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ABSTRACT

High-speed supersonic radial compressors are a critical en-
abling technology for meeting the requirements of future aviation-
propulsion and thermal-management systems. These turboma-
chines must be designed to be both efficient and robust on the
widest possible operating range. Flow instabilities in the form
of rotating stall and surge are therefore phenomena that must be
accurately predicted early in the design process. Unsteady full-
annulus computational fluid dynamics can be used to get accurate
information about the onset of instabilities, but at the expense of
costly simulations. As a result, the design of new compressors
continues to rely on existing correlations for the prediction of
the critical mass flow rate. This approach, however, leads to
sub-optimal compressor designs.

This article provides a review of the numerical methodolo-
gies that can be used for the accurate prediction of the critical
mass flow rate in high-speed centrifugal compressors. Methods
of different fidelity level and computational cost are described.
Two particularly promising models, namely those proposed by
Spakovszky and Sun, are subsequently examined in more de-
tail. Exemplary applications of these two models are finally
discussed.
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NOMENCLATURE

Acronyms
CFD Computational Fluid Dynamics
RANS Reynolds-Averaged Navier-Stokes Simulations
URANS Unsteady RANS
LES Large Eddy Simulations
Hi-Fi CFD High-fidelity unsteady CFD modeling
ROM-CFD Reduced-order unsteady CFD modeling
LSA Linearized stability analysis

∗Corresponding author: m.pini@tudelft.nl

Roman letters
F Body force
x State space vector
𝜌 Density
u Absolute velocity
v Drag velocity
w Relative velocity
𝑝 Pressure
𝑠 Entropy
𝑇 Temperature
𝐵 Greitzer parameter
𝐺 Geometrical parameter
𝑅𝑆 Rotational speed
𝐷𝐹 Damping factor
𝑉 Volume
𝐴 Area
𝐿 Length

Greek letters
Ω Shaft angular speed
𝜙 Non-dimensional mass flow rate
𝜓 Non-dimensional pressure
𝜏 Time-lag parameter

Superscripts and subscripts
1 Input station
2 Output station
𝑢𝑝 Upstream station
𝑑𝑛 Downstream station
𝑐 Compressor
𝑡 Throttle
𝑝 Plenum
𝑟 Radial component
𝜃 Tangential component
𝑧 Axial component
𝑠𝑠 Steady-state
𝑎𝑥 Axial duct
𝑑𝑖 𝑓 Vaned diffuser
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𝑣𝑙𝑠𝑑 Vaneless diffuser
𝑖𝑚𝑝 Impeller
𝑟𝑎𝑑 Radial swirling flow
(̄) Mean value
()′ Perturbation from the mean value

1. INTRODUCTION
The current trend of increasing the pressure ratio and speed in

radial compressors of novel propulsion and thermal management
systems can lead to compact transonic designs characterized by
reduced operating range. Examples of such applications are high-
speed air compressors for H2-fed fuel cells, refrigerant cycle
compressors for environmental control systems (ECS) based on
the vapor-compression cycle concept (VCC), and compressors
for novel turbo-shafts of onboard power-generation systems for
hybrid propulsion [1]. Operation at reduced mass flow rate is
particularly severe for high-speed machines due to the occurrence
of shock-wave – boundary-layer interaction phenomena and large-
scale boundary layer separations that can lead to rotating stall or
surge [2].

Surge consists of axisymmetric flow perturbations that
lead, in the most dramatic case, to intermittent reverse flow
(i.e., deep surge). Its fundamental mechanism was described
by Greitzer [3], who attributed the phenomenon to the natural
resonance of the compression system excited by the unsteady
action of the compressor. Rotating stall is characterized by
perturbations with a finite circumferential extension that propa-
gate and evolve throughout the machine. In this condition, the
compressor performance is degraded even if it continues to work
steadily. Emmons [4] was the first to describe the fundamental
mechanism, relating rotating stall to the flow blockage generated
by a local flow separation. Under these conditions, the flow
incidence of adjacent blades is altered, and the stalled lobe
passes to the neighboring blades. The physical phenomenon
is illustrated in figure 1. In most of the cases, rotating stall
eventually leads to surge, and both phenomena must be avoided
for the safe and efficient operation of the compressor. In order
to guarantee attached flow at all operating conditions, designers
typically apply a significant safety margin. In the early design
stage, such margin is estimated by means of semi-empirical
correlations, and reduced later in the process through more
accurate computational fluid dynamics (CFD) studies. The
accurate prediction of rotating stall and surge early in the design
process of compressors is therefore of paramount importance to
meet the required target of operability.

FIGURE 1: SKETCH OF THE ROTATING STALL MECHANISM,
ADAPTED FROM EMMONS ET AL. [4].

Instability models have been developed over the last 80 years
and reviewed, for instance, by Day [5]. Rotating stall was deeply
investigated in the 1940’s when it became evident that certain
aircraft engines faced catastrophic failures under specific flight
conditions. Compared to centrifugal machines, the flow in ax-
ial compressors undergoes similar instability mechanisms, even
though the critical location is usually different [6–8]. In axial
compressors, flow instabilities usually originate at the blade tip
of the first stage, where the blade loading is at its maximum. In
radial machines, the diffuser is usually the most critical compo-
nent, where the low momentum flow in the boundary layer tends
to reverse its direction due to the adverse pressure gradient.

In spite the many studies, there is not yet consensus in the
research community on whether the critical mass flow rate must
be set on stall or surge. Many authors suggest that rotating low-
amplitude waves are always the main inception mechanism for
both stall and surge. In their experimental campaigns, Camp
and Day [9], Tryfonidis et al. [10], and Garnier et al. [11]
showed that these waves always occurred before any rotating stall
or surge event. They noticed that these pre-stall waves can be
distinguished into two different types:

• long-wavelength, or modal-waves, which are characterized
by a circumferential extension of the same order of mag-
nitude of the machine diameter, and their growth process
spans several rotor revolutions;

• short-wavelength, or spike-waves, whose length scale is that
of the blade pitch, and their growth process saturates in a
few rotor revolutions.

The two types of waves as detected experimentally by six circum-
ferentially distributed hot-wires [9] are displayed in figure 2. As
can be observed from these pressure signals, modal and spike stall
are characterized by a very different dynamic behavior. Modal
perturbations can have from 1 to 6-10 circumferential lobes, and
rotate at a fraction of the shaft speed (∼ 10 − 40%). On the
contrary, spike perturbations were found to rotate much faster, at
around ∼ 70 − 90% of the rotational speed. This was in agree-
ment with the intuitions of Emmons et al. [4], who attributed
the rotational speed of the disturbance to the inertia of the stalled
region. As the volume of the stalled portion decreases, the ratio
of pressure forces to mass increases. This leads to perturbations
whose rotational rate approaches that of the shaft.

The critical mass flow rate at which rotating stall and surge
occur can be well predicted experimentally. Full annulus un-
steady CFD simulations also provide accurate results [12–16],
but their use is still limited due to the high computational cost.
Several reduced order models (ROM) have been developed over
the years to predict the onset of instabilities at low cost. Greitzer
[3] proposed a lumped parameters model capable of determining
the occurrence of surge in a compression system. The rotat-
ing stall problem was tackled by Moore [17–19], who modeled
the evolution of circumferential inlet perturbations in the ma-
chine through incompressible 2D linearized equations applied to
each sub-component. Coupling together the different compressor
components, he derived an eigenvalue problem, whose solution
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FIGURE 2: MODAL STALL (TOP) AND SPIKE STALL (BOTTOM)
HOT-WIRE READINGS, FROM CAMP AND DAY [9].

provides the onset of rotating stall waves. Moore and Greitzer
subsequently developed a unified model [20, 21], capable of de-
scribing the onset, growth, and interaction of stall and surge-like
perturbations.

A semi-empirical model for low-speed radial compressors
has been proposed by Senoo and Kinoshita [22]. The model
correlates the rotating stall limit with the flow angle at the diffuser
inlet and the geometrical characteristics of the machine. At those
critical conditions, the radially outwards momentum of the slow
particles in the boundary layer is not large enough to overcome
the adverse pressure gradient, leading to flow reversal and large-
scale instability. The applicability of the model to high-speed
compressors has not been assessed yet.

Research carried out at MIT in the 1990s led to the concep-
tion and development of more accurate models. Bonnaure [23]
modeled instabilities in high-speed axial compressor stages by
solving the 2D linearized compressible flow perturbation equa-
tions. Feulner [24] extended the model in the frequency domain
to be suitable for control purposes. A milestone in the modeling
of flow instabilities in centrifugal compressors was reached by
Spakovszky [25–27], who developed a 2D incompressible model
capable of accurately predicting modal stall inception in low-
speed axial and radial machines. The main flaw of the model is
arguably its inaccuracy to deal with compressibility and spike-
stall phenomena.

Gong [28, 29] proposed a 3D compressible flow model able

to predict modal and spike-stall phenomena. It is based on the
numerical simulation of the unsteady Euler equations augmented
with body forces (BFM), a concept initially proposed by Marble
[30]. The use of body forces makes the model computationally
efficient, as the mesh can be coarse due to the absence of the
physical blades in the domain. Gong [28, 29] showed that the
model was able to predict spike stall solely in axial machines, and
its accuracy was found to be highly dependent on the formulation
of the body forces. Because of this reason, more accurate BFM
were conceived by, e.g., Chima [31] and then Longley [32], who
added the blade metal blockage factor into the BFM formula-
tion. Benneke [33] and Kottapalli [34] developed BFM models
specifically tailored to centrifugal compressors, however, their
application to stall predictions failed due to numerical instability
issues. Other versions of BFM-based flow models for compressor
stall simulations were proposed by Righi et al. [35–38], Ji et al.
[39], and Zheng et al. [40].

More recently, Sun et al. [41] applied the global instabil-
ity theory [42] to turbomachinery flows. The approach revolves
around a BiGlobal stability analysis of the circumferentially av-
eraged solution of a single-passage Reynolds-Averaged Navier-
Stokes (RANS) simulation. Liu et al. [43], Yunfei et al. [44],
Sun et al. [45], Hu et al. [46], He et al. [47], Xie et al. [48, 49],
and Xu et al. [50, 51] extended the model and applied it to stall
prediction in axial and radial high-speed machines. In the in-
vestigated cases, the results of the model provided a value of the
critical mass flow rate within 2% of the experimental datum. In
addition, the model accuracy was found to be unaffected by the
choice of the turbulence closure used for the computation of the
base flow [49].

With the abundance of available models, there arises the
need of understanding their suitability for the design of high-
speed radial compressors. This review provides a comprehensive
discussion of the strengths and limitations of the various modeling
approaches. Considerations on the appropriate model selection
are discussed. Two models that appear particularly promising,
namely those of Spakovszky and Sun, are detailed and applied to
exemplary flow instability problems.

2. METHODOLOGIES FOR INSTABILITIES PREDICTION
The various numerical models for predicting flow instabili-

ties in compressors can be grouped in three main categories:

• High-fidelity unsteady CFD modeling (HiFi-CFD)

• Reduced-order unsteady CFD modeling (ROM-CFD)

• Linearized stability analysis (LSA)

The use of the occurrence of periodic oscillations in the residuals
of RANS simulations as a criterion for the onset of instabilities is
here not considered as a further method, since the results can be
highly dependent on the turbulence model and numerical settings
[52].

2.1 High-fidelity unsteady CFD modeling (HiFi-CFD)
In the context of compressor instability, HiFi-CFD refers

to full annulus unsteady Reynolds-Averaged Navier-Stokes
(URANS) simulations, Large Eddy Simulations (LES) or hybrid
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RANS-LES approaches. The whole machine needs to be meshed
since the rotating stall perturbations break the circumferential
periodicity of the compressor geometry, which renders single-
passage simulations unsuitable. The mesh needs to guarantee an
accurate resolution of the boundary layers, and the simulated time
interval should span several rotor revolutions. This class of very
accurate methods is suited to validate results from reduced order
models or to investigate the physics of the instability phenomena.

The choice of the turbulence model depends on the level of
details required. Rotating stall is a phenomenon triggered by
local separations, where an accurate resolution of the boundary
layer is fundamental. Several authors obtained good accuracy
of the critical mass flow rate using URANS modeling [12–16].
As a result, this approach should be the first to be employed,
followed eventually by LES in case a higher level of details of the
small-scale effects is required.

If the simulation of surge phenomena is of concern, the
compressor CFD domain must be coupled with other system
components to provide realistic dynamic boundary conditions. Ji
et al. [39] and Huang et al. [53] describe how such coupling may
be established using reduced order models for the other system
components. On the other hand, one can simulate stall events
by exclusively focusing on the compressor and treating it as if it
were decoupled from the system.

To predict the critical mass flow rate, different simulation
strategies can be used. The first option is to perform a simula-
tion at a near stall mass flow rate until statistical steadiness is
achieved. At this point, the mass flow rate is reduced, and the
process is repeated until the instability shows up spontaneously
in the domain. This method requires extensive computational
resources since many simulations must be performed for several
rotor revolutions.

An alternative strategy is to artificially force perturbations
at the most critical location. The force should be of minimal
magnitude, brief in duration, and designed to excite the maximum
possible number of fluid modes. This method allows reducing
the cost of each simulation since the perturbations are directly
excited. An example of the usable perturbation shape is provided
by the 3D short-scale force impulse described by Gong [28].

Another alternative numerical methodology for reducing the
computational cost is to promote local flow separation by increas-
ing the effective stagger angle of a single blade. Pullan et al. [12]
investigated spike-stall mechanisms in the NASA E3 rotor using
URANS simulations with the Spalart-Allmaras (SA) turbulence
model. They increased the stagger angle of one blade by 1 de-
gree, setting the spike location. They compared the results of 3D
and 2D simulations, and they found matching results, leading to
the conclusion that the small-scale effect can be neglected once
large-scale flow separations emerge.

A similar approach was employed by Dodds and Vahdati [15],
who studied the behavior of an eight-stage high-speed compres-
sor during slow acceleration maneuvres with URANS modeling.
They induced a mismatch in the front stages by adjusting the
variable stator vanes, thereby reducing the time required for the
rotating stall to form.

LES modeling can be applied to investigate the effects of
broadband and small-scale flow structures on the stall process.

Sündstrom et al. [54, 55] used LES to investigate the surge and
rotating stall characteristics of a turbocharger for automotive ap-
plications. They analyzed the correlation between the instability
inception and evolution with the main blading characteristics,
such as the instantaneous incidence and loading. Proper Orthog-
onal Decomposition (POD) was employed to extract the most
energetic flow structures during surge and stall events, revealing
the underlying physics of the process.

In conclusion, high-fidelity CFD is versatile and applicable
to various compressor types and fluid scenarios, and limited pri-
marily by the available computational resources. It also serves as
an effective tool to evaluate non-linear effects, to scrutinize local
details, and to validate ROM.

2.2 Reduced-order unsteady CFD modeling (ROM-CFD)
To reduce the computational cost of HiFi-CFD, Gong [28]

proposed to solve the full-annulus incompressible Euler axisym-
metric equations with the use of a BFM:

(︃
𝜕

𝜕𝑡
+Ω

𝜕

𝜕Ω

)︃ ⎡⎢⎢⎢⎢⎢⎢⎣
0
𝑟𝑢𝑧
𝑟𝑢𝜃
𝑟𝑢𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ +
𝜕

𝜕𝑧

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑢𝑧

𝑟𝑢2
𝑧 + 𝑟 𝑝/𝜌
𝑟𝑢𝜃𝑢𝑧
𝑟𝑢𝑟𝑢𝑧

⎤⎥⎥⎥⎥⎥⎥⎦ +
𝜕

𝜕𝑟

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟𝑢𝑟
𝑟𝑢𝑧𝑢𝑟
𝑟𝑢𝜃𝑢𝑟

𝑟𝑢2
𝑟 + 𝑟 𝑝/𝜌

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
𝐹𝑧

𝑢𝜃𝑢𝑟 + 𝐹𝜃
𝑢2
𝜃
+ 𝑝/𝜌 + 𝐹𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ ,
(1)

where 𝜌, 𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧 , 𝜌 are the density, absolute velocity compo-
nents, and pressure. 𝐹𝑟 , 𝐹𝜃 , 𝐹𝑧 are the components of the body
force, and Ω is the shaft angular velocity, which serves to formu-
late the equations in the stationary frame for the rotating blocks.
The BFM allows to drastically reduce the computational cost
since the mesh does not need to resolve the blades and the asso-
ciated boundary layers. In addition, simulation time-step can be
larger as in HiFi-CFD. For this modeling approach, an example
of simulation workflow is given in figure 3. In Gong’s original
work, the body force was expressed in relation to the pressure-
turning characteristics of the blade, as derived from experimental
data. In alternative versions, however, the model coefficients are
calibrated using the results of single-passage RANS simulations.
Perturbations were promoted by the inclusion of a short-scale 3D
disturbance at the blade tip, and both spike and modal waves were
successfully predicted in axial compressors.

Stable 

solution? NO

2D axisymmetric
unsteady
simulation

Reduce mass
flow rate

YES

3D locally
axisymmetric

simulation

Stable 

solution? NOYES

Critical mass
flow rate

Start

Reduce mass
flow rate

FIGURE 3: ROM-CFD WORKFLOW.
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Many evolutions of this technique are available in the litera-
ture, with the main differences resulting from the chosen fidelity
level of the governing equations and the calibration data type of
the BFM. Several references for these works can be found in the
introduction.

In summary, ROM-CFD models are adequate for predicting
the instability limit of low and high-speed compressors to finite
amplitude perturbations. Their drawbacks include higher compu-
tational cost compared to LSA models and lower accuracy com-
pared to HiFi-CFD. The accuracy of ROM-CFD models highly
depends on the BFM.

2.3 Linearized stability analysis (LSA)
LSA is a mathematical technique used to examine the re-

sponse of a dynamic system to perturbations of infinitesimal am-
plitude. In the context of fluid flows in compressors, LSA can
be used to analyze the stability characteristics of the fluid system
when perturbed around a steady-state condition, corresponding
to a stable operating point of the machine. The dynamics of a
time-invariant non-linear system without external forcing can be
expressed by the general governing equations:

ẋ = f (x), (2)

where x denotes the state space vector and f the non-linear gov-
erning equations. The specific state vector and equations vary
depending on the employed model. The state vector generally
corresponds to the primitive flow variables x = [𝜌, u, 𝑝]𝑇 , and
f represents the Navier-Stokes equations. Under the assumption
of small amplitude perturbations around an equilibrium point
(e.g., a steady compressor operating point), the equations can be
linearized and written as:

ẋ′ =
𝜕f
𝜕x

|︁|︁|︁|︁
x0

· x′ = A · x′, (3)

where x0 denotes the equilibrium point, x′ = x− x0 is the related
perturbation vector, and A is the dynamic matrix of the system.
The methods developed for compressor instabilities differ in the
underlying governing equations and state space variables, but
they all result in an eigenvalue problem (EVP) whose solution
provides the stability characteristics of the system.

The models within this category cover a broad spectrum of
fidelity levels, and the choice should be tailored to the particular
application. From a qualitative perspective, a smaller dimension
of the state space vector translates to reduced computational costs,
increased modeling weight, and increased sensitivity of results
to model parameters. The primary strength of these models lies
in their computational efficiency relative to the other two classes,
rendering them well-suited for investigating the design space of
innovative compressors with the goal of expanding their operating
range.

The following sections provide a comprehensive description
of three LSA-based models of increasing complexity and accu-
racy: the Greitzer Model, the Spakovszky Model, and the Sun
Model.

FIGURE 4: SKETCH OF THE GREITZER MODEL COMPRESSION
SYSTEM.

2.3.1 The Greitzer Model. Every compression system can
be represented by an equivalent model consisting of the com-
ponents represented in figure 4. Greitzer assumed a lumped
parameter approach, with a uniform inviscid incompressible flow
in the ducts, and a compressible plenum where isentropic trans-
formations take place. He introduced the parameters:{︄

𝐵 = 𝑢
2𝑎

√︂
𝑉𝑝

𝐴𝑐𝐿𝑐

𝐺 =
𝐿𝑡 𝐴𝑐

𝐿𝑐𝐴𝑡

, (4)

where 𝑢 is the flow velocity in the compressor duct, 𝑎 =
√
𝛾𝑅𝑇 is

the speed of sound, 𝑉𝑝 is the plenum volume, and 𝐴𝑐, 𝐿𝑐, 𝐴𝑡 , 𝐿𝑡

are the area and length of the compressor and throttle ducts. The
governing equations can be written in non-dimensional form as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝜙𝑐

𝑑𝜉
= 𝐵

(︁
𝜓𝑐 (𝜙𝑐,Ω) − 𝜓𝑝

)︁
𝑑𝜙𝑡

𝑑𝜉
= 𝐵

𝐺

(︁
𝜓𝑝 − 𝜓𝑡 (𝜙𝑡 )

)︁
𝑑𝜓𝑝

𝑑𝜉
= 1

𝐵
(𝜙𝑐 − 𝜙𝑡 )

, (5)

where x = [𝜙𝑐, 𝜙𝑡 , 𝜓𝑝]𝑇 is the state vector comprised by flow
coefficients in the compressor and throttle ducts, and by the
non-dimensional plenum pressure. 𝜉 = 𝑡𝑎

√︂
𝐴𝑐

𝑉𝑝𝐿𝑐
is the non-

dimensional time, 𝜓𝑐 (𝜙𝑐,Ω) and 𝜓𝑡 (𝜙𝑡 ) are the compressor and
throttle characteristics, specific for each system. The character-
istic polynomial of equation (5) is given by:

𝑠(𝜆) = −𝜆3 + 𝜆2
(︃
𝐵𝜓′

𝑐0 −
𝐵𝜓′

𝑡0

𝐺

)︃
+ 𝜆

(︄
𝐵2𝜓′

𝑐0𝜓
′
𝑡0

𝐺
− 1
𝐺

− 1

)︄
+

(︃
𝐵𝜓′

𝑐0

𝐺
−

𝐵𝜓′
𝑡0

𝐺

)︃
,

(6)

where the slopes of the characteristics are evaluated at the oper-
ating point. If all the three roots of equation (6) have negative
real part, the system is stable to small surge-like perturbations.
The result can be used to alter the 𝐵 and 𝐺 characteristics of the
system during the design process to enhance stability.

2.3.2 The Spakovszky Model. The underlying idea is to
solve simplified perturbation equations for every component of a
compressor in terms of the complex frequency 𝑠, and then connect
the single transfer functions linking input to output perturbations.
These modular characteristics enable easy implementation and
flexibility of the model to treat different kinds of compressors.
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The model is based on the assumption of uniform 2D pertur-
bations along the blade span, incompressibility of the base-flow,
and exploits a semi-actuator disk model for modeling the compo-
nents acting on the flow (e.g. bladed rows and impeller). The state
vector utilized in the analysis is given by 𝒙′ = [𝑢′𝑧 , 𝑢′𝜃 , 𝑝′]𝑇 for the
axial stations (e.g. the inlet of a radial impeller) or [𝑢′𝑟 , 𝑢′𝜃 , 𝑝′]𝑇
for the radial ones (e.g. the outlet of a radial impeller). Expres-
sions for the transfer functions of every component (e.g. inlet
duct, rotor rows, stator rows, etc...) are given in Ref. [25]. The
transfer functions connect the output to the input 𝑛-th circumfer-
ential harmonic perturbation:

x′2 =

∞∑︂
𝑛=0

B𝑛 · x′1,𝑛, (7)

where B𝑛 is the 𝑛-th circumferential harmonic transfer function
of the specific component, and 1, 2 refers to the input and output
stations. For the inlet and outlet domains, the transfer functions
connect the perturbations at a given location and the fundamental
modes present in the domain:

x′ =
∞∑︂
𝑛=0

T𝑛 ·
⎡⎢⎢⎢⎢⎣
𝐴(𝑠)
𝐵(𝑠)
𝐶 (𝑠)

⎤⎥⎥⎥⎥⎦𝑛 , (8)

where T𝑛 is the 𝑛-th transfer function of the specific inlet or outlet
domain, and 𝐴𝑛 (𝑠), 𝐵𝑛 (𝑠), 𝐶𝑛 (𝑠) refers to the 𝑛-th two pressure
and vorticity waves. Considering, as an example, the vaned
centrifugal compressor of figure 5, the 𝑛-th system transmission
matrix can be expressed as:

X𝑠𝑦𝑠,𝑛 (𝑠) =T−1
𝑎𝑥,𝑛 (𝑧4, 𝑠) · B𝑑𝑖 𝑓 ,𝑛 (𝑠)·

B𝑣𝑙𝑠𝑑,𝑛 (𝑠) · B𝑖𝑚𝑝,𝑛 (𝑠) · T𝑎𝑥,𝑛 (𝑧1, 𝑠),
(9)

where T𝑎𝑥,𝑛, B𝑑𝑖 𝑓 ,𝑛, B𝑣𝑙𝑠𝑑,𝑛, B𝑖𝑚𝑝,𝑛 are respectively the 𝑛-th
transfer functions for an axial duct, a vaned diffuser, a vaneless
diffuser and a radial impeller. X𝑠𝑦𝑠,𝑛 (𝑠) is defined through the
relation: ⎡⎢⎢⎢⎢⎣

𝐴(𝑠)
𝐵(𝑠)
𝐶 (𝑠)

⎤⎥⎥⎥⎥⎦𝑑𝑛,𝑛 = X𝑠𝑦𝑠,𝑛 (𝑠) ·
⎡⎢⎢⎢⎢⎣
𝐴(𝑠)
𝐵(𝑠)
𝐶 (𝑠)

⎤⎥⎥⎥⎥⎦𝑢𝑝,𝑛 , (10)

where 𝑢𝑝, 𝑑𝑛 refer to the far upstream and downstream locations
with respect to the compressor. The boundary conditions needed
to close the problem are:

• Zero forward potential wave at STA1:

𝐵𝑛 (𝑠)
|︁|︁|︁|︁
𝑢𝑝

= 0, (11)

• Zero vortical wave at STA1:

𝐶𝑛 (𝑠)
|︁|︁|︁|︁
𝑢𝑝

= 0, (12)

• Zero backward potential wave at STA5:

𝐴𝑛 (𝑠)
|︁|︁|︁|︁
𝑑𝑛

= 0. (13)

FIGURE 5: SKETCH OF THE NASA CC3 VANED CENTRIFUGAL
COMPRESSOR, ADAPTED FROM [25].

Application of the boundary conditions results in the following
homogeneous system:[︃

EC · X𝑠𝑦𝑠,𝑛 (𝑠)
IC

]︃
·
⎡⎢⎢⎢⎢⎣
𝐴𝑛 (𝑠)
𝐵𝑛 (𝑠)
𝐶𝑛 (𝑠)

⎤⎥⎥⎥⎥⎦𝑢𝑝 =

⎡⎢⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎥⎦ , ∀𝑛 ≥ 0, (14)

where the exit and inlet boundary condition blocks are defined
as:

EC =

[︂(︂
− 𝑠

𝑛
− 𝑢̄𝑑𝑛𝑧 − 𝑗 𝑢̄𝑑𝑛𝜃

)︂
𝑒𝑛𝑧5 ,

(︂ 𝑠
𝑛
− 𝑢̄𝑑𝑛𝑧 + 𝑗 𝑢̄𝑑𝑛𝜃

)︂
𝑒−𝑛𝑧5 , 0

]︂
,

(15)

IC =

[︃
0 1 0
0 0 1

]︃
. (16)

To admit non-trivial solutions, the determinant of the coefficient
matrix in equation (14) must be zero. Since the matrix is com-
posed by transcendental functions of 𝑠, there is no indication of
the number of roots. If one of the roots has a positive real part,
the corresponding mode, if excited, will lead to instability, while
the imaginary part describes its rotation rate. The critical mass
flow rate is identified as the mass flow rate at which the first pole
transitions into the positive real half-plane.

2.3.3 The Sun Global Instability Model. Rotating stall per-
turbations move along the annulus of the machine and remain con-
fined in the computational domain while growing in amplitude.
The baseflow field is 2𝜋 periodic in the circumferential direc-
tion and this makes BiGlobal temporal stability analysis suitable.
The instability model developed by Sun [41] is a modification of
the classical BiGlobal method developed for laminar to turbulent
boundary layer transition. The physical plane used in the analysis
is the meridional plane of the machine (𝑧, 𝑟) and the 𝜃 coordinate
is treated as a direction of invariance.

The starting point are the 3D Euler equations with a body
force F to model the effects of the blades on the flow:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐷𝜌

𝐷𝑡
= −𝜌∇ · u

𝜌𝐷u
𝐷𝑡

= −∇𝑝 + 𝜌F
𝜌𝐷𝑒

𝐷𝑡
= −𝑝∇ · u + 𝜌𝑊𝐹

, (17)

where 𝐷 ( )
𝐷𝑡

refers to the material derivative, 𝑒 to the total energy,
and F to the body force. 𝑊𝐹 is the work done by the body force on
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the flow. The equations are then linearly perturbed and written in
the cylindrical reference frame of the machine. In compact form
they read:(︃

A
𝜕

𝜕𝑡
+ B

𝜕

𝜕𝑟
+ C

𝜕

𝑟𝜕𝜃
+ E

𝜕

𝜕𝑧
+ R + S

)︃
· x′ = 0, (18)

where the matrix S refers to the body force terms. The detailed
perturbation equations (18) are given in appendix A for x′ =

[𝜌′, 𝑢′𝑟 , 𝑢′𝜃 , 𝑢′𝑧 , 𝑝′]𝑇 as state vector.
The solution of (18) can be decomposed in the following

series over all possible values of 𝑚 and 𝜔:

x′ (𝑟, 𝑧, 𝜃, 𝑡) =
∑︂
𝑚,𝜔

x̃𝑚𝜔 (𝑟, 𝑧) · 𝑒− 𝑗 (𝜔𝑡−𝑚𝜃 ) , (19)

where 𝑚 represents the circumferential mode number, 𝜔 is the
complex frequency, 𝑗2 = −1, and x̃𝑚𝜔 (𝑟, 𝑧) is the eigenfunction
associated to a specific [𝑚, 𝜔] couple. Substituting the decom-
position in (18) and considering every possible mode results in:(︃

− 𝑗𝜔A + B
𝜕

𝜕𝑟
+ 𝑗𝑚

𝑟
C + E

𝜕

𝜕𝑧
+ R + S

)︃
· x̃ = 0, (20)

where 𝑚, 𝜔 subscripts have been dropped for convenience. Equa-
tion (20) represents an eigenvalue problem, where perturbations
exist only for those modes having shape x̃𝑚𝜔 (𝑟, 𝑧) · 𝑒 𝑗𝑚𝜃 , and
fluctuating at 𝜔, solution of the EVP. Equation (19) shows that
for every eigenvalue 𝜔 = 𝜔𝑅 + 𝑗𝜔𝐼 :

• 𝜔𝑅 > 0 indicates rotation of the perturbation in the same
direction of the shaft revolution, as it is usually experienced
for compressors.

• 𝜔𝑅 < 0 implies a backward rotating mode, as it has been
documented for some peculiar case of compressor pre-stall
waves [56].

• 𝜔𝐼 > 0 denotes exponential growth of the perturbation am-
plitude in time, leading rapidly to a non-linear transient and
eventually to rotating stall and/or surge.

• 𝜔𝐼 < 0 indicates a stable mode that will decay if excited.

Given these considerations, the rotating speed (𝑅𝑆) and damping
factor (𝐷𝐹) of the perturbations are defined as:{︄

𝑅𝑆 =
𝜔𝑅

𝑚Ω

𝐷𝐹 =
𝜔𝐼

𝑚Ω

, (21)

where Ω is the shaft angular rate. With this definition, 𝑅𝑆 defines
the relative angular speed of the stall inception wave compared
to the shaft. The ultimate goal of the analysis is to identify
the eigenvalue with the largest 𝐷𝐹 that determines the stability
margin of the compressor. The mass flow rate at which the first
eigenvalue crosses the real axis sets the instability limit.

Equation (20) is discretized on a two-dimensional grid of
the meridional flow passage. To improve the numerical accuracy,
the physical grid in the (𝑧, 𝑟) domain is mapped to a computa-
tional grid (𝜉, 𝜂), where the differential operator is expressed with
the Chebyshev-Gauss-Lobatto collocation method [57]. On this

auxiliary grid, the nodes must be located on the Gauss-Lobatto
points: ⎧⎪⎪⎨⎪⎪⎩

𝜉𝑖 = cos
(︂

𝜋𝑖
𝑁𝑧−1

)︂
, 𝑖 = 0, · · · , 𝑁𝑧 − 1

𝜂𝑗 = cos
(︂

𝜋 𝑗

𝑁𝑟−1

)︂
, 𝑗 = 0, · · · , 𝑁𝑟 − 1

, (22)

where 𝑁𝑧 , 𝑁𝑟 are the number of points along the streamwise and
spanwise directions used in the physical domain. Equation (18)
is then converted in:(︃

− 𝑗𝜔A + B̂
𝜕

𝜕𝜉
+ 𝑗𝑚

𝑟
C + Ê

𝜕

𝜕𝜂
+ R + S

)︃
· x̃ = 0, (23)

where the transformed axial and radial matrices are given by:⎧⎪⎪⎨⎪⎪⎩
B̂ = 1

𝐽

(︂
E 𝜕𝑟

𝜕𝜂
− B 𝜕𝑧

𝜕𝜂

)︂
Ê = 1

𝐽

(︂
B 𝜕𝑧

𝜕𝜉
− E 𝜕𝑟

𝜕𝜉

)︂ , (24)

and 𝐽 is the Jacobian of the transformation computed with finite
differences:

𝐽 =
𝜕𝑧

𝜕𝜉

𝜕𝑟

𝜕𝜂
− 𝜕𝑧

𝜕𝜂

𝜕𝑟

𝜕𝜉
≈ Δ𝑧

Δ𝜉

Δ𝑟

Δ𝜂
− Δ𝑧

Δ𝜂

Δ𝑟

Δ𝜉
. (25)

The 𝜉 and 𝜂 differentiation operators can now be expressed with
the Chebyshev-Gauss-Lobatto collocation method, which results
in: (︃

− 𝑗𝜔A + B𝑑 + 𝑗𝑚

𝑟
C + E𝑑 + R + S

)︃
· x̃ = 0. (26)

As shown in the appendix B, the S matrix related to the body
force perturbations can be expressed as:

S =
S𝑠𝑠

1 + 𝜏 (− 𝑗𝜔 + 𝑗𝑚Ω) , (27)

where S𝑠𝑠 denotes the steady state BFM coefficient matrix, and
𝜏 is a time-delay constant representing the lag between the flow
perturbations and their effect on the body force field.
By defining the matrix:

J = B𝑑 + 𝑗𝑚

𝑟
C + E𝑑 + R, (28)

the non-linear eigenvalue problem results in:(︃
− 𝑗𝜔A + J + S𝑠𝑠

1 + 𝜏 (− 𝑗𝜔 + 𝑗𝑚Ω)

)︃
· x̃ = 0. (29)

Multiplying with the denominator and rearranging the terms
yields a quadratic EVP [58]:(︂

L2𝜔
2 + L1𝜔 + L0

)︂
· x̃ = 0, (30)

for the matrices: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
L0 = J (1 + 𝑗𝑚Ω𝜏) + S𝑠𝑠

L1 = A (𝑚Ω𝜏 − 𝑗) − 𝑗𝜏J
L2 = −𝜏A

. (31)
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The definition of the generalized state vector 𝝋̃ = [𝒙̃, 𝜔𝒙̃]𝑇 allows
one to transform (30) in a generalized linear EVP:

Y · 𝝋̃ = 𝜔P · 𝝋̃, (32)

where:

Y =

[︃
−L0 0

0 I

]︃
, P =

[︃
L1 L2
I 0

]︃
. (33)

The eigenvalues of (32) can be solved by the implicitly restarted
Arnoldi method in the ARPACK library [59]. Because the search
should typically focus on the most unstable eigenmode, and its
corresponding eigenvalue is expected in a region close to a value
𝜎 than can be estimated, a shift-and-invert strategy can be applied:

Ŷ · 𝝋̃ = 𝜆𝝋̃, (34)

where Ŷ = (Y−𝜎P)−1P, and 𝜆 = 1/(𝜔−𝜎). The computational
cost of the model is determined by the eigenvalue solver, which
scales with the cube of the number of grid nodes. Since the model
performs a temporal stability analysis, where 𝜔 is the unknown
eigenvalue and 𝑚 is a pre-fixed circumferential harmonic, it is
essential to consider all potential values of 𝑚 when searching for
the critical mode. However, this procedure can be simplified by
recognizing that, in the context of compressor instabilities, 𝑚 = 1
is always the critical harmonic, as demonstrated by Sun et al.
[41]. Consequently, the prediction of instability limits requires
solely to solve for 𝑚 = 1.

2.4 Model Selection
The selection of the most appropriate model for predicting

the critical mass flow rate necessarily involves a trade-off between
accuracy and computational cost. Based on the review of existing
literature, the following considerations are made:

• The treatment of instabilities in high-speed compressors
with models developed for low-speed machines leads to
misleading results, especially in those machines affected
by critical compressible modes. A quantitative analysis of
the discrepancies is given by Liu et al. [43].

• Models that use semi-actuator disk strategies produce inac-
curate results for spike-stall inception. These models as-
sume that all the blades operate under the same flow con-
ditions, which is unrealistic when spikes occur. The model
limitations were demonstrated on the case of a high-speed
compressor with vaned diffuser by Spakovszky and Roduner
[60]. Modal-stall was successfully detected in cases with an
open bleed valve, but the model failed to provide accurate
results for spike-stall inception mechanisms, observed when
the bleed valve was closed.

Given their relatively low computational cost and high ac-
curacy, the Spakovszky Model and the Sun Model are deemed
most suited for the flow analysis and design optimization of ra-
dial compressors. For this reason, two exemplary applications of
these two models are documented in the following.

3. APPLICATIONS
3.1 Spakovszky Model

The Spakovszky model has been applied to predict the stall
mass flow rate of a high-speed radial compressor for inverse
Rankine integrated systems (IRIS) [1]. The compressor operates
with the refrigerant R1233zd(E), the external diameter of the
impeller is 45 mm, and the range of rotational speed is from 68
to 94 krpm. The compressor layout and its calculated operating
map are shown in figure 6.

0.04 0.06 0.08 0.10 0.12

ṁ [kg/s]

2.0

2.5

3.0

3.5

4.0

4.5

β
ts

[-
]

70.9 krpm

79.8 krpm

88.7 krpm

93.1 krpm

FIGURE 6: SKETCH OF THE IRIS COMPRESSOR (TOP), AND ITS
CHARACTERISTIC CURVES (BOTTOM).

The system transmission matrix for this problem can be ex-
pressed as:

X𝑠𝑦𝑠,𝑛 (𝑠) =T−1
𝑟𝑎𝑑,𝑛 (𝑟3, 𝑠) · B𝑣𝑙𝑠𝑑,𝑛 (𝑠)·

B𝑖𝑚𝑝,𝑛 (𝑠) · T𝑎𝑥,𝑛 (𝑧1, 𝑠),
(35)

where T𝑟𝑎𝑑,𝑛 is the 𝑛-th transfer function for a swirling flow. The
boundary conditions are given by:

IC =

[︃
0 1 0
0 0 1

]︃
, EC = [0 0 1] , (36)

which correspond to an undisturbed flow at the impeller inlet and
a volute discharge characterized by a zero backward potential
wave. Figure 7 reports the growth factors for the speedlines of
figure 6. From the results, a change of the critical circumferential
mode from the 2𝑛𝑑 to the 4𝑡ℎ harmonic at high rotational speeds
is evident. Due to the absence of experimental reference data,
the results obtained with the Spakovszky Model are compared
with those obtained with the Senoo Model, see figure 8. The
plot demonstrates that both models predict a qualitatively similar
instability curve, namely the line connecting the points on the
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FIGURE 7: GROWTH FACTORS OF THE FIRST 4 CIRCUMFERENTIAL HARMONICS AS A FUNCTION OF THE MASS FLOW RATE AT 4 DIF-
FERENT REGIMES.
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FIGURE 8: IRIS COMPRESSOR MAP, WITH SENOO AND
SPAKOVSZKY INSTABILITY MODELS PREDICTIONS.

speed-lines at which the onset of instabilities occurs. However,
the instability curve predicted by the Spakovszky Model is shifted
rightward compared to the prediction of the Senoo Model, and
therefore predicts a reduced operating range of the compressor. It
is important to note that these results can only quantify differences
between the models. Both models have been derived for low-
speed compressors, and it cannot be concluded that one is more
accurate than the other for high-speed machines without further
validation based on reliable reference data.

3.2 Sun Model
The accuracy and robustness of the Sun Model is shown by

comparing model predictions with the analytic solution for an
annular-duct flow [45]. Consider a segment 𝐿 of an infinitely
long annular duct, with internal and external radii 𝑟1, 𝑟2, char-
acterized by uniform axial velocity, pressure and density fields.
Assuming ideal gas behavior, the pressure perturbation satisfies
the following equation:(︂

1 − 𝑀2
)︂ 𝜕2𝑝′

𝜕𝑧2 + 𝜕2𝑝′

𝑟2𝜕𝜃2 + 𝜕2𝑝′

𝜕𝑟2 − 1
𝑎2

𝜕2𝑝′

𝜕𝑡2
−

2𝑀
𝑎

𝜕2𝑝′

𝜕𝑧𝜕𝑡
+ 1
𝑟

𝜕𝑝′

𝜕𝑟
= 0,

(37)

where 𝑎 is the speed of sound and 𝑀 is the axial Mach number.
Using the method of separation of variables, the solution can be
expressed as a series of modes

𝑝′ (𝑟, 𝜃, 𝑧, 𝑡) =
∑︂

𝑅(𝑟)𝑒 𝑗 (𝑘𝑧+𝑚𝜃+𝜔𝑡 ) , (38)

where 𝑘 is the axial wavenumber, 𝑚 is the circumferential har-
monic order, 𝜔 is the eigenfrequency, and 𝑅(𝑟) is the radial
eigenfunction. Substituting (38) in (37) yields a Bessel equation
of order 𝑚

𝑥2𝑅′′ (𝑥) + 𝑥𝑅′ (𝑥) + (𝑥2 − 𝑚2)𝑅(𝑥) = 0, (39)

where {︄
𝑥 = 𝜆𝑚𝑛𝑟

𝜆2
𝑚𝑛 =

(︁
𝜔
𝑎
+ 𝑘𝑚𝑛𝑀

)︁2 − 𝑘2
𝑚𝑛

, (40)
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FIGURE 9: FIRST SEVEN ROOTS OF EQUATION (43) FOR THE
CASE OF TABLE 1, WITH m = 1.

Input Units Value
Temperature [K] 288
Pressure [bar] 1
Mach number [-] 0.015
Internal radius [mm] 182.6
External radius [mm] 248.7
Length [mm] 80

TABLE 1: PARAMETERS OF THE ANNULAR DUCT TEST-CASE

for the circumferential 𝑚 and radial 𝑛 mode numbers.
The general solution of equation (39) is

𝑅(𝑟) = 𝑎1𝐽𝑚 (𝜆𝑚𝑛𝑟) + 𝑎2𝑌𝑚 (𝜆𝑚𝑛𝑟), (41)

where 𝐽𝑚 (𝑥), 𝑌𝑚 (𝑥) are the Bessel functions of order 𝑚 of the
first and second kind, and 𝑎1,𝑎2 are two integration constants.
Using the non-penetration conditions at the duct walls

𝑢′𝑟

|︁|︁|︁|︁|︁
𝑟1 ,𝑟2

= 0 ⇒ 𝜕𝑝′

𝜕𝑟

|︁|︁|︁|︁|︁
𝑟1 ,𝑟2

= 0 ⇒ 𝜕𝑅(𝑟)
𝜕𝑟

|︁|︁|︁|︁|︁
𝑟1 ,𝑟2

= 0, (42)

leads to an eigenvalue problem for 𝜆𝑚𝑛:[︃
𝜕
𝜕𝑟
𝐽𝑚 (𝜆𝑚𝑛𝑟1) 𝜕

𝜕𝑟
𝑌𝑚 (𝜆𝑚𝑛𝑟1)

𝜕
𝜕𝑟
𝐽𝑚 (𝜆𝑚𝑛𝑟2) 𝜕

𝜕𝑟
𝑌𝑚 (𝜆𝑚𝑛𝑟2)

]︃
·
[︃
𝑎1
𝑎2

]︃
=

[︃
0
0

]︃
=⇒ det Q(𝜆𝑚𝑛) = 0.

(43)

Figure 9 shows the first 7 roots of equation (43) for 𝑚 = 1 and the
duct parameters of table 1. Substituting the results in equation
(40) yields the eigenfrequencies

𝜔𝑚𝑛𝛼 = 𝑎

√︃[︂
(1 − 𝑀2)𝛼𝜋

𝐿

]︂2
+ (1 − 𝑀2)𝜆2

𝑚𝑛, (44)

where 𝛼 denotes the axial mode number (i.e. 𝑘 = 𝛼𝜋
𝐿
, for 𝛼 =

1, 2, · · · ,∞). The first eigenvalues for 𝑚 = 1 are reported in table
2. Notice that all the eigenvalues are real numbers, due to the
simplified assumptions that lead to zero damping and growth. In
other words, the perturbations conserve their initial amplitude,
pulsating at 𝜔𝑅 in time.

The same problem has been solved using the Sun Model, dis-
cretizing the duct on a grid of 60×20 nodes in the axial and radial

𝑚 [−] 𝑛 [−] 𝛼 [−] 𝜔 [rad/s]
1 1 1 13450
1 1 2 26721
1 1 3 40102
1 2 1 21077
1 2 2 31296
1 2 3 43261
1 3 1 35049
1 3 2 41996
1 3 3 51534

TABLE 2: NATURAL FREQUENCIES OF THE MODES [m, n,α].

directions. Zero pressure perturbations have been set as boundary
conditions at the duct ends and a non-penetration velocity condi-
tion on the duct walls. The first 5 eigenfrequencies obtained are
shown in figure 10, which demonstrates good agreement between
numerical and analytical values. The eigenfunction shapes were
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FIGURE 10: COMPARISON BETWEEN NUMERICAL AND ANALYTI-
CAL EIGENFREQUENCIES FOR THE ANNULAR DUCT CASE.

also analysed. The analytical mode shape can be expressed as:

𝑝𝑚𝑛𝛼 (𝑟, 𝑧) ∝ 𝑅𝑚𝑛 (𝑟) · 𝑍𝛼 (𝑧), (45)

where 𝑍𝛼 (𝑧) is set by the zero pressure perturbation condition at
the duct extremities [0, 𝐿]:

𝑍𝛼 (𝑧) ∝ sin
(︂𝛼𝜋𝑧

𝐿

)︂
, 𝛼 = 1, 2, · · · ,∞. (46)

𝑅𝑚𝑛 (𝑟) is obtained by combining (41) and (43):

𝑅𝑚𝑛 (𝑟) ∝ 𝐽𝑚 (𝜆𝑚𝑛𝑟) − 𝛽𝑌𝑚 (𝜆𝑚𝑛𝑟), 𝑚, 𝑛 = 1, 2, · · · ,∞, (47)

where 𝛽 has been defined as:

𝛽 =
𝜕 [𝐽𝑚 (𝜆𝑚𝑛𝑟1)]

𝜕𝑟
/𝜕 [𝑌𝑚 (𝜆𝑚𝑛𝑟1)]

𝜕𝑟
. (48)

Figure 11 shows the comparison between the numerical pres-
sure eigenfunction and their analytical 1D-slices, for the mode
[𝑚, 𝑛, 𝛼] = [1, 3, 3] at 𝜔 = 51350 [rad/s]. Despite a qualitatively
good agreement, the results provided by the Sun Model deviate
from the analytical reference close the boundaries of the domain.
For this reason a sensitivity study has been carried out and is
documented in the next section.
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THE NUMERICAL PRESSURE EIGENFUNCTION FOR THE MODE
[m, n,α] = [1, 3, 3].

15 × 5 30 × 10 45 × 15 60 × 20
2 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓
6 ✓ ✓ ✓
8 ✓ ✓
10 ✓ ✓

TABLE 3: SETTINGS USED FOR THE SENSITIVITY STUDY. THE
COLUMNS REPRESENT DIFFERENT GRID RESOLUTIONS (Nz ×

Nr ), AND THE ROWS THE ORDER OF THE FINITE DIFFERENCE
SCHEMES.

3.2.1 Sensitivity Study. The following numerical settings
were identified to have the largest influence on the results of the
Sun Model:

• The grid resolution in the axial and radial directions;

• The finite difference order (FDO) used for the Jacobian that
relates the physical and computational grids.

Table 3 shows the parameters tested. The missing checkmarks
indicate that the number of grid points is insufficient for the use
of a particular finite-difference scheme. For all the combinations
tested, the relative error between the first 5 eigenvalues of the
spectrum and the numerical results has been computed according
to:

𝜀𝑘 =
|𝜔𝑁

𝑘
− 𝜔𝐴

𝑘
|

𝜔𝐴
𝑘

, 𝑘 = 1, · · · , 5 , (49)

where 𝐴, 𝑁 stand for analytical and numerical values. The results
were gathered in an error matrix, shown in figure 12. The results
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FIGURE 12: ERROR MATRIX OF THE SENSITIVITY STUDY. THE
X-AXIS REFERS TO THE SETTINGS COMBINATIONS ACCORDING
TO THE NOMENCLATURE (Nz _Nr _FDO). THE LAST ROW SUMMA-
RIZES THE AVERAGED RELATIVE ERROR.

indicate that the optimal settings are not characterized by a larger
resolution, or a higher finite difference order, as it could be ex-
pected. In particular, the best settings for this case are 45_15_06
and 60_20_06. Due to this unexpected result, the accuracy of the
grid Jacobian was analyzed to identify the error source.

Without loss of generality, consider the 1D grid transforma-
tion 𝑥 = 𝑥(𝜉), where 𝑥 and 𝜉 are the physical and computational
coordinates. For the 𝑖-th node of the grid:{︄

𝑥(𝑖) = 𝑖
𝑁−1

𝜉 (𝑖) = cos
(︁

𝑖 𝜋
𝑁−1

)︁ 𝑖 = 0, 1, · · · , 𝑁 − 1, (50)

where the nodes along 𝑥 are evenly spaced, the ones on 𝜉 lie on the
Gauss-Lobatto points, and 𝑁 is the total number of points. The
analytical transform and its derivative can be found eliminating 𝑖

from the previous equations:{︄
𝑥 = 1

𝜋
arccos 𝜉

𝑑𝑥
𝑑𝜉

= − 1
𝜋
√

1−𝜉 2

, (51)

which present singularities of the derivative at the extremes of
the computational domain 𝜉 = −1 and 𝜉 = 1. The compari-
son between analytical and numerical derivatives obtained with
several finite difference schemes with order-of-convergence rang-
ing from 2 to 10 are shown in figure 13. High-order polynomials
severely under or overshoot the analytical values near the extremi-
ties. Employing low-order differentiation schemes and increasing
grid resolution does not resolve the issue. Instead, it leads to ex-
tremely large numerical values of the transformation gradients at
the boundaries, thereby deteriorating the accuracy of the iterative
Arnoldi eigensolver. As a result, there exists an optimal order of
accuracy leading to the minimization in the error of the eigenval-
ues for a given grid resolution. This explains the results reported
in figure 12, and the discrepancies observed in figure 11.

3.2.2 Alleviation of Numerical Model Errors. To allevi-
ate the singularity problem in the grid Jacobian, we propose to
employ an uneven distribution that closely resembles the Gauss-
Lobatto distribution for generating the physical grid. Both axial
and radial directions are discretized according to

𝑥(𝑖) = 𝑥1 + (𝑥2 − 𝑥1) ·
1 − cos( 𝜋𝑖

𝑁−1 )
2

, 𝑖 = 0, . . . , 𝑁 − 1, (52)
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where 𝑥1, 𝑥2 denote the first and last coordinates along the di-
rection considered. Following the same approach used in the
previous section, the transformation and the derivative are given
by: {︄

𝑥 = 𝑥1 + (1 − 𝜉) · 𝑥2−𝑥1
2

𝑑𝑥
𝑑𝜉

=
𝑥1−𝑥2

2
, (53)

and are not affected by singularities. Using this grid for the
duct problem yields the eigenvalues shown in figure 14. The
errors have been significantly reduced by at least two orders of
magnitude. In addition, the results demonstrate grid-resolution
independence, thereby verifying the correct implementation of
the model. The numerical pressure eigenfunctions of the first 5
modes are shown in figure 15. As expected, the coarser configu-
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FIGURE 14: EIGENVALUES (TOP) AND ERROR MATRIX (BOTTOM)
FOR THE ANNULAR DUCT FLOW DISCRETIZED WITH THE LAW
GIVEN IN (52).

ration (15_05_02), shows larger errors for the modes 𝑝2,𝑝4, and
𝑝5 due to insufficient resolution in the radial direction.

For practical applications to realistic compressor geometries,
it is challenging to define an analytical grid transformation. Nev-
ertheless, the grid generation method can aim at clustering nodes
towards the boundaries to emulate the distribution of Gauss-
Lobatto points. This approach will arguably mitigate the most
critical numerical errors introduced when solving the stability
equations, ultimately yielding more accurate results.

4. CONCLUSION
Numerical models for estimating the critical mass flow rate

have been reviewed and classified into three distinct groups.
ROM-CFD and HiFi-CFD are considered the most appropriate
for conducting in-depth analyses of instability modes, while LSA
appears to be the optimal choice for predicting the operating
range during the early design process. From the models falling
within the LSA category, the Spakovszky Model is deemed most
accurate for predicting the critical mass flow rate in low-speed
compressors, whereas the Sun Model is considered more ade-
quate for high-speed machines. Based on both literature and the
findings of this study, the following conclusions are drawn:

• The rotating stall limit is the phenomenon on which the
operating range prediction must be set. Surge is always
preceeded by stall-like perturbations, and its characteristics
can be adequately modeled by the Greitzer Model. Therefore
any operating range calculation method should accurately
predict the critical mass flow rate for rotating stall.

• LSA may not yield meaningful results for finite amplitude
perturbations, such as radial or circumferential inlet distor-
tions. The stability of finite amplitude perturbations should
be studied with ROM-CFD or HiFi-CFD.

• The stability analysis conducted on the high-speed IRIS
compressor demonstrates the good performance of the
Spakovszky model for such machinery. The model accu-
rately captures the expected trend of growth factors. A
quantitative assessment of accuracy is pending; we encour-
age future studies that investigate the instability limit using
HiFi-CFD and provide the required reference data.

• The analysis of the Sun Model for a simple test case with an
analytic solution has revealed a significant sensitivity of the
results on numerical settings, particularly concerning grid
resolution and the discretization scheme employed to trans-
form the physical grid to the computational grid. While
this problem has been solved for simple geometries with
the approach given in the previous section, there are cur-
rently no general guidelines for selecting the most suitable
discretization methods for complex compressor geometries.
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APPENDIX A. PERTURBATION EQUATIONS
Perturbing the flow variables of the continuity equation in

cylindrical cordinates, and retaining terms up to the first order
results in:

𝜕𝜌′
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+ 1
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The radial perturbation momentum equation is:
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The tangential perturbation momentum equation is:
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The axial perturbation momentum equation is:
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The enthalpy perturbation equation is expressed in terms of
pressure and density, considering a constant 𝑐𝑝 =

𝛾𝑅

𝛾−1 :
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APPENDIX B. BODY FORCE MODEL
Following the discussion given in [47], the blade force acting

on the fluid is divided in a component F𝑡 that guides the flow
to follow the mean camber surface, and another component F𝑙 ,
which reproduces the drag and loss effects:

F = F𝑡 + F𝑙 . (59)
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The turning force is perpendicular in every point to the local
mean camber surface, while F𝑙 acts in the opposite direction
of the relative velocity. Under the assumption of steady and
axisymmetric flow, the tangential angular momentum equation
gives:

𝑢𝑚

𝑟

𝜕 (𝑟𝑢𝜃 )
𝜕𝑚

= 𝐹𝜃 , (60)

where 𝑢𝑚 =

√︂
𝑢2
𝑟 + 𝑢2

𝑧 denotes the meridional velocity along the
streamsurface, 𝜕( )

𝜕𝑚
refers to the directional derivative along 𝑢𝑚,

and 𝐹𝜃 is the tangential component of the blade force.
The loss force calculation is based on the entropy production:

𝑇𝑢𝑚
𝜕𝑠

𝜕𝑚
= −w · F𝑙 , (61)

where w = [𝑢𝑟 , 𝑢𝜃 −Ω𝑟, 𝑢𝑧]𝑇 is the relative velocity vector, 𝑇 is
the static temperature, and 𝑠 is the static entropy. The tangential
component of the turning force is given by:

𝐹𝑡 , 𝜃 = 𝐹𝜃 − 𝐹𝑙, 𝜃 , (62)

and reconstruct the force vectors as a function of the blade ge-
ometry. In order to obtain analytical expression for the force, the
method proceeds as follows:

• the loss force is modeled as proportional to the square of the

relative velocity magnitude:

𝐹𝑙 = 𝛼

(︂
𝑢2
𝑟 + 𝑤2

𝜃 + 𝑢2
𝑧

)︂
, (63)

where 𝛼(𝑟, 𝑧) is calibrated using single-passage RANS sim-
ulations.

• the magnitude of the turning force is assumed to be propor-
tional to the local meridional velocity and relative tangential
velocity:

𝐹𝑡 = 𝛽𝑢𝑚𝑤𝜃 , (64)

where 𝛽(𝑟, 𝑧) is the model coefficient, found using the base-
flow results;

The body force perturbation F′ is then modeled as a first-
order system with time delay 𝜏:

𝜏

(︃
𝜕

𝜕𝑡
+Ω

𝜕

𝜕𝜃

)︃
F′ + F′ =

(︃
𝜕F
𝜕𝑢̄𝑟

𝑢′𝑟 +
𝜕F
𝜕𝑢̄𝜃

𝑢′𝜃 +
𝜕F
𝜕𝑢̄𝑧

𝑢′𝑧

)︃
, (65)

where the righthand-side term corresponds to the steady-state
body force perturbation, and 𝜏 is the time-constant characterizing
the delay, usually set equal to the blade-passage flow-through
time. In the frequency domain the relation becomes:

F̃ =
1

1 + 𝜏(− 𝑗𝜔 + 𝑗𝑚Ω)

(︃
𝜕F
𝜕𝑢̄𝑟

𝑢̃𝑟 +
𝜕F
𝜕𝑢̄𝜃

𝑢̃𝜃 +
𝜕F
𝜕𝑢̄𝑧

𝑢̃𝑧

)︃
. (66)
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