 1, . . . , J .

For d → ∞, we have convergence of value of the relaxation to the value of the original
problem.

Theorem 4.2. Let p∗ <∞ and p∗d denote the optimal values of program (4.1) and (4.2)
respectively, with MGj

archimedean for all j. Suppose (4.1) is strictly feasible. Then:

• for all d ∈ N, p∗d ≤ p∗d+1 ≤ p∗

• limd→∞ p∗d = p∗
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Proof. Let d ∈ N. Because MG,d ⊆ MG,d+1, we have p∗d ≤ p∗d+1. Furthermore, because
f ∈ MG,d implies that f � 0 on SG, any feasible solution for p∗d is also feasible for p∗.
Hence p∗d ≤ p∗ for all d.

Let ε > 0, and let y ∈ RN be a strictly feasible, ε-optimal solution for p∗. This is
possible, because the feasible region is convex, and there is a strictly feasible solution
by assumption. By Theorem 4.1, P j

y (x) = P j
0 (x) +

∑
i yiP

j
i (x) ∈ MGj

for all j. Hence
there is a d such that P j

y (x) ∈ MGj ,d
for all j, which means that there is a d such that

y is feasible for problem (4.2). Furthermore, we have p∗ − p∗d ≤ ε, which means that
p∗d → p∗.

In practise, it is possible that a problem is not strictly feasible. This can be solved
by adding εI to the constant terms P j

0 for all j, making any solution of the original
problem strictly feasible in the new problem. For decreasing ε, this converges to the
original problem.

4.4 Translation to a clustered low-rank SDP
We will rewrite program (4.2) to the form (3.1); the clustered low-rank SDP. Each poly-
nomial matrix constraint will form a cluster of constraints, and the y variables will be
the free variables connecting the constraint.

We consider f of the form FT gF for some g ∈ R[x]t×t and F ∈ R[x]t×m. For
individual elements fij we have

fij = Tr(fEij) = Tr(FT gFEij) = Tr(gFiF
T
j ) ,

where Fi is the i-th column of F and Eij the standard basis of Rm×m.
Define P :=

∑
i,j FiF

T
j ⊗ Eij = vec(F )vec(F )T ∈ R[x]mt×mt, with vec(F ) being the

column vector of all columns of F . Then

f = Trt((g ⊗ Im)P ) ,

where Trt denotes the partial trace over the first tensor factor, the linear extension of
the mapping Trt : R

t×t ⊗ Rm×m → Rm×m defined by Trt(A⊗B) = Tr(A)B .
Let qi(x) be a basis for the n-variate polynomials up to (total) degree δ = deg(F ), and

qδ(x) the vector of these polynomials, of length n(δ). Using that vec(F )T = Z(qδ(x) ⊗
Imt) for some Z ∈ R1×n(δ)mt gives P = (qδ(x) ⊗ Imt)

TZTZ(qδ(x) ⊗ Imt), which can be
used to write

f = Trt((g ⊗ Im)P )

= Trn(δ)t(Y ((qδ(x)⊗ It)g(x)(qδ(x)⊗ It)
T ⊗ Im))

= Trn(δ)t(Y (Qg,δ(x)⊗ Im)) , (4.3)

where Y = ZTZ is positive semidefinite of rank 1 and Qg,δ(x) = (qδ(x)⊗ It)g(x)(qδ(x)⊗
It)

T . Recalling that Y can be decomposed into ZTZ for any positive semidefinite matrix
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Y gives equivalence between the two forms of f (cf. Lemma 1 of [27]). We can rewrite
Q to obtain a slightly simpler form. As g(xk) = I1 ⊗ g(xk), we have

Qg,δ(x) = (qδ(x)I1qδ(x)
T )⊗ (Itg(x)I

T
t ) = (qδ(xk)qδ(x)

T )⊗ g(x) .

Now let f ∈MG,δ, similar to the constraints of program (4.2). Then we have

f =
∑

g∈G∪{1}

∑
i∈Ig

FT
g,igFg,i ,

where Ig denotes the set of indices for matrices Fg,i corresponding to g ∈ G. Using (4.3)
per g ∈ G, we obtain

f(x) =
∑

g∈G∪{1}

Trn(δ)t(Yg(Qg,δ(x)⊗ Im)) .

Note that, due to linearity of the trace, only one variable matrix is needed per g ∈ G,
and Yg is not necessarily rank 1 anymore.

Let x1, . . . , xK ∈ Rn be a unisolvent set of points for polynomials up to degree δ, i.e.,
a set such that the polynomials up to degree δ are uniquely determined by the values on
x1, . . . , xK . Equality of matrices is equality per entry, thus this gives the constraints

(Py(xk))rs =
∑

g∈G∪{1}

Tr(Yg(Qg,δ(xk)⊗ Ērs)) ,

where Ērs =
1
2 (Ers + Esr) are the standard basis matrices of Sym(Rm×m).

As the Yg are different for different constraints j, this is exactly the form of (3.1).
Denoting Y j

g by Y j,l for Gj ∪ {1} = {gj,l | l = 1, . . . , Lj} gives the constraint matrices

Aj,l
(r,s,k) = Qgl,j ,δj

(xk)⊗ Ērs , (4.4)

Bj
(r,s,k),i = −(P

j
i (xk,j))rs ,

cj(r,s,k) = P j
0 (xk,j)rs ,

C = 0 .

In the case that Aj,l
(r,s,k) is of low rank, this is the structure required by the customized

version of SDPB. In these equations, we have j = 1, . . . , J , 1 ≤ r ≤ s ≤ m, k =
1, . . . ,Kj = n(δj) and 1 ≤ i ≤ N .

In the next part, we focus on two aspects which are important for computations.
First of all, a low rank is preferred due to the the time complexity being quadratic in the
rank. The term Ērs has either rank one or rank two, which is fixed for a certain element
of the initial constraint matrix, but the rank of Qg,δ(xk) depends on g and thus is part
of the input. As the problem depends on SG, g can be modified as long as SG stays the
same. Recall that, with g ∈ R[x]t×t,

Qg,δ(xk) = (qδ(xk)qδ(xk)
T )⊗ g(xk) .
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Using this together with rank(A⊗B) = rank(A)rank(B), we have

rank(Qg,δ(xk)) = rank(g) ,

hence Qg,δ(xk) is of rank 1 exactly when g(xk) is of rank 1. Note that this is certainly
the case when g is a polynomial.

For general g ∈ R[x]t×t with t > 1, Qg,δ(xk) will not be of rank 1. However, by taking
G′ ⊂ R[x] consisting of all principal minors for all g ∈ G, we obtain SG

′ = SG with

Qg
′
,δ(xk) = g′(xk)qδ(xk)qδ(xk)

T (4.5)

of rank 1 for all g′ ∈ G′. In some cases, the number of minors which need to be included
is equal to one, because the other minors are trivially nonnegative. A comparison in time
complexity using Section 3.3 gives that expressing g in terms of minors costs a factor
t3/2t−1 less to compute the contribution of g to Sj compared to using the matrix g,
where t = rank(g). For t ≤ 11, this is larger than 1, hence for most practical purposes
using the principal minors is preferable above using a polynomial matrix as weight.

Secondly, the total degree of FT gF should be at most d, because we are trying to
model elements of MG,d. This can be obtained by taking δ = bd−deg(g)

2 c as maximum
total degree of F . Note that the minors of a matrix g are in general of higher degree than
g itself. Hence taking the minors instead of the matrices increases the number of the
variable blocks Yl,j , but decreases the size n(δ)mt per variable, for a maximum degree d.
This increases the preference of using the principal minors of g instead of g itself even
further.

4.5 Modifications of the solver for MPMPs
Recall that the constraint matrices for the clustered low-rank SDP solver CLRS intro-
duced in Chapter 3 were required to be of the form

Aj,l
i =

ηj,l∑
r=1

Hj,l
i,rv

j,l
i,r(v

j,l
i,r)

T ,

with ηj,l relatively low. However, the constraint matrices resulting from the MPMPs are
of the form

Aj,l
(i,r,s) = Hiviv

T
i ⊗ Ēr,s , (4.6)

where Ēr,s = 1
2 (ere

T
s + ese

T
r ) and we suppressed the superscript j, l. We can write Aj,l

i

as rank 2 matrix with eigenvectors

vi ⊗
1

2
(er + es)

and
vi ⊗

1

2
(er − es) .
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This will increase the sizes of the matrices by a factor m. Even if matrix vector products
are performed faster using the sparsity in the second tensor factor, we can increase the
speed by directly using Ēr,s =

1
2 (ere

T
s + ese

T
r ). Let us consider computing an element of

the Schur complement matrix S for Aj,l
i of the form (4.6). We have, similar to exploiting

the low rank structure:

S(j,i1,r1,s1),(j,i2,r2,s2)
=

Lj∑
l=1

Tr
(
(Hi1

vi1v
T
i1
⊗ Ēr1,s1

)(X−1)(Hi2
vi2v

T
i2
⊗ Ēr2,s2

)Yl,j

)

=

Lj∑
l=1

Hi1
Hi2

4
(vi1 ⊗ es1)

T (X−1)(vi2 ⊗ er2)(vi2 ⊗ es2)
TY (vi1 ⊗ er1)

+ (r1 ↔ s1) + (r2 ↔ s2) + (r1 ↔ s1, r2 ↔ s2)

=

Lj∑
l=1

Hi1
Hi2

4
vTi1(X

−1)s1,r2vi2v
T
i2
Y s2,r1vi1

+ (r1 ↔ s1) + (r2 ↔ s2) + (r1 ↔ s1, r2 ↔ s2) ,

where we again suppressed the superscript j, l everywhere for clarity. This reduces prod-
ucts of (effectively) size 2Uj,l to products of size Uj,l. Note that, even though four terms
are required, this equals the number of terms required for a normal rank 2 matrix. This
directly generalizes to higher rank matrices with a factor ⊗Ers. In the complexity for
the specialized solver, this gives Pj →

mj(mj+1)

2 Pj and ηj,l → 2ηj,l.
For SDPA-GMP, this leads to constraint matrices of mj times the size, i.e., Uj,l →

mjUj,l. Because the constraint matrices become sparse with O(U2
j,l) elements, the time

complexity for the matrix inner product increases by a maximum factor of 2 when r 6= s.
Whether the matrix multiplications are done in dense or sparse mode may depend on
mj . For small mj , the dense mode may be used, giving a complexity for m5

jPjU
3
j,l for

the matrix multiplications instead of PjU
3
j,l. In the case of coefficient matching, the

constraint matrices used in SDPA-GMP can become sparse with O(mUj,l) elements,
depending on the polynomial basis used.

4.6 Sample points
Originally, the sample points were required to be in SG to use SDPB. This requirement
is removed in CLRS, by making it possible to give Q =

∑
r Hrvrv

T
r as input. Hence

the unisolvent set of sample points can be chosen to be a known unisolvent set of good
quality for polynomial interpolation.

Intuitively, a set of sample points should be in or closely around the set SG. In that
case, it is less likely that a small error of the value in one sample point will have a large
influence on the values in SG, and thus on the feasibility of the program given the floating
point result. Furthermore, sample points should not be very close together, which would
give nearly linearly dependent constraints and thus ill conditioning of the problem.

Although we focus on choosing sample points in this section, choosing a good basis
can give additional improvements.
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4.6.1 Checking whether a set is unisolvent

Let X = {xk | k = 1, . . . ,K =
(
n+d
n

)
} be a set of points, and let q1(x), . . . , qK(x) be a

basis of polynomials for the space of n-variate polynomials of degree at most d. The set
X is unisolvent if a polynomial p is uniquely determined by its values on these sample
points, i.e., the system of equations q1(x1) · · · qK(x1)

...
. . .

...
q1(xK) · · · qK(xK)


 c1

...
cK

 =

 p(x1)
...

p(xK)

 (4.7)

has a unique solution. This is the case precisely when the Vandermonde matrix (qi(xk))
K
k,i=1

is non-singular. The solution c gives the coefficients of p when expressed in the basis q.
Hence checking whether a set of sample points is unisolvent is equivalent with checking
whether the determinant of the Vandermonde matrix equals zero. A small determinant
is related to an ill conditioned system: a small error in the polynomial evaluations can
lead to a large error in the coefficients. Hence if two polynomials are nearly equal on the
sample points, they can still have a large difference on other points in SG. Thus a com-
bination of sample points and basis with a large condition number of the Vandermonde
matrix are preferred.

4.6.2 Special cases
For several cases of n and a domain S, a good set of interpolation points is known. In
this section, we will review several of such sets.

Chebyshev points

Let n = 1, with domain S = [−1, 1]. Note that any domain [a, b] can be obtained through
an affine transformation. In this case, a well known set of sample points is the set of
Chebyshev points. For d ∈ N, the points are defined as the zeros of the Chebyshev
polynomial Td+1, given by

xd
k = cos

( 2k − 1

2(d+ 1)
π
)

for k = 1, . . . , d+ 1 .

Another related set of sample points are the Chebyshev-Gauss-Lobatto points

zdj = cos
(j − 1

d
π
)

for j = 1, . . . , d+ 1 .

Padua points

Let n = 2, and S = [−1, 1]2. Again, a set of sample points for the more general set
[a, b] × [c, d] can be obtained by an affine transformation. The Padua points can be
defined via the Chebyshev-Gauss-Lobatto points [6]. Let zdj be defined as before, and let

CE
d+1 = {zdj | j − 1 is even} ,

CO
d+1 = {zdj | j − 1 is odd} .
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The Padua points are

Pd = (CE
d+1 × CO

d+2) ∪ (CO
d+1 × CE

d+2) .

Note that this is a subset of the product set Cd+1 × Cd+2.

Rational points in the unit simplex

For general n, d, the set of rational points in the unit simplex with denominator d is a
unisolvent set [22]. Again, an affine transformation is possible for other simplex-like sets
S. However, the conditioning of the Vandermonde matrix is in general bad compared to
for example Chebyshev points for n = 1 and Padua points for n = 2.

Random sample points

In a general set SG, one can also take random sample points. These points are unisolvent
with probability 1, but are likely to have bad conditioning.

4.6.3 Approximate Fekete points
Given a basis q for n-variable polynomials up to degree 2d, the Fekete points in a compact
domain S ∈ Rn are defined as the K points xk that maximize the absolute value of the
determinant of the Vandermonde matrix V . Note that this means that the set of points
xk is unisolvent. Furthermore, the Fekete points are independent of the basis, as a basis
change multiplies the determinant with a constant factor.

Although Fekete points are well defined for any compact domain, they are hard to
compute in general. Therefore, we can use approximate Fekete points instead, as sug-
gested in [25, 30]. Given a (large) set of sample points, we can choose a square submatrix
of the corresponding rectangle Vandermonde matrix which approximately maximizes the
absolute value of the determinant. This problem is in general NP-hard [18], but the ap-
proach taken by [30] can work well in practice. However, the cost scales with the square
of the dimension of the vectorspace of polynomials, i.e., approximately with dn/n!.

4.6.4 Greedy maximization of the Vandermonde determinant
A more straightforward approach, also given in [30], is to perform a greedy maximization
of the determinant of the resulting Vandermonde matrix: Iteratively choose columns
from the matrix. In each iteration, the column with maximum norm is chosen, and the
orthogonal projection of that column onto the columns of the matrix is subtracted from
the matrix.

Both approaches can be used in combination with product sets of good sample points
for n = 1 (e.g., the product set of Chebyshev points Cd+1 × . . .× Cd+n) to obtain a set
of good quality for general n while reducing the time needed to compute them.
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4.6.5 Symmetrized sampling
In the multivariate setting, it is sometimes possible to use symmetry in order to reduce
the length of the basis and the required number of sample points. See for example the
three-point bounds in Chapter 6. We will assume that the group inducing the symmetries
is a permutation group G.

Naively, one might use the previous explained approaches to choose sample points,
using a symmetrized basis. However, this may introduce (implicit) linear dependencies,
which do not work well in most SDP solvers, including CLRS. Let us consider the case
n = 3 with symmetry group S3, i.e., the polynomials are invariant under all permutations
of coordinates. Given a sample point (u, v, t), one can see this as representing the points
σ(u, v, t) for all σ ∈ S3. Hence when the coordinates are distinct, this represents 6
points, when two of the three coordinates are the same, this represents 3 points and
when u = v = t, this represents 1 point. As a non symmetric polynomial of total degree
d is completely determined by

(
n+d
d

)
sample points, we need the sum of the weights of

the sample points to be equal to
(
n+d
d

)
:∑

x∈X

w(x) =

(
n+ d

d

)
,

where w(x) is the number of sample points the point x represents. Note that this means
that S3X = {σx | σ ∈ S3, x ∈ X} is a unisolvent set for nonsymmetric n-variate
polynomials of degree d.

In addition, it is natural to require the same amount of (symmetric) sample points
as the number of basis polynomials, as this is one requirement for the system (4.7) to
have a unique solution without explicit linear dependencies. This gives restrictions on
the sets of sample points one can use, and using the approximate Fekete points obtained
from using a symmetric basis in the computations does in general not work.

There are several (heuristical) approaches to solve this. First of all, one can use
the rational points in the unit simplex with denominator d as base set, and take one
point of each equivalence class, where two points x, y are equivalent if there is a group
element σ such that x = σy. In case of G = Sn, this means that we take all points with
x1 ≤ x2 ≤ . . . ≤ xn. As the simplex is invariant under permutations, this always gives a
set with the right properties.

As mentioned before, this set is not a particularly good set of sample points. Another
approach is to take the equivalent of the unit simplex out of the set Xn, where X is a
unisolvent set for n = 1 for polynomials up to degree d. This amounts to taking the
points (xj1

, . . . , xjn
) where xj ∈ X and

n∑
k=1

jk − 1 ≤ d .

This set can be symmetrized similarly to the unit simplex, but may perform better.
A third approach would be to fix a certain number of points (for example the points

with w(x) ≤ 3), and use the greedy maximization of the submatrix determinant to
determine the best remaining points. This can be done more generally, by requiring a
specific number of points with a certain weight.
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Sampling is currently mostly used to numerically approximate integrals or to find
the unique polynomial given the values on sample points. In those cases, having a
larger number of sample points is not a problem; it requires a higher number of function
evaluations but often gives a more precise result. However, a larger number of sample
points than required is problematic when solving SDPs because of the linear dependencies
it introduces. Further research into the combination of sampling and invariance theory
is certainly needed.
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5. Sphere packing

In this chapter, we consider the problem of packing spheres of N different sizes into
an n-dimensional Euclidean space. Using results from de Laat, Oliviera and Vallentin
in [10], we formulate a univariate MPMP to give an upper bound on the sphere packing
density; the fraction of space covered.

Furthermore, the time complexity analysis in Section 3.3 is used to give the time
complexity for this specific problem. This shows that the use of SDPB or CLRS can give
a speedup of order O(d) compared to SDPA-GMP, where d is the maximum degree used
in the program to compute the upper bound.

Finally, we give timing results for the case N = 1, showing the expected speedup in
complexity.

5.1 Formulation as a univariate MPMP
Let us first state Theorem 5.1 from [10], which is the basis for the formulation. Recall
that a function f : Rn → C is a Schwartz function if it is infinitely differentiable, and
if any derivative of f multiplied with any power of x1, . . . , xn is a bounded function. A
function f is a radial function if f(x) only depends on the norm of x.

Theorem 5.1 ([10, Theorem 5.1]). Let r1, . . . , rN > 0, and let f : Rn → RN×N be a
matrix valued function whose every component fij is a radial Schwartz function. Suppose
f satisfies the following conditions:

(i) The matrix
(
f̂ij(0)−(volB(ri))

1/2(volB(rj))
1/2)N

i,j=1
is positive semidefinite, where

B(r) is the ball of radius r centered at the origin.

(ii) The matrix of Fourier transforms
(
f̂ij(t)

)N
i,j=1

is positive semidefinite for every
t > 0.

(iii) fij(w) ≤ 0 if w ≥ ri + rj, for i, j = 1, . . . , N .

Then the density of any sphere packing of spheres of radii r1, . . . , rN in the Euclidean
space Rn is at most max{fii(0) : i = 1, . . . , N}.

For N = 1 and r1 = 1
2 , this reduces to the well-known Cohn-Elkies linear program-

ming bound [8].
Note that the conditions naturally give MPMP constraints (with m = N or m = 1

and n = 1), in case polynomials equivalent to f̂ij and fij can be found. We follow [10]
in defining these functions.

Let d ≥ 0 be an integer, and consider the polynomial matrix

φ(t) =

d∑
k=0

akt
2k ,
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where ak ∈ S
N for all k. We choose the function f such that the Fourier transform f̂ is

defined by
f̂(u) = φ(‖u‖)e−π‖u‖2

,

where the (inverse) Fourier transform is applied elementwise. Lemma 5.2 from [10] gives
us that f is defined by

f(w) =
∑
k

ak
k!

πk
L
n/2−1
k (π‖w‖2)e−π‖w‖2

,

where L
n/2−1
k is the degree k Laguerre polynomial with parameter n/2− 1.

Let us consider the conditions on f . We denote the elements of ak by aij,k. These
elements are the free variables yi in program (4.1). Note that this gives a total number
of N(N+1)

2 d variables, because the matrices ak are symmetric. Condition (i) gives that

a0 −
(
(volB(ri))

1/2(volB(rj))
1/2

)N

i,j=0
� 0 ,

which is a normal MPMP constraint with matrices P 1
ij0 = Ēij , and P 1

ijk = 0 for k > 1.
In this case, we define Ēij such that it has a 1 on positions (i, j) and (j, i), for convenient
notation. Furthermore, P 1

0 = −((volB(ri))
1/2(volB(rj))

1/2)Ni,j=0.
Note that e−πt > 0 for all t ∈ R. Hence f̂(t) � 0 if and only if φ(t) � 0. As f̂(0) � 0

by condition (i), this can be extended to t ≥ 0, which can be given by SG with G = {x}.
Hence the second condition is

0 +

d∑
k=0

N∑
i=1

N∑
j=i

aij,kĒijt
2k � 0 on SG2

= R+ .

The third condition gives N2 polynomial constraints on the individual elements of
f . The domain ||w|| ≥ ri + rj is the semi-algebraic set given by the function gij(w) =

w2 − (ri + rj)
2. Hence this can be directly formulated as

−fij(w) = 0−
d∑

k=0

aij,k
k!

πk
L
n/2−1
k (πw2) ≥ 0 on SGij

,

or, substituting x = w2,

−fij(x) = 0−
d∑

k=0

aij,k
k!

πk
L
n/2−1
k (πx) ≥ 0 on SGij

,

where Gij = {x− (ri + rj)
2}. Note that, even though the domains are not compact and

hence the corresponding quadratic modules not archimedean, the equivalence between
the resulting program and program (4.2) is established by the extensions of Theorem 4.1
in the univariate case, see Appendix B.
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Lastly, the value to be optimized is the maximum of f(0)ii for i = 1, . . . , N . This can
be modelled in a standard way by adding a variable M and requiring that M−f(0)ii ≥ 0
for all i. The objective function becomes −M , because M should be minimal.

This can be summarized as

sup −M

s.t. −
(
(volB(ri))

1/2(volB(rj))
1/2

)N

i,j=0
+

∑
i≤j

aij,0Ēij � 0 ,

0 +

d∑
k=0

∑
1≤i≤j≤N

aij,kĒijx
k � 0 on SG2

= R+ ,

0−
d∑

k=0

aij,k
k!

πk
L
n/2−1
k (πx) ≥ 0 on SGij

for 1 ≤ i ≤ j ≤ N .

M −
d∑

k=0

aii,k
k!

πk
L
n/2−1
k (0) ≥ 0 for i = 1, . . . , N .

Note that there is one true polynomial matrix constraint; the other constraints are either
polynomial constraints or normal semidefinite programming constraints.

5.2 Time complexity
We use a maximum degree of 2d as is in general done; this makes it possible to use bases
of degree at most d. Recall that the variables are given by aij,k, with 1 ≤ i ≤ j ≤ N and
k = 0, . . . , 2d. We denote the number of required sample points for a constraint j by Kj ,
and the maximum length of the basis by Uj . Although the length of the basis depends
on both l and j, this will be a difference of at most 1. In the notation of Section 3.3, we
have Pj =

mj(mj+1)

2 Kj = O(m
2
jKj) and Uj,l ≈ Uj . The conditions of Theorem 5.1 give:

(i) 1 constraint with m1 = N , n1 = 0, L1 = 1. This gives K1 = U1 = 1.

(ii) 1 constraint with m2 = N , n2 = 1, δ2 = 2d and L2 = 2. This gives K2 = 2d + 1,
and U2 = d+ 1.

(iii) N(N+1)
2 constraints with mj = 1, nj = 1, δj = 2d, and Lj = 2, which gives

Kj = 2d+ 1 and Uj = d+ 1.

(iv) The minimization of the maximum of aii,0 gives N extra constraints, with mj = 1,
nj = 0 (and thus Kj = Uj = 1), and Lj = 1.

This gives a complexity (in terms of d and N) of O(N6d3) for the Cholesky decomposition
of Q, O(N6d2+N6d+2N2+N6) for condition (i), O(2N6d3+4N6d3+12N2d3+8N6d3)
for condition (ii) and O(N2(2N4d3+4N2d3+12d3+8d3)) for condition (iii). The extra
constraints for the objective function add O(N(N4d2 + N2d + 1)), which is negligible
compared to the other terms. This gives a leading term of O(N6d3). In contrast, the
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MPMP implementation in SDPA-GMP gives O(N6d3+N5d4) due to the term m5
jU

3
j Kj

in the general complexity (see Table 2 and Section 4.5; the m5
j comes from the term

⊗Er,s). This is especially important for high degrees d for a constant N , which is the
approach for obtaining bounds.

In [10, Problem B], the problem was modelled slightly differently. The polynomial
matrix f̂ was rewritten to a polynomial σ, which is a sum of squares if and only if f̂ � 0
(similar to Theorem B.1). This polynomial was directly encoded as a sum of squares,
hence condition (ii) was automatically satisfied. However, condition (iii) still gives N2

polynomial constraints of degree O(d), with the same complexity. Another difference is
that the constraints were rewritten to SDP constraints using coefficient matching instead
of sampling. Because the Laguerre basis was used for stability, this does not introduce
much sparsity for coefficient matching of low degrees, although it does for coefficient
matching of high degrees. In general, it is unclear to what extend this increases the
speed of the calculations.

5.3 Timing results
In this section, we present results regarding the speed comparison between SDPA-GMP,
SDPB and our Julia solver CLRS. The problem considered is the Cohn-Elkies bound,
which is equivalent to the N -sphere packing bound for N = 1 and r = 1

2 . All solvers use
1024 bits precision. The problem is purely used as test case; there are other techniques to
solve this problem with good results [8]. In the case of SDPA-GMP, coefficient matching
was used with the Laguerre basis, both as basis for the sum of squares polynomials and
as basis for coefficient matching. For SDPB and CLRS, we also use the Laguerre basis for
the sum of squares polynomials. The sample points used are the default sample points of
SDPB. Furthermore, we set the stopping conditions to for all solvers to having a duality
gap of at most 10−15 with primal and dual error thresholds of 10−15. The remaining
parameters were taken to be the default for the solver, where we took the parameters of
SDPB as default for CLRS. All computations ran on the same computer.

5.3.1 Single thread
As can be seen in Figure 1, the complexity of SDPA-GMP is indeed higher than the
complexity of the specialized solvers. In addition, CLRS and SDPB require less time to
solve the problem than SDPA-GMP starting around d = 50.

Furthermore, CLRS is slightly faster than SDPB for this problem on one thread. As
SDPA-GMP has no multi-threaded implementation, we used a single thread to gener-
ate this plot. An important remark is that SDPA-GMP requires less precision for this
problem. Both SDPB and CLRS fail for d = 80 with a precision of 1024 bits, whereas
SDPA-GMP does not (although the answer is incorrect; it is therefore not included in
the figure). Furthermore, the problem can be solved with less bits with SDPA-GMP than
SDPB and CLRS for most d. Using a different precision would show itself in the plot as
a constant factor.
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Figure 1: The time needed to compute the Cohn-Elkies bound for constant start parameters
and varying degree on a logarithmic scale. For SDPA-GMP, coefficient matching was used. For
all algorithms, a single thread was used.

5.3.2 Multiple threads
There are several ways in which multiple threads would be usable in CLRS. First of
all, nearly everything can be done for each cluster (i.e. each polynomial constraint)
separately. Extra threads can then be used to speed up operations such as matrix multi-
plications in certain clusters. SDPB uses this since it is easier to scale to several clusters
of processors [20]. For the computation of the bilinear pairings and S, it is also possible
to distribute the computations which have to be done for a single sample point over
the threads. This has the advantage that the speedup obtained from the extra threads
directly scales with the number of threads for this part of the iteration. However, as the
computation of the bilinear pairings is often not the bottleneck, the approach taken by
SDPB is superior due to less communication overhead.

In Figure 2, we show the time needed to solve the program with SDPB and CLRS,
using one and two cores. The time needed for SDPA-GMP with one core is also included,
as extra reference. There are several interesting aspects of this figure. First, both CLRS
and SDPB are clearly faster than SDPA-GPM when using multiple cores. Although this
does seem an unfair comparison, it shows an advantage of the parallel solvers; SDPA-
GMP is not parallellized, even though it is possible for computing S.1 Second, SDPB has
a clear advantage on CLRS when using multiple cores. The reason for this is not com-

1In several other solvers of the SDPA family, the computation of S is parallellized [33].
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Figure 2: The time needed to compute the Cohn-Elkies bound for constant starting parameters
and varying degree, with one and two cores. SDPA-GMP has no possibility to run with multiple
cores. Different line styles represent different solvers (solid for SDPA-GMP, dashed for SDPB
and dotted for CLRS). Different colors represent different amounts of cores used (blue for one
core and red for two cores).

pletely clear when using two cores. A possible reason is extra communication overhead.
In CLRS, the multithreading is done within functions, whereas SDPB runs computations
completely on a core; only the calculations which connect clusters require communication
between cores. Furthermore, SDPB optimizes the distribution of clusters over threads
using timings of the first two iterations. In CLRS this is not done (at the time of writing
this thesis); the threads are used according to the native (static) scheduler, which evenly
divides the clusters over the threads. In this case, the distribution of the constraints
over the threads should be optimal or near to optimal. In the case of more cores than
constraints, SDPB assigns the extra cores to constraints in order to speed up operations
such as matrix multiplication. It is not clear to what extend this would be possible with
the linear algebra library which is currently used for CLRS.

It should be noted that this problem was chosen because of the simplicity and because
it is possible to solve with all solvers. In the next chapter, among others a three-point
bound is given using polynomial constraints in three variables. Because this requires more
polynomial weights than two, it is not possible to use this with SDPB. Furthermore, we
used symmetry reduction for extra speed, which introduces higher rank structures. This
is the main other difference between the capabilities of CLRS and SDPB; the former can
solve problems with higher rank structures whereas the latter cannot.
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6. Spherical cap packing

In this chapter, we consider the problem of packing spherical caps of N different sizes
on the unit sphere. This is related to spherical codes with unequal error protection. After
the general introduction, we consider two-point bounds, both for N = 1 and N > 1, using
the well-known Delsarte LP-bound and a theorem from de Laat et al. in [10]. In Section
6.3 the three-point bound for N = 1 of Bachoc and Vallentin [1, 2, 13] is considered, and
extended to N > 1. This extension can also be generalized to the general k-point bound,
as shown in Section 6.5.

6.1 Preliminaries

A spherical cap around a point e on the n-dimensional unit sphere Sn−1, the center, with
angle θ is defined by

Capn−1(e, θ) = {x ∈ Sn−1 | eTx ≥ cos(θ)} .

Let w(θ) be the fraction of the unit sphere Capn−1(e, θ) covers:

w(θ) =
ωn−1(S

n−2)

ωn(S
n−1)

∫ 1

cos θ

(1− u2)(n−3)/2du , (6.1)

where ωn(S
n−1) = (2πn/2)/Γ(n/2) is the surface area of the unit sphere, and Γ(x) is the

gamma function.
Given a graph G = (V,E), a set I ⊆ V is independent if no two vertices in I are

adjacent. Given a weight function w : V → R+, the weighted independence number
αw(G) is the maximum weight of an independent set in G:

αw(G) = max{
∑
x∈I

w(x) | I ⊆ V is independent} . (6.2)

The problem of finding the maximum density of a packing of spherical caps is equiva-
lent to finding the weighted independence number αw(G) of the infinite graph G = (V,E)
with V = Sn−1×{1, . . . , N}, where two vertices (x, i), (y, j) ∈ V are adjacent if the caps
Capn−1(x, θi) and Capn−1(y, θj) overlap, i.e. when

x · y > cos(θi + θj) .

The density of a packing of spherical caps is given by the sum of the contributions of the
caps in the packing to the density. Thus these contributions, the fraction of the sphere
covered by a cap, are the weights. For the case N = 1, it is equivalent to take weights of
1, and consider the cardinality of the packing instead of the density.
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6.2 Two-point bounds
A well-known upper bound for the (weighted) independence number of a graph G =
(V,E) is the (weighted) Lovász theta number:

θ′w(G) = inf M (6.3)

s.t. K − w1/2 ⊗ (w1/2)∗ is a positive definite kernel,
K(x, x) ≤M for x ∈ V ,

K(x, y) ≤ 0 for (x, y) 6∈ E with x 6= y ,

M ∈ R,K ∈ C(V × V ) is symmetric .

where C(V × V ) is the set of all continuous kernels on V . A kernel K on V is symmetric
if K(x, y) = K(y, x) for all x, y ∈ V , and positive definite if for all finite sets C =
{x1, . . . , xm}, the matrix (K(xi, xj))

m
i,j=1 is positive semidefinite. For the spherical cap

packing problem, we can restrict the positive definite kernels to be O(n) invariant: Any
rotation of an (optimal) solution, gives another (optimal) solution. Hence the group
average of an optimal solution is an optimal solution to θ′w(G) restricted to invariant
kernels.

Schoenberg [28] gives the following characterisation of O(n)-invariant positive definite
kernels on Sn−1.

Proposition 6.1. Let Pn
k denote the Gegenbauer polynomials with parameter n/2 − 1,

normalized such that Pn
k (1) = 1 for all n, k ∈ N. Each positive definite O(n) invariant

kernel on Sn−1 can be written as

K(x, y) =

∞∑
k=0

akP
n
k (x · y) , (6.4)

where ak are nonnegative, and the convergence is uniform and absolute.

Together with (6.3), this leads for N = 1 to the well-known linear programming
bound of Delsarte et al. [12], taking u = x · y:

inf M

s.t.
∞∑
k=0

ak ≤M − 1 ,

∞∑
k=0

akP
n
k (u) ≤ −1 for 1 ≤ u ≤ cos(θ) ,

ak ≥ 0 for all k ≥ 0 .

In [10], this is generalized to N > 1 using the following theorem:

Theorem 6.2 ([10, Theorem 2.1]). A symmetric kernel K ∈ C(V × V ) with V =
Sn−1 × {1, . . . , N} is positive and O(n)-invariant if and only if

K((x, i), (y, j)) = f(x · y)ij , (6.5)
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with

f(u) =

∞∑
k=0

AkP
n
k (u) , (6.6)

where Ak ∈ S
N is positive semidefinite for all k ≥ 0 and

∑∞
k=0 |fk,ij | < ∞ for all

i, j = 1, . . . , N , implying in particular that we have uniform convergence.
The theorem can be proven using Bochner’s characterisation for invariant kernels.

This leads to the following upper bound [10], taking (K−w1/2⊗ (w1/2)∗)((x, i), (y, j)) =
f(x · y)ij in (6.3):

inf M ∈ R (6.7)
s.t. f(1)ii ≤M − w(θi) ,

f(u)ij ≤ −w(θi)
1/2w(θj)

1/2 for 1 ≤ u ≤ cos(θi + θj) ,

Ak � 0 for all k ≥ 0 .

with f as defined in Theorem 6.2.
In practice, the sum is restricted to a degree d to obtain a solvable program. A higher

degree gives a better bound at the cost of a larger semidefinite program.

6.3 Three-point bounds
In [11], a general formulation for k-point bounds for the independence number α(G) is
given. For k = 3 this gives

inf M ∈ R (6.8)
s.t. T ∈ C(V × V × I1)�0 ,

B3T (S) ≤M − 1 for S ∈ I=1 ,

B3T (S) ≤ −2 for S ∈ I=2 ,

B3T (S) ≤ 0 for S ∈ I=3 ,

where I=k is the set of independent sets of cardinality k and Ik = ∪0≤i≤kI=k. The
operator B3 : C(V × V × I1)sym → C(I3 \ {∅}) is given by

B3T (S) =
∑
Q⊆S
|Q|≤1

∑
x,y∈S

Q∪{x,y}=S

T (x, y,Q) .

Furthermore, C(V ×V × I1)�0 is the set of continuous functions on V ×V × I1 which are
positive definite kernels on V ×V for all elements in I1. Bachoc and Vallentin characterise
such kernels. To state the theorem, we define, for i, j ≥ 0, the matrix elements

Y n
k (u, v, t)ij = uivj(1− u2)k/2(1− v2)k/2Pn−1

k

 t− uv√
(1− u2)(1− v2)

 .

A matrix U ∈ O(n) stabilizes z ∈ Sn−1 if Uz = z; the set of all such matrices is called
the stabilizer StabO(n)(z) of z.
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Theorem 6.3. Let z ∈ Sn−1 and Fk ∈ S
d−k+1
�0 for k = 0, . . . , d. Then

(x, y) 7→
d∑

k=0

Tr(FkY
n
k (x · z, y · z, x · y)T )

is a StabO(n)(z)−invariant positive definite kernel on Sn−1, and every StabO(n)(z)−in-
variant positive definite kernel is the uniform limit of kernels of this form.

Note that the transpose in the theorem is in fact not needed, because Fk is symmet-
ric. However, this increases the similarity between Theorem 6.3 and Theorem 6.4, the
generalization for N sizes of spherical caps. Furthermore, one can change the factor uivj

in the definition of Y n
k (u, v, t)ij to qi(u)qj(v) for any other basis of polynomials q. This

can be seen as changing basis for both Fk and Y n
k . Originally, the basis consisted of the

polynomials Pn+2k
i [1].

Using Theorem 6.3 to define T (x, y, {z}), and T (x, y, ∅) =
∑

k akP
n
k (x · y) gives the

three-point bound [13, program 8]:

inf M ∈ R (6.9)

s.t.
d∑

k=0

ak + F (1, 1, 1) ≤M − 1 ,

d∑
k=0

akP
n
k (u) + 3F (u, u, 1) ≤ −1 for − 1 ≤ u ≤ cos(θ) ,

F (u, v, t) ≤ 0 for (u, v, t) ∈ ∆ ,

Fk ∈ Sd−k+1
�0 , ak ≥ 0 for k = 0, . . . , d ,

where

F (u, v, t) =

d∑
k=0

〈Fk, S
n
k (u, v, t)〉

and

∆ = {(u, v, t) ∈ R3 | −1 ≤ u, v, t ≤ cos(θ), 1 + 2uvt− u2 − v2 − t2 ≥ 0} .

Furthermore, Sn
k =

∑
σ∈S3

σY n
k (u, v, t), where σ acts on Y n

k by permuting its arguments.
This symmetrization is possible because the points x, y and z behave similarly. The set
∆ is obtained from considering all valid tuples of inner products of points on Sn−1; the
first constraints in ∆ give that the caps do not overlap, and the last constraint together
with the bounds on u, v, t requires the centers to be on the sphere. Because F and ∆
are symmetric in u, v and t, symmetry reduction can be used to solve the problem more
efficiently; see Section 6.4 for the relevant details.

In the following, we will focus on the extension of this problem to N sizes of spherical
caps. For this, a characterization similar to Theorem 6.3 is needed. As before, we denote
the partial trace as Trm, where m is the dimension the trace is taken over.
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Theorem 6.4. Let z ∈ Sn−1 and Fk ∈ S
(d−k+1)N
�0 for k = 0, . . . , d. Then

((x, i), (y, j)) 7→
d∑

k=0

Trd−k+1(Fk(Y
n
k (x · z, y · z, x · y)T ⊗ IN ))ij

is a StabO(n)(z)−invariant positive definite kernel on V = Sn−1×{1, . . . , N}, and every
StabO(n)(z)−invariant positive definite kernel on V is the uniform limit of this kernels
of this form.

Here, O(n) acts on V by γ(x, i) = (γ−1x, i) for γ ∈ O(n), i.e. the action is restricted to
the natural action on the sphere. Theorem 6.4 can be seen as an element-wise application
of Theorem 6.3, similar to Theorem 6.2 being an element-wise application of Proposition
6.1.

Proof. We will prove it using Bochner’s Theorem. Let d ∈ N. As in [1] and [2],
Pol≤d(S

n−1) can be orthogonally decomposed as

Pol≤d(S
n−1) =

d⊕
k=0

d⊕
i=k

Hn−1
k,i , (6.10)

where Hn−1
k,i is isomorphic to Harmn−1

k , the O(n− 1)-irreducible space of homogeneous,
harmonic polynomials of degree k in n − 1 variables. To make this more concrete, we
have

Hn−1
k,i = span{ek,i,0, . . . , ek,i,d−k} ,

where for example

ek,i,j(x) = (x · z)jYn−1
k

(x− (x · z)z√
1− x · z

)
.

In this expression, Yn−1
k are the spherical harmonics in n− 1 variables.

Using the decomposition (6.10), the space Pol≤d(S
n−1)⊗R{1,...,N} can be decomposed

as

Pol≤d(S
n−1)⊗ R{1,...,N} =

d⊕
k=0

d⊕
i=k

(Hn−1
k,i ⊗ RN ) =

d⊕
k=0

d−k⊕
i=0

N⊕
a=1

Hn−1
k,(i,a) .

A basis of Hn−1
k,(i,a) can be given by (x, b) 7→ ek,i,j(x)δa(b) for j = 0, . . . , d−k, where δa(b)

is the kronecker delta.
Bochner’s characterization [5] gives that any positive definite kernel on V can be

written as

K((x, a), (y, a′)) =

d∑
k=0

mk∑
i,i

′
=1

N∑
b,b

′
=1

F k
(i,b),(i

′
,b

′
)

d−k∑
j=0

ek,i,j(x)ek,i′,j(y)δb(a)δb′(a
′)

=
d∑

k=0

mk∑
i,i

′
=1

F k
(i,a),(i

′
,a

′
)Y

n
k (x · e, y · e, x · y)i,i′

=

d∑
k=0

Trd−k+1(F
k(Y n

k (x · e, y · e, x · y)T ⊗ IN ))aa′ ,
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where the matrices F k are positive semidefinite. The sum over the basis is rewritten
using Theorem 3.1 and 3.2 of [1].

Uniform convergence follows from [9, Theorem A.8]. In fact, in this case it is equiva-
lent to stating that the set of polynomials is uniformly dense in the space of continuous
functions on the unit sphere.

We would like to use program (6.8) in a similar way for an upper bound on the spheri-
cal cap packing density with N sizes of caps. However, the program gives a bound for the
independence number α(G), the maximum number of points which form an independent
set in the graph G. Hence it cannot be used directly for finding the maximum density of
spherical caps on the unit sphere, which requires weights. Using the similarity between
the weighted and unweighted θ′(G) number, we find the weighted three-point bound
given in (6.11). Similarly, we can generalize the k-point bound of [11] to a weighted
k-point bound, see Section 6.5; program (6.11) is the special case with k = 3.

inf M ∈ R, F l
k, A

k � 0 (6.11)

s.t.
d∑

k=0

Ak
ii + F (1, 1, 1)iii ≤M − w(θi) for i = 1, . . . , N ,∑

σ∈S3

σ(F (u, v, t)ijl) ≤ 0 for (u, v, t) ∈ ∆ijl and i, j, l = 1, . . . N ,

2w(θi)
1/2w(θj)

1/2
d∑

k=0

Ak
ijP

n
k (u)

+ w(θi)
2/3w(θj)

1/3(2F (1, u, u)iji + F (u, u, 1)iij) for u ∈ [−1, cos(θi + θj)]

+ w(θi)
1/3w(θj)

2/3(2F (1, u, u)jij + F (u, u, 1)jji) and i, j = 1, . . . , N ,

≤ −2w(θi)w(θj)

where

F (u, v, t)ijl =
d∑

k=0

Trd−k+1(F
l
k(Y

n
k (u, v, t)T ⊗ IN ))ij

and

∆ijl = {(u, v, t) | − 1 ≤ u ≤ cos(θi + θl) ,

− 1 ≤ v ≤ cos(θj + θl) ,

− 1 ≤ t ≤ cos(θi + θj) ,

1 + 2uvt− u2 − v2 − t2 ≥ 0} .

Furthermore, σ ∈ S3 acts on F (u, v, t)ijl by permuting i, j, l; the permutation of u, v, t
follows from u = xi · xl, v = xj · xl and t = xi · xj . This leads to the same constraints for
(i, j, l) and σ(i, j, l), hence we only need to consider i ≤ j ≤ l while solving the program.
Note that, forN = 1, this is exactly the three-point bound for the maximum cardinality of



39

a spherical code, scaled by a factor w(θ1). In addition, setting F (u, v, t)ijl = 0 (equivalent
to not considering the part of the constraints on three points) gives the two-point bound
(6.7).

Proposition 6.5. Program (6.11) gives an upper bound to the spherical cap packing
density with cap sizes θ1, . . . , θN .

Proof. Let xi ∈ Sn−1 for i = 1, . . . ,m and r : {1, . . . ,m} → {1, . . . , N} be such that

C =

m⋃
i=1

Capn−1(xi, θr(i))

is a packing of spherical caps. Consider the sum

S =

m∑
i,j,l=1

F (xi · xl, xj · xl, xi · xj)r(i)r(j)r(l)w(θr(i))
1/3w(θr(j))

1/3w(θr(l))
1/3

+

m∑
i,j=1

d∑
k=0

Ak
r(i)r(j)P

n
k (xi · xj)w(θr(i))

1/2w(θr(j))
1/2 .

Note that, by Theorems 6.4 and 6.2,
m∑

i,j=1

F (xi · xl, xj · xl, xi · xj)r(i)r(j)r(l)w(θr(i))w(θr(j)) ≥ 0 , for l = 1, . . . , N

m∑
i,j=1

w(θr(i))w(θr(j))

d∑
k=0

Ak
r(i)r(j)P

n
k (xi · xj) ≥ 0 .

As w(θr(l)) ≥ 0, this means that S ≥ 0. The sum S also equals

∑
i

w(θr(i))
(
F (1, 1, 1)r(i)r(i)r(i) +

d∑
k=0

Ak
r(i)r(i)

)
+

∑
i 6=j

(
w(θr(i))

1/2w(θr(j))
1/2

d∑
k=0

Ak
r(i)r(j)P (xi · xj)

+ w(θr(i))
2/3w(θr(j))

1/3(F (1, xj · xi, xi · xj)r(i)r(j)r(i)

+ F (xj · xi, 1, xj · xi)r(j)r(i)r(i) + F (xi · xj , xi · xj , 1)r(i)r(i)r(j)
))

+
∑
i 6=j 6=l

w(θr(i))
1/3w(θr(j))

1/3w(θr(l))
1/3F (xi · xl, xj · xl, xi · xj)r(i)r(j)r(l)

≤
∑
i

w(θr(i))(M − w(θr(i)))−
∑
i 6=j

w(θr(i))w(θr(j))

=
∑
i

w(θi)
(
M −

∑
j

w(θj)
)
,

where the inequality is valid because of the constraints on F and because C is a non-
overlapping packing of spherical caps. Hence M ≥

∑m
i=1 w(θr(i)).
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6.4 Symmetry reduction
In [13], similar as in [23], program (6.9) was solved using symmetry reduction for the
constraint in three variables. In this section, we will recap the method used, and apply
it to the three-point bound for N sizes of spherical caps.

Let F be a 3-variate polynomial of degree 2d, invariant under the action of S3. We
require F to be positive on

∆ = {(u, v, t) ∈ R3 | −1 ≤ u, v, t ≤ cos(θ), 1 + 2uvt− u2 − v2 − t2 ≥ 0} .

Using Putinar’s Theorem, F is positive on ∆ implies that there are sums of squares
polynomials q0, . . . , q4 such that

F (u, v, t) = q0(u, v, t) + p(u)q1(u, v, t) + p(v)q2(u, v, t)

+ p(t)q3(u, v, t) + (1 + 2uvt− u2 − v2 − t2)q4(u, v, t) ,

where p(x) = (cos(θ)− x)(x+ 1). Reformulating ∆, we have

∆ = {(u, v, t) ∈ R3 | si ≥ 0 for i = 1, . . . , 4} ,

where

s1 = p(u) + p(v) + p(t) ,

s2 = p(u)p(v) + p(v)p(t) + p(u)p(t) ,

s3 = p(u)p(v)p(t) ,

s4 = 1 + 2uvt− u2 − v2 − t2 .

For a proof of the equivalence see [23, Lemma 3.1]. This gives

F = q0 +

4∑
i=1

siqi .

As F and si are symmetric in u, v, t, we can assume without loss of generality that the
qi are also symmetric in u, v, t. As in [13], we define symmetrized variables

φ1 = u+ v + t , φ2 = uv + vt+ ut , φ3 = uvt .

Let bd(φ1, φ2, φ3) be a vector of basis polynomials in φ1, φ2 and φ3 for polynomials up
to total degree d in u, v, t. Then one can show as used in [13], by [14], that for every
S3-invariant sums of squares polynomial q of degree 2d there are positive semidefinite
matrices Q1, Q2, Q3 such that

q(u, v, t) = Tr(Q1(bdb
T
d ⊗Π1)) + Tr(Q2(bd−2b

T
d−2 ⊗Π2)) + Tr(Q3(bd−1b

T
d−1 ⊗Π3)) ,

where

Π1 = 1 , Π2 = φ2
1φ

2
2 − 4φ3

2 − 4φ3
1φ3 + 18φ1φ2φ3 − 27φ2

3 ,

Π3 =

(
2φ2

1 − 6φ2 −φ1φ2 + 9φ3

−φ1φ2 + 9φ3 2φ2
2 − 6φ1φ3

)
.
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Note that Π3 is of rank 2 for general u, v, t. In SDPB, this would be another reason be-
cause of which the problem cannot be solved (next to the number of polynomial weights).
However, this is not a problem because CLRS accepts low rank structures instead of rank
1 structure. At the end of the next section, the difference between using symmetry with
the rank 2 structure and not using symmetry will be considered in the context of solving
time.

Because every polynomial used is S3-invariant, a sample point (u, v, t) actually rep-
resents constraints on σ(u, v, t) for every σ ∈ S3. Hence less sample points are needed
for the unisolvent set. Seen differently, this is because the subspace of invariant polyno-
mials has a lower dimension. See Section 4.6.5 for a discussion on how to choose sample
points in a symmetrized setting, and Section 6.7 for results and a discussion regarding
the quality of the solution.

For program (6.11), something similar can be done in case i = j, i = l, j = l or
i = j = l. Let us first consider the case i = j = l. Writing out all permutations gives the
constraint

F (u, v, t)iii + F (u, t, v)iii + F (v, u, t)iii + F (v, t, u)iii + F (t, u, v)iii + F (t, v, u)iii ≤ 0 ,

for (u, v, t) ∈ ∆iii = {(u, v, t) | u, v, t ∈ [−1, cos(2θi)], 1+2uvt−u2−v2− t2 ≥ 0}. Notice
that everything is completely symmetric in u, v, t, hence we can use the same strategy as
before.

Now suppose i = j 6= l. This gives

F (u, v, t)iil + F (v, u, t)iil + F (t, u, v)ili + F (t, v, u)ili + F (u, t, v)lii + F (v, t, u)lii ≤ 0 ,

for (u, v, t) ∈ ∆iil = {(u, v, t) | u, v ∈ [−1, cos(θi + θl)], t ∈ [−1, cos(θi + θj)], 1 +

2uvt− u2 − v2 − t2 ≥ 0}. This is symmetric in u, v, and hence we can use the following
reduction (as for [13, Program 2]). Let bd = bd(u, v, t) be a vector of basis polynomials for
the polynomials up to degree d, symmetric in u, v. Then, because of the decomposition

R[u, v, t] = R[u+ v, uv, t]⊕ (u− v)R[u+ v, uv, t] ,

any sums of squares polynomial q(u, v, t) which is symmetric in u, v can be written as

q(u, v, t) = Tr(Y1bdb
T
d ) + Tr(Y2(bd−1b

T
d−1)⊗ (u− v)2) .

The other cases follow similarly.

6.5 k-point bounds
In analog with the generalization from spherical cap packing with one cap to spherical cap
packing with N caps, for both the two and three-point bound, one can expect something
similar to happen for k-point bounds. As mentioned before, de Laat et al. derive in
[11] a hierarchy of k-point bounds for the independence number of a graph G = (V,E).
The corresponding three-point bound was shown in Section 6.3, and the two-point bound
reduces to the θ′ number. In this section, this is generalized to a k-point bound with N
different weights, similar to the generalizations of the two and three-point bounds.
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Let us first introduce the setting. Let k ≥ 2, and let C(V 2 × Ik−2)sym be the set
of continuous real-valued functions on V 2 × Ik−2 which are symmetric in the first two
coordinates. As before, I=k is the set of independent sets of cardinality k, and Ik =
∪i≤kI=k. An operator T ∈ C(V 2 × Ik−2) is said to be positive if for all Q ∈ Ik−2, the
kernel (x, y) 7→ T (x, y,Q) on V 2 is positive. The set of all such operators is denoted by
C(V 2 × Ik−2)�0. Define the following operator Bk : C(V 2 × Ik−2)→ C(Ik \ {∅}):

BkT (S) =
∑
Q⊆S

|Q|≤k−2

∑
x,y∈S

Q∪{x,y}=S

T (x, y,Q) .

Then the independence number is upper bounded by the following program [11,
Proposition 2.1]:

inf M ∈ R (6.12)
s.t. T ∈ C(V × V × I1)�0 ,

BkT (S) ≤M − 1 for S ∈ I=1 ,

BkT (S) ≤ −2 for S ∈ I=2 ,

BkT (S) ≤ 0 for S ∈ I=l , 3 ≤ l ≤ k ,

Let wi ∈ R+ be weights for i = 1, . . . , N , and let w : V → {wi | i = 1, . . . , N} be an
assignment of the weights to points in V . To take the weights into account, we change
Bk to B′

k, defined by

B′
kT (S) =

∑
Q⊆S

|Q|≤k−2

( ∏
z∈Q

w(z)1/(|Q|+2)
) ∑

x,y∈S
Q∪{x,y}=S

T (x, y,Q)w(x)1/(|Q|+2)w(y)1/(|Q|+2) .

We use the following program:

inf M ∈ R (6.13)
s.t. T ∈ C(V × V × I1)�0 ,

B′
kT (S) ≤ w(S)(M − w(S)) for S ∈ I=1 ,

B′
kT (S) ≤ −2w(S) for S ∈ I=2 ,

B′
kT (S) ≤ 0 for S ∈ I=l , 3 ≤ l ≤ k ,

where w(S) =
∏

x∈S w(x).

Proposition 6.6. Program (6.13) gives an upper bound on the weighted independence
number with N weights.

The proof is very similar to the proof of Proposition 6.5.

Proof. Let T ∈ C(V 2 × I1)�0 be a feasible solution to program (6.13), and let C =
{x1, . . . , xm} be an independent set in V , with weights wi and weight assignment w :
V → {wi | i = 1, . . . , N}.
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Since T is positive, we have∑
S⊆C

|S|≤k,S 6=∅

B′
kT (S) =

∑
S⊆C

|S|≤k,S 6=∅

∑
Q⊆S

|Q|≤k−2

∑
x,y∈S

Q∪{x,y}=S

T (x, y,Q) (w(Q)w(x)w(y))
1/(|Q|+2)

=
∑
Q⊆C

|Q|≤k−2

w(Q)1/(|Q|+2)
∑

x,y∈C

T (x, y,Q)(w(x)w(y))1/(|Q|+2) ≥ 0 ,

because (x, y) 7→ T (x, y,Q) is a positive kernel for all Q ∈ Ik−2. Furthermore, because
T is feasible and C is an independent set, we have

∑
S⊆C

|S|≤k,S 6=∅

B′
kT (S) ≤

∑
x∈C

w(x)(M − w(x))−
∑

x 6=y∈C

w(x)w(y) =
∑
x∈C

w(x)

M −
∑
y∈C

w(y)

 .

Note that the second constraint is split into (x, y) and (y, x), each using −w(S) of the
right hand side. Together, this gives M ≥

∑
x∈C w(x).

This is particularly useful for sets V = V ′×{1, . . . , N}, where each i = 1, . . . , N of the
second set has a weight (such as in spherical cap packing with N sizes of caps). However,
to obtain a solvable SDP, it is required that T (x, y,Q) is representable by semidefinite
matrices. Furthermore, even with symmetry reduction, the number of constraints will
be proportional to N2, due to the factor w(S) in the second constraint set. If the last
constraints cannot be fully reduced, which is the case for spherical cap packing with N
sizes of caps, the number of constraints can even be proportional to Nk.

6.6 Conversion to MPMP and time complexity
All two and three-point bounds introduced in the previous sections can easily be for-
mulated as MPMP constraints, similar to the conversion in Section 5.1. Let us give a
quick recap of the most important constraints. The polynomial constraints are nearly of
the required form; rewriting it in terms of single variables (the matrix elements of Fk) is
enough to identify the P j

i of the general MPMP. The constraints that might not be clear
are the constraints on constants. This can be seen as a polynomial constraint of degree
0, hence requiring 1 sample point.

Recall that the complexity per iteration of CLRS is given by

O

N3
v +

∑
j

(
N2

vm
2
jKj +Nvm

4
jK

2
j +m6

jK
3
j +

Lj∑
l=1

(
ηj,lm

2
jKjU

2
j,l + η2j,lm

4
jK

2
jUj,l

) ) ,

where Nv is the number of variables, mj are the matrix sizes of the constraints, Uj,l

is the number of basis polynomials, Kj is the number of sample points, and ηj,l is the
rank of the polynomial weights; we directly used Pj = O(m2

jKj). To make the difference
clear between the number of scalar variables and the number of sizes of spherical caps,
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we write Nv for the number of variables. We will apply this to get the complexities of
computing the bounds for spherical cap packing. As the most interesting case is how the
complexity changes with the degree d, we will only consider the term with the highest
power of d. The programs for N = 1 are special cases of the programs with N > 1,
and thus they will not be considered separately. We will use a maximum degree of 2d.
This is commonly done, because it leads to bases with degree d for the sums of squares
factors. This introduces constants in the time complexity, which can be hidden in the
big O notation.

For the two-point bound (6.7), the variables are fk ∈ SN , hence it requires N(N+1)
2 (2d+

1) = O(N2d) variables to model f0, . . . , f2d. Additionally, M is a variable which does
not depend on d. For each i = 1, . . . , N , there is one constraint on the diagonal value of
f(0), giving N constraints of constants. Furthermore, there are N(N+1)

2 polynomial con-
straints of degree 2d, in n = 1 variable. These constraints give a complexity of O(N2d3)
for computing S. Furthermore, the complexity of computing the Cholesky decomposi-
tion of Q is O((N2d)3) = O(N6d3). As N is kept constant to obtain bounds, only the
complexity in d is of interest.

The three-point bound (6.11) requires variables F l
k ∈ SN(2d−k+1) and Ak ∈ SN , for

k = 0, . . . , 2d and l = 1 . . . , N , and the variable M for the objective. This gives a total
number of

Nv = N

2d∑
k=0

N(2d− k + 1)(N(2d− k + 1) + 1)

2
+

N(N + 1)

2
2d+ 1 = O(N3d3)

variables, giving already a complexity of O(N9d9) for the Cholesky decomposition of
Q in the algorithm. This is the most significant part in the complexity, although the
other parts such as computing S, C−1B and Q have a similar complexity in d. As
an example we will compute the complexity for computing the S block corresponding
to the multivariate constraints: There are O(N3) constraints with three variables have
Kj =

(
3+2d

3

)
= O(d3) and Uj =

(
3+2
3

)
= O(d3), Lj = 8, giving a complexity of O(N3d9).

Note that, because the degree of the polynomials varies from 0 to 3, the actual values of
Uj,l will differ per block l. This gives a lower constant in front of the d9, but does not
change the maximum power of d.

In this case, SDPA-GMP gives a complexity of O(N5d12), due to the term m5
jKjU

3
j,l.

Again, the term m5
j comes from including the Er,s, which gives m2

jKj constraints instead
of Kj . However, note that in the multivariate case with the monomial basis, the con-
straint matrices will be very sparse when using coefficient matching. This means that
the practical complexity will be greatly reduced.

6.6.1 Speedup due to symmetry reduction
In [23, 13], polynomial symmetry was used to reduce the size of the SDP, after which
it was solved with SDPA-GMP. Here we will consider the improvement made by using
symmetry with CLRS. First we consider the computation of the block of S corresponding
to the multivariate constraint, costing O(

∑
l mjU

2
l,jKj+m2

jUj,lK
2
j ) in complexity. Recall
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that the constraint has n = 3 variables, and that it is written as

−F (u, v, t) = q0(u, v, t) + p(u)q1(u, v, t) + p(v)q2(u, v, t)

+ p(t)q3(u, v, t) + (1 + 2uvt− u2 − v2 − t2)q4(u, v, t) ,

without symmetry reduction, where p(u) has degree 2. Hence deg q0 = 2d,deg qi =
2(d − 1) for i = 1, 2, 3 and deg q4 = 2(d − 2). Note that the constants in the time
complexity will be the same for both the symmetry reduced case as the normal case.
Hence comparing them can be done by computing and dividing

∑
l Ul,jK

2
j + U2

j,lKj .
Without symmetry reduction, the basis has a length of Ud =

(
d+3
3

)
for a sum-of-squares

polynomial of degree 2d (and thus a basis up to degree d). Furthermore, for equality we
need equality on Kd =

(
2d+3

3

)
sample points. This gives, up to a factor, a computation

time of
Kd(U

2
d + 3U2

d−1 + U2
d−2) +K2

d(Ud + 3Ud−1 + Ud−2) .

With symmetry reduction, we can write the constraint as, with F of degree 2d,

−F (u, v, t) = 〈Q0
1, bdb

T
d ⊗Π1〉+ 〈Q0

2, bd−3b
T
d−3 ⊗Π2〉+ 〈Q0

3, bd−2b
T
d−2 ⊗Π3〉

+ 〈Q1
1, s1bd−1b

T
d−1 ⊗Π1〉+ 〈Q1

2, s1bd−4b
T
d−4 ⊗Π2〉+ 〈Q1

3, s1bd−3b
T
d−3 ⊗Π3〉

+ 〈Q2
1, s2bd−2b

T
d−2 ⊗Π1〉+ 〈Q2

2, s2bd−5b
T
d−5 ⊗Π2〉+ 〈Q2

3, s2bd−4b
T
d−4 ⊗Π3〉

+ 〈Q3
1, s3bd−3b

T
d−3 ⊗Π1〉+ 〈Q3

2, s3bd−6b
T
d−6 ⊗Π2〉+ 〈Q2

3, s3bd−5b
T
d−5 ⊗Π3〉

+ 〈Q4
1, s4bd−2b

T
d−2 ⊗Π1〉+ 〈Q4

2, s4bd−5b
T
d−5 ⊗Π2〉+ 〈Q4

3, s4bd−4b
T
d−4 ⊗Π3〉 .

because deg s1 = 2,deg s2 = 4,deg s3 = 6 and deg s4 = 3, with Πi as defined before.
Recall that Π1,Π2 are of size 1 and Π3 is of size 2. Furthermore, bd is a basis of the
invariant polynomials in variables u+ v+ t, uv+ vt+ ut and uvt up to total degree d in
u, v, t. Such a vector of basis polynomials has length

Us
d =

d∑
i=0

b(d−i)/2c∑
j=0

b d−i−2j
3 c∑

k=0

1 =

d∑
i=0

d−i∑
j=i

d−i−j∑
k=j

1 ,

where the first expression is obtained from considering all possible powers of the variables
u+ v + t, uv + vt+ ut and uvt, and the second expression is obtained from considering
the unisolvent set of rational points in the simplex with denominator d. Because the
basis is symmetric, a point (u, v, t) represents all permutations σ(u, v, t), and hence the
rational points in the simplex with u ≤ v ≤ t are a unisolvent set for the symmetrized
case. Empty sums (for example j > d − i − j in the second expression) are understood
to evaluate to 0.

Note that, for Qi
3, the length of the final vectors in CLRS is 2Us

d because Π3 is of
size 2. We also require only Ks

d = Us
2d sample points instead of Kd = U2d, due to the

symmetry. This gives a computation time, up to the same factor as for the non-symmetric
case, of

Ks
d((U

s
d )

2 + (Us
d−1)

2 + 10(Us
d−2)

2 + 10(Us
d−3)

2 + 17(Us
d−4)

2 + 10(Us
d−5)

2 + (Us
d−6)

2)

+ (Ks
d)

2(Us
d + Us

d−1 + 10Us
d−2 + 10Us

d−3 + 17Us
d−4 + 10Us

d−5 + Us
d−6) ,
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where we grouped together all terms with the same U . The terms with Π3 where counted
8 times; 2 times because the vectors are twice as long, and 22 times because the matrix is
of rank 2 and thus requires 4 times the number of computations. Note that this is valid
for d ≥ 6; for lower d not every term has to be taken into account.

The second operation in which a speedup can be seen is in the computation of Q =
(C−1B)TC−1B. This involves multiplication of matrices of size N × Kj and Kj × N ,
hence the speedup will be proportional to Kd/K

s
d. Note that other processes will be sped

up too, such as the Cholesky decomposition of Sj and inverting X, because there are
less sample points needed and the largest matrix blocks are reduced in size. The actual
speedup depends on the interplay between these speedups and the parts corresponding
to other constraints, or which only depend on the number of variables yi. Experiments
show that the Cholesky decomposition of Q becomes the bottleneck for the three-point
bound. This is especially the case when using multiple threads, because it cannot be
easily parallellized.1 As the Cholesky decomposition of Q does not depend on the basis
or the sample points but purely on the number of free variables, it does not profit from
the symmetrization.

To compare the two cases, we plot in Figure 3 the computation time for the non-
symmetric case divided by the computation time for the symmetric case versus d, for
the most important computations which are sped up. With SDPA-GMP, the highest d
for which computations where done was d = 16 by Machado and De Oliviera Filho [23],
although a slightly different program was used. Therefore we plot it up to d = 30, which
will not be reached in the near future.

6.7 Experiments concerning sampling with symmetry
reduction

To use the solver introduced in Chapter 3 for the computations, one needs to choose bases
and sample points for each constraint. In this section, we will consider the multivariate,
symmetrized constraints, and show what problems can be encountered. In particular,
the case of n = 3 and degree 2d was considered, using N = 1 caps with angle θ1 = π/3.
This problem is equivalent to the kissing number τn. It is known that τ3 = 12.

Recall that, for N = 1, the multivariate constraints are symmetric in u, v and t. We
use symmetry reduction as explained in Section 6.4 to reduce the number of required
sample points and the length of the bases. In [23], the basis polynomials used were the
polynomials (u + v + t)a(uv + vt + ut)b(uvt)c with a + 2b + 3c ≤ d. We apply a basis
change to obtain the basis with polynomials Pn

a (u+ v+ t)Pn
b (uv+ vt+ ut)Pn

c (uvt) with
the same requirement for a, b, c, where Pn

a are the Gegenbauer polynomials of degree a
with parameter n/2− 1 as before. This in general improves the solution quality. When
using coefficient matching, this also reduces the sparsity and thus the speed of the solver
SDPA-GMP.

1There are parallellized algorithms for the Cholesky factorization, see for example [15]. Such algo-
rithms are not available for arbitrary precision in the standard libraries for Julia, and do not seem often
used. In general, such parallellized algorithms are less efficient, and thus a speedup is only seen for a
high number of cores and large matrices.
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Figure 3: The theoretical relative speedup for the computation of Sj due to symmetry reduction,
corresponding to bases of degree d, and hence a program with a maximum degree of 2d.

We tried several methods to choose sample points, because we noted that the choice
of the sample points can greatly influence the value of the solution. Some of the solutions
are clearly not solutions to the initial problem, as the value does not upper bound the
kissing number. We give a number of the methods with their results.

6.7.1 Rational points in the simplex
As mentioned in Section 4.6.5, one method to obtain sample points is to take the rational
points in the unit simplex with denominator 2d, where the polynomials have degree 2d.
To symmetrize this, only the points (u, v, t) with u ≤ v ≤ t were taken into account for
the solving. This gives for n = 3 and d = 6 a value of 5.685, although the number of
spherical caps with angle θ = π/3 is known to be 12 for n = 3.

6.7.2 Approximately maximizing the Vandermonde matrix
We tried several methods using the greedy maximization of the Vandermonde matrix,
with different starting sets. The basis of Gegenbauer polynomials in the symmetrized
variables was used in each case.
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Chebyshev points with increasing degree

Following the Padua points, we chose a subset of C2d+1 × C2d+2 × C2d+3 which ap-
proximately maximizes the Vandermonde matrix. In this case, the Chebyshev points
were taking in the interval [−1, cos(θ)]. Although this often gives a good unisolvent
set for polynomial interpolation, it was not possible to compute the bound for this set
of sample points. Because every point was of the form (u, v, t) with u 6= v 6= t 6= u,
the set represented a too large number of points in the non-symmetrized basis. This
seemed to introduce implicit linear dependencies. In case of linear dependencies, the
Schur complement matrix S becomes singular. This in general means that it has a small
negative eigenvalue due to the use of floating point numbers, which makes the Cholesky
decomposition impossible.

Chebyshev points with the same degree

As points of the form (u, u, u) and (u, u, v) were needed, the second set we considered
was C3

4d+1 with the requirements as explained in Section 4.6.5. Note that the size was
also increased, to have more possible good sample points. This gives a value of 12.36 for
d = 6. Although this is an upper bound, this is lower than the bound given by [23] for
d = 16, and thus cannot be expected to be the value for d = 6.

Combining Chebyshev points of the same degree with increasing degree

We combined the two previous methods; the points with u = v = t which were needed
were chosen from C3

4d+1, the points with u = v 6= t were chosen from C2
4d+1 × C4d+2

and the points with u, v and t distinct were chosen from C4d+1 × C4d+2 × C4d+3. This
further increased the value to 12.51, although computing the value for the bound with
SDPA-GMP and coefficient matching gives 12.71 for d = 6.

6.7.3 Results for higher degrees d

We used the last mentioned method of combining Chebyshev points of multiple degrees
with degrees starting from 3d + 1 to obtain values for d = 6, . . . , 10. This gave results
as stated in Table 3. Note that, even though the bound should be decreasing, the value
increases when increasing d from for example 6 to 7. The exact reason for this is unclear;
a possible cause is the bad conditioning of the Vandermonde matrices, i.e., a determinant
of 10−130 to 10−900 in absolute value.

d 6 7 8 9 10
value 12.11 12.47 12.40 12.52 12.59

Table 3: Optimal values returned by CLRS when using bases of length d. Sample points were
chosen as subset of C

3
3d+1, C

2
3d+1 × C3d+2 or C3d+1 × C3d+2 × C3d+3 resembling the weight

distribution of the symmetrized rational points in the simplex with denominator 2d.
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6.7.4 Further research
Although these results are not important in the context of spherical cap packing (the
results are not expected to be correct), they show what has to investigated before the
techniques can be used with confidence in the multivariate case. First of all, in what
sense does taking sample points in the symmetrized setting, representing more sample
points than needed for n-variate polynomials of degree d, introduce linear dependencies?
This is not entirely clear, because the solver only ‘sees’ the symmetrized basis. Invariance
theory might be able to provide answers to this and related questions. Secondly, and
more practical, what is a good set of sample points to choose or a good heuristic to
choose sample points in multivariate polynomial optimization, when considering invariant
polynomials? This is intertwined with the problem of choosing a good basis, as the
combination of basis and sample points determine the conditioning of the Vandermonde
matrix.
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7. Conclusion and recommendations

This thesis focuses mainly on two parts. In the first part, we introduced the clustered,
low-rank semidefinite program, together with the solver CLRS. CLRS is based on SDPB
[29] and exploits the structure of the problem for faster computations similar to, but more
general than, SDPB. This was applied to multivariate polynomial (matrix) programs,
which give such a structure. The time complexity results are promising, showing the
expected speedup.

The solver CLRS currently uses the C library Arb [17] for most of the computations,
through the Julia library Arblib. It does not seem to be possible to explicitely use multiple
threads for operations such as matrix multiplication, which may be possible using other
arbitrary precision arithmetic libraries. Furthermore, Arb uses ball-arithmetic, which is
unstable for operations such as Cholesky decompositions on near to singular matrices.
For most other operations, it is possible to use versions without error bounds.

In the second part, we give two applications of the multivariate polynomial matrix
programs. We compute the Cohn-Elkies bound on the sphere packing density for several
polynomial degrees to compare the speed of SDPA-GMP, SDPB and CLRS. This shows
that, the solver can compete with and surpass SDPA-GMP in the type of problems
considered with one thread. In addition, the more general Julia solver CLRS is slightly
faster than the C++ solver SDPB for one thread, although it uses extra threads less
efficiently. For the example problem, CLRS and SDPB are clearly faster than SDPA-
GMP when using multiple threads, which is not possible to do with SDPA-GMP.

Furthermore, the problem on spherical cap packing with N sizes of caps is considered.
We give a new three-point bound for N caps, extending the three-point bound for equal
sized caps of Bachoc and Vallentin [1, 2] and the two-point bound for N sizes of caps of
de Laat et al. [10].

The three-point bound can be solved faster with symmetry reduction, which leads
to the question how multivariate sampling combined with semidefinite programming can
be done in the setting of invariance theory. It is unclear how a good unisolvent set of
sample points can be chosen without introducing implicit linear dependencies. Although
it has been encountered in this thesis for S3 symmetries, other group symmetries may
have similar issues. Further research is needed for the combination of sampling for
semidefinite programming and invariance theory.

As a last remark, it would be interesting if other applications beside polynomial
optimization can be found for the solver.
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A. Proof of Theorem 4.1

In this appendix we will give a detailed proof of Theorem 4.1:

Theorem 4.1 ([27, 19]). Let f ∈ R[x]m×m, G ⊆ R[x]. Suppose MG is archimedean. If
f � 0 on SG, then f ∈MG.

We follow the proof of [19]. Let L : Sym(R[x̄]m×m)→ R be a linear functional. L is
called a state on (Sym(R[x̄]m×m),MG) if L(MG) ⊆ R+, and L(I) = 1. L is a pure state
if it is a state and it is an extreme point of the convex set of all states. Furthermore, we
recall the definition of an algebraic interior point of a convex set A in a vector space X
[3]: a ∈ A ⊆ X is an algebraic interior point of A if ∀x ∈ X ∃ε > 0 : a+ εx ∈ A.

We also state Theorem 9 of [19], which we will use in the proof of Theorem 4.1.

Theorem A.1 ([19, Theorem 9]). Suppose G ⊆ R[x̄]m×m, and MG is archimedean. For
each pure state L on (Sym(R[x̄]m×m),MG), there exists x ∈ SG and a unit vector v ∈ Rm

such that
L(p) = vT p(x)v for all p ∈ Sym(R[x̄]m×m) .

Proof of Theorem 4.1. Suppose MG is archimedean, and f 6∈ MG. We will prove that I
is an interior point of MG in order to separate fR>0 and MG. Let p ∈ Sym(R[x̄]m×m).
As MG is archimedean, there is an N ∈ N such that NI − p2 ∈ MG. MG is a convex
cone, which implies that

(NI − p2) + (p+ I)2 = NI + 2p+ I ∈MG .

So I + 2
N+1p ∈MG, i.e. I is an algebraic interior point of MG.

By separation Theorem III.1.7 of Barvinok’s A Course in Convexity [3], there is a
linear functional L with L(MG) ≥ 0 and L(fR>0) ≤ 0. By scaling, L is a state on
(Sym(R[x̄]m×m),MG).

We will prove that the set of such states is weak* compact. Note that, because p is
symmetric with real coefficients, we have L((p± I)T (p± I)) = L(pT p)± 2L(p) +L(I) ≥
0, hence |L(p)| ≤ 1

2 (L(p
T p) + 1). Because MG is archimedean, there is an N ∈ N

such that N − pT p ∈ MG for every p ∈ R[x̄]m×m. Hence L(N − pT p) ≥ 0, which
gives the bound L(pT p) ≤ N using the linearity and the definition of a state. Define
Ip = [− 1

2 (Np + 1), 1
2 (Np + 1)] and

C :=
∏

p∈Sym(R[x̄]m×m
)

Ip ,

where Np ∈ N denotes the smallest constant, only dependent on p, for which Np− pT p ∈
MG. As a direct product of compact intervals, C is compact in the product topology by
Tikhonov’s theorem. We can identify the states on (Sym(R[x̄]m×m),MG) with a closed
subset of C; every linear functional L can be identified with a vector (L(p))p, and the
set of such vectors is sequentially closed because of continuity of the linear functionals
L. Note that, because the product topology is the weakest topology where projections
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Tp are continuous, this identification defines a bijection between the weak* topology on
(Sym(R[x̄]m×m),MG) (open sets are unions of finite intersections of the basic open sets
U(p, α, β) = {L | α < L(p) < β}), and the product topology.

The set of states with L(f) ≤ 0 is a closed subset of C, which is thus also compact
in the product topology. The product topology is locally convex, hence we can use the
Krein-Milmann Theorem [3, Theorem III.4.1] to choose L to be pure (i.e. an extreme
point). By Theorem A.1, L(f) = vT f(x)v ≤ 0 for some x ∈ SG and unit vector v ∈ Rm,
hence f 6� 0.
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B. Improvements of Theorem 4.1 in the uni-
variate case

In this appendix we consider the univariate case of Theorem 4.1, with G consisting
of polynomials rather than polynomial matrices. This allows for equivalence between
positive semidefinite polynomial matrices on both compact and (semi) infinite intervals.
Starting with SG = R, we have the following theorem, which is equivalent to the Biform
Theorem of [7, Theorem 7.1] by considering the homogenized version of xT f(y)x.

Theorem B.1. Let f ∈ R[x]m×m. Then f � 0 on R if and only if f = S(x)TS(x) for
some S(x) ∈ R[x]t×m with t ≤ 2m.

Note that the degree of S is at most bdeg(f)2 c, because terms of the highest degree
cannot cancel on the diagonal, and f(x) � 0 when x→∞.

This can be extended to SG = R+, or more general SG = [a,∞) by a translation.

Theorem B.2 ([29, Theorem 2.1]). Let f ∈ R[x]m×m. f � 0 on R+ if and only if
f = s0+xs1, where s0, s1 ∈M∅. Furthermore, deg(s0) ≤ deg(f) and deg(xs1) ≤ deg(f).

Proof. The ‘if’ direction is clear. The converse follows from Theorem B.1 by taking
x = x̂2. Define f̂(x) = f(x2). Then f̂ � 0 on R, so by Theorem B.1 we have

f̂(x) = S(x)TS(x) =
N∑
i=1

si(x)
T si(x) =

N∑
i=1

(s0i (x) + xs1i (x))
T (s0i (x) + xs1i (x)) ,

where sji (x) has only even powers. One such a product gives the terms

s0i (x)
T s0i (x) + x2s1i (x)

T s1i (x) + x(s0i (x)
T s1i (x) + s1i (x)

T s0i (x)) .

Note that, because f̂(x) = f(x2) and f is a polynomial matrix, f̂ has only even powers
of x. As all powers in the cross term are odd, we obtain

N∑
i=1

x(s0i (x)
T s1i (x) + s1i (x)

T s0i (x)) = 0 .

Hence we have

f(x) =

N∑
i=1

(
s0i (
√
x)T s0i (

√
x) + xs1i (

√
x)T s1i (

√
x)
)
= S0(x)

TS0(x) + xS1(x)
TS1(x) .

The bound on the degree is clear from the fact that terms on the diagonal with the
highest degree cannot cancel, and the term with the highest degree is on the diagonal
because f � 0 on R+.

Theorem B.3. Let f ∈ R[x]m×m. Then f � 0 on [a, b] if and only if
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• f(x) = s0(x)+(b−x)(x−a)s1(x) with deg(s0(x)),deg((b−x)(x−a)s1(x)) ≤ deg(f)
resp. deg(f) + 1 when deg(f) is even resp. odd.

• if deg(f) is odd, f = (x − a)s0(x) + (b − x)s1(x) with deg((x − a)s0(x)),deg((b −
x)s1(x)) ≤ deg(f)

where s0, s1 ∈M∅.

Note that this is Lukács Theorem for polynomial matrices. We will prove it in a
similar fashion as the polynomial version in [21].

Proof. The ‘if’ direction is clear, as s0 and s1 are positive semi-definite on R.
Conversely, suppose f � 0 on [a, b]. By an affine transformation, we may assume that

[a, b] = [−1, 1]. Define the matrix Goursat transform as:

G(f)(x) = (1 + x)df(
1− x

1 + x
) ,

where d = deg(f) and f ∈ R[x]m×m. Similar to the normal Goursat transform for
polynomials, G(f) � 0 on R+ if and only if f � 0 on [−1, 1], and G(G(f)) = 2df . Both
properties are easily verified. As f � 0 on [−1, 1] by assumption, G(f) � 0 on R+.
Hence G(f) = S0(x)

TS(x) + xS1(x)
TS1(x) for some polynomial matrices S1 and S0 by

Theorem B.2. Taking the Goursat transform, we obtain

2df(x) = (1 + x)d(S0(
1− x

1 + x
)TS0(

1− x

1 + x
) +

1− x

1 + x
S1(

1− x

1 + x
)TS1(

1− x

1 + x
)) ,

= (1 + x)d−2d0G(S0)
TG(S0) + (1− x)(1 + x)d−2d1−1G(S1)

TG(S1) ,

where di = deg(Si).
Suppose d is even. Then this clearly admits the required form, with

s0(x) =
(
(1 + x)d/2−d0G(S0)

)T(
(1 + x)d/2−d0G(S0)

)
,

s1(x) =
(
(1 + x)d/2−d1−1G(S1)

)T(
(1 + x)d/2−d1−1G(S1)

)
.

Note that the degree bound is satisfied because deg(s0) ≤ 2(d/2 − d0 + d0) = d and
similarly deg((1− x2)s1) ≤ d.

Suppose d is odd. Then the first term is (1+x) times a sum of squares of polynomial
matrices, and the second term is (1 − x) times a sum of squares, giving the second
decomposition with the degree bound. Moreover, using the identities

1 + x =
(1 + x)2

2
+

1− x2

2

1− x =
(1− x)2

2
+

1− x2

2

this decomposition can be rewritten to the first form with the required degree bound.
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