

Delft University of Technology

Agent-based architectures supporting fault-tolerance in small satellites

Carvajal Godínez, J.

DOI
10.4233/uuid:b528d7be-e82d-4205-abdf-3fb3fa7f1011
Publication date
2021
Document Version
Final published version
Citation (APA)
Carvajal Godínez, J. (2021). Agent-based architectures supporting fault-tolerance in small satellites.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:b528d7be-e82d-4205-
abdf-3fb3fa7f1011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:b528d7be-e82d-4205-abdf-3fb3fa7f1011
https://doi.org/10.4233/uuid:b528d7be-e82d-4205-abdf-3fb3fa7f1011
https://doi.org/10.4233/uuid:b528d7be-e82d-4205-abdf-3fb3fa7f1011

AGENT-BASED ARCHITECTURES SUPPORTING
FAULT-TOLERANCE IN SMALL SATELLITES

AGENT-BASED ARCHITECTURES SUPPORTING
FAULT-TOLERANCE IN SMALL SATELLITES

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Monday 8 February 2021 at 10:00 o’clock

by

Johan CARVAJAL-GODÍNEZ

Master of Engineering in Modern Manufacturing Systems,
Instituto Tecnológico de Costa Rica, Cartago, Costa Rica,

born in San Jose, Costa Rica.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. E.K.A. Gill Delft University of Technology, promotor
Dr. J. Guo Delft University of Technology, copromotor

Independent members:
Prof. dr. A. van Deursen Delft University of Technology
Prof. dr. ir. M. Mulder Delft University of Technology
Prof. dr. S. Montenegro Wurzburg University
Prof. dr. E. Caldwell University of Costa Rica
Dr. Ir. M. Verhoef European Space Agency

This research was funded by Costa Rica Institute of Technology, and also supported by
the Delft University of Technology. Prof. dr. E.K.A. Gill and Dr. Jian Guo contributed
significantly to the realization of the thesis.

Keywords: Small Satellites, Onboard Software, Multi-Agent Systems, Satellite Soft-
ware Architecture, Onboard Satellite Communication, Fault Tolerance

Printed by: IPSKAMP printing

Front & Back: Becki Corrales Brenes

Copyright © 2021 by J. Carvajal-Godínez

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan Turing

Dedicated to my father Alexis Carvajal-Arias (1946-2019)

CONTENTS

Summary xi

Samenvatting xiii

Acronyms xvii

List of Symbols xxi

1 Introduction 1
1.1 The Evolution of Spacecraft Computers 2
1.2 Trends in Miniaturized Satellites Engineering 3

1.2.1 Subsystem Miniaturization . 5
1.2.2 Software-defined Components. 6
1.2.3 Emerging Onboard Computing Technologies 6
1.2.4 Integrated Fault Detection, Isolation and Recovery 8
1.2.5 The need for a more reliable and precise AOCS 8

1.3 The Software Complexity Problem . 9
1.4 Software Architecture Paradigms . 10
1.5 An Overview on Multi-Agent Systems . 11

1.5.1 Agents vs Multi-Agent Systems. 11
1.5.2 Agent Communication Architectures 12
1.5.3 Multi-Agents Systems Frameworks. 13
1.5.4 MAS-based Applications in Control Systems 14
1.5.5 MAS-based Software in Space Applications 14

1.6 Enabling Technologies for MAS-based Software. 15
1.6.1 Multi-Agent Systems Infrastructure 15
1.6.2 MAS-based Software Design Considerations 16

1.7 Motivation and Contributions . 17
1.7.1 Research Motivation and Requirements 18
1.7.2 Research Questions . 19
1.7.3 Research Methodology. 21

1.8 Dissertation Structure. 22

2 Essentials of Attitude and Orbit Determination 25
2.1 Systems Architecture Approach . 26
2.2 AOCS Modeling Concepts . 27

2.2.1 Reference Frames . 27
2.2.2 Satellite Orbit Model in LEO . 28
2.2.3 Attitude Representation . 28
2.2.4 Attitude Modeling . 30

vii

viii CONTENTS

2.2.5 Attitude perturbation Modeling 32
2.2.6 Sensor Measurement Model . 33

2.3 Onboard Attitude Determination . 34
2.3.1 Challenges on Multi-Sensor Data Fusion 35
2.3.2 Data Fusion Techniques . 35
2.3.3 Reference Algorithm for Attitude Estimation 36

3 Agent-based Fault Detection and Recovery 39
3.1 FDIR Methods for Control Systems . 41
3.2 Agent-based Architecture for FDIR . 43

3.2.1 FDIR Implementation Options. 43
3.2.2 Trade-off Criteria. 44
3.2.3 Trade-off Analysis . 45

3.3 AOCS Case Study . 47
3.3.1 System Model . 47
3.3.2 Gyroscope Measurement Model 49
3.3.3 Gyroscope Fault Modeling . 49
3.3.4 Gyroscope Installation . 50
3.3.5 Fault Detection and Identification Algorithm 51
3.3.6 Fault Recovery Algorithm . 52
3.3.7 Agent-based FDIR Implementation 53
3.3.8 Simulation Scenarios . 54

3.4 Results Analysis . 60
3.5 Chapter Summary . 61

4 Multi-Agent Communication in Satellite Software 63
4.1 Agent Communication Languages . 65

4.1.1 Agent Interaction Protocols . 66
4.1.2 Message Transport Protocol Implementation 67

4.2 Software Communication Architecture 69
4.3 AOCS Case Study . 71

4.3.1 AOCS Reference Architecture . 71
4.3.2 AOCS Measurement Model . 72
4.3.3 Traffic Injection Model . 74
4.3.4 Communication Bus Load Modeling 74

4.4 Case Study Implementation. 75
4.4.1 CAN Channel Implementation. 75
4.4.2 Sensor Model Implementation. 78

4.5 Simulation Experiments . 78
4.5.1 Satellite Operations Scenarios . 78
4.5.2 Simulation Configuration . 80

4.6 Simulation Results and Analysis. 82
4.6.1 Bus Utilization . 82
4.6.2 Measurement Delays. 85
4.6.3 Effect of Delays in Measurements Variance 88
4.6.4 Bus Utilization Balancing . 91

CONTENTS ix

4.7 Chapter Summary . 92

5 Model-Driven Methodology for Designing Agent-based Software 93
5.1 Modeling Software as a Multi-Agent System. 95

5.1.1 Resource Mapping Strategy . 96
5.2 Multi-Agent Systems for Satellite Applications 97
5.3 ADCS Case Study . 103

5.3.1 ADCS Physical Modeling . 104
5.3.2 MASSA: Analysis Phase. 105
5.3.3 MASSA: Design Phase . 107
5.3.4 MASSA: Verification Phase . 108
5.3.5 Results Analysis for the ADCS Case Study 110

5.4 Proposed MASSA Validation Strategy . 112
5.5 Chapter Summary . 113

6 Organizational Optimization of Multi-Agent based Software 115
6.1 Organizational Structures for Agents . 117
6.2 Multi-Agents System Consensus . 118

6.2.1 Consensus Strategies and Algorithms 119
6.3 Topological Optimization of MAS-based Software 119

6.3.1 Topological Modeling of Multi Agent-based Software 119
6.3.2 Network Scale Effects . 122
6.3.3 Randomized Search Strategies . 123

6.4 Optimization Implementation . 125
6.5 Topological optimization for AOCS Software 126

6.5.1 PROBA 3 Mission Description . 126
6.5.2 Simulation Scenarios . 128
6.5.3 Simulation Approach . 132
6.5.4 Results and Analysis . 134
6.5.5 Validation of Results . 140

6.6 Conclusions and Remarks. 140

7 Conclusions and Outlook 141
7.1 Research Synthesis and Conclusions . 142
7.2 Innovations and Contributions . 144
7.3 Research Outlook . 145

7.3.1 New Applications . 145
7.3.2 Implementation Aspects . 146

7.4 Recommendations . 146

References 149

A Appendix A - Orbital Elements 169

B Appendix B - Two Line Elements 171

C Appendix C - Extended Kalman Filter 173

Curriculum Vitæ 175

x CONTENTS

List of Publications 177

Acknowledgements 179

SUMMARY

Since the launch of the first artificial satellite in October 1957, both satellite computers
and their onboard software have changed significantly to integrate more functionali-
ties and making mission operations more reliable. As a result, satellites have become
more sophisticated and mission designers have moved functionality from the ground
segment to the satellite onboard computers to make them more autonomous. In fact,
a larger number of satellite components are adopting the use of embedded computers
to improve their performance and increasing subsystems miniaturization. This can be
seen by the growth in the number of small satellite missions ranging from 1 kg to 100 kg
of mass launched during the past 10 years.

Software-defined components increase the complexity of the onboard software. They
demand more computing power on the microprocessors onboard, but they also offer
several benefits. For instance, software-based components have the capability to re-
configure and adapt to operations environment to allow updating and upgrading the
satellite subsystems without changing their physical architecture. That makes satellites
more resilient to failures. The flexibility in the software implementation also allows code
reuse, which impacts the overall project cost.

One mechanism to deal with the increased systems and software complexity is by
enabling novel architectures. These new approaches are intended to mitigate the incre-
ment of software complexity, since they have the ability to deal with multiple views of the
system including both its functional and non-functional aspects. Agent-based software
engineering and Multi-Agent Systems (MAS) technologies are ideal to deal with software
complexity, since they provide the theoretical foundations and the tools required to de-
velop reliable distributed software applications. This architectural approach was taken
as a baseline to develop this dissertation on Agent-based Architectures supporting Fault-
Tolerance in Small Satellites.

This research proposes the adoption of a MAS-based approach for on-board software
architecture design with the purpose of enabling mechanisms to handle increased soft-
ware complexity in time-critical and safety-critical subsystems of satellites. The Attitude
Determination and Control Subsystem (ADCS) of small satellite missions is taken as case
study for verification and validation of the algorithms, models and methodologies pro-
posed in this dissertation since the ADCS requires high computing and communication
capabilities for its implementation.

Firstly, the applicability of MAS-based architectures on Fault Detection Isolation and
Recovery (FDIR) algorithms for onboard software of ADCS subsystems was investigated.
A review and comparison of FDIR methods was conducted to define a proper approach.
Then a design of an agent-based algorithm for detecting and correcting drift on gyro-
scopes was proposed and implemented at simulation level for the ADCS case study.

In parallel, this research identified a list of services required for MAS-based software
implementation that can be applied to satellite subsystems. A qualitative analysis of ex-

xi

xii SUMMARY

isting MAS development frameworks was performed. From this comparison, four key
components were identified, namely agents, messages, organizations, and platforms.
Based on the interaction of these components two main capabilities for behavior alloca-
tion and communication were studied in detail. The main effort was put on the imple-
mentation of the communication data bus that enables agents’ interactions in a linear
bus topology often found on ADCS implementations. For that purpose, an analytical
model of bus utilization was derived to quantify the data bus load as a function of its im-
plementation and operation parameters. This model was verified and validated against
a discrete time simulation model controlling both implementation and operation pa-
rameters for an ADCS case study.

The proposed MAS-based software architecture required to define new methods and
tools for its implementation on small satellites. For that reason, a complete chapter was
devoted to describe a methodology proposed for that purpose. A comparison of model-
driven software development methodologies was performed to identify design gaps, but
also to understand how these model-based methods fit into the software development
cycle of space systems. Once the gaps were identified, a development methodology was
proposed to integrate end-to-end activities for model-driven software development with
multi-agent systems for satellites. The proposed methodology was called Multi-Agents
Systems for Satellite Applications (MASSA). Quantitative experiments compared the im-
plementation of attitude estimation algorithms using the proposed methodology and
compared the numerical results to simulation models for verification and validation.

Finally, in order to optimize the architectural implementation of the proposed MAS-
based onboard software it was found that the organization of agents, particularly its
organizational topology was key for supporting fault-tolerance in small satellites. Fol-
lowing a qualitative analysis and including front-end systems engineering aspects, an
objective function for optimizing the cost of communication for agents’ organization
was established and solved using a Genetic Algorithms (GA) approach. The implemen-
tation provides a characterization of the proposed GA algorithm to show performance
aspects such as time to find a solution and number of generations required to find a fea-
sible solution so that designers can improve and speed up their software development
process. This dissertation provided the following contributions to the existing body of
knowledge: First, a novel Fault Detection Isolation and Recovery architecture combining
model-based and data-driven techniques to detect and correct sensor errors on ADCS.
Second, a new bus utilization model for distributed data communication buses that can
be used to balance out the performance of MAS-based software implementations. Third,
an innovative model-driven methodology for designing fault-tolerant MAS-based soft-
ware. Fourth, a software library for agent-based software development in miniaturized
satellites, and fifth, a genetic algorithm for optimal organization of agent-based software.

This thesis focused on addressing the software complexity problem through the use
of agent-based software architectures. That was achieved by extending the state-of-
art component-based design implemented with object-oriented paradigms to include
multi-agent systems concepts. Future space missions with small satellites can benefit
from these contributions to boost their performance and enable autonomous fault de-
tection, isolation, and recovery. Sergei Korolev once said "I believe in the future. It is
wonderful because it stands on what has been achieved.", so it was my thesis.

SAMENVATTING

Sinds de eerste lancering van een kunstmatige satelliet in oktober 1957, zijn satelliet-
computers en hun ingebouwde software aanzienlijk veranderd om meer functionalitei-
ten te integreren en missieoperaties betrouwbaarder te maken. Als gevolg hiervan zijn
satellieten geavanceerder geworden en hebben missieontwerpers functionaliteit op de
grond overgedragen naar de boordcomputers van satellieten om ze autonomer te ma-
ken. Tegenwoordig maakt een steeds groter aantal satellietcomponenten gebruik van
ingebouwde computers om hun prestaties te verbeteren en de miniaturisatie van sub-
systemen te vergroten. Dit is te zien aan de groei van het aantal kleine satellietmissies,
variërend van 1 kg tot 100 kg aan massa, die in de afgelopen 10 jaar gelanceerd zijn.

Software aan boord is complexer vanwege de softwaregedefinieerde componenten.
Zij vragen meer rekenkracht van de microprocessors aan boord, maar bieden ook ver-
schillende voordelen. Deze componenten hebben bijvoorbeeld de mogelijkheid om op-
nieuw geconfigureerd te worden aan de operationele omgeving om het bijwerken en
upgraden van de satellietsubsystemen mogelijk te maken zonder hun fysieke architec-
tuur te wijzigen. Dat maakt satellieten beter bestand tegen storingen . De flexibiliteit
in de software-implementatie maakt ook hergebruik van code mogelijk, wat voordelige
gevolgen heeft voor de totale projectkosten.

Een mechanisme om met de toegenomen complexiteit van systemen en software
om te gaan is door nieuwe architecturen mogelijk te maken. Deze nieuwe benaderin-
gen zijn bedoeld om de toename van softwarecomplexiteit te verminderen, aangezien
zij in staat zijn om met meerdere weergaven van het systeem om te gaan, zowel de func-
tionele als de niet-functionele aspecten ervan. Agent-gebaseerde software engineering
en Multi-Agent Systems (MAS) -technologieën zijn ideaal om met softwarecomplexiteit
om te gaan, aangezien zij de theoretische basis en de tools bieden die nodig zijn om be-
trouwbare gedistribueerde softwareapplicaties te ontwikkelen. Deze architecturale be-
nadering werd als uitgangspunt genomen voor de ontwikkeling van dit proefschrift over
agent-gebaseerde architecturen die fouttolerantie in kleine satellieten ondersteunen .

Dit onderzoek stelt de toepassing van een MAS-gebaseerde benadering voor het ont-
werpen van software-architectuur aan boord met als doel mechanismen in staat te stel-
len om de toegenomen softwarecomplexiteit in tijds- en veiligheidskritische subsyste-
men van satellieten aan te pakken. Het “Attitude Determination and Control Subsys-
tem” (ADCS) van kleine satellietmissies wordt beschouwd als case study voor verifica-
tie en validatie van de algoritmen, modellen en methodologieën die in dit proefschrift
worden voorgesteld, aangezien de ADCS hoge reken- en communicatiemogelijkheden
vereist voor de implementatie ervan.

Ten eerste werd de toepasbaarheid van op MAS gebaseerde architecturen op “Fault
Detection Isolation and Recovery” (FDIR) -algoritmen voor onboard-software van ADCS-
subsystemen onderzocht. Er werd een evaluatie en vergelijking van de FDIR-methoden
uitgevoerd om een juiste aanpak te definiëren. Vervolgens werd een ontwerp van een

xiii

xiv SAMENVATTING

agent-gebaseerd algoritme voor het detecteren en corrigeren van drift op gyroscopen
voorgesteld en geïmplementeerd op simulatieniveau voor de ADCS case study.

Tegelijkertijd werd in dit onderzoek een lijst met services geïdentificeerd die nodig
zijn voor MAS-gebaseerde software-implementatie die kan worden toegepast op satel-
lietsubsystemen. Er is een kwalitatieve analyse van bestaande MAS-ontwikkelingskaders
uitgevoerd. Uit deze vergelijking, werden vier belangrijke componenten geïdentificeerd,
namelijk agenten, berichten, organisaties en platforms. Op basis van de interactie van
deze componenten werden twee hoofdcapaciteiten voor gedragstoewijzing en commu-
nicatie in detail bestudeerd. Het meeste nadruk werd gelegd op onderzoeken van de im-
plementatie van de communicatiedatabus die interacties van agenten mogelijk maakt
in een lineaire bustopologie die vaak wordt aangetroffen in ADCS-implementaties. Voor
dat doel werd een analytisch model van busgebruik afgeleid om de databusbelasting te
kwantificeren als functie van de implementatie- en operationele parameters. Dit mo-
del werd geverifieerd en gevalideerd met behulp van een discreet tijdssimulatiemodel
dat zowel de implementatie- als de operationele parameters bestuurt voor een ADCS-
casestudy.

De voorgestelde MAS-gebaseerde softwarearchitectuur vraagt om nieuwe methoden
en hulpmiddelen te definiëren voor de implementatie ervan op kleine satellieten. Om
die reden is er een volledig hoofdstuk gewijd aan het beschrijven van een methodologie
die voor dat doel is voorgesteld. Een vergelijking van model-gestuurde softwareontwik-
kelingsmethodologieën werd uitgevoerd om gaten in het ontwerp te identificeren, maar
ook om te begrijpen hoe deze, op modellen gebaseerde methoden, passen in de soft-
wareontwikkelingscyclus van ruimtesystemen. Toen de hiaten eenmaal waren vastge-
steld, was er een ontwikkelingsmethode voorgesteld om “ end-to-end-activiteiten” voor
modelgestuurde softwareontwikkeling te integreren met multi-agentsystemen voor sa-
tellieten. De voorgestelde methodologie heet “Multi-Agents Systems for Satellite Appli-
cations” (MASSA). Kwantitatieve experimenten vergeleken de implementatie van attitu-
deschattingsalgoritmen met behulp van de voorgestelde methodologie en vergeleken de
numerieke resultaten met simulatiemodellen voor verificatie en validatie.

Tenslotte, om de architectonische implementatie van de voorgestelde MAS geba-
seerde software aan boord te optimaliseren, werd ontdekt dat de organisatie van agen-
ten, met name de organisatorische topologie, cruciaal was voor het verbeteren van fout-
tolerantie in kleine satellieten. In aansluiting op een kwalitatieve analyse en inclusief
aspecten van front-end systems engineering, werd een objectieve functie voor het op-
timaliseren van de communicatiekosten voor de organisatie van agenten opgesteld en
opgelost met behulp van een Genetic Algorithms (GA) -benadering. De implementatie
biedt een karakterisering van het voorgestelde GA-algoritme om prestatieaspecten te la-
ten zien, zoals de tijd om een oplossing te vinden en het aantal iteraties dat nodig is om
een haalbare oplossing te vinden, zodat ontwerpers hun softwareontwikkelingsproces
kunnen verbeteren en versnellen . Dit proefschrift leverde de volgende bijdragen aan
de bestaande kennis: ten eerste, een nieuwe Fault Detection Isolation and Recovery-
architectuur die modelgebaseerde en datagestuurde technieken combineert om sensor-
fouten op ADCS te detecteren en corrigeren. Ten tweede, een nieuw busgebruiksmodel
voor gedistribueerde datacommunicatiebussen dat kan worden gebruikt om de presta-
ties van op MAS gebaseerde software-implementaties te compenseren. Ten derde, een

SAMENVATTING xv

innovatieve model-gestuurde methodologie voor het ontwerpen van fouttolerante MAS-
gebaseerde software. Ten vierde, een softwarebibliotheek voor agent-gebaseerde softwa-
reontwikkeling in geminiaturiseerde satellieten, en ten vijfde, een genetisch algoritme
voor een optimale organisatie van agent-gebaseerde software.

Dit proefschrift richtte zich op het aanpakken van het softwarecomplexiteitsprobleem
door het gebruik van agentgebaseerde softwarearchitecturen. Dat werd bereikt door het
geavanceerde, op componenten gebaseerde, ontwerp dat geïmplementeerd werd met
objectgeoriënteerde paradigma’s, uit te breiden met multi-agent-systeemconcepten. Toe-
komstige ruimtemissies met kleine satellieten kunnen profiteren van deze bijdragen om
hun prestaties te verbeteren en autonome foutdetectie, isolatie en herstel mogelijk te
maken. Sergei Korolev zei ooit: "Ik geloof in de toekomst. Het is geweldig omdat het
staat op wat er is bereikt.", zo was mijn proefschrift.

ACRONYMS

ACC Agent Communication Channel. 12, 13, 65, 68–70

ACL Agent Communication Language. 64–71

ADCS Attitude Determination and Control Subsystem. xi, xii, 18–23, 28, 36, 55, 63, 78–
82, 85, 88, 89, 103, 105–108, 110–113, 117, 118, 142, 143

AGC Apollo Guidance Computer. 3

AI Artificial Intelligence. 2

AIP Agent Interaction Protocols. 64, 67, 68, 143

AMFT Adaptive Middleware for Fault-Tolerance. 7

AMS Agent Management System. 12, 13, 120, 121, 129, 130, 133, 135

ANN Artificial Neural Networks. 42

AOCS Attitude and Orbit Control Subsystem. 8, 10, 15, 20, 25–27, 33, 34, 40, 43, 44, 46,
47, 51–53, 56, 60, 64, 68, 71, 72, 74, 75, 77, 91, 92, 126–132, 135–137, 140

AP Agent Platform. 13

AUML Agent Unified Modeling Language. 12

BFA Brute Force Algorithm. 122, 123, 139, 140, 147

BU Bus Utilization. 74, 75, 82–84, 92

CAN Controller Area Network. 63, 66, 68–70, 72, 75–84, 91, 92, 144, 146

CCM Cost of Communication Matrix. 116

CDHS Command and Data Handling Subsystem. 53, 80, 92, 103, 105, 108

CoM Center of Mass. 28

COMPASS Correctness, Modeling and Performance of Aerospace Systems. 108

CORBA Common Object Request Broker. 12, 66

COTS Commercial-Off-The-Shelf. 4, 6–8, 13, 18, 58

CPS Cyber-Physical System. 26, 27

xvii

xviii ACRONYMS

CPU Central Processing Unit. 6

CRF Controller Reference Frame. 28, 29, 31, 36, 37

DCM Direction Cosine Matrix. 29, 31

DF Directory Facilitator. 12, 13

DSL Domain Specific Language. 98

DTW Dynamic Time Warping. 41

ECEF Earth-Centered Earth-Fixed. 27–29

ECI Earth-Centered Inertial. 27–31, 36, 37

EKF Extended Kalman Filter. 36–38, 72, 80, 103, 106–112, 173

EPS Electric Power Subsystem. 15

ESA European Space Agency. 14, 126, 146

FDI Fault Detection and Identification. 43–46, 51, 53, 55, 60, 61, 131, 142

FDIR Fault Detection Isolation and Recovery. xi, xii, 3, 7, 8, 10, 17–22, 40–47, 49–53, 60,
61, 69, 94, 97, 98, 102, 106, 109–112, 118, 126, 128, 129, 131, 137, 142–146

FIPA Foundations of Intelligent Physical Agents. 12, 17, 64–69, 92

FIR Fault Isolation and Recovery. 43–46, 52–54, 56, 59–61, 131, 132, 137, 142

FPGA Field Programmable Gate Arrays. 2, 6

FTC Fault-Tolerant Control. 40, 44

GA Genetic Algorithms. xii, 119, 123–126, 128, 129, 131–140, 147

GDC Gemini Digital Computer. 2

GNSS Global Navigation Satellite System. 34

GPS Global Positioning System. 2, 34, 71, 103, 104, 127, 130

GPU Graphic Processing Unit. 2

HTTP Hypertext Transfer Protocol. 12, 66, 68

IAT Inter-Arrival Time. 74

IBM International Business Machines. 2, 3

ACRONYMS xix

ICA Independent Component Analysis. 42, 45, 52, 53, 57, 59–61

IIOP Internet Inter-Orb Protocol. 10, 12, 66, 68

IMU Inertial Measurement Units. 2, 50–52, 80, 103

IPMT Internal Platform Message Transport. 12, 65, 69, 70

JADE Java Agent Development Framework. 12–14, 68, 110

JVM Java Virtual Machine. 13

KQML Knowledge Query Manipulation Language. 66

LEO Lower Earth Orbit. 6, 27, 28, 33, 34

MAC Medium Access Control. 75

MAS Multi-Agent Systems. xi, xii, 11–22, 25–27, 44, 45, 64, 68–70, 79, 92, 94–98, 105–108,
110, 111, 113, 116–122, 125, 127, 132, 134–138, 140, 142–145

MASSA Multi-Agents Systems for Satellite Applications. xii, 23, 97–100, 102–106, 108–
113, 146

MDE Model-Driven Engineering. 17, 94

MTP Message Transport Protocol. 64, 67, 68, 92

MTS Message Transport System. 65, 68

NASA National Aeronautics and Space Administration. 8, 14, 58

NORAD North American Aerospace Defense Command. 171

OBC On-Board Computer. 6, 7, 22, 79, 81, 99, 107, 120, 129

OBSW On-Board Software. 7, 14, 18, 19, 23, 43–45, 95, 99, 105, 112, 118, 140, 142, 145

OOA Object-Oriented Architecture. 19

OOL Object-Oriented Language. 13

ORF Orbital Reference Frame. 28, 29

OSI Open Systems Interconnection. 68

PCA Principal Component Analysis. 42

PCB Printed Board Circuit. 5

PDO Process Data Object. 68–71, 79, 92

xx ACRONYMS

PLS Partial Least Squares. 42

PROBA Project for On-Board Autonomy. 14, 40, 126–130, 132, 135–137, 140

PSO Particle Swarm Optimization. 119, 123–125, 140, 147

RISC Reduced Instruction Set Computer. 3

RMI Remote Method Invocation. 10, 12, 66, 68

RTOS Real-Time Operating System. 69, 97, 110

SBRF Satellite Body-Fixed Reference Frame. 28–31, 37

SDO Service Data Objects. 70

SDR Software-Defined Radio. 6

SEU Single-Event Upset. 3, 4

SLIM System-Level Integrated Modeling. 108

SOC System-On-Chip. 6

SPADE Smart Python Development Environment. 68

SPARC Scalable Processor Architecture. 3

SPE Squared Prediction Error. 51

SSTM SysML to SLIM Transformation Methodology. 108

SVM Support Vector Machine. 42

SysML Systems Modeling Language. 98–100, 102, 105, 108, 146

TCP Transmission Control Protocol. 66

TLE Two-Line Elements. 171

TRL Technology Readiness Level. 6, 69, 126

TT&C Telemetry, Tracking and Control. 15

UART Universal Asynchronous Receiver-Transmitter. 110

UDP User Datagram Protocol. 66

UML Unified Modeling Language. 98

WAP Wireless Application Protocol. 68

XML eXtensible Markup Language. 66

XMPP Extensible Messaging and Presence Protocol. 12, 68

LIST OF SYMBOLS

Ωa Right ascension of the ascending node. 28

µE Gravitational coefficient of the Earth. 28

νa True Anomaly at epoch t0. 28

ωp Argument of the perigee. 28

θ Transformation angle from reference system A to reference system B. 30

A(q) Rotation matrix given a quaternion. 30

Isat Inertia matrix of the satellite. 31

L Angular Momentum. 31

Nctr l Control torque. 31

Ndi s Disturbance torque. 31

Next External torque. 31

S(·) 3x3 Symmetric skew matrix. 31

ad Perturbing acceleration of a satellite. 28

bg yr o Measurement bias for gyroscope. 32

bmag Measurement bias for magnetometer. 32

e Attitude parameter. 29

q Spacecraft attitude quaternion. 28, 32

r Geocentric position vector. 28

vmag Magnetic field vector measurement. 37

vsun Sun vector measurement. 37

ΩΩΩ(·) 4x4 skew symmetric matrix. 30

ωωω Angular velocity vector. 30, 32

a Semi-major axis of an ellipse. 28

e Eccentricity of an elliptical orbit. 28

xxi

xxii LIST OF SYMBOLS

io Inclination of an orbit plane. 28

s Quaternion scalar. 29

te Reference time of epoch. 28

t Time. 28

1
INTRODUCTION

The computer is the most remarkable tool that we’ve ever come up with.
It’s the equivalent of a bicycle for our minds.

Steve Jobs

Abstract

Developing more capable satellite missions faces increased onboard software complexity.
The next generations of satellites need to enable, among others, the infrastructure for intel-
ligent algorithm execution, as well as the capabilities for proactive failure detection, iso-
lation, and recovery. Agent-based architectures are a new developing approach adopted
in software engineering that combines flexibility, scalability and adaptability to dynamic
operating environments while providing a framework to implement state-of-the-art algo-
rithms with artificial intelligence. This Chapter focuses on describing the motivation for
this dissertation based on the evolution of spacecraft computers, as well as the trends in
small satellite engineering. It identifies the link between the increase in onboard software
features and onboard software complexity. To address that issue, this research proposes the
adoption of multi-agent-based software architectures as an extension of the well-known
object-oriented software architecture. The main goal is to make satellite missions more
resilient to failures during operations. It also describes the infrastructure needed for the
development and implementation of multi-agent based software architectures. Finally, it
introduces the research motivation, questions and methodology, and it describes the re-
search structure used to develop this dissertation.

1

1

2 1. INTRODUCTION

Computers are the core of any electronic device nowadays. Satellites are not the ex-
ception. In fact, an increasing number of satellite components are adopting the use of
embedded computers to improve their performance and increasing subsystems minia-
turization. Examples of such components include star trackers, Global Positioning Sys-
tem (GPS) receivers, and Inertial Measurement Units (IMU). For that reason, the satel-
lite’s onboard software design process shall evolve to embrace changes in processors
implementations, as well as new computing paradigms that exploit concurrent process-
ing technologies, for instance hardware accelerators like Graphic Processing Unit (GPU),
Field Programmable Gate Arrays (FPGA), and Artificial Intelligence (AI) enabled micro-
processors.

1.1. THE EVOLUTION OF SPACECRAFT COMPUTERS

Since the launch of the first artificial satellite in October 1957, both computers and their
software have changed significantly to integrate more functionalities and making mis-
sion operations more reliable. In parallel, the advances of the silicon integrated micro-
processors in the 70’s and several other software innovations, such as compilers, have
paved the way for more advanced applications onboard of space systems. However, as
discussed by Eickhoff (2011), it was the Apollo Program that raised the need to incor-
porate electronically controlled mechanisms for life support, trajectory control, landing
control, Moon re-launch, docking/undocking control and re-entry capabilities on space-
craft.

The first computer to fly to outer space was manufactured by IBM using discrete
transistors. It was the Gemini Digital Computer (GDC), which consisted of a customized
39-bit processor architecture with 4K word storage capacity implemented using mag-
netic core memory. It operated at a clock frequency of 7 kHz, and it took up to 840 ms
to perform the most advanced mathematical operations in the moment, divisions. The
mass of this computer was 27 kg, and its power consumption was about 100 W. According
to Cooper and Chow (1976), later developments during the 60’s and early 70’s improved
software support capabilities for assembly language programming and functional test
features. Figure 1.1 illustrates the layout of a Gemini Digital Computer.

Figure 1.1: Gemini Digital Computer (Source: Virtual AGC Project)

http://www.ibiblio.org/apollo/Gemini.html

1.2. TRENDS IN MINIATURIZED SATELLITES ENGINEERING

1

3

During the 70’s the Apollo program incorporated integrated circuit technology to re-
duce its Apollo Guidance Computer (AGC) mass and increasing its performance. One of
the biggest advancements in the software of the AGC was the integration of a real time
multitasking sub-layer to support up to 8 parallel tasks. Even when the clock speed was
1 MHz, the AGC struggled to cope with lunar approaches maneuvers as described by
Tomayko (1985).

The Space Shuttle program increased the reliability of space computers by enabling
hardware configurations for voting. Their microprocessors were inspired by IBM 360
architecture and they were adapted for radiation tolerance. From a software develop-
ment perspective, these computers supported a higher abstraction assembly language,
that reduced the development cycle and allowed higher separation of concerns. Also,
the onboard software added support for linear algebra operations required mainly for
guidance and navigation control as discussed by Klinar et al. (1975).

Later, satellites and space probes required more advanced onboard computing ca-
pabilities delivered in the x86 and other microprocessor architectures. For example, the
Voyager probes needed to split up command and data handling from attitude control, as
well as payload functionalities. That was the beginning of distributed spacecraft archi-
tectures. In parallel, software features like built-in self-test were incorporated for Fault
Detection Isolation and Recovery (FDIR) as discussed in the work by Rasmussen and
Litty (1981). Additionally, the onboard software required features for performance op-
timization, for example, trajectory control. More complexity in these missions led to
having more sophisticated ways to deal with integration. For that purpose, Gangl (2013)
argues the need to have standards to make the interface management easier. Standards
like MIL-STD-1750 and MIL-STD-1815 described the requirements for chip manufactur-
ers to design compatible devices for different mission requirements.

The adoption of microprocessor architectures based on a Reduced Instruction Set
Computer (RISC), especially, the Scalable Processor Architecture (SPARC) in the LEON
processor have enabled the adoption of more advanced real-time operating systems and
compilers, which enable capabilities to develop more complex software for satellite mis-
sions. However, much more has to be done to satisfy the increased demand for onboard
computing power to support intelligent applications. Sarode and Patil (2016) describe
how the LEON3FT processor implements a SPARC processing core with a floating point
unit and a memory controllers to support safety critical space missions with native fault
tolerant features. Figure 1.2 shows a LEON-Express Single-Event Upset (SEU) test board
to illustrate packaging and interfaces for debugging.

1.2. TRENDS IN MINIATURIZED SATELLITES ENGINEERING
In general, satellites are classified according their mass. In Barnhart et al. (2009a) the
term nano-satellite is used for spacecraft with a mass in the range of 1 to 10 kg, while
micro-satellite describes a satellite with a mass in the range of 10 to 100 kg.

According to a recent nano/micro satellite market research presented by Doncaster
et al. (2016), the launch of satellites in the range of 1 to 50 kg will increase about 10% ev-
ery year between 2016 and 2020. The emerging of a miniaturized spacecraft market of-
fers opportunities for start-ups and well-established companies and organizations ded-
icated to the engineering of small satellites, mainly those focused on earth observation

1

4 1. INTRODUCTION

Figure 1.2: LEON-Express SEU test board (Source: Gaisler (2002))

services, for example, Planet or broadband internet services such as SpaceX Starlink.
New spacecraft configurations for formation flying and satellite constellations are

being demonstrated with nanosatellites in the upcoming years as described by Gill et al.
(2013) and Guo and Gill (2013). Three major trends have been identified in the develop-
ment cycle of small satellite projects:

1. The adoption of Commercial-Off-The-Shelf (COTS) components in the developing
process, as discussed by Underwood et al. (1998), which has reduced the financial
cost of satellite projects.

2. The adoption of CubeSat standard for launching and deploying satellites, espe-
cially in nanosatellites as discussed by Heidt et al. (2000). According to Hubbard
(2014) the return on investment of small satellite missions based on CubeSats have
increased in the last five years due to a higher availability of launch opportunities.

3. The adoption of miniaturized distributed space systems, which has enabled a wide
range of new space applications as discussed in the work of Barnhart et al. (2007).

Satellite missions have become more sophisticated due to the evolution of comput-
ing hardware thanks to Moore’s law as discussed by Keyes (2006). Designers have moved
functionality from the ground segment to the satellite’s onboard computers to make
them more autonomous as presented by Macdonald and Badescu (2014).

The increase in the small satellites market combined with availability of new com-
puting technologies motivates the focus on small satellites in this dissertation. However,
the knowledge derived from it can be used on bigger satellites as well. The following sub-
section elaborates on current satellite trends, and it discusses the challenges associated
with small satellite development. This was used as the baseline to begin the research
presented in this thesis.

https://www.planet.com/
https://www.starlink.com/

1.2. TRENDS IN MINIATURIZED SATELLITES ENGINEERING

1

5

1.2.1. SUBSYSTEM MINIATURIZATION

The standardization of the mechanical deployment interface has been one of the drivers
for the increase in the number of small satellite launches. Puig-Suari et al. (2001) argues
that the release of the CubeSat standard in 2004 allowed a reduction in the development
time and cost of satellites. It also offered a standard that can be shared by a large number
of launch providers. It was initially intended for university development projects, but
it was adopted later by industry. Hitt et al. (2016) describe how Cubesats are currently
being supported and promoted by national space agencies as a mean for improving their
access to space.

Constraints on the mass, volume, and power budgets have required satellite devel-
opers to come up with disruptive innovations to fulfill the needs of their missions. For
example, Barnhart et al. (2009b) proposed the PCBSat, a micro-engineered space system
aiming to provide low cost and high quantities for distributed space missions. In such
missions, the integration of several subsystems into highly dense Printed Board Circuit
(PCB) is an enabler for the mission success.

Subsystems like propulsion and communication are being re-engineered to enable
more compact and capable satellites. In propulsion, for example, new devices called
micro-thrusters proposed in the work of Guerrieri et al. (2016) are being designed and
tested to ensure they can provide the required mission performance. In communication,
new antennas and transceivers designed by Gao et al. (2009) are intended to improve
performance, but also to reduce risk during integration, deployment and early satellite’s
operations. From the onboard computer perspective, Speretta et al. (2016) describes the
latest developments being carried out in Pocket Qubes to enable more capable com-
puting devices into smaller form factors. Figure 1.3 shows an onboard computer from
Alba Orbital for a Pocket Qube with 42 mm x 42 mm dimensions and a mass of about 10
grams.

Figure 1.3: Pocket Qube onboard computer (Source: Alba Orbital)

One trend in the miniaturization of onboard computers is the adoption of highly in-
tegrated systems for flexible software implementation allowing the migration from hard-
ware to software-defined components.

http://www.albaorbital.com/hardware/pocketqube-kit

1

6 1. INTRODUCTION

1.2.2. SOFTWARE-DEFINED COMPONENTS

The high availability of System-On-Chip (SOC) and FPGA-based technology have sup-
ported the evolution from hard-wired capabilities to more flexible features in highly in-
tegrated systems. One example on satellites is the implementation of Software-Defined
Radio (SDR) for both the space and ground segment. Besides flexibility in the implemen-
tation, SDR communication platforms enable an additional reduction in cost and mass,
which is one of the main drivers in miniaturized satellite applications as discussed by
Maheshwarappa et al. (2015).

Software-defined components increase the complexity of the onboard software. They
also demand more computing power on the microprocessors onboard, but they also
bring several benefits. One of the main advantages is the adaptive and reconfigurable
capabilities that allow updating and upgrading the satellite subsystems without chang-
ing their physical architecture. The flexibility in the software implementation also allows
the code reuse, which impacts the overall project cost.

1.2.3. EMERGING ONBOARD COMPUTING TECHNOLOGIES

Satellite’s OBC are heavily influenced by consumer electronics, in particular by the mo-
bile phone industry. They share some common requirements and constraints, for in-
stance, reduced volume, mass and power, and increasingly demanding applications.
Phones manufacturers have come up with design innovations in the microprocessor to
cope with these demands. There is an opportunity of adopting them in the aerospace
applications.

For satellite applications, there are some restrictions in adopting this current com-
puting technologies. For example, multicore processors are not yet mature enough for
satellite applications besides Lower Earth Orbit (LEO) since the reliability requirements
for radiation tolerance requires higher Technology Readiness Level (TRL). Also adopting
COTS middlewares and machine learning technologies requires effort for its qualifica-
tion for space use. The following paragraphs describe the potential of these emerging
technologies.

Multi-core processors: Concerning multi-core in flight software, two approaches are
being explored. The first one is called asymmetric multiprocessing, where each CPU
core executes an instance of the operating system. The implementation of asymmetric
multiprocessing requires standard inter-process communications for sharing informa-
tion between cores. In this approach cores are isolated logically and physically from
each other, which makes the identification of failures easier. The second approach is the
symmetric multiprocessing that allows dynamic task allocation to any core by running a
single operating system instance. Both methods are currently developed and supported
for the space-rated LEON4 processor, as discussed in Cederman et al. (2014). It is im-
portant also to consider that there is a trend on having multi-core enabled computers
on satellites that features heterogeneous processing units with CPU and FPGA compo-
nents.

Distributed Data Buses: The process of distributing functionalities among compo-
nents creates data networks that require communication protocols to standardize their
interface. Traditionally, space systems have their space-qualified communication proto-
cols that consume more energy due to radiation hardened components. In recent days,

1.2. TRENDS IN MINIATURIZED SATELLITES ENGINEERING

1

7

the space community is trying to adopt and qualify communication protocols from au-
tomobile industry to improve performance and energy efficiency. For instance, Scholz
et al. (2017) presents an open source implementation of CAN bus protocol for CubeSats,
where they demonstrate that wide used COTS protocols are an option for next genera-
tion spacecraft buses.

Distributed data buses are a key enabler for distributed computing models onboard
of satellite missions. It is important to research how current FDIR capabilities can be
improved as well as enabling the support for concurrent OBSW execution.

Middlewares: One of the mechanisms to enable onboard computing flexibility and
code reuse is the adoption of software middleware that handles the interaction between
missions applications and the execution infrastructure in the spacecraft bus. Middle-
wares are adopted as a response to the increase in the software complexity, that is de-
scribed later on. The middleware provides an abstraction layer to support highly com-
plex and heterogeneous execution components for applications to interact with the hard-
ware components in the OBC.

In aerospace applications, middlewares are used to enable highly concurrent and
distributed onboard software. For example, in Fayyaz et al. (2012) an Adaptive Middle-
ware for Fault-Tolerance (AMFT) performs FDIR activities. It also synchronizes the op-
eration of distributed OBC configurations. Other examples of middleware are the ones
provided by open-source projects like Ar dui noT M , that enable faster software devel-
opment and testing as presented in Le Vinh et al. (2015). In summary, middlewares are
the mechanism to implement intelligent software layers in the onboard computers of
satellites.

Machine Learning: Machine Learning is the product of the use of artificial intelli-
gence techniques and advances in process modeling, as well as data-based engineering.
As result of machine learning algorithms, there are more accurate classification and pre-
diction tools that can be implemented onboard satellites, as they are being adopted in
autonomous vehicles to learn from their environment and adapting their behavior ac-
cordingly. Recent applications for machine learning in OBC engineering include space-
craft autonomy by D’Angelo et al. (2017), and on-orbit sensor calibration for the star
trackers’ measurement model parameters as presented in Li et al. (2017a).

Hybrid Computing: One of the biggest challenges in OBC design for upcoming space
missions is balancing out the performance and energy efficiency that COTS components
deliver with the reliability features of radiation-hardened devices. This is what George
and Wilson (2018) define as a hybrid OBC architecture. It is important to make the re-
mark that in this case hybrid computers are different from heterogeneous processing
units mentioned above.

According to Furano and Menicucci (2018), to avoid single-point failures of space
system, all functions executed by a hybrid OBC are required to be internally redundant.
That requires establishing interfaces and mechanisms to migrate functions among dif-
ferent processing elements within the OBC of the satellite. The increase of interaction
and interfaces produces more complex configurations at hardware, but specially at soft-
ware level.

1

8 1. INTRODUCTION

1.2.4. INTEGRATED FAULT DETECTION, ISOLATION AND RECOVERY
As mentioned above, one of the most valuable applications taking advantage of advanced
computing models onboard satellites is the implementation of integrated Fault Detec-
tion Isolation and Recovery (FDIR) features. In fact, this dissertation takes FDIR as one
of the key enablers for future space missions, since it allows autonomous operations re-
quired by large and distributed space systems.

According to Bittner et al. (2014a), there is no FDIR development process for aerospace
coherently addressing the full FDIR lifecycle, which limits the possibility to effectively
determine the propagation and impact of failures in time. This can be critical in the
achievement of the mission’s objectives, but also an opportunity to provide a framework
that addresses that problem taking advantage of software techniques that boost the de-
velopment and implementation of satellite systems. This dissertation focuses on failure
detection and isolation rather than recovery, since recovery techniques may vary from
mission to mission. It also focuses on enabling the infrastructure required for fault de-
tection and isolation modeling and implementation using a distributed approach, trying
to mimic what organic systems do. Finally, FDIR methods are studied on time-critical
subsystems, especially those requiring higher processing capabilities, for instance on
the Attitude and Orbit Control Subsystem (AOCS).

1.2.5. THE NEED FOR A MORE RELIABLE AND PRECISE AOCS
Autonomous rendezvous and docking has been one of the reasons to have a precise
AOCS on a spacecraft. However, recent applications of small satellites such as the broad-
band service proposed by SpaceX Starlink requires very precise pointing capabilities, as
well as performing periodic orbit correction.

Due to the large scale of such systems, it is imperative to have also the implemen-
tation of autonomous Fault Detection Isolation and Recovery capabilities to reduce the
operation’s cost. That is also a motivation for this dissertation to take the Attitude and
Orbit Control Subsystem of satellites as case studies for demonstration purposes.

Currently, there is also a trend in enabling laser communication on small satellites.
For instance, NASA selected the Aerospace Corporation to develop a technology demon-
stration mission to test COTS components in optical communications with CubeSats.
The proposed concept included an optical payload using beam spreads in the range of
miliradians. According to Janson and Welle (2014b), the mission’s objective was to es-
tablish a communication link between the AeroCube-OCSD satellite and a telescope lo-
cated in California, USA. This serves as example of several missions developed to test
such capabilities.

From the systems perspective trends on satellite’s subsystems miniaturization, the
evolution of software-defined components and the emerging of onboard computing tech-
nologies enable novel FDIR applications on time-critical subsystems such as AOCS to
improve the capability of satellites for autonomous operations. The challenge is how
to define and describe a proper system and software architecture that handles the in-
creased software complexity derived from enabling newer and better onboard comput-
ing functions such as FDIR. For that reason, studying and dealing with the software com-
plexity problem is key on the route of enabling more autonomous satellite systems.

https://www.starlink.com/

1.3. THE SOFTWARE COMPLEXITY PROBLEM

1

9

1.3. THE SOFTWARE COMPLEXITY PROBLEM
Banker et al. (1993) describes software complexity either as a measure of the required
resources for interaction between software components, as well as the difficulty of un-
derstanding of the entire structure and organization of a program. A good metric of soft-
ware complexity is the relationship between the number of demanded features and the
number of lines of code required for their implementation. This was demonstrated em-
pirically by Basili and Perricone (1984) in their work. In this dissertation’s context, soft-
ware complexity is defined as the increase in the levels of interdependence of software
components within the implementation of a set of system features distributed across
multiple computers onboard the satellite.

It is logical that by constraining the available execution resources, the software com-
plexity increases, as the functionality density does. Then, according to Atkinson and
Kühne (2008), two different types of complexities can be identified; the inherent soft-
ware complexity which is due to the need for providing more features, and the accidental
complexity that is the increase in the interdependence of components to make the sys-
tem more robust. From a systems engineering perspective, inherent complexity is linked
to capabilities, whereas accidental complexity is related to systems characteristics. For
instance, accidental complexity is affected by the openness of the system, number of
software components, among other elements in the systems design.

In software systems, the level of complexity is determined by the interaction between
the multiple software components and their environment. Magee and Kramer (1996)
describe this interaction in terms of the provided and required services by each software
component. Due to the dynamic nature of these interactions, there are emergent behav-
iors that affect the whole performance of the system, meaning that global performance
is more than just adding up the individual components, but requires including behaviors
produced by their interface. The effect of these interactions evolve over time so that the
future state of the system is affected by the present state. That allows using models, for
instance, Markov Chains to describe software systems including its complexity as using
techniques such as in the work of Whittaker and Poore (1993) and Béounes et al. (1993).

Software complexity for aerospace applications was introduced and discussed by
Vassev and Hinchey (2014) and Lalanda et al. (2013) using the concept of autonomic
computing. Since the on-board software is tightly coupled with the hardware compo-
nents of the spacecraft bus there is a direct link between software complexity and sys-
tems size. Yushtein et al. (2011) argues that an increase in the system’s complexity makes
the link between the avionics and its software more difficult to model due to newer in-
teractions and interfaces. Due to this increase of systems and software complexity:

1. The onboard software requirements definition and design time is increased.

2. The software interface management increases, impacting the verification and val-
idation readiness.

3. The time spent in software development activities becomes shorter since more
time is required in front-end systems engineering activities.

The aspects listed above assume that the time for developing the software of a system
is fixed by the program management.

1

10 1. INTRODUCTION

A comprehensive analysis of flight software complexity is presented by Dvorak and
Lyu (2009), which identified and described 11 recommendations on how to deal with in-
creasing software complexity in on-board software for spacecraft. The main recommen-
dation appoints to the need of improving software architecture design in early stages of
spacecraft system development. The study also suggest defining a reference architecture
to provide a common list of capabilities required in most of the missions, for instance,
navigation, attitude control, thermal control, command and data handling, and FDIR.

1.4. SOFTWARE ARCHITECTURE PARADIGMS
Software architecture is used as a tool to mitigate the increment of software complex-
ity, since it has the ability to deal with multiple views of the system including both its
functional and non-functional aspects. According to Mens et al. (2010) to mitigate the
increment of software complexity in critical systems, its architecture shall be able to de-
scribe, maintain and evolve to adapt without sacrificing its purpose. The architecture
shall also enable and facilitating the implementation of software by taking advantage of
specific computational models and programming language’s features.

There are three main software architecture paradigms that were considered during
this research. These are the resource-oriented, service-oriented and object-oriented
paradigms. The resource-oriented paradigm involves retrieving information instances
from different systems components. Then it performs operation and restores them to
the place where they were initially. It can also have multiples copies of the same data
distributed among the system’s components, which is a concern in highly constrained
systems such as satellites.

The service-oriented paradigm involves stateless communication between compo-
nents using message passing methods. According to Papazoglou (2003), there are end-
point services that implement the data processing and respond to clients when required.
This approach relies on describing the system as a collection of services. The main draw-
back of this architecture paradigm is its dependency in the operations manager to mon-
itor the correctness and overall functionality of services.

Wang and Fung (2004) describe the object-oriented architecture as a collection of
objects and classes that have state, behavior and identity. The communication among
the objects is stateful and optimized to minimize the workload in the network. One
of the advantages of this paradigm is its flexibility to adapt behaviors due to polymor-
phism. The main drawback of this paradigm is its non-friendly protocols for communi-
cation, for instance Internet Inter-Orb Protocol (IIOP) and Java-Remote Method Invoca-
tion (RMI). However, it can be solved by enabling communication objects that encapsu-
late and standardize the communication functionalities for application-specific needs.

For satellite systems it is more convenient to adopt an object-oriented architecture
since it behaves as a stateful system, meaning that satellites store data locally to keep
control of current state. In fact, for the AOCS case studies the system is modelled using
state vectors. That makes the object-oriented architecture more suitable for describing
the software of a spacecraft.

This dissertation proposes adopting an agent-base software architecture model as an
extension of the object-oriented architecture paradigm. The main intention is to provide
capabilities to software components to handle their dynamic nature onboard a satellite.

1.5. AN OVERVIEW ON MULTI-AGENT SYSTEMS

1

11

1.5. AN OVERVIEW ON MULTI-AGENT SYSTEMS
Agent-based software engineering and multi-agent systems technologies are ideal to
deal with the increase of complexity of satellite onboard software from an architectural
point of view. This software architecture paradigm provides the required abstractions
to integrate intelligent behaviors on satellite’s software components. However, it is re-
quired to identify and provide the theoretical foundations as well as the tools to develop
satellite onboard software applications using this approach.

It is necessary to establish the difference between intelligent agents and multi-agent
systems. This section reviews the basic concepts related to multi-agent-based architec-
tures, as well as their implementation considerations, so later they can be adopted to
describe algorithms and methodologies proposed on this dissertation.

1.5.1. AGENTS VS MULTI-AGENT SYSTEMS
Initially, it is necessary to understand what agents are, and why they are so important
to enable flexible software architectures. There is no clear consensus about the defini-
tion of agents. For this thesis purposes, a general definition provided by Russell et al.
(1995) is considered. It establishes that an agent is: “anything that can be viewed as per-
ceiving its environment through sensors and acting upon that environment through
effectors.”

This definition is broad and requires the refinement of some concepts to adapt it
to the aerospace applications field. Also, it is necessary to establish the scope of these
concepts to the engineering of onboard software for satellites. Some key elements have
to be described in detail. Firstly, it is assumed that software systems can be decomposed
into smaller routines that can be encapsulated into software agents. By definition, agents
are social entities, so that they require interacting with each other to achieve their goals.
Secondly, agents can interact with their environment. That makes the communication
capabilities a key requirement for their success. Third, agents can have internal states
that influence their decision-making process. Fourth, agents have the means to change
their internal state.

Another aspect to consider is that agents could be either physical or virtual entities.
Their location defines this status. Software Agents residing in the same logical container
and sharing the same execution resources are considered virtual agents, whereas agents
that interface with hardware elements are considered physical agents. The combination
of physical and virtual agents defines a Multi-Agent Systems (MAS)

Similarly to agents, there are various definitions of multi-agent systems. Stone and
Veloso (2000) describe a MAS as a "loosely coupled network of problem-solving entities
(agents) that work together to find answers to problems that are beyond the individual
capabilities or knowledge of each entity (agent)."

This definition of MAS implies that agents within the system have some communi-
cation to cooperate and achieve a common goal. As discussed by Glavic (2006), there are
several typologies of cooperation for different types of agents. These included indepen-
dent and cooperative agents that can achieve consensus using mechanism such as nego-
tiation, deliberation, and emergent cooperation. From that work, one can conclude that
studying the communication and organization aspects is fundamental to understanding
the performance of Multi-Agent Systems and proposing design improvements.

1

12 1. INTRODUCTION

Multi-agent systems have several architectural characteristics tailored to the applica-
tions domain where they are implemented. These include the ability to learn, negotiate,
and cooperate to achieve common goals. According to agent modeling theory described
in Elsenbroich and Gilbert (2014), in Multi-Agent Systems the starting point of formal-
ization is a distributed, and concurrent system of agents; each of them solving a part of
a larger task, which represents in our case functions of the onboard software of a space
system.

Modeling software as a MAS requires a robust front-end systems engineering. Laouadi
et al. (2014) describe a novel modeling methodology using formal specifications to re-
quirements with Agent Unified Modeling Language (AUML). The core element of MAS-
based software architecture is the organizations of agents. Jennings (2000) also describes
the internal agents structure and its organization including specifications of their con-
currency model, timing, and the relationships between software components.

As discussed by Jennings (2001), when adopting an agent-oriented view for software
architecture design, it becomes apparent that most applications involve multiple agents
to represent their decentralization and their concurrent nature. Shehory and Sturm
(2014) establish that from a software architecture viewpoint, multi-agent systems mod-
eling has two perspectives: one focused on internal agents structure, and the external
perspective dealing with agents organizations and infrastructure services. The model-
ing, simulation, and deployment of MAS-based software architectures require methods
and tools, which are commonly provided by platforms and frameworks.

1.5.2. AGENT COMMUNICATION ARCHITECTURES

Communication architectures and languages are key to facilitate the creation of inter-
operable multi-agent based software. One key requirement for agent’s communication
language is the decoupling of its behavior implementation from its interaction interface.
For that purpose, two main topological approaches are considered: centralized and dis-
tributed. In the centralized approach, the Multi-Agent Systems platform offers com-
munication and management capabilities encapsulated in dedicated platform agents.
These are the Agent Management System (AMS), the Directory Facilitator (DF), and the
Agent Communication Channel (ACC). For instance, the SPADE platform presented by
Gregori et al. (2006a) implements a Extensible Messaging and Presence Protocol (XMPP)
server for routing all the messages in the platform. The XMPP server acts as both the
Agent Communication Channel and the Internal Platform Message Transport (IPMT) de-
scribed in the communication reference model of the Foundations of Intelligent Physical
Agents (FIPA). For message transport, SPADE relies on the Hypertext Transfer Protocol
(HTTP) and Extensible Messaging and Presence Protocol (XMPP), but it also supports
additional protocols for interoperability with other multi-agent platforms.

Java Agent Development Framework (JADE) is another multi-agent systems platform
providing an application programming interface for Java-based Multi-Agent Systems.
Details of this platform are presented and discussed by Bellifemine et al. (2007). Com-
munication in JADE is by default provided and controlled from the main logical con-
tainer by using the HTTP protocol. JADE also uses transport technologies such as Java-
Remote Method Invocation (RMI), Internet Inter-Orb Protocol (IIOP), and Common Ob-
ject Request Broker (CORBA) for enabling its run-time environment. Additionally, JADE

1.5. AN OVERVIEW ON MULTI-AGENT SYSTEMS

1

13

also supports distributed communication architecture by implementing a “Main Con-
tainer Replication” feature that allows other logical containers within the multi-agent
system to take control over the Agent Platform (AP) as described by Bellifemine et al.
(2005).

Typically, centralized architectures use a star topology, where the AMS, ACC and DF
are support agents living exclusively in the main container while in a distributed archi-
tecture implementation, for instance in a mesh topology, AMS, ACC and the DF agents
are replicated in all the logical containers to ensure fault tolerant capabilities.

It is important to remark that not all the multi-agent systems platforms support both
centralized and distributed implementation topologies for the support agents. That is
the reason why having a good software design methodology is necessary to select or to
design a proper platform to ensure the reliability requirements are satisfied. One of the
open problems that is addressed by this research is the optimal organization of agents
within the subsystems. It takes the total cost of communication under certain organi-
zational constraints to study and propose algorithms to minimize that cost. It also ex-
plores strategies for establishing the optimal organization configuration by analyzing the
grouping mechanisms, for instance teams, congregations, and coalitions.

1.5.3. MULTI-AGENTS SYSTEMS FRAMEWORKS

Although intelligent agents have been around since late of 90’s, their actual implemen-
tation has not still been adopted fully in the software engineering community and has
never been carried out to develop the entire onboard software of a small satellite mis-
sion. There are benefits in terms of reliability and performance that this architectural
style can provide for engineering more capable and reliable space systems.

MAS frameworks and platforms are widely discussed and compared in literature by
Sturm and Shehory (2014), Wang et al. (2014) and Rousset et al. (2014). This subsection
elaborates on the most important findings from these sources. A guideline for the as-
sessment of agent-based platforms is presented by Kravari and Bassiliades (2015). This
comparison considers the following criterion: platform properties, usability, operating
ability, pragmatics, and security management.

Most of the modeling and simulation platforms are based on Object-Oriented Lan-
guage (OOL) like Java, Python, and C++. The advantage of using OOL is the ability to
create a layered architecture style, which enables code reuse and modular implementa-
tion, enhancing the scalability of multi-agent systems solutions.

A Multi-agent systems implementation for distributed software is shown by Bellifem-
ine et al. (2000) with the Java Agent Development Framework platform. In this applica-
tion, the author focuses on implementing an agent class and describe specific agent’s
tasks by writing one or more behavior subclasses. The key advantage of using JAVA lan-
guage for implementing multi-agent systems is the broad support for Java Virtual Ma-
chine (JVM), which enables a smooth deployment with COTS technologies. An example
of a successful implementation can be found in the work presented by Bergenti et al.
(2014) with Android-based devices.

JADE is one of the most popular frameworks for multi-agent software implemen-
tation. However, there are other platforms like ZEUS by Fonseca et al. (2001), JIAC by
Lützenberger et al. (2013), SPADE by Gregori et al. (2006b), THOMAS by Argente et al.

1

14 1. INTRODUCTION

(2011), and FIOT by do Nascimento and de Lucena (2017).
A key characteristic of multi-agent systems is their social ability. For making the

agents social, it is required to provide a set of services, conventions, and knowledge to
facilitate interaction and communications. Sycara et al. (2003) introduces and describes
a summary of general MAS infrastructure services. However, in this case, it is necessary
to assess which of the services are required in OBSW development.

Safety critical systems like satellites require determinism in the execution of their
software applications as discussed by Burns and McDermid (1994). This characteristic
has to be considered when selecting or designing a MAS development framework. In this
dissertation, the JADE platform developed by Bellifemine et al. (2007) is used as a refer-
ence to compare all implementations intended for embedded computers in the satellite,
since its a mature framework with stable implementation and support.

1.5.4. MAS-BASED APPLICATIONS IN CONTROL SYSTEMS
Multi-agent systems have become a hot topic for the control community over the last
decade. Several applications have been reported in the literature. For example, in dis-
tributed control for wireless sensor networks by González-Potes et al. (2016), swarm
robotics by Liang et al. (2016) and distributed power systems by Dou et al. (2017). One
common aspect that these applications share is the use of multiple physical agents to
reach consensus on specific target control.

On the other hand, there are applications of MAS-based control with virtual organi-
zations, where agents share computing resources within the same system to achieve a
goal. For example, in the work by Oviedo et al. (2010), they propose a general layered
architecture style with four types of agents. They are the teleoperator agent, the coor-
dinator agent, the operator agent and the device agent. This architecture considered a
distributed and concurrent environment for execution of the application. The config-
uration was similar to a space systems system communicating over a linear data bus.
The following subsection focuses on the application of MAS-based technology for space
systems.

1.5.5. MAS-BASED SOFTWARE IN SPACE APPLICATIONS
According to Hassani and Lee (2015), the challenges of developing MAS-based software
architectures for space missions are driven by four major characteristics of the space-
craft:

1. Very low human intervention during the operations phase.

2. High reliability during the mission lifetime.

3. Project development constraints: cost, schedule.

4. Spacecraft operations involves concurrent activities among a set of tightly coupled
subsystems.

Space agencies like ESA and NASA have introduced MAS-based applications to im-
prove the autonomy of spacecraft. Example of autonomous software for space applica-
tions was done in the Project for On-Board Autonomy (PROBA) mission and Livingstone

1.6. ENABLING TECHNOLOGIES FOR MAS-BASED SOFTWARE

1

15

project. Detailed information for these applications can be found in the work of Hinchey
and Vassev (2012) and Chien et al. (2014). From the literature review, application of
multi-agent systems in space software has been demonstrated mainly in planning and
scheduling algorithms for formation flying and control as in work of Chien et al. (2014).
Also in applications for Telemetry, Tracking and Control (TT&C) by Wang et al. (2015)
and Electric Power Subsystem (EPS) management by May and Loparo (2014). Based on
the literature review, there is not any application of MAS-based software for the Atti-
tude and Orbit Control Subsystem, which is the most time-critical subsystem within the
spacecraft bus.

1.6. ENABLING TECHNOLOGIES FOR MAS-BASED SOFTWARE
In order to implement MAS-based software onboard satellites subsystems it is required
to have a set of enabling technologies. This section discusses these technology enablers
to make MAS-based software architectures feasible for their implementation.

1.6.1. MULTI-AGENT SYSTEMS INFRASTRUCTURE
Organizations with multiple software agents (MAS) require having an execution infras-
tructure that supports simultaneous task processing and communication. Concurrency
and distribution can be achieved by dividing the processing time into slices and allo-
cating them to different execution threads, or they can rely on multi-core processing for
enabling space partitioning as well.

Gasser (2000) discusses the need to address Multi-agent Systems infrastructure as
a technology enabler for agent-based software architecture adoption in more applica-
tion fields (e.g Satellite systems). The elements needed for a robust multi-agent sys-
tem ecosystem are grouped into 5 categories: system elements, services, capabilities,
attributes, and community.

SYSTEM ELEMENTS

These are critical components that enable the implementation of agent-based applica-
tions. These include the way agents communicate to each other, the programing lan-
guages and libraries, design methodologies, experimental platforms with documented
case studies, integrated development environments for developers, software developer
kits, and finally implementation frameworks. Elements must be developed, tested and
qualified for each application domain, in particular for those that are safety critical, for
instance application in aerospace engineering.

SERVICES

Services are provided by underneath layers of the software stack, for instance the oper-
ating system. Services must provide capabilities for resource discovery and access con-
trol, security features, communication certification, as well as specialized features for
domain specific needs.

CAPABILITIES

Capabilities refer to features that multi-agent systems infrastructure provides to systems
engineers for analysis, trade-off, design, implementation, verification and validation.

1

16 1. INTRODUCTION

Examples of capabilities include data collection tools (e.g for message exchange), fault
detection, isolation and recovery, performance measurements, visualization tools, sim-
ulation environments, deployment analysis tools among several others depending on
the application domain.

ATTRIBUTES

Attributes are characteristics of the MAS infrastructure to implement capabilities and
services within the available resources. These includes aspects like openness, code den-
sity, robustness (fault-tolerance), scalability, standardization, availability among several
others defined on application basis.

COMMUNITY SUPPORT

Community support is key for the long-term sustainability of the system. It is a special
attribute that refers to the support environment for the MAS infrastructure. For exam-
ple how the community shares its knowledge, how the user groups interact and which
communication mechanisms they use, and also, how the components are distributed,
for instance, using open source repositories (e.g GitHub).

1.6.2. MAS-BASED SOFTWARE DESIGN CONSIDERATIONS
So far, this Section has focused on general aspects that must be considered to adopt
and adapt a Multi-agents system infrastructure for aerospace applications. There exist
specific aspects that have to be discussed in detail due to safety-critical nature of satellite
systems.

ALGORITHM FEASIBILITY

Multi-agent system formation is field of study devoted to research the possibilities of
agents to team up to achieve a common goal. Depending on whether agents are physical
or logical they are subject to satisfy specific requirements. For example, physical agents
such as robots, are required to satisfy their kinematics and their logical constraints.

Tabuada et al. (2001) argue that the feasibility of an algorithm to be implemented as
Multi-Agent Systems is defined by the formation graph that describes both individual
agent kinematics and global inter-agent constrains. In that regard, two different types of
formation graphs can be obtained: undirected and directed.

In undirected formations agents are equally responsible to maintain their constraints,
whereas for directed formation particular agents are necessary to keep track and control
of constraints. This paper also proposes algorithms to test the feasibility of a group of
agents to achieve both kinds of formations.

DISTRIBUTED COMMUNICATION

Communication is one of the core elements that enables the implementation of multi-
agent based software; However, its implementation is rather complex and requires appli-
cation specific optimization. Li and Kokar (2013) establishes that the best way of dealing
with this complexity is by introducing abstraction levels in its design. Agent communi-
cation protocols are required to specify a minimum set of rules for agent communication
within the multi-agent system boundaries. There is also consensus on the importance
of autonomy as part of agent communication semantics.

1.7. MOTIVATION AND CONTRIBUTIONS

1

17

FIPA establishes the requirements for agent communication language as a set of
standards that shall be met by multi-agent systems platforms. Fipa (2002) specifications
describes the reference model for message transport, in which several communication
requirements and constraints are documented, as well as a message structure and refer-
ence communication architectures. Communication protocols within multi-agent sys-
tems are grouped into layers intended to organize and isolate specific sets of functions.
Gregori et al. (2006a) describe features like multi-user conferences are relevant when re-
quiring advanced architecture configuration for self-organizing systems.

SOFTWARE DESIGN METHODOLOGY AND OPTIMIZATION

The development process of spacecraft is commonly divided into project phases. Within
these phases, satellite software is designed, implemented, verified and validated using
the traditional V-model approach.

According to Schaus et al. (2010) this process is centered on the use of documents,
which means that at the end of each design phase the team has to focus on the review
process, losing focus on the continued development process. This causes delays in the
project execution timeline that are associated with increased cost. That situation re-
quires a paradigm shift to novel and agile software development methodologies to en-
able flexibility in the design process, while coping with strict tight development sched-
ules. The role of flexibility in system design for aerospace systems is discussed by Saleh
et al. (2003), focusing mainly in the need of handling change in requirements during the
development process.

Model-Driven Engineering (MDE) offers a framework to describe satellite systems
using methods and techniques to optimize the requirements analysis and design of on-
board software applications. According to Degueule et al. (2017), model-driven engi-
neering provides with a unified and standardized language to implement models that
are easy to read and explain to both decision makers and developers. With respect to
complexity, MDE facilitates the handling of implementation details by establishing ab-
stractions concepts and separation of concerns.

Combining model-driven engineering with multi-agents systems offers an opportu-
nity of dealing with the increased satellite software complexity as described by Gascueña
et al. (2012). However, this requires an extra effort of defining a methodology for end-to-
end onboard software design, implementation, and verification. Several methodologies
have been documented to develop agent-based software. For example, Prometheus by
Padgham and Winikoff (2002)-Padgham et al. (2014), GAAIA by Zambonelli et al. (2003),
Ingenias by Pavón and Gómez-Sanz (2003), MaSE by Deloach (2004), and several others
offer MDE methodologies for Multi-agent Systems design, but they lack continuous ver-
ification and validation capabilities, necessary for enabling space software applications.

1.7. MOTIVATION AND CONTRIBUTIONS
So far, this Chapter has described the evolution of spacecraft computers, the trends in
small satellite engineering, and the increase in satellite’s onboard software complexity
derived from the integration of FDIR features. Also, it proposed that one way to deal
with the increment in the onboard software complexity is through the use of advanced
architectural approaches such as those based in Multi-Agent Systems (MAS).

1

18 1. INTRODUCTION

One question frequently asked is: why is it convenient to adopt an MAS-based ap-
proach for dealing with the software complexity problem? Also, there is a recurrent
question about what is the difference between using a MAS-based approach and a multi-
threading approach that is already implemented in most of the operating systems used
for On-Board Software development. The first question is motivated by the connection
of agent-based architectures with design patterns for implementation that enables faster
development cycle. The second question is addressed by the implementation technique
adopted in the making of the onboard software.

The focus of this dissertation is on the design of MAS-based software architectures
for small satellites. The main aim is to improve mission autonomy by integrating the
failure detection, isolation, and recovery of time-critical subsystems aboard satellites,
for instance, the Attitude Determination and Control Subsystem (ADCS). It includes on-
board software design through a MAS-based methodology that covers for agent model-
ing, simulation, and agents organizational optimization. For that purpose, it is neces-
sary to establish the technologies and services required for their implementation. This
section particularly focuses on describing the formulation aspects to cover during the re-
search project. It includes the motivation, requirements, research focus (questions), the
methodology to finally propose the structure followed during the research development.

1.7.1. RESEARCH MOTIVATION AND REQUIREMENTS
In Section 1.2 this research identified the trends and challenges of small satellite engi-
neering. The integration of FDIR features was considered as a key feature for enabling
autonomous operations of future small satellite missions. It was also demonstrated that
the increment on the satellite’s onboard functionalities is connected with a higher level
in the onboard software complexity. That situation demands the adoption and develop-
ment of innovative onboard software architectures. In order to address this problem, it
was necessary to investigate prospective alternatives for the integration of FDIR capabil-
ities at subsystem and/or component level. Additionally, it was required to define faster
development and implementation workflows for these new approaches.

Since this research follows a systems engineering approach, some high-level require-
ments were defined to drive and constraint the research efforts. The main goal was to
have a clear scope of the project while developing it. These high-level requirements were
defined as follows.

The top-level requirements for this research are:
OBSW-ARCH-01: The software architecture shall maximize code reuse and code mod-

ularity (Killer requirement).
OBSW-ARCH-02: The software architecture shall optimize the use of onboard com-

puting resources.
OBSW-ARCH-03: The software architecture shall enable the use of model-based de-

velopment methods.
OBSW-ARCH-04: The software architecture shall support built-in fault detection,

isolation and recovery features for time-critical systems in satellites.
OBSW-ARCH-05: The software architecture shall be implemented using COTS tech-

nology and open source development tools for small satellites.

1.7. MOTIVATION AND CONTRIBUTIONS

1

19

Section 1.4 has introduced and described the potential architectural paradigms that
were considered during the early stages of this research. It was clear that in order to
satisfy the killer requirement above, it was necessary adopting a software architecture
paradigm that maximized code reuse and component modularity. For that reason, the
Object-Oriented Architecture (OOA) was selected for further research. However, one of
the problems of using a purely OOA is that it does not have built-in FDIR features. This
requires an extension of this architectural paradigm that enables the implementation of
such features. That is the motivation to adopt a multi-based software architecture, since
it allows extending OOA capabilities for satellite software development.

This research proposes the adoption of a MAS-based approach for on-board soft-
ware architecture design with the purpose of enabling mechanisms to handle increased
software complexity in time-critical subsystems of satellites. The Attitude Determina-
tion and Control Subsystem (ADCS) of small satellite missions is taken as a case study
for verification and validation of the algorithms, models and methodologies proposed
in this dissertation. The reason behind focusing on this subsystem is its time-critical na-
ture, as well as its increasing requirements on reliability and performance in the coming
future. All that is reflected in the ADCS complexity that is increasing to support newer
satellite missions. These new applications demand new programming and processing
paradigms to ease their implementation.

1.7.2. RESEARCH QUESTIONS
Based on the research motivation and requirements, the following research questions
were defined for this dissertation:

1. What kind of services shall the onboard software provide for implementing highly
reliable MAS-based software architectures in ADCS computers?

(a) What is the best strategy for MAS-based FDIR implementation in small satel-
lites?

(b) What are the most critical services that onboard computers shall provide to
implement MAS-based software architectures in ADCS computers?

(c) How to balance services workload for an efficient MAS-based OBSW archi-
tecture implementation?

2. How to model the ADCS software architectures for small satellites using a multi-
agent systems approach?

(a) What kind of agents are required to describe ADCS software design?

(b) What is the most effective methodology to describe agent’s behavior in a
multi-agent systems simulation environment?

(c) What is the most suitable strategy to implement an ADCS software architec-
ture using state of the art multi-agent systems platforms and tools?

3. How to optimize multi-agent system organization according to ADCS mission re-
quirements and constraints?

1

20 1. INTRODUCTION

(a) What kind of topology can be achieved by optimizing the performance of
ADCS applications?

(b) How to link stakeholders requirements with quality attribute requirements
in MAS-based ADCS software architecture?

(c) What are the risks, sensitivities, and trade-offs that must be considered and
controlled to achieve an optimum MAS agent’s organization in ADCS soft-
ware architecture to satisfy mission requirements and constraints?

In the first research question, the focus is on the technical aspects related the multi-
agent system implementation in the onboard computer of the satellite. Two key ele-
ments are being addressed: Firstly, the interface between the software application and
the operating system of the onboard computer. For that purpose, a software library was
developed to assess performance in memory management, CPU load and fault detec-
tion, isolation and recovery features. Then, the communication aspects of MAS-based
application’s implementations was assessed. From these activities, it was clear that com-
munication is the key element required for the implementation of distributed and con-
current onboard software on satellite subsystems, thus an enabling feature.

The second research question is oriented to study the way that agents shall be engi-
neered for satisfying performance and safety requirements in a satellite mission. Also, in
this part, different tools are explored for modeling, simulation, and implementation of
agent-oriented architectures for space applications. Modeling is one of the central ele-
ments of this thesis since it enables the development of design workflow that integrates
the fault detection, isolation and recovery features for multi-agent based software.

The third research question explores and proposed novel algorithms for establishing
organizations of agents within the onboard software implementation. It defines a set of
cost functions to optimize the design architecture and study methods that can address
constraints in reliability and performance of the software. Finally, this dissertation shows
the potential of MAS-based software architectures to deal with constraint resources and
uncertainty in the environment to provide more robust mission operations.

Before describing the processes and methods considered for the execution of this
research, it is important to clarify the scope and focus taken to tackle the software com-
plexity problem in satellite missions. Figure 1.4 summarizes the three main areas cov-
ered by this thesis that were introduced in previous sections. On one side, there is a set
of multi-agent systems technologies that were analyzed and used as a baseline to extend
their use to space systems. From the application perspective, the use of time-critical sub-
systems as case study supported the need for a new computing model for implementing
complex pieces of software onboard the spacecraft.

From the literature reviewed, it was determined that Attitude and Orbit Control Sub-
system (AOCS) was the most computing intensive subsystem on the spacecraft. There-
fore, it is valuable for demonstrating MAS-based software architectures. Finally, the re-
quirements specified built-in fault detection, isolation and recovery capabilities in the
design of onboard software for satellite mission as key enabler for onboard autonomy in
satellites. Based on this scope, this dissertation connects MAS, ADCS and FDIR during
the on-board software development process with the purpose of improving performance
and reliability of space missions.

1.7. MOTIVATION AND CONTRIBUTIONS

1

21

Figure 1.4: Dissertation Focus

1.7.3. RESEARCH METHODOLOGY

The general approach taken in this dissertation included both qualitative and quanti-
tative aspects. It makes use of case studies with the ADCS subsystem to validate the
research results. According to Runeson and Höst (2008), case studies are suitable for
software development research since they allow studying the system in its natural con-
text using both qualitative and quantitative tools. Initially, a qualitative study based on
research papers surveys was performed for each of the research questions to identify and
assess modeling techniques and tools that can be adapted for conducting experimental
case studies with the ADCS of a satellite. These models were used for generating ana-
lytical and numerical models with controlled simulation experiments that were verified
and validated against reference models from the literature using quantitative methods.
(e.g., statistical tests, and linear regression)

The first research question is divided in two parts: One addressing the applicability of
MAS-based architectures on FDIR algorithms for onboard software of ADCS subsystems.
The second part focused on the services required for MAS-based software implementa-
tion. A review and comparison of FDIR methods was conducted to address the first part,
as well as the design of an agent-based algorithm for detecting and correcting drift on
gyroscopes used for ADCS implementation. The algorithm was verified numerically and
validated against a linear regression model.

To address the second part on services required for the implementation of reliable
onboard software, a qualitative analysis of existing MAS development frameworks was
performed. From this comparison, four key components were identified, namely agents,
messages, organizations, and platforms. Based on the interaction of these components
two main capabilities for behavior allocation and communication were required to be
studied in detail. The main effort was put on the implementation of the communication
data bus that enable agents interactions in a linear bus topology often found in satel-
lite implementations. For that purpose, an analytical model was derived to quantify the
data bus load as a function of implementation and operation parameters. The analytical
model was verified and validated against a discrete time simulation model controlling
both implementation and operation parameters for an ADCS case study.

The same methodological approach was followed in research question 2. In the
first part, a comparison of model-driven software development methodologies was per-
formed to identify design gaps, but also to understand how these model-based methods

1

22 1. INTRODUCTION

fit into the software development cycle of space systems. Once the gaps were identified,
a development methodology was proposed to integrate end-to-end activities for model-
driven software development with multi-agent systems for satellites. The quantitative
experiments compared the implementation of attitude estimation algorithms using the
proposed methodology and compared the numerical results to simulation models for
verification and validation purposes.

In order to address the third research question, the software development workflow
produced in the research question number two was refined to focus on the organiza-
tional aspects of MAS-based software. Again, a qualitative approach was used to de-
scribe organizational structures. Based on the qualitative analysis two main topological
concepts were identified for its implementation in an ADCS case study. These topologies
structures included risk analysis, and the definition of sensitivity and trade-off criteria to
satisfy on-board software requirements.

An objective function was determined for optimizing the cost of communication
within the organization of the MAS-based onboard software. The definition of that ob-
jective function required the establishment of constraints for tailoring it to the on-board
software operations context.

For validation purposes, the optimization problem was explored using three differ-
ent methods. The comparison of these methods allowed to assess their efficiency and
performance, as well as their scalability. Also, it enabled the visualization of interaction
between agents in the organization, which facilitates the implementation of MAS-based
software.

1.8. DISSERTATION STRUCTURE
This dissertation is composed of seven chapters. Three are supporting chapters and four
are core chapters devoted to present the research findings of this PhD research. Figure
1.5 depicts the relation of the chapters and the research questions defining a thesis work
flow. Each of the core chapter addresses in detail aspects connected to a specific research
question.

Chapter 1 describes the context of the research project, motivates the research prob-
lem and research questions. Also it gives an overview of the selected technology to ad-
dress the software complexity problem in small satellite systems.

Chapter 2 provides the fundamentals of attitude and orbit determination that are
used later in the core chapters as case studies for satellite applications. It also lays out
the physical and mathematical formulation required as input for the analysis and design
of improved software architectures with multi-agents systems.

Chapter 3 is devoted to research the feasibility of MAS-based algorithms to imple-
ment FDIR functionalities in the ADCS of a satellite. It makes a review of methods for
FDIR in control systems and proposes an algorithm using an agent-based architecture
that allows flexibility and modularity for its implementation. It presents numerical sim-
ulations to characterize its performance. It uses time-depend faults such as drift for gy-
roscopes used in ADCS implementation for small satellites.

Chapter 4 provides a description of the most critical services for implementation
of multi-agent based software onboard of satellite systems. It is divided in two parts.
The first part is used to describe the services required in OBC to implement MAS-based

1.8. DISSERTATION STRUCTURE

1

23

Figure 1.5: Ph.D. Thesis Work Flow

OBSW. The second part presents a characterization of the communication workload for
extreme ADCS operations scenarios involving high information throughput on the data
bus of the satellite.

Chapter 5 is focused in proposing a model-driven methodology for designing agent-
based software in satellites. This method is called MASSA which stands for Multi-Agents
Systems for Satellite Applications. This Chapter describes how to model on-board satel-
lite software as a multi-agent system, and proposes a meta-modeling framework for us-
ing this approach in satellite missions. The methodology consists of four stages with
feedback loops for optimization and verification.

Chapter 6 is focused on describing optimization aspects for multi-agent based soft-
ware. Its main objective is to provide methods and tools for optimum topology design
considering performance constraints. The research of this Chapter is intended to ad-
dress organizational aspects of the agent-based software, to make them fit into the soft-
ware development cycle of satellite missions, especially the implementation budgets.

Finally, Chapter 7 provides a critical reflection on the products of this research. It
summarizes the findings that enhance the current body of knowledge. Besides the con-
clusions, this chapter offers a set recommendations for further research work and out-
look.

2
ESSENTIALS OF ATTITUDE AND

ORBIT DETERMINATION

"A single conversation with a wise man is better than ten years of study"

Chinese Proverb

Abstract

The purpose of this Chapter is to describe the concepts needed for the design of MAS-based
software onboard of satellite subsystems. The Chapter focuses on the attitude and orbit
control subsystem, which is used as the case study on this dissertation. The first Section
describes and motivates a systems architecture for an agent-based AOCS using a cyber-
physical system’s approach. Then, it elaborates on the modeling of satellite orbit and atti-
tude. That includes defining references frames, establishing an orbital model and describ-
ing the orbital dynamic of a spacecraft in the lower Earth orbit. Then, the basic models
used to represent satellite attitude are introduced. These models are required to process
the information coming from attitude sensors and providing a proper attitude state vec-
tor to the attitude controller. System’s and measurements’ disturbances are also introduced
and described. Altogether the models provide the foundations in the establishment of a
concurrent and distributed execution architecture for MAS-based state estimation used in
later Chapters as a case study.

25

2

26 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

2.1. SYSTEMS ARCHITECTURE APPROACH
There is a trend in the space industry to design and build smaller satellites buses that
maximize concurrency of onboard data processing of space missions. That increases
satellite’s complexity and requires the adoption of innovative approaches for enabling
those computing capabilities.

Spacecraft can be described as a Cyber-Physical System (CPS) using the definitions
proposed by Baheti and Gill (2011). In their work, they include the development of next-
generation space vehicles as one of the key applications that can benefit from this ap-
proach. The main advantage of adopting a CPS-like architecture for space systems is
their native capacity to support model-based development methodologies, that makes
it desirable to work with highly constrained and complex systems.

According to Lee (2008) a CPS is defined as the integration of computation and phys-
ical processes in such a way that they feedback each other. The implementation of a
CPS requires embedded computers and networks to monitor and control the physical
processes. There are major challenges in CPS design and implementation, especially
because the physical components introduce different reliability requirements and con-
straint from those needed in general-purpose computing. For this dissertation, a CPS-
based system architecture is introduced in Figure 2.1 (see next page) to describe the
AOCS of a satellite.

The proposed systems architecture groups the subsystem’s elements into four cate-
gories related to their nature and position within the AOCS. These are the physical and
logical domain and the back and the front end of these domains from the operations
perspective. The onboard software components are colored purple for reference, and
the onboard software application for AOCS is highlighted in bold types. Other systems
components are colored different to make a distinction among them.

The physical domain includes the dynamic and kinematic models for the spacecraft,
as well as the hardware components, for instance, sensors, actuators, onboard proces-
sors and harnessing to the spacecraft buses. The cyber domain refers to the software
elements of the system.

These include simulation models, embedded firmware, sensor and actuator software
drivers, operating systems and all the supporting libraries for MAS-based software exe-
cution. On top of that runs the AOCS software application developed to control its or-
bit and attitude according to particular mission’s requirements. The front-end refers to
connect of the AOCS with the spacecraft communication data bus, while the back-end
elements interface the AOCS with the physical environment.

The next section provides the essential concepts of attitude and orbit control re-
quired for the implementation of onboard software of satellite systems. These models
are used as input in the development of agent-based algorithms in Chapter 3, the study
of communication effects in the AOCS estimation performance in Chapter 4 and the
implementation of a model-based methodology for agent-oriented software design in
Chapter 5, and the optimization of MAS organizations in Chapter 6.

2.2. AOCS MODELING CONCEPTS

2

27

2.2. AOCS MODELING CONCEPTS
This Section provides the essential theory required to describe the attitude and orbit of
a satellite in the Lower Earth Orbit (LEO). It presents only the basic concepts required
to understand the physical domain of the AOCS case study used in later Chapters of
this dissertation to illustrate the applicability of MAS-based software architectures for
fault-tolerant attitude estimation algorithms. Orbital elements concepts are described
in Appendix A.

2.2.1. REFERENCE FRAMES

The motion of rigid bodies such as satellite requires the use of several reference frames to
describe either their orbit and orientation, i.e. attitude. In this dissertation, five different
reference frames are considered for that purpose as shown in Figure 2.2. These reference
frames are based on the work of Jensen and Vinther (2010) for the AAUSAT3 and they can
be re-used for describing the orbit and attitude of multiple Lower Earth Orbit satellites.

These are the Earth-Centered Inertial (i) frame, the Earth-Centered Earth-Fixed (e)
frame, the Orbital (o) Frame, the Satellite-Fixed Body (s) frame and the controller (c)
reference frame. They are briefly described here, but a more detailed explanation can be
found in Montenbruck and Gill (2012) and Jensen and Vinther (2010).

The motion of rigid bodies is best described making use of an inertial reference frame.
That is necessary for establishing an environment in which time and space behave ho-
mogeneously, isotropically, and in a time-independent manner. For that purpose, an

Figure 2.1: System architecture proposed for a MAS-based AOCS subsystem using a CPS approach.

2

28 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

Earth-Centered Inertial (ECI) is needed. It is placed in center of Earth with the x-axis i X
pointing towards the intersection between the vernal equinox and the equatorial plane,
and the z-axis i Z lies at a 90 degree angle to the equatorial plane. The y-axis i Y is the
cross product between the x-axis and z-axis. The ECI is not a perfect inertial frame due
to Earth’s motion around the Sun, and other effects such as the Earth’s nutation. How-
ever, these effects can be neglected for practical cases as discussed by Serway and Jewett
(2018).

The Earth-Centered Earth-Fixed (ECEF) reference frame is needed for defining the
magnetic field vectors and modeling ground tracking of satellites. The ECEF origin is in
the Earth’s center with the x-axis e X going through the intersection point of the Green-
wich meridian with the equatorial plane. The z-axis e Z points toward the geographic
north pole, and the y-axis e Y completes the right handed Cartesian coordinate system.

The Orbital Reference Frame (ORF) defines its z-axis o Z always nadir pointing, while
its x-axis o X follows the direction of the satellite’s velocity vector. The y-axis oY is defined
by the cross product of the z-axis and the x-axis. It is originated at the satellite’s Center
of Mass (CoM).

The Controller Reference Frame (CRF) is also originated at the CoM of the satellite
with its x-axis c X pointing along the minor axis of inertia and z-axis c Z pointing through
the major axis of inertia. The y-axis c Y , known as the intermediate axis of inertia, is
calculated by a cross product of x-axis and the z-axis. The CRF is a body-fixed reference
frame.

The Satellite Body-Fixed Reference Frame (SBRF) is mainly used to define the orien-
tation of ADCS sensors and the measurements required to determine satellite’s attitude.
The axis are defined parallel to the satellite frame structure as shown in Figure 2.2 (d).

2.2.2. SATELLITE ORBIT MODEL IN LEO
The motion of a satellite in LEO can be modeled as

r̈ =−µE
r

r 3 +ad (t , ṙ,r,q) (2.1)

where, r is satellite’s geocentric position vector in the ECI frame, µE is the gravita-
tional coefficient of the Earth and ad are perturbing accelerations of the satellite as a
function of time t , velocity ṙ, position r and the spacecraft attitude quaternion q.

The perturbing accelerations ad are primarily due to the higher order terms of the
Earth’s gravitational field, atmospheric drag, solar radiation pressure, solar and lunar
tidal effects and general relativistic effects. More detailed models for precise orbit deter-
mination on satellites can be found in the work of Švehla and Rothacher (2003).

The satellite’s initial conditions for position and velocity in the ECI at the reference
epoch te can be described using orbital elements: semi-major axis a, eccentricity e, in-
clination io , right ascension of the ascending node Ωa , argument of perigee ωp and the
true anomaly νa at epoch t0 as described in Appendix A. More details on celestial me-
chanics are provided in Brouwer and Clemence (2013).

2.2.3. ATTITUDE REPRESENTATION
The attitude of a spacecraft is its rotational orientation in space with respect to a ref-
erence coordinate system (e.g. ECI), as described in Großekatthöfer and Yoon (2012).

2.2. AOCS MODELING CONCEPTS

2

29

Figure 2.2: References frames used to model the orbit and attitude of AAUSAT: (a) Earth-Centered Inertial ref-
erence frame, (b) Earth-Centered Earth-Fixed reference frame, (c) Orbital Reference Frame, (d) Satellite Body-
Fixed Reference Frame and (e) Controller Reference Frame. Source: Jensen and Vinther (2010)

There are various methods for the mathematical representation of a rigid body’s atti-
tude. The most commonly used are the Direction Cosine Matrix (DCM), Euler Angles
and the Quaternion which offers advantages such as no singularity, and computation-
ally less intense compared to DCM and Euler Angles.

Euler’s rotation theorem states that for a three-dimensional space any displacement
of a rigid body such that a point on the rigid body remains fixed, is equivalent to a
single rotation about some axis that runs through the fixed point. This theorem is used
to describe the satellite kinematic models.

Due to above-mentioned advantages, the quaternion notation is used in this disser-
tation for representing satellite’s attitude. A quaternion consist of four elements that are
grouped in two parts. One that represents the attitude parameters e= [q1, q2, q3]T , which
is called the vector part, and the last element q4 that represents the scalar part s. This is

2

30 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

represented as

q =


q1

q2

q3

q4

=
[

e
s

]
. (2.2)

The quaternion notation is constrained by the relationship:

qT q+q2
4 = 1. (2.3)

The coordinate transformation from system A to a System B can be represented using
quaternion notation as

B
Aq =


q1

q2

q3

q4

=
[
‖e‖ · si n(θ/2)

cos(θ/2)

]
(2.4)

where, ‖e‖ is the normalized rotational axis and θ represents the transformation angle
for these coordinate systems.

2.2.4. ATTITUDE MODELING
The attitude of a satellite is constantly changing over time so that the parameters to de-
scribe it are time-dependent. In Field and Pence (1984), the attitude models can be de-
scribed by its kinematic and dynamic equations. In kinematics, the study of satellite
motion is irrespective of the forces that cause it, while in dynamics the understanding of
physical forces is needed to describe its behavior

KINEMATIC EQUATION

Suppose a satellite rotating over its Satellite Body-Fixed Reference Frame (s) with re-
spect to the Earth-Centered Inertial (i) reference frame with an angular velocity ωωω =
[ω1 ω2 ω3]T . The orientation of the satellite can be obtained performing a frame rota-
tion parameterized by the transformation matrix A(q). Using this transformation matrix,
a measurement vector in the inertial frame i v can be expressed in the satellite-fixed body
frame as s v = A(q)i v.

Then, the angular motion can be described using a differential equation as

q̇ = 1

2
ΩΩΩ(ωωω)q (2.5)

where,ΩΩΩ(ω) is defined as a 4x4 skew symmetric matrixΩΩΩ(·) of the angular velocity as

ΩΩΩ(ωωω) =


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (2.6)

2.2. AOCS MODELING CONCEPTS

2

31

and, the DCM is used to establish the transformation from Earth-Centered Inertial
reference frame to the Satellite Body-Fixed Reference Frame in terms of the orientation
quaternion as

A(q) = 1√
‖e‖2 +q2

4

q2
1 −q2

2 −q2
3 +q2

4 2(q1q2 +q3q4) 2(q1q3 −q2q4)
2(q1q2 −q3q4) −q2

1 +q2
2 −q2

3 +q2
4 2(q2q3 +q4q1)

2(q1q3 +q2q4) 2(q2q3 −q4q1) −q2
1 −q2

2 +q2
3 +q2

4

 . (2.7)

DYNAMIC EQUATION

According to Wie (2008), spacecraft can be assumed as rigid body with six degrees of
freedom. Three of them are related to rotational motion and the other three to transna-
tional motion (orbit). In an inertial frame, Euler’s second law states that there is a relation
between the change in time of the angular momentum L and the external torques Next

applied to the spacecraft. That relation is presented in Wie (2008) as

i L̇ = i Next . (2.8)

In the Controller Reference Frame the relation can be re-written as

c L̇ =−cωωω× c L+ c Next . (2.9)

The angular momentum can be represented also using the inertia of the satellite Isat

along the CRF as

c L = Isat
cωωω. (2.10)

Substituting (2.10) in (2.9) generates

Isat
cω̇ωω=−cωωω× (Isat

cωωω)+ c Next . (2.11)

The composition of the externally applied torques includes the addition of both con-
trol and disturbances torques, so that Next=Nctr l+Ndi s . The dynamic equation of the
satellite can be reorganized as

Isat
cω̇ωω+ cωωω× (Isat

cωωω) = c Nctr l + c Ndi s . (2.12)

Finally, it can be rewritten to describe the change in the angular velocity as a function
of the applied torques as

ω̇ωω= I−1
sat

[−S(ωωω)(Isatωωω)+Nctr l +Ndi s
]

(2.13)

where, S(·) forωωω is a 3x3 symmetric skew matrix described as

S(ωωω) =

 0 ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

. (2.14)

2

32 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

ATTITUDE STATE MODEL

Previous subsections introduced the kinematic and dynamic models used to describe
the attitude of a satellite. The kinematic equation relates satellite’s attitude representa-
tion q and its angular velocity ωωω, while the dynamic equation describes the relation of
the angular velocity and the external torques applied to the spacecraft. These equations
can be combined to describe the state of the satellite as

x = [c
i qT cωωωT]T

x = [
q1 q2 q3 q4 ω1 ω2 ω3

]T
.

(2.15)

Combining (2.5) and (2.13) the change in time of satellite’s state ẋ can be described
as

[
q̇
ω̇ωω

]
=

[
1
2ΩΩΩ(ωωω)q

I−1
sat

[−S(ωωω)(Isatωωω)+Nctr l +Ndi s
]]. (2.16)

The attitude measurement model y is defined as follows[
q
ωωω

]
= 17x7

[
q
ωωω

]
. (2.17)

In Chapter 5 the state vector x is extended to accommodate fault mechanisms related
to measurement bias for the magnetometer bmag and the gyroscope bg yr o as

xext =
[c

i qT cωωωT c bT
mag

c bT
g yr o

]T . (2.18)

2.2.5. ATTITUDE PERTURBATION MODELING
The environment in which the satellite operates has multiple sources of perturbations.
These perturbations affect the quality of the systems models and lead to performance
and reliability issues. This Subsection describes those effects related to environmental
phenomena. These are the gravitational torque, aerodynamic torque, environmental
radiation torques and the magnetic torque.

GRAVITATIONAL TORQUE

Satellites follows the Kepler’s laws of planetary motions. However, due to Earth’s irregu-
larities on its mass distribution, tidal movements of the oceans and third body gravita-
tional fields the satellite orbit is affected. This has to be considered as an input during
the orbital design process. Robertson (1958) describes in detail how to derive its compo-
nents along the principal axis of inertia of a spacecraft using the potential function for a
small rigid body. This torque can be used to passively stabilize satellites attitude by con-
trolling its initial orbital injection or deploying mechanisms that allows the generation
of stable equilibrium points as described by Peter Hughes (2012).

2.2. AOCS MODELING CONCEPTS

2

33

AERODYNAMIC TORQUE

The boundary between the atmosphere and the space is defined in different ways. They
could be artificially imposed, for instance by space law, or it can determined by physical
parameters like the atmospheric drag force. Zagórski (2012) describes the effect of alti-
tude, atmospheric density, drag coefficient, reference area and its velocity on the force
acting upon a spacecraft. Apart from decaying orbit of the satellite, it is also observed
that atmospheric drag introduces torques that modifies its attitude. This torque is found
to depend on the distance between the center of mass and the center of pressure where
the drag force is applied. Atmospheric profiles are often used to model the effect aerody-
namic torque on spacecraft, for example the MSIS thermosphere model. Hedin (1991)
proposes to extend these models to account more precisely for effects in the middle and
lower atmosphere where several satellite constellations are intended to operate .

SOLAR RADIATION PRESSURE TORQUES

Environmental radiation in LEO orbits comes mainly from the Sun. Due to Earth’s ec-
centricity it can vary seasonally. The main source of radiation torque is the direct Sun
radiation, then due to indirect sunlight. Albedo and infrared radiation are known to
also produce radiation torques as described by Shrivastava and Modi (1983). Spacecraft
with large antenna elements, or with deployable mechanisms shall account for radia-
tion torque effects, since they can bend or damage in the long term as shown by Etkin
and Hughes (1967) for Aloutte I and Explorer XX satellites.

MAGNETIC TORQUE

The magnetic torque affecting a satellite depends both on its magnetic momentum and
the external magnetic field surrounding it. For a spacecraft orbiting the Earth, the mag-
netic field can be approximated to a dipole field. Models like IGRF presented in the work
of Macmillan and Maus (2005) provides periodically updated spherical coefficients to
calculate values of magnetic flux density B for a specific point in time and space in
a LEO. That makes the magnetic torque highly controllable in AOCS implementation.
Hysteretic materials are often utilized in form of custom shaped rods to provide pas-
sive momentum damping and other attitude control mechanisms as described by Kim
(2011).

2.2.6. SENSOR MEASUREMENT MODEL
Sensors are key components within the AOCS. They allows to measure the state of the
spacecraft over time. However, their performance is affected by intrinsic and extrinsic
factors. According Curey et al. (2004), the main sources of error in measurements are
due to installation errors (scale factor), measurement drift, time delay, measurement
bias, noise, and random walk. Also the measurement’s range and the sensor resolution
play a role in the quality of the obtained values.

The installation error, often called scale factor error S, is quantified by establishing a
static multiplicative parameter to calibrate the true signal value v(t) to the measured sig-
nal value y(t). It is used to compensate for potential problems in the sensor installation,
mainly due to alignment issues.

The measurement drift d(t) is an additive error that can be modeled as a system-
atic linear effect (ramp) produced due to the integration of any random error (e.g walk,

2

34 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

noise). It is defined as the change in a measured value when it is measured under the
same conditions after a period of time. Since it is a systematic effect it can be compen-
sated using model-based methods, for example, Artursson et al. (2000) demonstrate a
method for drift compensation implemented in gas sensors for chemical industry.

Time delay is very common in distributed communication systems used widely in
recent space missions. It is modeled as a shift in time of the sensor response with respect
to the real sensor measurement response v(t −τ) .

Bias b is a constant deviation of the measured value regarding its true value. It is also
modeled as an additive error. It can be estimated when the output signal of a sensor
(true value) is zero and compensated in the engineering model.

Noise n(t) is a random deviation of the true signal value varying over time. For Gaus-
sian processes it is described mainly using its variance. The noise in the sensor models
is represented by a random variable r(t) with zero mean and standard deviation σ.

Random walk r(t) in statistics describes a situation where the output of a system is
driven by a succession of random steps. The random walk is modeled as the integral of
a random variable with zero mean. In Stockwell (2003), random walk for rate sensors is
determined as the average deviation that occurs when integrating the output signal to
get the angle changes.

The effect of measurement resolution and range are not considered in this model
since they depend on implementation aspects that varies from mission to mission. Also
there are errors due to quantization and round off that can affect the precision of multi-
sensor fusion. These are not consider in the measurement model used for this research.

Finally, (2.19) summarize the model to describe measurements in the simulation
case studies for later dissertation chapters.

y(t) = S(v(t −τ)+d(t −τ)+n(t −τ)+ r(t −τ)+b) (2.19)

2.3. ONBOARD ATTITUDE DETERMINATION

The AOCS is in charge to provide satellite operators with capabilities to change both its
orbit and attitude. Although Chaves-Jiménez et al. (2017) describe orbit and attitude as
coupled behaviors in LEO orbits. This dissertation takes them as independent processes
(for simplification purposes), and it focuses particularly on attitude determination. For
that reason this section describes the main concepts used in describing case studies to
demonstrate the application of agent-based architectures in small satellite missions.

Onboard attitude determination methods mostly rely on complementary informa-
tion provided by multiple sensors onboard the spacecraft as discussed by Wertz (2012).
The fusion of multiple sensor data improves state observability. For orbit the most popu-
lar sensors are GNSS-based for instance GPS, but for attitude there is wide variety of sen-
sors that can be used based on mission needs. For example, in LEO, the most common
sensors are magnetometers, star trackers (e.g sun sensor), gyroscopes. The information
coming from these sensors has to be combined (fused) to estimate spacecraft’s position
and orientation.

2.3. ONBOARD ATTITUDE DETERMINATION

2

35

2.3.1. CHALLENGES ON MULTI-SENSOR DATA FUSION

Multi-sensor data fusion relies in the performance of physical sensors that not always
behave as expected during the system design phase. Khaleghi et al. (2013) define four
categories to describe issues with data fusion in multi-sensor systems. These are data
imperfection, correlation, inconsistency and disparateness.

IMPERFECTION

Data imperfection refers to both internal and external causes that provoke loss of in-
formation in the measurements. Among these effects uncertainty play a relevant role.
Sensors are subject to noise, distortion and interference that causes measurement’s cor-
ruption. Also sensor’s imprecision (e.g ambiguity and incompleteness) and granularity
(e.g measurement data type) can affect the quality of sensor measurements. These limi-
tations come mainly from technology aspects related to sensor’s implementation.

CORRELATION

Correlation effects are product a mutual relationship or association between measure-
ments. This effect is specially problematic in distributed fusion systems. It happens
when the same information takes multiple paths from the source sensor to the fusion
node or due information re-circulation from output of a fusion node back to the input
(feedback).

INCONSISTENCY

It refers to non-systematic aspects that affect the integrity of the data fusion perfor-
mance.That encompasses spurious, as well as disordered and conflicting data. They can
be spacial, for instance outliers, or temporal like out of order arrival. Their main effect
is in the estimation performance rather than the quality of the instant measurements.
They can be associated to communication delays in distributed systems and communi-
cation channel saturation, which is addressed in Chapter 4.

DISPARATENESS

This category refers to the homogeneity between the information produced by the sen-
sors within the systems. For example some sensors can produce images, while others
produce audio, just like the human senses. The challenge here, is to find a common
representation that can be handled by the processing units to implement the estimation
technique accordingly.

Data fusion algorithm are expected to systematically address aforementioned issues
by integrating features for sensors fault’s detection and correction. The next two sections
describe the most relevant methods used in space applications.

2.3.2. DATA FUSION TECHNIQUES

Several methodologies have been proposed in the literature for multi-sensor data fusion
and information aggregation on intelligent systems. El Faouzi et al. (2011) classifies these
methods according its data processing technique in three main categories: statistical,
probabilistic and artificial intelligence based methods.

2

36 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

STATISTICAL METHODS

These methods include algorithms as simple as arithmetic means and regression anal-
ysis (e.g Least Squares used in the 60’s for satellite state estimation by Wahba (1965))
to more sophisticated multivariate statistical analysis, and others used recently for data
mining engines. This kind of methods are not very well suited for online state estimation,
but they perform better in offline analysis.

PROBABILISTIC METHODS

Probabilistic data fusion take information from a sequence of past actions and combine
the with local observations to integrate them into an estimation of the current state.
Examples of probabilistic approach are Bayesian networks in Heckerman et al. (1995),
maximum likelihood estimators in Rauch et al. (1965) and the Kalman filter family used
for optimal state estimation by Simon (2006). Probabilistic methods are very well suited
to deal with measurements imperfection and correlation in multi-sensor data fusion.

MACHINE LEARNING METHODS

Samuel (1959) defined Machine learning as a field of artificial intelligence devoted to
provide computers-based systems the ability to learn without being explicitly programmed.
That gives systems the capability of adapting to dynamic environments. Machine learn-
ing methods for data fusion in space applications includes reinforced learning presented
in Van Buijtenen et al. (1998), and recently the adoption of deep belief networks by Li
et al. (2017b). Machine learning combines statistical and probabilistic methods with
available data to calibrate estimators and achieve a better performance. They also take
advantage of available computing technology to speed-up the learning process. The
main drawback preventing the adoption in online estimation is the complexity of model
training and tuning that is currently yet under development.

2.3.3. REFERENCE ALGORITHM FOR ATTITUDE ESTIMATION
According to Crassidis et al. (2007), attitude estimation is a two-step process in which
vehicle’s orientation requires fusing body-frame measurements, reference observations
and filtering of noisy sensor measurements. The filtering process can be achieved com-
bining measurements with kinematic and dynamic models to complement each other.

Simon (2006) establishes that in the process of estimation with the Kalman filters, the
Extended Kalman Filter (EKF) is the most preferred method due a good balance between
performance and implementation complexity. This section will focus on describing the
implementation of the EKF used as a reference algorithm for comparison purposes.

The implementation of the EKF follows the process described in Appendix C with the
satellite equations introduced in Subsection 2.2.4. The EKF implementation is based on
the work of Jensen and Vinther (2010) for the AAUSAT 3 spacecraft, since the sensors and
the ADCS physical architecture matches the one presented as a case study in Chapters
3, 4, and 5. The EKF implementation takes the quaternion q representing the rotation
of the spacecraft from ECI frame (i) to the Controller Reference Frame (c), as well as its
angular velocityωωω in the CRF of the satellite. For that purpose, a state vector x is defined
as

x = [c
i qT cωωωT]T = [q1 q2 q3 q4 ω1 ω2 ω3]T . (2.20)

2.3. ONBOARD ATTITUDE DETERMINATION

2

37

The error state is defined as

δx = [
δqT

1:3 δωωωT]T = [δq1 δq2 δq3 δω1 δω2 δω3]T . (2.21)

Using the results from Bak (1999), the continuous time Jacobian matrix for the error
state can be expressed as

F(t) =
[
−S(

c
ω̄ωω) 1

2 13x3

03x3
c

I−1
sat [S(c Isat

cω̄ωω)−S(cω̄ωωc Isat)]

]
(2.22)

where, cω̄ωω(t) is the nominal angular velocity in the CRF of the satellite, 13x3 is a 3x3
identity matrix and c Isat is the inertia matrix of the satellite given in its body frame.

According to the work of Bak (1999) it is also possible to express the discrete time
Jacobian measurement model for the error state as

Hk =

 2S(c vsun,k|k−1) 03x3

2S(c vmag ,k|k−1) 03x3

03x3 13x3

 (2.23)

where, c vsun,k|k−1 and c vmag ,k|k−1 are the the predicted sun vector measurements
vsun , and the predicted magnetic field vector measurement vmag in the CRF, respec-
tively.

The implementation of the EKF requires a set of inputs variables and constant pa-
rameters described in Table 2.1. Then pseudo-code for the implementation of the EKF
is shown in the Algorithm 1.

Table 2.1: Input variables and parameters for the implementation of the EKF Algorithm

Name Description Type of Input
s vsun,k Measured sun vector in the Satellite Body-Fixed Reference Frame Variable

s vmag ,k Measured magnetic field vector in the Satellite Body-Fixed Reference Frame Variable
sωωωk Measured angular velocity of the satellite in its body frame at t = k Variable

i vsun,k|k−1 Predicted sun vector in the Earth-Centered Inertial reference frame Variable
i vmag ,k|k−1 Predicted magnetic field vector in the Earth-Centered Inertial reference frame Variable

E f Eclipse Flag Variable

s NCont ,k
Applied control torque including torque from permanent magnet in
in the Satellite Body-Fixed Reference Frame

Variable

sωωω0 The initial angular velocity of the satellite in its body reference frame Constant

s
i q0

Initial quaternion representing the rotation of the satellite’s
body frame relative to the Earth-Centered Inertial reference frame.

Constant

Ts Sample period between filter iterations. Constant
P0 Initial error covariance matrix Constant
Q Process noise matrix Constant
R Measurement noise matrix Constant

Isat Satellite inertia matrix Constant

2

38 2. ESSENTIALS OF ATTITUDE AND ORBIT DETERMINATION

Algorithm 1 EKF for Attitude Estimation (Jensen and Vinther (2010)

)

1: procedure ESTIMATION

2: Initialize:
3: xk|k ← [

(s
i q0 ⊗ c

s q)T (A(c
s q)sωωω0)T

]T

4: Measurements ← s vsun,k , s vmag ,k , sωωωk , s Nctr l ,k

5: Load P0,Q,R,Isat

6: Predict:
7: Rotate Control Torque: c Nctr l ,k−1 ← A(c

s q)s NCont ,k−1

8: Priori State Propagation: xk|k−1 ← RK 4(xk−1|k−1, c Nctr l ,k−1,Ts , steps)
9: Calculate Discrete Jacobian: φφφk−1|k−1 ← 16x6 +Ts F(xk−1|k−1)

10: Calculate Priori Error Covariance: Pk|k−1 ←φφφk−1|k−1Pk−1|k−1φφφ
T
k−1|k−1 +Q

11: Update:
12: Read: s vsun,k , s vmag ,k , sωωωk , s Nctr l ,k

13: if E f = 0 then

14: Normalize and Rotate SS k: c vsun,k ← A(c
s q)

s vsun,k∥∥∥s vsun,k

∥∥∥
15: Normalize and Rotate SS k|k-1: c vsun,k|k−1 ← A(i

c qk|k−1)
s vsun,k|k−1∥∥∥s vsun,k|k−1

∥∥∥
16: Normalize and Rotate Mag k: c vmag ,k ← A(c

s q)
s vmag ,k∥∥∥s vmag ,k

∥∥∥
17: Normalize and Rotate Mag k|k-1: c vmag ,k|k−1 ← A(i

c qk|k−1)
s vmag ,k|k−1∥∥∥s vmag ,k|k−1

∥∥∥
18: Normalize and Rotate Ang Vel k: cωωωk ← A(c

s q)
sωωωk‖sωωωk‖

19: Normalize and Rotate Ang Vel k-1: cωωωk|k−1 ← A(c
s q)

sωωωk|k−1∥∥∥sωωωk|k−1

∥∥∥
20: else
21: Use Hardcoded Vectors for c vsun,k , c vmag ,k , cωωωk ← [0 0 0]T

22: Calculate Jacobian Hk ←

 2S(c vsun,k|k−1) 03x3

2S(c vmag ,k|k−1) 03x3

03x3 13x3


23: Calculate Kalmal Gain Kk ← Pk|k−1HT

k (Hk Pk|k−1HT
k +Rk)−1

24: Update Error State δxk|k ← Kk (yk −yk|k−1)

25: Expand quaternion c
i qk|k ←

[
δqT

k|k
√

1−δqT
k|k ·δqk|k

]T ⊗ c
i qk|k−1

26: Calculate Full State xk|k ← [
c
i qT

k|k (cωωωk|k−1 +δωωωk|k)T
]T

27: Update Posteriori Covariance Pk|k ← (16x6 −Kk Hk)Pk|k−1

28: Rotate Output ←
[

(c
i qk|k ⊗ c

s q−1)T (A(c
s q−1)cωωωk|k−1)T

]T

29: Increment steps, t ← t +Ts

30: goto Predict.

3
AGENT-BASED FAULT DETECTION

AND RECOVERY

"If you do not expect the unexpected, you will not recognize it when it arrives "

Heraclitus of Ephesus

Abstract

Failure detection, isolation, and recovery is an essential requirement of any space mission
design. Several spacecraft components, especially sensors, are prone to performance devi-
ation due to intrinsic physical effects. For that reason, innovative approaches for the treat-
ment of faults of onboard sensors are necessary. This Chapter introduces and describes the
concept of agent-based fault detection and recovery for sensors used in satellite’s attitude
determination and control subsystem. Its focuses on the implementation of an algorithm
for addressing the linear drift in gyroscopes. The algorithm was implemented using an
agent-based architecture to show the feasibility of this approach in the design of satellite’s
onboard software. It also presents, discusses and selects the most suitable strategy for fault
detection and recovery required for the implementation of such software architecture.

Parts of this Chapter have been published in Acta Astronautica 139, 181-188 (2017)

39

3

40 3. AGENT-BASED FAULT DETECTION AND RECOVERY

Space missions involving the use of small satellites are becoming more popular due
to their cost-effectiveness. Besides technology demonstration, there is an increasing
number of Earth Observation missions requiring more demanding capabilities, as dis-
cussed by Belward and Skøien (2015). The need for a higher pointing accuracy is one of
the most challenging problems to be faced in coming future, especially in small satel-
lites. Missions like PROBA, described by Llorente et al. (2013), intend the demonstration
of formation flying capabilities with critical dependency on spacecraft’s performance.
This situation increases the reliability constraints in satellites design and poses a risk
for their operation. For that purpose, a more precise and reliable AOCS needs to be en-
gineered; one that enables autonomous Fault Detection Isolation and Recovery (FDIR)
features.

Two main approaches are typically used to design FDIR: hardware redundancy and
analytical redundancy. Hwang et al. (2010) argue that analytical redundancy is more
cost-effective and thus preferred over hardware redundancy in industrial applications,
where physical redundancy is highly constrained. That is also the case for satellite sys-
tems, where it is preferable having software-based FDIR due to the lack of physical access
to the system once it is deployed. Also, analytical redundancy methods provide more
flexibility during the operations phase of the mission, since they can be adjusted to sce-
narios that were not accounted for during the design phase. In some cases, both physical
and analytical redundancy can be combined to achieve higher reliability performance.

According to Yu and Jiang (2015) and Zolghadri (2012), within the analytical redun-
dancy category, model-based methods have been most frequently used in fault detec-
tion for critical applications requiring Fault-Tolerant Control (FTC) due to their low im-
plementation complexity. Model-based fault detection is centered in the generation of
residuals, which act as fault signals. Residuals are generated from the comparison of
the system measurements with their estimation values provided by a system model. A
threshold function that can be either a constant or a variable can be used to calibrate the
levels of detection depending on environmental noise. Additional information requires
to be generated for fault isolation and recovery purposes. Examples of such applications
are found in chemical processes by Ge et al. (2015) and automobile industry by Anwar
and Niu (2014).

On the other hand, data-driven analysis has been gaining attention recently as pre-
sented by Khalastchi and Kalech (2018). That is becoming possible thanks to the ad-
vances in embedded computing technologies. Data-driven methods rely mainly on sta-
tistical data processing. Yin et al. (2012a) discus how data-driven methods are taking
over model-based methods for isolation and recovery purposes due to their increased
performance and implementations flexibility.

This dissertation proposes adopting an agent-based architectural style for the design
of onboard software in satellites. This Chapter, specifically, looks to propose, discuss and
to verify the implementation of FDIR algorithms in satellite’s onboard software using
an agent-based approach. To achieve this goal, first, it looks in depth at the methods
used for FDIR in control systems. Then, it analyses how these functionalities can be
implemented using an agent-based architecture. Finally, it verifies that the proposed
FDIR implementation’s strategy satisfies the performance requirements for a case study
with AOCS components.

3.1. FDIR METHODS FOR CONTROL SYSTEMS

3

41

3.1. FDIR METHODS FOR CONTROL SYSTEMS
This section presents and discusses recent methods reported for fault and failure de-
tection, isolation and recovery of sensors and actuators used in control systems. The
primary objective of this Section is supporting the selection of fault detection and recov-
ery algorithms for their implementation with agent-based software architectures. First,
a distinction between faults and failures is made to avoid confusions. Faults are defined
by Isermann (2006) as a deviation from the nominal behavior, while Failures are con-
tinuous interruptions of systems capabilities. This distinction is crucial since it must be
taken into account when defining a strategy to address them.

According to the latest FDIR surveys by Hwang et al. (2010), Bittner et al. (2014b), Gao
et al. (2015a) and Khalastchi and Kalech (2018) there are three main categories of fault
diagnostic and recovery methods used in control system. These are model-based, signal-
based and knowledge-based as depicted by the class diagram in Figure 3.1. Furthermore,
combinations of these categories exist as hybrid methods.

Model-based methods require breaking down the systems into functions and pro-
cesses that are formulated mathematically. A fault diagnostic observer checks the con-
sistency between the physical measurements and the predicted output from the systems
model. The observer can recognize deviations on its expected behavior using residual
test algorithms, and then correct them by updating the configuration of systems param-
eters. Applications of model-based FDIR are presented by Jiang et al. (2008) and Marzat
et al. (2012).

In signal-based methods, instead of using a specific input/output model, an ob-
server extracts symptoms from the output measurements, and it compares them with
a set of predefined fault signatures. Signal-based methods assume the input to be a
reliable signal, and the observer verifies its consistency along the time.This is not the
case for model-based methods where the trust is put in the model, rather than in the
expected signature. Signal-based diagnostic methods are classified into three classes of
algorithms: time-domain, frequency domain, and time-frequency combined.

Time-domain algorithms are preferred over the frequency-domain for continuous
and dynamic processes since the interpretation of results is direct, which improves the
response time. There are several applications in mechanical and electrical systems where
time-domain methods are used for fault diagnostics. For example, in the work of Nandi
et al. (2011), Dynamic Time Warping (DTW) is used as a signal-based algorithm for actu-
ators to detects periodic impulse responses caused by faulty electromechanical compo-
nents inside the system.

Within the frequency domain algorithms, Fourier Discrete Transformation is the most
preferred. It is widely used in vibration analysis. Wang and McFadden (1993) present a
work where faults are detected by measuring shifts on the frequency spectrum. Also,
combining time and frequency domain methods is feasible for signal-based fault detec-
tion and isolation. The literature reports the use of the short-time Fourier transform and
Wavelet transforms for motor eccentricity fault detection and isolation as described in
He et al. (2015). The main concern of combining time and frequency approaches is their
high computational load, which might not be suitable for resource constrained comput-
ers of small satellites running real-time fault detection and recovery algorithms.

The third FDIR category is the knowledge-based, which consist of two groups: quan-

3

42 3. AGENT-BASED FAULT DETECTION AND RECOVERY

titative and qualitative methods. The critical characteristic of knowledge-based meth-
ods is that they are data-driven. They include the use of artificial intelligence, expert
systems, machine learning, pattern recognition and their variants, as described by Gao
et al. (2015a). From a data-driven perspective, the FDIR problem can be divided into
three phases: fault classification, regression, and reconfiguration.

Data-driven quantitative algorithms are subsequently divided into statistical, non-
statistical and joint methods. According to Gao et al. (2015a) the statistical methods con-
sist of Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Partial Least Squares (PLS) and Support Vector Machine (SVM). Most of them require
large amounts of training data to capture key features of the process to improve their
performance. The work of Samara et al. (2008) shows the application of statistical meth-
ods in FDIR for aircraft sensors.

Independent Component Analysis has been used to implement fault, identification,
and reconstruction in three-axis gyroscopes, as presented by Li et al. (2011). SVM ob-
servers have been used in FDIR for re-configurable manipulators as described by Bo
et al. (2011). One of the discussed benefits of using support vector machines is its strong
ability to approximate nonlinear functions. However, it requires a high amount of cali-
bration data, which make it less attractive for onboard software implementation. Within
non-statistical algorithms, the Fuzzy Logic (FL) and Artificial Neural Networks (ANN)
are popular. One of their main drawbacks for onboard software applications is the high
amount of computing resources required for their execution.

Finally, the various methods from above can be combined to improve FDIR perfor-
mance. For example, developing a fault detection observer with a model-based method,
and a recovering algorithm using a data-driven algorithm can increase the FDIR effi-
ciency without impacting the implementation’s complexity.

Figure 3.1: A Class Diagram for Fault Diagnostic Methods reported in literature for Control Systems

3.2. AGENT-BASED ARCHITECTURE FOR FDIR

3

43

3.2. AGENT-BASED ARCHITECTURE FOR FDIR
According to Gao et al. (2015a), the functionalities needed for FDIR implementation are
two: Fault Detection and Identification (FDI) and Fault Isolation and Recovery (FIR).
FDI requires fault analysis and classification, while FIR preserves the system’s integrity
by isolating faulty components and executing recovery procedures when needed. De-
sign of such algorithms is an important aspect of the process of space missions develop-
ment. The more FDIR capabilities added, the more complexity that has to be managed
during the OBSW implementations phase. From the analysis of the characteristics of the
methods surveyed in Section 3.1 and the requirements of AOCS applications, model-
based was the selected approach for FDI, whereas for FIR a knowledge-based method
was identified as suitable for its implementation due to its operational flexibility.

In agent-based software architectures, both FDI and FIR functionalities can be as-
signed to specific agents, or they can be spread across all agents as internal behaviors.
This Section aims to define the best strategy for their implementation within the on-
board software of a satellite. For that purpose, a qualitative review of FDIR methods
was performed in Section 3.1 to identify and select the most suitable methods to sat-
isfy requirements and constraints of small satellites missions. Then, a trade-off analysis
is proposed to identify the best strategy for FDIR implementation in AOCS computers
running agent-based software. Finally, the algorithm is described in detail and validated
numerically using AOCS operation scenarios for small satellite missions in Section 3.3

The process of strategy selection for FDIR implementation with an agent-based OBSW
architecture is developed in three parts. Firstly, the options for FDIR are presented and
discussed. Secondly, a set of trade-off criteria and their importance ratings (weights)
are identified. These criteria are linked to the top level requirements defined in Subsec-
tion 1.7.1, more specifically to OBSW-ARCH-01, OBSW-ARCH-02, and OBSW-ARCH-04.
Finally, the criteria are used to evaluate three implementation strategies with the Pugh
Matrix method. As a result, one of the strategies is selected for the FDIR algorithm design
and implementation.

3.2.1. FDIR IMPLEMENTATION OPTIONS

Figure 3.2 proposes a design option tree for FDIR implementation with an agent-based
architecture. For the trade-off analysis several options are evaluated: one in which the
FDI and FIR functionalities are centralized to a single agent. The second in which the
functionalities are fully distributed among all the agents in the OBSW architecture, and
a third where a combined approach is considered.

Figure 3.2: FDIR implementations options grouped by functionality and execution strategy

3

44 3. AGENT-BASED FAULT DETECTION AND RECOVERY

The main advantage of having a fully centralized implementation of FDI and FIR
is that it simplifies the maintainability for extension the FDIR capabilities; In the other
hand, a centralized approach makes the system vulnerable to a single point of failure,
which is undesirable in Fault-Tolerant Control systems.

In a fully distributed FDI and FIR architecture, the response time of fault detection
and correction gets improved given that each agent is capable of detecting correcting
the errors locally. However, there is an overhead in systems internal communication, as
well as an impact on the maintainability of the FDIR functionalities. That makes this
approach less attractive for highly resource-constrained systems. The work of Katzela
et al. (1995) compares the centralized vs. the distributed performance with respect to the
computational effort needed to implement each of these approaches. It proved that the
decentralized approach generally has considerably less complexity than the centralized
approach, which helps to reduce the development cost.

The best way to balance performance and reliability of an agent-based FDIR archi-
tecture is the adoption of a combined strategy for its implementation. That means keep-
ing one of the functionalities centralized to a few agents and distributing the other to
all the software agents within the system. In that scenario, it is more convenient having
a short response time in the detection and centralizing the response that requires fur-
ther processing capabilities. For that reason, one of the options evaluated is having a
distributed FDI and a centralized FIR.

3.2.2. TRADE-OFF CRITERIA

Four trade-off criteria are identified for the FDIR strategy selection. These are response
time, communication overhead, resilience and maintainability.

Response Time: It is defined as the elapsed time since the fault is detected until the
end of the recovery or reconfiguration protocol in the AOCS system. For FDIR its is crit-
ical to minimize the response time, at least in the detection and isolation phase. Low
response time for these functions reduces the chances of failure propagation to other
components within the system. According to Sherwood et al. (2001) response time also
plays a significant role in the planning of activities for autonomous OBSW, where activity
scheduling is deemed a continuous process.

Communication Overhead: This metric characterize the amount of communication
between agents that is required by the FDI and FIR functions. Due to the distributed na-
ture of MAS-based software, internal communication becomes a bottleneck that must be
minimized to avoid the risk of network contention as discussed by Sonnek et al. (2010).
For that reason, in case of fault or failure, if there is an increase in communication that
saturates the data bus the system can lose its ability to recover. It has to be assessed
when designing and implementing FDIR schemes with an agent-based approach.

Resilience: This aspect focuses on the ability of agents to resist software malfunc-
tions during operations. For example, if an agent is in charge of fault detection and the
agent itself fails, the system can redeploy the FDIR function to another agent as soon
as the error is identified. According to Sayed et al. (2014) resilience is a measurement
of robustness of distributed systems such as MAS-based software. That is the driver to
consider it in the design of agent-based software architectures.

Maintainability: This criterion considers how difficult is the integration of new fault

3.2. AGENT-BASED ARCHITECTURE FOR FDIR

3

45

mechanisms into the FDIR implementation. Maintainability is a concern for highly scal-
able systems. Garcia et al. (2004) find maintainability as one of the enablers for separa-
tion of concerns in distributed systems, hence its importance in the selection of a FDIR
strategy that preserves this characteristic for MAS-based software.

3.2.3. TRADE-OFF ANALYSIS

The proposed architecture splits the FDIR functions into FDI and FIR. Then, according
to the design option tree presented in Figure 3.2, four feasible implementations options
are evaluated according the trade-off criteria. The implementation options are labeled
A,B, C and D in the Table 3.1.

Each evaluation criterion is weighted on a scale from one to eight, being one the least
important, and eight the most significant value for OBSW operations. For this trade-off,
the most important criterion is deemed to be the software resilience due to the robust-
ness requirements of satellite systems, while the least important is identified as main-
tainability because its impact on satellite operations is lesser than the others. The scores
for weighting factor are shown in Table 3.1.

For each implementations option, the criteria are evaluated to have a positive effect
(1), no effect (0) or negative effect (-1). Then, these values are used in the results row
with their respective weight to compute a score for each implementation option. For
instance, for option A the response time is deemed to have a positive effect since the
same agent is able to detect and correct a potential fault in the system, compared to a
fully distributed approach in option B where the response time is increased due to the
extra communication time of the FDI and FIR agents. Options C and D balance this out
looking for an intermediate solution.

The results from the trade-off show that worst option possible is having a fully dis-
tributed FDI and FIR architecture since response time, communication overhead and
maintainability are negatively affected. Even when most of the criteria are achieved, the
overall score is the lowest due to its lower performance compared to the rest. The sec-
ond worst is the fully centralized FDI and FIR approach, where resilience is the primary
concern, and therefore its overall score is also reduced. That makes the hybrid FDIR
implementation strategy the way to balance both performance and robustness.

Options C and D have the same scores for response time, communication overhead,
and resilience. What makes the difference between these two strategies has to do with
the fact that according to the literature reviewed in Section 3.1, FDI methods are less
complex to implement and maintain than FIR methods. That impacts the maintainabil-
ity criteria for option C and therefore, makes option D the best option with the highest
score. It implies that best strategy to implement FDIR with an agent-based approach is
implementing FDI distributed across all the software agents and having the FDI central-
ized to few agents within the onboard software.

Based on the analysis of the characteristics for different FDIR methods used in con-
trol systems, the FDI function is implemented using model-based methods, focusing
on residual testing algorithms, whereas the FIR function is implemented using a data-
driven method with Independent Component Analysis. The main motivation for this
selection is complexity of implementation and flexibility of calibration of the algorithm
during satellites operations.

3

46 3. AGENT-BASED FAULT DETECTION AND RECOVERY

Table 3.1: Pugh Matrix for FDIR Strategy Selection

FDIR Implementation Options

Criteria
Weighting

Factor

(A)
Fully Centralized

FDI and FIR

(B)
Fully Distributed

FDI and FIR

(C)
Centralized FDI

and Distributed FIR

(D)
Distributed FDI

and Centralized FIR
1. Response
Time

6 1 -1 0 0

2. Communication
Overhead

4 1 -1 0 0

3. Resilience 8 -1 1 1 1
4. Maintainability 2 1 -1 -1 0

Sum(+) 3 1 1 1
Sum(0) 0 0 2 3
Sum(-) 1 3 1 0
Result 4 -4 6 8

Legend: Weighting Factor:
1 Positive effect 1 Least important
0 No effect | |
-1 Negative effect 8 Most Important

Figure 3.3 summarizes the results of the trade-off analysis for the implementation of
a fault detection and recovery strategy with agent-based software architectures. It links
the implementation strategy with the respective FDIR methods selected for FDI and FIR
functions within the software.

Figure 3.3: FDIR Implementation strategy and their associated methods for agent-based software architectures

The following Section focuses on demonstrating the application of the proposed
FDIR architecture to small satellites systems. Particularly, on the implementation of the
selected fault detection and recovery methods as a case study for the AOCS subsystem.
Two operations scenarios are considered for numerical simulation with the purpose of
showing the feasibility of a hybrid distributed-detection and centralized-recovery strat-
egy using an agent-based approach.

3.3. AOCS CASE STUDY

3

47

3.3. AOCS CASE STUDY
This case study illustrates the application of the proposed FDIR implementation strat-
egy to deal with errors in gyroscopes of an AOCS used in satellites subsystems. Firstly, it
introduces the systems and components models. Then, it describes the implementation
of the proposed FDIR architecture, as well as, its numerical validation with small satel-
lite operation scenarios. Finally, results and potential improvements are presented and
discussed.

3.3.1. SYSTEM MODEL
Consider the AOCS of a small satellite mission as depicted in Figure 3.4. It consists of two
groups of blocks describing the plant model (external environment is colored gray), and
the AOCS onboard software which includes the sensor’s FDIR algorithm, the estimation
and, the control algorithm. The plant model is described mathematically as a linearized
and time-invariant state-space model presented as in the work of Gao et al. (2015b) using
the following expressions

x(k +1) = (A+4A)x(k)+ (B+4B)u(k)+Bd d(k)+Ba fA(k)++Dw w(k)

y(k) = (C+4C)x(k)+Ds fs (k)+Dv v(k)
(3.1)

where, x(k) ∈ Rn is the system’s state vector, u(k) ∈ Rc is the control input vector,
y(k) ∈ Rm is the measured output vector, fA(k) ∈ Ra are the unexpected actuator faults,
fs (k) ∈Rs are the additive sensor faults, d(k) ∈Rd are the system’s disturbances, w(k) ∈Rr

is used for the measurement noise, A,B,C,Ba Bd ,Dw ,Ds are known parameter matrices
with the proper dimensions, and 4A,4B,4C are unknown modeling parameter errors
including multiplicative errors.

For the purpose of this case study, the general model is simplified to focus on ad-
dressing sensor’s faults, where the actuator faults (fA(k)), the disturbances (d(k)) and the
multiplicative errors (4A,4B,4C) are neglected.

The attitude is expressed using the quaternion notation q = [q1 q2 q3 q4]T which is
obtained applying the equation of kinematics for satellites shown in (3.2) as

q̇ = 1

2
ΩΩΩ(ωωω)q (3.2)

where,ΩΩΩ(ωωω) is defined as

ΩΩΩ(ωωω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 . (3.3)

The spacecraft’s dynamics are described by the derivative of its angular momentum
as a function of its angular velocity ωωω according to Euler’s Equation described by Sidi
(1997) as follows

3

48 3. AGENT-BASED FAULT DETECTION AND RECOVERY

Figure 3.4: Block Diagram for the AOCS Case Study

ISCω̇ωω= T−ωωω× (ISC ωωω) (3.4)

where, ISC is the spacecraft’s moment of inertia matrix, ωωω the spacecraft’s angular
velocity, and T denotes the addition of the control NCont torque and the disturbances
torque NDi st affecting the spacecraft (external torques). For example, the the actuation
of reaction wheels and aerodynamic drag.

The expression in (3.4) can be reorganized to become

ω̇ωω= I−1
SC [−S(ω)(ISCωωω)+NCont +NDi st] (3.5)

where, S(ω) is a symmetric skew matrix described as

SSS(ωωω) =

 0 ωz −ωy

ωz 0 −ωx

−ωy −ωx 0

 . (3.6)

Combining the kinematic and the dynamic differential equations in (3.2) and (3.6),
the satellite’s motion can be described by the state vector x = [q1 q2 q3 q4 ωx ωy ωz]T .

It is important to remark the dependency of both the kinematic and dynamic mod-
els on the angular velocity vectorωωω for determining the orientation of the satellite. That

3.3. AOCS CASE STUDY

3

49

is the main motivation for putting special attention on mitigating gyroscope’s measure-
ment errors with the intention of making attitude estimation more precise and reliable.
The following subsections will describe how to model gyroscopes measurements and
their fault mechanisms.

3.3.2. GYROSCOPE MEASUREMENT MODEL

In general, the measured angular velocityωωωm can be modeled as described by Bekkeng
(2009) and Pirmoradi et al. (2009) as

ωωωm =ωωω+ωωωd +b+ηηηm . (3.7)

In (3.7), ωωωm is the gyroscope output andωωω is the true angular velocity of the satellite in its
local navigation frame. The model ofωωωm neglects errors due to sensor misalignment and
scale factors included in the installation matrix of (2.19). Gyroscope’s driftωωωd is assumed
to vary as a function of time. Precisely, as a linear-time function with parameters defined
during the calibration of the gyroscope on the ground.

The environmental noise is added to the sensor measurement as a zero-mean white
Gaussian noise, represented by the probability distribution function ηηηm . The random
walk is neglected for this case study as well as the rate walk, since both are assumed to
be compensated during the design phase, and this case study focuses on errors during
satellites operations.

The bias term b is estimated separately during the calibration phase using, for in-
stance, the Allan Variance Method as discussed in the work of El-Sheimy et al. (2008)
and, it is included as a constant term in the measurement model. ωωωd is not included in
the state vector to reduce the computational burden of the state estimation algorithm. It
is compensated by the FDIR algorithm described later.

3.3.3. GYROSCOPE FAULT MODELING

Faults in gyroscopes can be classified from different perspectives. For instance, from
their form they could be systematic (e.g drift, bias, delay, saturation, stuck at) or random
(e.g noise, walk), and from their time behavior, they could be permanent, transient or
intermittent.

Table 3.2 summarizes the fault mechanisms and their modeling technique for a rate
gyroscope sensor. This case study focuses on detecting and recovering from drift, rather
than dealing with the other fault mechanisms.

Table 3.2: Gyro’s fault mechanisms and associated modeling techniques

Fault mechanism Form Time behavior Modeling technique
Drift Systematic Permanent Linear time function

Misalignment Systematic Permanent Installation Matrix
Bias Systematic Permanent Constant
Walk Random Intermittent Constant
Noise Random Intermittent Probability distribution

3

50 3. AGENT-BASED FAULT DETECTION AND RECOVERY

The following subsections focus on the implementation description of a fault detec-
tion and recovery algorithm to address drift in gyroscopes using the agent-based soft-
ware architecture selected in Section 3.2

3.3.4. GYROSCOPE INSTALLATION
Several Inertial Measurement Units are constructed using four rate gyroscope sensors in
"3o+1s" configuration for measuring 3-axis angular velocity ωωω = [ωx ωy ωz]T as shown
in Figure 3.5.

Figure 3.5: Gyroscopes Installation in a "3o+1s" Configuration as described by Li et al. (2011)

From the "3o+1s" gyros configuration, the angular velocity vectorωωω for the spacecraft
can be obtained as


G yr os1

G yr os2

G yr os3

G yr os4

=


1 0 0
0 1 0
0 0 1p

3
3

p
3

3

p
3

3


 ωx

ωy

ωz

. (3.8)

Neglecting the misalignment faults during the installation process. Also assuming
that the bias and the noise terms are already compensated (b = 0 and ηηηm = 0). The
expression in (3.8) can be augmented to match the measurement model in (3.7) for in-
cluding the drift value and a fault signal vector a as follows

ωωωm =


G yr os1

G yr os2

G yr os3

G yr os4

=


1 0 0 a1

0 1 0 a2

0 0 1 a3p
3

3

p
3

3

p
3

3 a4



ωx

ωy

ωz

ωd

 (3.9)

where, ωd is a scalar value that accounts for the drift of the faulty gyro indicated by
the fault vector a in a "3o+1s" IMU. For simplification purposes of this case study, it is
assumed that only one gyro sensor is faulty at the time, so that the FDIR algorithm can
estimate the drift and compensate it in real time.

3.3. AOCS CASE STUDY

3

51

3.3.5. FAULT DETECTION AND IDENTIFICATION ALGORITHM
According to the literature reviewed, and the FDIR strategy selected for an agent-based
implementation in Section 3.2, the estimation agent in the AOCS software shall enable
a behavior for model-based FDI. Chen and Patton (1999) discuss that performance fea-
tures can be extracted from sensors or any other process and then they can be tagged
into faulty or healthy using classifier algorithms. There are several strategies for gener-
ating such features, for instance: parameter estimation, state observers, output signal
observer, and parity equations. One advantage of using state observers is that they are
already part of the attitude and orbit estimation algorithm, which allows code reuse that
lowers the computational overhead. Thus, the output from the AOCS state estimator can
be compared to the output from the gyro sensor and the resulting difference r (k) can be
used to decide on whether or not a fault is occurring as

r(k) = y(k)− ŷ(k). (3.10)

In (3.10), the residual vector is composed of the difference between the AOCS sen-
sors measurements y(k) and their estimated value ŷ(k). Using this residual as an input
to an statistical classifier, a fault for the i th IMU i ∈ 1,2,3, ..., N and its j th gyro sensor
j ∈ 1,2,3,4 can be declared using multiple hypothesis testing against an expected aver-
age measurement value µi j defined during IMU’s calibration on the ground. The ab-
solute value of the difference between the residual ri j (k) and the expected average µi j

is compared to a threshold limit εi j defined according manufacturing specifications for
each gyroscope sensor in the IMU as

ai j (k) =
0 if |ri j (k)−µi j | É εi j , =⇒ heal thy (H0)

1 if |ri j (k)−µi j | > εi j , =⇒ f aul t y (H1)
(3.11)

If the null hypothesis H0 is not rejected, there is a healthy condition. In contrast, once
the hypothesis test rejects the null hypothesis, a fault must be declared, which triggers
the recovery algorithm and update the position ai j (k) ∈ {1,0} in the fault signal vector
a, which has dimensions 4×N that represents the feature (gyro-axis) where the fault is
triggered. For example, if a13(k) = 1 means that the IMU 1, gyroscope sensor 3 is faulty
at instant k. The fault classifier assumes that one and only one gyro can fail at the same
time. Also assumes that all the gyro measurements are statistically independent. This
assumption is crucial for the selected fault recovery method.

A potential enhancement of this algorithm can be implemented taking the residual
r(k) and constructing a set of parameters, for example, Squared Prediction Error (SPE), or
the Hotelling T 2 statistics described in the works of Yin et al. (2012b) and Gupta (2006).
Then, a comparison of these parameters with a threshold value for each gyro can be
made in the same way that in (3.11) to declare a fault in gyroscope sensors. For this case
study the approach used is the one described by (3.11), since it does not require any
computational overhead in the AOCS computer.

3

52 3. AGENT-BASED FAULT DETECTION AND RECOVERY

3.3.6. FAULT RECOVERY ALGORITHM
From the literature review presented in Section 3.1, Independent Component Analysis
(ICA) was selected as the most suitable data-driven method for implementing the recov-
ery algorithm, specifically drift extraction and compensation for the proposed satellite
operations scenarios. ICA has proven to be convenient when working on blind source
separation problems as discussed by Comon (1994). This is the case for gyroscopes
where the true value and the drift component are combined as indicated in (3.9). ICA
also assumes that the observed features or measurements are independent among them,
and they represent a linear combination of the hidden true value of the sensor and a
faulty signal, in this case the gyroscope drift.

The gyroscopes sensors used in this case study are assumed to show a linear depen-
dency on time for both angular velocity and the drift function. This kind of behavior is
observed mainly when satellite performs attitude maneuvers, for instance, detumbling
or payload pointing as shown in the simulation scenarios.

The model in (3.12) illustrates how to couple the fault detection algorithm with the
recovery algorithm in a "3o+1s" gyroscope configuration. This expression was obtained
by adapting the work presented by Li et al. (2011) to fit the proposed FDIR strategy for
the operation’s scenarios considered during the AOCS case study.

ωωωi
m =


G yr osi 1

G yr osi 2

G yr osi 3

G yr osi 4

=


1 0 0 ai 1

0 1 0 ai 2

0 0 1 ai 3p
3

3

p
3

3

p
3

3 ai 4




ωi x

ωi y

ωi z

ωd j

 (3.12)

In (3.12), the feature vectorωωωi
m represents the readings from the i th IMU in the sys-

tem, and ai j ∈ {0,1}, j ∈ 1,2,3,4 is the fault detection flag calculated from expression
(3.11). From the ICA formulation a signal vector s = [ωi x , ωi y , ωi z , ωd j]T is defined
to hold both the true value for angular velocity ωωω and the value of the drift ωd j for the

j th gyroscope sensor in the i th IMU. As mentioned before, it was assumed a single fault
event, meaning that only one value of ai j = 1 can be triggered at the same time. Then,
using the ICA algorithm, the FIR algorithm is able to demix the true signal vector s by
calculating a demix matrix W, that satisfies the following relation:

s = Wωωωi
m (3.13)

In (3.13), a demix matrix W that maximizes the statistical independence of the discovered
signals s is estimated using an open source implementation of ICA called FastICA and
proposed by Hyvarinen (1999). FastICA is an iterative algorithm that:

1. Choose an initial value for W.

2. Update calculation of W.

3. Normalize W.

4. if not converged go back to step 2

3.3. AOCS CASE STUDY

3

53

FastICA requires to define a parameter (ρ) for adjusting the over-fitting and estab-
lishing the converging criteria required in step 4.

For the FIR algorithm implementation, a FastICA module was provided with an input
vector ωωωi

m containing the simulated measurement values of the gyroscope sensors in a
"3o+1s" configuration. These values were normalized and zero-mean centered before
their actual processing. The output from FastICA was a vector containing the estimated
drift signal d calculated from the input feature set and the true value for the angular
velocity. The true values were expected to have a random noise component. That noise
is compensated in the AOCS estimator by the filtering algorithm (e.g Kalman Filter), and
it was not considered within the ICA algorithm implementation.

3.3.7. AGENT-BASED FDIR IMPLEMENTATION
Following the presentation of the detection and the recovery algorithms, the next step
is describing their implementation within the AOCS software architecture. This subsec-
tion focuses in setting out the implementation details of an agent-based architecture for
gyroscope’s drift detection and correction based on the selected FDIR strategy.

During the software design phase, the AOCS software was broken down into five
agents working together as depicted in Figure 3.6. These agents are:

• The Measurement Agent in charge of handling the interface with physical sensors.

• The Attitude and Orbit Estimation Agent that includes the FDI function.

• The Fault Isolation and Recovery Agent (FIR).

• The Attitude and Orbit Control Agent that focus on the control algorithm.

• The Actuator Agent that handles the interface with the satellite’s actuators.

For this work, only the Fault Detection agent (FDI) and Fault Isolation and Recovery
agent (FIR) were implemented using MATLAB™. They allow showing the behavior for
both fault detection and recovery algorithms described above. The Measurement Agent,
the Attitude and Orbit Estimation Agent, as well as the Control Agent and the Actuator
Agent, were left out of the simulation model to focus only in the performance of sensors.

Figure 3.6 also shows the interaction among AOCS agents for fault detection and
correction over an operation cycle of the onboard software. In that diagram the AOCS
estimation agent request a new gyroscope measurement y(k) =ωωωi

m to the AOCS mea-
surement agent. That measurement is also sent to the FIR agent for further correction is
required. The estimation agent integrates an additional behavior to implement the FDI
function using the estimated value ŷ(k) and the current measurement y(k).

If a fault is detected, then the fault signal vector a is updated and the fault detection
algorithm is triggered. The corrected measurement yR (k) is sent back to the estimation
agent for updating its estimated state x̂(k). Then the estimation agent sends the current
estimated state vector to the control agent which will update the output u(k) and define
the commands required at the actuators. These commands are forwarded to the actuator
agent for maneuver execution if needed. The reference value for the AOCS orientation is
received from the CDHS and shall be updated before the control algorithm execution.

3

54 3. AGENT-BASED FAULT DETECTION AND RECOVERY

One aspect to highlight from the proposed agent implementation strategy is its mod-
ularity. Using agent-based architectures the software complexity is controlled, so that
new fault detection and recovery algorithms can be tested without a significant impact
on the control nor the estimation implementation, just by modifying the behaviors in-
side the agents.

Figure 3.6: Data Flow Interaction for the proposed FDIR Scheme with an Agent-based Architecture

3.3.8. SIMULATION SCENARIOS
The simulation environment was developed using MATLAB™. There, the behavior of
both fault detection and fault recovery agents were implemented to reproduce two space-
craft modes: detumbling and payload pointing. The input signals were synthesized for
each scenario separately, using the sensor and fault model presented in subsection 3.3.3.
In both operations scenarios, the angular velocity, as well as the drift, were assumed to
behave linearly during the operation period. The reason for this assumption, is to have a
reference function to compare the measurement values over time since they are needed
for verification purposes.

Also for each scenario, both variables were characterized by sensor parameters ex-
tracted from the mission’s design. The threshold used to declare a fault was determined
based on the gyroscope’s tolerance specifications reported for the missions.

The following subsections describe each operation’s scenario implemented in the
simulation environment. It focuses on verifying that once the fault is triggered, the FIR
algorithm can correct the measurements received from the faulty gyroscope sensor.

3.3. AOCS CASE STUDY

3

55

SCENARIO 1: DETUMBLING MODE FOR THE "FLYING LAPTOP" MISSION

Detumbling is the first critical activity after the deployment of a satellite. It requires
the satellite to follow a specific tumbling rate profile according to the mission design.
Any drift in the measurements might cause delays in the commissioning of the satellites
operations. If the tumbling rate is not achieved, the success of the mission is at stake.
Therefore, it is crucial to complete the detumbling maneuver within a few orbits after
satellites are deployed.

The "Flying laptop", described by Kuwahara et al. (2009), is a micro-satellite with a
mass of 120 kg flying in a sun synchronous orbit of about 600 km altitude. The detum-
bling period requirement was established in the range of 6000 to 12000 seconds.

The Flying Laptop’s ADCS was equipped with fiber optical gyroscopes with a drift
rate specification of 3 ◦/h. The initial angular velocity was determined as 10 ◦/s, and the
mission requirement was to stabilize it to 0◦/s within a tolerance on 1 ◦/s as discussed by
Grillmayer et al. (2006). For the proposed simulation scenario, it is assumed that detum-
bling shall be completed within 6000 s, which corresponds to one orbital period. Table
3.3 summarizes the simulation parameters considered for the Flying Laptop scenario.

Table 3.3: Simulation parameters used for the operation scenario with the Flying Laptop mission

Input Parameter Description Value [Unit]
InitRate Initial tumbling after deployment 10 ◦/s

EndRate Final tumbling rate for operations 0 ◦/s

Driftlimit
Maximum gyroscope drift
accumulated in one orbit

5 ◦/s

SampleT Sample period for measurements 1 s

OrbT
The period required to complete
one orbit around Earth

6000 s

Meas_Noise_A
Measurement noise variance
for amplitude

0.001 ◦/s

Meas_Bias Gyroscope measurement bias 0 ◦/s
εi j Drift threshold used to trigger a fault 0.5 ◦/s

µi j
Expected increase of the drift
as a function of time

0.0001 ◦/s

The input signals vectors for true angular velocityωωωi , measured angular velocityωωωi
m

and drift input ωd j were generated using the information from Table 3.3 and, plotted
in Figure 3.7. The injected drift was generated considering the orbital period and the
drift rate specification provided by the gyroscope’s manufacturer, so that after 6000 s,
the maximum drift expected was 5 ◦/s as shown in Figure 3.7 (right y-axis). The faulty
angular velocity magnitude |ωωωi

m | was synthesized by adding the true angular velocityωωωi

plus the injected drift vector. It was evident that if the drift was not compensated, the
detumbling period required to be extended, impacting early operations performance of
the mission.

The fault detection behavior (FDI) within the Estimation Agent (see Figure 3.6), was
provided with the faulty angular velocity measurement vector ωωωi

m , that calculated the
residual r(k) to perform the multiple hypothesis testing described by (3.11) . The trigger

3

56 3. AGENT-BASED FAULT DETECTION AND RECOVERY

0 1000 2000 3000 4000 5000 6000

time [s]

0

2

4

6

8

10

12

A
n

g
u

la
r

V
e
lo

c
it
ie

s
 [

º/
s
]

0

1

2

3

4

5

6

7

D
ri
ft

 [
º/

s
]

True
i

Faulty
m

i

Injected Drift

Figure 3.7: Input variables generated for the Flying Laptop simulation scenario including true angular velocity
magnitude, Measured angular velocity magnitude and drift injected to the faulty gyroscope sensor

condition was determined by the comparison with the εi j value shown in the table, so
that a faulty signal ai j vector was generated as shown in Figure 3.8 (right y-axis). The ai j

vector determined the moment where the Fault Isolation and Recovery algorithm had to
be triggered in the AOCS FIR Agent.

0 1000 2000 3000 4000 5000 6000

time [s]

0

2

4

6

8

10

12

 [
º/

s
]

0

0.5

1

1.5

a
ij

Estimated

Measured

Fault Signal Value a
ij

Figure 3.8: Results of the implementation for the Fault Detection Algorithm proposed in (3.11)

The FastICA algorithm running on the FIR agent was provided with gyro’s measure-
ments vector ωωωi

m , but it required to have the data pre-processed because the FastICA
implementation needed a normalized zero-mean centered input vector to work prop-
erly. That was achieved calculating and subtracting the mean value to the input vector.
Additionally, a scale factor was defined to adjust the output magnitude. This parameter
depended on the highest drift value expected at the end of the maneuver. In this case, it
was about 5◦/s that was the maximum drift value injected. The reason defining this scale
factor was because the algorithm worked with normalized input data, so the output had
to be adjusted to the input scale.

In Figure 3.9, the plot A shows the drift behavior at the fault recovery agent. For
simplicity, it assumes that recovery algorithm is triggered at t = 0 s. The recovery algo-

3.3. AOCS CASE STUDY

3

57

0 1000 2000 3000 4000 5000 6000
time [s]

0

2

4

D
ri
ft
 [
º/

s
]

A

Injected Drift - Theoretical

Drift Estimated with ICA

Drift Estimated with LinReg

0 1000 2000 3000 4000 5000 6000
time [s]

0

5

10

 [
º/

s
]

B

Input Measurements
m

Corrected Output
R

Figure 3.9: Simulation results of Flying laptop scenario for detumbling maneuver. (A) Drift Estimation perfor-
mance for ICA and Linear regression method. (B) Input-Output for FastICA Implementation

rithm allowed to estimate the faulty sensor’s drift and compensate it as shown in plot
B where the faulty input was indicated as the thick-red line and the corrected output
was shown as the thin-green line. In plot A the injected drift (dashed-blue line) was in-
dicated for comparison purposes. The drift estimated using ICA (solid-green line) was
compared to the theoretical drift injected, to show that algorithm is able to demix the
drift coming from the faulty sensor. Additionally, a drift estimator implemented using a
linear-regression model was included in the plot A (thick-gray line) with the purpose of
comparing its performance and implementation’s complexity to the ICA algorithm.

0 1000 2000 3000 4000 5000 6000

time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

D
ri
ft

 E
s
ti
m

a
ti
o

n
 e

rr
o

r
[º

/s
]

ICA-Error

Linear-Reg Error

Figure 3.10: Comparison of two drift estimation algorithms for fault recovery of gyroscopes in the Flying Laptop
operation scenario

Figure 3.10 shows the drift estimation error for the FastICA Implementation (solid-
blue line) and a linear regression model (dashed-gray line). These errors were generated
by subtracting the theoretical injected drift, so that the performance of both algorithm
can be analyzed. It was clear that both algorithm overestimated the injected drift. How-
ever, the ICA implementation outperformed the linear regression model. In that sense,
having a data-driven algorithm shows benefits in terms of performance. In the other
hand, the linear-regression model shown a stable error over time, whereas the ICA im-
plementation shown a deviation over time that can be a concern in the long-term.

3

58 3. AGENT-BASED FAULT DETECTION AND RECOVERY

SCENARIO 2: PAYLOAD POINTING MANEUVER FOR AEROCUBE-OCSD MISSION

In 2012, NASA selected the Aerospace Corporation to develop a technology demonstra-
tion mission to test COTS components in optical communications with CubeSats. The
proposed concept included an optical payload using beam spreads in the range of mili-
radians. According to Janson and Welle (2014b), the mission’s objective was to establish
a communication link between the AeroCube-OCSD satellite and a telescope located in
California, USA. For that purpose, the mission used a 10 W laser with 1.4◦ angular beam-
width on a 1.5 U CubeSat.

Figure 3.11 shows the angular rate profile and the range distance for AeroCube-OCSD
on a zenith pass over the optical ground station. Based on data from Janson and Welle
(2014a), the required magnitude of the rotation rate of the satellite was specified to be
less than 0.8 ◦/s at 600 km altitude. The minimum elevation angle was determined as
of 30 ◦, and a maximum laser communication period was defined to be 180 s. From the
AeroCube-OCSD mission design, the maximum drift for the gyro was estimated to be 0.3
◦/s during the communication period of 180 s when the satellite was in range.

Figure 3.11: Angular velocity and range distance profiles for the payload pointing maneuver of AeroCube-
OCSD mission by Janson and Welle (2014a)

Using above’s information, a simulation scenario was created to emulate the payload
pointing maneuver of AeroCube-OCSD satellite as shown in Table 3.4. The drift was
assumed linear during the maneuver period. The effects of optical interference on the
ground were neglected.

In the simulation setup, the time window for the maneuver was defined as 180 s. It
was assumed that the angular rate profile started in 0.25 ◦/s and it linearly increased dur-
ing 90 s to reach 0.75 ◦/s. Then, it linearly decreased again to 0.25 ◦/s at the end of the
maneuver period. This behavior was intended to represent, to some extend, the angular

3.3. AOCS CASE STUDY

3

59

Table 3.4: Simulation parameters used for the operation scenario with the AeroCube-OCSD mission

Input Parameter Description Value [Unit]
InitEndRate Initial-Final tumbling rate for payload pointing 0.25 ◦/s

MaxRate Maximum tumbling rate for payload pointing 0.75 ◦/s

Driftlimit
Maximum gyroscope drift accumulated during the
payload pointing

0.3 ◦/s

SampleT Sample period for measurements 1 s

ManeuverT
The period required to complete the payload
pointing maneuver

180 s

Meas_Noise_A Measurement noise variance for amplitude 0.001 ◦/s
Meas_Bias Gyroscope measurement bias 0 ◦/s

rate profile shown in Figure 3.11, since the function to reproduce it exactly was not avail-
able in the literature. The drift for the gyroscopes were determined to be nominal 0.3
◦/s (3σ) in 10 minutes; Sensor noise was also added to the angular rate profile to make it
consistent with the gyroscope measurement model, even when it was known that it was
going to have an impact in the performance of the ICA algorithm.

Figure 3.12 shows the results of this simulated scenario reproducing the angular rate
profile for AeroCube-OCSD when gyro’s drift affected the sensor measurements.

0 20 40 60 80 100 120 140 160 180time [s]
0

0.2

0.4

0.6

D
ri
ft
 [
º/

s
]

A

True

Estimated with ICA

Estimated with LinReg

0 20 40 60 80 100 120 140 160 180time [s]
0

0.2

0.4

0.6

0.8

 [
º/

s
]

D

Faulty Input

Corrected Output

Figure 3.12: Simulation results of AeroCube-OCSD scenario for payload pointing maneuver. (A) Drift Estima-
tion performance for ICA and Linear regression method. (D) Input-Output for FastICA Implementation

Subplot A shows the drift affecting the angular velocity measurements. Subplot A
also shows the injected drift (dashed-blue line) , the estimated drift calculated by the
FIR Agent when receiving the faulty signal vector (solid-green line), as well as the drift
estimated using model-based approach with linear regression (dotted-gray line). Plot A
shows that ICA has a better performance to estimate the injected drift compared to the
linear regression model.

In Subplot D, the effect of drift in the angular velocity profile was plotted as the Faulty
input (dotted-red line) with its corrected output (solid-green line) after the recovery pro-
cedure. In that plot, the faulty signal exceeded on 20% the rotation rate requirement
during the maneuver, which did not allow the satellite to achieve the required pointing

3

60 3. AGENT-BASED FAULT DETECTION AND RECOVERY

accuracy on the pass over the ground station. Additionally, the fault caused an asym-
metrical profile, increasing the required time window for the communication to 220 s
(increase of 22%). This deviation had a direct effect on the maximum downlink/uplink
speed that can be achieved during the pass, meaning that drift can decrease the perfor-
mance of the satellite.

0 20 40 60 80 100 120 140 160 180

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
ri
ft
 E

s
ti
m

a
ti
o
n
 e

rr
o
r

[º
/s

]

ICA-Error

Linear-Reg Error

Figure 3.13: Comparison of two drift estimation algorithms for fault recovery of gyroscopes in the AeroCube-
OCSD operation scenario

Figure 3.13 shows two interesting findings. Firstly, the magnitude of the error of
the linear-regression model (dashed-gray line) was in average 25 times bigger than ICA
(solid-blue line). The second element to note is that the error of the linear regression
model was decreasing over time, and the error of ICA was slightly increasing, but mostly
kept stable along the maneuver. Also, ICA shown more variability than the linear-regression
model as product of the Gaussian noise injected on the input signal.

3.4. RESULTS ANALYSIS
This Section analyzes the proposed FDIR scheme from both the architectural and the
performance of the methods selected for FDI and FIR functions. These analyses are
based on the results from the AOCS simulation scenarios, and they are intended to draw
conclusions and recommendations to software designers and space systems engineers.

Concerning the architecture for fault detection and recovery implementation, the
use of a distributed FDI approach showed benefits regarding code reuse, resilience and
balanced response time. That enabled a faster drift detection for the gyroscope opera-
tion scenarios implemented. Also, this type of architecture allowed the capabilities for
the implementation of multiple observers without significant impact in the overall soft-
ware complexity, which can be used to implement detection on multiple fault mecha-
nisms besides drift. Related to the method selection, using a model-based algorithm for
drift detection showed a good performance for both scenarios tested.

On the other hand, for the FIR function the results of the case study scenarios showed
some challenges with the implementation of both the architecture and the recovery al-
gorithm. It was clear that for this function the computational requirements were higher,
therefore its implementation complexity; However, based on the results, there some as-
pects that need to be developed further. For example, from its implementation archi-

3.5. CHAPTER SUMMARY

3

61

tecture, it is necessary to define a consensus strategy among FDI and FIR agents that
guarantees resilience with a minimal impact in communication overhead.

Related to the implementation of FastICA algorithm for drift recovery some concerns
require attention during onboard software development. For instance, in some cases,
the algorithm took several iterations to converge to a solution for a data batch. Also,
the need to have the input data pre-processed added computational cost. These two
behaviors pose a risk for the onboard processing budget, which can impact workload
performance negatively.

Three ambiguities on ICA were observed based on the results for the simulation sce-
narios. Firstly, if the input data was not normalized, then the algorithm was not able to
determine the variances of the independent components. The reason of that, was be-
cause the matrix of signal and parameters were unknown. That was addressed normal-
izing the measurements input and re-scaling the output of the algorithm before com-
pensating the drift. The second ambiguity was the sign of the calculated components,
which had to be addressed by also post-processing the output. The third ambiguity ob-
served was related to the order of calculated components in the output vector. That
required defining a permutation matrix and adapting the input model to solve this ma-
trix, which again caused computational overhead. An additional problem was observed
when adding Gaussian noise to the input vector, which decreased the performance of
ICA for the components separation and caused the algorithm to overestimate the drift in
all cases.

Concerning the time stability, ICA shown that for long term maneuvers the error in
estimation was increasing, so that it was comparable with error of the drift estimation
method with linear regression model. For short-time maneuvers ICA clearly outper-
forms the model-based recovery method, even when adding noise.

3.5. CHAPTER SUMMARY
This Chapter has presented and discussed the results of an agent-based architecture for
drift recovery in gyroscopes. A qualitative assessment for FDIR methods was carried
out, including models-based, signal-based and knowledge-based methods. The selected
method for FDI was a model-based technique, while the FIR was selected to be a data-
driven method.

A trade-off analysis was carried out to identify and select a strategy for FDIR imple-
mentation using an agent-based architecture. This strategy suggests that the most effi-
cient approach for implementing FDIR requires spreading the FDI across all the func-
tional agents of the system, while having a few centralized agents to handle the FIR pro-
cedures.

Two simulation case studies with small satellite missions were implemented to demon-
strate the algorithm feasibility and effectiveness. Numerical simulations showed a better
performance of the proposed data-driven method with respect to a purely model based
approach. The ICA algorithm used for drift estimation shown several implementation
considerations that requires further research. These issues can limit the potential adop-
tion of data-driven methods for fault recovery in onboard software design.

Future work includes the development of the agents for state estimation and attitude
control, and its integration in other maneuver cases study scenarios.

4
MULTI-AGENT COMMUNICATION

IN SATELLITE SOFTWARE

The most important thing in communication is hearing what isn’t said.

Peter Ferdinand Drucker

Abstract

Communication is the most critical capability needed for the successful implementation
of multi-agent based software in satellites systems. To enable that capability, spacecraft re-
quire to put in place distributed data buses featuring reliable protocols with built-in fault
detection and recovery. This Chapter proposes and describes an architecture for multi-
agent system communication that can be adopted in the design of fault-tolerant onboard
software for satellites using an agent-based approach. For that purpose, some sections fo-
cuses on the message transport implementation with the Controller Area Network (CAN)
protocol, so that synchronization is guaranteed by design. It also demonstrates the im-
plementation of this architecture with high-throughput demanding scenarios with the
ADCS case study. Finally, an algorithm for bus utilization balancing is proposed, so that
the multi-agent based software performs according to specifications.

Parts of this chapter have been published in IEEE Transactions on Aerospace and Electronic Systems -TAES-
pages 1014 - 1025, Volume: 56 , Issue: 2 , April, (2020) doi: 10.1109/TAES.2019.2940341

63

4

64 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Multi-agent systems are described by Chopra et al. (2013) as dynamic organizations
composed of autonomous software entities running over a distributed computing envi-
ronment to achieve a common goal. Agents require interacting with each other to coop-
erate and negotiate while achieving their goals. According to Chen and Su (2003), com-
munication is one of the core services that enable the development and implementation
of MAS-based software. The best way of dealing with the implementation complexity
of highly distributed systems is by introducing different abstraction levels in the design
of their communication strategy. Li and Kokar (2013) argues that agent communica-
tion protocols are required to specify a minimum set of rules for agent communication
within the multi-agent system boundaries. There is also a consensus on the importance
of autonomy as part of the agent communication semantics.

The Foundations of Intelligent Physical Agents (FIPA) establishes the requirements
for an agent communication language as a set of standards for multi-agent systems plat-
forms. For example, the specification FIPA00067 in FIPA (2002b) describes the reference
model for message transport, in which several communication requirements and con-
straints are documented, as well as their message structure.

The communication process of a MAS requires two main groups of functionalities.
The functions that allow high-level interaction of agents known as the Agent Interac-
tion Protocols (AIP), and the lower-level functions related to the information transport
implementation in charge of the Message Transport Protocol (MTP). The AIP allows the
representation model for an agent. That includes an ontology, a content language or any
other taxonomy and vocabulary required to represent useful information according to
the agent’s semantics. These language primitives are integrated into the Agent Commu-
nication Language (ACL) specifications.

The Message Transport Protocol (MTP) provides application-specific rules for the
implementation of messaging exchange. They enable the physical and logical link be-
tween agents. The reason MTP are application-specific, is because they depend on the
application requirements and constraints as well as their implementation technologies.
In some cases, they need to be optimized as discussed by Bravo et al. (2015).

In space-related applications, the use of multi-agent systems is deemed necessary
when a mission requires advanced autonomy features during operations. For example,
Long et al. (2005) discuss the use of multi-agent systems to improve the speed and pre-
cision of fault diagnostic methods using satellite telemetry data. One of the main chal-
lenges for implementing MAS-based telemetry collection is the need for a reliable com-
munication channel between multiple subsystems and components of the spacecraft
data bus.

This Chapter proposes and describes an architecture for agent communication in
MAS-based software for satellites. First, it describes qualitative aspects related to the
communication process in multi-agent systems, for instance, their agent’s communica-
tion protocols and their message transport protocols. Then, it focuses on developing
an analytical model to describe and characterize the workload of the spacecraft’s dis-
tributed communication bus. This bus utilization model is validated using an AOCS case
study with critical operation scenarios for small satellite missions.

4.1. AGENT COMMUNICATION LANGUAGES

4

65

4.1. AGENT COMMUNICATION LANGUAGES

The communication languages are the core of any multi-agent systems implementa-
tion. It is also necessary to use a reference model for describing multi-agents system
platforms. FIPA establishes a reference communication architecture for that purpose.
Figure 4.1 shows the elements that constitute the typical multi-agents system platform
according to the FIPA specifications. Each of these elements can be modeled as a set of
software objects (components) grouped into layers.

From the communication point of view, agents can interact with other agents within
the same agent’s platform or with agents on a different platform. The Message Transport
System (MTS) provides communication capabilities to agents attached to a single agent
platform using the Internal Platform Message Transport (IPMT), and the communica-
tion with agents living on a different platform using the Agent Communication Channel
(ACC).

Figure 4.1: FIPA reference model for a multi-agent system platform.

The standard FIPA (2002a) specifies that the communication between agents is im-
plemented by exchanging messages containing two parts: a message envelope and a
message payload. The message envelope is required to express information needed for
the message transport protocol, and the message payload is used to express the FIPA-
ACL content. The ACC may add information, but it is not allowed to remove any content.
The following subsection focuses on the communications architecture and protocols for
agent’s communication implementation.

Agent communication protocols are grouped into a layered structure to reduce the
implementations complexity of communication by separation of concerns as discussed
by Nguyen et al. (2011). Table 4.1 shows the layers and their respective functions in the
agent communication stack. The ACL is highlighted as the most important layer for this
thesis.

4

66 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Table 4.1: Agent Communication Stack described by the standard FIPA (2002a)

Layer Description

Conversation

Sequence of valid messages within specific
operation context. It is defined at application
level. It implements a set of agent interaction
protocols to describe communication patterns.

Content
Language

It is used to express the content of communication
between agents. For that it uses grammar and lexical
definitions to describe agents interactions. FIPA
defines four types of content languages: FIPA-SL
FIPA-CCL, FIPA-KIF and FIPA-RDF.

Agent
Communication

Language

The ACL specifies the syntax and semantics of
messages that agents exchange. It pre-defines a
collection of message types called performatives.
FIPA-ACL and KQML are the most relevant and known.

Message
Envelope

Defines the routing and encoding policies for
the messages, and describes how to implement
such policies. For example XML-based envelopes.

Message Transport
Protocol

Defines the structure of a ACL message using
standardized objects to information exchange.
For example: IIOP, CORBA, RMI, HTTP

Data Transport
Protocol

Establishes the data transport protocols required
for agents messages to transfer their information.
For example, TCP or UDP.

Data signalling
Defines the physical mechanisms for data
propagation within the communication network.
For instance, Ethernet, 802.11, or CAN

4.1.1. AGENT INTERACTION PROTOCOLS

Knowledge Query Manipulation Language (KQML) described by Finin et al. (1994) and
FIPA-ACL described by Fipa (2002) are the most common communication languages
used in multi-agent systems. They are intended for three purposes which are: defin-
ing the message structure, describing the communication acts between agents, and en-
abling the communication protocols required for supporting the inter-operation of mul-
tiple agents within the same execution environment.

The FIPA-ACL is oriented to standardize the encoding, semantics and pragmatics
of messages in multi-agent-based applications as described by Fipa (2002). It does not
include any requirements on the internal transportation of messages, which is left for
application-specific implementation. Fipa (2002) establishes that a FIPA-ACL message
can contain one or several predetermined parameters including the type of communica-
tive act, sender, receiver, content, ontology among several others defined in the specifi-
cation. Additional user-defined parameters can be added to the message structure, but
they are not specified in the standard. For standardizing interaction between agents,
FIPA-ACL defines and describes a set of interaction protocols summarized in Table 4.2.

http://www.fipa.org/specs/fipa00008/SC00008I.html
http://www.fipa.org/specs/fipa00009/XC00009B.html
http://www.fipa.org/specs/fipa00010/XC00010B.html
http://www.fipa.org/specs/fipa00011/XC00011B.pdf

4.1. AGENT COMMUNICATION LANGUAGES

4

67

Table 4.2: Summary of Main FIPA-ACL Agent Interaction Protocols

AIP
Name

FIPA
Document
Number

Protocol
Description

Request SC00026

This protocol allows one agent to request another to perform
some action, which might be able either to refuse or agree with it.
If the receiver agrees, it might complete the task and
inform the result or that it is done, if it fails to complete
the task the agent shall send a failure message
to the requester agent.

Query SC00027
An agent is able to request to perform an action on
another agent.

Request-
When

SC00028
Agents are allowed to request an receiver agent to perform an
action at the time of a given precondition becomes true.

Contract-
Net

SC00029

An agent named Initiator, takes the role of manager
to have a set of tasks performed by single or multiple agents
known as the Participants. For certain tasks, any number
of the Participants may respond with a proposal to the Initiator.
Negotiation then continues with the agents that proposed to the
Initiator.

Iterated
Contract-
Net

SC00030
It is an extension of the basic Contract-Net,but it differs
by allowing multi-round iterative bidding.

Brokering SC00033

A broker is an agent that offers a set of communication
facilitation services to other agents using some knowledge
about the requirements and capabilities of those agents.
A typical example of brokering is one in which an agent can
request a broker to find one or more agents who can answer a query.

Recruiting SC00034
A recruiter is a form of broker, which offers a set of communication
services to other agents by using knowledge about the requirements
and capabilities of those agents.

Subscribe SC00035

The Initiator is an agent that starts the interaction with a subscribe
message with reference of the objects of interest.The Participant
agents process the subscribe message and if they accept or refuse
the query request.

Propose SC00036

The Initiator agent sends a propose message to the Participant
agents indicating that it will perform some action if the Participant
agrees.Participants can responds by either accepting or rejecting the
proposal, communicating this with the accept-proposal or
reject-proposal communicative act.

4.1.2. MESSAGE TRANSPORT PROTOCOL IMPLEMENTATION

The FIPA-MTP specifications consider general aspects of communication protocol’s im-
plementation, for instance, interface definition, message envelope syntax, and address-
ing scheme. For specific details of that implementation, every protocol shall provide a
set of functionalities that satisfy the needs of the application and the agent platform re-
quirements. Any message transport protocol may use an alternative internal representa-
tion to describe a message envelope, but it must express the same terms, and represent
the same semantics of the Agent Interaction Protocols (AIP) in Table 4.2.

http://www.fipa.org/specs/fipa00026/index.html
http://www.fipa.org/specs/fipa00027/index.html
http://www.fipa.org/specs/fipa00028/index.html
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00030/index.html
http://www.fipa.org/specs/fipa00033/index.html
http://www.fipa.org/specs/fipa00034/index.html
http://www.fipa.org/specs/fipa00035/index.html
http://www.fipa.org/specs/fipa00036/index.html

4

68 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

For that reason, the FIPA-ACL messages require lower-layer protocols for supporting
these AIP. FIPA does not restrict the use of any protocol for MTS, but it documents spec-
ification for three commonly used Message Transport Protocols: IIOP, WAP and HTTP.
However, additional MTPs have been implemented in MAS-based software design. For
example, XMPP with SPADE and JAVA-RMI with JADE.

Most of the MAS platforms reported in the literature are intended for mobile ap-
plications and distributed robotic systems. According to the author’s knowledge, this
dissertation is the first one to propose adopting an agent-based approach for imple-
menting the onboard software of satellites. That requires establishing a reliable message
transport protocol that can be implemented with space-qualified technology that fits the
need of an agent platform. One of these emerging distributed communication protocols
is CANopen, which offers the performance and reliability required by satellites systems.
CANopen is a high-level communication protocol and a device profile specification that
is based on the CAN protocol.

Using the Open Systems Interconnection (OSI) model to describe the proposed com-
munication stack, CAN protocol covers the physical layer and the data link layer, while
CANopen implements the network, transport, session, presentation and application lay-
ers. The physical layer specifies the lines used as well as the voltage levels. The data link
layer is used to encapsulate the messages into frames. CANopen describes the imple-
mentation of the top five layers. For the network layer, it implements the addressing
and routing schemes. For transport, it delivers end-to-end reliability. The session layer
provides synchronization for the transmission of messages, while the presentation in-
cludes data codification at a high level for being used at the application level. Finally,
the application layer describes how to configure, transfer and synchronize the CANopen
devices.

This Chapter proposes the implementation of a CAN-based MTP for supporting MAS-
based onboard software on satellite systems. For that purpose, it suggests to use CANopen
for the implementation of the data signaling and data transport protocol. The proposed
MTP was based on the implementation of the Process Data Object (PDO) protocol on top
of CANopen. More details about the motivation of the selection of CANopen for satellite
systems can be found in the work of Orsel (2016).

There are two main advantages of adopting the PDO protocol as the MTP in multi-
agent systems for satellites. Firstly, its bus utilization efficiency is not affected by the ACL
message structure, and the data bus performance can be controlled by the bus operation
parameters, as demonstrated in the work of Orsel (2016). Secondly, its implementation
flexibility, since it enables three different communication design patterns for producer-
consumer communication architectures. These are event-driven, remotely requested
and synchronous/asynchronous transmission. This capability makes PDOs suitable to
the needs of space systems, particularly for the AOCS subsystem.

On the other hand, there is a drawback related to the maximum data length that
can be transmitted at the time by a PDO. This size is up to 8 bytes per PDO, which re-
quires having multiples PDOs to represent a single the ACL message. That can demand
extra work to the ACC in the agent platforms to split and assemble messages for their
transmission. The following section describes in detail the proposed communication
architecture.

https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/

4.2. SOFTWARE COMMUNICATION ARCHITECTURE

4

69

4.2. SOFTWARE COMMUNICATION ARCHITECTURE
The goal of proposing a communication architecture for MAS-based software is to de-
scribe the interface in which ACL message objects are converted into low-layer protocol
objects that are sent and received over a distributed data bus that connects subsystems
and components within the spacecraft bus.

The selected architecture requires addressing the following top-level requirements:

1. The selected protocol shall be message-oriented to be compatible with the object-
oriented approach required by MAS.

2. The selected protocol shall minimize the communication overhead between ACL
messages and low-level message objects.

3. The selected protocol shall provide built-in features for FDIR.

4. The selected protocol shall provide a high Technology Readiness Level (TRL) for
space systems.

5. The selected protocol shall provide synchronous operations capabilities to ensure
determinism of critical subsystems within the spacecraft.

For low-level implementation only CAN can satisfy these requirements. Therefore it
was selected for physical and data link layers as mentioned above. The process to select a
higher layer protocol and a design configuration that satisfy these requirements was con-
ducted and documented by Orsel (2016) in his Chapter 4. From that study, the combina-
tion of CAN and CANopen outperformed CAN flexible data rate and CAN aerospace, so
that that combination was selected to propose a communication architecture for MAS-
based software onboard a satellite. Figure 4.2 synthesizes the communication architec-
ture proposed for implementing MAS-based software in distributed computing systems
onboard satellites. It assumes that each subsystem or component connected to the dis-
tributed communication bus can execute an agent platform which logically contains a
MAS-based software application that interacts with other subsystems and components
using FIPA-ACL messages.

For communication within the same agent platform, agents rely on the IPMT service
implemented by the agent platform, whereas for inter-platform communication the ACC
is in charge of taking the ACL messages and mapping them into a set of PDO messages
objects. These messages are linked together into a producer-consumer software design
pattern supported by the CANopen implementation.

Some applications require more than 512 PDO objects to implement their commu-
nication interface. According to Lawrenz (1997), CANopen provides a PDO that can be
used as a multiplexed (MPDO) to address that concern. However, its use is not recom-
mended since it causes overhead on the protocol, therefore, reducing bus performance.

The implementation of the proposed architecture also requires providing the oper-
ating system onboard with a software device driver that satisfies the CANopen specifica-
tions. For instance, CANopenNode provides a free and open source of CANopen stack. It
runs on different micro-controllers, as a standalone application or with Real-Time Op-
erating System (RTOS).

https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://www.can-cia.org/canopen/
https://github.com/CANopen node/CANopenNode
https://www.can-cia.org/canopen/

4

70 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.2: Communication architecture proposed for MAS-based software applications used on spacecraft.

The configuration of CANopen is described as follows. Firstly, the device model is
explained. Figure 4.3 depicts the communication device model that is proposed for the
implementation of distributed communication in MAS-based software for satellites. It
consists of three main blocks, which include the communication interface, the object
dictionary, and the application process. The communication interface provides the ACC
with a set of objects that enable the implementation of several communication design
patterns on top of the CAN bus. For instance Service Data Objects (SDO) are commonly
used in server-client configurations, while PDO are intended for producer-consumer
scenarios. Additional objects are provided by this interface for synchronization purposes
as well as for network management and fault detection.

The object dictionary enables the logical addressing scheme for mapping applica-
tions process objects, in this case, ACL messages to interface objects such as PDO. It
describes all data types, communication objects and application process objects used
by the agent platform to communicate with external parties. The application process
block enables the device functions within the agent’s platform. These are encapsulated
in the ACC agent as a cyclic behavior. The ACC provides an interface with the platform’s
IPMT for enabling communication among agents regardless of the agent platform where
they are deployed.

Then, the emergency and synchronization objects are implemented. These are used
to convey emergency messages related to the functioning of each node, and providing a
time reference on the bus, respectively. Finally the network management object is con-
figured to control of the communication state of network nodes and node monitoring.
Once these objects are configured, PDOs are used to transfer real-time data, so the net-
work is fully operational.

https://www.can-cia.org/canopen/

4.3. AOCS CASE STUDY

4

71

Figure 4.3: CANopen device model adapted from Tortosa López and Roos (2005) for its implementation with
an agent-based approach.

4.3. AOCS CASE STUDY
This section is intended to show the feasibility of the architecture depicted in Figure 4.2
using a case study with the AOCS of a satellite. It assumes a producer-consumer com-
munication pattern with multiple components sending information over a distributed
communication bus and a single agent platform running on the AOCS onboard com-
puter. The case study also assumes the implementation of a synchronous communica-
tion bus with a controllable communication period that varies from mission to mission.
It simplifies the mapping of ACL messages to maximize the use of PDO objects and to
keep the simulation implementation more straightforward.

4.3.1. AOCS REFERENCE ARCHITECTURE

The simulation model for the satellite aims to emulate the AOCS reference architecture
shown in Figure 4.4. The AOCS reference architecture intends to implement the com-
munication architecture described in Section 4.2. In the diagram of Figure 4.4, the AOCS
onboard computer is in charge of providing the processing capabilities for attitude and
orbit control using a multi-agent systems-based application running on the AOCS.

In Figure 4.4, the communication between components is divided into two cate-
gories: peer-to-peer (dotted lines) and distributed (solid lines) communication. Tradi-
tionally, peer-to-peer communication is required to interface highly sophisticated sen-
sors and actuators, for instance, some GPS receivers use an RS-422 interface to com-
municate with the navigation computer as shown by Gill et al. (2001). Distributed data
buses are used for less complex and more abundant devices as described by Arruego
et al. (2009). From Figure 4.4, its clear that most of the AOCS sensors are connected to
the estimation agent via the spacecraft communication bus.

Small satellites, in particular, CubeSats, are more constrained regarding volume and
power. That is a motivation for implementing common interfaces for internal spacecraft
communication, usually in the form of linear bus topologies. For example, Bouwmeester
et al. (2010) used a distributed data bus to simplify the physical interface between multi-
ple components and subsystems for the Delfi-Next satellite. Several other satellites take
advantage of distributed communication, but this work focuses on those with volume
and power constraints.

4

72 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.4: AOCS reference architecture for an agent-based software implementation.

A simulation model using M AT L AB T M Simulink tools was necessary to implement
the data delays in the spacecraft communication bus accurately. For that purpose, the
CAN protocol was selected to match the communication device model from Figure 4.3.
CAN protocol also is one of the most promising fault-tolerant distributed communica-
tion protocols being adopted in the micro/nano-satellite community as shown in the
work of Kimm and Jarrell (2014). One of the main advantages of CAN protocol is its
maturity level in harsh environments, such as automotive application as discussed by
Khurram and Zaidi (2005). The main drawback of CAN is its asynchronous operation
that is compensated by the higher layer protocol implementation with CANopen. Also
CAN does not use a master/slave communication pattern. Instead it uses medium ac-
cess control is distributed among the nodes in the network as discussed by Plummer
et al. (2003).

Different implementations of CAN, for instance, Flexible Time-Triggered CAN com-
bines Event-and Time-Triggered capabilities to enable flexible operation in industrial
systems, which can also be adapted for space applications. The following subsections
elaborate on the implementation of a simulation model for synchronous CAN protocol,
as well as the implementation of the sensor model and the traffic generation model used
to simulate the satellite’s high throughput operation scenarios.

4.3.2. AOCS MEASUREMENT MODEL

Most of the estimation algorithms for satellites work over a linearized system model so
that they can be implemented on the AOCS computer. The use of an Extended Kalman
Filter (EKF) is proposed to predict and update the spacecraft state from a non-linear

https://www.can-cia.org/canopen/

4.3. AOCS CASE STUDY

4

73

model as described in detail in Appendix C.
State estimators using distributed communication architectures are known to have

fading channels that impact their performance. The measurement model is then ex-
tended to accommodate this effect as presented and discussed by You et al. (2015) and
shown as follows

z(k) =ξξξk y(k)+nnnk (4.1)

where, nk ∈ RL is also an additive white noise accounting for delays in the measure-
ments, and ξk ∈RLxL is a diagonal matrix accounting for the fading effects on the ith link
of the communication bus.

This structure is introduced as

ξξξk = diag{ξ1,k ,ξ2,k , ...,ξi ,k }

ξi ,k = γi ,kΩi ,k
(4.2)

where, ξi ,k represents the faults mechanisms for the communications channel. In
this expression γi ,k is a Bernoulli process that models the arrival of measurements, and
Ωi ,k describes the signal fluctuation due to channel’s performance degradation as dis-
cussed by Sinopoli et al. (2004).

The arrival of measurements is considered as a success if the data arrives before a
delay threshold, or as a failure if it exceeds the threshold or if it gets lost during its prop-
agation. The probability that describes the arrival of measurements is shown in the fol-
lowing expression

Pr {γi ,k = 1} =αi ,

Pr {γi ,k = 0} = (1−αi)
(4.3)

where, according to Marshall and Olkin (1985), the parameter αi determines the
probability of an arrival to be successful.

This delay is not accounted within the sensor model, but it is modeled as a bus effect,
as depicted in Figure 4.5. The delay of measurements is assumed to produce an additive
error that can be statistically estimated as

nk =
0 Nominal Region,

Nor m(µS ,RS) Saturated Region
(4.4)

Under nominal conditions, the effect of the delay errors is expected to be negligi-
ble, whereas when the communication channel reaches a saturation point, the delay is
modeled as a normal distribution centered to a mean value for each sensor µS with a
measurement variance of RS . The representation of the measurement delay error as a
random variable makes it possible to add it to the measurement model of the Kalman
Filter used in the attitude estimation model introduced in Appendix C.

4

74 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.5: Block diagram for simulation model of sensors connected to the communication bus.

Using the above’s definition, the AOCS estimation model can be re-written to include
the effects of faulty communication channels and measurement delay as in the work of
Zhang and Jiang (2003) using the following expression

x(k +1) = f[x(k),u(k)]+w(k)

z(k) =ξξξk h[x(k)]+nnnk +vvvk
(4.5)

4.3.3. TRAFFIC INJECTION MODEL
It was necessary to generate additional traffic to emulate different satellite operation
loads and characterizing the performance of the communication bus. The traffic in-
jection function produces a burst which follows a Poisson Process with a Inter-Arrival
Time (IAT) that is a function of an average message arrival rate λ in messages per second
described as

I AT =
∞ Nominal,

1
λ Additional Injected Traffic

(4.6)

This traffic is added to the nominal traffic in the communication bus that is ex-
changed between satellite sensors and subsystems. When the I AT is ∞, there is no
additional traffic injected in the communication bus.

4.3.4. COMMUNICATION BUS LOAD MODELING
Saturation refers to the capacity of a communication channel to deal with incoming
messages beyond its nominal capacity. It can be measured by monitoring the Bus Uti-
lization (BU), which is directly related to the number of incoming messages and the im-
plementation parameters of the communication channel, as well as, the network size.

4.4. CASE STUDY IMPLEMENTATION

4

75

The bus utilization is defined as the relation between the time required to transmit
a group of messages divided by the total time available in the bus to complete this task
in every transmission cycle. For the CAN protocol an estimated value for the worst case
transmission time is described by Broster and Burns (2001).

Bus utilization analysis requires accounting the total number of messages transmit-
ted over the communication channel per synchronization event. Assuming there are N
nodes sharing messages with length ML in bits over the communication bus, the mes-
sage volume is defined by the number of messages and their length in bits as

MS =
N∑

i=1
MLi (4.7)

where, MS is the total number of bits that are sent over the communication bus per
transmission cycle. It is assumed that the communication bus has a constant synchro-
nization period TSync in seconds and a constant bus data rate DR in bits per second.

This assumption allows quantifying the impact of the topology configuration in the
BU as

BU = MS

TSync DR
+ ML

DRλ
. (4.8)

From (4.8), the link between bus utilization and the number of sent messages is di-
rectly proportional. Also, note that the increase in bus utilization is dependent on the
average message arrival rate λ used to describe the additional traffic injected.

It is necessary to keep in mind that (4.8) assumes the channel is operated under nom-
inal conditions (not saturated), which means that there is enough time to transmit the
total number of messages between synchronization events. That is critical to avoid los-
ing messages with lower priority.

4.4. CASE STUDY IMPLEMENTATION
This section focuses on the implementation aspects of the simulation model developed
to characterize and quantify the effect of propagation delays on sensor’s measurements
received at the AOCS computer connected to the distributed communication bus in Fig-
ure 4.4.

4.4.1. CAN CHANNEL IMPLEMENTATION
The implementation of the communication channel was divided into two parts: one
to describe the mechanisms to access the physical channel known as Medium Access
Control (MAC), and the second one to implement the channel controller and its interface
with the application layer.

MEDIUM ACCESS CONTROL

Since CAN protocol operates using a bus topology, it is necessary to establish a method
for all the nodes to access the communication medium. CAN establishes that the phys-
ical layer is specified through the standard ISO 11898-3. The specification includes data
rates up to 1000 kbps. In the simulation model, the channel was implemented using the

4

76 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

discrete time simulation approach to make it synchronous. This implementation con-
sisted of two queues: one for receiving and ordering messages by priority (arbitration)
using the internal message ID given by its node address, and the other to queue and
broadcast the messages to the nodes connected to the bus.

Figure 4.6: Block diagram for the CAN channel implemented in the simulation model.

In Figure 4.6, the block diagram for CAN channel implementation is shown. In addi-
tion to the arbitration and broadcast queues, there is a control logic block in charge of
executing the medium access control algorithm to determine when a message is allowed
to be processed. The process block simulates the time required by the message entity to
propagate over the physical channel. This parameter is called process time PT , and it is
fixed as a function of the channel data rate capacity DR in bits per second, the number
of bits per CAN message N BC F and the channel physics N BP (e.g. cable length) as

PT = N BC F +N BP

DR
(4.9)

The simulation model operates using two data rates. One called baseline at the speed
of 500 kbps and the high speed at 1000 kbps. The size of the CAN payload data was
defined a constant of 64 bits for a total encoding length of 113 bits per CAN message.
This size includes penalties for channel physics, and it excludes stuffing bits. The control
logic block also included the possibility of establishing a percentage of messages lost in
the channel as a fixed parameter to model fading channel faults.

CAN CONTROLLER

On top of the physical model abstraction, a CAN controller model was synthesized for
packing and unpacking data transmitted over the bus. It consisted of a transmitter and
a receiver. The transmitter took the incoming data from the upper application layer and

4.4. CASE STUDY IMPLEMENTATION

4

77

framed it into a CAN message following the standard CAN framing structure. Addition-
ally, each message contained a time stamp that was used to calculate the delay of a mes-
sage on arrival. Also, the transmitter was provided with a queue to hold messages when
the communication channel was busy. The length of that queue was set to a capacity of 3
messages, to make it consistent with the size of the buffer of a commercial-off-the-shelf
microcontroller (SMT32F405) used as a reference. The transmitter also was in charge of
generating the synchronization for the transmission of the messages over the bus. It was
controlled during the simulation with the channel synchronization period TSY NC pa-
rameter. Figure 4.7 summarizes the CAN controller transmitter as a block diagram. The
scheduling of transmission and reception was assumed ideal as in the work of Tindell
et al. (1994). The message output of this diagram feeds the broadcast queue described
in Figure 4.6.

Figure 4.7: Block diagram for implementing the transmitting model of the CAN controller.

The receiver consisted of a reception buffer with a capacity for three incoming mes-
sages from the communication channel layer. Later, a reception protocol was applied
to these messages to filter them by node ID and verifying its data integrity using the
CAN cyclic redundancy check specification. Then, the messages were decoded, and the
payload data was retrieved and forwarded to the upper layers at the application level.
Figure 4.8 shows the block diagram for the implemented receiving structure. The mes-
sages from the channel in this Figure are taken by priority from the arbitration queue in
the Figure 4.6.

At this point, the delay∆t of a specific CAN message propagated from its source node
at the sensor to the destination at the AOCS computer can be calculated as

∆t = tS − tAOC S (4.10)

where, the tS is the time at which the data was packed into a CAN message at the
source node and the tAOC S is the time in which the message is unpacked at the destina-
tion node in the navigation computer. It assumes that all the clocks in the components
are synchronized so that the delay calculation is precise.

4

78 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.8: Block diagram for implementing the receiving model of the CAN controller.

The CAN controller model required to be provided with the following parameters for
its operation: CAN controller ID, payload data size, IDs of subscribed nodes and a range
of valid node IDs. This information is used during the run-time to filter the messages
each node receive, but also to prioritize the messages received in the arbitration queue.

4.4.2. SENSOR MODEL IMPLEMENTATION
One of the primary objectives of this work is to understand the effect of networked sen-
sor communication in the variability of the measurement as perceived in the estimation
algorithm. For that purpose, a model for the measurements was introduced in (4.5) for
all the attitude sensors connected to the distributed communication bus as depicted in
the AOCS Reference Architecture.

Figure 4.5 shows the block diagram for implementation of each sensor used in the
simulation model. In that diagram, the true model propagator is in charge of generating
the true value for sun sensors, magnetometers and gyroscope using the spacecraft dy-
namics and kinematics equations. These measurements include sensor errors such as
bias, drift and noise. The measurements are then supplied to the CAN controller for its
propagation through the communication bus, where delays can cause additive errors.

4.5. SIMULATION EXPERIMENTS
This Section is divided into two parts. The first Subsection illustrates the use of the pro-
posed communication architecture from Figure 4.2 to describe satellite operation sce-
narios with small satellite missions. The second subsection elaborates on the experi-
mental design and configuration used to collect data on the performance of the commu-
nication bus. The simulation experiments were carried out using M AT L AB T M Simulink
2016.

4.5.1. SATELLITE OPERATIONS SCENARIOS
Two operation scenarios are considered for this case study. The first one involves an in-
crease in the communication activities over the communication bus due to telemetry
download, and the second relates to traffic increase in the bus due to additional data
generated by ADCS sensors onboard of satellites with optical downlink communication.
The primary objective of this Subsection is to propose practical cases to verify and vali-

4.5. SIMULATION EXPERIMENTS

4

79

date the bus utilization model described in Section 4.3.4, and demonstrating the feasibil-
ity of the communication architecture presented in Section 4.2 for MAS-based software
on satellites.

TELEMETRY DOWNLOAD

The Delfi-Next satellite was launched in 2013. It was the second in a series of small satel-
lite projects by Delft University of Technology (TU Delft) in the Netherlands. Delfi-Next
was a triple unit CubeSat with a size of 10 cm x 10 cm x 34 cm. It had an active attitude de-
termination and control subsystem and a high-speed S-band transmitter communicat-
ing over a distributed linear bus with the rest of the spacecraft subsystems as described
by Guo et al. (2016).

The Delfi-Next satellite collected more than 300 telemetry parameters every two sec-
onds. These parameters were broadcasted to the amateur radio network on the ground
where they were collected and stored into a database for further analysis. Also, the
telemetry packets were stored locally in a database implemented on the onboard com-
puter. The database was synthesized into a telemetry file that was intended to be down-
loaded to the ground station in Delft by using the S-band transceiver onboard.

This scenario is inspired by Delfi-Next operational conditions and architecture. It
consists in simulating the telemetry file download during one pass of the satellite over
the ground station at least one time per day. The Delfi-Next telemetry file contained in-
formation from 316 satellite parameters that were mapped into 50 PDO/CAN messages
for its transmission from the OBC to the S-band transceiver over the distributed data
bus.

The telemetry file is expected to be downloaded in 20 seconds while the satellite
passed over the ground station in Delft. Assuming each CAN message transport 8 bytes,
the total size of the telemetry file is about 8 KB. If the telemetry file is not downloaded
entirely, the missing part will be added to the file for the next satellite which will increase
its size.

The data rate of the communication bus in the satellite required to be configured
at 1000 kbps to satisfy the download time. The arrival rate of CAN messages at the S-
band transceiver was modeled to vary from 50 CAN messages per second in the best case
scenario to 20000 CAN messages per second as a worst case. That is done to describe a
wide range of telemetry file sizes up to 8 MB.

The traffic generated due to the transmission of the telemetry file from the OBC to
the S-band transceiver is added to the nominal traffic using the data bus of the satellite.
That traffic is considered additional injected traffic during the simulation of the case
study. That creates different utilization levels in the data bus of this spacecraft which are
characterized and shown later. The simulation experiments consider the operation of
the data bus for additional injected traffic that covers the whole range of telemetry file
sizes described above.

ADCS TRACKING FOR OPTICAL COMMUNICATION

Optical communication payloads require a high satellite pointing accuracy. For these
satellites, the ADCS requires the implementation of both coarse and fine pointing al-
gorithms to support the optical communication performance. In the work of Nguyen
et al. (2015), the ADCS subsystem was enhanced by adding an optical beacon detector

4

80 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

to provide on-line tracking adjustment and calibration to the optical transmitter with
fast-steering mirrors.

This simulation scenario assumes modifying the ADCS reference architecture pro-
posed in Figure 4.4 to include the optical beacon detector and the fast steering mirrors
connected to the distributed data communication bus. During the simulation the traf-
fic generated by the beacon detector is injected to the communication bus to assess its
impact on the estimation algorithm onboard the ADCS computer. The data rate of the
communication bus is assumed fixed at 500 kbps.

Figure 4.9 shows the architecture for the enhanced ADCS configuration. For the
coarse pointing, the Extended Kalman Filter fuses data from the ADCS sensors at two
Hz, while for the fine pointing mode, the beacon detector and the centroid algorithm
are working at 10 Hz using the same bus to communicate with all the other subsystems
and components. The additional injected traffic was defined to vary in the range of 50
to 10000 CAN messages per second to assess the impact of additional traffic in the CAN
bus utilization.

Figure 4.9: Setup for the ADCS tracking scenario with additional hardware and software components.

4.5.2. SIMULATION CONFIGURATION
The spacecraft implementation at simulation level consisted of a CAN network with up
to 16 nodes including a 9-axis integrated IMU, sun sensors, thermometers, magnetome-
ters. Also included three reaction wheels, an optical beacon detector, an ADCS com-
puter, a CDHS computer, and a downlink/uplink communication module. The mea-
surement error was determined indirectly by monitoring the change in the sensor’s mea-
surement variability. The hypothesis is that delayed measurements lead to changes in
the value of the normalized variance of the sensors transmitting over the bus.

The normalization is calculated taking the measurement received the ADCS com-
puter and dividing it by the measurement variability at the sensor, so that the observed
changes are related to saturation in the communication bus. It assumes that the variance
of the measurements at the sensor source shall keep constant over time.

4.5. SIMULATION EXPERIMENTS

4

81

The additionally injected traffic is used to represent the dynamic behavior of the
communication bus during telemetry download and ADCS tracking described in Section
4.5.1. The data rate DR represents internal operation modes (baseline and high-speed)
for the communication bus that can be controlled during satellite operations.

The simulation setup was chosen based on two conditions. Firstly, for data rate and
synchronization period, it was based on technology constraints for commercial CAN
transceivers and controllers (e.g, SMT32F405 microcontroller). Secondly, the sensor sam-
pling period and the network size were based on previous ADCS configurations for Cube-
Sats, for instance in the work of Vinther et al. (2011).

The inputs for the simulation experiments are summarized in the Table 4.3.

Table 4.3: Description of the inputs considered during the implementation of the data bus simulation

Name Description Input Type Values Used
NUM_NODES Number of nodes connected to the communication bus Parameter 16
ML CAN message length in bits per message Parameter 113

TX_QUEUE_SIZE
Number of CAN messages that can be stored by the transceiver
for their transmission over the communication bus.

Parameter 3

RX_QUEUE_SIZE
Number of CAN messages that can be stored by the transceiver
for after their reception in the communication bus.

Parameter 3

TSS
Period used to sample the sensors connected to the communication
bus.

Variable 0.1 s and 0.5 s

TSync
Period used to synchronize the operation of the communication
bus.

Variable 0.01 s and 0.05 s

DR
Channel’s data rate for the operation of the communication
bus.

Variable 500 kbps and 1000 kbps

AVG_INJ_TRF
Additionally, average injected traffic into the communication
bus

Variable
50 to 20000 Msg/s and
50 to 10000 Msg/s

The simulation experiment was designed following a 2k full factorial design. The
output variables collected for both satellite operation scenarios were:

• Mean communication bus utilization [%]

• Maximum communication bus utilization [%]

• Mean sensor measurement delay [s]

• Maximum sensor measurement delay [s]

• Measurement variance at source

• Measurement variance at OBC

The bus utilization and sensor measurement delay were used to characterize the im-
pact of injecting additional traffic into the communication bus, whereas the sensor’s
measurement variance was used as an indicator for determining the impact of delays
in the estimation algorithm performance.

4

82 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

4.6. SIMULATION RESULTS AND ANALYSIS
This section is divided into five parts to present and discuss the findings of the simula-
tions carried out. It also proposes a flow diagram to mitigate saturation effects on the
communication bus by adopting a dynamic configuration of channel’s parameters dur-
ing the run-time.

4.6.1. BUS UTILIZATION

The Bus Utilization (BU) was obtained as a function of the additionally injected traffic
that depends on λ, the data rate DR , and the bus synchronization period TSync for both
operation scenarios. The goal of these simulations was reproducing different bus load
conditions to characterize BU under different bus saturation levels. The saturation lev-
els represent different operational conditions described in Section 4.5.1. In Figure 4.10
and Figure 4.11, the utilization for the CAN bus in the ADCS tracking case at 500 kbps,
and the telemetry download case at 1000 kbps are shown, respectively. The theoretical
curves calculated from (4.8) are included in the bus utilization profiles for comparison
purposes. Both bus utilization figures were marked with tags to highlight specific behav-
iors for their different configurations.

Figure 4.10: Bus utilization for the ADCS tracking operation scenario at 500 kbps with TSync values of 0.01 s and
0.05 s obtained using both the analytical (Theo) and the simulated (Exp) models for a CAN network consisting
of 16 nodes.

4.6. SIMULATION RESULTS AND ANALYSIS

4

83

Figure 4.11: Bus utilization for the Telemetry Download scenario at 1000 kbps with TSync values of 0.01 s and
0.05 s obtained using both the analytical (Theo) and the simulated (Exp) models for a CAN network consisting
of 16 nodes.

Firstly, there is the segmentation of the curve into two operation regions namely
nominal and saturated. The limit between the nominal and saturated region is defined
by the end of the linear behavior in the bus utilization (point B in the profile). The bound-
ary between the nominal and saturated region is marked by the maximum physical ca-
pacity of the channel (point C), that can be determined analytically for each TSync and
DR combination. It is important to note that the experimental values are consistent with
the ones calculated with the analytical model from (4.8). It can also be observed in both
figures that the BU for TSync _T heo is always higher than the BU for TSync _E xp for all the
bus configurations. It was found that the average of the absolute difference was less or
equal than 2.5% for all operation scenarios, and it increased as the communication bus
got saturated.

The maximum physical capacity was calculated dividing the channel data rate by the
number of bits per CAN message. In the simulation model, each CAN message contained
113 bits, and it was kept as a constant parameter along the case studies. Therefore, the
maximum physical capacity of 500 kbps and 1000 kbps were determined to be 4100 and
8200 messages per second at TSync = 0.05 s, respectively. Beyond this physical limit, the
bus controller only allows the higher priority messages to be transmitted, while the lower
priority components are held to access the bus causing an extra delay.

4

84 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

The bus saturation points are influenced by both data rate and channel synchroniza-
tion period, as described by (4.8). Increasing the TSync reduces the BU so that more sig-
nificant the amount of additional injected traffic can be handled by the communication
channel before reaching saturation conditions mentioned above. From an implemen-
tation perspective, the values for data rate are determined by the technology used in
the implementation of the CAN controller and transceiver, while the range of synchro-
nization period can be established depending on the network size (N) and the sampling
period for the sensors (TSS) in the spacecraft. For practical cases, it is recommended to
use a TSS ≥ 10TSync to avoid aliasing effects of the communication channel in the sensor
measurements as suggested by Franklin et al. (1994).

The third aspect to look into the bus utilization profiles was the starting point of the
curve in the nominal region (Point A) at different synchronization periods TSync . A sensi-
tivity analysis was conducted to understand the effect of the number of nodes connected
the bus and the TSync parameter on the initial value for the bus utilization (IBU). Figure
4.12 shows how the initial value of the BU varies for different bus configurations. The
values used on that analysis were a data rate of 1000 kbps, a sensor sampling rate of 0.5 s
and three CAN synchronization periods: 0.01 s, 0.05 s, and 0.1 s.

Figure 4.12: Effect of network size in the initial bus utilization for TSync = 0.01 s, 0.05 s, and 0.1 s.

It is important to note that for all TSync ≥ 0.01 s the bus utilization scales linearly
with the number of nodes, as long as the bus does not reach the maximum capacity. For
the sensitivity analysis, no additional traffic is injected. A fixed data rate of 1000 kbps was
used so that the bus utilization was a function of the number of nodes in the network and
the synchronization period TSync . It verifies the consistency between the theoretical and
the experimental model with an error of less than 1%. It also shows that varying TSync the
slope of the saturation curve can be controlled, which is used later to define a strategy
for bus utilization balancing.

4.6. SIMULATION RESULTS AND ANALYSIS

4

85

4.6.2. MEASUREMENT DELAYS
During the simulations, the mean and the maximum delay for sensors communicating
to the ADCS computer over the distributed data bus on the spacecraft were monitored
and recorded. It was perfomed for both operation scenarios described above.

Figure 4.13: Maximum delay observed as a function of the additional traffic injected to the communication
bus working at DR =500 kbps, with TSync = 0.01 and 0.05 s, respectively.

Figure 4.13 and Figure 4.14 show the effect of channel saturation in the maximum
delay observed for both data rates 500 kbps and 1000 kbps, respectively. Each plot shows
the delay recorded for TSync =0.01 s and TSync =0.05 s as a function of the injected traffic
on the communication bus. In both Figures, labels A and B define the saturation point
for each TSync configuration. Label A defines the saturation point for TSync =0.01 s and
label B defines the saturation point for TSync =0.05 s. It is important to note that for both
data rates, when TSync was increased, also the capacity of the bus to deal higher injected
traffic without significantly increasing the delay. This behavior is consistent with the
bus utilization model presented in (4.8). However, it was observed that the higher the
TSync , also the bigger the maximum delay observed on the saturated region for both
data rates. For design purposes, the maximum TSync possible is limited by the sensor
sampling period TSS requirements as discussed above.

The data rate also affected the maximum delay observed during the experiments.
The higher the data rate DR , the bigger the maximum delay value observed. Labels C
and D were used to determine the traffic level under which the simulation model fails.
Beyond that point, the delay was observed to fall abruptly to zero because the simulation

4

86 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.14: Maximum delay observed as a function of the additional traffic injected to the communication
bus working at DR =1000 kbps, with TSync = 0.01 and 0.05 s, respectively.

in no longer operative. The saturated region in both plots showed that the simulation
model can handle approximately the double of the theoretical channel capacity before
failing. The oscillating behavior of the delay curves in the saturation region is because
the additional traffic uses a random function to generate the exponential inter-arrival
times as described in (4.6). Two box-plot graphs were synthesized in Figure 4.15 and
Figure 4.16 for both operation scenarios to statistically compare the effect of additional
injected traffic and synchronization period TSync to the measurement delays.

After performing a two-sample t-test for the nominal operation region, there is no
statistical significance (difference) for either the data rate and the synchronization pe-
riod. That means that while the bus operates in the nominal region, the communication
bus is not affected by the additional injected traffic.

In contrast for the saturated region, where both mean, and variance of the delay are
statistically different. In Figure 4.16, it is clear that there is an effect of saturation in the
mean and variance of the delay for the proposed operation scenarios. The effect of the
synchronization period is hard to be seen in the box plot, but the numerical test showed
a statistical difference based on the P-value reported in during the test.

According to (4.4), the behavior of the measurements delay in the saturated region of
the communication channel can be described as a random variable following a normal
distribution. That was validated applying the Anderson-Darling Test for normal distri-
bution to the measurement’s delay values obtained during the simulation for all the test

4.6. SIMULATION RESULTS AND ANALYSIS

4

87

Figure 4.15: Statistical comparison for measurement’s delay with the communication bus operating with a DR
= 500 kbps and two different TSync values.

Figure 4.16: Statistical comparison for measurement’s delay with the communication bus operating with a DR
= 1000 kbps and two different TSync values.

cases. It was confirmed that the assumption was valid with a 95% confidence level.
In summary, there is an effect in the delay of the measurement that depends on the

operation regime of the channel and the configuration parameters such as data rate and
synchronization period. That effect can be described as a random variable that can be
included as an additive error in the measurement model of the sensors.

4

88 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

4.6.3. EFFECT OF DELAYS IN MEASUREMENTS VARIANCE
So far, the effects of design parameters such as data rate and synchronization period on
the communication channel saturation and the measurement delays within the space-
craft bus have been presented and discussed. From the state estimation perspective, it is
necessary to understand the effect of delays in the sensors measurement quality received
at the ADCS computer for both operation scenarios. A series of simulation experiments
were carried out with the proposed communication bus model to quantify the impact of
bus saturation in the variance of the measurements received at the estimation algorithm.

The measurement’s variance behavior of the ADCS sensors was monitored and recorded
for both operation scenarios in the case study to quantify the effect of delays in their
measurements quality. Then, the data collected was post-processed and normalized.
The normalization consisted in dividing the measurement’s variance calculated at ADCS
computer between the variance calculated at the sensor’s source, so that if there was not
a change due to delay they may be equal at the source and in the ADCS computer.

After that, the change in the normalized measurement variance was plot as a func-
tion of the injected traffic. The measurements time stamp was collected both at the
source in the sensor, as well as, in the destination in the ADCS computer for both scenar-
ios. Finally, a MATLAB script calculated delays in the data propagation within the com-
munication bus. That script also calculated the variance at the source and at the ADCS
computer, so that they can be compared for each sensor connected in the distributed
data bus.

Figure 4.17: Measurement Variability for Communication bus at 500 kbps

Figure 4.17 and Figure 4.18 show normalized measurement variability profiles for

4.6. SIMULATION RESULTS AND ANALYSIS

4

89

Figure 4.18: Measurement Variability for Communication bus at 1000 kbps

two sensor sampling periods (0.1 s and 0.5 s), two-channel synchronization periods (0.01
s and 0.05 s), and two data rates (500 kbps and 1000 kbps). One can notice that in the
nominal region the variability kept constant to the unit value, meaning that in this re-
gion the channel configuration does not affect the measurement, and therefore the state
estimation performance. This is not the case for the saturated region, where the addi-
tionally injected traffic increased the variability of the measurements, and these started
to exhibit an oscillating behavior with an absolute difference of average 10%. From his
analysis of the variability profiles, it is clear that the estimator is more sensitive to the
datarate DR rather than the synchronization period TSync .

In Figure 4.18 the oscillation characteristic for 1000 kbps appeared later than for the
500 kbps data rate in Figure 4.17. It is also clear that this variability behavior increased
with the amount of injected traffic in the bus, as expected, due to the delay in the arrival
of the ADCS measurement samples. Figures 4.19 and 4.20 compare the statistical perfor-
mance of the communication bus configurations tested during the experiments to study
the effect of channel saturation on measurement variability.

From Figure 4.19 and Figure 4.20 there is a noticeable difference in the measure-
ment variability deviation for the saturated region compared to the nominal region. Af-
ter performing a 2-sample-t-test for both cases there is no significance for the means,
but there is for the variance of the measurements. Again, a higher sensibility is linked to
the data rate and synchronization period, while there is no effect coming from the sensor
sampling period. The additional traffic range was extended until having the simulation
model to fail. In the 500 kbps case, the model failed after 10000 mgs/s. For the 1000 kbps,

4

90 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

Figure 4.19: Statistical Comparison for Measurement’s Variability in Communication bus at 500 kbps

Figure 4.20: Statistical Comparison for Measurement’s Variability in Communication bus at 1000 kbps

it failed after 20000 msg/s.

Table 4.4 summarizes the effect of additional injected traffic in the quality of mea-
surements received at the ADCS computer for a communication bus operating in both
nominal (AIT=0 msg/s) and saturated region (6000 and 12000 msg/s for 500 and 1000
kbps, respectively). It shows again that the effect of increasing data rate was bigger than
the effect of increasing TSync on the measurements variance of a saturated bus.

4.6. SIMULATION RESULTS AND ANALYSIS

4

91

Table 4.4: Variance increase of measurements at the ADCS computer for nominal and saturated communica-
tion buses under different data rates and TSync values

Data rate
[kbps]

T_Sync
[s]

Variance Increase
for the Bus Operating
in the Nominal Region

Variance Increase
for the Bus Operating

in the Saturated Region
500 0.01 0.1% 1%

0.05 2% 3.5%
1000 0.01 0.05% 18%

0.05 2% 10%

4.6.4. BUS UTILIZATION BALANCING
The effects of communication channel saturation in the measurement’s delay and vari-
ability have been characterized using a simulation model. However, for operational pur-
poses, it is also interesting to include mechanisms to deal with data bus saturation once
the satellite has been deployed. The key performance indicator for the communication
bus is its bus utilization as described in this Chapter. Experimental results presented in
the work of Orsel (2016) shows a direct link between the power consumption in the CAN
transceiver/controller and the bus utilization which are linked to the data rate and the
synchronization period of the bus.

Figure 4.21: Flowchart for an agent-based fault detection and recovery strategy proposed for the mitigation of
data bus saturation during AOCS maneuvers.

4

92 4. MULTI-AGENT COMMUNICATION IN SATELLITE SOFTWARE

The bus utilization can be monitored by the CDHS of the satellite by implementing
a current sensor in the bus transceiver. Figure 4.21 proposes a flow diagram for the fault
detection and recovery agent inside the CDHS. The algorithm described by that flow
diagram balances both the data rate and the synchronization period to compensate the
additional injected traffic. The agent assumes a CAN controller with flexible data rate
capabilities.

4.7. CHAPTER SUMMARY
This Chapter has described in detail the communication stack for MAS according to the
FIPA specifications. The first two Sections presented a summary of the principal agent
interaction protocols, as well as the details required to implement a message transport
service for agents deployed in multiple agent platforms within a satellite.

Section 4.2 described a distributed communication architecture for the implementa-
tion of MAS-based software on satellites. That Section suggested the adoption of a CAN-
based Message Transport Protocol for enabling the message exchange among multiple
platforms of agents distributed along the spacecraft bus. The proposed MTP required
the implementation of the Process Data Object protocol on top of CANopen over a lin-
ear bus topology configuration.

One of the main contributions of this Chapter was the derivation of an analytical ex-
pression for data bus utilization BU in CAN networks under dynamic operations regime.
The BU model was tested using a discrete time simulation experiments with two opera-
tion scenarios with small satellite missions as a case study.

The simulation results showed that the effect of delays for distributed communica-
tion buses operating in the nominal region, do not require to modify the measurement
model in the estimation algorithm. The bus utilization in the nominal region showed a
linear behavior as a function of the additionally injected traffic. The bus also showed a
linear dependency on the network size.

The effect of data rate and bus synchronization period was determined to be in-
versely proportional to the bus utilization for the nominal region. There is also evidence
of a statistically significant difference for data delay in the saturated region compared
to the nominal region, leading to a degradation of sensor measurement’s performance.
The simulations also showed an increase in the measurements variability for saturated
channels compared to channels operating in nominal conditions.

Finally, it was suggested that measurements delay induced by bus saturation has a
direct effect on the precision of the satellite’s attitude state estimation as a result of the
change in the sensor measurements variance perceived at the AOCS computer. These
findings motivated the proposal a strategy for fault detection, isolation, and recovery
based on monitoring the level of bus utilization in the satellite. This metric could be
used as an indirect measurement of AOCS performance.

Future research will consider the implementation of the Algorithm in Figure 4.21 as
well as a comparison of the results of this implementation with other communication
protocols such as I2C to verify and validate the findings. It is essential to consider the
newer capabilities of CAN protocols such as flexible data rate for further implementa-
tions. The computational burden of delay in the state estimation algorithm can be as-
sessed in future experiments to understand its effects on accuracy.

https://www.can-cia.org/canopen/

5
MODEL-DRIVEN METHODOLOGY

FOR DESIGNING AGENT-BASED

SOFTWARE

A theory has only the alternative of being right or wrong.
A model has a third possibility: it may be right, but irrelevant.

Manfred Eigen

Abstract

The objective of this Chapter is defining and describing a methodology for developing
agent-based software applications in satellite missions using a model-based approach.
The proposed methodology sets out a framework to tailor the modeling process and estab-
lishes a robust workflow for analyzing, designing, verifying and refining the implemen-
tation of agent-based software for spacecraft subsystems. It also demonstrates the feasi-
bility of using the proposed methodology by describing a case study for the attitude deter-
mination and control subsystem. The main advantages of this method include reduced
development cycle, separation of concerns and higher adaptability to support advanced
algorithms in satellite applications, as well as, built-in fault detection and recovery capa-
bilities.

93

5

94 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

In recent days, satellite’s subsystems development relies more on embedded systems
technologies. For highly miniaturized spacecraft, systems developers are attracted to
implement their capabilities in software rather than hardware. That is due to imple-
mentation flexibility and availability of advanced processing technologies as discussed
by Patel and Rajawat (2013).

These new processing technologies bring an opportunity for increasing software’s
performance, but at the same time a challenge for its design, since it is necessary to
enable satellite applications to run as a concurrent and distributed onboard software,
where different processing architectures and algorithms can cooperate to achieve the
required mission’s goal.

For instance, Guruprasad et al. (2016) present a system on chip needed for imple-
menting a software-defined navigation sensor for space missions. Additionally, for cur-
rent space mission design it is necessary to reduce the development life cycle to fit into
more aggressive project schedules and budgets.

Model-Driven Engineering (MDE) offers a framework to describe satellite systems
comprehensively. It enables methods and techniques to optimize the requirements anal-
ysis and design of onboard software applications. For instance, Rivas et al. (2016) de-
scribes the development of a tool-chain for distributed real-time systems that integrates
the use of MDE tools to facilitate and accelerate the development process. Model-driven
engineering provides as well, with an unified and standardized language to implement
models that are easier to read and explain to both decision makers and developers. Re-
garding complexity, MDE facilitates the handling of implementation details by estab-
lishing abstractions concepts and separation of concerns as discussed by Degueule et al.
(2017).

According to Paige et al. (2016), one of the main challenges for MDE is to automat-
ically generate efficient and robust code for the targeted hardware platforms, as well as
artifacts for physical constraints management. In that sense, the computational model
used to produce the code plays a significant role in decoupling domain specific elements
from their execution infrastructure.

Agent-based software, in particular, the use of Multi-Agent Systems (MAS), is a new
approach adopted in control systems for state estimation as shown by Viel et al. (2017),
distributed formation control presented in the work of Kang and Ahn (2016), and several
other distributed and concurrent applications with control systems. MAS takes advan-
tage of its flexibility, scalability, and ability to adapt to the dynamic environments to pro-
vide a framework for the implementation of distributed artificial intelligence algorithms
as discussed by Weiss (1999).

Gascueña et al. (2012) argues that combining model-driven engineering with multi-
agents systems offers an opportunity of dealing with the increased complexity of embed-
ded software. However, this requires an extra effort of defining a methodology for end-
to-end onboard software design, implementation, and verification. Several methodolo-
gies have been documented to develop agent-based software. For example, Prometheus
by Padgham and Winikoff (2002)-Padgham et al. (2014), GAAIA by Zambonelli et al. (2003),
Ingenias by Pavón and Gómez-Sanz (2003), MaSE by Deloach (2004), and several others
offer MDE methodologies for MAS-based software design, but they lack native Fault De-
tection Isolation and Recovery (FDIR) capabilities.

5.1. MODELING SOFTWARE AS A MULTI-AGENT SYSTEM

5

95

5.1. MODELING SOFTWARE AS A MULTI-AGENT SYSTEM
Satellite’s On-Board Software (OBSW) can be modeled as a MAS, which consists of a col-
lection of autonomous inter-dependent software components known as agents. These
agents can be mapped into a set of hardware resources within the onboard computer
for their execution. Either the agents or their private behavior functions can rely their
execution on software threads as described by Calvaresi et al. (2016).

Additionally, agents can be grouped by their functions or by any other design criteria
to form MAS organizations confined into an execution platform. Figure 5.1 depicts how
agents interact to achieve a specific goal within the OBSW of the satellite. The MAS plat-
forms can interact with each other using the spacecraft communication bus, as demon-
strated in Chapter 4 of this dissertation, which also serves for the agents to interface with
sensors and actuators at subsystem’s level.

Figure 5.1: MAS-based software topology showing the dynamics of agent’s interactions

To model the behavior of the MAS-based software presented in Figure 5.1, consider
a network of agents as described by Olfati-Saber et al. (2007a). There, agents and their
interactions are represented using a directed graph G = (V,E) where V = 1,2,3, ...,n is a
set of nodes corresponding to the agents, and their interactions are described by a set
of edges E. The adjacent nodes to agent Vi are represented by Ni = j ∈ V : i , j ∈ E. The
dynamics of an agent Vi with state vector xi can be described as

ẋi = f (xi ,ui) (5.1)

where, ui represents the input vector of agent Vi as a function of its neighbors.

5

96 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

The inputs include sensor and actuator signals that each intelligent agent requires
for interacting with other agents or its environment. In discrete time, the collective dy-
namics of the MAS-based software network in Figure 5.1 can be expressed as

x(k +1) = Px(k) (5.2)

with P = e−T L, where T is the update period in the network and L is the Laplacian ma-
trix of the graph describing the agents network in Figure 5.1. Then, the next challenge is
assigning execution resources within the onboard computer for individual agent’s exe-
cution.

5.1.1. RESOURCE MAPPING STRATEGY
The approach taken to deal with resource allocation in this Chapter uses ideas from the
work of Yang et al. (2005). In that work, the main goal was achieving an optimal resource
mapping of execution threads for system functions, so that the implementation satisfied
a set of design constraints defined by the application, for instance, power consumption
or processing time. That work extended its implementation strategy by enabling inter-
action between their execution threads. For that purpose, it used the agent communica-
tion abstraction depicted in Figure 5.2.

Figure 5.2: Multi-Agent System Resource Mapping Approach with JACA Agents

5.2. MULTI-AGENT SYSTEMS FOR SATELLITE APPLICATIONS

5

97

In that sense, the software application from Figure 5.1 can be implemented by a set
of inter-dependent system functions handled by the embedded operating system run-
ning on the subsystem’s onboard computer. Figure 5.2 also depicts how the MAS-based
software design is mapped into the execution infrastructure to enable an embedded
MAS workspace. This resource mapping strategy uses the available execution resources
within the onboard computer of the satellite to support the execution of a MAS-based
onboard software application.

The execution infrastructure can be described as a graph as well, so agent’s resource
allocation is implemented by establishing a correspondence between agent nodes and
their execution resources over time. This mapping approach was defined as the Task-
resource scheduling strategy which is presented and discussed in detail by Gorbenko
and Popov (2012). In the work of Kwok and Ahmad (1999), the author also reviewed an
extensive set of algorithms for resource allocation of static task graphs in parallel exe-
cution environments. These algorithms can be also used to compare different agent-
resource mapping configurations.

Lately, in the research work of Alghamdi et al. (2017), a mapping algorithm was pro-
posed. It consisted of two-phases, which included a phase for sorting and prioritizing
tasks, and a second phase for scheduling allocation. The main advantage of such an
approach was that it decoupled the sorting and prioritization, from the scheduling of
software threads, which was convenient when working with static graph topologies, as
the one assumed on this Chapter.

One of the biggest challenges faced during this research was solving the resource
mapping problem under execution resource’s contention. That affected the performance,
especially on real-time systems that are subject to deadlines for task execution. It was
necessary establishing a trade-off process to satisfy the timing requirements of the ap-
plication and balancing the workload. An iterative design optimized the resource con-
tention, so that it can satisfy missions requirements and constraints.

In summary, in the proposed mapping approach each software agent was linked to
one execution thread within the operating system of the onboard computer. In the work
of Chan-Zheng (2017), which was developed from the ideas presented in this Chapter,
an RTOS thread class was extended to support communication and organization fea-
tures, so that the graph from execution environment can support the capabilities re-
quired for implementation of the MAS-based software application including FDIR ca-
pabilities. Now, it is necessary to establish and describe the proposed methodology for
developing an end-to-end software application for satellite’s missions using the systems
model and the mapping concepts discussed above.

5.2. MULTI-AGENT SYSTEMS FOR SATELLITE APPLICATIONS
The primary objective of this section is to present a model-based methodology for de-
signing agent-oriented software for satellite systems. The proposed methodology was
called MASSA, which stands for Multi-Agent Systems for Satellite Applications. The goal
of MASSA is extending the state-of-the-art features on MAS design methodologies to
support native fault detection isolation and recovery (FDIR), as well as enabling tools
for extending onboard software development interfaces for FDIR verification and vali-
dation that enables a more robust software architecture design and implementation for

5

98 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

satellite subsystems. This section describes how the methodology was conceptualized
and its critical processes including its meta-modeling framework, modeling phases, and
processes required to implement MASSA methodology in a practical case study.

For that purpose, it was necessary to establish a set of definitions and concepts to
support the description process, specifically the modeling structure. An example is shown
in the work of da Silva and de Lucena (2007), where a UML for MAS-based modeling lan-
guage and a set of new meta-modeling concepts were integrated. The main purpose of
defining a meta-modelling framework was to standardize the design process, and sim-
plifying its implementation as discussed by Hahn et al. (2009). According to Atkinson
and Kuhne (2003), there are four layers defined to support model-driven development.
The top layer is the one defining the meta-modelling framework.

MASSA META-MODEL

In order to provide a consistent modeling framework, it was necessary to establish a
set of definitions and concepts to support the design of agent-based software, particu-
larly its architecture. Based on the structure described by Atkinson and Kuhne (2003),
the top layer is the one defining the meta-modeling framework. This layer defines the
concepts required for designing systems by establishing their relationships, processes,
and languages. According to da Silva and de Lucena (2007), modeling languages must
provide the structural (static and dynamic) aspects of MAS by expressing their charac-
teristics and relationships. For that particular application, an extension of the universal
modeling language (UML) was proposed to integrate agent-related concepts into a new
meta-modeling framework called MAS modeling language.

The same strategy was followed in the development of MASSA, where the System
Modelling Language (SysML) concepts were extended with the purpose of defining a
meta-modeling framework to standardize the design process, defining a common vo-
cabulary and simplifying their implementation aspects. A similar application can be
found in the work of Antonova and Batchkova (2008), where a similar approach is demon-
strated.

In MASSA methodology, the relationship between different elements and concepts
is worked out through the MASSA meta-model diagram shown in Figure 5.3, where the
central element for the multi-agents system design is the role the agent plays within the
virtual organization. Also, a significant factor in the establishment of robust design is the
communication infrastructure that enables these interactions.

MASSA’s meta-model diagram is based on the comparison and extension of capa-
bilities of methodologies such as ROADMAP by Juan et al. (2002), GAAIA by Zambonelli
et al. (2003), Ingenias by Pavón and Gómez-Sanz (2003), and MaSE by Deloach (2004).

The goal of MASSA is to enhance the real-time performance and enabling fault de-
tection, isolation and recovery capabilities by design. That is the reason for adding the
FDIR class as an extension of the Behavior class, and observing rules and constraints
during the organization process of the satellites onboard software. That is also required
for organizational optimization (see Chapter 6) during the resource mapping process.

MASSA focuses on defining a domain specific language (DSL) for satellite software
design using an agent-based approach. For that purpose, there was the need to estab-
lish a profile that refines the general concepts of SysML and enable their reuse during the

5.2. MULTI-AGENT SYSTEMS FOR SATELLITE APPLICATIONS

5

99

modeling and design process. These stereotypes had to guarantee consistency at syntac-
tic and semantic level with the elements of the MASSA meta-model depicted in Figure
5.3. In the establishment of the MASSA profile, it was necessary to define a set of SysML
meta-classes to be extended (e.g., Block, state, port) to support specific agent-based de-
sign concepts by applying their derived stereotypes. The classes were grouped into pack-
ages for each MASSA methodology phase, where a set of diagrams were implemented for
specifying each step in the workflow described in Figure 5.4. The implementation of the
MASSA profile was carried out using the Papyrus modeling tools as in Hili et al. (2017).

Figure 5.3: Meta-model diagram proposed to implement MASSA methodology

On the communication side, MASSA’s meta-model includes three essential elements
that enable the proper exchange information between the agents within the platform.
These are the agent message, the communication service and the communication in-
frastructure in the OBC. The meta-model of MASSA in Figure 5.3 provides the founda-
tions for satellite’s OBSW developers to model their application using a consistent termi-
nology, but also establishes the domain-specific concepts for their implementation.

5

100 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

MASSA MODELING LANGUAGE AND WORKFLOW

The idea of having a unique language to describe in detail all kinds of systems is not re-
alistic as argued by Fowler (2010). For that reason, system modeling languages and tools
have the possibility of tailoring their capabilities to fit into a domain specific applica-
tion. The way to achieve this level of specialization was by defining customized stereo-
types that can be applied to the modeling elements of the MASSA meta-model. For that
purpose, there was the need to establish a profile that refined the general concepts of
Systems Modeling Language (SysML) and allowed their reuse during the modeling and
design process with the MASSA methodology.

MASSA establishes four inter-related activities to sustain the process of designing the
onboard software of a satellite. These are a) requirements engineering, b) need and sys-
tems analysis, c) software architecture design and d) software architecture verification
and validation. The MASSA approach is similar in that sense to modeling methodolo-
gies demonstrated in Normand and Exertier (2004) and Kaslow et al. (2015).

In the establishment of the MASSA profile, its was necessary to define a set of meta-
classes that can be extended, to support SysML specific concepts by applying the de-
rived stereotypes. The classes were grouped into packages for each MASSA methodology
phase, where a set of diagrams was implemented for specifying each step in the workflow
presented in Figure 5.4.

Figure 5.4 shows the proposed workflow for the MASSA methodology. Along their
phases there is a process for requirements management, that supports all the phases in
parallel. Through these activities, MASSA intended to respond to the following ques-
tions:

1. What is the mission that the users of the system need to achieve?

2. What does the system need to provide to the users to achieve that mission?

3. How does the system can provide the required capabilities?

4. How to allocate the available resources with the capabilities needed?

5. How to provide feedback to the design process to make system software architec-
ture more robust to errors and failures?

It is also important to discuss how to complete each phase on the MASSA’s work-
flow. The analysis phase responds to the first and second question. The first question is
addressed by understanding the operational conditions of and performing a needs anal-
ysis. In that analysis, both the actors and their required capabilities are studied from the
user’s viewpoint. For that purpose, Use Case scenarios are documented, as well as, oper-
ational workflows for the system. These activities enable the identification of capabilities
for the system to be designed. The second question is addressed by performing a systems
analysis. It allows using the identified actors and their required capabilities to establish
roles, functions and the data flow required for satisfying the capabilities needed. MASSA
also defines optimization loops to improve efficiency in the operational workflows ac-
cording to its functional decomposition.

Questions 3 and 4 are addressed during the design phase where both a logical and a
physical architecture are specified and iterated by making use of the optimization loop

5.2. MULTI-AGENT SYSTEMS FOR SATELLITE APPLICATIONS

5

101

Figure 5.4: MASSA Workflow Diagram

between physical and logical architecture. During the design phase, the behaviors de-
rived from the functions are subsequently allocated into agents that interact within a
logical container in the execution platform (i.e., onboard computer). Also in the design
phase, the interaction between agents is defined by implementing agent acquaintance’s
identification techniques oriented to specify the type of interaction protocol needed to
satisfy the data models identified in the analysis phase. This activity is called the agent
mapping procedure.

Additionally, an interaction scheme is allocated with its respective communication
interfaces for the agents to interact with the systems environment and other subsys-
tems components. There is an optimization loop intended to minimize the communi-
cation overhead by allocating agents in organizations that maximize the use of shared
resources. The optimization algorithms for organizational optimization are introduced
and developed in Chapter 6 as part of this dissertation.

5

102 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

Finally, there is the FDIR verification and validation phase intended to proactively
identify and correct fault mechanism that causes failures in the system due to software
design gaps. In MASSA a fault injection is modeled by adding properties to the nominal
SysML model.

Faults are understood as the manifestation of errors in the modeling, design or im-
plementation of software features of the system, while failures are considered as a devi-
ation of the software performance with respect to its requirements.

The approach followed in this phase is based on the work presented in Bozzano et al.
(2009) using the COMPASS toolset for model checking. It assumes the prior knowledge
of fault mechanisms and their impact on systems performance. These mechanisms are
translated into design requirements that are later verified and validated using the model
checking tools.

The implementation of the verification phase required a model-to-model transfor-
mation to take the physical architecture generated by MASSA in SysML and translating it
to System-Level Integrated Modeling language (SLIM) for its verification with the model
checking tools. First, a set of nominal behaviors are identified in the design phase and
allocated to agents and their organizations. Then, a set of faulty behaviors are specified
and implemented using the error models specified as requirements.

The error models are used to implement fault models. These errors are described
separately to guarantee separations of concerns during the dependability and correct-
ness analysis. In the context of MASSA, correctness is focused on the functional aspects,
meaning that for each function the input-output results are compared to pre-established
patterns to test the correct operation. Also, errors are linked to the specific components
configuration, so the model checking tool, in this case, COMPASS can generate fault trees
to analyze the occurrence of a failure due to multiple error sources. Failure mode effect
analysis (FMEAs) are used as inputs to generate functional requirements for the software
architecture design.

Faults require to be combined with the nominal behaviors, which is done in the fault
injection step. That action triggers the correctness analysis that produces a fault tree
analysis that is later combined with other analysis (for example safety or dependability)
to allow identifying FDIR behaviors. FDIR behavior is derived from analyzing the cause
of a fault/failure and establishing a recovery procedure that mitigates errors leading to
the failure. Once the FDIR behaviors are identified and described, they are integrated
with the nominal behaviors, so that the logical architecture is updated. In the FDIR veri-
fication and validation phase, there is also a validation loop to ensure that the signatures
observed are consistent with the fault models so that the fault models can be validated.
The implementation of the FDIR phase was handled as an spin off work documented in
the Master’s thesis of Joost Van der Gaag (2017).

Concerning the implementation phase of MASSA, for now, this work does not specify
any restriction. However, in the future, the idea is using the MASSA profile created in
Papyrus for automatic code generation.

As of now, once the logical and physical architecture are refined the implementation
of the resulting architecture is done manually using customized Java or C++ libraries.
The following section will elaborate on a case study where the selected steps of the pro-
posed MASSA methodology are illustrated by example to illustrate its feasibility.

5.3. ADCS CASE STUDY

5

103

5.3. ADCS CASE STUDY
This section elaborates on a case study where each phase and step of the proposed
MASSA workflow from Figure 5.4 is implemented. Within a satellite, the attitude deter-
mination and control subsystem (ADCS) requires the implementation of complex algo-
rithms for guidance navigation and control. The most common algorithms for attitude
estimation are based on the Kalman filter, in particular, the extended Kalman Filter (EKF)
that account for non-linear measurement models as discussed by Lefferts et al. (1982).
In Appendix C more details about its implementation are explained.

Depending on the mission needs, the satellite can be equipped with sun sensors,
magnetometers, inertial measurement units (IMU) and GPS receivers. Figure 5.5 shows
the architecture for the ADCS subsystem that is used to develop this case study. It illus-
trates the interface between hardware and software components required for designing
an MAS-based attitude estimation algorithm.

For simplicity, it assumes both the sensors and the command and data handling
computer (CDHS) are connected to the spacecraft data bus. Due to the need of hav-
ing a precise orbit estimation capability, the satellite is equipped with two GPS receiver
modules to measure position and estimating velocity. The following section describes
the physical model used to develop the case study implemented with MASSA methodol-
ogy.

Figure 5.5: Physical Architecture used for the ADCS case study

5

104 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

5.3.1. ADCS PHYSICAL MODELING
The goal of this case study is to show the feasibility of MASSA methodology to design a
multi-agent based algorithm for satellite’s attitude estimation using the workflow from
Figure 5.4. The attitude state for the satellite is described using the quaternion q(t) nota-
tion. The estimation algorithm was implemented using as reference the work presented
in the work of Zeng et al. (2014).

The attitude state of the satellite is represented over time as x(t) = [eT , q4], where
e = [q1, q2, q3] and q4 is the scalar component of the quaternion in the orbital coordinate
system (see Chapter 2 for more details on reference frames). The angular motion of the
satellite is described by the attitude kinematic in (5.3), which is consistent with the multi-
agent model presented in (5.1). In (5.3),ΩΩΩ[ωωωB] is a 4x4 skew symmetric matrix defined as
a function of the satellite body angular velocityωωωB = [p, q,r]T which is relative to orbital
coordinate system as

ẋ(t) =ΩΩΩ[ωωωB]x(t) (5.3)

ΩΩΩ[ωωωB] = 1

2

[
ωωωB× ωωωB

−ωωωT
B 000

]
(5.4)

The operatorωωωB× represents the cross product of the angular velocity as

ωωωB×=

 0 −r q
r 0 −p
−q p 0

 (5.5)

To implement the model in (5.3), it has to be in discrete-time considering the period
TS for the numerical integration. The resulting discrete-time model for the quaternion
model with initial conditions x0 = x(0) is described as

xk+1 = eΩΩΩk TS xk (5.6)

To obtain a proper attitude propagation, the angular velocity measurements had to
be transformed from the body frame to the orbital frame as

ωωωB =ωωω−C(q)ωωω0 (5.7)

where, C(q) is the attitude transformation matrix from body coordinate systems to
orbital coordinate system, and ωωω0 can be obtained from satellite’s orbital parameters
andωωω is body inertial angular velocity.

The measurements obtained from the GPS were used to calculate the satellite po-
sition and velocity xO that are needed in the attitude estimator for coordinate systems
transformation. The measurements from the magnetometer are used to correct the at-
titude values propagated using (5.3). The magnetometer measurement model used for
the case study is presented as function of the current position and velocity of the satellite
determined using the GPS measurements as

BB = C(q)B0(xor b)+vB (5.8)

5.3. ADCS CASE STUDY

5

105

where, BB represents the actual measured value of magnetometer, B0(xO) is the mag-
netic field vector in the orbital coordinate system and vB is the measurement noise.

5.3.2. MASSA: ANALYSIS PHASE
Once the physical model and the ADCS reference architecture were specified, MASSA
methodology was applied to analyze the ADCS subsystem following the steps estab-
lished in Figure 5.4. The two most relevant diagrams are shown in this section to illus-
trate the results of the proposed MASSA’s analysis phase. They were synthesized using
SysML language using Papyrus modeling artifacts. Firstly, a set of use cases were iden-
tified for the ADCS software in Figure 5.6. The second diagram in Figure 5.7, illustrates
the ADCS subsystem breakdown, which shows how functions and behaviors are linked
for further allocation in the design phase.

Figure 5.6 shows the use case diagram created to identify the OBSW requirements
for the ADCS case study. In this diagram, there are two actors identified, that repre-
sents the external interaction with the system. These are the satellite operators and the
CDHS computer. Within the system of interest, the use case diagram allows identifying
three main software use cases for telemetry collection, maneuver execution, and fault
detection and recovery. These main use cases are associated with secondary use cases
to achieve their overall need of the mission.

Figure 5.6: Use Case Diagram for the ADCS software in a Satellite Mission

The focus was put on the MAS-based software development in the ADCS computer
package that included sub command execution, telemetry management, fault detection
and recovery, attitude estimation and control. Special attention was given to the most

5

106 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

complex use case that was attitude estimation capability. Following the MASSA method-
ology, Figure 5.7 presents the steps related to roles, functional, and behavior identifi-
cation. For that diagram, the use cases were used as inputs input, as well as the ADCS
mission requirements. In that tree, the behaviors were linked with their parent role, and
then they were broken down into functions that are implemented separately as agents
running within the MAS execution environment.

Figure 5.7: Function Decomposition Diagram for the ADCS Software in a Satellite Mission

As a result of the analysis phase, it was possible the identification of five main roles.
These are mission control role, in charge of the interface management with other subsys-
tems in the satellite. Housekeeping role to collect and report data about the performance
and the health of the satellite to the command and data handling subsystem. FDIR role
in charge of hardware and software redundancy procedures to guarantee satellites op-
eration’s safety; attitude control role that has the duty to correct the orientation of the
spacecraft and finally the attitude estimation that is the focus of this case study.

Then, the attitude estimation role was broken down into behaviors that required the
implementation of a set of independent software functions. The necessary functions
identified were (a) EKF filter initialization, (b) data acquisition, (c) parsing measurement
data, (d) update transition matrix, (e) update rotation matrix, (f) update Jacobian matrix,
(h) update measurement vector and (i) update noise matrices.

Four main behaviors were synthesized for the estimation role using these functions:

• Get Measurement: This is a cyclic behavior that enables the interface and collec-
tion of the measurement data from the sensors. The data from the gyroscope is
used to propagate the state vector whereas the magnetometer data is used to cor-
rect the attitude estimation in real-time.

5.3. ADCS CASE STUDY

5

107

• Compute Kalman Filter: This behavior implements a finite state machine for con-
trolling the execution of the extended Kalman filter (EKF) algorithm. There are 5
states for the implementation of the EKF behavior: (1) Data acquisition, (2) Data
formatting, (3) Prior state computation, (4) Kalman Gain computation and (5) Pos-
terior state computation.

• Compute state: this behavior interacts with the compute Kalman filter to either
compute the prior or posterior state vector.

• Compute co-variance matrix:this behavior interacts with the compute Kalman fil-
ter to either compute the prior or posterior co-variance matrix.

In the design phase these behaviors are allocated and organized to satisfy the ADCS sub-
system’s needs.

5.3.3. MASSA: DESIGN PHASE
As discussed in the analysis phase, behaviors were broken down into functions that re-
quired to be executed in a sequence. The agent allocation followed a one-on-one map-
ping approach discussed in Subsection 5.1.1 to preserve the independence in the exe-
cution of these behaviors, and maximizing code reuse. Each behavior of the estimation
algorithm was mapped into one software agent. These agents were deployed in a single
Multi-Agent Systems logical container, which represented the execution platform (OBC)
of the ADCS subsystem.

Figure 5.8: Agent Interaction Diagram for the EKF Estimation Algorithm

The most important step in the design phase is the allocation of interaction and
communication for the multi-agents system as argued by Norman et al. (1996). For do-
ing that, an agent acquaintance and relationship process was performed for identifying
communication dependencies and data flow sequences. Also, it was essential to define
a proper message structure and semantic needed for lower level implementation.

5

108 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

Figure 5.8 summarizes the communication allocation process for the attitude esti-
mation functionality within the ADCS onboard software with the Extended Kalman Filter
algorithm. This diagram shows the flow of data from sensors to the estimation, and then
to the visualization tool used to verify the implementation. Also the diagram shows the
centralized architecture used for the implementation of the estimation role. It was done
this way to be consistent with the MASSA meta-model presented in Figure 5.3, where the
role is the core of the MAS-based software conceptualization.

The final step in the design phase was the interface allocation. For the case study
there were three main interfaces present in the estimation algorithm. One was needed
to access and configuring sensors. The second interface provided the attitude control
agents with the current state estimation, and the third interface was used to visualize
the results of the EKF algorithm and verifying its performance.

From this point, the MASSA workflow establishes two ways to continue. Either the
developers moved forward to the implementation and deployment phase, or they con-
tinue to the model-based verification phase discussed in details in the following section.

5.3.4. MASSA: VERIFICATION PHASE

The cost of fault detection increases as the project development advances. According
to Feiler (2010), only 3.5% of faults are detected and corrected during the design phase
of safety-critical embedded systems. This effect is negligible compared to the 70% of
faults that are generated at the design process. The way to address the efficiency of fault
detection during the design phase is by adopting continuous verification and validation.
This is the reason why MASSA methodology includes this philosophy as a key element of
its workflow.

As part of this work, a complementary verification methodology called SysML to
SLIM Transformation Methodology (SSTM) was developed to facilitate the verification
process. According to der Gaag (2017), a tailored SysML profile is accompanied by a
model conversion tool for transforming the system model from SysML language to System-
Level Integrated Modeling (SLIM) language for its analysis with the Correctness, Model-
ing and Performance of Aerospace Systems (COMPASS) tool set approach presented by
Bozzano et al. (2009). The results of the verification are not shown here, but they could
be seen in the work of der Gaag (2017).

The SSTM workflow is compatible with the MASSA methodology, and it provides in-
formation for agent’s behavior refinement. The system model was complemented with a
set of fault models that are connected for identifying the probabilities of function failure
in the COMPASS toolset, then visualized as a fault tree diagram. COMPASS also allows
the verification of the system model correctness and it enables simulations to visualize
the failures evolution over time.

In the case study for the ADCS subsystem, errors were introduced in the communica-
tion with CDHS subsystem, ADCS sensor blackouts, and actuator saturation. After that,
particular attention was given to faults caused by systematic measurement degradation,
which was root-caused to drift and bias in the data used to propagate attitude’s state. The
output of this analysis was then used for model and MAS architecture improvement.

5.3. ADCS CASE STUDY

5

109

MASSA: MODEL AND ARCHITECTURE IMPROVEMENTS

MASSA establishes a feedback loop between the verification phase and the design phase
to enable improvements on the behavior allocation shown in Figure 5.4. Using this logic,
for this case study the estimation model was updated to include an additional state vec-
tor for the estimating the gyroscope bias to mitigate potential errors during run-time.

Expression in (5.9) updates the state estimation model from (5.6) to include the gy-
roscope drift bias vector bbbg

k and its noise vvv g
k as part of their state vector. The goal was to

use the estimated gyro drift and bias to compensate the deviation in the angular velocity
ωωω over time, so that the EKF implementation can reduce the estimation error. That is
implemented as a behaviour in the FDIR agent in Figure 5.9.

xk+1 =
[

eΩkΩkΩk Tk 0
0 I3×1

][
qk

bg
k

]
+

[
vq

k
vg

k

]
(5.9)

A new agent (FDIR Agent) was implemented to include a behavior to calibrate the
sensors when there is a failure detected, as well as, the implementation of a memory
buffer to hold the latest measurements, so in the case of a sensor blackout, an average
of the latest 30 measurements can be used by the estimator. Besides the addition of the
FDIR Agent, the architecture of the estimator software shown in Figure 5.8 kept similar.
On the measurement model, there was not any update required. The gyroscope data
continued to be used for the prediction functions, as the magnetometer continued to be
used to correct the orientation by providing the magnetic field vector as a function of
satellite’s position.

Figure 5.9: Improved Agent Interaction Diagram for the EKF Estimation Algorithm

The next subsection shows the results obtained from the implementation of both
estimators (before and after the verification phase). The results are used for highlight-
ing the benefits of earlier verification during the implementation phase using MASSA’s
approach.

5

110 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

5.3.5. RESULTS ANALYSIS FOR THE ADCS CASE STUDY
This section presents the results of the implementation of attitude estimation algorithms
for the ADCS case study described by the agent interaction diagrams in Figure 5.8 and
Figure 5.9. The goal of this experiment was to show the effects that the verification and
validation phase of MASSA workflow has on the performance of the implementation.
Also, it was intended to show the use of the verification and validation feedback on the
design optimization described in Figure 5.4. The experiment was carried out by imple-
menting the ADCS physical architecture from Figure 5.5 in a fixed location to avoid ref-
erence frame transformations. Then, simple attitude maneuvers to test the estimation
algorithm accuracy were executed. Figure 5.10 shows the experimental setup as a block
diagram.

Figure 5.10: Experimental Setup Testbench for ADCS case study

In Figure 5.10, the data from the sensors is collected at a 10 Hz frequency using
an embedded computer running the Texas Instrument real-time operating system (TI-
RTOS). The sensor information (3-axis gyroscope and magnetometer) was sent using the
Universal Asynchronous Receiver-Transmitter (UART) known as the serial port to the
computer implementing the EKF algorithms with the Java Agent Development Frame-
work (JADE) library and running on top of a JAVA virtual machine. There are three vari-
ants for the EKF algorithm. One (top block) to implement the architecture from Figure
5.8, the second (medium block) to implement the architecture from Figure 5.9, and the
bottom block is used for numerical verification of the results.

The experiments conducted include collecting a static maneuver where the sensors
are kept fixed in a position to demonstrate the effects from cumulative faults such as
sensor drift and bias. Other maneuvers like pointing and returning to rest position were
tested to show pointing maneuvers capabilities, but not included in this section. The
main experiment carried to test the effect of including the feedback from the verification
phase of MASSA was the static maneuver. For that purpose, the experimental test-bench
from the Figure 5.10 was used keeping the sensors in a fixed known position.

Five trials of 10 minutes duration were executed. First, the numerical consistency of
the MAS-based EKF with respect to a reference MATLAB T M implementation was veri-
fied. Then, a comparison between the performance of the pre-verification architecture
with respect to the improved EKF estimation algorithm was performed, including the
Fault Detection, Isolation and Recovery (FDIR) Agent.

5.3. ADCS CASE STUDY

5

111

Figure 5.11: Implementation Results: (A) Quaternion Error for MAS-based EKF without FDIR. (B) Rotation An-
gle Error for MAS-based EKF without FDIR. (C) Quaternion Error for MAS-based EKF with FDIR. (D) Rotation
Angle Error for MAS-based EKF with FDIR.

The results of the experiment are summarized in Figure 5.11. There, the true at-
titude quaternion was fixed to a static position represented with the quaternion value
qTr ue = (0,0,0,1). Then, the sensor data was collected, and post-processed for current
orientation visualization. The graphs labeled as A and C show the estimation error based
on the quaternion measurement for the pre-verification and post-verification cases, re-
spectively. This error was calculated using the expressions: qEr r or = qTr ue−qNoF D I R and
qEr r or = qTr ue −qF D I R for both cases, respectively. The graphs labeled as B and D are the
rotation angle error for both cases. They are calculated using the quaternion obtained
from the EKF.

By analyzing the results of the EKF with no FDIR agent implemented (A and B), it is
clear that there is a drift on the estimated orientation for the static case. This is due to
sensor measurement faults that are propagated in the EKF. After 10 minutes of opera-
tion, the rotation angle error is bigger than 4 degrees, which is not compliant with the
ADCS design requirements that is usually less than one degree.

On the other hand, once the FDIR agent was implemented, the quaternion error in
graph C is reduced about 10 times compared to graph A, and it does not show any time-
dependant behaviour. That is translated into a rotation error angle with absolute value
lower than 0.4 degrees (graph D), which satisfies the ADCS design requirements. The
experiment has shown the value of early verification and validation in the performance
of the algorithm implementation, which verifies the initial hypothesis that earlier verifi-
cation improves system performance. The main benefit is that flexibility of MAS-based
EKF implementation allowed improving the performance with minimal changes.

This kind of cumulative errors can cause non-desired performance issues on the
pointing accuracy. Also over time, the pointing accuracy can degrade to the point of
causing a failure to achieve the mission targets. That is where having an integrated FDIR
approach shows its value for space mission operations.

With respect to the MASSA implementation, the case study allowed to exercise the

5

112 5. MODEL-DRIVEN METHODOLOGY FOR DESIGNING AGENT-BASED SOFTWARE

workflow proposed in Figure 5.4 including the analysis and design phases. It allowed to
improve the ADCS performance by providing feedback to its design process and inte-
grating native FDIR features.

5.4. PROPOSED MASSA VALIDATION STRATEGY
So far, the case study shown that the proposed workflow is feasible and provides benefits
in term of performance for agent-based OBSW design and implementation. However,
for strictness purposes it is necessary at least to provide a view on how MASSA method-
ology can be validated and compared against well-established modeling methods used
in industry for model-based software design (e.g Arcadia/Capella).

According to Boehm (1984), validation activities must check that software products
are complete, consistent, feasible and testable. Completeness refers to the ability of a
software product to link the features provided with the list of needs identified during
the analysis phase. Also it requires to check that all the functions are identified and de-
scribed. Consistency is defined as a characteristic of the produced software to comply
with standards and specifications in the model. For example, for a EKF, consistency on
the input/output matrices sizes requires to be checked during the verification phase.
Consistency also requires implementing traceability of the process followed. Regarding
feasibility, validation activities requires checking that all functions can be implemented,
but additionally requires an assessment of reliability, maintainability and scalability. Fi-
nally, testing is checked defining clear metrics that enables determining that require-
ments are achieved according the customer needs.

Table 5.1 shows how these validation criteria are enforced in each of the methodology
phases of Multi-Agents Systems for Satellite Applications. A tool or set of tools for each
validation criterion and methodology phase are specified so that the criterion can be
enforced as part of the software development activities.

This table also shows how to connect MASSA’s phases to other artifacts for imple-
mentation such as class diagrams and fault tree diagrams. The consistency of the model
is shown using simulations that consider the physical model described in subsection
5.3.1 and implementation parameters, including sensor’s data sheets.

Table 5.1: Validation Matrix proposed for MASSA Methodology

Validation Criteria
MASSA Phase Completeness Consistency Feasibility Testeability

Analysis
Use Case Scenario
Diagrams and Function
Decomposition Diagrams

Workflow
Specification
(Figure 5.4)

Case Study
Implementation
(Reference
Applications)

Requirements
Metric
Assessment

Design
Agent Interaction
Diagrams

Systems
Budget
Analysis

Verification Fault Tree Diagrams
Simulation
Models

Correctness
Analysis

Implementation Class Diagrams
Detailed
Operation
Scenarios

Unit testing
Framework

5.5. CHAPTER SUMMARY

5

113

5.5. CHAPTER SUMMARY
This Chapter has proposed a meta-model, a modeling methodology and a case study
to demonstrate the feasibility of MAS-based based software design for developing and
implementing the onboard software of a satellite. The Chapter has described a meta-
model that extends the fault detection capabilities of MAS-based software components
for improving its implementations performance. Also, it defined a workflow for the im-
plementation of the proposed meta-model.

This Chapter has described an iterative model-based design process that enhances
the robustness of the onboard software implementation for satellite applications. This
work also has shown a case study that demonstrates the feasibility and applicability of
MASSA methodology for designing software for critical satellite subsystems. The use of
the verification and validation feedback allowed to enhance software performance by
extending the MAS-based software architecture with new functionalities. A validation
approach was described according to four main criteria that can be used to show the
robustness of the proposed methodology.

The Chapter has shown the value of the multi-agents systems technology to enable a
faster and more robust software design process by adopting earlier verification to refine
the flight software modeling and implementation.

The case study can be extended in the future to other algorithms within the ADCS
subsystem such as the control and the telemetry management, as well as, to other sub-
systems for instance the command and data handling. The next Chapter focuses on
organizational optimization of MAS-based software architectures to fit into the con-
strained resources of the onboard computer of a satellite.

6
ORGANIZATIONAL OPTIMIZATION

OF MULTI-AGENT BASED

SOFTWARE

"It is during our darkest moments that we must focus to see the light"

Aristotle Onassis

Abstract

The optimal architecture of a multi-agent-based software is determined by its agent’s or-
ganization and the modeling techniques employed to describe their interactions. Robust
and fast consensus are indicators of success in multi-agent-based algorithms. Reliability
and cost of communication can be used to constrain the solution domain in the orga-
nizational optimization of agent-based software. Meta-heuristic methods are computa-
tionally viable to find a solution of optimization problems within a reasonable number of
iterations. This Chapter shows the use of methods based on random approaches such as
genetic algorithms and particle swarm optimization for finding a quasi-optimal solution
to solve the design of interaction topologies for multi-agent-based algorithms software im-
plemented on satellite systems. The results show that compared to brute force algorithms
the proposed approach is up to 200 times faster and allows to tailor specific constraints for
different satellite mission scenarios that can be used to optimize reliability during space-
craft operations.

115

6

116 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

The optimal architecture of a system is mainly determined by the structural config-
uration of its components, which determines their interfaces. It is necessary to have
a clear understanding of the system requirements and constraints to achieve the best
performance. In particular, for Multi-Agent Systems (MAS), reliability in the communi-
cation process is one of the key challenges for its implementation’s success as discussed
in Chapter 4. The design of software component’s interactions demands a systematic
approach to find a solution that both satisfies the specific needs of the application but
also addresses resource allocation during its implementation phase. Modeling methods
employed to describe MAS can be applied to optimize their implementation as shown by
Olfati-Saber et al. (2007b). They describe the systems functionality as a dynamic network
of agents looking to reach consensus. In order to find an agreement, agents must imple-
ment an interaction topology to share their knowledge across the entire community of
agents.

The cost of communication is a limiting factor in the organization’s topology of multi-
agent systems used for onboard software of space systems. For that purpose, this Chap-
ter proposes to define the Cost of Communication Matrix (CCM) to quantify the effort
needed to transport information from one point to another in the multi-agent system
graph, given a known probability of interaction. The communication effort can be mea-
sured in power, time or any other resource unit. The CCM shall then be used as an input
to the topological optimization process to constrain the solution space.

The problem of the optimal organization of distributed systems is receiving more
attention recently. For instance, Moghaddam and Jovanovic (2017) describe the optimal
topology design of corresponding edge weights for undirected consensus networks using
a convex optimization method that balances the performance of stochastically-forced
networks. Liu and Iwamura (2000) describe topological optimization models for net-
works with multiple reliability goals using dependent-chance goal-oriented program-
ming to search for an optimal topology in constrained networks.

Combinatorial optimization is also intended to find the best arrangement of objects
in a discrete space, so that they satisfy a set of requirements. According to Lawler (1976),
the best way to represent optimization problems in discrete solution spaces is using
graphs. Randomized optimization algorithms have become popular to solve combi-
natorial optimization problems due to the increased availability of computing power.
That processing availability reduces the time to find a feasible solution. However, draw-
backs have to be addressed when selecting a search algorithm family, such as the tun-
ing process and the implementation complexity. Recently, randomized algorithms have
been used to optimize connection weights in neural networks, as shown by Aljarah et al.
(2018).

The purpose of this Chapter is to identify and implement an algorithm for the op-
timization of agents interactions in MAS-based software for satellite applications using
randomized optimization techniques. This is relevant for onboard software designers,
since it enables a tool for design exploration that takes into account functional require-
ments and implementation constraints, for instance, the power budget. This Chapter
also describes the total cost of communication in a MAS-based software as a function
of an agent interaction matrix and the importance of their links (weights). This model-
ing approach enables novel mechanisms to describe communication constraints based

6.1. ORGANIZATIONAL STRUCTURES FOR AGENTS

6

117

on fixed topological structures such as hierarchical, team and federated communication
design patterns. Then, it proposes the use of randomized optimization methods for min-
imizing the total cost of communication needed to satisfy the software configurations of
space missions. The Attitude Determination and Control Subsystem (ADCS) case study
was used to demonstrate its feasibility for the onboard software of spacecraft.

6.1. ORGANIZATIONAL STRUCTURES FOR AGENTS
Firstly, it is important to motivate the need for organizing Multi-Agent Systems. Accord-
ing to Ferber et al. (2003), in the context of MAS, an organization provides a framework
for operation and interaction through the definition of roles, behavioral expectations
and authority relationships. This is a key element that must be considered in the model-
ing and design of software systems using a MAS-based approaches.

The process of establishing the organization of Multi-Agent Systems responds to
physical and logical aspects during its implementation phase. Physical aspects refer to
the structural elements that enable the partitioning of tasks within the system into soft-
ware functions. Logical aspects are more abstract and they make reference to the role
allocation of agents (features) required during the run-time. A third element to consider
is the dynamics of these agents, which is key for the correct and optimal allocation of
satellite resources. The manifestation of agents dynamics is described by their interac-
tions patterns. That was the main characteristic of MAS-based architectures addressed
in this Chapter.

The process of designing an organization requires defining a logical structure for
achieving a goal. In the context of onboard software, an organization encompasses the
logical layout of the software components needed to satisfy the missions requirements
and functionalities. Software components are encapsulated into intelligent structures
called agents as described in Chapter 5. The collection of all these agents working to-
gether is called a Multi-Agent System.

Multi-Agent Systems can adopt different organization structures depending on their
purpose. Ferber and Gutknecht (1998) describe organizational MAS structures as a func-
tion of their role, interaction pattern, and communication language. For this research
scope, three interaction patterns are considered: hierarchical, team, and federated. These
patters are the most convenient to describe the onboard software of a satellite.

In the hierarchical organization pattern, a subset of agents interpreting a role define
a structure in which an agent adopts the responsibility of coordinating the execution
a task (coordinator), that is decomposed in pieces executed by specialized functional
agents. The functional agents are subordinated to the coordination agent within the or-
ganization. A functional agents can not interact with other functional agents in the same
organizational level. Instead, they interact with other agents outside the organization
still within the system to achieve their local goal.

The team organizational pattern is similar to the hierarchical pattern in their struc-
tural configuration. The only difference is that there are not restrictions to functional
agents within the same role to interact among them to achieve their local goal behavior
or function. That allows more flexibility and reconfiguration capabilities in case of fault
detection, which makes the subset of agents more resilient to failure.

In the federated approach, local organizations use either the hierarchical or team

6

118 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

structure to achieve a global goal. The idea of using a federated interaction strategy is to
balance the communication load and the number of connections, which is convenient
when there are communication constraints for the design.

Communication design pattern is a concept used describe the way design influences
the abstraction of the communication process. They are often used to create a frame-
work that ensures consistency and uniformity during the implementation phase. Com-
munication design patterns can be used to minimize the implementation complexity
of organizational structures in distributed systems. For instance, Hayden et al. (1999)
describes communication patterns for MAS such as Broker, Embassy, Mediator, among
others. There are two main advantages of using communication design patterns. First,
the implementation complexity is reduced since the communication process can be
generalized to be later tailored according the application’s need. That increases the code
re-usability, and reduces the implementation schedule. Second, the use of standardized
communication improves the determinism of the system, which is critical in real-time
systems, such as the ADCS. The establishment of a robust structure for agent’s topology
in a MAS-based software plays a significant role in their ability to achieve the consen-
sus required in distributed processing. The next Section provides a summary of fault-
tolerant consensus algorithms that can be implemented with MAS-based approaches.

6.2. MULTI-AGENTS SYSTEM CONSENSUS

Establishing consensus in parallel data processing is a big challenge in distributed com-
puting systems. Software performance is profoundly influenced by the interaction topol-
ogy employed to exchange information between computing agents. It is also influenced
by external mechanisms such as delays and communication unbalance. Examples of
these effects are presented and discussed by Tian and Liu (2009). Additionally, the speed
of consensus is affected by the number of computing agents within the execution plat-
form. Jin and Murray (2006) propose adopting multi-hop relay protocols to expand the
knowledge of agents subsets and speed up its state convergence, which might benefit
the system’s performance. Consensus algorithms are used in multiple applications. They
can be found in distributed state estimation with Kalman Filters as described by Ma et al.
(2017) and distributed control by Wen et al. (2013). For space applications, Ren (2010)
has demonstrated consensus algorithms for distributed cooperative attitude synchro-
nization and tracking of rigid bodies. Also, in the space domain, MAS can be used for
formation flying and fractionated spacecraft for long-term earth observation missions
as discussed by Chu et al. (2013).

Software architectures using an agent-based FDIR architecture have been proposed
in Chapter 3 to deal with the specific fault mechanism in sensors (e.g. drift). These ar-
chitectures assume that fault detection signals are distributed among all the sensors, and
it requires a few centralized agents to apply recovery algorithms to mitigate the impact
of faulty measurements in the estimation of spacecraft’s attitude. That is an excellent
example of how consensus protocols are used in the design of reliable OBSW.

6.3. TOPOLOGICAL OPTIMIZATION OF MAS-BASED SOFTWARE

6

119

6.2.1. CONSENSUS STRATEGIES AND ALGORITHMS

There are two different types of consensus problems present when working with multi-
agent systems. These are synchronous and asynchronous. The best-case scenario is
when all agents are synchronized within a known time bound. The worst-case scenario
is when systems operate asynchronously. For this Chapter, the focus is put in the asyn-
chronous consensus algorithms.

According to Fischer et al. (1985), it is impossible to analytically solve consensus in
asynchronous systems with one faulty process (e.g. Agent). Luckily, there exist alterna-
tives such as the Paxos Algorithm described by Lamport et al. (2001) that provides safety
and eventual liveness for reaching consensus within a time bound. Safety refers to the
fact that only one of the proposed values is chosen and eventual liveness means that
if there are not failures shortly, there is a good chance that consensus will be reached.
Paxos also works in rounds, but the synchronization of these rounds is not required. If
an agent is in its round and gets a new message or a timeout signal, it will abort what it
currently doing and it move forward to round r +1. A ballot ID uniquely identifies each
round, and it is broken down into two phases: 1) Election phase (Prepare/Promise), and
2) Bill (Accept/Commit) phase.

The implementation of consensus algorithms (e.g. Paxos) reduces the complexity
of MAS-based software since it enables reusing already in-place capabilities such as the
agent interaction protocols for communication, as well as agent management capabili-
ties for failure recovery. Also, it balances the performance and reliability of the system to
enable instant failure recovery with minimum overhead on computing cost.

6.3. TOPOLOGICAL OPTIMIZATION OF MAS-BASED SOFTWARE
This Section describes the optimization problem for agents communication using the
organizational aspects described in Section 6.1. Also, it provides an overview of the
search strategies considered in the solution of the optimal communication cost, partic-
ularly in the use of randomized optimization methods such as Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO).

6.3.1. TOPOLOGICAL MODELING OF MULTI AGENT-BASED SOFTWARE

A MAS-based software architecture can be described using the graph GGG = (VVV ,EEE ,III) in
whichVVV represents the nodes (agents), EEE corresponds to the communication links (edges)
between these nodes, and III describes fixed interactions of agents connected through the
communication links of the system. If there are n agents in the network, the interaction
topology vector xxx represents the connection’s state of the nodes in the graph GGG . The
probability of interaction III (TTT g ,xxx) for a group of agents TTT g that work together inside the
system’s graph GGG is assumed to be known during the software design process. A fixed
interaction means that there is a interface constraint between specific agents within the
software architecture. These fixed interactions are requirement driven.

In (6.1), the adjacency matrix AAA describes the connection of the nodes in graph GGG ,
which is determined by the value of xxx. In that expression, AAAi j ∈ {0,1} meaning that AAAi j = 1
when there is direct an interaction between agents i and j and AAAi j = 0, otherwise. The
expression in (6.1) was adapted from the work presented by Liu and Iwamura (2000).

6

120 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

xxx = {AAAi j : 1 ≤ i ≤ n −1, i +1 ≤ j ≤ n} (6.1)

This probability of interaction III (TTT g ,xxx) is given the capability of message exchange
between the nodes in the sub-organization TTT g . The total cost of interaction CT for a
topology candidate x∗x∗x∗ can be quantified by the sum of the cost of each agent to reach
out to other agents in the graph GGG . The overall cost function for MAS-based software
interaction given xxx∗ can be calculated as

CT =
n−1∑
i=1

n∑
j=i+1

ccc i j AAAi j (x∗x∗x∗) (6.2)

where, ccc i j represents the weighted cost matrix for message exchange between agent
i and agent j of the multi-agent based software architecture. The weighted cost matrix
can be obtained experimentally by profiling the application and making an average of
the required energy to transmit a message from agent i to agent j in the OBC. The matrix
ccc i j depends on implementation parameters (again driven by the mission requirements),
which demands characterization before starting the process of topological optimization
of the multi-agent based software architecture.

The fixed interaction constraints are determined by the specific organization within
the MAS-based software architecture. For example, management capabilities require
fixed functionality agents to be implemented (e.g AMS). On the other hand, there are
groups of agents free to decide if they partner, or not. These are called flexible interac-
tion constraints. The collective dynamics of these groups are described using the "Small
Worlds" theory presented by Watts and Strogatz (1998) to interpolate the software archi-
tecture design between a regular graph and a random graph.

Now, consider the solution of the optimization problem formulated in (6.3) as an
approach for the organizational optimization of n agents in a MAS-based software ar-
chitecture with symmetrical communication cost. This description assumes a topol-
ogy candidate xxx∗ that contains l sub-organizations of agents, in which Cl represents the
nodes that implement coordination roles for the l th sub-organization of agents. These
l sub-organizations are intended to implement functional tasks within the satellite soft-
ware.

These sub-organizations can follow either a hierarchical or a team structure, and they
are allowed a bigger degree of interaction with other nodes (agents) of the system.Fixed
interaction constraints have assigned a higher priority to their communication with re-
spect to other agents and teams dedicated to non-critical tasks.

Three primary roles are defined for the agents within the software architecture: (1)
management, (2) coordination and (3) functional. Management agents (e.g. AMS) are
dedicated to provide support and controlling the systems operations, while the coordi-
nation agents control the sub-organization of agents performing local-level tasks. Func-
tional agents are specialized for concrete calculation tasks that demand their focus and
performance. The optimization problem can be formulated as

mi n CT = mi n
n−1∑
i=1

n∑
j=i+1

ccc i j AAAi j (xxx∗) (6.3)

6.3. TOPOLOGICAL OPTIMIZATION OF MAS-BASED SOFTWARE

6

121

subject to:
1) AAA1k = 1; k = 2,3, ...,n;
2) AAAcs = 1; c = 2,3, ..., (n −1); s = 3,4, ...,n;
3) deg (GGG(Cl)) ≤ n−1

2 +1; l = 2,3, ...,n;
4) deg (GGG(Fm)) ≤ 3+ r ound(n/10); m = 2,3, ...,n;
5) AAAi j = 0 or 1 ∀ i , j
In the optimization problem formulation proposed above, the first constraint is used

to represent the fixed interactions for management activities between the Agent Man-
agement System and all the others agents in the MAS-based software architecture. The
second constraint is intended to describe fixed interactions for both hierarchical and
team organizations within architecture design.

The metric used controlling the flexible interactions constrains in the system is the
degree function of a graph deg (GGG(i)), which considers the connection of the node i in
the graph GGG with the rest of the nodes. In the case of the AMS node, it can communicate
to all the nodes in that graph. For the coordination and functional nodes, a limit in the
number of interactions was assumed arbitrarily (mission dependent) so that they can
scale appropriately with the number of agents in the network for any particular mission
design. It is imperative to reach a balance between the clustering coefficient and the path
length to achieve a small world behavior as described by Watts and Strogatz (1998). This
is important to achieve a resilience level that takes advantage of distributed capabilities
of MAS-based software.

BASIC MODELING EXAMPLE

This easy-to-understand example shows the application of the modeling concepts intro-
duced above to present an analytical case study with a small network of agents. It also
shows that once the size of the network increases, the search for a feasible solution for
topology becomes difficult by hand, so automatic search algorithms are proposed and
thus preferred.

Suppose that a MAS-based software system consists of 5 agents that control the op-
eration of a system. The cost of communication for individual agents is one power unit
among them. That implies that ccc i j = 1 ∀ i , j for simplicity. There is a constraint that
imposes a hierarchical organization for agents H = {2,3,5}, where agent 2 is the coordi-
nator and agents 3 and 5 are functional agents. According to the problem formulation in
(6.3) the following constraints are defined:

1. Agent 1 is the manager (AMS) and has to communicate with all the agents in the
system.

2. Agents 2,3 and 5 establish a hierarchy structure where agent 2 is the coordinator.

3. The degree of node 1 (AMS) of the graph must be 4.

4. The degree of node 2 (coordinator) has to be lower or equal to 3

5. The degree of all other functional nodes has to be lower than or equal to 3

6

122 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

Figure 6.1: Basic MAS-based Software Architecture - Analytical Solution.

Based on these constraints, the optimal total cost was determined as CT = 8 power
units. This can be easily found analytically, and the optimal interaction topology is visu-
alized in Figure 6.1.

The following adjacency matrix represents the optimal topology for the network,
given that the optimal topology vector xxx was identified solving the optimization prob-
lem analytically as xxx = [1111101101]:

AAA(xxx) =


0 1 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 .

6.3.2. NETWORK SCALE EFFECTS
In practical cases, the number of software functions in a MAS-based software architec-
ture varies from 10-100. These functionalities require thousands of lines of code to get
implemented as descibed by Dvorak and Lyu (2009). When the scale of the network in-
creases, the overall cost optimization is no longer viable using analytical methods. In-
stead, computer-based algorithms are implemented to search for an optimal solution
using in some cases the Brute Force Algorithm (BFA), which tries one by one all the possi-
ble solutions for find the one that fits the constraints. It has to explore the entire solution
space in that search, which is not convenient.

Figure 6.2 shows the scale effects on the time to find a solution using the BFA search
approach. It assumes that network sizes vary from 8 to 12 agents, and there are the fol-

6.3. TOPOLOGICAL OPTIMIZATION OF MAS-BASED SOFTWARE

6

123

lowing fixed interaction constraints: Hierarchy 1 (H1) composed of agents H1 = {3,4,5},
Hierarchy 2 (H2) composed of agents H2 = {6,7,8}, Team 1 (T1) T 1 = {2,3,6}. It assumes
that the cost of communication among each pair of agents is one unit, so that again
ccc i j = 1 ∀ i , j . Flexible interaction constraints are defined as a function of the number
of agents in the network according to (6.3).

Figure 6.2: Network Scale Effect in the time for finding a solution using the Brute Force Algorithm implemen-
tation.

From Figure 6.2, it is explicit that as long as the network scales up the average time
to find a solution increases very fast, as well as its variance. That situation motivates
looking for a more effective search strategy, since using the Brute Force Algorithm search
heuristic may lead to a very large (infinite) time for finding a feasible solution, even with
less than 20 agents. During the simulation experiments with the BFA a problem size of
15 agents had to be stopped since it never found the optimal solution.

6.3.3. RANDOMIZED SEARCH STRATEGIES
Search heuristics are enablers for the solution of optimization problems. According to
Auger and Doerr (2011) evolutionary algorithm such as genetic algorithms, simulated
annealing, ant colonies and particle swarm optimization provide the performance re-
quired to solve big search problems in a reasonable time. In this Chapter, two families
of search heuristics with evolutionary algorithms are explored: Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO). Both algorithms are analyzed and compared to
identify the most suitable for its implementation in a case study. These algorithms were
selected since they provide a good performance to implementation complexity ratio.

6

124 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

GENETIC ALGORITHMS

Genetic Algorithms are an iterative population-based searching method that emulates
the natural selection process. In this process, the GA frequently modifies a population
of individual solutions that are called generations, according to mutation and crossover
parameters that allow exploring the solution domain.

The workflow for implementation of GA described by Davis (1991) consists of three
main steps. Initially, a selection of parents is made based on their feasibility to satisfy
the problem constraints. This population of parents is then used in the second step for
crossover, where two parents generate children for the next generation. Finally, mutation
is implemented for applying random changes to generated children.

PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is also an iterative population-based searching technique
that explores a solution space emulating the behavior of movement of organisms. Shi
and Eberhart (2001) describes how PSO can be adapted on four different levels (envi-
ronment, population, individual, component) to achieve faster convergence and better
performance. This is convenient when there are computational limitations in the opti-
mization process.

The workflow in the PSO algorithm is as follows. First, a set of potential solutions
(particles) are initialized. Then the fitness of these solutions is calculated and compared
to the personal best value; then it is updated. Otherwise, the current personal value is
kept. After that, each particle compares its fitness value with the global best value, the
better performing particle is then assigned to the global best value and the internal state
of each particle is updated for the next iteration. This cycle repeats until error threshold
for the search are achieved.

PSO VS GA
Several comparisons between PSO vs. GA can be found in the literature. For instance, in
Hassan et al. (2004), Panda and Padhy (2008) and Roberge et al. (2013) several aspects of
PSO and GA are assessed and compared, such as computational requirements, conver-
gence speed and performance limitations (local vs global optimum).

One of the biggest differences between GA and PSO is the mechanism used to gener-
ate a population of solutions. They have different strategies to balance between explo-
ration and exploitation, which can affect the converging time. Kachitvichyanukul (2012)
argues that Genetic Algorithms have less tendency for premature convergence, which is
desirable for achieving global optimum, compared to PSO and differential evolutionary
algorithms.

6.4. OPTIMIZATION IMPLEMENTATION

6

125

6.4. OPTIMIZATION IMPLEMENTATION
Genetic Algorithms were chosen for solving the optimization due to their ability to bal-
ance exploration and exploitation capabilities in achieving a feasible solution that satis-
fies the constrains of communication budgets for MAS-based software. The exploration-
exploitation trade-off is a fundamental dilemma whenever you need to learn about the
solution domain by trying things out new combinations. The dilemma is between choos-
ing what you know with a current solution and getting closer to what you expect (‘ex-
ploitation’), and choosing something new you aren’t sure about and possibly learning
more (‘exploration’). This trade off has a direct impact on the time required to complete
the search for an optimal solution. Also, the implementation complexity was found to
be a determining factor to decide for GA instead of PSO. This section describes the way
the GA was coded using P y thon.

The topology interaction candidates for a MAS-based software architectures are rep-
resented using a row vector x∗x∗x∗ with dimensions 1 ×[n(n −1)/2] as in (6.1). Vector x∗x∗x∗ is
considered as a "chromosome" candidate composed of "genes" describing the interac-
tion between agents (nodes) in the graph. Inside the chromosome, there are fixed genes
(bits) representing hardwired interaction constrains in the candidate topology. These
genes are called "golden genes" and they cannot be mutated in later generations since
they represent the fixed interactions defined by design.

The initialization process for the genes of a chromosome is implemented consider-
ing the fixed interaction constraints. The genes representing the organization interac-
tions (hierarchical or team) are set to ’1’, while the rest of them are randomly assigned to
either 0 or 1. That procedure guarantees the feasibility of a chromosome. The process
is repeated until the algorithm generates the number of chromosomes specified by the
target population parameter popsi ze .

The evaluation of chromosomes determines their fitness for further reproduction
and genes propagation. In the proposed algorithm the probability of reproduction is
determined based on a fitness function that determines how a candidate solution x∗x∗x∗

i

satisfies the flexible interaction constraints (number 3 and 4) in (6.3). The expression in
(6.4) shows that the fitness value depends on the number of the interaction between co-
ordination and functional agents. The fitness value is normalized for further processing
during the candidate solution selection. F j is a subset of agents in candidate architec-
ture x∗ representing the functional agents of that architecture that are free to interact
with other agents to achieve their goals.

F i tness(xxx∗) =
0 Flexible interactions are not satisfied,∑s

j=1 F j (xxx∗)

s otherwise.
(6.4)

There are several selection schemes for evolutionary algorithms as discussed in the
work presented by Blickle and Thiele (1996). For the proposed algorithm in this Chapter
the fitness value is calculated using the expression above. After that, chromosomes are
organized from higher to lower fitness score for the topology selection process. This is
done this way to ensure better candidates propagate their features first, like in natural
selection.

6

126 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

The proposed algorithm uses the approach proposed by Miller et al. (1995), which
consists in ordering the chromosomes by fitness value and choosing with higher prob-
ability the ones with better fitness for crossover and mutation. This operation requires
defining a parameter for establishing the size of the tournament selection TSS .

The crossover operation also requires defining a parameter (PC) for describing the
probability of this operation to happen. This parameter is used for tuning the speed of
convergence of the algorithm. The genetic algorithm selects, pairs and evolves chromo-
somes to increase the fitness of the elite chromosomes in the population. This process
is repeated until the stop condition that satisfies the architectural design requirements
is reached. For the case study, a convergence criteria will be defined so that it can be
implemented and compared for all algorithms.

Figure 6.3 depicts the flow diagram that was implemented for the simulation. In that
diagram, the size of the problem, the constraints interaction and the genetic algorithm
optimization (GAO) parameters are input to describe the simulation scenario. These
are taken as reference for the execution and data collection according the algorithm de-
scribed above.

The implemented algorithm also offers features to visualize the most fitted topology
configuration, as well as its fitness and total communication cost evolution over time.
The next Section illustrates the applicability of the proposed GA optimization for satellite
subsystems.

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE
This Section illustrates the application of the proposed GA for the optimization of the
total communication cost of onboard software components for hypothetical operation
scenarios of a real satellite mission. For that purpose, the PROBA 3 mission developed
by ESA was selected, due to its performance and robustness requirements for the AOCS
subsystem in particular.

6.5.1. PROBA 3 MISSION DESCRIPTION

According to Llorente et al. (2013), the PROBA 3 mission is aimed towards increasing the
confidence and TRL of formation flying technologies. It will demonstrate metrology sen-
sors for formations flying, advanced formation control algorithms, and onboard FDIR
capabilities. The space segment of PROBA 3 is composed of two independent three-axis
stabilized mini-satellites in highly-elliptical Earth orbit, performing precise formation
flying, so that they are able of controlling the attitude and separation of both satellites
accurately.

The concept of operations can be summarized as follows. When both satellites are
separated from the launcher, they will remain together in a stacked configuration, so
that the propulsion system installed on the bottom satellite is able to move them to the
nominal operation orbit. Once they reach the target orbit, they will separate and change
to a safe relative trajectory that avoids potential collisions. During the commissioning
phase, several subsystems and software components will be tested and validated until
completely autonomous operations are reached. Finally, the formation flying exercises
will begin to test formation acquisition, re-configurations, manoeuvres, accuracy, and

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

127

Figure 6.3: Genetic algorithm optimization flow diagram for organizing MAS-based software architectures.

commands exchange between both satellites. At the end of life the satellites will be de-
orbit to satisfy international regulations on space debris.

The AOCS for PROBA 3 is very sophisticated. It incorporates 6 degrees of freedom
formation control with thrusters, collision avoidance sensors and rendezvous capabil-
ities. In the work of Borde et al. (2004), different sensors used in PROBA 3 for precise
formation flying are described. These include coarse and fine radio-frequency sensors,
star tracker, coarse sun sensors, gyroscopes, coarse and fine optical lateral metrology,
fine optical longitudinal metrology and GPS. The installed sensors will enable forma-
tion precision in a range down to milli-arcsecond. As actuators, the leading satellite will
have eight thrusters and six tanks to perform control experiments. Also, it includes three
reaction wheels and magneto-torquers.

6

128 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

Regarding the software, the onboard computer will execute the navigation and guid-
ance function, as well as, the control commands for the relative position and relative
attitude of the both spacecraft. It will require multiple software components (agents)
cooperating to achieve the formation flying goals for each experiment, while satisfying
the operation budgets. For the AOCS implementation the following modes were defined:
sun acquisition mode, coarse transition mode, normal mode, and orbit control mode.
Also there is a stand-by mode, and FDIR modes for fault recovery.

For the simulation scenarios, the AOCS modes will be simplified and assumptions
will be made to make them more illustrative in terms of the proposed GA proposed to
organize the onboard software agents. The details of the simulation scenarios are ex-
plained in the following Subsection.

6.5.2. SIMULATION SCENARIOS

The simulation scenarios were built to satisfy the AOCS software architecture for PROBA
3 shown in Figure 6.4 as described by Cacciatore et al. (2016)

Figure 6.4: Software Architecture for the AOCS of PROBA 3 Mission by Cacciatore et al. (2016)

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

129

The implementation of the AOCS modes for the case study about PROBA 3 followed
the diagram in Figure 6.5, which shows the required inputs and output for each AOCS
mode.

Figure 6.5: Information flow for the implementation of PROBA 3 AOCS modes by Cacciatore et al. (2016)

Three simulation scenarios were synthesized in order to test the scalability of the
proposed Genetic Algorithms implemented for organizational optimization. These are
called the (a) Safe , (b) Normal and (c) FDIR scenarios. The Safe scenario describes the
operation during the Sun acquisition mode for the AOCS. The Normal scenario describes
the nominal operation mode of the AOCS, and the FDIR scenario describes the addition
of FDIR features to the normal mode to make it more robust. The number of software
agents and the interaction constraints are defined based on mission basis, so the per-
formance of the proposed algorithm can be assessed with respect to the increase in the
number of software agents. The main idea is scaling up the number of agents between
the scenarios to assess how the performance of the proposed GA is affected by the size
of the problem.

SAFE SCENARIO FOR AOCS
This scenario consists of 10 software agents interacting together inside the AOCSOBC to
perform the Sun acquisition maneuver described by Borde et al. (2004) , which is also
used as the safe mode for attitude control. The agent’s functionality are described as
follows:

• Agent 1, called AMS monitors all the other agents to collect performance data.

• Agent 2, called CAL is assumed to perform calibration procedures to sensors and
actuator on the system based on operations request.

• Agent 3 called ParDB is in charge of controlling the interaction with the on-board
database for operations parameters.

• Agents 4 and 5, called OrbEst, and AttEst, respectively, are in charge of the state
estimation of the spacecraft.

• Agents 6 and 7, called OrbCont, and AttCont are used to execute the orbit and
attitude control algorithms, respectively.

6

130 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

• Agent 8 called GyroMan implements the software capabilities required for manag-
ing the 3-axis gyroscope.

• Agent 9 called SSMan implements the software capabilities required for managing
the 3-axis Sun sensors.

• Agent 10 called PropMan implements the software capabilities required for man-
aging the 8 thrusters of the system.

Two hierarchical interactions must be satisfied during this mode. Firstly, once a com-
mand is received, the agent 2 (CAL) shall subordinate agents 8, 9 and 10 for them to ex-
ecute the calibration procedure. Second, when a change in the operation parameters of
the estimators is required, the agent 3 (ParDB) will subordinate 4 and 5 to their update.
Also, two team interactions are defined for this scenario. One is related to the attitude
estimation, where agent 4 (AttEst) team up with agents 8 and 9 for current spacecraft
attitude estimation. The second team is for agent 5 (AttCont) interacting with agent 10
to control the orientation of the satellite to keep pointing to the Sun. The AMS must be
able to interact with all agents in the organization at any moment.

NORMAL OPERATION SCENARIO

The normal operation scenario requires 20 agents to describe how the spacecraft be-
haves under nominal conditions. According to Borde et al. (2004), during the Normal
Mode of PROBA 3 its AOCS shall control the attitude of the spacecraft for its own pur-
pose and for performing the formation flying experiments described above. That in-
cludes Sun pointing maneuvers with Reaction Wheels and Star Tracker, controlling the
attitude during the experiment, specifically estimating and controlling the distance be-
tween satellites, using various sensor such as R-GPS, RF or optical metrology. Table 6.1
summarizes the list of required agents for the implementation of this operation scenario.

The following interaction constraints shall be implemented during the normal oper-
ation scenario:

• The AMS agent shall be able to interact with all agents in the organization at any
moment, forming a hierarchical structure.

• The calibration agent (CAL) interacts with agents 8, 9, 10, 11, 12, 13, 14, 15 forming
a hierarchy.

• The parameters database agent 3 (ParDB) interacts with agents 4, 5, 18, and 19
forming a hierarchical structure.

• The attitude estimation agent 4 (AttEst) forms a team structure with agents 8, 9, 11
and 12 for determining the state of its orientation.

• Finally, a team structure was created between the attitude control agent 5 (AttCont)
and agents 10, 12 and 17 for the execution of the attitude control algorithm.

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

131

FDIR OPERATION SCENARIO

This mission scenario extends the nominal mode introduced in the previous Section
with FDIR features to provide a more robust performance. It consist of 30 agents includ-
ing the agents in Table 6.1 and the listed agents in Table 6.2 to provide FIR capabilities to
the AOCS software.

It is important to remember that based of the FDIR architecture proposed in Chapter
3 the FDI capabilities are integrated on agents behaviors for sensors and actuators, and
the FIR capabilities for each of them are implemented separately as described in Table
6.2.

With respect to the constraints in interaction, FIR agents are free to interact with any
of the agents in the organization to achieve their goals. The motivation behind letting
them be free is for experimental consistency purposes, meaning that in order to keep
the constant the fixed communication cost among all the operation scenarios enable a
better comparison of the performance of the implemented GA. The next Section focuses
on how the simulation setup was configured.

Table 6.1: Functional description of agents required for the normal operation scenario

Agent ID Agent Name Agent Function

1 AMS
This agent is in charge of controlling the lifecycle of all the agents within the organization.
Also, it collects performance data.

2 CAL
The calibration agent works under request from the operators of the mission.
It perform calibration procedures to sensors and actuator on the system.

3 ParDB
ParDB is in charge of controlling the interaction with the on-board
database for operations parameters.

4 AttEst This agent implements the estimation algorithm for the attitude of the spacecraft.
5 OrbEst This agent implements the estimation algorithm for the orbit of the spacecraft.

6 AttCont
This agent implements the control algorithm designed to keep the attitude during
the formation flying experiments.

7 OrbCont
This agent implements the control algorithm designed to maintain the orbit during
the formation flying experiments.

8 GyroMan GyroMan implements the software capabilities required for managing the 3-axis gyroscope.

9 SSMan
SSMan implements the software capabilities required for managing the 3-axis
Sun sensors only during the Safe Mode.

10 PropMan
This agent is intended to provide the capabilities required operating the
8 propellant thrusters onboard the spacecraft.

11 STMan This agent controls the operation of the Star Tracker for the Sun Pointing manuever
12 RWMan RWMan manages the operation of the Reaction Wheels onboard the spacecraft.

13 MTQMan
There are 2 magneto-torquers onboard for off-loading the reactions wheels during
the Sun pointing. This agent controls their operation.

14 RGPS
This agent controls the R-GPS sensor at the beginning of the mission when it is
used as sensor input to control the inter-satellite distance.

15 RFMet
RFMet agent provides the software capabilities for performing radio-frequency
metrology during the formation flying experiment.

16 OptMet
This agent provides the software capabilities for performing optical metrology during
the formation flying experiment.

17 CGTrust CGTrust is an agent to control the cold gas thrusters to keep the inter-satellite distance.

18 ISDEst
This agent uses either the R-GPS, RF or optical metrology to estimate the inter-satellite
distance during the formation flying experiment.

19 ISDCont
This agent implements the control algorithm to keep the inter-satellite distance according
to specifications during the formation flying experiments.

20 FFTMT
FFTMT collects telemetry related to the formation flying experiments so
that it can be downloaded and analyzed later.

6

132 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

Table 6.2: Arbitrary defined FIR agents for supporting the nominal operations of PROBA’s 3 AOCS

Agent ID Agent Name Agent Function

21 FIR_Gyro
This agent enables gyroscopes identifying, isolating and establishing a
recovery procedure for faults.

22 FIR_SS
This agent enables Sun sensors identifying, isolating and establishing a
recovery procedure for faults.

23 FIR_ST
This agent enables star trackers identifying, isolating and establishing a
recovery procedure for faults.

24 FIR_RF
This agent enables the RF metrology identifying, isolating and establishing a
recovery procedure for faults.

25 FIR_Opt
This agent enables the optical metrology identifying, isolating and establishing a
recovery procedure for faults.

26 FIR_CGT
This agent enables cold gas thrusters identifying, isolating and establishing a
recovery procedure for faults.

27 FIR_GPS
This agent enables the R-GPS identifying, isolating and establishing a
recovery procedure for faults.

28 FIR_MTQ
This agent enable magneto-torquers identifying, isolating and establishing a
recovery procedure for faults.

29 FIR_RW
This agent enables the reaction wheels metrology identifying, isolating and establishing a
recovery procedure for faults.

30 FIR_MEM
This agent enables the onboard memory identifying, isolating and establishing a
recovery procedure for faults.

6.5.3. SIMULATION APPROACH
After the simulation scenarios were introduced, it is necessary to describe the setup re-
quired to collect performance data for the proposed GA algorithm implemented to min-
imize the total cost of communication within the MAS organization. The input variables
and parameters used for that implementation are summarized in Table 6.3.

Table 6.3: Description of inputs considered during the implementation of the proposed GA

Name Description Type of Input Data Type
NUM_AGENTS Number of agents in the software organization Variable Integer

COST_MAT Relative cost matrix for inter-agent communication
Variable

NxN Matrix
Floating-Point

HIERARCHIES
Hierarchical constraints that shall be satisfied during
the solution of the optimization problem.

Variable
List of Arrays

Integer

TEAMS
Team constraints that shall be satisfied during
the solution of the optimization problem.

Variable
List of Arrays

Integer

NUMB_OF_ELITE_CHROMOSOMES
Number of elite chromosomes for the
Genetic Algorithm implementation.

Constant
Parameter

Integer

TOURNAMENT_SELECTION_SIZE
Number of "tournaments" executed to select two
best individuals among these k individuals to be parents.

Constant
Parameter

Integer

MUTATION_RATE
This parameter is used to maintain genetic diversity from
one generation to the next in the topology candidate
population.

Constant
Parameter

Floating-point
between 0 and 1

POPULATION_SIZE Number of topology candidates per generation
Constant

Parameter
Integer

The operation of the GA is controlled by four variables and four parameters. The
variables are the number of agents, the relative cost matrix, the hierarchies and the team
constraints of the organization. For each case study scenario these variables need to be
specified. Also, it is important to discuss how to select the proper values for the param-
eters of the GA. As shown in Table 6.3, four parameters determine the performance of
the algorithm. These are the number of elite chromosomes, the size of the tournament
selection pool, the mutation rate and the population size.

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

133

Elitism reserves some slots in the next generation for the highest scoring chromo-
some of the current generation, without allowing that chromosome to be crossed over in
the next generation. The tournament selection size is used to choose k random individu-
als from the population and select the best two individuals among these k individuals to
be parents in the next generation. If the tournament size is large, weak individuals have
a smaller chance to be selected, which causes loss of diversity and therefore chances of
getting stuck in a local optimum.

The mutation rate is used for controlling the exploration of the search space, more
precisely to allow candidates to escape from local optima. In case of a large mutation
rate, the population has difficulties to converge to a global minimum so that it needs to
be balanced to achieve a solution within a reasonable number of iterations.

Concerning the population size, there is not a consensus about how to systemati-
cally select it. However, it is clear that it depends on the size of the problem, which is
determined by number of agents in the architecture.

The implemented algorithm provides a set of outputs that enable obtaining the best
topology candidate, as well as its cost, fitness, number iterations (generations) and exe-
cution time required to optimize communication cost. The output details are summa-
rized in Table 6.4.

Table 6.4: Description of output parameters for the implemented GA

Name Description Data type of output

CANDIDATE_TOP Is the most fitted topology produced by the genetic algorithm
1-D array of
binary values

NUM_ITERATIONS Number of iterations before achieving the target fitness Integer Value

FITNESS Measurement of how good is the solution given by the algorithm
Floating-Point
between 0-1

TOTAL_COST Is the total communication cost for candidate topology Floating-point
EXEC_TIME Time required to find a solution that satisfies the fitness target Floating-point

Using the input variables synthesized in Table 6.3, the simulation design layout in
Table 6.5 was implemented and executed.

Table 6.5: Design of Experiment for characterizing the performance of the proposed GA

NUM_AGENTS HIERARCHIES TEAMS
10 Minimal Minimal

Nominal Nominal
20 Minimal Minimal

Nominal Nominal
30 Minimal Minimal

Nominal Nominal

The number of agents in the simulation implementation varies based on the opera-
tion scenarios described in Section 6.5.2. The fixed interaction constraints are defined as
minimal, when the AMS is able to interact with all the agents, and both hierarchical and
team structures are reduced to a single fixed interaction, while it is described as nominal
when they correspond with ones defined in the description of the operations scenario.

6

134 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

For simplicity purposes the value of COST_MAT was normalized to one, so that cost of
communication between agents is assumed to be homogeneous.

Regarding the simulation parameters, Table 6.6 summarizes the values used for this
simulation scenario as a function of the problem size (NUM_AGENTS).

Table 6.6: Simulation parameters as a function of the number of agents in the software architecture.

Simulation Parameter Value
NUMB_OF_ELITE_CHROMOSOMES Round(NUM_AGENTS/4)

TOURNAMENT_SELECTION_SIZE Round(NUM_AGENTS/2)
MUTATION_RATE 1/(NUM_AGENTS*(NUM_AGENTS-1)/2)

POPULATION_SIZE NUM_AGENTS

The simulation was used for understanding the effect of the size (NUM_AGENTS) in
the performance of the GA implemented for the optimization of the total cost of com-
munication in MAS-based software architectures. The results obtained with this experi-
mental configuration are presented and discussed in the next Section.

6.5.4. RESULTS AND ANALYSIS
This section presents the results for the implementation the GA for total communica-
tion cost optimization according to the outputs described in Table 6.4 and the design of
experiment in Table 6.5 and the flow diagram in Figure 6.3. For that purpose, the simu-
lation experiments described above were repeated 30 times to collect information with
statistical significance. For each simulation scenario, it presents the best and worst re-
sult, as well as comparative figures for all operations scenarios.

SAFE OPERATION SCENARIO

The execution of the simulations was performed as described in Table 6.5 for 10 agents
using the set of nominal interactions described above. For the Safe operation scenario,
the best and worst result for the software architecture’s topology is shown in Figure 6.6.
From the results obtained for the Safe scenario, the algorithm took between 4 and 83
generations to find a feasible solution for minimizing the total cost of communication
problem from (6.3) using the fitness function defined in (6.4). The solutions obtained
varied between 20 and 24 power units, with an average total communication cost of 22
power units. In Subplots A and B, the fixed interactions are drawn as solid lines, whereas
dotted lines are the one proposed by the GA to satisfy the flexible interaction constraints.

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

135

Figure 6.6: Results of the implementation of the proposed GA for optimizing the cost of communication in
agent-based software architectures for the Safe Operation Scenario of PROBA 3 AOCS case study. (A) Worst
MAS organization topology generated. (B) Best MAS organization topology obtained. (C) Total Communica-
tion Cost evolution for the worst result obtained with the GA. (D) Total Communication Cost evolution for the
best result obtained with the GA

NORMAL OPERATION SCENARIO

The results of running the simulation 30 times for Normal operation scenario are de-
picted in Figure 6.7. Subplot A shows that the worst case solution obtained for the total
communication cost was 61 cost units, compared to 49 cost units for the best solution in
Subplot B. In both Subplots A and B the fixed interactions are shown in solid lines. The
hierarchical constraints are shown in the thicker solid line, while the teams are drawn as
thin solid lines. Agent 1 (AMS) interacts with all the agents in the organization. All coor-
dination agents (2, 3, 4 and 5) are colored differently to show a different role within the
organization. The rest of agents are drawn green to symbolize they are functional agents
without any coordination responsibility.

The number of generations required to achieve a feasible solution in the Normal op-
eration scenario varied from 54 to 1400. The average number of generations required
was 195. The average total communication cost for this experiment was calculated as 54
cost units. The time to find a solution was in average 98 seconds. Subplots C and D show
a particular behavior related to how the algorithm handled local vs. global optimum. In
Subplot C around generation 30, the algorithm found a local optimum, so it increased
the exploration to see if this was a local or a global optimum, then it found that required
more iterations to find a globally optimal solution. The same behavior was observed in

6

136 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

Subplot D around the 80th generation.

Figure 6.7: Results of the implementation of the proposed GA for optimizing the cost of communication in
agent-based software architectures for the Normal Operation Scenario of PROBA 3 AOCS case study. (A) Worst
MAS organization topology generated. (B) Best MAS organization topology obtained. (C) Total Communica-
tion Cost evolution for the worst result obtained with the GA. (D) Total Communication Cost evolution for the
best result obtained with the GA

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

137

FDIR OPERATION SCENARIO

The FDIR operation scenario uses the same set of fixed interactions constraints as the
Normal Operation Scenario. It gives freedom to the FIR agents to interact freely with all
the others agents for isolation and recovery configuration. Same as before, Subplots A
and B show the worst and the best solution obtained using the algorithm. Then Sub-
plots C and D show how the total cost of communication evolves. The spikes in these
evolution profiles show the ability of the algorithm to balance exploration and exploita-
tion capabilities for achieving a globally optimal solution. It is clear that the longer the
algorithm evolves, the better solution that is achieved. That is the same for all the oper-
ational scenarios.

Figure 6.8: Results of the implementation of the proposed GA for optimizing the cost of communication in
agent-based software architectures for the FDIR Operation Scenario of PROBA 3 AOCS case study. (A) Worst
MAS organization topology generated. (B) Best MAS organization topology obtained. (C) Total Communica-
tion Cost evolution for the worst result obtained with the GA. (D) Total Communication Cost evolution for the
best result obtained with the GA

ALGORITHM PERFORMANCE ANALYSIS

This part of the experiment consisted in setting the minimal number of interactions and
running the proposed GA 30 times for 5 different scenarios with 10, 20, 30, 40 and 50
agents to collect performance data on the total communication cost, the number of
generations and the time required to find a solution. Figure 6.9 shows how these out-
put variables vary according to the number of agents required to implement a particular

6

138 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

MAS-based software architecture. For this test, the parameters of implemented GA were
tuned to get the best result for simulation time. Table 6.7 shows how the parameters of
the algorithm were set. These parameters were adjusted using a trial and error approach.

Table 6.7: Simulation parameters used to characterize the problem size effect in the optimization solution with
the proposed GA

Simulation Parameter Value
NUMB_OF_ELITE_CHROMOSOMES 4

TOURNAMENT_SELECTION_SIZE 8
MUTATION_RATE 1/(NUM_AGENTS*(NUM_AGENTS-1)/2)

POPULATION_SIZE 10

Figure 6.9: Comparison of (A) Total Communication Cost (CT), (B) Number of Generations and (C) Time to
find a Solution (TTFS) for 5 operations scenarios to assess the effect of increasing the problem size in the GA
output’s performance.

6.5. TOPOLOGICAL OPTIMIZATION FOR AOCS SOFTWARE

6

139

RESULTS DISCUSSION

After the execution of the experiments, the obtained results were analyzed for under-
standing the behavior of the output variables as a function of the size problem size. The
second element analyzed was the effect of changing the GA parameters on the algo-
rithm’s performance. The third aspect analyzed was a variance of the obtained solu-
tions as a function of the problem size, and finally, the GA’s exploration vs. exploitation
performance was observed to understand how the algorithm dealt with local optimal
solutions.

As shown in Figure 6.9, either the total communication cost (CT) as well as the num-
ber of generations required to find a possible solution scale linearly with the size of the
problem. However, for the time required to find a solution, this is not the case. After
post-processing, the data the best fit for a function able to predict the time of finding a
solution as a function of the problem size can be expressed using a polynomial function
of order 3. The coefficient of determination obtained for this case was R2 = 0.97. When
comparing the performance of the implemented GA to the BFA shown in Figure 6.2, it
is clear that the first one is not only faster but also able to find solutions with less time
variability, which is a desirable feature for a design tool.

The effect of changing the implementation parameters for the proposed GA was as-
sessed using the three operation scenarios described above. The configurations of these
parameters were set according to Table 6.6 and Table 6.9. For each operation scenario
the total communication cost, number of generations and time to find a solution were
analyzed using a 2-sample t-test to determine statistical significance for both sets of pa-
rameters. The analysis gave no statistical significance for the total communication cost
in any of the scenarios. That means that in all cases, no matter the configuration the
proposed GA can converge to a global solution. The two-sample t-test was performed
assuming equal variance for the input data, so it made the test more strict.

The variance of the solutions obtained using the proposed GA was analyzed using the
minimal fixed interactions with the tuning parameters from Table 6.9. It was observed
that when the number of agents in the organization increased, the variability of the so-
lutions obtained also increased. That has to do with the fact that the number of feasible
solutions is determined by the number of agents as well so that there is a direct correla-
tion between the solution variability and the size of the problem. This behavior can be
observed in (6.3) where the flexible interactions are defined arbitrarily as a function of
the problem size.

The final aspect to discuss after the implementation and characterization of the pro-
posed GA is the balance between exploration and exploitation of the knowledge of the
algorithm to reach a feasible solution as soon as possible. It was controlled with imple-
mentation parameters of the proposed GA. It was proven that reducing the population
size, the tournament selection size and the number of elite chromosomes impacted the
time of convergence of the algorithm positively, but increased the number of generations
required to find a feasible solution. The mutation rate was kept constant as a function
of the problem size to avoid falling in locally optimal solutions so that the algorithm was
able to increase exploration over exploitation when the algorithm found a family of can-
didate solutions.

6

140 6. ORGANIZATIONAL OPTIMIZATION OF MULTI-AGENT BASED SOFTWARE

6.5.5. VALIDATION OF RESULTS
The validation of the results obtained from the development of this Chapter was divided
into two parts. In one hand, there was a comparison of the results of the proposed GA
with other search algorithms (e.g, BFA) to discuss the impact in the performance and the
quality of the numerical results was performed. On the other hand, the applicability of
this algorithm for satellite’s AOCS software design had to be demonstrated.

Regarding the performance of the proposed GA, it was compared to a Brute Force
Algorithm implemented to compare the results obtained for similar problem size and
interaction constraints. Concerning the ability to find a solution, the BFA was able to
find a solution for up to 13 agents, while the proposed GA was able to solve problems
with 50 agents. The GA shown less time variability compared to the BFA. Both, the BFA
and the GA were compared experimentally using the same programming language and
problem sizes as shown in Figures 6.2 and Figure 6.9 (plot C), respectively. In terms of
time performance, the proposed GA is up to 200 times faster than the BFA to find a fea-
sible solution.

From the application point of view, the presented operation scenarios were com-
pared with technical documents to validate the number and type of functionalities re-
quired to be implemented within the OBSW of a satellite mission. There was a good
correspondence between the number of functions and the capabilities required so that
the proposed scenarios were deemed realistic.

6.6. CONCLUSIONS AND REMARKS
This Chapter has introduced and described the use of Genetic Algorithms for organi-
zational optimization of MAS-based software architectures. The algorithm was used to
illustrate its applicability in a case study with a highly autonomous mission inspired on
PROBA 3 AOCS operational modes.

This Chapter provides a mathematical formulation for the optimization problem of
minimizing the communication cost in Multi-Agent Systems under fixed and flexible in-
teraction constraints. It also proposes the adoption of randomized search strategies. The
selection of the optimization algorithm included the assessment of Genetic Algorithms
and Particle Swarm Optimization, resulting in the design and implementation of an easy
to use tool for organizational optimization of MAS-based software architectures.

The Chapter provides a characterization of the proposed algorithm to show perfor-
mance aspects such as time to find a solution and number of generations required to
find a feasible solution so that designers can improve and speed up their software devel-
opment process.

The algorithm shows that independently from its implementation parameters it is
able to find a global solution that satisfies the proposed constraints. It also showed that
keeping fixed the implementation parameters is beneficial for the performance of the
algorithm from a time perspective.

Future work will consider the implementation of additional strategies such as PSO
for comparison purposes. Also for the implemented GA, a sensitivity analysis will be
conducted for identifying the best operating point of the algorithm for MAS-based soft-
ware topological optimization. Also, as part of the improvements of the algorithm, the
value of the parameter matrix COST_MAT needs to be estimated for each mission.

7
CONCLUSIONS AND OUTLOOK

"I believe in the future. It is wonderful because it stands on what has been achieved."

Sergei Korolev

Abstract

This Chapter summarizes the conclusions obtained as the result from the investigation
formulated in the Introduction chapter. Also, the main innovations and contributions of
this thesis are highlighted as well as the outlook for future research. Finally, some recom-
mendations for this research are given for those working on similar topics or in similar
fields.

141

7

142 7. CONCLUSIONS AND OUTLOOK

7.1. RESEARCH SYNTHESIS AND CONCLUSIONS
This thesis focused on the development of a paradigm for designing and implementing
agent-based onboard software architectures to support fault tolerance in the onboard
software of small satellite subsystems. The proposed approach is able to handle the in-
creasing onboard software complexity, and it enables native features for fault detection,
isolation, and recovery of critical system components in small satellite missions.

The architectures, models, and methodologies presented on this dissertation can be
used as tools for designing more robust software required for performing more complex
space missions involving autonomous operations and high-speed ground link commu-
nications. During the development of this dissertation, three research questions (RQs)
were defined in Section 1.7.2. The first research question was divided in two parts, one
to the address the application’s implications of agent-based software architectures and
another to address the infrastructure required for implementing agent-based software
architectures. The other two research questions (2 and 3) were addressed in Chapter 5
and Chapter 6, respectively. The following paragraphs elaborate on the key findings and
main conclusions.

Chapter 3 provides the answer to the Research Question 1, particularly to the sub-
question (a) What is the best strategy for MAS-based FDIR implementation in small
satellites? The question was addressed by first identifying the required functionalities
needed for FDIR: FDI and FIR features. A literature review was conducted to identify
methods and techniques that can be applied for control systems.

The proposed agent-based FDIR architecture considered both the functionalities and
the methods surveyed to come up with a design that focused on implementation con-
cerns such as maintainability and communication overhead. A trade-off process was im-
plemented to select the strategy that best fitted the needs of small satellites missions. As
a result of the trade-off analysis the selected architecture established a fully distributed
FDI capabilities while keeping a centralized FIR approach. For the implementation of
FDI, model-based methods are more robust than signal-based or data-driven techniques.
On the other hand, for fault recovery, data-driven methods, in particular, the statistical
techniques are a promising solution for autonomous systems, mostly due to their flexi-
bility of implementation.

Two operation scenarios were implemented using small satellite missions. The case
study focused on the components of the ADCS, particularly on the gyroscope perfor-
mance. The operation scenarios implemented numerical simulations to show the fea-
sibility of the proposed architecture and FDI and FIR methods. Overall, the proposed
agent FDIR architecture showed positive results with respect to response time, commu-
nication overhead, fault resilience, and maintainability when compared with the other
architecture candidates explored.

Chapter 4 was also focused on addressing Research Question 1, particularly sub-
questions (b) What are the most critical services that onboard computers shall provide
to implement MAS-based software architectures in ADCS computers? and (c) How to
balance services workload for an efficient MAS-based OBSW architecture implemen-
tation? Communication was identified as the most critical capability required for the
design and implementation of agent-based software architecture for satellite systems.
The research found that agent communication languages and protocols play a signifi-

7.1. RESEARCH SYNTHESIS AND CONCLUSIONS

7

143

cant role in the performance of MAS-based systems. For that purpose, Agent Interaction
Protocols (AIP) were studied in detail to understand the advantages of using them as a
mean for increasing code modularity and re-use. As the main result of that analysis, a
software communication architecture was proposed and described. That architecture
can be adopted for its use in satellite systems with distributed data processing on-board.

The second part of that Chapter was devoted to present, implement and character-
ize a bus load and utilization model for a distributed data bus onboard a satellite. The
presented model was analytically conceptualized and compared to discrete time sim-
ulation scenarios using the ADCS subsystem as the case study. The simulation results
showed an agreement between the analytic and the simulated model for nominal mis-
sion conditions. Also, it presented a sensitivity analysis to understand the impact on bus
performance of scalability and implementation parameters, such as the sensor sampling
period and the bus synchronization period. The chapter also proposed an algorithm that
allows balancing the performance of the communication bus by controlling bus config-
uration parameters.

Chapter 5 addressed Research Question 2 on How to model the ADCS software ar-
chitectures for small satellites using a multi-agent systems approach? For that pur-
pose, a model-based methodology for agent-oriented software was introduced and de-
scribed in detail. The proposed methodology established a meta-modeling framework
and a workflow that specified the activities and steps required to complete an end-to-
end software design process for satellite systems.

The proposed meta-model extends state-of-art meta-models to include Fault De-
tection Isolation and Recovery features by design on MAS-based software. Also, the
proposed methodology described a workflow that integrates the analysis, design, im-
plementation and verification activities into a single workflow that enables end-to-end
agent-based onboard software development. The methodology was demonstrated by
implementing the case study with the ADCS of a satellite. The results showed the feasi-
bility of the methodology for modeling satellite’s onboard software. However, the main
result of the case study was its utilization for improving ADCS performance by integrat-
ing FDIR capabilities with low implementation overhead. The validation of the proposed
methodology focused on four critical elements: completeness, consistency, feasibility
and testing capabilities.

Finally, Chapter 6 answered Research Question 3 on How to optimize multi-agent
system organization according to ADCS mission requirements and constraints? In
that chapter the main effort was put on obtaining a proper formulation of the optimiza-
tion problem. That required efforts on translating the requirements and constraints of
space software design to interaction constraints in the MAS-based software architecture.
Also, it required defining a cost function for the total cost of communication, so that
the organization of the software agents minimized the cost communication between
agents while satisfying pre-established structures required by design. This Chapter also
reviewed the strategies used in MAS design for their organization. It focused on imple-
menting hierarchical and team organizations to provide fixed structures on the system
and using randomized search heuristics for achieving a sub-optimal design that min-
imized the total cost of communication. The optimization problem was solved using
customized genetic algorithms that enabled locking fixed interaction genes so that in-

7

144 7. CONCLUSIONS AND OUTLOOK

teraction constraints representing mission requirements were satisfied. The simulation
case study was focused on demonstrating the advantage of using randomized search for
different problem sizes and showing the impact of the network size in the time to find a
solution and the number of iterations required for achieving the fitness target.

7.2. INNOVATIONS AND CONTRIBUTIONS
As result of this dissertation the following innovations were accomplished:

1. An agent-based FDIR software architecture

A novel FDIR architecture combining model-based and data-driven techniques
was proposed using an agent-based approach. The main advantage of the pro-
posed architecture is its ability to instantly detect the fault of components, and
triggering specific recovery features. The proposed architecture also balances out
response time, communication overhead, fault resilience, and maintainability, so
that the implementation of that architecture is feasible for highly resources con-
strained systems.

2. A bus utilization model for distributed data communication buses

An analytic model was proposed to describe the bus utilization behavior under
nominal conditions for a distributed spacecraft data bus implementing CAN com-
munication protocol. The proposed model took as inputs design parameters such
as sensor data collection period, bus synchronization period and data rate. Also,
it considered the scalability of the network as part of a sensibility analysis for un-
derstanding the performance issues that can be produced as the number of com-
ponents in the bus increase. The model was verified against a discrete time nu-
merical simulation. The results showed agreement between the analytical model
and the discrete simulation model with a difference of less than 5% in the nominal
operation region.

3. A Model-driven methodology for designing fault-tolerant MAS-based software

Improving the modeling techniques and artifacts for software eases its implemen-
tation and reduces its development time. The meta-model proposed in Chapter
5 extends state-of-the-art MAS-based methodologies to integrate FDIR elements
to increase resilience in satellite’s onboard software. The proposed methodology
offers an end-to-end workflow for the analysis, design and verification and valida-
tion phases.

4. An open software library for agent-based software development in miniaturized
satellites

The implementation artifacts for the Methodology proposed in Chapter 5 were
worked out into an open software library for highly miniaturized systems. As a re-
sult, a Multi-Agent Systems for Embedded systems toolkit was released in GitHub
as MAES. The library was targeted and tested on the Delfi-PQ micro-controller so
that it can be used for the implementation of the onboard software in Pocket-Qube
missions.

https://github.com/johcarvajal/MAES-Framework

7.3. RESEARCH OUTLOOK

7

145

5. A genetic algorithm for optimal organization of agent-based software

In Chapter 6 the proper formulation of the optimization of total communication
cost problem was demonstrated using agent-based architectures with fixed inter-
action constraints. It allowed a search heuristic that balances exploitation and ex-
ploration to find the best solution in the shortest time possible. That algorithm can
be also adapted to analyze communication cost in physically distributed systems
such as satellite communication constellations.

7.3. RESEARCH OUTLOOK
This thesis focused on addressing the problem of software complexity through the use
of agent-based software architectures. That was approached by extending the state-of-
art component-based design implemented with object-oriented paradigms to include
multi-agent systems concepts. The development of this dissertation required propos-
ing new architectures, models and methodologies to enable the adoption of MAS-based
software architectures as a robust approach for designing fault-tolerant OBSW.

Future space missions with small satellites will require advanced software capabili-
ties to boost their performance and enable autonomous fault detection, isolation, and
recovery. That requires enabling new computational models and artifacts that can be
adopted in the design and development of onboard-software. Besides the new appli-
cations that agent-based software architectures support, it is necessary to provide an
outlook of their implementation challenges.

7.3.1. NEW APPLICATIONS
This dissertation provides more insight into how agent-based software architectures im-
prove the reliability of space missions. This supports:

1. Precise Pointing Capabilities: Agent-based software architectures provide em-
bedded capabilities for proactive FDIR that can be used to improve performance
and reliability of missions requiring precise pointing capabilities. Examples were
used along the dissertation with laser communication case studies as well as for-
mation flying missions.

2. Advanced Distributed and Fractionated Space Systems: The adoption of a dis-
tributed computing model based on Multi-Agent Systems supports the develop-
ment of a novel application with distributed space systems, for instance, satellite
constellations, robots swarming and fractionated space systems. That will open
new opportunities for space applications that improve its societal relevance, for
instance, quality of life of Earth’s population (e.g., increasing knowledge about cli-
mate change).

3. Onboard Deep Learning Capabilities: Machine learning, particularly deep learn-
ing is a new tool adopted for increasing performance of autonomous systems such
as self-driving cars, or earlier disease detection in medicine. Agent-based architec-
tures enable the possibility to bring deep learning to the onboard software of satel-
lites to open new possibilities for autonomous operations, but mainly for proactive
fault-detection and recovery.

7

146 7. CONCLUSIONS AND OUTLOOK

4. Network configuration for Satellite Constellations: The methodology, models
and algorithms presented as results of this dissertation can be adapted and applied
on the implementation of the network configuration of satellite constellations for
optimizing communication cost and improving fault resilience.

7.3.2. IMPLEMENTATION ASPECTS
The adoption of a new computational model for satellite’s onboard software comes with
several challenges related mainly to the qualification of agent-based software architec-
tures for space systems operations. That will require an incremental approach to qualify
the software libraries and methodologies using technology demonstration missions.

7.4. RECOMMENDATIONS
This dissertation addressed research activities related to the adoption of agent-based
software architectures to design fault-tolerant software for small satellites. However,
there is a list of activities to complement the results presented in this thesis:

1. Demonstrate the proposed agent-based FDIR architecture in a satellite mission.

Using the library co-developed with Chan-Zheng (2017) as a spin-off of this disser-
tation, it is feasible to implement the proposed agent-based FDIR architecture in a
mission with nano-satellites or pico-satellites. Currently, the library is supported
for the hardware and software stack of Delfi-PQ. It is recommended to port the
library and add features for nano-satellite missions. That development will be car-
ried out by the Space Systems Laboratory at the Costa Rica Institute of Technology
(TEC).

2. Develop a testbed for validating the proposed bus utilization model for CAN

During this research, an analytic and a simulation model was developed to charac-
terize the busload of a CAN bus for distributed command and control data buses
of satellites. This model required more validation so that an initial set of experi-
ments was conducted by Orsel (2016). A further development of this testbed is of
interest since it enables a more tailored design of the communication capabilities
onboard satellites, but also will allow more in-depth experiments to be carried on
data bus performance.

3. Adapt the MASSA methodology to use it with Capella Modeling tools

Originally, the Multi-Agents Systems for Satellite Applications methodology was
planned for its implementation using SysML artifacts and following the workflow
proposed in Chapter 5. Recent developments at ESA show the potential of using
the Arcadia model and its implementation tools such as C apel l aT M for Model-
based systems engineering of spacecraft. There is a recommendation on develop-
ing activities to match and migrate MASSA to the Arcadia meta-model, so there
are more support and adoption opportunities from the space community for the
features and innovations proposed by MASSA. Also, model-to-model conversion
artifacts can be implemented as the ones developed in the work of der Gaag (2017).

7.4. RECOMMENDATIONS

7

147

4. Implement comparative search heuristics such as PSO and Ant Colony Opti-
mization for the organization of agent-based software.

As a result of the trade-off analysis and due to time constraints, the implementa-
tion of the total cost optimization algorithm focused on the use of Genetic Algo-
rithms. The results were compared with the Brute Force Algorithm. There is room
for improvement so that other search heuristics can be implemented for compar-
ison purposes. For instance, a PSO can be carried out or implementing Ant colony
optimization algorithms. This development can be for instance followed up as a
Master thesis in Computer Sciences.

REFERENCES

Alghamdi, M. I., Jiang, X., Zhang, J., Zhang, J., Jiang, M., and Qin, X. (2017). Towards two-
phase scheduling of real-time applications in distributed systems. Journal of Network
and Computer Applications, 84:109 – 117.

Aljarah, I., Faris, H., and Mirjalili, S. (2018). Optimizing connection weights in neural
networks using the whale optimization algorithm. Soft Computing, 22(1):1–15.

Antonova, I. and Batchkova, I. (2008). Development of multi-agent control systems using
uml/sysml. In 2008 4th International IEEE Conference Intelligent Systems, volume 1,
pages 6–26. IEEE.

Anwar, S. and Niu, W. (2014). A nonlinear observer based analytical redundancy for
predictive fault tolerant control of a steer-by-wire system. Asian Journal of Control,
16(2):321–334.

Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M. (2011). An ab-
stract architecture for virtual organizations: The thomas approach. Knowledge and
Information Systems, 29(2):379–403.

Arruego, I., Guerrero, M., Rodriguez, S., Martinez-Oter, J., Jiménez, J. J., Dominguez, J. A.,
Martín-Ortega, A., De Mingo, J., Rivas, J., Apestigue, V., et al. (2009). Owls: A ten-year
history in optical wireless links for intra-satellite communications. IEEE Journal on
selected areas in communications, 27(9).

Artursson, T., Eklöv, T., Lundström, I., Mårtensson, P., Sjöström, M., and Holmberg, M.
(2000). Drift correction for gas sensors using multivariate methods. Journal of chemo-
metrics, 14(5-6):711–723.

Atkinson, C. and Kuhne, T. (2003). Model-driven development: a metamodeling founda-
tion. IEEE Software, 20(5):36–41.

Atkinson, C. and Kühne, T. (2008). Reducing accidental complexity in domain models.
Software & Systems Modeling, 7(3):345–359.

Auger, A. and Doerr, B. (2011). Theory of randomized search heuristics: Foundations and
recent developments, volume 1. World Scientific.

Baheti, R. and Gill, H. (2011). Cyber-physical systems. The impact of control technology,
12:161–166.

Bak, T. (1999). Spacecraft attitude determination: A magnetometer approach. PhD thesis,
Aalborg Universitetsforlag.

149

150 REFERENCES

Banker, R. D., Datar, S. M., Kemerer, C. F., and Zweig, D. (1993). Software complexity and
maintenance costs. Communications of the ACM, 36(11):81–95.

Barnhart, D. J., Vladimirova, T., Baker, A. M., and Sweeting, M. N. (2009a). A low-cost fem-
tosatellite to enable distributed space missions. Acta Astronautica, 64(11-12):1123–
1143.

Barnhart, D. J., Vladimirova, T., and Sweeting, M. N. (2007). Very-small-satellite design
for distributed space missions. Journal of Spacecraft and Rockets, 44(6):1294–1306.

Barnhart, D. J., Vladimirova, T., and Sweeting, M. N. (2009b). Satellite miniaturization
techniques for space sensor networks. Journal of Spacecraft and Rockets, 46(2):469.

Basili, V. R. and Perricone, B. T. (1984). Software errors and complexity: An empirical
investigation. Communications of the ACM, 27(1):42–52.

Bekkeng, J. (2009). Calibration of a novel mems inertial reference unit. IEEE Transactions
on Instrumentation and Measurement, 58(6):1967–1974.

Bellantoni, J. and Dodge, K. (1967). A square root formulation of the kalman-schmidt
filter. AIAA journal, 5(7):1309–1314.

Bellifemine, F., Caire, G., Vitaglione, G., Rimassa, G., and Greenwood, D. (2005). The
JADE Platform and Experiences with Mobile MAS Applications, pages 1–20. Birkhäuser
Basel, Basel.

Bellifemine, F., Poggi, A., and Rimassa, G. (2000). Developing multi-agent systems with
jade. In International Workshop on Agent Theories, Architectures, and Languages,
pages 89–103. Springer.

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing multi-agent systems
with JADE, volume 7. John Wiley & Sons.

Belward, A. S. and Skøien, J. O. (2015). Who launched what, when and why; trends in
global land cover observation capacity from civilian earth observation satellites. ISPRS
Journal of Photogrammetry and Remote Sensing, 103:115–128.

Béounes, C., Aguéra, M., Arlat, J., Bachmann, S., Bourdeau, C., Doucet, J.-E., Kanoun, K.,
Laprie, J.-C., Metge, S., de Souza, J. M., et al. (1993). Surf-2: A program for dependabil-
ity evaluation of complex hardware and software systems. In Fault-Tolerant Comput-
ing, 1993. FTCS-23. Digest of Papers., The Twenty-Third International Symposium on,
pages 668–673. IEEE.

Bergenti, F., Caire, G., and Gotta, D. (2014). Agents on the move: Jade for android devices.
In WOA, volume 1260.

Bittner, B., Bozzano, M., Cimatti, A., De Ferluc, R., Gario, M., Guiotto, A., and Yushtein,
Y. (2014a). An integrated process for fdir design in aerospace. In International Sympo-
sium on Model-Based Safety and Assessmemt, pages 82–95. Springer.

REFERENCES 151

Bittner, B., Bozzano, M., Cimatti, A., De Ferluc, R., Gario, M., Guiotto, A., and Yushtein,
Y. (2014b). An integrated process for FDIR design in aerospace. In Ortmeier, F. and
Rauzy, A., editors, Model-Based Safety and Assessment, volume 8822 of Lecture Notes
in Computer Science, pages 82–95. Springer International Publishing.

Blickle, T. and Thiele, L. (1996). A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation, 4(4):361–394.

Bo, Z., Bo, D., and Yuanchun, L. (2011). Support vector machine observer based fault
detection for reconfigurable manipulators. 30th Chinese Control Conference (CCC),
pages 3979–3984.

Boehm, B. W. (1984). Verifying and validating software requirements and design specifi-
cations. IEEE software, 1(1):75.

Borde, J., Teston, F., Santandrea, S., and Boulade, S. (2004). Feasibility of the proba 3 for-
mation flying demonstration mission as a pair of microsats in gto. In Small Satellites,
Systems and Services, volume 571.

Bouwmeester, J., Brouwer, G., Gill, E., Monna, G., and Rotteveel, J. (2010). Design status
of the delfi-next nanosatellite project. In 61st International Astronautical Congress,
Prague, Czech Republic, 27 September-1 October 2010. International Astronautical Fed-
eration.

Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V. Y., Noll, T., and Roveri, M. (2009). The
compass approach: Correctness, modelling and performability of aerospace systems.
In International Conference on Computer Safety, Reliability, and Security, pages 173–
186. Springer.

Bravo, M., Silva-L, B., et al. (2015). Multi-agent communication heterogeneity. In 2015
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 583–588. IEEE.

Broster, I. and Burns, A. (2001). Timely use of the CAN protocol in critical hard real-time
systems with faults. In Real-Time Systems, 13th Euromicro Conference on, 2001., pages
95–102. IEEE.

Brouwer, D. and Clemence, G. M. (2013). Methods of celestial mechanics. Elsevier.

Burns, A. and McDermid, J. A. (1994). Real-time safety-critical systems: analysis and
synthesis. Software Engineering Journal, 9(6):267–281.

Butcher, J. (2007). Runge-kutta methods. Scholarpedia, 2(9):3147.

Cacciatore, F., Sánchez, R., Agenjo, A., Puente, N., Ardura, C., Olier, L., Gómez, V.,
Saponara, M., and Saavedra, G. (2016). Rapid deployment of design environment for
euclid AOCS design. 6th International Conference on Astrodynamics Tools and Tech-
niques.

152 REFERENCES

Calvaresi, D., Sernani, P., Marinoni, M., Claudi, A., Balsini, A., Dragoni, A. F., and But-
tazzo, G. (2016). A framework based on real-time os and multi-agents for intelligent
autonomous robot competitions. In Industrial Embedded Systems (SIES), 2016 11th
IEEE Symposium on, pages 1–10. IEEE.

Cederman, D., Hellstrom, D., Sherrill, J., Bloom, G., Patte, M., and Zulianello, M. (2014).
Rtems smp for leon3/leon4 multi-processor devicies. In DASIA 2014-DAta Systems In
Aerospace, volume 725.

Chan-Zheng, C. (2017). MAES: A multi-agent systems framework for embedded systems.
Master’s thesis, Faculty of Electrical Engineering, Mathematics and Computer Science
at Delft University of Technology, the Netherlands.

Chaves-Jiménez, A., Guo, J., and Gill, E. (2017). Impact of atmospheric coupling between
orbit and attitude in relative dynamics observability. Journal of Guidance, Control, and
Dynamics, pages 1–8.

Chen, J. and Patton, R. (1999). Basic principles of model-based fault diagnosis. In Ro-
bust Model-Based Fault Diagnosis for Dynamic Systems, volume 3 of The International
Series on Asian Studies in Computer and Information Science, pages 19–64. Springer
US.

Chen, J. J.-Y. and Su, S.-W. (2003). Agentgateway: A communication tool for multi-agent
systems. Information Sciences, 150(3):153 – 164. Internet Computing.

Chien, S., Sherwood, R., Burl, M., Knight, R., Rabideau, G., Engelhardt, B., Davies, A.,
Zetocha, P., Wainright, R., Klupar, P., et al. (2014). A demonstration of robust planning
and scheduling in the techsat-21 autonomous sciencecraft constellation. In Sixth Eu-
ropean Conference on Planning.

Chopra, A. K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N., Jones, A.
J. I., Singh, M. P., and Yolum, P. (2013). Research directions in agent communication.
ACM Trans. Intell. Syst. Technol., 4(2):20:1–20:23.

Chu, J., Guo, J., and Gill, E. K. (2013). Fractionated space infrastructure for long-term
earth observation missions. In Aerospace Conference, 2013 IEEE, pages 1–9. IEEE.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,
36(3):287 – 314. Higher Order Statistics.

Cooper, A. E. and Chow, W. T. (1976). Development of on-board space computer systems.
IBM Journal of Research and Development, 20(1):5–19.

Crassidis, J. L., Markley, F. L., and Cheng, Y. (2007). Survey of nonlinear attitude estima-
tion methods. Journal of guidance control and dynamics, 30(1):12.

Curey, R. K., Ash, M. E., Thielman, L. O., and Barker, C. H. (2004). Proposed ieee inertial
systems terminology standard and other inertial sensor standards. In Position Loca-
tion and Navigation Symposium, 2004. PLANS 2004, pages 83–90. IEEE.

REFERENCES 153

da Silva, V. T. and de Lucena, C. J. (2007). Modeling multi-agent systems. Communica-
tions of the ACM, 50(5):103–108.

D’Angelo, G., Tipaldi, M., Glielmo, L., and Rampone, S. (2017). Spacecraft autonomy
modeled via markov decision process and associative rule-based machine learning.
In Metrology for AeroSpace (MetroAeroSpace), 2017 IEEE International Workshop on,
pages 324–329. IEEE.

Davis, L. (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

Degueule, T., Combemale, B., and Jézéquel, J.-M. (2017). On Language Interfaces. In
Meyer, B. and Mazzara, M., editors, PAUSE: Present And Ulterior Software Engineering,
pages 1–100. Springer.

Deloach, S. (2004). The mase methodology. Methodologies and software engineering for
agent systems, pages 107–125.

der Gaag, J. V. (2017). SysML to SLIM transformation methodology. Master’s thesis, Fac-
ulty of Aerospace Engineering at Delft University of Technology, the Netherlands.

do Nascimento, N. M. and de Lucena, C. J. P. (2017). Fiot: An agent-based framework for
self-adaptive and self-organizing applications based on the internet of things. Infor-
mation Sciences, 378:161–176.

Doncaster, B., Shulman, J., Bradford, J., and Olds, J. (2016). Spaceworks’ 2016 nano/mi-
crosatellite market forcast. In AIAA/USU Conference on Small Satellites.

Dou, C., Yue, D., Han, Q.-L., and Guerrero, J. M. (2017). Multi-agent system-based event-
triggered hybrid control scheme for energy internet. IEEE Access, 5:3263–3272.

Dvorak, D. L. and Lyu, M. (2009). Nasa study on flight software complexity. NASA office
of chief engineer.

Eickhoff, J. (2011). Onboard Computers, Onboard Software and Satellite Operations: An
Introduction. Springer Science & Business Media.

El Faouzi, N.-E., Leung, H., and Kurian, A. (2011). Data fusion in intelligent transporta-
tion systems: Progress and challenges–a survey. Information Fusion, 12(1):4–10.

El-Sheimy, N., Hou, H., and Niu, X. (2008). Analysis and modeling of inertial sen-
sors using allan variance. IEEE Transactions on Instrumentation and Measurement,
57(1):140–149.

Elsenbroich, C. and Gilbert, N. (2014). Agent-based modelling. In Modelling norms,
pages 65–84. Springer.

Etkin, B. and Hughes, P. (1967). Explanation of the anomalous spin behavior of satellites
with long, flexible antennae. Journal of Spacecraft and Rockets, 4(9):1139–1145.

154 REFERENCES

Fayyaz, M., Vladimirova, T., and Caujolle, J.-M. (2012). Adaptive middleware design
for satellite fault-tolerant distributed computing. In Adaptive Hardware and Systems
(AHS), 2012 NASA/ESA Conference on, pages 23–30. IEEE.

Feiler, P. H. (2010). Model-based validation of safety-critical embedded systems. In
Aerospace Conference, 2010 IEEE, pages 1–10. IEEE.

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of orga-
nizations in multi-agent systems. In Multi Agent Systems, 1998. Proceedings. Interna-
tional Conference on, pages 128–135. IEEE.

Ferber, J., Gutknecht, O., and Michel, F. (2003). From agents to organizations: an orga-
nizational view of multi-agent systems. In International Workshop on Agent-Oriented
Software Engineering, pages 214–230. Springer.

Field, M. and Pence, D. (1984). Spacecraft attitude, rotations and quaternions. UMAP
Modules, 5(2):130.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). KQML as an agent communi-
cation language. In Proceedings of the Third International Conference on Information
and Knowledge Management, CIKM ’94, pages 456–463, New York, NY, USA. ACM.

FIPA (2002a). Agent message transport service specification. Webpage.

FIPA (2002b). Fipa agent message transport service specification. http://www.fipa.
org/specs/fipa00067/.

Fipa, A. (2002). FIPA ACL message structure specification. Foundation for Intelligent
Physical Agents, http://www. fipa. org/specs/fipa00061/SC00061G. html (30.6. 2004).

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382.

Fonseca, S., Griss, M., and Letsinger, R. (2001). Evaluation of the zeus mas framework.
In Second International Workshop in Software Agents and Workflows for Systems Inter-
operability.

Fowler, M. (2010). Domain-specific languages. Pearson Education.

Franklin, G. F., Powell, J. D., Emami-Naeini, A., and Powell, J. D. (1994). Feedback control
of dynamic systems, volume 3. Addison-Wesley Reading, MA.

Furano, G. and Menicucci, A. (2018). Roadmap for on-board processing and data han-
dling systems in space. In Dependable Multicore Architectures at Nanoscale, pages
253–281. Springer.

Gaisler, J. (2002). A portable and fault-tolerant microprocessor based on the sparc v8
architecture. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings. In-
ternational Conference on, pages 409–415. IEEE.

http://www.fipa.org/specs/fipa00067/
http://www.fipa.org/specs/fipa00067/

REFERENCES 155

Gangl, E. C. (2013). A case study on us government military standard development. IEEE
Aerospace and Electronic Systems Magazine, 28(7):40–45.

Gao, S., Clark, K., Unwin, M., Zackrisson, J., Shiroma, W., Akagi, J., Maynard, K., Garner,
P., Boccia, L., Amendola, G., et al. (2009). Antennas for modern small satellites. IEEE
Antennas and Propagation Magazine, 51(4).

Gao, Z., Cecati, C., and Ding, S. (2015a). A survey of fault diagnosis and fault-tolerant
techniques; part II: Fault diagnosis with knowledge-based and hybrid/active ap-
proaches. IEEE Transactions on Industrial Electronics, 62(6):3768–3774.

Gao, Z., Cecati, C., and Ding, S. X. (2015b). A survey of fault diagnosis and fault-tolerant
techniques;part i: Fault diagnosis with model-based and signal-based approaches.
IEEE Transactions on Industrial Electronics, 62(6):3757–3767.

Garcia, A., Sant’Anna, C., Chavez, C., da Silva, V., de Lucena, C., and von Staa, A. (2004).
Separation of concerns in multi-agent systems: An empirical study. Software Engi-
neering for Multi-Agent Systems II, pages 343–344.

Gascueña, J. M., Navarro, E., and Fernández-Caballero, A. (2012). Model-driven engi-
neering techniques for the development of multi-agent systems. Engineering Appli-
cations of Artificial Intelligence, 25(1):159–173.

Gasser, L. (2000). Mas infrastructure: Definitions, needs and prospects. In Agents Work-
shop on Infrastructure for Multi-Agent Systems, volume 1887, pages 1–11. Springer.

Ge, W., Wang, J., Zhou, J., Wu, H., and Jin, Q. (2015). Incipient fault detection based on
fault extraction and residual evaluation. Industrial & Engineering Chemistry Research,
54(14):3664–3677.

George, A. D. and Wilson, C. M. (2018). Onboard processing with hybrid and reconfig-
urable computing on small satellites. Proceedings of the IEEE, 106(3):458–470.

Gill, E., Montenbruck, O., and Kayal, H. (2001). The bird satellite mission as a milestone
toward gps-based autonomous navigation. Navigation, 48(2):69–75.

Gill, E., Sundaramoorthy, P., Bouwmeester, J., Zandbergen, B., and Reinhard, R. (2013).
Formation Flying within a constellation of nano-satellites: The QB50 mission. Acta
Astronautica, 82(1):110–117.

Glavic, M. (2006). Agents and multi-agent systems: a short introduction for power en-
gineers. Technical Report 1, University of Liege, Sart-Tilman B-28, 4000 Liege, BEL-
GIUM.

González-Potes, A., Mata-López, W. A., Ibarra-Junquera, V., Ochoa-Brust, A. M.,
Martínez-Castro, D., and Crespo, A. (2016). Distributed multi-agent architecture for
real-time wireless control networks of multiple plants. Engineering Applications of
Artificial Intelligence, 56:142–156.

156 REFERENCES

Gorbenko, A. and Popov, V. (2012). Task-resource scheduling problem. International
Journal of Automation and Computing, 9(4):429–441.

Gregori, M. E., Cámara, J. P., and Bada, G. A. (2006a). A jabber-based multi-agent system
platform. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’06, pages 1282–1284, New York, NY, USA.
ACM.

Gregori, M. E., Cámara, J. P., and Bada, G. A. (2006b). A jabber-based multi-agent sys-
tem platform. In Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 1282–1284. ACM.

Grillmayer, G., Hirth, M., Huber, F., and Wolter, V. (2006). Development of an FPGA based
attitude control system for a micro-satellite. In AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, Keystone, Colorado.

Großekatthöfer, K. and Yoon, Z. (2012). Introduction into quaternions for spacecraft
attitude representation. TU Berlin, 16.

Guerrieri, D. C., Cervone, A., and Gill, E. (2016). Analysis of nonisothermal rarefied gas
flow in diverging microchannels for low-pressure microresistojets. Journal of Heat
Transfer, 138(11):112403.

Guo, J., Bouwmeester, J., and Gill, E. (2016). In-orbit results of Delfi-n3Xt: Lessons
learned and move forward. Acta Astronautica, 121:39–50.

Guo, J. and Gill, E. (2013). Delffi: Formation flying of two cubesats for technology, edu-
cation and science. International Journal of Space Science and Engineering, 1(2):113–
127.

Gupta, A. (2006). Hotelling’s t-squared statistic. In Encyclopedia of Environmetrics. John
Wiley & Sons, Ltd.

Guruprasad, S., Bisnath, S., Lee, R., and Kozinski, J. (2016). Design and implementation
of a low-cost soc-based software gnss receiver. IEEE Aerospace and Electronic Systems
Magazine, 31(4):14–19.

Hahn, C., Madrigal-Mora, C., and Fischer, K. (2009). A platform-independent metamodel
for multiagent systems. Autonomous Agents and Multi-Agent Systems, 18(2):239–266.

Hassan, R., Cohanim, B., de Weck, O., and Venter, G. (2004). A copmarison of particle
swarm optimization and the genetic algorithm. American Institute of Aeronautics and
Astronautics.

Hassani, K. and Lee, W.-S. (2015). An intelligent architecture for autonomous virtual
agents inspired by onboard autonomy. In Intelligent Systems’ 2014, pages 391–402.
Springer.

Hayden, S., Carrick, C., Yang, Q., et al. (1999). Architectural design patterns for multi-
agent coordination. In Proceedings of the International Conference on Agent Systems,
volume 99.

REFERENCES 157

He, W., Zi, Y., Chen, B., Wu, F., and He, Z. (2015). Automatic fault feature extraction
of mechanical anomaly on induction motor bearing using ensemble super-wavelet
transform. Mechanical Systems and Signal Processing, 54–55:457 – 480.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks:
The combination of knowledge and statistical data. Machine learning, 20(3):197–243.

Hedin, A. E. (1991). Extension of the msis thermosphere model into the middle and lower
atmosphere. Journal of Geophysical Research: Space Physics, 96(A2):1159–1172.

Heidt, M. H., Puig-Suari, P. J., Moore, A. S., Nakasuka, S., Twiggs, R. J., and Moore, A. S.
(2000). Cubesat : A new generation of picosatellite for education and industry low-cost
space experimentation. In 15th Annual/USU Conference on Small Satellites.

Hili, N., Dingel, J., and Beaulieu, A. (2017). Modelling and code generation for real-time
embedded systems with uml-rt and papyrus-rt. In Proceedings of the 39th Interna-
tional Conference on Software Engineering Companion, pages 509–510. IEEE Press.

Hinchey, M. and Vassev, E. (2012). Multi-agent systems–Theory, approaches and NASA
applications, volume 32, chapter 7, pages 181–202. IOS Press Ebooks.

Hitt, D., Robinson, K. F., and Creech, S. D. (2016). NASA’s space launch system: A new
opportunity for cubesats. In 5th Interplanetary CubeSat Workshop.

Hubbard, S. (2014). Cubesats, return on investment, deep space, and physics.

Hughes, P. C. (2012). Spacecraft attitude dynamics. Courier Corporation.

Hwang, I., Kim, S., Kim, Y., and Seah, C. (2010). A survey of fault detection, isola-
tion, and reconfiguration methods. IEEE Transactions on Control Systems Technology,
18(3):636–653.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEEE transactions on Neural Networks, 10(3):626–634.

Isermann, R. (2006). Fault detection with state observers and state estimation. in Fault-
Diagnosis Systems, Springer Berlin Heidelberg, pages 231–252.

Janson, S. and Welle, R. (2014a). The NASA optical communication and sensor demon-
stration program: An update. In 28th Annual AIAA/USU Conference on Small Satellites.

Janson, S. W. and Welle, R. P. (2014b). The nasa optical communication and sensor
demonstration program: an update. In 28th Annual AIAA/USU Conference on Small
Satellites, pages 4–7.

Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence,
117(2):277–296.

Jennings, N. R. (2001). An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41.

158 REFERENCES

Jensen, K. F. and Vinther, K. (2010). Attitude determination and control system for
AAUSAT3. Master’s thesis, Department of Electronic Systems, Aalborg University,
Fredrik Bajers Vej 7, Aalborg, Denmark.

Jiang, T., Khorasani, K., and Tafazoli, S. (2008). Parameter estimation-based fault de-
tection, isolation and recovery for nonlinear satellite models. IEEE Transactions on
control systems technology, 16(4):799–808.

Jin, Z. and Murray, R. M. (2006). Multi-hop relay protocols for fast consensus seeking. In
Decision and Control, 2006 45th IEEE Conference on, pages 1001–1006. IEEE.

Juan, T., Pearce, A., and Sterling, L. (2002). Roadmap: extending the gaia methodology
for complex open systems. In Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, pages 3–10. ACM.

Kachitvichyanukul, V. (2012). Comparison of three evolutionary algorithms: Ga, pso, and
de. Industrial Engineering and Management Systems, 11(3):215–223.

Kang, S.-M. and Ahn, H.-S. (2016). Design and realization of distributed adaptive for-
mation control law for multi-agent systems with moving leader. IEEE Transactions on
Industrial Electronics, 63(2):1268–1279.

Kaslow, D., Anderson, L., Asundi, S., Ayres, B., Iwata, C., Shiotani, B., and Thompson,
R. (2015). Developing a cubesat model-based system engineering (mbse) reference
model-interim status. In 2015 IEEE Aerospace Conference, pages 1–16. IEEE.

Katzela, I., Bouloutas, A. T., and Calo, S. B. (1995). Centralized vs distributed fault lo-
calization. In International Symposium on Integrated Network Management, pages
250–261. Springer.

Keyes, R. W. (2006). The impact of moore’s law. IEEE solid-state circuits society newsletter,
20(3):25–27.

Khalastchi, E. and Kalech, M. (2018). On fault detection and diagnosis in robotic systems.
ACM Computing Surveys (CSUR), 51(1):9.

Khaleghi, B., Khamis, A., Karray, F. O., and Razavi, S. N. (2013). Multisensor data fusion:
A review of the state-of-the-art. Information Fusion, 14(1):28–44.

Khurram, M. and Zaidi, S. M. Y. (2005). CAN as a spacecraft communication bus in LEO
satellite mission. In Proceedings of 2nd International Conference on Recent Advances
in Space Technologies, 2005. RAST 2005., pages 432–437.

Kim, K. (2011). Analysis of hysteresis for attitude control of a microsatellite. San Jose
State University, http://www. engr. sjsu. edu/spartnik/adac. html.

Kimm, H. and Jarrell, M. (2014). Controller area network for fault tolerant small satellite
system design. In Industrial Electronics (ISIE), 2014 IEEE 23rd International Sympo-
sium on, pages 81–86. IEEE.

REFERENCES 159

Klinar, W. J., Saldana, R. L., Kubiak, E. T., Smith Jr, E. E., Peters, W. H., and Stegall, H. W.
(1975). Space shuttle flight control system. IFAC Proceedings Volumes, 8(1):302–310.

Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial
Societies and Social Simulation, 18(1):11.

Kuwahara, T., Böhringer, F., Falke, A., Eickhoff, J., Huber, F., and Roser, H.-P. (2009). Fpga-
based operational concept and payload data processing for the flying laptop satellite.
Acta Astronautica, 65(11–12):1616 – 1627.

Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471.

Lalanda, P., McCann, J. A., and Diaconescu, A. (2013). Autonomic Computing. Springer.

Lamport, L. et al. (2001). Paxos made simple. ACM Sigact News, 32(4):18–25.

Laouadi, M. A., Mokhati, F., and Seridi, H. (2014). A novel organizational model for real
time mas: Towards a formal specification. In Intelligent Systems for Science and Infor-
mation, pages 171–180. Springer International Publishing.

Lawler, E. L. (1976). Combinatorial optimization: networks and matroids. Courier Cor-
poration.

Lawrenz, W. (1997). CAN system engineering. From theory to practical applications, New
York.

Le Vinh, T., Bouzefrane, S., Farinone, J.-M., Attar, A., and Kennedy, B. P. (2015). Middle-
ware to integrate mobile devices, sensors and cloud computing. Procedia Computer
Science, 52:234–243.

Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting (ISORC), volume 00, pages 363–369.

Lefferts, E. J., Markley, F. L., and Shuster, M. D. (1982). Kalman filtering for spacecraft
attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5):417–429.

Li, J., Xiong, K., Wei, X., and Zhang, G. (2017a). A star tracker on-orbit calibration method
based on vector pattern match. Review of Scientific Instruments, 88(4):043101.

Li, S. and Kokar, M. M. (2013). Agent Communication Language, pages 7–44. Springer
New York, New York, NY.

Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L. (2017b). Estimating ground-level
pm2. 5 by fusing satellite and station observations: A geo-intelligent deep learning
approach. Geophysical Research Letters, 44(23).

Li, Z., Liu, G., Zhang, R., and Zhu, Z. (2011). Fault detection, identification and recon-
struction for gyroscope in satellite based on independent component analysis. Acta
Astronautica, 68(7–8):1015–1023.

160 REFERENCES

Liang, H., Su, H., Wang, X., and Chen, M. Z. (2016). Swarming of heterogeneous multi-
agent systems with periodically intermittent control. Neurocomputing, 207:213–219.

Liu, B. and Iwamura, K. (2000). Topological optimization models for communication
network with multiple reliability goals. Computers & Mathematics with Applications,
39(7-8):59–69.

Llorente, J., Agenjo, A., Carrascosa, C., De Negueruela, C., Mestreau-Garreau, A., Cropp,
A., and Santovincenzo, A. (2013). Proba-3: Precise formation flying demonstration
mission. Acta Astronautica, 82(1):38–46.

Long, B., Jiang, X.-W., and Song, Z.-J. (2005). Real-time monitoring and diagnosis tech-
nology for satellite telemetry data based on multi-agent. Acta Aeronautica Et Astro-
nautica Sinica, 26(6):726–732.

Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A., Keiser, J.,
Burkhardt, M., Kaiser, S., and Albayrak, S. (2013). Jiac v: A mas framework for indus-
trial applications. In Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, pages 1189–1190. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Ma, Y., Guo, S., Lin, S., and Cai, Y. (2017). A consensus-based filtering algorithm with
state constraints. In Control Conference (CCC), 2017 36th Chinese, pages 5502–5506.
IEEE.

Macdonald, M. and Badescu, V. (2014). The international handbook of space technology.
Springer.

Macmillan, S. and Maus, S. (2005). International geomagnetic reference field-the tenth
generation. Earth, planets and space, 57(12):1135–1140.

Magee, J. and Kramer, J. (1996). Dynamic structure in software architectures. In ACM
SIGSOFT Software Engineering Notes, volume 21, pages 3–14. ACM.

Maheshwarappa, M. R., Bowyer, M., and Bridges, C. P. (2015). Software defined radio
(sdr) architecture to support multi-satellite communications. In Aerospace Confer-
ence, 2015 IEEE, pages 1–10. IEEE.

Marshall, A. W. and Olkin, I. (1985). A family of bivariate distributions generated by
the bivariate bernoulli distribution. Journal of the American Statistical Association,
80(390):332–338.

Marzat, J., Piet-Lahanier, H., Damongeot, F., and Walter, E. (2012). Model-based fault
diagnosis for aerospace systems: a survey. Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of aerospace engineering, 226(10):1329–1360.

May, R. D. and Loparo, K. A. (2014). The use of software agents for autonomous control
of a dc space power system. IEEE EnergyTech, pages 28–30.

REFERENCES 161

Mens, T., Magee, J., and Rumpe, B. (2010). Evolving software architecture descriptions of
critical systems. Computer, 43(5):42–48.

Miller, B. L., Goldberg, D. E., et al. (1995). Genetic algorithms, tournament selection, and
the effects of noise. Complex systems, 9(3):193–212.

Moghaddam, S. H. and Jovanovic, M. R. (2017). Topology design for stochastically-forced
consensus networks. IEEE Transactions on Control of Network Systems.

Montenbruck, O. and Gill, E. (2012). Satellite orbits: models, methods and applications.
Springer Science & Business Media.

Nandi, S., Ilamparithi, T., Lee, S. B., and Hyun, D. (2011). Detection of eccentricity faults
in induction machines based on nameplate parameters. IEEE Transactions on Indus-
trial Electronics, 58(5):1673–1683.

Nguyen, P. T., Schau, V., and Rossak, W. (2011). Performance comparison of some mes-
sage transport protocol implementations for agent community communication. In
IICS, pages 193–204.

Nguyen, T., Riesing, K., Kingsbury, R., and Cahoy, K. (2015). Development of a pointing,
acquisition, and tracking system for a cubesat optical communication module. In
Proceedings of SPIE–the Society of Photo-Optical Instrumentation Engineers. SPIE.

Norman, T. J., Jennings, N. R., Faratin, P., and Mamdani, E. (1996). Designing and im-
plementing a multi-agent architecture for business process management. In Inter-
national Workshop on Agent Theories, Architectures, and Languages, pages 261–275.
Springer.

Normand, V. and Exertier, D. (2004). Model-driven systems engineering: Sysml & the
mdsyse approach at thales. Ecole d’été CEA-ENSIETA, Brest, France.

Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007a). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233.

Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007b). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233.

Orsel, E. G. A. (2016). Power modelling and optimisation of a communication bus for
small satellite missions. Master’s thesis, Faculty of Aerospace Engineering, Delft Uni-
versity of Technology.

Oviedo, D., Romero-Ternero, M. d. C., Hernández, M., Carrasco, A., Sivianes, F., and Es-
cudero, J. (2010). Architecture for multiagent-based control systems. In Distributed
Computing and Artificial Intelligence, pages 97–104. Springer.

Padgham, L., Thangarajah, J., and Winikoff, M. (2014). Prometheus research directions.
In Agent-Oriented Software Engineering, pages 155–171. Springer.

162 REFERENCES

Padgham, L. and Winikoff, M. (2002). Prometheus: A methodology for developing in-
telligent agents. In International Workshop on Agent-Oriented Software Engineering,
pages 174–185. Springer.

Paige, R. F., Matragkas, N., and Rose, L. M. (2016). Evolving models in model-driven
engineering: State-of-the-art and future challenges. Journal of Systems and Software,
111:272–280.

Panda, S. and Padhy, N. P. (2008). Comparison of particle swarm optimization and ge-
netic algorithm for facts-based controller design. Applied Soft Computing, 8(4):1418 –
1427. Soft Computing for Dynamic Data Mining.

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and
directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of
the Fourth International Conference on, pages 3–12. IEEE.

Patel, R. and Rajawat, A. (2013). Recent trends in embedded system software perfor-
mance estimation. Design Automation for Embedded Systems, 17(1):193–213.

Pavón, J. and Gómez-Sanz, J. (2003). Agent oriented software engineering with inge-
nias. In International Central and Eastern European Conference on Multi-Agent Sys-
tems, pages 394–403. Springer.

Pirmoradi, F., Sassani, F., and de Silva, C. (2009). Fault detection and diagnosis in a space-
craft attitude determination system. Acta Astronautica, 65(5–6):710—-729.

Plummer, C., Roos, P., and Stagnaro, L. (2003). Can bus as a spacecraft onboard bus. In
DASIA 2003-Data Systems In Aerospace, volume 532.

Puig-Suari, J., Turner, C., and Ahlgren, W. (2001). Development of the standard cubesat
deployer and a cubesat class picosatellite. In Aerospace Conference, 2001, IEEE Pro-
ceedings., volume 1, pages 1–347. IEEE.

Rasmussen, R. and Litty, E. (1981). A voyager attitude control perspective on fault toler-
ant systems. In Guidance and Control Conference, page 1812.

Rauch, H. E., Tung, F., Striebel, C. T., et al. (1965). Maximum likelihood estimates of linear
dynamic systems. AIAA journal, 3(8):1445–1450.

Ren, W. (2010). Distributed cooperative attitude synchronization and tracking for multi-
ple rigid bodies. IEEE Transactions on Control Systems Technology, 18(2):383–392.

Rivas, J. M., Gutiérrez, J. J., Aldea, M., Cuevas, C., Harbour, M. G., Drake, J. M., Medina,
J. L., Rioux, L., Henia, R., and Sordon, N. (2016). An experience integrating response-
time analysis and optimization with an mde strategy. In Federation of International
Conferences on Software Technologies: Applications and Foundations, pages 303–316.
Springer.

Roberge, V., Tarbouchi, M., and Labonté, G. (2013). Comparison of parallel genetic algo-
rithm and particle swarm optimization for real-time uav path planning. IEEE Trans-
actions on Industrial Informatics, 9(1):132–141.

REFERENCES 163

Robertson, R. E. (1958). Gravitational torque on a satellite vehicle. Journal of the Franklin
Institute, 265(1):13–22.

Rousset, A., Herrmann, B., Lang, C., and Philippe, L. (2014). A survey on parallel and
distributed multi-agent systems. In Padabs 2014, 2nd Workshop on Parallel and Dis-
tributed Agent-Based Simulations, in conjunction with Euro-Par 2014, volume 8805,
pages 371–382. Springer.

Runeson, P. and Höst, M. (2008). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131.

Russell, S., Norvig, P., and Intelligence, A. (1995). A modern approach. Artificial Intelli-
gence. Prentice-Hall, Egnlewood Cliffs, 25:31.

Saleh, J. H., Hastings, D. E., and Newman, D. J. (2003). Flexibility in system design and
implications for aerospace systems. Acta astronautica, 53(12):927–944.

Samara, P., Fouskitakis, G., Sakellariou, J., and Fassois, S. (2008). A statistical method for
the detection of sensor abrupt faults in aircraft control systems. IEEE Transactions on
Control Systems Technology, 16(4):789–798.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210–229.

Sarode, S. and Patil, A. (2016). Implementation of fault tolerant soft processor on fpga.
IJAR, 2(1):781–784.

Sayed, A. H. et al. (2014). Adaptation, learning, and optimization over networks. Foun-
dations and Trends® in Machine Learning, 7(4-5):311–801.

Schaus, V., Fischer, P. M., Lüdtke, D., Braukhane, A., Romberg, O., and Gerndt, A. (2010).
Concurrent engineering software development at german aerospace center-status
and outlook. In 4th International Workshop on System & Concurrent Engineering for
Space Applications.

Scholz, A., Hsiao, T.-H., Juang, J.-N., and Cherciu, C. (2017). Open source implementa-
tion of ecss can bus protocol for cubesats. Advances in Space Research.

Serway, R. A. and Jewett, J. W. (2018). Physics for scientists and engineers with modern
physics. Cengage learning.

Shehory, O. and Sturm, A. (2014). Multi-agent systems: A software architecture view-
point. In Agent-Oriented Software Engineering, pages 57–78. Springer.

Sherwood, R., Chien, S., Burl, M., Knight, R., Rabideau, G., Engelhardt, B., Davies, A.,
Williams, B., Greeley, R., Baker, V., et al. (2001). The techsat 21 autonomous science-
craft constellation demonstration. In International Symposium on Artificial Intelli-
gence Robotics and Automation in Space.

164 REFERENCES

Shi, Y. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. In Evo-
lutionary Computation, 2001. Proceedings of the 2001 Congress on, volume 1, pages
101–106. IEEE.

Shrivastava, S. and Modi, V. (1983). Satellite attitude dynamics and control in the pres-
ence of environmental torques- a brief survey. Journal of Guidance, Control, and Dy-
namics(ISSN 0731-5090), 6:461–471.

Sidi, M. J. (1997). Spacecraft dynamics and control: a practical engineering approach,
volume 7. Cambridge university press.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear ap-
proaches. John Wiley & Sons.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M. I., and Sastry, S. S.
(2004). Kalman filtering with intermittent observations. IEEE transactions on Auto-
matic Control, 49(9):1453–1464.

Sonnek, J., Greensky, J., Reutiman, R., and Chandra, A. (2010). Starling: Minimizing com-
munication overhead in virtualized computing platforms using decentralized affinity-
aware migration. In Parallel Processing (ICPP), 2010 39th International Conference on,
pages 228–237. IEEE.

Speretta, S., Pérez Soriano, T., Bouwmeester, J., Carvajal Godínez, J., Watts, T., Menicucci,
A., Sundaramoorthy, P., Guo, J., and Gill, E. (2016). Cubesats to pocketqubes: Opportu-
nities and challenges. In Proceedings of the 67th International Astronautical Congress
(IAC). IAF.

Stockwell, W. (2003). Angle random walk. Application Note. Crossbow Technologies Inc,
pages 1–4.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383.

Sturm, A. and Shehory, O. (2014). The evolution of mas tools. In Agent-Oriented Software
Engineering, pages 275–288. Springer.

Švehla, D. and Rothacher, M. (2003). Kinematic and reduced-dynamic precise orbit de-
termination of low earth orbiters. Advances in Geosciences, 1:47–56.

Sycara, K., Paolucci, M., Van Velsen, M., and Giampapa, J. (2003). The retsina mas infras-
tructure. Autonomous agents and multi-agent systems, 7(1):29–48.

Tabuada, P., Pappas, G. J., and Lima, P. (2001). Feasible formations of multi-agent sys-
tems. In American Control Conference, 2001. Proceedings of the 2001, volume 1, pages
56–61. IEEE.

Tian, Y.-P. and Liu, C.-L. (2009). Robust consensus of multi-agent systems with diverse
input delays and asymmetric interconnection perturbations. Automatica, 45(5):1347–
1353.

REFERENCES 165

Tindell, K. W., Hansson, H., and Wellings, A. J. (1994). Analysing real-time communica-
tions: controller area network (can). In 1994 Proceedings Real-Time Systems Sympo-
sium, pages 259–263.

Tomayko, J. E. (1985). Nasa’s manned spacecraft computers. Annals of the History of
Computing, 7(1):7–18.

Tortosa López, F. and Roos, P. (2005). A vhdl implementation of canopen protocol for can
bus on board spacecraft. In DASIA 2005-Data Systems in Aerospace, volume 602.

Underwood, C., Crawford, M., and Ward, J. (1998). A low-cost modular nanosatellite
based on commercial technology. In 12th AIAA/USU Conference on Small Satellites.

Van Buijtenen, W. M., Schram, G., Babuska, R., and Verbruggen, H. B. (1998). Adap-
tive fuzzy control of satellite attitude by reinforcement learning. IEEE Transactions on
Fuzzy Systems, 6(2):185–194.

Vassev, E. and Hinchey, M. (2014). Software engineering for aerospace: State of the art.
In Autonomy Requirements Engineering for Space Missions, pages 1–45. Springer.

Viel, C., Bertrand, S., Michel, K., and Helene, P.-L. (2017). New state estimators and com-
munication protocol for distributed event-triggered consensus of linear multi-agent
systems with bounded perturbations. IET Control Theory & Applications.

Vinther, K., Jensen, K. F., Larsen, J. A., and Wisniewski, R. (2011). Inexpensive cube-
sat attitude estimation using quaternions and unscented kalman filtering. Automatic
Control in Aerospace, 4(1).

Wahba, G. (1965). A least squares estimate of satellite attitude. SIAM review, 7(3):409–
409.

Wang, G. and Fung, C. K. (2004). Architecture paradigms and their influences and im-
pacts on component-based software systems. In System Sciences, 2004. Proceedings of
the 37th Annual Hawaii International Conference on, pages 10–pp. IEEE.

Wang, J., Zhao, Q., and Li, H. (2014). A multi-agent based evaluation framework and its
applications. IEEE/CAA Journal of Automatica Sinica, 1(2):218–224.

Wang, W. and McFadden, P. (1993). Early detection of gear failure by vibration analy-
sis i. calculation of the time-frequency distribution. Mechanical Systems and Signal
Processing, 7(3):193 – 203.

Wang, X., Liang, W., Liang, H., Zhang, A., and Wang, T. (2015). The design of space-
craft tt&c autonomous management system. In Proceedings of the 27th Conference of
Spacecraft TT&C Technology in China, pages 491–502. Springer.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.
nature, 393(6684):440–442.

Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelli-
gence. MIT press.

166 REFERENCES

Wen, G., Duan, Z., Yu, W., and Chen, G. (2013). Consensus of multi-agent systems with
nonlinear dynamics and sampled-data information: a delayed-input approach. Inter-
national Journal of Robust and Nonlinear Control, 23(6):602–619.

Wertz, J. R. (2012). Spacecraft attitude determination and control, volume 73. Springer
Science & Business Media.

Whittaker, J. A. and Poore, J. H. (1993). Markov analysis of software specifications. ACM
Transactions on Software Engineering and Methodology (TOSEM), 2(1):93–106.

Wie, B. (2008). Space vehicle dynamics and control. American Institute of Aeronautics
and Astronautics.

Yang, L., Gohad, T., Ghosh, P., Sinha, D., Sen, A., and Richa, A. (2005). Resource mapping
and scheduling for heterogeneous network processor systems. In Proceedings of the
2005 ACM Symposium on Architecture for Networking and Communications Systems,
ANCS ’05, pages 19–28, New York, NY, USA. ACM.

Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P. (2012a). A comparison study of
basic data-driven fault diagnosis and process monitoring methods on the benchmark
tennessee eastman process. Journal of Process Control, 22(9):1567–1581.

Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P. (2012b). A comparison study of
basic data-driven fault diagnosis and process monitoring methods on the benchmark
tennessee eastman process. Journal of Process Control, 22(9):1567 – 1581.

You, K., Xiao, N., and Xie, L. (2015). Kalman Filtering with Faded Measurements, pages
223–237. Springer London, London.

Yu, X. and Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related
issues. Annual Reviews in Control, 39:46–57.

Yushtein, Y., Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V. Y., Noll, T., Olive, X., and
Roveri, M. (2011). System-software co-engineering: Dependability and safety per-
spective. In Space Mission Challenges for Information Technology (SMC-IT), 2011 IEEE
Fourth International Conference on, pages 18–25. IEEE.

Zagórski, P. (2012). Modeling disturbances influencing an earth-orbiting satellite. Pomi-
ary Automatyka Robotyka, 16:98–103.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). Developing multiagent sys-
tems: The gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 12(3):317–370.

Zeng, Z., Zhang, S., Xing, Y., and Cao, X. (2014). Robust adaptive filter for small satellite
attitude estimation based on magnetometer and gyro. In Abstract and Applied Analy-
sis, volume 2014. Hindawi Publishing Corporation.

Zhang, Y. and Jiang, J. (2003). Fault tolerant control system design with explicit consid-
eration of performance degradation. IEEE Transactions on Aerospace and Electronic
Systems, 39(3):838–848.

REFERENCES 167

Zolghadri, A. (2012). Advanced model-based FDIR techniques for aerospace systems:
Today challenges and opportunities. Progress in Aerospace Sciences, 53:18–29.

A
APPENDIX A - ORBITAL ELEMENTS

The orbit of a satellite around the Earth can be treated as a two-point mass system, which
is governed by the gravitational attraction of the satellite by the Earth’s mass. Newton’s
and Kepler’s laws can be used to model the orbit of a satellite by establishing a set of
orbital elements to define the size, shape and orientation of that orbit. According to
Montenbruck and Gill (2012), there are six classical orbital elements that can describe
the characteristics mentioned above about an orbit. These are:

• Semi-major axis a.

• Eccentricity e.

• Right Ascension of the Ascending Node (RAAN)Ωa .

• Inclination of the orbit plane io .

• Argument of the perigee ωp .

• True anomaly νa at epoch t0

Figure A.1 shows the geometric properties of an ellipse used to describe orbits. The
shape and the size of the orbit are defined by the semi-major axis and the eccentricity. If
the eccentricity e = 0, it means that the orbit is circular. Whenever the variable 0 < e < 1
the orbit is elliptical. Any orbit with e > 1 is hyperbolic. The eccentricity of an orbit can
be calculated using the information from Figure A.1 as follows

e = c

a
(A.1)

where, c is the distance between the center and the focus point of the ellipse and a is
the semi-major axis distance.

The time of perigee passage tp is needed to determine the position of a satellite at a
give moment. However, according to Wertz (2012), in many cases tp is replaced by the

169

170 A. APPENDIX A - ORBITAL ELEMENTS

Figure A.1: Geometrical properties of a ellipse used to determine the shape of an orbit.

another parameter called Mean Anomaly Ma that measures the angle traveled by the
satellite since its perigee.

The Right Ascension of the Ascending Node (RAAN) Ωa is the angle measured from
the vernal equinox counter clockwise to the ascending node, which corresponds with
the point where the satellite crosses the Earth’s equatorial plane (from south to north).

The inclination io of an orbit is the angle measured between the Earth’s equatorial
plane and the orbital plane. If the inclination of an orbit is zero, then it is called an
equatorial orbit, while if io = 90 [deg], it is called a polar orbit. If io < 90 [deg] the orbit is
called a prograde orbit, otherwise if i > 90 [deg], it is called retrograde.

The argument of perigee ωp is describes the angle measured between the ascending
node and the perigee following the direction of motion of the spacecraft.

The orbital elements are depicted as in the work of Jensen and Vinther (2010) and
shown in Figure A.2.

Figure A.2: Keplerian orbit around the Earth described with the modified classical orbital elements described
above. Source: Jensen and Vinther (2010)

B
APPENDIX B - TWO LINE

ELEMENTS

Two-Line Elements (TLE) are orbit data of man-made objects in a specific format. The
data format is provided by North American Aerospace Defense Command (NORAD) for
encoding a list of orbital elements for a man-made Earth-orbiting objects given a specific
epoch. The TLE format consist of two lines of 69 characters each following the format
presented in Figure B.1.

The TLE data representation can be used as a data source for projecting the future
and past orbital tracks of space objects so that they can help to avoid collisions of space
systems. There are several orbit propagation models that can use TLE as an input, for
instance SGP, SGP4 and SGP8 for near-Earth objects and SDP4 and SDP8 for deep-space
objects.

There are some sources for TLE that may be of interest. The majority of TLE publicly-
available are distributed via Space-Trak. The data are freely available. An example of TLE
for the International Space Station (ISS) is as follows:

ISS (ZARYA)
1 25544U 98067A 08264.51782528 −.00002182 00000−0 −11606−4 0 2927
2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537

171

http://www.space-track.org

172 B. APPENDIX B - TWO LINE ELEMENTS

Figure B.1: Two-line Elements format and description of fields. Source: CelesTrak Webpage

https://www.celestrak.com/NORAD/documentation/tle-fmt.php

C
APPENDIX C - EXTENDED KALMAN

FILTER

The Extended Kalman Filter (EKF) is a family of non-optimal, non-linear state estimators
in which the filter linearizes its dynamics about an estimate of the current mean and
covariance. Depending on their attitude representation they can be divided into three
categories: minimal representation EKF, Multiplicative EKF and the Additive EKF.

According to Simon (2006) and Bellantoni and Dodge (1967), the formulation of the
EKF is as follows. Consider a non-linear system with discrete-time dynamics described
as

xk = f(xk−1,uk−1)+wk−1

yk = h(xk)+vk
(C.1)

where, xk ∈Rn represents the state vector of the system at time k, yk ∈Rm is the mea-
surement vector at time k, uk ∈Rl is the exogenous input vector, wk−1 ∈Rn is the process
noise, and vk ∈Rm is the measurement noise. The process noise wk−1 and the measure-
ment noise vk , are assumed independent zero mean white Gaussian noises with process
error covariance matrix Qk−1 and measurement noise covariance matrix Rk , respectively.

Both, f and h are functions used to define the non-linear system dynamics. The EKF
algorithm requires proper initialization of x0 and P0 and covariance matrices tuning be-
fore its implementation. After it is initialized, the Extended Kalman Filter follows two
steps during each execution cycle: State Prediction and State Update.

State Prediction:
The process of estimating the current state given the previous state estimate and the

observed exogenous inputs is called priori state estimate xk|k−1. It is calculated using the
non-linear system model as

xk|k−1 = f(xk−1|k−1,uk−1). (C.2)

173

174 C. APPENDIX C - EXTENDED KALMAN FILTER

Numerical methods, for instance Runge Kutta (Butcher (2007)) or Euler, are used to
approximate the solution of (C.2).

Also, an a priori estimate of the error covariance matrix Pk|k−1 is calculated using its
previous value Pk−1|k−1 as

Pk|k−1 =φφφk−1|k−1Pk−1|k−1φφφ
T
k−1|k−1 +Qk−1 (C.3)

where,φφφk−1|k−1 is the Jacobian matrix for the linearized process calculated as follows

φφφk−1|k−1 ≈
∂fk−1

∂x

∣∣∣∣
x=xk−1|k−1

. (C.4)

State Update:
After the priori state estimate and the priori estimate of the error covariance matrix

were calculated, they are used to calculate the transformed measurements propagating
them through the sensor model yk|k−1 as

yk|k−1 = h(xk|k−1). (C.5)

The a priori state estimate xk|k−1 is updated using the measurements at time k yk ,
and the Kalman gain K. This is called the posteriori state estimate xk|k , which is calcu-
lated as

xk|k = xk|k−1 +Kk (yk −yk|k−1). (C.6)

The Kalman gain Kk is used to minimize the mean squared error between the pre-
dicted value for the sensors and the actual measurements. It is calculated as

Kk = Pk|k−1HT
k (Hk Pk|k−1HT

k +Rk)−1 (C.7)

where, Hk is the Jacobian matrix for the measurement function h(xk) calculated as

Hk ≈ ∂hk

∂x

∣∣∣∣
x=xk|k−1

. (C.8)

The last update to perform is the estimated error covariance matrix Pk|k , which is
calculated as

Pk|k = (1−Kk Hk)Pk|k−1. (C.9)

CURRICULUM VITÆ

Johan Carvajal-Godínez was born on
May 21st, 1981 in San José, Costa Rica.
He attended the national system of scien-
tific high schools (CCC) in Pérez Zeledón,
where he completed his middle studies
with the highest honors.

After 1999, Johan began his studies
in Electronic Engineering at Costa Rica
Institute of Technology until September
2004 when he graduated. From 2004 to
2007, Johan developed his professional
career in the industry as a Test Process
Quality Engineer at Intel, where he was
leading the qualification of manufactur-
ing factories in Costa Rica and Malaysia.
In 2008, he joined as lecturer at the Costa

Rica Institute of Technology in the Electronic Engineering Department. In parallel, he
completed the Master on Industrial Engineering (M.Eng.) at Costa Rica Institute of Tech-
nology. In 2012, he completed the International Space Training organized by the Korean
Aerospace Research Institute (KARI) in Daejon, Republic of Korea.

Between 2010 and 2011 Johan led various research initiatives at Costa Rica Institute
of Technology. These activities included the development of nanotechnology research
plan, an e-Science Laboratory for super-computing related research, and in 2013 when
he was the project manager of the first Costa Rican satellite, he got a grant for completing
his PhD on Aerospace Engineering abroad.

In 2014 Johan joined the Space Engineering Section, in the Space Engineering De-
partment at the Faculty of Aerospace Engineering of Delft University in the Netherlands.
His research focus was on onboard computer and architectures for fault-tolerant soft-
ware in satellites. During his research period at Delft, he kept supporting the develop-
ment activities of the Costa Rican satellite called Irazú, as a Systems Engineer. He also
supported the core team of the Delfi-PQ satellite, focused on the onboard computer de-
sign. In 2018 Johan co-founded the Space Systems Laboratory of Costa Rica Institute of
Technology, where he was appointed as a researcher starting on January 2019. His inter-
ests includes model-based systems engineering, onboard computer design, and fault-
tolerant software architectures for guidance and navigation control of satellite systems.

175

LIST OF PUBLICATIONS

Journal Papers

4. Samantha Interiano-Valverde, Davide Scazzoli, Carmen Chan-Zheng, Johan Carvajal Godinez
and Maurizio Magarini "A Communication Protocol Design for a Multi-Agent System Frame-
work used in Miniaturized Satellite Systems", Revista Tecnologia En Marcha, 33 (4) Novem-
ber (2020).

3. Johan Carvajal Godinez, Jian Guo and Eberhard Gill "Effects of Saturation for High Through-
put Satellite Buses", IEEE Transactions on Aerospace and Electronic Systems pages 1014 -
1025, Volume: 56 , Issue: 2 , April, (2020).

2. Carmen Chan-Zheng, Johan Carvajal Godinez "A Multi-Agent System Framework for Minia-
turized Satellite ", Revista Tecnologia En Marcha, 32 (1), pp 54-67 (2019) .

1. Johan Carvajal Godinez, Jian Guo and Eberhard Gill "Agent-based algorithm for fault detec-
tion and recovery of gyroscope’s drift in small satellite missions", Acta Astronautica 139, pp
181-188 (2017).

Conference Papers

3. Johan Carvajal Godinez, Morteza Haghayegh, Jaan Viru, Allan Granados and Jian Guo "In-
creasing computing performance of ADCS Subsystems in Small Satellites for Earth Observa-
tion", 10th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany 2015.

2. Stefano Speretta, Tatiana Perez-Soriano, Jasper Bouwmeester, Johan Carvajal Godinez, Alessan-
dra Menicucci, Trevor Watts, Prem Sundaramoorthy, Jian Guo, and Eberhard Gill "CubeSats
to PocketQubes: Opportunities and Challenges", 67th International Astronautical Congress
(IAC),Guadalajara, Mexico 2016.

1. Johan Carvajal Godinez, Jian Guo, and Eberhard Gill "Achieving Consensus in Distributed
Software Architecture for Satellite Missions", 69th International Astronautical Congress (IAC),
Bremen, Germany, 2018.

Workshop Presentations

1. Johan Carvajal Godinez, Erik Orsel and Jian Guo "CAN in Cubesats/Minisats - A Survey",
CAN in Space Workshop (ESA/ESTEC 2016).

177

https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/4505/5143
https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/4505/5143
https://ieeexplore.ieee.org/document/8834795
https://ieeexplore.ieee.org/document/8834795
https://doi.org/10.18845/tm.v32i1.4118
https://doi.org/10.1016/j.actaastro.2017.07.001
https://doi.org/10.1016/j.actaastro.2017.07.001
http://pure.tudelft.nl/ws/files/11144918/0901_Final_presentation.pdf
https://www.researchgate.net/publication/308777632_CubeSats_to_PocketQubes_Opportunities_and_Challenges
https://www.researchgate.net/publication/308777632_CubeSats_to_PocketQubes_Opportunities_and_Challenges
https://www.researchgate.net/publication/328118639_Achieving_Consensus_in_Distributed_Software_Architectures_for_Satellite_Missions
https://www.researchgate.net/publication/328118639_Achieving_Consensus_in_Distributed_Software_Architectures_for_Satellite_Missions
https://indico.esa.int/indico/event/120/session/12/contribution/7

ACKNOWLEDGEMENTS

I want to thank all and everyone involved in my PhD process for all your support and
patience. First, I want to thank the Delft University of Technology for opening me a
door to come and develop my research at the Space Engineering Department. Espe-
cial thanks to Prof. Dr. Eberhard Gill and Dr. Jian Guo for their guidance and support.
Your experience have been a key asset in the conclusion of this Dissertation book. Also
to my fellow SSE colleagues Barry, Hans, Samiksha, Prem, Alessandra, Stefanno, Silvana,
Tatiana, Nuno, Sevket. Also to thanks to Debby and Marielle for the support and help
provided during these years. I want to thank my brothers and sisters in-PhD: Adolfo,
Daduí, Marsil, Minghe, Dennis, Victor, Zixuan, Fiona, Ling-Yu, Mario, Salvatore, Stefano
M, Lorenzo, Roberto, Fabricio, Tiago, Jin and many others that made my stay in Delft
funny and pleasant.

I want to thank the Costa Rica Institute of Technology for the economical support
given during this period. In particular, to the Rector Dr. Julio Calvo and Ing. Luis Paulino
Mendez for their words of motivation that made me take the decision of pursuing a PhD
abroad. Especially, I want to thank Adolfo Chaves Campos (q.D.g) for all the discussions
and pieces of advice that made me come back to work in the academy. I also want to
thank Ing. William Marín and Ing. Ara Villalobos for supporting me to get the financial
means to develop this project.

This won’t be nothing without my family support and sacrifice. Also, I want to thank
my parents (Alexis Carvajal-Arias and Ana Godínez-Vargas), brothers (Ronald, David,
Greivin, Yermy) and sister (Yorleny) for their prayers and words of support. I love you all.

There are also friends that I did not know I had until we found each other here.
Thanks to the Costa Rican Crew! You made my life joyful in Delft (especially during
Macumbas). Also, thanks to friends in Groningen (Mauricio, Carmen) for all your sup-
port. Ana, Victor, Tomas, Martha, Fernanda, Zoe, Carina, Jette, Isidora, Pamela Jensen,
thank you for being kind to me!

I want to specially thank to Melissa Campos, who help me a lot with the translation
of my summary and propositions. I am very grateful for that.

Last, but not least important I want to thank to Becki Corrales, she was key to help me
get back on track to finish my PhD during 2020. Without your support this work would
not be possible. I thank God from my heart that I found you in my life.

I am sorry if I forgot anyone, but you know guys and gals that you are also special,
and you have touch my soul in one way or another.

Thank you all, this is yours too!

179

	Summary
	Samenvatting
	Acronyms
	List of Symbols
	Introduction
	The Evolution of Spacecraft Computers
	Trends in Miniaturized Satellites Engineering
	Subsystem Miniaturization
	Software-defined Components
	Emerging Onboard Computing Technologies
	Integrated Fault Detection, Isolation and Recovery
	The need for a more reliable and precise AOCS

	The Software Complexity Problem
	Software Architecture Paradigms
	An Overview on Multi-Agent Systems
	Agents vs Multi-Agent Systems
	Agent Communication Architectures
	Multi-Agents Systems Frameworks
	MAS-based Applications in Control Systems
	MAS-based Software in Space Applications

	Enabling Technologies for MAS-based Software
	Multi-Agent Systems Infrastructure
	MAS-based Software Design Considerations

	Motivation and Contributions
	Research Motivation and Requirements
	Research Questions
	Research Methodology

	Dissertation Structure

	Essentials of Attitude and Orbit Determination
	Systems Architecture Approach
	AOCS Modeling Concepts
	Reference Frames
	Satellite Orbit Model in LEO
	Attitude Representation
	Attitude Modeling
	Attitude perturbation Modeling
	Sensor Measurement Model

	Onboard Attitude Determination
	Challenges on Multi-Sensor Data Fusion
	Data Fusion Techniques
	Reference Algorithm for Attitude Estimation

	Agent-based Fault Detection and Recovery
	FDIR Methods for Control Systems
	Agent-based Architecture for FDIR
	FDIR Implementation Options
	Trade-off Criteria
	Trade-off Analysis

	AOCS Case Study
	System Model
	Gyroscope Measurement Model
	Gyroscope Fault Modeling
	Gyroscope Installation
	Fault Detection and Identification Algorithm
	Fault Recovery Algorithm
	Agent-based FDIR Implementation
	Simulation Scenarios

	Results Analysis
	Chapter Summary

	Multi-Agent Communication in Satellite Software
	Agent Communication Languages
	Agent Interaction Protocols
	Message Transport Protocol Implementation

	Software Communication Architecture
	AOCS Case Study
	AOCS Reference Architecture
	AOCS Measurement Model
	Traffic Injection Model
	Communication Bus Load Modeling

	Case Study Implementation
	CAN Channel Implementation
	Sensor Model Implementation

	Simulation Experiments
	Satellite Operations Scenarios
	Simulation Configuration

	Simulation Results and Analysis
	Bus Utilization
	Measurement Delays
	Effect of Delays in Measurements Variance
	Bus Utilization Balancing

	Chapter Summary

	Model-Driven Methodology for Designing Agent-based Software
	Modeling Software as a Multi-Agent System
	Resource Mapping Strategy

	Multi-Agent Systems for Satellite Applications
	ADCS Case Study
	ADCS Physical Modeling
	MASSA: Analysis Phase
	MASSA: Design Phase
	MASSA: Verification Phase
	Results Analysis for the ADCS Case Study

	Proposed MASSA Validation Strategy
	Chapter Summary

	Organizational Optimization of Multi-Agent based Software
	Organizational Structures for Agents
	Multi-Agents System Consensus
	Consensus Strategies and Algorithms

	Topological Optimization of MAS-based Software
	Topological Modeling of Multi Agent-based Software
	Network Scale Effects
	Randomized Search Strategies

	 Optimization Implementation
	Topological optimization for AOCS Software
	PROBA 3 Mission Description
	Simulation Scenarios
	Simulation Approach
	Results and Analysis
	Validation of Results

	Conclusions and Remarks

	Conclusions and Outlook
	Research Synthesis and Conclusions
	Innovations and Contributions
	Research Outlook
	New Applications
	Implementation Aspects

	Recommendations

	titleReferences
	Appendix A - Orbital Elements
	Appendix B - Two Line Elements
	Appendix C - Extended Kalman Filter
	Curriculum Vitæ
	List of Publications
	Acknowledgements

