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Abstract— Studies on computer-based perception by vision 
modelling are described. The visual perception is 
mathematically modelled where the model receives and 
interprets visual data from the environment. The perception is 
defined in probabilistic terms so that it is in the same way 
quantified.  Human visual perception mimicked by means of a 
computer is an important step in cybernetics as this is, 
generally speaking, one of the goals of cybernetics. At the same 
time, the measurement of visual perception is made possible in 
real-time. From the visual perception, some other derivates of 
it can be computed. One example is the visual openness which 
can be used for the movement of an autonomous robot. As to 
another application, mention may be made to spatial design, in 
building and construction engineering. The paper describes the 
novel probabilistic theory of visual perception and investigates 
various properties of it, via the vision model established. The 
computer experiments are carried out by means of virtual 
agent in virtual environment demonstrating the verification of 
the theoretical considerations being presented. At the same 
time, experimental studies are presented as to the derivates of 
visual perception demonstrating the far reaching implications 
of the studies. 

I. INTRODUCTION 
ISUAL perception is one of the important subjects of 
cybernetics. As human gets about eighty per cent of 

environmental information by visual perception, it is easy to 
understand the importance of it, if one endeavors to integrate 
the environmental information into a machine-based system. 
To achieve this goal, it is clear to realize that the visual 
perception should be quantified to feed it to computer, rather 
than remaining in the abstract domain and merely to 
comprehend the concept and dealing with some verbal 
statements. In the case of human, the interaction with the 
environment is done via the light photons emitted from a 
light source, scattered from the object and eventually 
reaching the retina. In the computer based vision process, 
the virtual agent or a robot, emits rays and the interaction of 
these rays with environment is registered as they 
backscattered to agent or robot again. Today such systems 
are quite well developed as they are referred to as 3D 
scanners. For the sake of clarity in the experimental part of 
the work, a virtual agent is used as a representative of a 
human, who moves through a spatial environment 
experiencing continuous visual perception. Next to this, also 
it makes assessment about the visual openness derivative of 

the visual perception so that it can make autonomous 
movement and in the meanwhile make perception related 
measurements. The organisation of the paper is as follows. 
Chapter two describes the theoretical considerations about 
the visual perception. Chapter three gives the details of the 
computer experiments for the verification of the theory. This 
is followed by conclusions. 

 
 

II. A  PROBABILISTIC THEORY FOR VISUAL PERCEPTION 

A. The basic Visual Perception Model  
We start with the basics of the perception process with a 

simple yet a fundamental visual geometry. This is shown in 
figure 1. 
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Fig. 1.  The geometry of visual perception from a top view where P 
represents the position of eye, looking at a vertical plane with a distance 
lo to the eye; fz(z) is the probability density function  

 
In figure 2, the observer is facing and looking at a vertical 

plane from the point denoted by P. By means of looking 
action the observer pays visual attention equally to all 
locations on the plane in the first instance. That is, the 
observer visually experiences all locations on the plane 
without any preference for one region over another. Each 
point on the plane has its own distance within the observer’s 
scope of sight which is represented as a cone. The cone has 
a solid angle denoted by θ. The distance of a point on the 
plane and the observer is denoted by x and the distance 
between the observer and the plane is denoted by lo. Since 
the elements of visual openness perception are determined 
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via the associated distance, it is straightforward to proceed 
to express the distance of visual perception in terms of θ. 
From figure 2, this is given by 

)cos(θ
= olx  (1) 

Since we surmise the observer pays visual attention equally 
to all locations on the plane in the first instance, the 
probability of getting attention for each point on the plane is 
the same so that the associated probability density function 
(pdf) is uniformly distributed. This posit ensures that there is 
no visual bias at the beginning of visual perception as to the 
differential visual resolution angle dθ. Assuming the scope 
of sight is defined by the angle θ = ± π/4, the pdf  fθ is given 
by 

2
1f
/π

=θ
 (2) 

Since θ is a random variable, the distance x in (1) is also a 
random variable. The pdf fx(x) of this random variable is 
computed as follows. 

To find the pdf of the variable x denoted fx(x) for a given 
x we consider the theorem on the function of random 
variable and solve the equation [1] Papoulis 
x= g(θ) (3) 
for θ in terms of x. If  θ1 , θ2 ,…., θn , .. are all its real roots, 
 
x=g(θ1) = g(θ2) =……= g(θn) = …. 
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Clearly, the numbers θ1 , θ2 ,…., θn , .. depend on x. If, for a 
certain x, the equation  x= g(θ) has no real roots, 
then .  0xf x =)(
     According the theorem above,  
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Between  θ= -π/4 and θ= +π/4,  
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)(

θ
=θ olg  (6) 

 
has two  roots, which are equal and given by 
  

)arccos(, x
lo

21 =θ  (7) 

 
Using (7) in (5), we obtain 
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Substituting (2), (7) and (8) into (4), we obtain 
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for the interval   

oo l2xl ≤≤ . For this interval, the 
integration below becomes 
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as it should be as pdf. The sketch of fx(x) vs x is given in 
figure 2.  
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Fig. 2.  Variation of the probability density function of random variable 
representing the distance between eye and a location on a plane shown 
in figure 1. Upper plot is a sketch; lower is a computed plot with lo=1. 

 
As to (9), two observations are due. Firstly, it is interesting 
to note that for the plane geometry in figure 1, the visual 
perception is sharply concentrated close to  θ ≅ 0, that is 
perpendicular direction to the plane. This striking result is in 
conformity with the common human experience as to visual 
perception. Namely, for this geometry the visual perception 
is strongest along the axis of the cone of sight relative to the 
side directions. This is simply due to the fact that, for the 
same differential visual resolution angle dθ, one can 
perceive visually more details on the infinite plane in the 
perpendicular direction as this is sketched in figure 3. 
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Fig. 3.  Sketch explaining the relative importance of the viewing 
direction for visual perception. 

 
 Secondly, the visual perception is given via a probability 
density at a point. If we consider the stimulus of perception 
is due to the light photons, it is the relative number of 
photons as stimulus at infinitesimally small interval, per unit 
length. Integration of these photons within a certain length 
gives the intensity of the stimulus, which is a measure of 
perception. This implies that, perception is a probabilistic 
concept and therefore it is different than “seeing”, which is a 
goal oriented and therefore definitive. It is noteworthy to 
emphasize that the perception includes the brain processes to 
interpret an image of an object on the retina as existing 
object. That is, the image of an object on the retina cannot 
be taken granted for the realization of that object in the 
brain. Normally such a realization might most likely happen 
while at the same time it might not happen too depending on 
the circumstances although the latter is unlikely to occur. 
The brain processes are still not exactly known so that the 
ability to see an object without purposely searching for it is 
not a definitive process but a probabilistic process and we 
call this process as perception. The perception is associated 
with a distance. This distance is designated as lo in (9). Also 
the distance along the axis z can be associated with 
perception. In this case the perception can be given by a 
different formulation. In this case, proceeding in the same 
way before, we write 
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for the interval ∞≤≤∞− z . For this interval, the 
integration  becomes 
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 as it should be as pdf. The variation of fz(z) is shown in 
figure 4. 
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Fig. 4.  Perception pdf along the z axis parallel to the infinite plain in 
figure 1. 
 

  This result clearly explains the relative importance of the 
front view as compared to side views in human vision.  

B. Visual perception Model for an Orthogonal Geometry 
In this part of this research we deal with visual perception 

in a more general geometry as shown in figure 5. For any 
point within that semi-enclosure, the perception can be 
theoretically computed. Without any restriction of 
generality, we consider the enclosure formed by three walls 
in the form of convex hull and by infinite vertical plane 
orthogonal to the paper plane. The wall dimensions are m1, 
wo and m2. We aim for to find the visual probability density 
with respect to the distance w.  For any point within the 
enclosure, we move the wall to the right so that the wall 
passes from the point in question. In such a case, the general 
shape of the geometry remains the same while only the 
geometric parameters m1, m2 and lo alters. This is indicated 
with the vertical broken line somewhere at the right hand 
side of the wall.  In this geometry the whole region of 
interest is divided into four regions each of which is 
considered separately and the results are eventually combine 
for the final outcome. Regions I is formed by the vertical 
plane and two broken lines denoted by x1 and lo. Region II 
is defined by the triangle formed by the broken line x1 and 
two walls with the length m1 and the upper partition of the 
leftmost wall which has two partitions with the length of w 
and wo, as seen in figure 5. The regions II and IV are 
defined in a similar way at the lower side of the broken line 
with the length of lo. 
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Fig. 5. Geometry involved in the computation of the probability 
density f (w) w as to perception along the left most wall side where the 
position of perception is also indicated with an eye symbol.  

 
For region I, the visual probability density is found to be 
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where  θ1 is the normalization factor. As it is seen in (15), 
the probability density is dependent on the position along 
the leftmost wall side.  To obtain the probability density of 
the position w along the wall side, we consider the joint 
probability distribution F(w,x) which is given by 
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The joint density is given by differentiating the joint 
probability distribution with respect to x and w [1]. The 
probability density of the variable w is obtained by 
differentiating the integral.   
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with respect to w. Note that, in general, the probability 
distribution is the integral of perceptions per unit length at 
the point x, it is monotone increasing function and always 
positive as the perception is always positive, by definition. 
Substituting (18) into 19, for θ = θ1, we obtain. 
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The differentiation with respect to w is carried out according 
to Leibniz integral rule. The Leibniz integral rule gives a 
formula for differentiation of a definite integral whose limits 
are functions of the differential variable, 
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It is sometimes known as differentiation under the integral 
sign. By the application of Leibniz rule to (20), we obtain 
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where b(w) is given by (18), so that 
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Substitution of  (21) and (22) into (23) yields 
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This is the probability density of visual perception for the 
region I. 
 
For the region II, we can write 
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As it is seen in (26), the pdf is dependent on the position 
along the leftmost wall side.  To obtain the pdf of the 
position w along the wall side with respect to the region II, 
we consider the joint probability distribution FII(w,x) which 
is given by 
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so that, the probability distribution FII(w) is given by 
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The probability density of the variable w is obtained by 
differentiating the integral with respect to w. By the 
application of Leibniz rule to (20), we obtain 
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where b(w) is given by (18), so that 
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Substitution of  (32) and (33) into (31) yields 
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The variation of FI and FII with w are given in figure  6 
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Figure 6. The variation of FI(w) and FII(w) with w, where m =2.5, m =2.5, 
w =5
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In the same way,  and  can be 

computed as 
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From (25) one obtains 
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Since, for w=wo  , FI(wo)=1, from (37), it follows that 
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In the same way, from (34)  
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Since, for w=wo  , FII(wo)=1, from (39), it follows that 
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For FIII(w) and FIV(w) using (35)  and (36), we obtain 
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Since, for w=wo  , FIIi(wo)=1, from (41), it follows that 
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Since, for w=wo  , FIV(wo)=1, from (43), it follows that 
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For the total probability density 
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and finally the resulting probability density for the given 
geometry in figure 5, becomes 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−+

×
+++

= 22
1

2
22

1

1

2211

2
)(

21)(
wm

m
wwm

mwf
o

w ϕθϕθ
  (46) 

 
The substitution of 2211 ,,, ϕθϕθ  from (38), (40), (42), (44) 
into (46) yields the probability density as  
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Note that  
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and finally 
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as it should verify as pdf. 

III. COMPUTER EXPERIMENTS 
As a computer experiment the variation of fw(w) for a 
geometry with the parameters m =2.5, m =2.5, w =51 2 0  is shown in 
figure 7. 
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0.2

0.21

0.22 f(w)

w  
Fig. 7.  Variation of probability density of fw(w) with the geometric 
parameters m1=2.5, m2=2.5, w0=5. 

 
The experimental setup in the virtual reality of the computer 
experiment reported in figure 7 is shown in figure 8 where 
the observation point is at the center of the wall along which 
the variable w is defined. 
 

 
Fig. 8.  Experimental setup in virtual reality to establish the 
probability density of fw(w) where m =2.5, m =2.5, w =51 2 0 .  

 
The experiment similar to that shown in figure 8 is carried 
out in virtual reality with different experimental setting, 
namely m1=6, m2=6 and wo=2 that yields the probability 
density fw(w) as shown in figure 9. The corresponding 
experimental setup is shown in figure 10. 
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Fig. 9.  Experimental setup in virtual reality to establish the 
probability density of fw(w) where m =6, m =6, w =21 2 0  .  
. 

 
 
Fig. 10.  Experimental setup in virtual reality to establish the 
probability density of fw(w) where m =6, m =6, w =21 2 0  .  

 
The experiment similar to that shown in figure 8 is carried 
out in virtual reality with different experimental setting, 
namely m1=2.5, m2=1 and wo=5 that yields the probability 
density fw(w) as shown in figure 11. The corresponding 
experimental setup is shown in figure 12. The determination 
of fw(w) can be carried out at any place of the volume, 
which was considered in fig. 5. by simply passing a line 
parallel to the original line of observation. This new 
observation reject is shown  with a broken line in figure 13. 
In this case only the parameters playing role on the 
probability density computation are changed, namely the 
length of the side walls m1 and m2. In other words new 
probability density formulation is not necessary only the 

same computer experiments are repeated with the new 
parameters. 
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Fig. 11.  Variation of probability density of fw(w) with the geometric 
parameters m =2.5, m =1, w =51 2 0  .  
 

 
 
Fig. 12.  Experimental setup in virtual reality to establish the 
probability density of fw(w) where m =2.5, m =1, w =51 2 0  .  
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Fig. 13.  Geometry involved in the computation of the probability 
density f (w) w as to perception along the vertical dashed line of 
observation where the position of perception is also indicated. 
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Considering the variation of the probability density f (w) w for 
the different geometries involved in the experiments it is 
interesting to note that for a geometry with a corridor like 
space, such as in the case of the experiment given in figure 
9, the maximum of f (w) w is at the middle of the line of 
observation that is at w0/2. In rooms with wider proportions, 
such as in the case given in figure 7, two maxima occur 
between the extremities, w=0 and w=w0 and the middle of 
the observation line. The wider the proportion of geometry, 
the closer to the extremities these maxima occur. 
Additionally we note that for asymmetrical spaces, that is 
geometries where m1 and m2 are different, the shape of 
fw(w) becomes asymmetric and the higher values of the 
function occur near the extremity, which belongs to the 
longer wall. This result is striking and appears to be 
conforming common perceptual experience. By means of 
the computer experiments, in virtual reality the variations of 
f (w),w  which is shown in figures 7,9, and 11 are verified. 

IV. DISCUSSION AND CONCLUSION 
The theory developed in this work which defines 

perception in probabilistic terms is verified by means of 
extensive computer experiments in virtual reality. From 
visual perception, other derivatives of perception can be 
obtained, like visual openness perception, visual privacy, 
visual color perception etc. In this respect, we have focused 
on visual openness perception where the change from visual 
to visual openness is accomplished via a mapping function 
and the work is reported in another publication [2]. Such 
perception related experiments have been carried out by 
means of virtual agents in the virtual reality. One example of 
such executions is shown in figure 11 where the perception 
of the agent is determined via the interacting rays simulating 
the vision process. Although, visual perception is commonly 
articulated in various contexts, generally it is used to convey 
a cognition related idea or message in a quite fuzzy form and 
this may be satisfactory in many instances. Such usage of 
perception is common in a daily life. However, in 
professional area, like architectural design or robotics, its 
demystification or precise description is necessary for the 
proficient executions. Since the perception concept is soft 
and thereby elusive there are certain difficulties to deal with 
it. For instance, how to quantify it or what are the 
parameters which play role on visual perception. Posit of 
this research is, that the perception process is very complex 
process including brain process. In fact, the latter, i.e., brain 
process about which what we know is highly limited, is final 
and therefore it is most important. Due to this complexity a 
probabilistic approach for a visual perception theory is very 
much appealing and the results obtained have direct 
implications which are in align with our common visual 
perception experiences, that we exercise every day. In this 
way, the work is a novel description of visual perception in 
probabilistic terms by clearly distinguishing between 
”seeing” and “perceiving”. Namely, “seeing” is a definitive 
process while visual perception is a probabilistic process.  

 
Fig. 11.  Perception experiment by a virtual agent in virtual reality. The 
interacting rays, which simulate the vision process and ensuing visual 
openness measurement variations in real-time are also shown.  

 
This is because “seeing” is a goal oriented activity however 
perception is a matter of cognition or interpretation of 
information existing within the visual scope.This explains 
easily a common experience that human beings may 
overlook an object and search for it although such an 
overlook is not justified, and difficult to explain the 
phenomenon. It is firmly to conclude that visual perception 
is attached to the concept of distance the meaning is that in 
the formulation in some or other a distance is involved. 
Additionally, perception is to express in terms of intensity 
which is the integral of density. In the present context, these 
are the probability density and intensity of attention.  
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