

Delft University of Technology

SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum Smart
Contracts

di Angelo, Monika ; Durieux, Thomas; Ferreira, João F.; Salzer, Gernot

DOI
10.1109/ASE56229.2023.00060
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE)

Citation (APA)
di Angelo, M., Durieux, T., Ferreira, J. F., & Salzer, G. (2023). SmartBugs 2.0: An Execution Framework for
Weakness Detection in Ethereum Smart Contracts. In J. Gurrola (Ed.), Proceedings of the 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 2102-2105). IEEE.
https://doi.org/10.1109/ASE56229.2023.00060
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ASE56229.2023.00060
https://doi.org/10.1109/ASE56229.2023.00060

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

SmartBugs 2.0: An Execution Framework for
Weakness Detection in Ethereum Smart Contracts

Monika di Angelo
TU Wien

Vienna, Austria

0000-0002-4217-4530

Thomas Durieux
TU Delft

Delft, Netherlands

0000-0002-1996-6134

João F. Ferreira
INESC-ID and IST, University of Lisbon

Lisbon, Portugal

0000-0002-6612-9013

Gernot Salzer
TU Wien

Vienna, Austria

0000-0002-8950-1551

Abstract—Smart contracts are blockchain programs that often
handle valuable assets. Writing secure smart contracts is far from
trivial, and any vulnerability may lead to significant financial
losses. To support developers in identifying and eliminating
vulnerabilities, methods and tools for the automated analysis
of smart contracts have been proposed. However, the lack of
commonly accepted benchmark suites and performance metrics
makes it difficult to compare and evaluate such tools. Moreover,
the tools are heterogeneous in their interfaces and reports as
well as their runtime requirements, and installing several tools
is time-consuming.

In this paper, we present SmartBugs 2.0, a modular execution
framework. It provides a uniform interface to 19 tools aimed at
smart contract analysis and accepts both Solidity source code
and EVM bytecode as input. After describing its architecture,
we highlight the features of the framework. We evaluate the
framework via its reception by the community and illustrate its
scalability by describing its role in a study involving 3.25 million
analyses.

Index Terms—Bytecode, EVM, Solidity, Security, Vulnerability

I. INTRODUCTION

Smart contracts are a fundamental part of blockchain tech-

nology, particularly on platforms like Ethereum, where they

enable the development of decentralized applications. Benefits

like transparency, trust, and security are paired with potential

risks, as malicious actors can exploit vulnerable smart con-

tracts and cause substantial financial losses. Therefore, there

is a pressing need for automated tools that help identify such

vulnerabilities.

The goal of this paper is to present SmartBugs 2.0, a modu-

lar execution framework that simplifies the execution of anal-

ysis tools for smart contracts, facilitates reproducibility, and

supports large-scale experimental setups. It is open-source and

publicly available at https://github.com/smartbugs/smartbugs.

Methodology. SmartBugs supports three modes for analyzing

smart contracts: Solidity source code, creation bytecode, and

runtime code. It currently includes 19 tools encapsulated in

docker images. With its standardized output format (via scripts

that parse and normalize the output of the tools), it facilitates

an automated comparison of the findings across tools. In

This project was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under project UIDB/50021/2020. The
project was also partially supported by the CASTOR Software Research
Centre.

the context of a bulk analysis, it allows for the parallel,

randomized execution of tasks for the optimal use of resources.

Envisioned users. SmartBugs is intended for

• developers auditing smart contracts before deployment,

• analysts evaluating already deployed smart contracts,

• tool developers comparing selected tools,

• researchers performing large-scale analyses,

and thereby advances the state-of-the-art in the automated

analysis of smart contracts.

Engineering challenges and new features. Compared to the

original version, SmartBugs 2.0 offers the following improve-

ments that overcome several engineering challenges:

• support for bytecode as input

• 8 additional tools

• modular integration of new tools

• support for multiple versions of the same tool

• generic architecture

• increased robustness and reliability

• detection and reporting of tool errors and failures

• SARIF as output format

• mapping of tool findings to the SWC taxonomy1

By adding bytecode as accepted input format, the range

of smart contracts that can be analyzed by SmartBugs has

been extended to programs without source code, including

all smart contracts already deployed. Due to its modular

structure, SmartBugs 2.0 can easily be extended with further

tools. The standardized output format and the mapping to a

tool-independent taxonomy both facilitate the integration of

a comprehensive vulnerability analysis into the development

cycle.

Validation studies. To showcase the capabilities of SmartBugs

2.0, we present a typical use case that demonstrates how

SmartBugs 2.0 has supported the largest experimental setup

to date, both in terms of the number of tools and the number

of analyzed smart contracts.

II. ARCHITECTURE

Figure 1 depicts the architecture of SmartBugs. It can

be started from the command line or called from Python

programs. The main arguments to provide are a specification

1https://swcregistry.io/

2102

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00060

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

06
0

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 12:53:14 UTC from IEEE Xplore. Restrictions apply.

cli task builder runner

analyser1 parser

analysern parser

wallet.hex

dao.rt.hex

coin.sol

contracts
toolk

config.yaml
config.yaml

config.yaml

config.yaml
tool1

config.yaml

tool specs dockerhub
solc-0.4.7

solc-0.8.19

compilers

arguments

options

argumentsoptions

list of tasks

ta
sk

docker
run

results json

sarif

task docker
run

results json

sarif

Fig. 1: The Architecture of SmartBugs.

of the smart contracts to process and a list of tools to execute.

For a mass analysis, it is also important to specify the number

of parallel processes as well as resource bounds per process.

Task builder. For each smart contract matching the specifica-

tion, the task builder selects those tools that fit the format of

the smart contract (source code, creation bytecode, or runtime

code) and pulls their Docker images. Moreover, it determines

a unique folder for the output of each run. Sometimes the nam-

ing scheme specified by the user leads to collisions, meaning

that the output of different smart contracts or tools would end

up in the same folder. The task builder resolves conflicts in

a deterministic way such that any restart of SmartBugs with

the same arguments after an interrupt leads to the same output

folders.
Most tools analyzing Solidity source code either contain a

compiler for a fixed Solidity version or download an appro-

priate compiler on the fly. Both approaches are problematic in

the context of a bulk analysis. In the first case, the integrated

compiler is not able to handle smart contracts written for

a different version, whereas in the second case an adequate

compiler will be downloaded, but used only once and then

discarded together with the container of the tool, which

leads to redundant downloads during the analysis. Therefore,

the task builder inspects the smart contracts and downloads

the corresponding compilers beforehand. Later on, during

analysis, a compiler matching the smart contract is injected

into the container such that the tool is able to compile the

contract without attempting to download the compiler itself.

Overall, the task builder downloads all resources and detects

problems before actually starting the analysis. This prevents

racing conditions, errors popping up only during the analysis

phase, and minimizes network traffic.

Runner. The runner receives a list of tasks, where each task

contains the information for applying a single tool to a single

smart contract. The length of the list is roughly the product

of the number of smart contracts and the number of tools.

To improve the utilization of server resources, the runner

randomly permutes the task list. Then it starts the requested

number of parallel analyzers, which process the tasks from the

list one after the other.

Analyzers. Each analyzer picks a task from the queue of the

runner, copies the smart contract, the Solidity compiler (if nec-

essary) and auxiliary scripts to a temporary volume and runs

the Docker image of the tool with this volume mounted. Once

the Docker container has terminated, the analyzer extracts the

result files and writes them to the designated output folder. It

adds a file with meta information like the execution time, the

arguments of the Docker run, and the version of the tool.

Parsing. In the parsing step, the individual output of a tool

is transformed into a standardized format. Each tool has its

own parsing script that scans the tool output for findings
(mostly weaknesses), errors (irregular conditions reported by

the tool) and failures (exceptions not caught by the tool). This

information is written to JSON files and— to facilitate the

integration of SmartBugs into CI workflows— to SARIF files.

III. FEATURES

Output format SARIF. SmartBugs 2.0 can provide the results

in SARIF (Static Analysis Results Interchange Format), an

OASIS standard that defines a common reporting format for

static analysis tools [1]. SARIF is JSON-based and allows

IDEs to access the analysis reports in a uniform way. By

adopting a common format that can be parsed by readily

available tools, the cost and complexity of aggregating the

results of analysis tools into common workflows diminishes.

For example, it becomes trivial to integrate SmartBugs into

GitHub workflows, since GitHub automatically creates code

scanning alerts in a repository using information from SARIF

files.2 For an example of the integration of SARIF produced by

SmartBugs and GitHub, we refer the reader to the repository

smartbugs/sarif-tests.3

Bytecode input. On Ethereum, smart contracts are deployed

by sending a transaction containing the creation bytecode.
When executed by the Ethereum Virtual Machine, this code

initializes the environment of the new contract and returns

the runtime code that is actually stored on the chain. In

most cases, the creation bytecode is the result of compiling

Solidity source code. A significant enhancement of SmartBugs

2.0 is its ability to integrate tools that analyze the creation

bytecode and runtime code directly, obviating the need to

2https://docs.github.com/en/code-security/code-scanning/
integrating-with-code-scanning/uploading-a-sarif-file-to-github

3https://github.com/smartbugs/sarif-tests/

2103

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 12:53:14 UTC from IEEE Xplore. Restrictions apply.

procure Solidity sources first. In fact, for many smart contracts

deployed on the chain, their source code is not available. Of

the 19 tools currently included in SmartBugs, 13 are able to

process creation bytecode and/or runtime code.

Provision of proper compiler versions. Another important

addition to SmartBugs 2.0 is its ability to select an appropriate

compiler for each smart contract. Solidity has seen a rapid

development over the past years, with numerous breaking

changes. Therefore, programmers are strongly advised to in-

clude a pragma that specifies the language version that a smart

contract was developed for. Analysis tools have three strategies

to cope with this situation. Experimental tools (proofs-of-

concept) may come with just a specific compiler version,

restricting its applicability. Other tools implicitly assume that

the compiler on the command search path matches the smart

contract to be analyzed. The most versatile tools inspect the

smart contract and download an appropriate compiler before

starting analysis. As none of these approaches fits the needs

of an unsupervised bulk analysis, the task builder (see its

description above) inspects the smart contracts, downloads

each required compiler version once before the actual analysis,

and then injects the correct one into every container. This

allows the tool to run the correct compiler version without

the need for on-the-fly downloads, which would cost time

and increase the network traffic. As another benefit, this

improvement enhances the reproducibility and uniformity of

the analyses, as the same compiler version is used consistently

across all runs.

Tool integration. With SmartBugs 2.0, it is now possible to

incorporate new tools without touching the code of SmartBugs.

The details of adding a new tool are described in the wiki of

SmartBugs4. In essence, a few lines in a configuration file are

needed to specify the docker image of the tool and its interface.

Moreover, for extracting the findings and errors from the result

files, a Python script has to be added. This new flexibility in

adding tools also allows researchers to compare the behavior

of different versions of the same tool, which is particularly

useful for evaluating performance over time, or for ensuring

that performance does not degrade with an update.

Mapping to weakness taxonomies. To compare findings across

tools, the idiosyncratic labels assigned by each tool need

to be mapped to a common frame of reference. SmartBugs

1.0 maps the findings to the vulnerability taxonomy DASP

TOP 105. The new version adds a mapping of all findings

(including those of the new tools) to the weakness taxonomy

of the SWC registry.6 The SWC registry is a community-

driven catalog of software weaknesses in smart contracts,

whose granularity is finer than the one of DASP TOP 10.

As SmartBugs is modular, further mappings can be included

easily7. Any mapping provides additional information about

4https://github.com/smartbugs/smartbugs/wiki/Adding-new-analysis-tools
5https://dasp.co/
6https://swcregistry.io/
7Caution is advised when applying such a mapping of tool findings to any

taxonomy since it is inherently imprecise.

TABLE I: Supported tools.

Tool Version New Contract format

Solidity Creation Runtime

ConFuzzius #4315fb7 � �

Conkas #4e0f256 � �

Ethainter � �

eThor 2021 (CCS’20) � �

HoneyBadger #ff30c9a � �

MadMax #6e9a6e9 � �

Maian #4bab09a � � �

Manticore 0.3.7 �

Mythril 0.23.15 � � �

Osiris #d1ecc37 � �

Oyente #480e725 � �

Pakala #c84ef38 � �

Securify � �

sFuzz #48934c0 � �

Slither �

Smartcheck �

Solhint 3.3.8 �

teEther #04adf56 � �

Vandal #d2b0043 � �

19 tools 8 13 2 13

the weaknesses found by the tools, which are added to the

SARIF output, in order to be displayed in the context of the

source or bytecode.

Supported tools. The tools currently in SmartBugs 2.0 are

listed in Table I. Check marks in black (�) indicate new

additions, while the gray check marks in column ‘Solidity’

identify the capabilities of the old version. We added 8 new

tools as well as bytecode support for seven of the old tools.

In most cases, bytecode support refers to runtime code. Only

two tools are able to handle the creation bytecode as well.

IV. EVALUATION

Reception. The appreciation of SmartBugs by the community

on GitHub is reflected in the following metrics. With 13
contributors, it received over 400 stars, 81 issues (17 since

December 2022) were filed, and 110 users/organizations have

forked the repository, with 50 unique cloners in the weeks

from May 09 to 22, 2023.

SmartBugs is not only used by developers and security

companies, but also in academic studies [2], [3], [4] or master

theses [5], [6], [7], [8]. Moreover, components of it have been

used to build a ML-based tool [9].

Use case. In the largest experimental study8 to date [10], we

used SmartBugs 2.0 to execute 13 tools on almost 250 000
runtime bytecodes. The tools reported over 1.3million weak-

nesses in total. With a resource limit of 30min and 32GB, the

execution took a total of 31 years. More than half of the tools

could run on just 4GB for the vast majority of the bytecodes

and with less than 3min on average per bytecode, while three

tools ran into the limits for more than 1 000 bytecodes.

8data available at https://figshare.com/s/5efef6335fa98ddc3ae2

2104

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 12:53:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Tool errors over time: percentage of errors encountered

by the tools, in bins of 100 000 blocks.

The new feature in SmartBugs 2.0 of reporting errors and
failures gives the user an indication, for which bytecodes a

tool may be operating outside of its specification. This way,

potential findings or non-findings are put in relation to the

tools ability to properly analyze the bytecode.

Figure 2 depicts the error rate of each tool on a time line

of blocks on the Ethereum main chain, where each data point

represents the percentage of reported errors in bins of 100 000
bytecodes. Mythril, Oyente and Vandal report no errors and

are not depicted. Apparently, HoneyBadger, Maian, and Osiris

experience an increasing error rate after 7.5 million blocks.

Conkas, eThor, Ethainter, and Securify report on average an

error rate below 15%. This information can be used to enhance

the tools or make informed decisions about whether to use

them for more recent smart contracts.

Moreover, tool failures may serve as a measure of ro-

bustness. For eight tools (Ethainter, HoneyBadger, MadMax,

Maian, Mythril, Osiris, Oyente, Vandal), the failure rate was

below 1% of the bytecodes, whereas for one tool (teEther),

the failure rate reached 25%.

V. RELATED WORK

As documented in the previous sections, SmartBugs 2.0

is a major improvement over the original version of Smart-

Bugs [11], which was released in 2019. To the best of our

knowledge, the only other execution framework that imple-

ments similar ideas is USCV [12]. It comprises eight tools

for the analysis of Solidity source code, with seven of them

also covered by SmartBugs. USCV seems to be neither widely

used nor maintained, as the latest of its 10 commits is from

mid-2021 and no issues have been filed so far.

VI. CONCLUSION

SmartBugs 2.0 has proven to be useful for our own work as

well as for fellow researchers and developers. Its extensive use

has shown some limitations, partly resulting in enhancement

requests by users. We consider the following extensions.

Support for historic compiler versions. SmartBugs supports

Solidity 0.4.11 and above. By accessing another repository, we

can include versions down to 0.4.0. Compiler versions older

than that may be harder to come by.

Support for more complex formats of source code. At

the moment, each smart contract has to be contained in a

single file. However, complex projects are split into several

files. SmartBugs could try to determine the dependencies and

transfer them also into the container.

Use of source code mappings. Tools for bytecode input can

analyze source code when feeding the compiled source code

to the tool. The difficult part is to map the bytecode addresses

of weaknesses back to source code lines.

Addition of new tools. With tools steadily emerging, we keep

extending SmartBugs, not least with the help of the community

contributing further tool configurations.

REFERENCES

[1] OASIS Static Analysis Results Interchange Format (SARIF) Technical
Committee, “Static Analysis Results Interchange Format (SARIF) Ver-
sion 2.1.0, Oasis Standard,” 2020, https://docs.oasis-open.org/sarif/sarif/
v2.1.0/os/sarif-v2.1.0-os.html.

[2] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 Ethereum smart contracts,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, no. November. New York, NY, USA: ACM,
jun 2020, pp. 530–541.

[3] S. Chaliasos, M. A. Charalambous, L. Zhou, R. Galanopoulou, A. Ger-
vais, D. Mitropoulos, and B. Livshits, “Smart contract and DeFi security:
Insights from tool evaluations and practitioner surveys,” arXiv preprint
arXiv:2304.02981, 2023.

[4] I. Qasse, M. Hamdaqa, and B. Þ. Jónsson, “Smart contract upgradeability
on the Ethereum blockchain platform: An exploratory study,” arXiv
preprint arXiv:2304.06568, 2023.

[5] B. Aryal, “Comparison of Ethereum smart contract vulnerability
detection tools,” Master’s thesis, University of Turku, 2021. [Online].
Available: https://core.ac.uk/download/pdf/481513588.pdf

[6] N. M. O. Veloso, “Análise Estática de Smart Contracts,” Master’s thesis,
Instituto Superior Técnico, Universidade de Lisboa (ULisboa), 2021.

[7] D. A. P. de Araújo, “A Static Analysis-based Platform-as-Service to
Improve the Quality of Smart Contracts,” Master’s thesis, Instituto
Superior Técnico, Universidade de Lisboa (ULisboa), 2021.

[8] J. T. S. Dinis, “Automatic Bug Prioritization of SmartBugs Reports
using Machine Learning,” Master’s thesis, Instituto Superior Técnico,
Universidade de Lisboa (ULisboa), 2022.

[9] J. Mandloi and P. Bansal, “A machine learning-based dynamic method
for detecting vulnerabilities in smart contracts,” International Journal of
Applied Engineering &Technology, vol. 4, pp. 110–118, 2022.

[10] M. di Angelo, T. Durieux, J. F. Ferreira, and G. Salzer, “Evolution of
automated weakness detection in Ethereum bytecode: a comprehensive
study,” arXiv preprint arXiv:2303.10517, 2023.

[11] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: A
framework to analyze Solidity smart contracts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering. New York, NY, USA: ACM, dec 2020, pp. 1349–1352.

[12] S. Ji, D. Kim, and H. Im, “Evaluating countermeasures for verifying the
integrity of ethereum smart contract applications,” IEEE Access, vol. 9,
pp. 90 029–90 042, 2021.

2105

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 12:53:14 UTC from IEEE Xplore. Restrictions apply.

