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Abstract
This paper presents the results of profile inversion of multi-frequency
electromagnetic scattered field data, measured by the Institute Fresnel
(Marseille, France), from cylindrical objects, both for TM and TE illuminations.
The reconstructions are obtained by applying the multiplicative regularized
contrast source inversion (MR-CSI) method. Since we are dealing with
configurations consisting of both dielectric and metallic objects, we reconstruct
both the permittivity and the conductivity of the unknown objects. The results
show that the MR-CSI method successfully performs ‘blind’ inversion of a
wide class of scattered field data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We discuss the performance of the contrast source inversion (CSI) method [1, 2], enhanced
with a multiplicative regularization technique (MR-CSI) [3]. Although the CSI method was
already effective for the inversion of the experimental Ipswich data [4], its updated version, the
MR-CSI method, shows a significant improvement in inverting the first set of data measured by
the Institut Fresnel (Marseille, France) [5]. The inversion results obtained using the MR-CSI
method from these first Fresnel data sets were presented in [6]. Following these experiments,
the MR-CSI method has been improved by the introduction of the so-called weighted L2-norm
regularizer, see [7]. The inversion results of the first Fresnel data set using the MR-CSI method
with weighted L2-norm regularizer can be found in [8].

With this version of the MR-CSI method, we demonstrate the reconstructions from the
second set of data measured by the Institut Fresnel. We carry out a ‘blind’ inversion of these
data sets without explicitly taking into consideration any a priori information regarding the type
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of objects (either dielectric or metallic) to be reconstructed. In all cases, we reconstruct both
the permittivity and the conductivity of the unknown objects. The only a priori information
which is used in the inversion is the positivity constraint on both permittivity and conductivity.
The inversion results show that the MR-CSI method seems to handle the experimental field
data very well.

2. Definitions

The Institute Fresnel experimental setup consists of a transmitting and a receiving antenna,
both of which are double-ridged horn antennas. The antennas are moved on a circular rail
around the object(s). The objects are elongated in the direction perpendicular to the plane in
which the antennas are rotated (i.e., the plane of measurement), so that a two-dimensional (2D)
model is appropriate. In the plane of illumination, we choose a 2D rectangular test domain
D containing the object(s). The transmitting antenna illuminates the objects from different
locations distributed equidistantly around the object. We use the subscript j to denote the
measured frequency and the subscript s to denote the dependence on the transmitter position.
The receiving antenna measures the total field and the incident field from a number of different
locations distributed equidistantly around the object. The scattered field, which is needed in
the inversion, can then be found by subtracting the incident field from the total field.

The experimental data are collected at a number of frequencies with time factor
exp(−iωj t), where i2 = −1, ωj is the radial frequency and t is the time. We introduce the
vectors p and q as the spatial positions in 2D. We use the Maxwell model for the constitutive
parameters of the object. Hence, the contrast function for each frequency is defined as follows:

χj (q) = ε(q) − ε0

ε0
+ i

σ(q)

ωjε0
, (1)

where ε and σ denote the permittivity and conductivity, which are frequency independent.
The symbol ε0 denotes the permittivity in vacuum. Since ε and σ are frequency independent,
it is obvious that in the inversion we need only to invert for one value of the contrast function.
Let χ1 be the contrast function value at the angular frequency ω1, then the other values of the
contrast as a function of frequency can be calculated through

χj (q) = Re[χ1(q)] + i
ω1

ωj

Im[χ1(q)]. (2)

Since all the objects lie inside a test domain D, the contrast function is therefore non-zero
inside D and zero elsewhere.

In the TM case where the non-zero component of the electric field is the only one parallel
to the cylindrical objects, we deal with a scalar wave field problem. The domain integral
representation for the scattered field as a function of the total field us,j and the contrast χj is
given by

usct
s,j (p) = KTM

j [χjus,j ] = k2
0,j

∫
D

gj (p, q)χj (q)us,j (q)dv(q), p ∈ S, (3)

where k0,j = ωj

√
ε0µ0 is the wave number in free space and S is the data domain where the

transmitter and receiver are located. The scalar homogeneous Green function is given by

gj (p, q) = i

4
H

(1)
0 (k0,j |p − q|), (4)

where H
(1)
0 denotes the first kind Hankel function of zero order.

In the TE case, the field quantities are two-component vectors representing the electric
field components in the transversal plane of the cylindrical objects. The domain integral
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representation for the scattered field vector as a function of the total field us,j and the contrast
χj is given by

usct
s,j (p) = KTE

j [χjus,j ] = (
k2

0,j + ∇∇) ∫
D

gj (p, q)χj (q)us,j (q)dv(q), p ∈ S, (5)

where ∇ is the spatial differentiation operator with respect to p.
We use the symbol us,j for both the scalar field us,j in the TM case and the vector field

us,j in the TE case. Hence, the total field, us,j = uinc
s,j + usct

s,j , and the contrast inside the test
domain D satisfy the following integral equation:

uinc
s,j (p) = us,j (p) − K

{TM,TE}
j [χj,nus,j,n], p ∈ D, (6)

where the operators KTM
j [χjus,j ] and KTE

j [χjus,j ] are defined in (3) and (5), for the TM case
and TE case, respectively. Equations (3), (5) and (6) are the basic equations for developing
any inversion algorithm based on the integral equation formulation. The goal of solving the
inverse scattering problem can be formulated as follows: solve (3) or (5) to obtain the contrast
χ1 on D from the knowledge of the scattered field usct

s,j on S and the incident field uinc
s,j on D

subject to the necessary condition that the total field us,j on D and the contrast χ1 on D satisfy
the integral equation in (6).

We consider the inverse scattering problem as an optimization problem where, in each
iteration n, we update the contrast sources ws,j,n and the contrast χj,n alternatingly, by
minimization of the cost functional

Fn =
{∑

j

∑
s

∥∥usct
s,j − K

{TM,TE}
j [ws,j,n]

∥∥2
S∑

j

∑
s

∥∥usct
s,j

∥∥2
S

+

∑
j

∑
s‖ws,j,n − χj,nus,j,n‖2

D∑
j

∑
s

∥∥χj,n−1u
inc
s,j

∥∥2
D

}
, (7)

where

us,j,n = uinc
s,j + K

{TM,TE}
j [ws,j,n], (8)

and ‖ · ‖2
S and ‖ · ‖2

D denote the L2-norm on the data domain S and the object domain D,
respectively. In this CSI method, we use the back-propagation step to arrive at initial estimates
for the contrast sources and the contrast. We further include a multiplicative regularization.
Details of this so-called MR-CSI method for the multi-frequency problem can be found in [6].
However, the procedure to update the contrast function is replaced by the improved version in
[8]. The optimization process may be terminated if one of the following stopping conditions
is satisfied:

• The difference between the normalized data error Fn at two successive iterates, nth and
(n − 1)th, is within a prescribed error quantity (it is set to be 10−5).

• The total number of iterations exceeds a prescribed maximum Nmax = 1024.

The a priori information that the permittivity and the conductivity are positive is
implemented by enforcing the negative value to zero after each iteration. This simple procedure
is employed in all of the inversion runs.

3. Reconstruction results

In the experimental setup, the fields are generated and received by horn antennas. However, as
we previously argued, the problem is predominantly 2D. Hence, both receivers and transmitters
are approximated as line receivers and line transmitters. Therefore, we carry out the calibration
procedure outlined in [6].
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Figure 1. Reconstruction of the configuration with a dielectric cylinder embedded in another
dielectric cylinder both for TM polarization (data set: FoamDielIntTM) (a) and TE polarization
(data set: FoamDielIntTE) (b).

In the inversion, we take a test domain D of 16.775 cm × 16.775 cm. Unless stated
otherwise, this test domain D is discretized into 61 × 61 rectangular subdomains. The side
length of each subdomain is 0.275 cm.

The data for different frequencies are inverted simultaneously. In the figures, we plot the
complex contrast function χ1 only. This is the complex contrast at the lowest frequency.

For the different configurations measured, we have obtained the following reconstructions.

3.1. Data FoamDielIntTM and FoamDielIntTE

We first consider the configuration with a circular dielectric cylinder with a diameter of
30 mm embedded in another circular dielectric cylinder with a diameter of 80 mm. The
smaller cylinder has a relative permittivity value of εr = 3 while the larger cylinder has a
relative permittivity value of εr = 1.45. Both cylinders are non-conductive. The schematic of
these cylinders are shown in the top-right side of figure 1. In the experiment, there are eight
transmitters distributed uniformly on a circle with a radius of 1.67 m from the centre of the
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Figure 2. Reconstruction of the configuration with two disjoint dielectric cylinders both for TM
polarization (data set: FoamDielExtTM) (a) and TE polarization (data set: FoamDielExtTE) (b).

experimental setup. For each transmitter, the data are measured using 241 receivers located
on a circle with a radius of 1.67 m. The data are gathered at nine frequencies in the range of
2–10 GHz. The wavelength at 10 GHz is equal to 3 cm, so the dimensions of the test domain
D are equal to 5.5 × 5.5 wavelength. All the data at nine frequencies are simultaneously
inverted. In the inversion, we have used the a priori knowledge that neither the permittivity
nor the conductivity can be negative.

The real part (the left plots) and the imaginary part (the right plots) of the reconstructed
contrast χ1 are presented in figure 1. Both reconstructions from the TM data set (the top plots)
and TE data set (the bottom plots) show that the relative permittivity values, εr = Re(χ1) + 1,
are very well reconstructed. The relative permittivities of the reconstructed small cylinder are
around 2.8 (from the TM data) and 2.95 (from the TE data). The vanishing imaginary part of
the contrast function indicates that the objects are purely dielectric (non-conductive).

3.2. Data FoamDielExtTM and FoamDielExtTE

In the second configuration, we consider the case that the small internal circular cylinder
is now located outside the larger circular cylinder. The data are collected in the same way
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Figure 3. Reconstruction of the configuration with a dielectric cylinder embedded in another
dielectric cylinder and a third disjoint dielectric cylinder both for TM polarization (data set:
FoamTwinDielTM) (a) and TE polarization (data set: FoamTwinDielTE) (b).

as the previous experiment. The reconstructed images are presented in figure 2. We observe
that for the present configuration the larger cylinder is better reconstructed from the TM
data set.

3.3. Data FoamTwinDielTM and FoamTwinDielTE

The third configuration is the combination of both previous configurations. The two smaller
circular dielectric cylinders have relative permittivity values of εr = 3 while the larger circular
dielectric cylinder has a relative permittivity value of εr = 1.45. In contrast to the previous
two experiments, the data are obtained using 18 transmitters. The numbers of frequencies and
receivers remain the same.

The inversion is carried out in a similar way as in the previous experiments. The
reconstructed images presented in figure 3 show that the qualitative results are very similar
to the ones of figure 1. However, we note also that the circular form of the larger dielectric
cylinder is better reconstructed; this is caused by the additional numbers of transmitter used
in the inversion.
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Figure 4. Reconstruction of the configuration with two disjoint cylinders, a dielectric one and a
metallic one, both for TM polarization (data set: FoamMetExtTM) (a) and TE polarization (data
set: FoamMetExtTE) (b); the test domain D is subdivided into 61 × 61 subdomains.

3.4. Data FoamMetExtTM and FoamMetExtTE

The fourth configuration consists of one circular dielectric cylinder with a relative permittivity
value of εr = 1.45 and one metallic cylinder with a diameter of 28.5 mm. The data are now
collected at 17 frequencies in the range of 2–18 GHz. The wavelength at 18 GHz is 1.67 cm;
hence, the width and height of the test domain D are ten times the wavelength. The number
of transmitters is 18 while the number of receivers is 241. All frequencies are simultaneously
used in the inversion procedure. In both TM and TE cases, we enforce positivity in the
permittivity and in the conductivity.

The reconstructed images from the TM and TE data sets are shown in figures 4(a) and (b).
For the frequency of operation of 18 GHz, the discretization mesh of the test domain D may
be too coarse. Within the present discretization, the mesh size is approximately equal to six
points per wavelength. We therefore refine our mesh from 61 × 61 subdomains into 122 ×
122 subdomains and rerun our inversion code. The reconstructed images are now shown in
figure 5.

The inversion results from the TM data set are presented in figure 5(a). This figure shows
that the metallic cylinder is retrieved with real and imaginary parts having the same order of
magnitude. These inversion results also show that there is an ambiguity in the inversion. In
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Figure 5. Reconstruction of the configuration with two disjoint cylinders, a dielectric one and a
metallic one, for TM polarization using 122 × 122 subdomains, for plot scales of 0–40 (a) and
0–2 (b).
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Figure 6. Reconstruction of the configuration with two disjoint cylinders, a dielectric one and a
metallic one, for TE polarization using 122 × 122 subdomains.

principle, when carrying out the inversion of a perfectly conducting cylinder, one can only
reconstruct uniquely the boundary of the object. Inside the metal object, the contrast sources
are invisible, with the consequence that any contrast inside the object may be arbitrarily
arrived at. The small circular object with a large permittivity value appearing in the image of
Re(χ1) is obviously an artefact of the inversion algorithm. However, since the reconstructed
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circular object in Re(χ1) lies completely inside the circular cylinder in Im(χ1) with a very high
amplitude (≈40), one can conclude that we are dealing with a metallic object. This artefact
can only be eliminated by enforcing the a priori information that the object is metallic. One
way to enforce this constraint is to force the real part of the contrast function to zero at spatial
locations where the imaginary part of the contrast surpasses a certain large value. We plot
again the reconstructed χ1 in figure 5(b), however, this time we plotted the contrast only up to
a maximum value of 2. From this figure we observe that the algorithm reconstructs very well
the shape and the permittivity of the circular dielectric object.

On the other hand, the imaginary parts of the contrast of the TE inversion do not exhibit any
significant features (see figure 6). It seems that only a real part of the contrast is reconstructed.
A similar observation can be made from the reconstruction results of the rectangular metallic
cylinder of the first Fresnel data set, see [6]. We surmise that this false reconstruction is
due to the fact that we measure only one electric field component, namely, the electric field
component perpendicular to the radial direction, while inside the test domain D we deal with
a vectorial problem of two unknown electric field vectors.

4. Conclusions

In view of the present results and our crude approximation of the transmitting and receiving
antennas, the multiplicative regularized contrast source inversion method seems to be very
robust and is capable of ‘blindly’ handling a wide class of inverse scattering problems.

Finally, we note that we also can invert both TM and TE data simultaneously. However,
since the optimal choice of the weighting factors of the two data sets is not trivial and needs
further research, we refrain ourselves in presenting these joint inversion results.
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