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Laymen’s summary
This thesis focuses on implementing a specific type of mathematical function,
known as a Schwartz function, in a computer program called Lean. To do this,
we must follow Lean’s strict rules, which ensure that all mathematical steps are
precise and verifiable by Lean. Schwartz functions are especially useful when
considering the Fourier transform, a powerful tool used in areas like quantum
mechanics, engineering, and signal processing. While Lean already includes
a version of these functions, this project offers a more concrete, textbook-like
approach that is easier to understand. This implementation may support future
implementations of results in related mathematical areas such as distribution
theory, which is still underdeveloped in Lean.
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Abstract
The formalization of mathematics has become increasingly popular in recent
years. Formalization refers to the expression of mathematical definitions and
proofs within a precisely defined system of rules, allowing software programs
to verify their correctness. This thesis formalizes Schwartz functions using the
interactive theorem prover Lean, which provides automation and feedback dur-
ing the construction of definitions and arguments. Due to their smoothness
and rapid decay at infinity, the space of Schwartz functions forms a natural
setting for the Fourier transform. While Lean’s library already contains an ab-
stract formalization of Schwartz functions, this thesis presents a more concrete,
coordinate-based approach that aligns more closely with standard mathemati-
cal textbooks. The knowledge gained throughout this thesis can support future
formalizations of results in distribution theory, a domain that is still underde-
veloped in Lean.
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1 Introduction
In the recent years, the formalization of mathematics has become increasingly
popular. Formalization refers to the process of writing mathematical definitions
and proofs in a precisely defined system of rules, called a formal language. This
allows mathematics to be verified by digital proof assistants, software programs
that can verify proofs automatically, rather than relying solely on peer review.
These tools are not only able to verify correctness of mathematical results, but
also provide immediate feedback, such as errors or suggestions for next proof
steps. Notable breakthroughs include the formal verification of the four colour
theorem, a follow-up to Peter Scholze’s Fields Medal-winning work, and the
prime number theorem [23] [12] [4].

This thesis makes use of the Lean interactive theorem prover, which is such
a proof assistant [13]. Lean is based on a formal language referred to as type
theory [16]. Type theory was developed in the first half of the twentieth century
by Bertrand Russell (and others) to deal with paradoxes that arose in the set
theory of the time [37]. It treats mathematical objects as types that govern how
these objects can be used, allowing Lean to verify mathematical statements by
checking types.

However, many areas of mathematics remain underdeveloped in Lean [29].
One of the main challenges is that formalizing definitions and proofs often re-
quires a deep understanding of the underlying mathematical structures. This
makes it harder to work on new formalizations and to make use of already
formalized content.

This thesis focuses on the formalization of an important notion in harmonic
analysis, a branch of mathematics that studies the representation of functions as
frequencies. It has many important applications in areas like signal processing,
quantum mechanics, and partial differential equations. The Fourier transform
plays a central role in harmonic analysis. It is an operation that transforms
functions from the time or spatial domain into the frequency domain, revealing
the presence and strength of frequency components in the original function. In
particular, this thesis formalizes Schwartz functions on Rn. These functions
are infinitely differentiable and rapidly decreasing at infinity, which makes them
very well suited for Fourier transformation [25].

Schwartz functions have already been formalized in Lean in a more general
setting [18]. This formalization uses an unconventional definition that avoids
the use of partial derivatives and polynomials completely. However, we found
that when learning about Schwartz functions, this approach obstructs intuitive
understanding. It requires familiarity with more abstract mathematical objects
before one can understand and make use of the formalization. We aim to provide
a more concrete formalization of Schwartz functions that can be understood with
an undergraduate background in analysis, by working directly with higher-order
partial derivatives, polynomials, and coordinate-based domains.

The thesis is structured as follows. In Chapter 2, we provide an introduction
to the mathematical theory needed to understand the formalization process, as
well as the motivation for why the Schwartz functions are well-suited for Fourier
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transformation. Chapter 3 introduces Lean’s foundations and key concepts.
Then, Chapter 4 shows the formalization process. Finally, in Chapter 5 we
provide a discussion of our formalization and offer recommendations for future
work.
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2 Mathematical theory

2.1 Preliminaries
2.1.1 Terminology and notation

Given x “ px1, ..., xnq P Rn, we set |x| “ px1, ..., xnq1{2. A multi-index α is
an ordered n-tuple of nonnegative integers. For a multi-index α “ pα1, ..., αnq,
Bαf denotes the derivative B

α1
1 ...Bαn

n f and |α| “ α1 ` ... ` αn denotes its size.
The number |α| indicates the total order of differentiation of Bαf . The space of
functions in Rn all of whose derivatives of order at most N P N are continuous
is denoted by CN pRnq and the space of infinitely differentiable (or smooth)
functions on Rn by C8pRnq. For a function ϕ : Rn Ñ Rm, we write ϕphq “ ophq

if limhÑ0
||ϕphq||

||h||
“ 0. So, this means that ϕ becomes negligible compared to the

norm of the input vector h. We say that f is little o. It is straightforward to
show that the sum of two little-o functions is again little-o.

2.1.2 Structures

This section uses definitions from [33], [9], and [22]. While the reader may al-
ready be familiar with some of these definitions, they are included here to sup-
port the formalizations in later sections, particularly in Section 2.4 and Chapter
3.

We start by defining some concepts that will be used multiple times through-
out this section.

Definition 2.1 (Binary Operation). Let G be a set. A binary operation on G
is a function ˝ : GˆG Ñ G that assigns to each pair pa, bq P GˆG the element
a ˝ b P G. We denote the set G equipped with operation ˝ by pG, ˝q.

Definition 2.2. Let G be a set with a binary operation ‘˝’. The following are
important notions.

• Associativity : For all a, b, c P G, a ˝ pb ˝ cq “ pa ˝ bq ˝ c

• Identity element De P G such that e ˝ a “ a ˝ e “ a, @a P G

• inverse element @a P G, there exists a´1 P G such that a˝a´1 “ a´1 ˝a “

e.

• Commutativity : @a, b P G, a ˝ b “ b ˝ a.

Associativity, existence of an identity element and existence of an inverse ele-
ment are called the group axioms. When we work with the binary operations
addition and multiplication, we define the following.

• Distributivity: @a, b, c P G, a ¨ pb ` cq “ a ¨ b ` a ¨ c.

We begin by defining several fundamental algebraic structures that serve as
the foundation for many others.
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Definition 2.3 (Groups). A group is a set G with an operation G ˆ G Ñ G,
denoted pa, bq ÞÑ a ˝ b, such that the group axioms are met. A group G is called
commutative or abelian if it satisfies commutativity.

Definition 2.4 (Fields). A field is a set K equipped with two operations called
addition and multiplication, such that K,` and K, ¨ are abelian groups and
distributivity holds. The set of all above axioms combined is called the field
axioms.

Example 2.5 (Real numbers). The real numbers with the well-known opera-
tions of addition and multiplication form a field. Indeed, given a P R we have:

• Addition and multiplication satisfy commutativity and associativity

• Additive inverse ´a

• Multiplicative inverse 1{a @a ‰ 0 P R

• Additive and multiplicative identity a ` 0 “ a and a ¨ 1 “ a

• Multiplication distributes over addition

The following definition serves as the general structure used throughout the
thesis.

Definition 2.6 (Vector spaces). Let K be a field. A vector space V over K is
a set equipped with

• an operation called vector addition ` : V ˆ V Ñ V , and

• an operation called scalar multiplication ¨ : K ˆ V Ñ V ,

such that pV,`q is an abelian group, and the following properties are satisfied:

• Associativity with scalar multiplication: apbvq “ pabqv

• Identity element of scalar multiplication: 1 ¨ v “ v, where 1 P K

• Distributivity of scalar multiplication over vector addition: apu ` vq “

au ` av

• Distributivity of scalar multiplication over field addition: pa`bqv “ av`bv

Example 2.7 (Rn is a vector space). Let Rn be the set of all n-tuples px1, . . . , xnq

of real numbers. With component-wise addition and scalar multiplication, Rn

forms a vector space over R. Indeed, let x, y P Rn, then xi, yi P R for all
i P t1, ..., nu and

px1, ..., xnq ` py1, ..., ynq “ px1 ` y1, ..., xn ` ynq (1)

and similarly, for a P R we have

a ¨ px1, ..., xnq “ pax1, ..., axnq (2)

We say the vector space Rn is defined over the field R.
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We need the following definition to build generalization of a vector space.

Definition 2.8 (Ring). A ring is a set R equipped with addition and mul-
tiplication such that pR,`q is an abelian group. Moreover, multiplication is
associative, it has a multiplicative identity and multiplication distributes over
addition.

The following is the generalization of vector space.

Definition 2.9 (Modules). Suppose that R is a ring with multiplicative identity
1. A R´module M is a vector space in which the field K is replaced by a ring.

Example 2.10 (Vector spaces are modules). Let V be a vector space over the
field K, then V is a K´module. Indeed, a vector space over a field satisfies all
axioms of a K´module, since the axioms of vector spaces and modules coincide
in this case. And since K is a field, it is also a commutative ring. This follows
directly from the axioms in the definition. Thus, a vector space over a field K
is a K´module.

Example 2.11. Rn is a R´module. Indeed, in Example 2.7 we saw that Rn is
a vector space with field R. So by Example 2.10 we can conclude that Rn is a
R´module.

The following definition introduces a notion of size within structures, and
plays an important role in the structures that follow.

Definition 2.12 (Norm). A norm on a vector space V over a field K is a
function || ¨ || : V Ñ Rě0 satisfying the following properties for all x, y P V and
scalars a P K.

• Non-negativity: ||x|| ě 0

• Definiteness: ||x|| “ 0 ðñ x “ 0

• Homogeneity: ||ax|| “ |a| ¨ ||x||

• Triangle inequality: ||x ` y|| ď ||x|| ` ||y||.

By combining the first fundamental structures in this section and the prop-
erties of the norm, we are able to construct structures suitable for Schwartz
functions (see Section 3.3).

Definition 2.13 (Normed groups). A normed group is an abelian group G with
a norm || ¨ || : G Ñ Rě0. Note that homogeneity is not defined in this setting.

Example 2.14 (Rn is a normed group). Let G “ Rn be the set of n´tuples of
real numbers with as operation vector (`) addition and the Euclidean norm:

||x|| “

b

x2
1 ` ... ` x2

n.

Then pRn,`, || ¨ ||q is a normed group. Indeed, it satisfies the abelian group
properties:
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• Rn is closed under addition

• Addition is associative and commutative

• The identity is 0

• Every x has inverse element ´x

Moreover, it satisfies all norm axioms:

• ||x|| ě 0

• ||x|| “ 0 ðñ x “ 0

• ||x ` y|| ď ||x|| ` ||y||. Taking squares on both sides and rewriting gives
for the left hand side:

||x ` y||2 “ px ` yq ¨ px ` yq “ x ¨ x ` 2x ¨ y ` y ¨ y “ ||x||2 ` 2x ¨ y ` ||y||2.

The right-hand side becomes:

p||x|| ` ||y||q2 “ ||x||2 ` 2||x|| ¨ ||y|| ` ||y||2.

Subtracting ||x||2 ` ||y||2 from both sides yields:

x ¨ y ď ||x|| ¨ ||y||

which is the Cauchy-Schwarz inequality (Lemma 3.3 of [9]).

Therefore, Rn is a normed group.

Definition 2.15 (Normed vector spaces). A normed vector space is a vector
space equipped with a norm.

Example 2.16 (Rn over R with Euclidean norm is a normed vector space).
Let x P Rn and a P R. Then ||a ¨ x|| “ |a| ¨ ||x||. Indeed,

||a¨x|| “
a

pax1q2 ` ... ` paxnq2 “

b

a2px2
1 ` ... ` x2

nq “ |a|

b

x2
1 ` ... ` x2

n “ |a|¨||x||.

So Rn satisfies all normed vector space axioms (by previous examples and ho-
mogeneity).

While norms provide a way to measure size of elements, the following defi-
nitions provides a way to measure distance between elements.

Definition 2.17 (Metric spaces). A metric space is a pair pX, dq where X is
a set and d : X ˆ X Ñ Rě0 is a function that satisfies the following for all
x, y, z P X: non-negativity, definiteness, the triangle inequality, and

• Symmetry: dpx, yq “ dpy, xq.

d is called the metric or the distance function.
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Example 2.18 (Euclidean space). Let X “ Rn, the metric induced by the
Euclidean norm dpx, yq “ ||x ´ y|| gives rise to a metric space. More generally,
normed vector spaces are automatically metric spaces when using the metric
induced by the norm.

Some metrics behave differently from our intuitive understanding of distance.
This should be accounted for when working with general notions of metric spaces
(see Section 3.3).

Example 2.19 (Discrete metric). Let X be any set. The metric

dpx, yq “

#

0 if x “ y

1 if x ‰ y

is called the discrete metric.

We introduce the following to be able to abstract the idea of metric spaces.
Moreover, the definition is used in Section 2.4.

Definition 2.20 (Open and closed sets). Let pX, dq be a metric space.

• A set U Ď X is open if for every x P U , there exists ϵ ą 0 such that the
open ball

Bϵpxq “ ty P X : dpx, yq ă ϵu

is contained in U .

• A set F Ď X is closed if its complement XzF is open.

The following is an even broader framework than metric space and is central
in the study of continuity [27]. We depend on this notion in Section 2.4 and
Section 3.3.

Definition 2.21 (Topological spaces). Let X be a set. A topology T on X is a
collection of subsets of X, called open sets, such that:

• H P T and X P T

• The union of any collection of sets in T is also in T

• The intersection of any finite collection of sets in T is also in T

A topological space is a pair pX, T q, where X is a set and T Ď PpXq is a
collection of subsets of X that satisfies the 3 axioms.

Example 2.22 (Metric spaces are topological spaces). Given a metric space
pX, dq. Let T be collection of open sets in X. T satisfies the axioms in 2.21.
Indeed,

• There exists no x P H, so H P T . And X P T , since for every x P X and
every r ą 0, the open ball Brpxq Ď X by definition.
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• Suppose we have a collection of open sets tUiu with indexes i. Let U be
the union of all Ui. Then any point x P U lies in some Ui. Since Ui open
there exists r ą 0 such that Brpxq Ď Ui Ď U . So U is open.

• Let D be a finite intersection of n open sets Fi. Then for x P F there
exists radii r1, ..., rn such that Bri Ď Fi. Let r “ mintr1, ..., rnu, then
Brpxq Ď Fi for all i. So Brpxq Ď F . Thus, the collection of open sets in a
metric space is a topology. We conclude that every metric space defines a
topological space.

2.2 Fréchet derivatives
Unless stated otherwise, all results from this subsection are from [10]. In classical
analysis, the derivative of a function f : Rn Ñ R is usually understood as the
gradient which captures how the function changes locally. This thesis works
with a more general version of the derivative called Fréchet derivatives. This
is a coordinate-free approach to the best linear approximation of a function at
a point, and it is also compatible with the structure of general normed vector
spaces, not only Rn. We use E and F to denote normed vector spaces (see
Definition 2.15).

Definition 2.23. Let λ : E Ñ F be a linear map with E and F normed vector
spaces. λ is bounded if there exists C ě 0 such that

||λpxq||F ď C||x||E , @x P E.

Definition 2.24. Let f : U Ñ F be a function where U is an open subset of E.
We say f is Fréchet differentiable at x P U if there exists a bounded and linear
operator A : E Ñ F such that

lim
hÑ0

||fpx ` hq ´ fpxq ´ Ah||

||h||
“ 0 (3)

We say that A is the derivative of f at x, denoted by Dfpxq.

Remark 2.25. Since the Fréchet derivative is the best linear approximation of
fpx ` hq near x, we can write

fpx ` hq « fpxq ` Ah,

or
fpx ` hq “ fpxq ` Ah ` ophq. (4)

The Fréchet and the classical derivative have similar properties such as the
chain rule, uniqueness, linearity of the derivative and more. In Rn, the two
notions coincide. We begin by proving some of these properties.

Theorem 2.26 (Uniqueness). If f : E Ñ F is Fréchet differentiable at x, then
the mapping A in Definition (2.24) is uniquely defined.

11



Proof. Suppose A1 and A2 are two bounded linear maps that satisfy Equation
3. Then, for each ϵ ą 0 there exists a δ ą 0 such that

||fpx ` hq ´ fpxq ´ Aih|| ă ϵ||h||, i P t1, 2u

whenever ||h|| ă δ. By the triangle inequality, ||A1h ´ A2h|| ă 2ϵ||h|| whenever
||h|| ă δ. By linearity of A1 and A2, the difference A1 ´ A2 is linear. Thus, we
can scale h arbitrarily. Indeed, let h “ tv for some v P E, and scalar t ą 0 such
that ||tv|| ă δ. Then,

||pA1 ´ A2qptvq|| “ |t| ¨ ||pA1 ´ A2qpvq|| ď 2ϵ|t| ¨ ||v||.

Dividing by |t| yields
||pA1 ´ A2qpvq|| ď 2ϵ ¨ ||v||.

Since we chose ϵ ą 0 arbitrarily and the inequality holds for all v P Rn, we
conclude that A1 “ A2.

Theorem 2.27 (Chain rule). If f is differentiable at x and g is differentiable
at fpxq, then pg ˝ fq1pxq is differentiable at x, and

pg ˝ fq1pxq “ g1pfpxqq ˝ f 1pxq.

Proof. Let h, k P Rn. Define

F :“ g ˝ f,A :“ f 1pxq, y : “ fpxq, B :“ g1pyq, and
o1phq : “ fpx ` hq ´ fpxq ´ Ah

o2pkq : “ gpy ` kq ´ gpkq ´ Ak

ϕpkhq : “ Ah ` o1phq

Note that by Equation (3) we have that o1phq and o2phq are little-o. We show
that F 1pxq “ BA. We have

F px ` hq ´ F pxq ´ BAh “ gpfpx ` hqq ´ gpfpxqq ´ BAh

“ gpfpxq ` Ah ` o1phqq ´ gpyq ´ BAh

“ gpy ` ϕphqq ´ gpyq ´ BAh

“ gpyq ` Bϕphq ` o2pϕphqq ´ gpyq ´ BAh

“ BrAh ` o1phqs ` o2pϕphqq ´ BAh

“ Bpo1phqq ` o2pϕphqq.

Thus, it follows that

||F px ` hq ´ F pxq ´ BAh|| “ ||Bpo1phqq ` o2pϕphqq||

ď ||B|| ||o1phq|| ` ||o2pϕphqq||.

Now, since the sum of two little-o functions is again little-o, the conclusion
follows.
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Indeed, the derivative behaves like as expected from the familiar definition.
Let us check this by doing some simple examples.

Example 2.28 (Constant functions). Let X,Y be normed vector spaces. Let
f : X Ñ Y be fpxq “ y0, where y0 P F a fixed element. Thus f is a constant
map and we would expect f 1pxq “ 0. Indeed,

limhÑ0
||fpx ` hq ´ fpxq ´ 0||

||h||
“ limhÑ0

||0||

||h||
“ 0

.

Example 2.29. Let X “ Y “ R. Let f be a function whose derivative in the
usual sense at x is λ P R. Then the Fréchet derivative of f at x is the linear
map Ah “ λh, because

limhÑ0
|fpx ` hq ´ fpxq ´ λh|

|h|
“ limhÑ0|

fpx ` hq ´ fpxq

h
´ λ| “ 0

Next, we introduce a theorem that helps us to work with the Fréchet deriva-
tive in the appropriate setting for Schwartz Functions.

Theorem 2.30. If f is bounded in a neighborhood of x and if a linear map
A has the property in Equation (3), then A is a bounded linear map; in other
words, A is the Fréchet derivative of f at x.

Proof. Choose δ ą 0 so that whenever ||h|| ď δ we will have

||fpx ` hq|| ď M

and
||fpx ` hq ´ fpxq ´ Ah|| ď ||h||.

Then, for ||h|| ď δ, we have

||Ah|| ď ||fpx ` hq ´ fpxq|| ` ||h|| ď 2M ` δ.

For ||u|| ď 1, ||δu|| ď δ, whence

||Apuq|| “
1

δ
||Apδuq|| ď

1

δ
p2M ` δq “

2M ` δ

δ
.

Thus ||A|| ď p2M ` δq{δ ă 8.

2.3 Multilinear maps
We have seen in Section 2.2 that a Fréchet derivative is a bounded linear map.
It is not surprising that higher-order derivatives are given by multilinear maps,
which are linear in each argument separately. In the setting defined by E “ Rn

and F “ Rm, we have the following theorem [10].
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Theorem 2.31. Let f : Rn Ñ Rm, and let f1, ..., fm be the component func-
tions of f . If all partial derivatives Bfi

Bxj
, i “ 1, 2, ..,m, j “ 1, 2, ..., n, exist in a

neighborhood of x and are continuous at x, then f 1pxq exists, and

pf 1pxqhqi “

n
ÿ

j“1

Bfi
Bxj

pxq ¨ hj , h “ ph1, ..., hnqT P Rn.

That is, the Fréchet derivative of f is given by the Jacobian matrix J P Rmˆn

of f at x, Jij “
Bfi
Bxj

pxq.

Proof. Since for all i, the partial derivatives Bfi
Bxj

exist in a neighborhood of x
and are continuous at x, each component function fi : Rn Ñ R is continuously
differentiable at x. Hence, by standard results from multivariable analysis (see
[17]), each fi is Fréchet differentiable at x with gradient

∇fipxq “

´

Bfi
Bx1

pxq, ...,
Bfi
Bxn

pxq

¯

.

Therefore, for every h P Rn, we have

n
ÿ

j“1

Bfi
Bxj

¨ hj “ fipx ` hq ´ fipxq ` oiphq.

Rearranging terms gives

oiphq “ fipx ` hq ´ fipxq ´

n
ÿ

j“1

Bfi
Bxj

¨ hj .

But, since limhÑ0
|oiphq|

||h||
“ 0 we have

lim
hÑ0

1

||h||

ˇ

ˇ

ˇ

ˇ

ˇ

fipx ` hq ´ fipxq ´

n
ÿ

j“1

Bfi
Bxj

¨ hj

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (5)

By definition of the Euclidean norm

1

||h||2
||fpx ` hq ´ fpxq ´ Jh||2 “

1

||h||2

m
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

fipx ` hq ´ fipxq ´

n
ÿ

j“1

Bfi
Bxj

pxq ¨ hj

ˇ

ˇ

ˇ

ˇ

2

.

Since the left-hand side is non-negative and the right hand side converges to
zero by (5), the result follows.

This Jacobian matrix represents the coordinate representation of the Fréchet
derivative, which is a linear map where each row corresponds to the gradient
of a component function. Now, since the Fréchet derivative is the best linear
approximation of f near some point x P Rn, we can write

fpx ` hq « fpxq ` Jpxqphq.
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We say that h is the direction vector, as it specifies the direction in which the
change of the function is measured. When we choose h to be a standard basis
vector, we obtain the partial derivatives. Indeed, let ei be a standard basis
vector given by ei “

“

0 ... 0 1 0 ... 0
‰T with the 1 on the ith place.

Now applying the linear map to the ei corresponds to the matrix vector product
of the Jacobian and the basis vector. Thus,

Dfpxqpeiq “
Bf

Bxi
pxq.

Now, the second derivative is just the derivative of the map Dfpxq. It represents
the rate of change of Dfpxqphq in some direction k, denoted D2fpxqph, kq. This
is a bilinear map from RnˆRn onto Rm; it is linear in each argument separately.
In the case f : Rn Ñ R, D2fpxq is called the Hessian matrix. We refer the reader
to [27] for the details. If we take h “ ei and k “ ej , we obtain

D2fpxqpei, ejq “
B2f

BxjBxi
pxq.

More generally, the kth derivative of f at x, denoted

Dkfpxq : Rn ˆ ¨ ¨ ¨ ˆ Rn
looooooomooooooon

k times

Ñ Rm

represents a k-linear map; it is linear in each of the k arguments separately.
Again, using standard basis vectors e1, ...ek yields

Dkfpxqpe1, ..., ekq “
Bkf

Bx1...Bxk
pxq.

Remark 2.32 (Notation). Let f : Rn Ñ Rm. The first derivative is a lin-
ear map. We say Dfpxq P LinpRn,Rmq. So, the function Df , which maps
each point x P Rn to its derivative, maps Rn to LinpRn,Rmq. Similarly,
for the second derivative we have D2fpxq : Rn ˆ Rn Ñ Rm, and we write
D2f : Rn Ñ LinpRn,LinpRn,Rmqq. For LinpRn,LinpRn,Rmqq we use the ab-
breviation Lin2pRn ˆ Rn,Rmq. Higher-order derivatives work similarly. The
space of continuous linear maps is denoted LpRn,Rmq. Similar notation holds
in this case. Lastly, the maps Dkfpxq are sometimes denoted f pkqpxq, which
aligns with the notation often used in the literature.

We now work our way to symmetry of higher-order derivatives, which will
become relevant in Section 3.4. Let us start with some definitions.

Definition 2.33. Let E and F be vector space over a field K and let T :
E ˆ ... ˆ E
looooomooooon

d times

Ñ F be a d´linear map. Let Sd be the set of all possible permu-

tations of t1, ..., du. T is called symmetric if for all permutations σ P Sd, we
have

T px1, ..., xnq “ T pxσp1q, ..., xσpdqq.
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Definition 2.34 (Operator norm). The continuous linear mappings between
two normed vector spaces E and F form a vector space LpE,F q. For ϕ P LpE,F q

let
||ϕ||LpE,F q “ sup

||x||Eď1

||ϕpxq||F .

With this norm, LpE,F q becomes a normed vector space.

Remark 2.35. Note that for x P E, we have

||ϕpxq||F ď ||ϕ||LpE,F q||x||E .

Indeed, define the unit vector x⃗ :“ x
||x||E

. By definition of the supremum we
have

||ϕpx⃗q||F ď ||ϕ||LpE,F q.

By multiplying both sides with ||x||E we get

||ϕpxq||F “ ||ϕp||x||E ¨ x⃗q||F “ ||x||E ||ϕpx⃗q||F ď ||x||E ||ϕ||LpE,F q (6)

We state the following lemma without proof (for details, the reader is referred
to Corollary 3.2 of [11]).

Lemma 2.36 (Mean value inequality). Let E and F be normed vector spaces,
O an open subset of E and f : O Ñ F differentiable on O. If the segment
ra, bs Ă O, then

||fpbq ´ fpaq||F ď sup
xPpa,bq

|f 1pxq|LpE,F q||b ´ a||E .

We are now ready for the main results of this section. These are drawn from
[11].

Theorem 2.37. Let E and F be normed vector spaces, O an open subset of E
and f a mapping from O into F . If f is 2-differentiable in O and a P O, then
f p2qpaq is a symmetric bilinear mapping.

Proof. For h, k P E small, define

∆ph, kq “ fpa ` h ` kq ´ fpa ` kq ´ fpa ` hq ` fpaq

Then, by adding and subtracting f 1pa ` hqpkq and f 1paqpkq we get

∆ph, kq ´ f p2qpaqph, kq “fpa ` h ` kq ´ fpa ` kq ´ f 1pa ` hqk ` f 1paqk

´ pfpa ` hq ´ fpaqq

` pf 1pa ` hq ´ f 1paq ´ f p2qpaqphqqk.

Now fix h and set

Hpkq “ fpa ` h ` kq ´ fpa ` kq ´ f 1pa ` hqk ` f 1paqk.
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The triangle inequality yields

||∆ph, kq ´ f p2qpaqph, kq||F ď ||Hpkq ´ Hp0q||F

` ||pf 1pa ` hq ´ f 1paq ´ f p2qpaqphqqpkq||F

Since f is 2-differentiable in O, the function H is differentiable, and so is
Hpkq ´ Hp0q. Therefore, the first term in the right-hand side can be bounded
by applying Lemma 2.36. The second term is a bounded linear map, so by
Equation (6) we get:

||∆ph, kq ´ f p2qpaqph, kq||F ď ||Hpkq ´ Hp0q||F

` ||pf 1pa ` hq ´ f 1paq ´ f p2qpaqphqqpkq||F

ď sup
0ďλď1

|H 1pλkq|LpE,F q||k||E

` |f 1pa ` hq ´ f 1paq ´ f p2qpaqphq|LpE,F q||k||E

To estimate H 1pλkq, consider the derivative of H in the direction u “ λk:

H 1puq “ f 1pa ` h ` uq ´ f 1pa ` uq ´ f 1pa ` hq ` f 1paq

“ f 1pa ` h ` uq ´ f 1paq ´ f p2qpaqph ` uq

´ pf 1pa ` uq ´ f 1paq ´ f p2qpaquq

´ pf 1pa ` hq ´ f 1paq ´ f p2qpaqhq,

where we use the approximation terms for the derivatives in the second equality
for the multivariable case (see Equation (4)). Now taking the norm yields

|H 1puq|LpE,F q ď |f 1pa ` h ` uq ´ f 1paq ´ f p2qpaqph ` uq|LpE,F q

` |pf 1pa ` uq ´ f 1paq ´ f p2qpaquq|LpE,F q

` |pf 1pa ` hq ´ f 1paq ´ f p2qpaqhq|LpE,F q.

Set ϵ ą 0. Since each term is the approximation error of the second order
derivative and f 1 is differentiable by assumption for sufficiently small h, u, we
have:

|H 1puq| ď ϵ||h ` u||E ` ϵ||u||E ` ϵ||h||E ď 2ϵp||h||E ` ||u||Eq.

We have
|H 1pλkq| ď 2ϵp||h||E ` ||k||Eq.

Thus,

||∆ph, kq ´ f p2qpaqph, kq||F ď p2ϵp||h||E ` ||k||E ` ϵ||h||Eq||k||E

“ ϵp3||h||E ` 2||k||Eq||k||E

ď 2ϵp||h||E ` ||k||Eq2.
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By the triangle inequality,

||f p2qpaqph, kq ´ f p2qpaqpk, hq||F “ ||f p2qpaqph, kq ´ ∆ph, kq||F

`||∆ph, kq ´ f p2qpaqpk, hq||F .

But, since ∆pk, hq “ ∆ph, kq we have

||f p2qpaqph, kq ´ f p2qpaqpk, hq||F ď 4ϵp||h||E ` ||k||Eq2.

Now, suppose x, y P E. If α ą 0 small, then so are h “ α
2

x
||x||E

and k “ α
2

y
||y||E

.
But then

α2

4||x||2||y||2
||f p2qpaqpx, yq ´ f p2qpaqpy, xq||F ď 4ϵα2,

or
||f p2qpaqpx, yq ´ f p2qpaqpy, xq||F ď 16ϵ||x||E ||y||E .

This completes the proof.

Now, for the general case of symmetry for higher-order derivatives, we get
the following corollary.

Theorem 2.38. Let E and F be normed vector spaces and O an open subset
of E. Let f : O Ñ F is k times differentiable in O and a P O. Then f pkqpaq is
symmetric.

Proof. We prove this by induction on k. The base case k “ 2 is treated in
Theorem 2.37. Suppose that the result is true up to a given k. Let us consider
the case k ` 1. Since f is pk ` 1q-differentiable at a P E, f pkq is defined on a
neighborhood V of a. By the induction hypothesis f pkq is a symmetric multilin-
ear map from Ek into F for all x in V . Now since the derivative f pkqpaq maps
into LSpEk;F q and this subspace is closed in LkpE,F q, Proposition 2.8 of [11]
implies that the derivative f pkq

1

paq also takes values in LspEk, F q. Thus the map
is symmetric for every x P E. So, if we fix the first variable of f pk`1qpaq, the
resulting k´linear map is symmetric. Now it remains to show that the map is
symmetric in all k`1 arguments. Notice that Lk`1pE,F q “ L2pE,Lk´1pE,F qq.
Set g “ f pk´1q, then gp2qpaq “ f pk`1qpaq and gp2qpaq P L2pE,Lk´1pE,F qq. By
Theorem 2.37 we have

gp2qpaqpx1, x2q “ gp2qpaqpx2, x1q

for x1, x2 P E. But then

f pk`1qpx1, x2, x3, ..., xk`1q “ f pk`1qpx2, x1, x3, ..., xk`1q

for x1, x2, x3, ..., xk`1 P E. Suppose now that σ is a permutation of k`1 indices.
Now, consider the expression

f pk`1qpaqpxσp1q, ..., xσpk`1qq.
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If σp1q “ 1, then

f pk`1qpaqpxσp1q, ..., xσpk`1qq “ f pk`1qpaqpx1, xσp2q, ..., xσpk`1qq

“ f pk`1qpaqpx1, x2, ..., xk`1q.

If σp1q ‰ 1, then by the induction hypothesis we can commute the last k vari-
ables

f pk`1qpaqpxσp1q, ..., xσpk`1qq “ f pk`1qpaqpxσp1q, x1, ..., xkq.

Now,by first commuting the first two variables and then a second commutation
of the last k variables gets us

f pk`1qpaqpxσp1q, x1, ...q “ f pk`1qpaqpx1, xσp1q, ..., xkq

“ f pk`1qpaqpx1, x2, ..., xk`1q.

The result follows by mathematical induction.
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2.4 Introduction to Schwartz functions
Unless stated otherwise, all results from this subsection are from [25]. We re-
fer the reader unfamiliar with LP spaces to [9]. In this section we introduce
Schwartz functions. Schwartz functions are an important concept in functional
analysis and the theory of distributions. Informally, these functions are defined
by smoothness and their behaviour at infinity: they, along with all their deriva-
tives, decay faster than the reciprocal of any polynomial at infinity. We will find
out why this makes the space of all Schwartz functions very suitable for Fourier
analysis. Let us start by defining Schwartz functions.

Definition 2.39. A complex-valued function f P C8pRnq is called a Schwartz
function if for every pair of multi-indices α and β there exists a positive constant
Cα,β such that

ρα,βpfq “ sup
xPRn

|xαBβfpxq| “ Cα,β ă 8 (7)

The maps ρα,β : SpRnq Ñ r0,8q are called the Schwartz seminorms of f . Here
SpRnq is the set of all Schwartz functions on Rn. When there is no ambiguity,
we write SpRnq as S.

We begin by proving a basic result about the Schwartz space [31].

Theorem 2.40. Let m,n P N and f P SpRmq g P SpRnq, then the function
f ˆ g, i.e., fpx1, ..., xmqgpxm`1, ..., xm`nq P SpRm`nq.

Proof. Note that

|px, yqpα,βqBγ
xBµ

y pf ˆ gqpx, yq| “ |xαBγfpxq||yβBµgpyq|,

for every px, yq P Rm ˆ Rn,f P SpRmq, g P SpRnq and all multi-indices α, β.
Thus, by combining the norms, we see that the resulting norm is finite. There-
fore, f ˆ g is in SpRm`nq

We now prove an unconventional characterization of the Schwartz functions,
which will become relevant in Section 3.4.

Theorem 2.41 (Characterization). Let f : Rn Ñ C, f P C8pRnq. Then f is a
Schwartz function if and only if for every k, n P N, there exists Ck,n ą 0, such
that for all x P Rn we have

||x||k ¨ ||Dnfpxq|| ď Ck,n.

The norm of Dnfpxq is defined as in Definition 2.34.

Proof. ‘ñ’ We want to bound ||x||k ¨ ||Dnfpxq||. By definition of the norm we
have that

||Dnfpxq|| “ sup
||v1||ď1,...,||vn||ď1

ˇ

ˇDnfpxqpv1, ..., vnq
ˇ

ˇ,
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with the Euclidean norm on the v1
is. Now, we can express each unit vector vj

as a linear combination of basis vectors: vj “
řn

i“1 ξjiei. By multilinearity, we
have

Dnfpxqpv1, ..., vnq “ Dnfpxq

´

n
ÿ

i1“1

ξ1iei1 , v2, ..., vn

¯

“

n
ÿ

i1“1

ξ1iD
nfpxqpei1 , v2, ..., vnq.

Repeating this argument yields

Dnfpxqpv1, ..., vnq “

n
ÿ

i1“1

ξ1i1 ...
n

ÿ

i1“i

ξninD
nfpxqpei1 , ..., einq

“

n
ÿ

i1,...,in“1

ξ1i1 ...ξninD
nfpxqpei1 , ..., einq.

Each term Dnfpei1 , ..., einq equals Bβfpxq for some |β| “ n, depending on the
multiplicities of i1, ..., in. Since for all j, ||vj ||2 ď 1 we have

řn
i“1 ξ

2
ji ď 1. But

then, |ξji| ď 1 and so,

||Dnfpxq|| “ sup
||v1||ď1,...,||vn||ď1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i1,...,in“1

ξ1i1 ...ξnin ¨ Bβfpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i1,...,in“1

ˇ

ˇ

ˇ

ˇ

Bβfpxq

ˇ

ˇ

ˇ

ˇ

ď nn ¨ max
|β|“n

|Bβfpxq| ă 8.

Here the last inequality holds as f is a Schwartz function. Moreover, we have

||x||k ď Ck

ÿ

|β|“k

|xβ |.

Indeed, we can use the equivalence of norms on finite-dimensional vector spaces
(see Theorem 1.34 of [36]). But then, by combining these results we get,

||x||k ¨ ||Dnfpxq|| ă 8.

‘ð’ Let α, β be arbitrary multi-indices and let k “ |α|, n “ |β|. Note that

|xα| “

n
ź

i“1

|xi|
αi ď

n
ź

i“1

||x||αi “ ||x|||α| “ ||x||k.

Moreover, Bβfpxq is a component of the derivative Dnfpxq. Indeed, we have
Bβfpxq = Dnfpxqpe1, ..., e1

looomooon

β1 times

, ..., en, ..., en
looomooon

βn times

q. Thus, by definition of the operator
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norm we have:

|Bβfpxq| “ |Dnfpxqpe1, ..., e1, ..., en, ..., enq|

ď sup
||v1||ď1,...,||vn||ď1

||Dnfpxqpv1, ..., vnq|| “ ||Dnfpxq||.

Now combining these two observations gives the bound

|xαBβfpxq| ď ||x||k||Dnfpxq|| ď C

with C ą 0.

Example 2.42. The function fpxq “ e´|x|
2

is in SpRnq. Indeed, f is smooth on
all of Rn because exponentials are infinitely differentiable. Moreover, derivatives
of f are combinations of polynomials times e´|x|

2

. Now, since e´|x|
2

decays faster
than any polynomial grows, this function is indeed a Schwartz function.

To develop the tools needed to prove continuity of the Fourier transform
(Theorem 2.58), we show that the Schwartz space is a topological vector space.
In fact, we can show that it is a locally convex space, which allows us to use
boundedness to show continuity. We begin by stating definitions [14].

Definition 2.43 (Topological vector space). A topological vector space (TVS)
is a vector space X (Definition 2.6) X together with a topology T (Definition
2.21 such that with respect to this topology

1. The map of X ˆ X Ñ X defined by px, yq ÞÑ x ` y is continuous,

2. The map op K ˆ X Ñ X defined by pα, xq ÞÑ αx is continuous,

where the vector space X is defined over the field K (Definition 2.4 and α P K.

Definition 2.44 (Locally convex space). A locally convex space is a TVS whose
topology is defined by a family of seminorms ϱ such that

Ş

ρPϱtx : ρpxq “ 0u “

t0u.

Remark 2.45. Let X be a vector space and ϱ a family of seminorms. The
topology defined ϱ consists of all sets that can be written as unions of sets of
the form

tx : ppx ´ x0q ă ϵu,

where p P ϱ, x0 P X, and ϵ ą 0. We refer to [14] for details.

Example 2.46. We show that the Schwartz space with the topology defined by
the countable family of Schwartz seminorms is a locally convex space. Firstly,
note that addition in the seminorm topology is continuous. Let f, g P S and
α, β multi-indices. Then,

ρα,βpf ` gq “ sup
xPRn

ˇ

ˇxαpBβfpxq ` Bβgpxqq
ˇ

ˇ.
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Using the triangle inequality, we obtain:

ρα,βpf ` gq “ sup
xPRn

ˇ

ˇxαBβpf ` gqpxq| ď sup
xPRn

ˇ

ˇxαBβfpxq
ˇ

ˇ ` sup
xPRn

ˇ

ˇxαBβgpxq
ˇ

ˇ

ρα,βpfq ` ρα,βpgq.

Thus, we control the seminorm of f ` g by the sum of the seminorms of f and
g. Moreover, multiplication is continuous. Indeed, let λ P R. Then:

ρα,βpλfq “ |λ| ¨ ρα,βpfq.

Thus, the seminorm of λf scales continuously with λ. We conclude that both
operations are continuous and thus that S is a topological vector space. It
remains to show that

č

ρPϱ

tf P S : ρα,βpfq “ 0u “ t0u,

where ϱ is the family of seminorms. Note that ϱ is countable, because the set of
all multi-indices is countable. We have, ρα,βpfq “ 0 if supxPRn |xαBβfpxq| “ 0,
so |xαBβfpxq| “ 0 for all x. But then, dβf “ 0 for all β. So, then we must have
that f “ 0. We conclude that S is a locally convex space.

The space is equipped with the following notion of convergence.

Definition 2.47. Let fk, f be in SpRnq for k “ 1, 2, .... We say that the
sequence fk converges to f in SpRnq if for all multi-indices α and β we have

ρα,βpfk ´ fq “ sup
xPRn

|xαpBβpfk ´ fqqpxq| Ñ 0 as k Ñ 8.

Now, we start by defining the Fourier transform in S and show that it
behaves ‘nicely’ in this setting: it is a homeomorphism of the Schwartz class.
That is, the Fourier transform maps the Schwartz space onto itself, is bijective,
and it is a continuous linear mapping. This means the structure of the space is
preserved under the transform 1.

Definition 2.48. Let f P S, we define for ξ P Rn

f̂pξq “

ż

Rn

fpxqe´2πix¨ξdx.

We call f̂ the Fourier transform of f .

A classic example is that the Gaussian is its own Fourier transform.
1When introducing the Fourier transform in Lp space convergence issues arise. Therefore,

it fails to be a homeomorphism [25].
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Example 2.49. Let fpxq “ e´πx22. The fact that f is smooth is trivial.
Moreover, all derivatives of f are the product of a polynomial and a negative
exponential. Therefore, f P S. By definition,

f̂pξq “

ż 8

´8

fpxqe´2πix¨ξdx “

ż 8

´8

e´πpx2
`2ix¨ξqdx.

Now, completing the square gives us

f̂pξq “ eπξ
2

ż 8

´8

e´πpx`iξq
2

dx.

Substitution of u “ x ` iξ, du “ dx yields the integral term
ż 8

´8

e´πu2

du “ 1.

Therefore,
f̂pξq “ e´πξ2 ,

We conclude that f is its own Fourier Transform.

We now prove some important properties of the Fourier transform. These
proofs are adapted from Section 3.3 of [35].

Theorem 2.50. Let f P S, x, ξ P Rn, α a multi-index. We have

1. pBαfq^pξq “ p2πiξqα ¨ f̂pξq

2. pBαf̂qpξq “ pp´2πixqαfq^pξq

Proof. Property (1): We have

pBαfq^pξq “

ż

Rn

pBαfqpxqe´2πix¨ξdx.

Now, since f P S, at the boundaries all terms vanish. We can apply integration
by parts for each component αj times with respect to xj . Thus,

pBαfq^pξq “ p´1q|α|

ż

Rn

fpxqp´2πiξqαe´2πix¨ξdx

“ p2πiξqαf̂pξq

Property (2): We prove this using the (correct) assumption that the interchange
of the derivative and integral is valid because f P S.

Bαf̂pξq “ Bα

ż

Rn

fpxqe´2πix¨ξdx

“

ż

Rn

fpxq ¨ Bα
`

e´2πix¨ξ
˘

, dx

“

ż

Rn

fpxq ¨ p´2πixqαe´2πix¨ξ, dx

“ pp´2πixqαfpxqq^pξq.

2Sometimes refered to as the Standardized Gaussian
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Remark 2.51. For a more rigorous proof of Property (2), we refer the reader
to [25].

Property (1) tells us that taking a derivative in the spatial domain becomes
multiplication in the frequency domain, while Property (2) shows the converse.
With these properties, we are nearly ready to prove that the Fourier trans-
form maps the Schwartz space onto itself. However, we still need the following
lemma’s.

Lemma 2.52. Given f P S, we have

||f̂ ||L8 ď ||f ||L1 .

Proof. For all ξ P Rn, we have

|f̂pξq| “

ˇ

ˇ

ˇ

ˇ

ż

Rn

fpxq¨e´2πix¨ξdx

ˇ

ˇ

ˇ

ˇ

ď

ż

Rn

ˇ

ˇfpxq
ˇ

ˇ¨
ˇ

ˇe´2πix¨ξ
ˇ

ˇdx “

ż

Rn

ˇ

ˇfpxq
ˇ

ˇdx “ ||f ||L1 .

Since,
||f̂ ||L8 “ sup

ξPRn

|f̂pξq| ď ||f ||L1 ,

we have
||f̂ ||L8 ď ||f ||L1 .

We follow 3.5 of [31] for the following lemma.

Lemma 2.53. SpRnq Ă LP pRnq, for P P r1,8s.

Proof. Let f P S, N P N and α, β multi-indices. By Definition 2.4, we have

|fpxq| “ |p1 ` |x|qN ¨
|fpxq|

p1 ` |x|qN
ď

ρα,0pfq

p1 ` |x|qN

with |α| “ N . Now, since ρα,0pfq

p1`|x|qN
is dominated by 1

p1`|x|qN
which is an inte-

grable function for N ą n
p , we have f P LP , P ă 8. For P “ 8, note that since

f P S is continuous and decays at infinity, it is bounded. Thus,

||f ||8 “ sup
xPRn

|fpxq| ă 8.

Now, we are ready to prove that the Fourier transformation maps the Schwartz
space onto itself.

Theorem 2.54. Let f P S, then f̂ P S. That is,

ρα,βpf̂q “ sup
ξPRn

|ξαBβ f̂pξq| ă 8.
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Proof. Taking norms and rewriting using Theorem 2.50 yields

||xαpBβ f̂pxqq||L8 “
p2πq|β|

p2πq|α|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pBαpxβfpxqqq^

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8

ď
p2πq|β|

p2πq|α|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pBαpxβfpxqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

ă 8,

where the first inequality came from Lemma 2.52 and the last inequality from
the fact that pBαpxβfpxqqq P S Ă L1 (Lemma 2.53).

It remains to show that the Fourier transform is bijective and continuous
in the Schwartz space. We start by showing that it is bijective by stating that
there exists an inverse Fourier transform.

Definition 2.55. Given a Schwartz function f , for all x P Rn we define

qfpxq “ f̂p´xq.

We call the operation f Ñ qf the inverse Fourier transform.

The properties of the Fourier transform in Theorem 2.50 also hold for the
Fourier inverse.

Theorem 2.56 (Fourier Inversion). Given f P S we have

pf̂q_ “ f “ p qfq^

The proof of this theorem is beyond the scope of this thesis, as it uses
advanced concepts such as locally compact groups and Hausdorff spaces. See
Theorem 2.2.14 of [25] for a proof.

In locally convex spaces, the topology is defined by the family seminorms. So
instead of using the definition of continuity directly, we draw from the theorems
of [32].

Theorem 2.57. Let α and β be multi-indices. Let X and Y be locally convex
spaces with families of seminorms tραu and tdβu. Then, a linear map T : X Ñ

Y is continuous if and only if for all multi-indices β, there are multi-indices
α1, α2, ..., αn and C ą 0 such that

dβpTxq ď Cpρα1
pxq ` .... ` ραn

pxqq.

We say that the output size of the linear map is controlled by the input size.

Theorem 2.58. Let α, β multi-indices. Let f P SpRnq. Then the Fourier
transform f̂ P SpRnq by Theorem 2.54. The map f ÞÑ f̂ is linear by Definition
2.48. Thus, it remains to show that the seminorms of the Fourier transform
are controlled by some finite sum of Schwartz seminorms of the input function.
That is,

||f̂ ||α,β ď Cp||f ||α1,β1
` ... ` ||f ||αm,βm

q,

for some C P R, m P N, multi-indices α1, ..., αm and α1, ..., αm.
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Proof. We have

ξαBβ f̂pξq “

ż

Rn

ξαp´2πixqβe´2πix¨ξfpxqdx

“

ż

Rn

1

p´2πiq|α|
pBαqe´2πix¨ξp´2πixqβfpxqdx

“
p´1q|α|

p´2πiq|α|

ż

Rn

e´2πix¨ξpBαp´2πixqβfpxqqdx

The last inequality follows from repeated integration by parts, justified by the
rapid decay of f at infinity. We use that

ş

Rnp1 ` |x|2q´kdx ă 8 for k ą n
2 ,

which can be shown by switching to polar coordinates. We have

||f̂ ||α,β “ sup
ξPRn

ˇ

ˇξαBβfpξq
ˇ

ˇ ď
1

p2πq|α|

ż

Rn

ˇ

ˇ

ˇ

ˇ

ˇ

p1 ` |x|2q´k

p1 ` |x|2q´k
Bαp´2πixqβfpxq

ˇ

ˇ

ˇ

ˇ

ˇ

dx

ď
1

p2πq|α|

˜

ż

Rn

p1 ` |x|2q´kdx

¸

sup
xPRn

tp1 ` |x|2q´k|Bαp´2πixqβfpxq|u

Now, we can use Leibniz’s rule (see Proposition 4.4.3 of [20]) to conclude that
there exist multi-indices αj , βj and constants cj such that

||f̂ ||α,β ď

m
ÿ

i“1

cj ||f ||αj ,βj
.

By Theorem 2.57, we conclude that the Fourier transform is continuous.

We conclude that the Fourier transform is indeed a homeomorphism on the
Schwartz space.
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3 Introduction to Lean
Lean is an interactive theorem prover ; it allows mathematicians (and others)
to formalize mathematics in a programming language and receive immediate
feedback from the system in the form of errors or suggestions. Leonardo de
Moura, who announced Lean at Microsoft Research in 2015, states that this
open-source project aims to support mathematical reasoning and the formal
verification of mathematical claims (among other goals) [16]. A trusted logic-
checking core called a kernel forces the user to justify every statement with prior
verified results, ultimately based on axioms. However, Lean provides automated
tools and methods to improve both efficiency and usability.

The kernel is the core component of the system. It is based on a version of
dependent type theory called Calculus of Inductive Constructions with inductive
types [15] [19]. This is a formal language that defines how expressions can be
formed by a set of rules. Moreover, every expression has a type which determines
the kind of object it represents. For instance, the natural numbers have a
type, but so does a proof of a certain theorem. The kernel checks whether an
expression is logically valid by ensuring that all expressions follow the rules of
the formal language and that every expression has the ’right’ type. Section 3.2.1
will explain in more detail how proving statements reduces to checking types.

The open-source nature of Lean allows for rapid developments in formalizing
mathematics. This has resulted in the development of the Mathlib library [30].
This is a user-maintained library for Lean that contains definitions, lemmas and
theorems, tactics and other programming infrastructure. The documentation
of the library can be found in [28]; it is used extensively in this project.

Section 3.1 explores the background of type theory and introduces its role
as a foundation for mathematics. Then, in Section 3.2 we will introduce some
important definitions and concepts used in Lean. Thereafter, Section 3.3 dis-
cusses the formalization of differentiation in Lean. Finally, in Section 3.4, we
will consider the current formalization of Schwartz functions in Lean.

3.1 Background of type theory
Around the turn of the twentieth century, there was an increasing concern with
mathematical rigor. Cantor’s paper On a Property of the Collection of All Real
Algebraic Numbers introduced foundational concepts that formed the basis of
set theory [8] [21]. This stage of set theory is now referred to as Naive set theory.
Loosely speaking, it proposed that all mathematics could be formed using the
notion of a set and an element. This theory is referred to as naïve as it allows
the use of the comprehension principle, which states:

Mathematical objects sharing a property form a set, of which they
are the members.

However, it turned out that this rule of construction was too simple, leading to
the construction of inconsistent sets. Indeed, several logical paradoxes arose, of
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which probably the most famous is Russell’s Paradox [34]. Simply put, Rus-
sell’s paradox defines a set R as the set of all sets x that are not members of
themselves. Mathematically, we write

R “ tx|x R xu.

Note that this set is a member of itself if and only if it is not a member of itself:
a contradiction.

To avoid such paradoxes, two important foundational approaches were devel-
oped. Namely, a redefinition of set theory, and the development of type theory.
We first briefly describe how set theory was redefined before considering type
theory.

3.1.1 Zermelo-Fraenkel set theory

Two of the most important contributors in the field of set theory were Ernst Zer-
melo and Abraham Fraenkel. They restricted the ‘freedom’ of the construction
of sets by defining axioms that explicitly tell us how sets can be formed. For
example, the schema of separation roughly states that sets cannot be defined
merely by a property. Instead, they must be subsets of existing sets, filtered by
a property. Therefore, the set

tx|x R xu

is not defined in this system. What is allowed is a set like

T “ tx P V |x R Xu

for some existing set V . In this case, no paradox arises. Indeed, we can only
conclude that T P T if and only if T R T under the additional assumption that
T P V . So the conclusion is T R V , which does not result in a paradox. Through-
out the years, many other axiomatizations were introduced. This foundation of
axiomatized set theory became known as Zermelo-Fraenkel set theory and it is
to this day considered the most important foundation for mathematics.

3.1.2 Type theory

During the same time period, type theory was created as an alternative founda-
tional system. Bertrand Russell tried to resolve his own paradox and together
with Alfred North Whitehead, he proposed a theory of types in the 3-volume
work Principia Mathematica [37]. It aims to avoid paradoxes by organizing all
objects into a hierarchy of types. In this system, each object lives in a so-called
universe, indicating its place in the hierarchy. A set can only contain elements
from a lower universe, which prevents Russell’s paradox. Indeed, the expres-
sions R P R and x R x are considered to be ill-typed in this system. This system
has a rich history of development, which we will discuss in this thesis. However,
some important developments such as dependent type theory and the Curry-
Howard Correspondence will be briefly introduced in later sections. Moreover,
we explain how type theory is used as the logical foundation in Lean.
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3.2 Preliminaries
3.2.1 Types, proofs and tactics

Unless stated otherwise, this section follows the Mathematics in Lean 4 [6] and
the Theorem Proving in Lean textbooks [2]. Dependent type theory is a flexible
framework that allows both making assertions and proving them in the same
system. As mentioned, every expression has its own type. We can check this
type in Lean using the command #check. For example, typing #check 5 returns
5 : N, so it has type N. Type theory allows us to build new types out of others.
For example p0, 1q has type N ˆ N and a function f : N Ñ N has type N Ñ N.

As discussed in Section 3.1.2, type theory organizes all objects into a hier-
archy of types. Types like N and R have type3 Type 0. Moreover, Type 0 itself
has a type, namely Type 1. We can continue this process, which gives rise to
Lean’s infinite hierarchy: Type 2, Type 3, and so on. We say that a Type n
lives in a universe of level n. Each universe Type n allows the use of types from
lower universes. Lean does so by defining universe variables. When writing
universe u, a universe level u is created, and a type living in that universe
is denoted Type u. In most practical applications, universe handling is done
automatically by Lean.

To prove assertions in dependent type theory, we start by introducing a type
called Prop, which represents propositions. Similar to other types, we can build
new propositions from existing ones. For example, the logical conjunction ‘And’
has the type Prop Ñ Prop Ñ Prop. The key idea is that for each element p
of type Prop, a proof of p is simply an expression of type p. This reflects the
idea of dependent type theory: types can depend on values. In this case, the
type of a proof term depends on the proposition p being proved. Simply put, to
prove something is the same as constructing an expression of that type. This
way of thinking has been made explicit in the Curry-Howard correspondence,
which treats propositions as types and proofs as expressions of those types [26].
As a result, verifying a proof reduces to checking that an expression has the
correct type. The set of rules that governs the construction of such expressions
are formalized in The Calculus of Constructions.

But how can we build expressions of desired types (proofs) in practice? In
Example 3.1 we use rfl, which is short for reflexivity and has type x “ x for
any x. rfl is an example of a proof term that Lean knows to be true. Due to
the simplicity of the proposition, this proof term works directly.

Example 3.1. The expression 2 ` 2 “ 4 has type Prop. An expression of type
2 ` 2 “ 4 represents a proof of the corresponding proposition. The expression:

theorem addition_example : 2 ` 2 “ 4 :“ rfl,

has type 2 ` 2 “ 4 and is thus a proof of this expression.

However, Lean also provides an interactive way. Tactics are instructions
that tell Lean how to manipulate the expressions. For example, we can use the

3Lean uses the abbreviation Type
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RW tactic to rewrite an expression in some other form or we can use the apply
tactic to apply a certain theorem or lemma. There are many more tactics such
as have, intro and induction. These are explained in more detail when there is
the need to use them in this project.

Tactics like RW and apply take as input a verified statement (definition,
lemma or theorem) and use it to manipulate the goal.

Example 3.2. For the statement ‘if x “ y, then 0 ` x “ y’ we can write

example px y : Nqph : x “ yq : 0 ` x “ y :“ by
rwrNat.zero_adds

applyrhs.

Here, ph : x “ yq represents the assumption that x “ y. The first rewrite uses
Nat.zero_add, which is a known result of type 0+n “ n. Therefore, it rewrites
the goal type 0 ` x “ y to x “ y. Finally, by applying the assumption that
x “ y, we prove the goal.

3.2.2 Definitions, structures, lemmas and theorems

Definitions, lemmas and theorems in Lean are all declarations of types. When
writing def, we define a constant or function of a certain type. However, lemmas
and theorems are not so different. Indeed, they also declare a constant (the name
of the lemma or theorem) and assign it a type, followed by a proof. This means
that proving a theorem like p Ñ q Ñ p, is the same as defining a function of
that type to Lean.

Example 3.3. When given two propositions p and q and the proofs that both
are true, if we want to prove that p is true we can write

def p_holds pp q : Propqphp : pqphq : qq : p :“ hp

theorem p_holds pp q : Propqphp : pqphq : qq : p :“ hp.

Both declerations are allowed by Lean and both have type p. However, we
usually write theorem or lemma when the goal is to prove a statement.

3.2.3 Using Mathlib

Mathlib is a user-maintained library for Lean that contains these definitions,
lemmas, and theorems as well as tactics and other programming infrastructure.
A lot of the mathematics described in this section is formalized in Mathlib and
this library is therefore used extensively in this project [30].

When taking definitions from the Mathlib library, it is important to under-
stand the syntax used in their type signatures. A type signature specifies the
input and output of a definition: it tells you what kind of values it takes and
returns. By inspecting a type signature, we can see which arguments should be
explicitly provided and which ones Lean infers automatically.
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• Parentheses () denote explicit arguments.

• Curly braces are used for implicit arguments: Lean tries to infer them
from context.

• Square brackets [] denote typeclass arguments. The idea of type classes
is to make certain arguments implicit by automatically searching suitable
instances from a user-defined database. This process is called typeclass
resolution.

Example 3.4. The algebraic identity that in any Additive monoid M where
addition is left-cancellable we have

a ` b “ a ðñ b “ 0 for a, b P M

is implemented in Mathlib as theorem add_eq_left. It has the following type
signature [1]:

Figure 1: Documentation of add_eq_left in Mathlib

We will omit the formal definition of an additive monoid in this example.
Let us break down this definition from Mathlib.

• {M : Type u_4} declares that M is a type that lives in univese u_4. The
curly brackets indicate that Lean will try to infer it from context.

• AddMonoid and IsLeftCancelAdd M mean that M must be an additive
monoid which is left-cancellable. When using this theorem in a specific
context, Lean automatically uses typeclass inference to check that the used
set M indeed has this structure.

• {a b : M} says that variables a and b are implicitly provided, Lean will
figure out which elements to use.

.

Remark 3.5. When using the above example with a, b P N, Lean knows from
its inference database that N is indeed an additive monoid. Therefore, we do
not have to prove this ourselves.

3.2.4 Finite numbers, coercions and structures

This section follows the Lean Language Reference Chapters 12 and 18 [13]. For
any natural number n, the type Fin n is a type that contains all the natural
numbers strictly less than n. Thus, Fin n has exactly n elements, namely
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t0, 1, ..., n ´ 1u. Therefore, it is very well suited to represent the valid indices
of an array. Indeed, out-of-bound errors are not an issue. By defining a i :
Fin n, we can access two things. Firstly, i is a natural number, which can be
obtained from the command i.val. Secondly, i ă n, which can be obtained by
typing i.is_lt.

In Lean, a coercion is an implicit conversion from one type to another. This
allows us to use a value of some type in a context where Lean expects some other
type. For example, if we want to use i : Fin n as a natural number, then we
can just write i instead of writing i.val every time because Lean automatically
coerces i to a natural number.

In Mathlib many mathematical objects are implemented as structures. Struc-
tures are also declarations of types, but they can be seen as bundles of data.
A class is a structure that allows Lean to use its typeclass inference on it au-
tomatically. Objects that are implemented as these structures allow for easy
handling of its underlying datastructures such as proofs. It is best explained by
an example.

Example 3.6 (Ring). In Definition 2.8 we have seen that a set is called a ring
if it is equipped with addition and multiplication that satisfy the ring axioms
(Definition 2.8). In mathlib it is documented as follows [3]:

Figure 2: Documentation of a ring in Mathlib

Note that, for demonstration purposes only the first few lines of this docu-
mentation are shown. Let us walk through the implementation. The first line of
code, the type signature, bundles the properties of a Semiring, AddCommGroup
and AddGroupWithOne by using the extends command. By bundling these
properties, R has the addition and multiplication operation and satisfies all
the ring properties. Some of these properties are given in the last 5 lines of
code. add : R Ñ R Ñ R, defines the addition operation. add_assoc
pa b c : Rq : a ` b ` c “ a ` pb ` cq, is the additive associativity property of the
ring, etc.

3.2.5 Inductive types

This section follows Chapter 7 of Theorem Proving in Lean [2]. We have seen
that Lean’s formal system consists of types like Prop, Type 0, Type 1, ...
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and the construction of dependent types (with the use of constructors as Ñ and
ˆ). Moreover, we have seen the type Nat. This type, along with types such
as lists and trees, belongs to a general family of type constructions known as
inductive types.

To build these types, we use a set of constructors. Constructors describe
how values of a certain type are built.

Example 3.7 (The natural numbers). The natural numbers can be defined
inductively by

inductive Nat where :

| zero : Nat
| succ : Nat Ñ Nat,

which consists of a base case and the recursive constructor. The base case does
not take arguments, so it is defined right away. The recursive constructor (succ)
can only be applied to the previously constructed Nat. Applying it to zero yields
succ zero : Nat. Now, we are able to apply it to succ zero, which yields
succ (succ zero) : Nat , etc. 4.

From Example 3.7 it becomes clear that for defining a function on the natural
numbers (or any other inductive type) we have to tell Lean what the result
should be for the base case and for the recursive step. This can be done by
using a recursor : a construction that allows us to prove or define values step by
step. For the natural numbers a recursor is Nat.RecOn.

Example 3.8. Say, we want to prove that 0 ` n “ n @n P N. We can write:

Figure 3: Lean code for theorem zero_add’

Nat.recOn n tells us to proceed by recursion on n. Therefore, Lean asks
for two goals: 0 ` 0 “ 0 and 0 ` (succq n “ succ n assuming the induction
hypothesis 0 ` n “ n. The first goal can be easily solved by using reflexivity
(line 84). The second goal requires some more steps. The calc tactic allows
us to write computations as we would on paper. First, by rfl we show that
0 ` succ n “ succp0 ` nq (line 88). Now, this equals succ n by the induction
hypothesis ih: 0 ` n “ n (line 85).

4The Natural Numbers Game can be played get familiar with this construction [7]
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3.2.6 Currying

Currying is the process of transforming a function that takes multiple arguments
into a sequence of functions, each taking a single argument. In Lean this is
done by default. Indeed, the function f : A Ñ B Ñ C is interpreted by Lean
as f : A Ñ pB Ñ Cq. That is, the function takes the argument A and returns
a function of type B Ñ C. We say that f would be of uncurried form if
f : A ˆ B Ñ C takes as argument pa, bq P A ˆ B and returns an element of C.
Tactics in Lean expect curried functions by default.

3.3 Differentiation in Lean
3.3.1 First order differentiation

Differentiation is formalized in Lean via Fréchet derivatives (see Definition 2.24).
To understand how to work with differentiation in Lean, let us break down the
Mathlib implementation of the Fréchet derivative [5].

Figure 4: Documentation of Fréchet derivative in Mathlib

As shown in the type signature of the definition (4), Lean takes the following
as input.

• An object K of type Type u_4

• A function f : E Ñ F which is to be differentiated

• A point x at which the derivative is to be asserted

As in Example 3.4, this definition reveals that Lean automatically infers propo-
sitions from the input variables. For starters, from the input K Lean automat-
ically infers if the input is a nontrivially normed field. For the domain and
codomain E and F , Lean checks if they are abelian groups (AddCommGroup),
K´modules, and topological spaces (see Section 2.1.2). If these structures are
not in place, Lean returns an error. If they are, the setting is suited for dif-
ferentiation. Indeed, Definition 3 makes it clear that we have to be able to
reason about subtraction, norms, division, and limits. This is justified by the
structures in place:
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• The domain E is:

– an Abelian group, so x ` h is defined
– a module over a nontrivially normed field, so scalar multiplication is

defined
– a topological space to allow limits.

• The codomain F is

– an Abelian group, so fpx ` hq ´ fpxq is defined
– a topological space to allow limits.

• The return type E Ñ LrKsF :

– requires that E and F are normed spaces, so norms are defined.

Now that we know what fderiv expects as input, let us consider how Lean
determines the derivative. Below ‘Equations’ in Figure 4, we can see that Lean
uses another definition called fderivWithin which checks if f has a derivative
within some set S (in the case of providing a point x, S “ txu or Set.univ x).
It is documented as follows [5]:

Figure 5: Documentation of fderivwithin in Mathlib

It uses HasFDerivWithinAt which returns True or False accordingly. When
HasFDerivWithinAt returns False, fderivWithin is set to 0 as a placeholder.
This way, it is not necessary to provide a proof of differentiability every time
one refers to a derivative. When HasFDerivWithinAt returns True, Lean knows
that there exists f 1 which satisfies (3). If 0 is one of the possible derivatives,
it sets the derivative to 0. If it is not Classical.choose5 is used to choose a
Fréchet derivative, this derivative is thus not per se computed. By Theorem
2.26, we know that Lean chooses the unique derivative if f is differentiable and
0 if f is not differentiable.

5The definition of Fréchet derivative uses Classical.choice which relies on the classical
axiom of choice. Although we are aware that this has been subject of historical debate, we
will not explore these discussions in this thesis. In our finite context, the use of this axiom is
not considered problematic.
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3.3.2 Higher-order differentiation

Now that we have seen the implementation of Fréchet derivatives in Lean, we can
move on to higher-order derivatives. These are also implemented in Lean and
can be found in Mathlib under iteratedFDeriv. Let us unpack its definition
[24].

Figure 6: Documentation of the iterated Fréchet derivative in Mathlib

As with fderiv, similar typeclass resolutions are done in this definition
which we will not talk about here. However, there is a need for an additional
input argument n : N which represents the order of differentiation. Now, there
are two things worth noting here. First, the higher-order derivative is formalized
as multilinear maps which aligns with the theory of Section 2.3. Indeed, we
recognize the space of continuous linear maps from a normed space E to a
normed space F in this type, which we denoted LnpE,F q. Second, it is worth
looking at the inductive implementation of this definition. The documentation
of Mathlib contains the following [24].

Figure 7: Documentation of the iterated Fréchet derivative in Mathlib

The idea is straightforward, the ’n ` 1’-th derivative is the derivative of
the ’n’-th derivative. As explained in Section 3.2.5 and Section 3.2.6, Lean
makes use of Nat.recOn to achieve this. The base case n “ 0 defines the 0-th
derivative of f at point x by returning the 0-multilinear map. The inductive case
n ` 1 computes the Fréchet derivative at x of the multilinear map Dn´1fpxq :
pFin(n-1) Ñ Eq Ñ LrKsF , here D is the derivative operator. This results in
the map E Ñ LrKsF ppFin(n-1) Ñ Eq Ñ LrKsF q, which is a linear map valued
in linear maps. By uncurrying we get the desired result, which corresponds to
pDpDn´1fpxqq. Taking this ‘extra’ Fréchet derivative again works as described
in Section 3.3.

3.4 Schwartz functions in Lean
In contrast to the conventional definition of Schwartz maps as defined in Section
2.4, contributors to the Mathlib library have taken a different approach [18]. Let
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f : E Ñ F be a smooth function, where E and F are real normed vector spaces
(Section 2.15) such that for all natural numbers k and n we have

||xk|| ˚ ||iteratedFDerivRn f x|| ă C, (8)

where C is a finite real number. This approach avoids the use of partial deriva-
tives. These definitions are indeed equivalent in the special case that E “ Rn

and F “ C (see Theorem 2.41). The documentation of Mathlib contains the
following structure [18].

Figure 8: Documentation of Schwartz maps in Mathlib

It is no surprise that Lean infers the same algebraic structures as in the
derivatives sections, since the definition makes use of these derivatives. The
seminorms are defined as follows [18]:

Figure 9: Documentation of Schwartz seminorms in Mathlib

This corresponds with the smallest positive c such that

||xk|| ¨ ||iteratedFDerivRn f x|| ď c,

which completes the formalization of Schwartz functions in Mathlib.
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4 Formalization of Schwartz functions on Rn in
Lean

The formalization of Schwartz functions as shown in Figure 8 is suited to the
general nature of the Mathlib library. It allows one to use this definition in
different contexts and it is conformant with the abstract theory already imple-
mented in Mathlib, such as the theory of topological vector spaces.

However, when learning Schwartz functions and for practical applications,
the generality of the definition in Mathlib obstructs intuitive understanding and
requires familiarity with more abstract mathematical objects first. This section
aims to define Schwartz functions in a more concrete fashion which aligns with
Definition 2.39.

The formalization process is as follows. In Section 4.1 we formalize the
notion of multi-indices. This then allows for the product of monomials raised
to some multi-index, Section 4.2. Section 4.3 defines partial derivatives in Lean
and Section 4.4 finalizes the formalization.

4.1 Multi-indices
The formalization process of the Schwartz function begins with the simple defi-
nition of a multi-index. A multi-index α is an n-tuple of integers (Section 2.1.1),
such as α “ pα0, ..., an´1q where αi ě 0 for all i. This straightforward definition
can be written in Lean as

def multi-index (n : Nat) := Fin n -> Nat.

This means that multi-index n is a function that takes an index i : Fin n
and returns a natural number αi, denoted in Lean by α i.

Note that we make use of the properties of Fin n as described in Section
3.2.4 which make it suitable for indexing an array. Indeed, the need for a proof
that an element i : Fin n is strictly less than n ensures that out-of-bounds
errors are impossible.

Example 4.1 (Multi-index). Suppose that we want to define the multi-index
α “ p1, 2, 3q in Lean. In Lean we represent this as a function from Fin 3 to N3

and can be coded as follows.

Figure 10: Lean code for the multi-index
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This example illustrates how our definition behaves like a function: all i
P t0, 1, 2u with type i : Fin 3 are mapped to a natural number t1, 2, 3u.6

4.2 Product of monomial raised to multi-index
With the notion of the multi-index formalized, we are ready to move on to the
product of a polynomial raised to a multi-index

xα “ xα0
0 ...x

αn´1

n´1 “

n´1
ź

i“0

xαi
i ,

where x P Rn and α a multi-index. Due to the definition of the multi-index,
Lean can follow this definition closely:

Figure 11: Lean code for a monomial raised to multi-index

For simplicity we define Rn as Rn n, where, similar to the definition of a
multi-index, we use Fin n to map each coordinate of EuclideanSpace a value
(this time in Rq.

The definition for the monomial raised to a multi-index takes as input some
multi-index α and some monomial x : Rn n. Note that Fin n allows us to
index over dimensions and therefore make use of the product operator. More-
over, since the product is taken over i P Fin n, the product is well-defined due
to the finiteness of Fin n.

4.3 Partial derivatives
The next step in the formalization of Schwartz functions is defining partial
derivatives related to the multi-indices. However, much like the Schwartz func-
tions, multivariable calculus is generalised in Lean. Lean uses Fréchet derivatives
introduced in Section 2.24, this way the derivatives are coordinate-free and are
applicable for any normed vector space, not just Rn. Therefore, this is a suitable
way to define derivatives in Mathlib.

Thus, no direct definitions of partial derivatives are available in Mathlib,
rather, partial derivatives are taken to be total Fréchet derivatives over a basis
vector. The coordinate of the nonzero element in this vector determines the
direction of the derivative. For instance, say we would like to write the partial
derivative Bf

Bxi
of a function f : Rn Ñ Rm, we could use the already defined

6There is shorter notation available in Mathlib, but this does not convey the point of
implementation as a function as much.
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Fréchet derivative and a basis vector. In Section 2.24 we have seen how to work
with the predefined Fréchet derivative of Mathlib.

For our implementation of higher-order partial derivatives, we make use of
a local recursive definition, which works similarly to the recursive definition in
Section 3.2.5. We use the auxiliary function g to keep track of the current state
of the differentiated function.

Figure 12: Lean code for the partial derivative related to a multi-index

The recursive definition based on
ř

i βi is as follows:

• Base case: If
ř

i βi “ 0, the function returns unchanged. No derivatives
are taken.

• Recursive step: If
ř

i βi ‰ 0, a coordinate i is chosen by Classical.choose.
The directional derivative is taken with respect to direction i using fderiv.
By evaluating this over single i 1 (the unit vector), the partial derivative
Bg

Bxi
is returned. Now, that element of the partial derivative is decremented

by 1: Function.update β i pβ i ´ 1q. Finally, the recursive call is made
with the updated function and multi-index.

Furthermore, it can be seen that Lean asks for proofs of some basic facts that
would implicitly be accepted by human readers in the recursive step. First of
all, to be able to use Classical.choose, a hypothesis of the form

h : Dx, p x

41



is needed. In our case:
D i P β, βi ‰ 0.

This is achieved by using the Finset.exists_ne_zero_of_sum_ne_zero theo-
rem defined in Mathlib which is the result of

ÿ

xPS

fpxq ‰ 0 ùñ D a P S, f paq ‰ 0,

for some finite set S. Now, to be able to use this result we first have to add
(and prove) the hypothesis that

h_ne :
ÿ

i

βi ‰ 0.

This is done by telling Lean that since the sum equals m ` 1, which is the
successor of a nonnegative integer m, it must hold that the sum is not equal
to 0. Indeed, Nat.succ_ne_zero does exactly that. Now, we are able to use
Classical.choose to obtain an element of type i: Fin n. Additionally, by
defining

i_spec :“ Classical.choose_spec

we are able to access all information about i. On the one hand that i : Fin n,
and on the other hand that β i ‰ 0. This is needed to provide Lean with the
information that the recursive definition is terminated at some point. Indeed,
we tell Lean that the termination variable is decreasing by the proof

h_sum :
ÿ

i

β˚
i ă

ÿ

i

βi,

where β˚ is the updated multi-index. Although this is trivial, we provide a proof
here that follows the same steps as our Lean implementation. Let S “ t1, ..., nu

ÿ

iPS

β˚
i ă

ÿ

iPS

βi ðñ βi ´ 1 `
ÿ

jPSztiu

βj ă
ÿ

iPS

βi

ðñ
ÿ

jPSztiu

βj ` pβi ´ 1q ă
ÿ

i

βi

ðñ
ÿ

jPSztiu

βj ` pβi ´ 1q ă
ÿ

jPSztiu

βj ` βi

ðñ βi ´ 1 ă βi

ðñ βi ´ 1 ă βi ` 0

ðñ ´1 ă 0

which holds by the axioms of inequalities. Moreover, by splitting the element i
of the set S, Lean aks creates a second goal to prove that this i P S. We can
easily deal with this by applying i_in_finset “ i_spec.1, which we defined
earlier.
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4.4 Schwartz functions
We are now ready to finalize the formalization of Schwartz functions f : Rn Ñ C
in Lean. We follow Section 2.4. Let f : C8pRnq. If for all α, β multi-indices,
we have

ρα,βpfq “ sup
xPR⋉

|xαBβfpxq| ă 8,

f is called a Schwartz function.
First, we define the seminorms, which follow easily from the tools we have

created.

Figure 13: Lean code for Schwartz seminorms

The definition takes as input multi-indices α and β and a function f : Rn Ñ

C and returns an expression of type R, which is expected since we take a norm.
The term

Ů

x : Rn n is notation for the supremum over all x P Rn and || ¨ ||

denotes the Euclidean norm.
Finally, we have all components necessary to formalize the definition of a

Schwartz function.

Figure 14: Lean code for Schwartz functions

This definition takes as input a function f : Rn Ñ C, where Lean infers
the dimension n from context (using the implicit argument tnu). First, the
definition ensures that f is smooth, by explicitly requiring that ContDiff holds.
This predicate takes as input the field R, the differentiability order T(which
denotes infinite differentiability), and the function f . Note that without this
requirement, the definition would not work as intended. Indeed, since Lean
sets the derivative of a non-differentiable function to 0, this could lead to the
classification of non-smooth functions as Schwartz functions.

Furthermore, the definition states that for all multi-indices α, β the Schwartz
seminorm is bounded. With this, we complete the formalization of Definition
2.4.
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5 Discussion
In this thesis, we introduced Schwartz functions and motivated their relevance
in Fourier analysis. Additionally, we provided both the necessary mathematical
background and Lean-specific prerequisites to understand the current formal-
ization of Schwartz functions in Lean. Finally, we presented a formalization of
Schwartz functions using partial derivatives and polynomials in a coordinate-
based setting.

The formalization process included formalizing monomials raised to multi-
indices, higher-order partial derivatives, and Schwartz seminorms. Our defi-
nition aligns with the structure of introducing Schwartz functions in graduate
textbooks such as [25], as it uses the conventional definition and builds mainly
on the mathematical background introduced in undergraduate analysis courses.
This motivated our concrete design approach: it allows one to learn about
Schwartz spaces and differentiation in Lean without the barrier of Mathlib’s
more abstract implementation.

Due to this formalization process, we were forced to engage more deeply
with the underlying algebraic structures and to view derivatives as multilinear
maps. Combined with our study of the foundational framework in which math-
ematics is expressed in Lean, this resulted in a more coherent perspective on
the mathematics involved.

However, our formalization comes with certain limitations. First, contribut-
ing to Mathlib requires the highest level of generality. This follows from Math-
lib’s design, which avoids having multiple overlapping definitions [29]. Our
formalization would thus not be suitable for inclusion in Mathlib. Additionally,
we make use of explicit coordinates and recursively defined partial derivatives,
which results in layered definitions. This layering introduces additional com-
plexity when interpreting or reusing the definitions.

Nonetheless, the mathematical and Lean-related background provided in this
thesis could serve as background knowledge for future work in the formalization
of distribution theory. This is a branch of mathematical analysis that generalizes
the notion of functions. The Schwartz space is central in this theory, and at
the time of writing, it is the only notion in distribution theory that has been
formalized in Lean [28]. The formalization of tempered distributions would be a
natural next step, as it depends on the Schwartz space.
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A Lean code

import Mathlib.Topology.Basic
import Mathlib.Analysis.Fourier.FourierTransform
import Mathlib.Analysis.Distribution.SchwartzSpace

import Mathlib.Data.Real.Basic

import Mathlib.Data.Fintype.Basic
import Mathlib.Algebra.BigOperators.Group.Finset.Defs

import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Normed.Module.Basic
import Mathlib.Analysis.Calculus.ContDiff.FTaylorSeries
import Mathlib.Data.Fintype.Basic

import Mathlib.Data.Finsupp.Basic
import Mathlib.Analysis.Calculus.ContDiff.Basic

noncomputable section

def multi-index (n : N) := Fin n Ñ N

def Rn (m : N) := EuclideanSpace R (Fin m)

def multi-index_product_pow {n : N} (α : multi-index n)(x : Rn n) : R :=
ś

i : Fin n, (x i) ^ (α i)

open EuclideanSpace

def partial_multi-indexs {n : N} (α : multi-index n) (f :
EuclideanSpace R (Fin n) Ñ C) : EuclideanSpace R (Fin n) Ñ C :=

let rec aux (g : EuclideanSpace R (Fin n) Ñ C) (β : multi-index n) :
EuclideanSpace R (Fin n) Ñ C :=
match h: Finset.univ.sum β with
| 0 => g
| m+1 =>

have h_ne : Σ i P Finset.univ, β i ‰ 0 := by
rw[h]
exact Nat.succ_ne_zero m

let i := Classical.choose (Finset.exists_ne_zero_of_sum_ne_zero
h_ne)
let i_spec := Classical.choose_spec

(Finset.exists_ne_zero_of_sum_ne_zero h_ne)
let beta_ne_zero := i_spec.2
let i_in_finset := i_spec.1
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let new_g := fun x => (fderiv R g x) (single i 1)
let new_β := Function.update β i (β i - 1)
have h_sum : Finset.univ.sum new_β < Finset.univ.sum β := by

rw[Finset.sum_update_of_mem]
rw[add_comm]

rw[Ð Finset.sum_erase_add Finset.univ β (Finset.mem_univ i)]
rw [Finset.erase_eq]
apply Nat.add_lt_add_left
exact Nat.sub_lt (Nat.pos_of_ne_zero beta_ne_zero)

(Nat.zero_lt_one)
apply i_in_finset

aux new_g new_β
termination_by Finset.univ.sum β
decreasing_by apply h_sum

aux f α

def schwartz_seminorm (α β : multi-index n) (f : Rn n Ñ C): R :=
Ů

x : Rn n, }(multi-index_product_pow α x) ¨ (partial_multi-indexs β
f x)}

def is_schwartz (f : EuclideanSpace R (Fin n) Ñ C): Prop :=
ContDiff R J f ^ @ α β : multi-index n, D C : R,

schwartz_seminorm α β f ď C

49


