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Design of an Ecological Interface for Flow-Based
Perturbation Management for Future Air Traffic

Control
D.S.A. ten Brink

Supervisors: C. Borst, M.M. van Paassen and M. Mulder

Abstract—Air traffic demand is expected to increase, while the
system is already working at its limits. New decision support
tools with higher levels of automation that allow for four-
dimensional (4D, i.e., space and time) trajectory-based operations
are proposed to cope with the increase in traffic demand. This
research presents a conceptual interface that allows for flow-based
perturbation management in air traffic, based on the principles
of Ecological Interface Design and by means of influencing a
trajectory planning algorithm. A first evaluation of this interface,
in which five participants were asked to structure a perturbed
airspace as they saw fit, showed that the participants were able
to influence the algorithm as they wanted in most cases and were
supported by the ecological interface that visualized the workings
of the algorithm. However, human influence predominantly did
not improve the solution in terms of robustness and efficiency.
Improvements to the interface are suggested and its use case
needs further research.

Keywords—Air Traffic Control, Ecological Interface Design,
flow-based perturbation management, trajectory planning algo-
rithm, human-machine interaction

I. INTRODUCTION

Due to the expected increase in air traffic coming years, the
demand on the Air Traffic Management (ATM) system will
increase, while it is already working at its limits. Because of
this increase in demand it is expected that the current way of
sector-based tactical control by Air Traffic Controllers (ATCos)
will change to a more strategic form of airspace control [2].
This shift to a strategic form of airspace control is made
possible by technological advances in both the air and ground
sides of the ATM-system. New decision support tools with
higher levels of automation will allow the ATCos to perform
four-dimensional (4D, i.e., space and time) Trajectory-Based
Operations (TBO) and adopt a strategic control strategy. With
TBO, the ATCos will be able to plan the aircraft more closely
together, due to the increased accuracy and thus generate
a higher throughput. Although planned 4D trajectories are
per definition de-conflicted before take-off, perturbations and
deviations of the planned trajectory are inevitable [3]. Addi-
tionally, there is a general consensus within the operational
communities that the human controller will need to keep a

The authors are with the Control and Simulation Section, Faculty of
Aerospace Engineering, Delft University of Technology 2629 HS Delft,
The Netherlands (email: douwetenbrink@gmail.com; c.borst@tudelft.nl;
m.m.vanpaassen@tudelft.nl, m.mulder@tudelft.nl).

supervisory role within the system, due to the high stakes and
the many unforeseen situations within the ATM work domain
[2].

Thus the need for ATCos will stay and the increase in air
traffic means that the task will only become more difficult,
while ATCos are already operating at full capacity. Therefore,
increased automation is required in the future to lower the
workload of ATCos. More automation, however, often creates
new problems, as other socio-technical domains have shown.
Examples of such problems are: coordination breakdowns,
skill degradation, complacency, transient workload peaks and
vigilance problems [4].

An approach to mitigate these risks is based on the Ecolog-
ical Interface Design (EID) paradigm [5]. The focus of EID is
to support the human operator to conduct the work, instead of
replacing the human with automated systems. As such, the goal
of EID is to develop a functional model of the work domain
that represents the complete set of functional constraints to the
human operator, rather than providing the explicit solutions.
By means of a shared human-automation representation the
automation is made understandable and transparent to the
human controller, which mitigates problems that higher levels
of automation create. For example, in case the automation fails,
the human controller needs to take over. If the automation
works as a black box, this will be a challenging task, however
when the human controller knows how the automation works
this task’s difficulty is considerably lowered.

The future TBO approach to ATC, with higher levels
of automation, has been researched in previous work. A
promising solution is the Travel Space Representation (TSR)
designed by the SESAR WP-E project Joint ATM Cognition
through Shared Representation (C-SHARE) [6]. The TSR is
a constraint-based decision support tool, which is based on
principles of EID. The tool visualizes the boundaries of safe
control of an individual aircraft, which can be used for the
task of short-term local trajectory revisions. While the TSR
is a promising solution, each aircraft needs to be attended to
individually by an ATCo in case of a perturbation, and thus
the TSR does not have the possibility in its current form to
considerably lower workload.

It will be investigated to further reduce workload by means
of an ecological interface that allows for management of
airspace flows. In this manner the airspace is controlled at a
larger time scale, as compared to control of individual aircraft
missions. This, however, does mean that more automation is
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Fig. 1. TSR support for the task of manual trajectory revision of an observed aircraft by ATC. (a) En-route traffic scenario with two conflicting aircraft and a
restricted airspace. (b) TSR and placement of an intermediate waypoint. (c) Resulting trajectory for the observed aircraft.

system is often not immediately salient and depends on many
interrelated factors (e.g., other traffic, congested areas, and pre-
ferred routing).

Experienced air traffic controllers (ATCo) have been fre-
quently shown to perform risk aversive control strategies such
as formulating backup plans, or by maintaining additional sepa-
ration buffers between aircraft [15]. Such strategies are focused
on mitigating the risk for safety-critical events to arise and are
learned both by formal training and through work experience.
Therefore, given that ecological representations allow for a wide
variety of control strategies, the level of training, expertise, and
experience of the controller is expected to be an important factor
in how such an interface is used.

In this paper, we investigate how three different user groups
with differing levels of expertise (i.e., novice, skilled, and ex-
pert groups) use a constraint-based interface that aims to support
them in a future ATC task. The decision support tool used in
the human-in-the-loop experiment—the previously developed
Travel Space Representation (TSR)—is primarily designed for
local trajectory revisions of individual aircraft [16]. As such,
the goal of this paper is to empirically investigate how differ-
ent expertise groups implicitly take global system goals into
account when they are working with a constraint-based inter-
face designed to resolve local system perturbations. To capture,
quantify, and compare the robustness of control actions and
between the user groups, this paper introduces a metric that
reflects higher order and long-term system stability goals in a
centralized control setting. Additionally, it is investigated how
control strategies shift under the influence of varying levels of
perturbation (i.e., from few local to many airspace-wide pertur-
bations) and varying initial traffic structures (i.e., from initially
structured corridors to unstructured traffic).

The structure of this paper is as follows. First, the practical use
of the TSR by human controllers and various classifications of
control strategies is discussed. This is followed by an analysis of
the robustness metric that has been developed for TBOs. Next,
the experimental design is presented, followed by the results,
discussion, and conclusions.

II. TRAVEL SPACE REPRESENTATION

Inspired by the principles of ecological interface design [18],
[19], the TSR is a constraint-based decision support tool that
visualizes the boundaries of safe control for the task of short-
term trajectory-based ATC [16]. Rather than providing one or
more discrete optimal trajectory advisories, the TSR visualizes
a set of constraints that bound safe and feasible control actions
to reroute a selected aircraft.

The general shape of the TSR is determined by the internal
aircraft performance constraints. More specifically, the TSR rep-
resents the space in which the selected aircraft can be rerouted
without exceeding its speed envelope or bank angle limits, but
can still realize its planned time at the next waypoint. The ad-
ditional constraints resulting from external factors (e.g., other
traffic and restricted areas) are mapped on top of this shape in
the form of no-go areas. Only the horizontal plane has been
supported in this study.

The tool focuses on supporting the controller with the task of
resolving local perturbations within a single sector that has been
deconflicted a priori. That is, all aircraft are assumed to follow
a predefined 4-D path that is initially conflict free. However, as
a result of unforeseen events such as delays in other sectors, or
the presence of adverse weather, the controller will be required
to realign them in order to ensure safe operations. More details
on the design of the TSR can be found in previous work [16];
in this paper, the user interaction with the TSR is central.

A. Practical Use of the Travel Space Representation

The TSR is a direct manipulation interface that allows the
ATCo to select and modify the trajectory of an aircraft by means
of click and drag operations with a mouse input device. To
illustrate how the TSR can support the controller in a manual
trajectory revision task, Fig. 1 shows three subsequent images
of its use in a hypothetical traffic scenario. The task considered
here consists of deconflicting a selected aircraft (Aobs), and
rerouting it around a restricted airspace (RA) while meeting the
planned sector exit time at waypoint FIX . The initial situation

Fig. 1: TSR in an hypothetical traffic scenario. (a) Traffic scenario with two conflicting aircraft and a restricted airspace. (b)
TSR and placement of an intermediate waypoint. (c) Resulting trajectory for the observed aircraft [1].

required. This will be in the form of a trajectory planning
algorithm, which will cover the task of managing individual
aircraft missions.

As argued by Borst et al. [7], with more automation it
becomes more important to show more information about
this automation. The goal of this is to ensure that both the
human and the automation have a common ground that is a
reflection of the control problem. The work domain analysis,
which forms the basis of EID, is used to structure relationships
and constraints within the work domain and as such find
the common ground. The levels of control sophistication by
Amelink [8], which concern levels of autonomy, will be used
as an extension to the work domain analysis to incorporate the
aspects of temporal scope.

Not only does this paper focus on making the workings of
the automation visible, but also it focuses on how a human
controller can influence the automation by means of con-
straining the automation in an ecological manner and as such
working together as a team to control the airspace. Influencing
automation is inspired by SUPEROPT [9], [10], an algorithm
developed as part of SESAR WP-E. SUPEROPT allows the
human controller to define how conflicts between aircraft are
solved, for example one can tell the algorithm which aircraft
will pass behind the other. The rationale behind influencing the
automation is that it allows the human controller to structure
the airspace in a manner that is logical and easy to understand
to the human. Applying full automation could potentially lead
to the human apparent chaos and black-box behavior. As such,
advantages are that the airspace will be easier to monitor and
to hand over the airspace to another ATCo.

This paper presents the design of a conceptual ecological
interface for flow-based perturbation management by means
of influencing a trajectory planning algorithm. First, the TSR
is discussed, as this forms a basis and inspiration for this
research. This is followed by an investigation of which trajec-
tory planning algorithm is the most suitable for this particular
interface and how this automation can be made visible and
transparent to the human controller. Moreover, it will be

investigated in which way the automation solutions can be
influenced by the human controller, and if this would lead to
a positive effect on the results of the automation. Next, a first
concept design will be introduced, which is applicable during
the pre-tactical management phase [2]. Results, discussion and
conclusions will be presented from a first evaluation study.

II. TRAVEL SPACE REPRESENTATION

By means of the principles of EID the TSR is designed such
that is visualizes the boundaries of safe control, by visualizing
a set of constraints for safe and feasible control actions for a
selected aircraft [6]. The general shape of the TSR is an ellipse
and is determined by the aircraft’s performance envelope, such
as its speed and bank angle limits, while still realizing its
required time of arrival (RTA) at the next waypoint [1]. Each
ellipse within the TSR corresponds to a certain velocity of the
aircraft, which realizes the RTA. On top of the shape the no-
go areas are mapped, which result from additional constraints
such as other traffic and restricted areas.

Fig. 1 shows the basic composition of the travel space rep-
resentation in an hypothetical traffic scenario. In the scenario
it is shown how a conflict resolution can be solved manually in
three subsequent steps. The TSR can be directly manipulated
with a mouse input device. In this situation the selected aircraft
(Aobs) needs to be rerouted around the restricted airspace and
intruding aircraft (Aint), while still maintaining the RTA at the
waypoint FIX. This initial situation is shown in Fig. 1(a). By
clicking on the aircraft (Aobs) the TSR is shown as illustrated
in 1(b). The TSR shows a safe and restricted field of travel
due to the intruding aircraft (Aint). With the mouse cursor
a waypoint WP is placed within the safe field of travel. By
pressing enter on the keyboard the flight path is selected and
send to the aircraft. The modified flight path is shown in Fig.
1(c) and visualizes the new TSR for both segments. Waypoints
could be placed outside the TSR, however these points will
lead to not reaching the RTA and possibly lead to a conflict
situation.
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Figure 2. Vehicle locomotion control as a multi-loop control problem.

or time span for the work of a specific operator (e.g., pilot
or air traffic controller) impacts the scope and contents of
the work domain analysis, the control input formulation, the
viewpoint of the operator, the constraints on location and
integration of the ecological interface and the integration
with supporting automation. Together with several illustrative
design examples, we believe the lessons will be valuable to
all who are interested in designing ecological interfaces for
controlling vehicle locomotion. There are other lessons (e.g.,
sensor failure vulnerability and safety performance) that have
been learned about the EID framework through empirical
studies, the reader is referred to [14] for an overview of
those. We will conclude this paper with an outlook on future
work, where the main challenge lies in designing ecological
interfaces that can support operators with work over multiple
time spans and multiple teams.

II. VEHICLE LOCOMOTION CONTROL: A MULTI-LOOP
CONTROL PROBLEM ACROSS DIFFERENT TIME SPANS

In vehicle locomotion control, motion and time are in-
trinsically coupled. In a flight, maneuvers, flight phases and
trajectory segments integrate into a complete mission. In their
work, pilots or operators must focus on the immediate response
of the system, but also they need to prepare their actions
over multiple parallel time spans, ranging from preparing for
upcoming maneuvers to planning of vehicle trajectories several
minutes to hours (or longer) ahead. This observation is in
accordance with the motto “aviate, navigate, communicate” in
aerospace, which instructs air crew focus on flying the airplane
first, and in parallel prepare ahead. For the short term, a pilot
is concerned with keeping the aircraft in the air, with a proper
attitude and speed. On a slightly larger term, (s)he needs to
plan the remainder of the flight and coordinate with fellow
crew members and personnel on the ground.

Vehicle control requires planning ahead to define a feasible
future trajectory, and as the travel is implemented, the set-
points for control continually changes. The control problem
can be represented as a system with several nested control
loops, all acting at different time scales and all with changing
targets or set-points, as illustrated in Figure 2. In general, the
inner loops control the vehicle’s faster dynamics, and the set-
points for these loops can change quickly. The outer loops
control the path and trajectory, and are inherently dealing with
slower dynamics.
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(a) pilot perspective (adapted from [35])
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Figure 3. Aircraft and air traffic control as a hierarchy of nested control
problems at different time scales.

In the application of EID for vehicle locomotion control, one
is essentially designing an interface that aims to support the
human operator in closing one or more of these nested loops.
Supporting work over multiple control loops therefore implies
supporting work over different time spans. This requires that
the vehicle’s operator switches between spans, often making a
conscious choice to focus on a time span and thus on a specific
aspect of the locomotion control task1. In most transportation
systems, the inner loop involves maintaining vehicle stability,
the middle loop entails maintaining a particular travel direction
and the outer loop involves tracking an entire planned trajec-
tory. In Figure 3, two graphical illustration of these control
loops are made, one for piloting an aircraft and another for
controlling an airspace.

Ideally, an interface should support the operator in closing
all loops, and enable operators to easily shift focus from
control in the now to control over larger time spans, ranging
from the near future to a complete flight. In analogy with
Rasmussen’s approach, as he fashioned work domain analysis
after the focus shifts in scope and abstraction observed in ex-
pert behavior, there may thus be a need to extend work domain
analysis along an axis describing the temporal scope, in this
case of the locomotion. A possible extension to incorporate
this aspect is presented in the work by Amelink [35], which
employs an abstraction-sophistication analysis. The control
sophistication here concerns the “level of autonomy” of a
vehicle, and with increasing sophistication, larger time spans
of the locomotion are covered by automation. However, in
other projects working on ecological interfaces for vehicle

1The work distribution of task on board a commercial airliner explicitly
addresses this; one crew member is assigned to fly or monitor the automation
that flies the aircraft, while others may be involved in troubleshooting and
planning tasks. [36]

Fig. 2: Levels of control sophistication for ATC [11].

III. TRAJECTORY PLANNING ALGORITHM

The air traffic control problem can be represented as a
system with several nested control loops, all acting at different
time scales and with changing goals [11]. In Fig. 2 the control
loops are shown, where the inner loops control the faster
short-term dynamics and the outer the long-term applications.
As discussed by Amelink [8] each loop represents a level of
control sophistication, which relates to a level of autonomy.
Thus, with increasing levels of control sophistication larger
time spans are covered and automation is increased.

The TSR can be placed in the manage aircraft missions
level, but to reduce the ATCo workload further and to control
at another time scale, the next level of control sophistication,
manage airspace flow, needs to be reached. To reach this level
the human controller needs to be supported to close the manage
aircraft missions nested control loop. A trajectory planning
algorithm can be used to close this inner loop. This algorithm
can take over the ATCo’s role of rerouting and planning aircraft
trajectories in case the airspace is perturbed.

Trajectory planning, or path planning when not associated
with time [12], is the study of finding a sequence of actions
that connect an initial state to a desired goal state. In path
planning, the location the agents have are the states and the
transition between states are the actions the agents can take,
each with an associated cost. A path is optimal when it brings
the agent from the initial state to the goal state with minimal
cost. A path planning algorithm is considered complete when
it always finds a path between the two states within finite time
and notifies the user when no possible path is available [13].

For this research a trajectory planning algorithm is required
which needs to be predictable and consistent in the solu-
tions it provides [14]. Furthermore, the algorithm should be
understandable to the human controller and computationally
inexpensive.

Over the years many algorithms have been designed. These
can be categorized into four main categories, all with their
advantages and disadvantages: Sampling-Based Algorithms,
Node-Based Optimal Algorithms, Mathematic Model-Based
Algorithms, Bio-inspired Algorithms [15]. A fifth category
is a fusion of combination of algorithms, but is not further
considered in this research. An overview of the path planning

Path 
Planning 

Algorithms

Sampling-
Based 

Algorithms

Node-Based 
Optimal 

Algorithms

Mathematical 
Model-Based 
Algorithms

Bio-inspired 
Algorithms

RRT, PRM Dijkstra, A* Linear 
Algorithms

Optimal 
Control

Neural 
Network

Evolutionary 
Algorithms

GA, ACO

Fig. 3: Path planning algorithm taxonomy, adapted from [15].

taxonomy is found in Fig. 3.
Sampling-based algorithms are algorithms that have their

basis in probability, in which they connect points sampled
randomly through the space. The sampling-based algorithms
are not considered complete, because of the randomness, but
they provide probabilistic completeness guarantees. This is
because the probability that the algorithm fails to provide a
solution (if one exists) goes to zero as the number of samples
approaches infinity [16].

Node-based optimal algorithms explore the space in a dis-
cretized manner. These kind of algorithms explore a set of
nodes in the space and find the optimal path by calculating the
cost while running through these placed nodes. The most well-
known shortest path finding algorithm is Dijkstra’s algorithm
[17]. Many variants of Dijkstra’s algorithm have been con-
structed, for example A* [18], [19]. Each of the node-based
algorithms is heavily influenced by its settings. An increase
in the step size or nodes affects the computation time and
the optimality of the solution. In contrast to sampling-based
algorithms, node-based algorithms provide the same solution
each time the algorithm is run.

Mathematical model-based algorithms are algorithms that
model the environment and the system. The environment is
modelled as kinematic constraints and the system as dynamic
constraints. To find an optimal solution to the path planning
problem, these constraints are added to a cost function as
inequalities or equations. The problem with these algorithms
is that they have a complex formulation, because the whole
environment and system needs to be modelled, they tend to
be computationally expensive. The mathematical model-based
algorithms can be mainly categorized into two categories:
Linear Algorithms and Optimal Control [15].

Bio-inspired algorithms are based on the idea of mimicking
nature to find an optimal solution. These algorithms have
the ability to solve problems with many variables and non-
linearity, something which his hard to do with mathematical
model-based algorithms. Within the field of bio-inspired algo-
rithms there are two categories: Evolutionary Algorithms and
Neural Networks.

Because of this predictability constraint the sampling-based
algorithms can directly be considered as infeasible. Sampling-
based algorithms, as the name suggests, are highly random
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and provide a different solution each time. Also bio-inspired
algorithms can be considered as infeasible, due to their
stochastic properties. Mathematical model-based algorithms
can be considered infeasible for this research due to their
complexity and computational expense. This leaves us with
node-based algorithms.

As such, we decided to implement the Trajectory Flexibility
Metric algorithm by Idris [20]–[22]. The approach relates
to a node-based optimal algorithm and discretizes the space
in position and time to account for dynamic objects. The
idea behind this algorithm is that by implementing trajectory
flexibility on an individual aircraft, the traffic complexity of
the whole airspace can be maintained on acceptable levels. As
the algorithm is node-based, the algorithm is predictable since
it follows a fixed set of rules.

Furthermore, the algorithm is constructed such that it is not
only possible to optimize for the shortest path, but also for the
metrics robustness and adaptability, which are defined by Idris
as follows:

Robustness: ”the ability of the aircraft to keep its planned
trajectory unchanged in response to the occurrence of distur-
bances, for example, no matter which trajectory or conflict
instances materialize.” [21]

Adaptability: ”the ability of the aircraft to change its
planned trajectory in response to the occurrence of a distur-
bance that renders the current planned trajectory infeasible.”
[21]

Preliminary research showed that a cost function including
robustness or adaptability only became useful when rerouting
trajectories starting with six to seven additional waypoints,
whereas in ATC the ATCos usually create new trajectories with
only one or maybe two additional waypoints. For the scope of
this research the number of additional waypoints should stay
limited, such that the trajectories planned by the algorithm are
understandable to the human controller, therefore it was chosen
to not consider robustness or adaptability in the cost function
and only focus on the shortest path. Also, it was expected that
by influencing the algorithm in combination with the shortest
path as a cost, the sector robustness of the airspace could also
be increased. Where sector robustness is defined as an average
over the robustness of each aircraft [1]. To increase the sector
robustness, for example, the human controller could tell the
algorithm to find trajectories with a larger buffer around the
perturbation. Another option the controller could opt for is to
guide two traffic streams further away from each other and as
such increase the sector robustness.

Due to the discretized nature of the algorithm, the positions
where new waypoints can be placed, and thus the possible
trajectories that can be found are constrained. With the TSR,
however, the human controller is free where to place the
waypoints. Fig. 4 shows the TSR, in which a trajectory has
been chosen by the human controller with one additional
waypoint around a perturbation. Also shown are all feasible
points the algorithm can utilize to place an waypoint. Fig. 5
shows the same illustration for two additional waypoints.
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IV. ECOLOGICAL INTERFACE DESIGN

A cognitive work analysis is the basis for an ecological
interface. The process of a cognitive work analysis starts with a
functional breakdown of the work domain, which reveals the
functions and relations (means-ends links) on various levels
of abstraction. This is followed by a control task analysis,
which in this paper is combined with the cooperation analysis
to analyze which tasks are performed by each actor. Next, a
strategies analysis is performed, which shows several strategies
to perform the control task. Finally, a worker competencies
analysis is performed to determine how the human actors are
supported in their task.

The system’s boundaries in which the work domain analysis
will be performed is limited to the perturbation management
task for multiple aircraft at a fixed altitude. The task is
performed in a strategic manner, prior to the aircraft entering
the perturbed airspace, during the pre-tactical management
phase [2]. This phase takes place several hours up to 30
minutes before current time. The functional purpose of the
system is to do this in a productive, safe and efficient manner.

A. Work Domain Analysis
The work domain is analyzed by means of an abstraction

hierarchy (AH). An AH was defined by Van Paassen et al.
[6] for the TSR at a single aircraft level, however for this
research the AH needs to be extended to the whole airspace
in which the airspace flow management will take place. Also
accounted for, is the different view on the work domain by
the two stakeholders; the human controller and the agent, in
this case the trajectory planning algorithm. Due to the fact that
the algorithm is discrete and has its own limits and constraints,
the view of the algorithm on the work domain is different than
the human’s view, although still partly overlapping. Therefore,
as discussed by Naiker [23], the AH is split into two object
worlds, which is defined as the stakeholder’s view on the
work domain. The object worlds are the physical domain and
the agent domain, for the human controller and trajectory
planning algorithm, respectively. The result of the complete
AH is shown in Fig. 6.

a) Functional purpose: For both airspace and single
aircraft control and the physical and agent domain the goals of
this system are to produce 4D trajectory definitions in a safe
and efficient manner.

b) Abstract function: For the physical domain locomo-
tion, separation and economy are defined at the abstract
function level to meet the system goals’ functions, which
are equal for both airspace and single aircraft levels of de-
composition. Locomotion is realized within internal aircraft
constraints and external constraints imposed by the airspace,
such as airspace regulations. Separation is the main method
for safety control in the system. Safety is reached when at
all times enough separation is maintained between aircraft,
terrain and hazardous weather. Economy is the main driver
to be efficient, i.e., finding short and economical trajectories
to the destination. In the agent domain the abstract function is
defined by trajectory planning, which is a means to meet the
system goals.

c) Generalized function: At this level of abstraction the
two levels of control sophistication are represented in the
physical domain: flow management and aircraft mission. Flow
management is defined by the flows and streams in an airspace,
the performance envelopes of aircraft in such a stream and
the obstacles that can be present. Aircraft mission is defined
by the flight plan of an aircraft, its performance and also the
same obstacles that can be present in traffic streams. At the
agent domain the two main tasks that are required for trajectory
planning are represented: to minimize the cost function and to
de-conflict traffic. These are required for trajectory planning
as by minimizing the cost function the best trajectory is found,
and with de-conflicting the traffic only the possible trajectories
are determined.

d) Physical function: In the physical domain the physical
function is only described at the single aircraft level of control
sophistication, as multiple aircraft missions make up for the
flow management level. The flight plan can be represented as
a series of waypoints, the performance as a speed and heading
envelope and the obstacles as traffic or weather. The physical
functions in the agent domain are functions that are used to
minimize the cost function and to de-conflict the traffic. Where
track miles are used to determine the shortest path. All other
functions, such as time constraints, conflict-free trajectories,
air traffic and prohibited airspace contribute to de-conflicting
the traffic.

e) Physical form: This level of abstraction describes the
appearance of the functions described at the physical form
level. At the physical domain for the series of waypoints these
consist of locations and their RTA. The speed/heading envelope
is represented by a minimum and maximum speed/heading,
the traffic by other aircraft states and their intent and finally,
weather by its location, size and shape. At the agent domain,
the track miles are determined by the trajectory length and
RTAs make up for the time constraints. The complete search
grid dimension to determine conflict-free trajectories is defined
by the grid size, number of additional waypoints and heading
and speed strategy. Air traffic is defined by the 4D (i.e., space
and time) locations of the aircraft, their planned trajectories
and the protected zone (PZ) size of the aircraft. Finally, a
prohibited airspace is defined by its location, size and shape.

B. Cooperation and Control Task Analysis
For the task of flow-based perturbation management in this

interface there will be two actors: the human controller and
the automation. Each actor must be allocated subtasks, that
together make up the complete task. A decision ladder, for
each actor, is used to represent the actions and subtasks and
the relations between them, as shown in Fig. 8.

For this task, during the pre-tactical management phase the
decision process activates when an event perturbs the airspace.
The plan-view of the airspace, including the solution spaces
for each airway, are used as observation to become aware of
the traffic patterns, perturbations and performance envelopes.
The solution spaces show the constraints of the algorithm,
which are in return based on the performance envelopes of
aircraft present in that specific airway. This can be used to



6

Airspace Single Aircraft

Functional purpose

Abstract function

Generalized 
function

Physical function

Physical form 

Productivity, Safety, Efficiency

Locomotion, Separation, Economy

Flow management:
Flows/streams, performance, 

obstacles 

Aircraft mission:
Flight plan, performance, 

obstacles

Air traffic Weather

Aircraft 
states & 
intent

Speed & 
heading 
envelope

Series of 
waypoints

Location, 
size and 
shape

Locations 
and RTAs

Min/max 
speed / 
heading

Physical domain Agent domain

Trajectory planning

Minimize cost function, de-conflict traffic

Air traffic Prohibited 
airspace

Search grid 
dimensions

Conflict-free 
trajectories

4D locations, 
trajectories,

PZ size

Location, 
size and 
shape

Track 
miles

Trajectory 
length

Time 
constraints

RTAs

Fig. 6: Abstraction hierarchy flow-based perturbation management for two stakeholders.

determine the current state of the system. When the system
state is known, the different solution methods of de-conflicting
the air traffic around the perturbation can be evaluated. This is
done by taking into account the mission goals of productivity,
safety and efficiency.

Once a solution method has been selected, for example to
guide traffic with a 5 NM buffer around the perturbation, the
goal state of the airspace is known. This goal state is reached
by defining the task. The traffic flows can be steered in a certain
direction by flow obstacles or constraints, which influence the
solution space of the algorithm. A procedural shortcut can be
followed, in which the choice of influence on the algorithm is
immediately defined in the task. Once the human controller is
satisfied by the tasks, the scenario will be executed.

Another shortcut can be followed from the set of obser-
vations directly to the task definition. This shortcut can be
utilized when a controller recognizes a certain scenario, which
he or she solved before in a certain manner that gave a positive
output. In this case it is thus not necessary to go through the
whole knowledge-based domain again, and the task can be
directly implemented in a rule-based manner.

The execution phase of the human controller activates the
decision process of the automation. The automation will ob-
serve all traffic and constraints drawn in the airspace, from
which it will determine all possible trajectories. From these
trajectories the automation will filter the feasible ones and
select those with the best cost function score; in this case the
trajectories with the shortest path. The automation will update
the trajectory, set the waypoints and as such execute the task.
This process is repeated for each aircraft entering the airspace.
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Fig. 7: Information flow-map of three control strategies.

C. Strategies Analysis

The control problem is to resolve perturbations in the
airspace, once they are identified. Three different strategies to
resolve the perturbation in a flow-based manner are considered,
which are summarized in Fig. 7. With the first strategy the
perturbed airways are identified, after which the decision is
made to only attend to the perturbation itself. This is done
by means of determining a prohibited airspace around the
perturbation, with possibly a certain buffer, which acts as a
constraint to the automated agent. A second strategy involves,
in addition to the first strategy, attending to the perturbed
airways. For example, the controller can decide to force the
agent to find new trajectories only left of the perturbation or
to make the trajectory longer one side around the perturbation
which creates an extra buffer zone. With the final strategy, the
airways that are not perturbed are also identified and attended
to by the controller. Possibly, to reroute an airway, such that
a perturbed airway has more space to be rerouted around the
perturbation.
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D. Worker Competencies Analysis
The worker competencies analysis is used to assess the level

of cognitive behaviour that is needed to perform the tasks that
have been allocated to the controller. Rasmussen’s skills, rule,
knowledge taxonomy [24] is used as a qualitative framework to
explain the hypothetical benefits of the interface. The behavior
domains are indicated in Fig. 8.

a) Skill-based behavior: The activation and executing of
procedures can be considered as skill-based behavior. These
tasks do not require conscious control by the human operator.

b) Rule-based behavior: Observation of the airspace
and being aware of the traffic patterns and airspace situation
can be considered as rule-based behavior. For example, as
the controller observes that an airway crosses a perturbation,
(s)he knows an action is required to reroute the airway around
the perturbation. The information gained in the rule-based
domain, supports decision making in the knowledge-based
domain. The stored task shortcut can be utilized to skip the
knowledge-based domain. The risk of utilizing this shortcut
is that it might lead to poor control performance and less
knowledge about what is going on in the system.

c) Knowledge-based behavior: Reasoning upon the pos-
sible solution methods in the knowledge-based domain is
supported by the observations of the representation of the
solution space and awareness of constraints. The controller can
weigh and evaluate each option, while taking into account the
mission’s goals of productivity, safety and efficiency. Also, in

case of unexpected events, such as an automation failure, the
behavior can be seen as knowledge-based to solve the problem.

E. Interface Design

A prototype interface has been designed for the task of
rerouting 3D (i.e., 2D space and time) trajectories at a fixed
altitude in a flow-based manner during the pre-tactical monitor-
ing phase. The trajectories will be rerouted by the automation,
which the human controller can influence by constraining the
automation. By constraining the automation one can point out
several no-go areas for the automation. For instance, one could
choose to force the automation to only find solutions at one
side or to reroute around a perturbation, with possibly a certain
buffer zone to increase the robustness of the airspace.

To support the human controller in the task of constraining
the automation, the work domain constraints are made visible
by means of the airway solution space. This allows the human
controller to reason about the placement of the constraints
and the manner in which the controller would like to guide
aircraft in need of a trajectory revision. The airway solution
space is based on the TSR, which visualizes the work domain
constraints of the aircraft. However, the automation also has its
own constraints due to the discretized nature of the algorithm,
as was shown in the AH in Fig. 6. These constraints are visu-
alized within the airway solution space. The airway solution
space is dependent on a number of variables, which are: the
number of waypoints, base speed, maximum speed, minimum
and maximum heading and RTA at the exit waypoint.
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(a) 1 (b) 2 (c) 3

Fig. 9: Solution space for one, two and three additional
waypoints.

Fig. 9 shows three airway solution spaces for one, two and
three additional waypoints. The outer boundaries of the shapes
show the speed limits of the aircraft, within which it can still
reach the exit point at the required time of arrival, as with the
TSR. The curved areas show the possible locations in which
a waypoint can be placed by the automation. When referring
to Figs. 4 and 5 one can see the similarities with Figs. 9a and
9b, which inspired the design of the airway solution space.
The direction of the airway is indicated by the two arrows
on the center line. As multiple types of aircraft can fly in an
airway, the airway solution space is based on the aircraft with
the smallest performance envelope.

Fig. 10 provides an overview of the interface and the
possible control actions a human controller can perform while
working with the interface for a simple scenario. The numbers
in the figure indicate parts of the work domain that are made
visible in the interface. Fig. 10a is what will be presented to
the human controller first when asked to structure the airspace
to his or her preference. The scenario shown consists of two
airways 1 with a perturbation 2 shown in the center.

To support the controller in this task, the airway solution
space 3 4 can be shown for a specific airway when
hovering over this airway, as shown in Fig. 10b. This gives the
controller an indication what the limits are of the algorithm and
aircraft in that specific airway. For this research the number
of additional waypoints is fixed to two, so if a rerouting is
required, the automation will place two waypoints, one in each
curved area.

To gain more information, the controller can select multiple
airways and make the overlapping airway solution spaces
visible 3 4 , as shown in Fig. 10c.

Once the controller knows how to structure the airspace,
he or she can start placing constraints, which will guide the
algorithm. In Fig. 10d it is shown how a circle constraint 5
is placed around the perturbation. The circle constraint acts as
prohibited airspace for the algorithm. The constraint is drawn
slightly larger than the perturbation to implement a buffer zone
and as such increase the sector robustness.

In Fig. 10e an additional polygon constraint 5 is placed,
which guides the traffic West of the perturbation, so as to steer
traffic away from the other airway and to prevent a possible
knock-on effect with this airway. This constraint needs to be
placed, as without it the algorithm could choose either side
of the perturbation to plan a trajectory as the trajectory length
around both sides is equal. In Fig. 10g one aircraft is about to
enter the airspace from the North and one just entered from
the South 6 . The aircraft from the South is highlighted 7 ,
as the trajectory planning algorithm is activated to reroute the
aircraft around the perturbation, taking into account the drawn
constraints. The current trajectory of the aircraft is shown with
the line from WP5 to WP6 8 . Finally, in Fig. 10f the result of
the trajectory planning algorithm is shown 8 9 . The aircraft
are safely separated from the perturbation 10 and without the
airways affecting each other 11 .

V. CONCEPTUAL EVALUATION

In this early design phase a conceptual evaluation of the
flow-based perturbation management interface has been per-
formed. The evaluation is used to validate the underlying
principles of the interface. Next to this, the data and feedback
generated from the participants are used to find new valuable
insights and improvements to the interface, which will guide
the direction of future development.

A. Participants
In total five participants engaged in the evaluation, who

all followed a short ATC course, intended to familiarize
researchers in ATC with hands on ATC practice. Each par-
ticipant was male, ranging between 25 and 55 years of age.
Four participants rated their ATM knowledge as intermediate,
one as advanced. Regarding 4D operations, two participants
considered their knowledge basic, two intermediate and one
advanced. Finally, for human machine interface design one
considered his knowledge as intermediate, the others as ad-
vanced.

B. Apparatus
The evaluation was performed on a dedicated software-

based ATM platform in the ATM laboratory of the faculty of
Aerospace Engineering at the Delft University of Technology.
The interface was integrated in the TSR software, which
implies a traditional plan-view display, providing a top-down
view of the airspace and traffic. The interface was presented on
a 30-inch screen (60-Hz LED, 2560 by 1600 pixels) placed in
front of the participant. Input was given by a standard mouse
input device and control options could be selected by on-screen
buttons and drop-down menus.

C. Tasks and Instructions
Based on the TSR software platform [1], a prototype of the

interface was programmed, which was used for the conceptual
evaluation. For the evaluation, the participants were assigned
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the task of an ATCo during the pre-tactical management phase,
where they were asked to de-conflict the traffic that was dis-
rupted by the perturbation. The scenarios were revealed to the
participants in a plan-view display showing the sector borders,
perturbation and airways. The participants had no information
available over the upcoming traffic density. When hovering
over or selecting an airway, the solution space of the algorithm
for that specific airway was shown. With this information
the participants were asked to guide the traffic around the
perturbation and to structure the airspace in a fashion they
deemed necessary by placing constraints, while considering
and weighing the following interdependent criteria: safety
buffers, additional trajectory length and airspace structure.
Once the participant was satisfied with the applied structure,
the simulation was started and fast forwarded to show the
results of the trajectory planning algorithm that rerouted the
flights upon entering the airspace, while taking into account
the placed constraints. The reason why it was chosen not to
allow control while aircraft were in the airspace, is because
we wanted to prevent for this research that participants would
apply a strategy of controlling each aircraft individually. This
strategy is possible by a repeating process of placing and
deleting constraints for each aircraft.

D. Baseline Performance
To assess the performance of the human controllers two

baseline measures were used. One is the result of the full
automation, thus without any human influence. The other
baseline is set with the TSR interface by an expert controller.
Comparison with the TSR should be taken carefully, as with
the TSR the controller is rerouting trajectories throughout the
scenario, whereas with the concept interface the controller sets
his or her constraints at the start of the scenario without any
knowledge of what will happen in the future and he does not
have to ability to adjust trajectories throughout the scenario.

E. Independent Variables
For this concept evaluation two independent variables were

considered, traffic density and perturbation location as within-
subjects variables:

1) Traffic density: the traffic density with two levels - low
(TDL) and high (TDH);

2) Perturbation location: the location of the perturbation -
number of airways through center of perturbation: zero
(PL0), one (PL1) and two (PL2).

The rationale for choosing two levels of traffic density is
that it will be interesting to compare current traffic densities
with expected future densities and to find out how the concept
performs in these two situations. The perturbation location
is chosen as an independent variable because preliminary
research showed that the location highly influences the applied
control strategies. For this research the locations are grouped
into three categories: PL0, PL1 and PL2. The locations were
chosen such that either 0, 1 or 2 airways crossed right through
the center of the perturbation, see Fig. 11. The rationale behind
this is that if an airway crosses the perturbation right through

(a) PL0 (b) PL1 (c) PL2

Fig. 11: Three categories of perturbation locations as defined
for this research.

the center, the human controller can make a decision to steer
the trajectory algorithm left or right of the perturbation. If an
airway crosses the perturbation only slightly, as with PL0 and
PL1, the trajectory algorithm will always choose the shortest
path around the perturbation. It might only pass the other side
of the perturbation if the algorithm cannot find a solution
the shortest way around the perturbation due to air traffic.
So although for PL0 four airways are affected, and for PL2
only two, the influence a human controller can have on the
algorithm is much larger.

F. Traffic Scenarios

To effectively assess the performance of the interface a
conceptual airspace was designed, based on the multi-sector
principle [25]. Three upper airspace sectors from the south-
eastern part of France where combined into one large airspace
of 92, 000km2. In this airspace eight hypothetical airways were
placed in a structured grid-based manner. In addition, a high
traffic density and a low traffic density scenario were defined.

The low traffic density scenario was based on the peak traffic
that Eurocontrol currently sees in its airspace during summer:
5,500 flight movements during 24 hours in an airspace of
260, 000km2 starting from FL245 and up [26]. Mapping this
onto the designed airspace and taking into account that only
the horizontal dimension is used for the scope of this interface
concept, the low density traffic scenario was set to 800 flights
(∼33 flights/hour). The high density scenario was scaled with
a factor of 1.6, based on future traffic predictions [27]. This
led to a high density traffic scenario of 1,280 flights (∼53
flights/hours).

Both traffic scenarios were made conflict-free beforehand,
based on a minimum separation distance of 5NM. All flights
were set to be of the type Airbus A320 flying at FL245, which
is the lower bound of the upper airspace. This is also near the
flight level which leads to the maximum performance envelope
of an A320 aircraft (FL240). The two traffic scenarios were
designed so that the last aircraft would enter around 45 minutes
in scenario time. Thus, for the low traffic density scenario 25
aircraft would enter the airspace and 40 for the high scenario.

In both traffic scenarios conflicts were introduced, by plac-
ing a large circle-shaped perturbation of 25NM at three differ-
ent locations. A total of 21 different locations were evaluated
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Fig. 12: Designed airspace including the selected perturbation
locations.

during preliminary research, split over three perturbation loca-
tion categories as shown in Fig. 11. From every category one
perturbation was selected that caused the highest disturbance
in traffic. The airspace with the selected perturbation locations
is shown in Fig. 12.

G. Dependent Measures
To compare the results of the participants to the automation

and to investigate what effects control actions have on the
algorithm, the following dependent measures are considered:

1) Constraints placement: the type, size and amount of
constraints placed by the participants in the airspace.

2) Sector-based robustness: the minimum and average ro-
bustness off all aircraft trajectories [1]. In which the
minimum is defined as the point of least robustness of
all combined trajectories. Average sector robustness is
defined as the average of all trajectories’ robustness.
The sector robustness is derived from the point-based
robustness of a single aircraft at a certain point in time.
At each point in time, the aircraft is assumed to be
at a predicted state (t, x, y, V , ψ). To quantify the
robustness in that point in time, RBT(t), the predicated
state is taken as a starting point, at which the probability
of feasibility of the aircraft to reach the set of predicted
states at time t + ∆t is determined. Fig. 13 shows a
sketch of an observed aircraft (Aobs) with the predicted
positions the aircraft can be at at time t+∆t. The disc-
shaped area is discretized into ni probe segments, where
for each probe segment the feasibility is determined,
from which the robustness can be determined. Infeasible
regions can occur by other aircraft predicted positions,
as shown in Fig. 13, or by perturbation intrusions.
The robustness will be calculated by taking both the
aircraft and perturbation intrusions into account, but
also by only taking into account the aircraft. This will
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strategies will mainly focus on a single aircraft and will
not shy away from resolutions in narrow control spaces.
When novice controllers attempt to apply more elaborate
strategies, extensive knowledge-based reasoning will be
required (strategies 3, 4, 5, and 6), and the effectiveness
will be limited by the lack of a comprehensive understand-
ing of the control task.

2) Skilled strategies rely on rule-based shortcuts that are built
upon a basic understanding of the system and its dynam-
ics. To a limited extent, a sequence and/or prioritization of
control actions is made. For example, a controller could
determine the sequence of aircraft in which to solve a
conflict (strategies 3 and 4) or prioritize the order of per-
turbations to revolve (strategy 5). Such strategies can be
seen as satisfactory local short-term solutions, but will of-
ten fail to integrate the long-term airspace stability goals.

3) Expert strategies typically foster all elements of the most
elaborate—pro-active—strategy in the information flow
map (strategy 6). However, this does not imply that, in or-
der to perform expert strategies, one must always traverse
through the complete decision ladder. Through training,
previous experience, and a deeper understanding of the
work domain, experts will be able formulate high-quality
rule-based shortcuts that expedite the decision-making
process. Expert behavior in the current ATC system has
been found to involve, among others, planning multiple
steps ahead, formulating backup plans, and maintaining
additional buffers in terms of separation to cope with un-
certainties [15]. Such strategies focus heavily on finding
long-term robust resolutions rather than applying short-
term fixes.

Applying novice control strategies will typically result in
solutions that are less robust to cope with airspace-wide un-
certainties than expert strategies. Although the TSR visualizes
the explicit constraints that support simple rule-based shortcuts
(i.e., the go and no-go areas), the interpretation thereof and the
level of expertise of the controller are expected to largely deter-
mine the overall quality of the solutions. For example, simply
clicking somewhere in a safe field of travel (reactive novice con-
trol) could result in a situation in which the maneuvering space
of other traffic is reduced, whereas when using the TSR as a va-
lidity check for a thought-through sequence of control actions
(pro-active expert control), this could have been foreseen and
prevented. The robustness of a control action itself could then
be used as an indication of the level of expert behavior of the
controller.

III. QUANTIFYING ROBUSTNESS

In order to investigate the various strategies performed by
controllers when using the TSR, a metric has been developed
with the purpose of quantifying the robustness of control. This
metric is not intended to reflect measures that address all as-
pects of robustness in air traffic operations, but instead has been
developed to enable a quantitative post-hoc between-subject
comparison in this study.

Fig. 3. Sketch of the point-based robustness geometry and the resulting area
of probabilistic feasibility at a discrete point.

The metric enables an evaluation of the robustness of all
airspace users in a given sector and, moreover, the difference
in their robustness as a result of a control action with the TSR.
In essence, this allows us to determine whether a trajectory
revision for one flight has a positive or detrimental effect to
the overall stability of the system. This metric finds its origin
in the flexibility preservation metric proposed by Idris et al.
[22], [23] and is based upon quantifying the probability of a
trajectory to remain feasible despite probabilistic disturbances
in its execution.

A. Robustness

Robustness is a quantitative measure of trajectory flexibility
that has been defined as “the ability of a flight to adhere to
planned trajectory and imposed constraints, despite probabilis-
tic random state deviations from that trajectory” [22]. Such a
trajectory will, for instance, remain feasible (i.e., no conflicts
or restricted airspace violations materialize) despite a deviation
in speed and/or heading at a certain point. In its original imple-
mentation, this metric has been used as a factor to quantify and
select the “best” trajectory from a set of recursively generated
trajectories [22]. For this study, the metric has been modified
and discretized to allow for a post-hoc investigation of the ro-
bustness of control actions.

B. Point-Based Robustness

In this metric, robustness can be seen as a point-based attribute
at each position along a given trajectory. This point-based ro-
bustness acts as the basic building block with which trajectory-
based, sector-based, and control-based robustness can be de-
rived. Consider an observed aircraft with a given time-based
intent. At each point in time, that aircraft is assumed be at a pre-
dicted state (t, x, y, V,ψ). Taking the predicted state as a starting
point, the robustness at that point, RBT(t), can be quantified by
the probability of feasibility Pf (t) of the aircraft to successfully
reach a set of next states at time t + ∆t.

To illustrate this, Fig. 3 shows the predicted position at time
t of an observed aircraft (Aobs) along its trajectory. At that

Fig. 13: Sketch of point-based robustness geometry and the
resulting feasible and infeasible regions [1].

allow to compare the strategies between the participants
more fair, because it removes the bias of how large
of a buffer the participant decided to take around the
perturbation. As a larger buffer will directly mean an
higher robustness due to a smaller infeasible region of
aircraft flying past the perturbation. Both metrics are
calculated by means of post-hoc calculations, where
the maximum heading angle difference has been set to
80o, discretized in steps of 5o and the maximum speed
difference to 20 kts IAS, in speed steps of 10 kts IAS.
The look-a-head time was set to 120 s and the point-
based robustness was sampled every 10 seconds.

3) Efficiency: additional track miles flown by the aircraft
as compared to the de-conflicted non-perturbed airspace
and the number of knock-on reroutes, which are defined
as aircraft that need to deviate from their original
trajectory due to conflicting with other aircraft and not
due to the perturbation.

4) Situation awareness: after each run the participants are
required to fill out a modified version of the SASHA
questionnaire [28], measuring their situation awareness.

5) Trust between people and automation: after each run the
participants are required to fill out a reduced version of
the checklist for trust between people and automation
[29], to measure their trust in the system.

H. Control Variables
To avoid confounds a set of variables has been kept constant

throughout the evaluation. A summary of the variables, and
their associated values, are found in Table I.

I. Procedure
Prior to the evaluation the participants were asked to fill

out a questionnaire, rating their knowledge level of air traffic
management, 4D operations and human machine interface
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TABLE I: Concept evaluation control variables.

Control variables Value

Airspace sector shape -
Airspace sector size 92, 000[km2]
Airspace structure -
Aircraft type Airbus A320
Aircraft flight level FL240
Aircraft instantaneous airspeed 400, 445 & 490 [kts IAS]
Aircraft heading limits −50o - 50o, ∆1o

Algorithm grid size 101 x 101 [-]
Algorithm state change strategy relative
Algorithm number of intermediate waypoints 2 [-]

design. After the questionnaire and a short introduction to
the concepts behind the interface, several training runs were
performed by the participants to familiarize themselves with
the interface and learn in which manners they were able to
apply structure with the constraints. The participants were
given a cheat sheet, which showed four different ways to
steer the automation in a certain direction. In total there were
six measured runs to be performed after the training. Three
scenarios for each perturbation location, and three times the
same scenarios rotated 90o clockwise, to gather more data
while preventing scenario recognition. The order in which the
scenarios were presented to the participants was defined by
the Latin square, as shown in Table II. The participants were
only presented with an airspace without any knowledge about
the traffic density, therefore the placed constraint set-up by the
participants is applicable to both traffic density scenarios. Thus
during the experiment the participants only saw the results of
the high traffic density scenarios, but the experimenter was
able to gather the low traffic scenario data by means of post-
hoc runs. After each measured run the participants were asked
to fill out a questionnaire. The questionnaire consisted out of
three parts: Two open questions asking what they thought of
the amount of structure they were able to add to the airspace
and whether they would change something to the constraint
set-up after seeing the result. The second part was an adapted
version of the SASHA questionnaire [28] to measure their
situation awareness. The final part was a shortened version of
the Checklist for Trust between People and Automation [29].
A debrief followed after the evaluation, asking the participant
to assess and provide feedback on the interface, automation
and experiment. A complete session took around 1.5 hours.

TABLE II: Latin square experiment design.

ATCo Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

1 PL00o PL190o PL20o PL090o PL10o PL290o

2 PL190o PL20o PL090o PL10o PL290o PL00o

3 PL20o PL090o PL10o PL290o PL00o PL190o

4 PL090o PL10o PL290o PL00o PL190o PL20o

5 PL10o PL290o PL00o PL190o PL20o PL090o

TABLE III: Number of polygon constraints placed per sce-
nario.

PL0 PL1 PL2
Σ

0o 90o 0o 90o 0o 90o

Participant 1 6 4 3 3 2 2 20
Participant 2 0 4 3 3 2 1 13
Participant 3 0 4 1 0 0 1 6
Participant 4 4 4 3 3 2 3 19
Participant 5 3 3 3 1 2 2 14
Sum 32 23 17 72

J. Hypotheses
It was hypothesized that with increasing perturbation lo-

cation the number of placed constraints by the controller
would increase (H.I). Next to this, it was hypothesized that the
structure added to the airspace by the controllers, would lead
to an increase in minimum and average robustness, compared
to the automation baseline. In return, this would also mean
an increase in added track miles and an increase in knock-on
reroutes (H.II). It was also hypothesized that the perturbation
location would have no significant influence on the controller’s
situation awareness and trust in the system (H.III).

VI. RESULTS

A. Constraints placement
Each participant was asked to draw a circle constraint

around the perturbation, but was free to choose the size of the
constraint, as long as it fully covered the perturbation. Analysis
of the scenarios showed that each participant kept the same
strategy throughout the scenarios. Participants 1, 2 and 5 drew
a small buffer of around 2.5 NM around the perturbations, thus
giving a larger weight to the safety buffer criteria. Participants
3 and 4 chose to draw the circle constraints tightly around the
perturbation, shifting the weight towards minimizing additional
trajectory length. When reflecting back on the decision ladder
in Fig. 8, the circle constraints were drawn by the participants
by following the shortcut from the set of observations to the
task definition.

Next to the circle constraint required to guide traffic around
the perturbation, the participants only drew polygon constraints
with three corners. The number of constraints drawn is shown
in Table III. The rotation in scenarios was not found to be
significant according to a Friedman test, therefore the data
between the 0o and 90o scenarios are averaged for further
statistical tests. A Friedman test revealed that the perturbation
location significantly affected the number of placed constraints
(χ2(2) = 7.11, p = 0.03). Pairwise comparison, after adopting
a Bonferroni correction, confirmed only a significant difference
between PL0 and PL2.

It was hypothesized (H.I) that for increasing perturbation
location, the number of drawn constraints by the participants
would be larger, however the statistical tests reject this hypoth-
esis. For PL0 most participants would still place a polygon
constraints to be sure the automation would find a solution for
the shortest way around the perturbation, even though by just
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Fig. 14: Transient effects leading to a loss of separation. (a) Aobs turning to the intended trajectory determined by the algorithm
to avoid a conflict with Aint. (b) loss of separation occurred as algorithm did not take rotation and forward acceleration into
account of Aobs. (c) past loss of separation, Aobs reached intended velocity.

placing a circle constraint around the perturbation would lead
to nearly the same result. This also explains why most of the
times the participants chose to add four polygon constraints,
as there were four airways intersecting the perturbation. The
same effect was shown for PL1 and PL2, where in PL1 most
participants chose to use three constraints, as there were three
airways crossing the perturbation and in PL2 only two.

Most participants placed at least one or two constraints,
except for Participant 3, who added no constraints in three
out of six runs and only one constraint in two runs. Looking
at the Latin square design in Table II, it suggests that a training
effect may have influenced the control strategy of Participant
3, which gave the participant more trust that the automation
would figure out the best solution. The same training effect
influenced Participant 2 in the PL0 scenario, who did not place
any additional constraints the second time. Participants 2 and 3
thus partly support the hypothesis that at PL0 less constraints
would be drawn.

B. Sector-Based Robustness
Figs. 18a and 18b show all minimum sector-based robust-

ness data points for each scenario and traffic density calculated
with and without perturbation, respectively. It shows the lowest
achieved value of minimum robustness over all aircraft in
a run. Figs. 18c and 18d show the average sector-based
robustness, which is an indication of the robustness of the
complete airspace. The vertical lines in all four plots show the
spread between participants for a certain perturbation location.

First thing to notice is that the minimum robustness in a
few cases reached a value of 0.0, which means that a loss
of separation occurred. Out of the 1950 flights in total, six
losses of separation occurred. One of which that was close
to the perturbation and thus does not show up as a minimum
robustness value of 0.0 in Fig. 18b. The losses of separation
were unexpected as the algorithm is programmed such that it

will prevent these. Close inspection of the data showed that
these losses of separation can be be accounted to the transient
effects that take place. The algorithm assumes instantaneous
state changes, whereas the aircraft flying in the airspace need
time to accelerate or rotate to the set speed or heading. It was
expected that the assumption of instantaneous state changes
would not affect the results due to the large time scale of
planning the algorithm was used for. However, due to the
fact that the algorithm would plan aircraft that close to each
other, the transient effects actually do have an effect. Fig. 14
illustrates how a loss of separation occurs due to the transient
effect not taken into account. It shows that the observed aircraft
(Aobs) is still rotating and accelerating, whereas the algorithm
assumed the aircraft was already at the set heading and up to
speed.

The rotation in scenarios was not found to be significant
according to a Friedman test for both the minimum and average
robustness, therefore the data between the 0o and 90o scenarios
are averaged for further statistical tests.

Friedman tests showed that the experimental condition
significantly affected the minimum robustness for both with
perturbation (χ2(5) = 22.05, p < 0.01) and without pertur-
bation (χ2(5) = 11.63, p < 0.04) in the calculation. Further
pairwise comparison with Bonferroni showed no significant
differences, except that the minimum robustness was higher
for PL0 compared to PL2 in the low traffic density scenario
with perturbation taken into account.

Also for the average robustness, Friedman tests revealed that
it is significantly affected by the experiment conditions, both
for with perturbation (χ2(5) = 19.97, p < 0.01) and without
perturbation (χ2(5) = 23.63, p < 0.01) in the calculation.
For the average robustness with perturbation a Bonferroni
corrected pairwise comparison revealed only two significant
differences between the high and low traffic density scenarios,
which was to be expected. Between the perturbation locations
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within both traffic densities, no significant difference was
found. For the average robustness without the perturbation
taken into account pairwise comparison found that within the
high traffic density the average robustness was significantly
lower for PL2, compared to PL0 and PL1, after adopting a
Bonferroni correction.

A Friedman test showed that the minimum robustness
without perturbation taken into the calculation is significantly
higher than with perturbation (χ2(1) = 5.00, p < 0.03).
Exactly the same result was found for the average robustness
(χ2(1) = 5.00, p < 0.03). For a fair comparison of the
participants to the baselines the two metrics that do not take
into account the perturbation are considered, as this takes away
the bias and effect of how close participants chose to let the
aircraft fly by the perturbation.

Also, to compare the data in detail, the data between the 0o

and 90o degrees scenarios are not averaged, in comparison to
the statistical tests, due to the large difference that sometimes
occurs within the data of a participant. For example, in Fig. 18a
Participant 3 managed to reach in PL0 a minimum robustness
of 0.0 and one of 0.29. The control actions belonging to these
scores are shown in Fig. 15. The two control actions differ
much, where the participant in one scenario added quite some
structure to the airspace and in the other scenario he just
left it to the automation by drawing a tight circle constraint
around the perturbation. For this perturbation location that
was a logical choice when looking at the data in Fig. 18,
as the automation scores better than nearly all participants in
both metrics. Also, when looking at Fig. 19, which shows the
minimum robustness over time for both scenarios, together
with an comparison to the two baselines, it shows clearly
that in the scenario where the participant did add structure
to the airspace the difference in minimum robustness over
time is quite considerable. As mentioned in Section VI-A it is
expected that the large difference in control strategy for this
participant is due to a training effect in the experiment, where
the participant gained more trust over time in the automation
and thus did not feel the need to structure the airspace.

Furthermore, for PL0 in the high traffic density condition
most of the participants perform slightly worse than both
baselines. In the low traffic density condition the results are
on par with the automation baseline.

For PL1, the participants also predominantly scored worse
than the automation baseline, this effect is now also shown
for the low traffic density condition. Interesting to note is
the positive performance of Participant 1 in the 90o scenario.
Closer inspection showed that the participant chose a control
strategy in which he steered the aircraft from the airway
intersecting the perturbation North to South, the long side
around. The algorithm, however, could not find solutions this
side around with only two additional waypoints and therefore
automatically increased to three additional waypoints. With
the increase in waypoints the automation was able to find
solutions the short side around the perturbation and the drawn
constraint, as shown in Fig. 16. This increase in waypoints
allowed the algorithm to find more optimal solutions, and thus
the robustness increased.

In PL2 the participants also predominantly did not out

(a) 0 (b) 090o

Fig. 15: Two control strategies by participant 3 for PL0.

Fig. 16: Control strategy Participant 1 for PL190o .

perform the automation baseline. Especially in the high traffic
density scenario they perform worse in terms of average
robustness, the only exception is Participant 4. In the 0o run the
participant managed to increase the minimum robustness by
0.1, while in the 90o run he succeeded to increase the average
robustness slightly, but at the cost of a loss of separation.
Both strategies are shown in Fig. 17, and Fig. 20 shows the
minimum robustness over time for both strategies. The data
show minimum robustness of 0.0 was only reached once in the
90o scenario. For the rest of the time it performed on par with
the automation baseline. The participant was still outperformed
by the TSR baseline.

(a) 0 (b) 090o

Fig. 17: Two control strategies by Participant 4 for PL2.
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(b) Minimum robustness - no perturbation
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(c) Average robustness
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(d) Average robustness - no perturbation

Fig. 18: Minimum and average sector robustness per perturbation location and traffic density.

When looking at the data with the perturbation taken into
the robustness calculations, one can see that for the mini-
mum robustness in PL1 nearly all participants outperformed
the automation baseline. Closer inspection showed that all
participants chose to guide the airway from East to West
through the center of the perturbation along the North side
of the perturbation, apparently having a positive influence on
the minimum robustness. In other scenarios the robustness
performance has the same trend as with taking the perturbation
not into account; occasionally outperforming the automation,
but most of the time having similar or worse performance.

C. Efficiency
Fig. 21a shows the added track miles per participant for each

scenario. The track miles are shown relative to the trajectories
before the perturbation is introduced. The knock-on reroutes
are shown in Fig. 21b, which are defined as aircraft that need

to deviate from their original trajectory due to conflicting with
other aircraft and not due to the perturbation.

The rotation in scenarios was not found to be significant
according to a Friedman test for both the added track miles
and knock-on reroutes, therefore the data between the 0o and
90o scenarios are averaged for further statistical tests.

A Friedman test showed that the experimental condition sig-
nificantly affected the added track miles (χ2(5) = 23.51, p <
0.01). Pairwise comparison, using a Bonferroni correction,
revealed that in the high traffic density scenarios the added
track miles were significantly higher for PL2 compared to PL0
and PL1.

The knock-on reroutes was also found to significantly affect
the experimental condition (Friedman: χ2(5) = 22.70, p <
0.01). However, additional pairwise comparison found no
significant differences within the traffic density groups, after
adopting a Bonferroni correction.
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Fig. 19: Minimum robustness over time by Participant 3 for PL0 in the high traffic density scenario. Difference in minimum
robustness as compared to the automation and TSR baselines is shown on the right.
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Fig. 20: Minimum robustness over time by Participant 4 for PL2 in the high traffic density scenario. Difference in minimum
robustness as compared to the automation and TSR baselines is shown on the right.

Compared to the automation baseline, the added track miles
of the participants predominantly increases. This is an expected
result, as the participants add constraints to the airspace around
which the aircraft need to fly, thus causing longer trajectories.
This same result was found for the knock-on reroutes.

The knock-on reroutes are on average larger for the PL1
scenario than PL2 with high density traffic. It was expected to
be larger for the PL2 case, however in PL1 the traffic needed
to be rerouted close to a busier airway, which explains the
difference in knock-on reroutes.

D. Situation awareness

After each run, participants were asked to fill out the
SASHA questionnaire regarding their situation awareness. A
Friedman test showed no significant effect in SASHA score
between the experiment conditions (χ2(2) = 1.78, p = 0.41).
Therefore, only the overall situation awareness of the interface
is discussed. Fig. 22 shows per question the frequency of
ratings over all participants and scenarios. Generally speaking,
the outcome of the SASHA questionnaire is positive. From
Figs. 22a and 22b can be concluded that in most runs the
participants were able to structure the airspace as they wanted,
with the automation being steered in the direction that was
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Fig. 21: Added track miles and knock-on reroutes per pertur-
bation location and traffic density.

required. Although in a number of runs the participants were
surprised by the actions of the automation, as seen in Fig. 22b.
From Figs. 22e and 22f it follows that the airway solution space
in most cases did support the participants in their task, albeit
moderately. Overall, the situation awareness during most runs
was considered to be good, following from question Fig. 22g.

E. Checklist for trust between people and automation
Next to the SASHA questionnaire, participants were asked

to complete a modified version of the checklist for trust be-
tween people and automation after each run. Again, a Friedman
test showed no significant effect in trust score between the
experiment conditions (χ2(2) = 4.11, p = 0.13), thus only the
overall trust in the interface is discussed. The frequency of
ratings per question are shown in Fig. 23. Interesting to see is
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were able to steer the automation?
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Fig. 22: SASHA questionnaire.

that overall the participants seem to trust the system quite well.
Figs. 23c, 23e and 23f, however, do show a few lower ratings.
These lower ratings were mainly due to a bug in the algorithm,
which occurred once during 1 or 2 runs for each participants.
The algorithm reroutes a trajectory of an aircraft that is in
conflict with another aircraft, but after rerouting the aircraft
were still in conflict. The conflict was solved by simply running
the algorithm again. Closer inspection of this bug shows that
if one of the waypoints is moved by a few pixels the aircraft is
already out of conflict, thus it is expected that the bug can be
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(e) The system is reliable.

1 2 3 4 5 6 7
0

5

10

15

0 0

4
2

5

11

8

Rating (not at all = 1; extremely = 7)

Fr
eq

ue
nc

y
[-

]

(f) I can trust the system.
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(g) I am familiar with the system.

Fig. 23: Checklist for trust between people and automation
questionnaire.

assigned to rounding errors in the discretization of the airspace.

F. Debrief
During the debriefing the participants were asked to as-

sess and provide feedback on the interface and experiment.
Regarding the airway solution space the participants were
generally positive, as it gave them insights in how traffic
streams would flow and where the freedom of movement is.
It also supported them in drawing the constraints. A problem
indicated with the airway solution space was that it was fixed
to only two waypoints, thus if no solution was found by
the automation with two additional waypoints, the automation
chose paths with additional waypoints the participants were not
expecting. One participant also indicated that the placement of
the waypoints feels unnatural, thus he would like to influence
the position of the curved areas.

Drawing with the provided constraints (polygon and circle)
was rated fairly good and intuitive by most participants,
although one of them described working with the constraints
as cumbersome and that it feels like a hack to trick the
automation. A problem raised with the constraints is the
influence of the constraints on other traffic streams, thus
placement of constraints needed to be considered carefully.
One of the participants thought the baseline constraints around
the perturbation should be drawn automatically. Participants
also indicated that they felt they could not place the constraints
with certainty, due to the possible changeability of the airspace
and since too little information about the traffic was available.

The participants said that they were generally able to in-
fluence the automation, but with some surprises. Apart from
the bug discussed earlier, also when the automation started to
reroute trajectories with three additional waypoints, they felt
out of control. One participant indicated that he wanted on-
line control of the airspace and thus the possibility to adjust
the constraints when the scenario was started. One partic-
ipant indicated that influencing the automation felt useless.
He indicated that the reason for this is because he had the
same amount of information available as the automation about
the airspace, and thus could not make better decisions than
the automation. If he would, for example, have information
available of traffic densities in the airways, he would be able
to make better decisions as he then would be able to reason
upon how the traffic scenario would unfold itself in the future.
Something the automation cannot do, as the automation only
reroutes trajectories once an aircraft enters the airspace.

In general, multiple participants indicated that providing
more information regarding traffic densities in certain airways
would be beneficial. Another idea was to create stream-specific
constraints to prevent unwanted influence of constraints on
other airways. One participant did not like the complete
blocking of the algorithm with the constraints and suggested
to penalize certain routes (e.g., left is ”mud”, high cost, and
right is asphalt, low cost), as such this could avoid introducing
artificially longer paths in an unwanted direction. A suggestion
regarding the experiment is to evaluate more realistic air traffic
scenarios, which are known to the controller and thus have
more information regarding the airspace.

VII. DISCUSSION

The goal of this research was to design a conceptual eco-
logical interface for flow-based perturbation management by
means of influencing a trajectory planning algorithm. Looking
at individual planned trajectories, the selected node-based
trajectory flexibility metric algorithm by Idris performed well
in this research, the algorithm was in principle predictable and
consistent.

An improvement to the algorithm can be made as to where
the waypoints will be placed in the longitudinal direction. In
the current implementation it was chosen to discretize this
linearly, thus with one waypoint at one third of the RTA
and one at two thirds. This led to sub-optimal trajectories,
which was clearly seen when perturbations were placed close
to the entering or exit waypoint. To improve this, the human
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controller could be given control over as to where to place
the curved areas in which the waypoints will be placed.
Additionally, the algorithm should be improved by taking into
account the transient effect of aircraft reaching a new state.
As was shown losses of separation would occur due to the
assumption of instantaneous state changes.

The intentions of the algorithm were made visible to the
human controller by means of the airway solution space. The
evaluation revealed that the participants were generally positive
in the support it provided, it gave them a good image of
how traffic streams would flow. However, in cases were the
algorithm could not find a solution with only the two additional
waypoints as set in the airway solution space, and thus needed
to increase to three, or more, additional waypoints, use of the
airway solution space was lost. In those cases the algorithm
planned trajectories participants were not expecting, which
lowered their situation awareness. Improvements should be
made in what to do in those cases. One could opt to ask the
controller in those cases to plan the trajectory manually with
the TSR. Another option is to constrain the algorithm even
more, as analysis of the strategies showed that participants only
placed the constraints so that the aircraft would be planned one
way around. Drawing a small constraint is enough to force
the algorithm to one side with only two additional waypoints,
but as soon this increases to three waypoints the algorithm
can find a solution around the drawn constraint. Therefore
a logical solution seems to constrain the algorithm, stream-
specifically, by allowing the controller to adjust the airway
solution space. For example, by making one side of the airway
solution space smaller by dragging this side to the center line of
the airway. This might also solve problems where constraints
were not drawn accurately enough and thus still would make
choices the controller does not expect. Also, it could reduce
the sensitivity of the control strategies as the human controller
is more constrained regarding control actions.

Some participants indicated that placing the constraints felt
contrived and that their actions would not lead to a better
solution than as when it would be fully left to the automation.
To overcome this, multiple actions should be taken. One is
to provide the human controller with additional information
of the airspace, such as traffic densities in certain airways.
Another option would be to allow the controller to ’scroll’ back
and forth through time, to see how traffic streams would flow,
before the perturbation. Next to this, allowing the controllers to
adjust their set constraints, dependent on the results they have
been shown, would increase acceptation of the automation and
interface.

The interface was evaluated for a structured airspace with
eight different traffic streams. However, the way airspaces will
be structured in the future is still unclear. It is expected that
effectiveness of the interface depends on the airspace, which
was also seen between the three perturbation locations in the
same airspace. Although the data disapproved hypothesis H.I,
it is still expected that with more training and knowledge of
the algorithm the influence a controller will and can exert on
the algorithm is higher with PL2 as compared to PL0.

The data showed that the influence of a human controller
predominantly lowered the robustness, when considering the

case in which the perturbation was not taken into the robust-
ness calculation. However, with the perturbation taken into
account slightly better results were acquired. This was ex-
pected, as participants were able to draw a buffer zone around
the perturbation, which lead to increments in robustness as
compared to the automation baseline. The efficiency decreased
in nearly all cases, due to an increase in added track miles and
knock-on reroutes. Due to the fact that the robustness was not
increased, when not taking the perturbation in the robustness
calculation, hypothesis H.II is not fully accepted. Possibly
with more training and knowledge of the airspace better
results can be achieved. However, it should be reiterated that
the automation worked sub-optimal, with only two additional
waypoints and utilizing the shortest path cost function. Perhaps
with more waypoints and the robustness or adaptability cost
function better results can be achieved, although care should be
taken of keeping the automation understandable to the human
controller. In addition, if the number of waypoints are set too
high and the human needs to take over, he or she will have a
difficult time adjusting trajectories with many waypoints.

Hypothesis H.III can be accepted, as no significant effect
was found on the situation awareness and trust in the systems
of the participants between the three different perturbation
locations. Overall the participants considered their situation
awareness during the evaluation as good. Also, most of the
time they did trust the system. One of the reasons to allow the
participants to influence the trajectory planning algorithm, was
that in this manner they would be to prevent chaos and black-
box behaviour generated by the automation. As the situation
awareness questionnaire suggests, this indeed seems to be
prevented, however, more research is required in this specific
area as there was no data to compare the results to. Also
included in this future research should be whether other ATCos
will be able to take over the airspace when this is required,
for example at the end of the work shift of an ATCo.

In this research, the participants were only allowed to
structure the airspace before aircraft entering the airspace.
Possibly, with the improvements stated above, the interface can
be used while aircraft are entering the airspace. As the results
of the TSR baseline showed, which did have the possibility
to adjust aircraft while in the airspace, a considerable higher
sector robustness can be reached. However, it is expected in
this case that with this interface the human controllers will
attend to each aircraft individually and thus essentially shifting
back to the manage aircraft missions level. However, it is
recommended to further investigate this in future research.
Special focus in this research should be on how participants
react when a perturbation occurs, while they are monitoring
the airspace.

Overall, it is questioned whether this type of flow-based
control is the best solution to the problem of increased
air traffic. Although the goal was influencing the algorithm
and making its choices clear to the controller was certainly
achieved, there are still quite some complications to consider
it as an effective tool for flow-based perturbation management.
A possible solution is to use the interface in combination with
the TSR, where this designed interface is used to reroute all
trajectories beforehand and the TSR to improve the specific
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trajectories which lead to a lower sector robustness.
Future research should implement the improvements dis-

cussed, investigate how the tool can be made effective for mul-
tiple scenarios, research situation awareness with and without
being able to influence the automation and experiment how
controllers react when automation failures are induced while
monitoring the airspace.

VIII. CONCLUSION

This paper presented the conceptual design of an ecological
interface for 4D flow-based perturbation management in air
traffic control. A first evaluation showed that the interface
supported the controller’s understanding and situation aware-
ness of the airspace, and allowed for influencing the trajectory
planning algorithm. In the evaluation the perturbation location
and traffic density were varied and the results were compared
in terms of robustness and efficiency. Results showed that in
most cases influence of the human does not have a positive
result on the outcome in terms of robustness and efficiency.
Control strategies applied to the different perturbation locations
were not as expected, but it suggested that this happened due
to a lack of training and knowledge. To improve the interface
multiple ideas have been suggested, but the effectiveness
of the interface for flow-based perturbation management is
questioned. A possible solution would be to use the interface
in combination with the TSR, where this interface acts as a
first planning tool, followed up by optimizing low robustness
trajectories with the TSR.
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Literature Study

Note: this part has already been examinedunder the courseAE4020
This chapter discusses the literature study performed for this thesis work. Section A.1 will elaborate on

the Ecological Interface Design (EID) framework. This research continues on the development of the Travel
Space Representation (TSR), thus in Section A.2 the design of the TSR will be discussed and looked into the
results of the interface. The next tool that will be looked into is a taxonomy to categorize the interface in
terms of automation, this will be discussed in Section A.3. For the interfaces an automated path or trajectory
planning algorithm is needed. The general path planning algorithms will be discussed in Section A.4 and
algorithms specifically designed for Air Traffic Management (ATM) are discussed in Section A.5. Section A.6
discusses why the trajectory algorithm by Idris was chosen. In Section A.7 elaborates on the workings of the
trajectory planning algorithm and how it is implemented in the TSR software.

A.1. Ecological Interface Design
In this section the interface design framework EID theory will be summarized. EID was first introduced by
Kim J. Vicente and Jens Rasmussen to increase safety in process control work domains [1]. To increase safety
the goal of EID is to make constraints and relationships visible to the operator in the complex cognitive work
domain, such that the operator can limit him or her self to higher order problem solving and knowledge-
based decision making. This deeper understanding will lead to a critical advantage, namely that it greatly
benefits in the acceptation of automation [2, 3]. This is because it is easier for the operator to observe and
understand the automated agents choices.

The EID framework is based on the concepts of Abstraction Hierarchy (AH) and Skills, Rules & Knowl-
edge (SRK) taxonomy, both adapted from Cognitive Systems Engineering (CSE) [4, 5]. In the following two
subsections these concepts will be explained.

A.1.1. Abstraction Hierarchy
The AH is used to perform a Work Domain Analysis (WDA) to describe the complex work domain. The AH, as
proposed by Jens Rasmussen, consists of five different levels of abstraction, where the top levels describe an
higher order of abstraction [4]. The system is described at each of these levels in the AH using how and why
relationships. Moving from the top of the AH downwards answers how the elements in the system are accom-
plished, whereas moving upwards answers why the elements are in the system. The relations are shown by
using means-ends links [6].

The five levels of abstraction used in the AH are defined as follows:

• Functional purpose System objectives, a desired state of the environment.

• Abstract function High level functions, e.g. mass transport, storage, energy addition physics of the
world.
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• Generalised function System design choices, processes, principles.

• Physical function Functional processes of components.

• Physical form Appearance, anatomy, shape, material, location, etc.

A second dimension can be added to the AH, which leads to the Abstraction-Decomposition Space [7,
8]. The second dimension shows the whole-part decomposition of the system, thus the result is a two-
dimensional matrix with the levels of abstraction at the vertical axis and the part-whole decomposition along
the horizontal axis.

A.1.2. Skills, Rules & Knowledge Taxonomy
The SRK taxonomy was developed by Jens Rasmussen in 1983 to help interface designers combine human
aspects of cognition and information requirements for a system [4]. The taxonomy is defined by three distin-
guishing levels of human behaviour that emerge when looking at representing constraints in a deterministic
environment or system. The levels that emerge are skill-, rule- and knowledge-based behaviour of which
each level represents a different level of cognitive control [6]. Each level of behaviour is related to a manner
in which information is interpreted, which are Signals, Signs and Symbols, respectively. The levels and their
relationship are shown in Figure A.1.

Identification Decision	of	
task Planning

Stored	Rules	
for	Tasks

Association	
State	/	TaskRecognition

Feature	Formation Automated	Sensori-Motor	
Patterns

Knowledge-Based	
Behaviour

Rule-Based	
Behaviour

Skill-Based	
Behaviour

Goals

Symbols

Signs

(Signs)

Sensory	Input Signals Actions

Figure A.1: Diagram that shows the three levels of behaviour in the SRK taxonomy [4].

Skill-based behaviour
Skill-based behaviour (SBB) is based on sensory-motor performance, which once started, requires no con-
scious control by the human. SBB takes place as smooth and highly integrated patterns of behaviour. For
control at the SBB level the information is perceived as time-space signals, which are continuous quantita-
tive indicators of the time-space behaviour of the environment processed by the human.

Rule-based behaviour
At the level of Rule-based behaviour (RBB) the behaviour is typically controlled by execution of a stored rule.
The rule may have been communicated by others, self-developed or prepared for the occasion. Based on past
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experiences, the most appropriated rule is selected. RBB information is perceived as signs, which serves to
activate predetermined actions and cannot be processed directly.

Knowledge-based behaviour
During situations that are unfamiliar to the user and thus has no rules for control available, the control is
moved to the higher level Knowledge-based behaviour (KBB). At this level plans for control are developed
and selected and reflected to the goal. This form of control is slow, complex and error-prone. KBB is trigged
by symbols, which can be formally processed and represents other information, variables, relations and prop-
erties.

A.2. Travel Space Representation
A promising ecological concept for 4D trajectory management is the Travel Space Representation (TSR), de-
veloped by the Joint ATM Cognition through Shared Representation (C-SHARE) project. The travel space
forms the basis for shared human-automation cognition in the C-SHARE Joint Cognitive System (JCS). The
first prototype of the TSR was developed by Van Paassen et al. as a constraint-based decision support tool
for short-term trajectory based ATC [9]. The prototype was further developed and evaluated as an Air Traffic
Control (ATC) tool by Klomp et al.[10–12]

Since the designers of the TSR followed the EID framework a WDA was performed by means of construct-
ing of an AH. The AH for the TSR at a individual flight control level is found in Figure A.2. The shaded
rectangular boxes indicate that they are directly visible in the plan view of the air traffic controller’s interface,
as shown in Figure A.3(a). The non-shaded rectangular boxes are made visible by the travel space once an
aircraft is selected, which can be seen in Figure A.3(b).
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Figure A.2: Abstraction Hierarchy of the TSR .

By means of the principles of EID the TSR is designed such that is visualizes the boundaries of safe control,
by visualizing a set of constraints for safe and feasible control actions for a selected aircraft [9]. The general
shape of the TSR is an ellipse and is determined by the aircraft’s performance envelope, such as its speed and
bank angle limits, while still realizing its Required Time of Arrival (RTA) at the next waypoint [12]. Each ellipse
within the TSR corresponds to a certain velocity of the aircraft, which realizes the RTA. On top of the shape the
no-go areas are mapped, which result from additional constraints such as other traffic and restricted areas.
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Figure A.3 shows the basic composition of the travel space representation in an hypothetical traffic sce-
nario. In the scenario it is shown how a conflict resolution can be solved manually in three subsequent steps.
The TSR can be directly manipulated with a mouse input device. In this situation the selected aircraft (Aobs )
needs to be rerouted around the Restricted Airspace (RA) and intruding aircraft (Ai nt ), while still maintaining
the RTA at the waypoint FIX. This initial situation is shown in Figure A.3(a). By clicking on the aircraft (Aobs )
the TSR is shown as illustrated in A.3(b). The TSR shows a safe and restricted field of travel due to the intrud-
ing aircraft (Ai nt ). With the mouse cursor a waypoint WP is placed within the safe field of travel. By hitting
enter on the keyboard the select flight path is selected and send to the aircraft. The modified flight path is
shown in Figure A.3(c) and visualizes the new TSR for both segments. Please note that waypoints could be
placed outside the TSR, however these points will likely lead to a conflict situation or not reaching the RTA.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS

Fig. 1. TSR support for the task of manual trajectory revision of an observed aircraft by ATC. (a) En-route traffic scenario with two conflicting aircraft and a
restricted airspace. (b) TSR and placement of an intermediate waypoint. (c) Resulting trajectory for the observed aircraft.

system is often not immediately salient and depends on many
interrelated factors (e.g., other traffic, congested areas, and pre-
ferred routing).

Experienced air traffic controllers (ATCo) have been fre-
quently shown to perform risk aversive control strategies such
as formulating backup plans, or by maintaining additional sepa-
ration buffers between aircraft [15]. Such strategies are focused
on mitigating the risk for safety-critical events to arise and are
learned both by formal training and through work experience.
Therefore, given that ecological representations allow for a wide
variety of control strategies, the level of training, expertise, and
experience of the controller is expected to be an important factor
in how such an interface is used.

In this paper, we investigate how three different user groups
with differing levels of expertise (i.e., novice, skilled, and ex-
pert groups) use a constraint-based interface that aims to support
them in a future ATC task. The decision support tool used in
the human-in-the-loop experiment—the previously developed
Travel Space Representation (TSR)—is primarily designed for
local trajectory revisions of individual aircraft [16]. As such,
the goal of this paper is to empirically investigate how differ-
ent expertise groups implicitly take global system goals into
account when they are working with a constraint-based inter-
face designed to resolve local system perturbations. To capture,
quantify, and compare the robustness of control actions and
between the user groups, this paper introduces a metric that
reflects higher order and long-term system stability goals in a
centralized control setting. Additionally, it is investigated how
control strategies shift under the influence of varying levels of
perturbation (i.e., from few local to many airspace-wide pertur-
bations) and varying initial traffic structures (i.e., from initially
structured corridors to unstructured traffic).

The structure of this paper is as follows. First, the practical use
of the TSR by human controllers and various classifications of
control strategies is discussed. This is followed by an analysis of
the robustness metric that has been developed for TBOs. Next,
the experimental design is presented, followed by the results,
discussion, and conclusions.

II. TRAVEL SPACE REPRESENTATION

Inspired by the principles of ecological interface design [18],
[19], the TSR is a constraint-based decision support tool that
visualizes the boundaries of safe control for the task of short-
term trajectory-based ATC [16]. Rather than providing one or
more discrete optimal trajectory advisories, the TSR visualizes
a set of constraints that bound safe and feasible control actions
to reroute a selected aircraft.

The general shape of the TSR is determined by the internal
aircraft performance constraints. More specifically, the TSR rep-
resents the space in which the selected aircraft can be rerouted
without exceeding its speed envelope or bank angle limits, but
can still realize its planned time at the next waypoint. The ad-
ditional constraints resulting from external factors (e.g., other
traffic and restricted areas) are mapped on top of this shape in
the form of no-go areas. Only the horizontal plane has been
supported in this study.

The tool focuses on supporting the controller with the task of
resolving local perturbations within a single sector that has been
deconflicted a priori. That is, all aircraft are assumed to follow
a predefined 4-D path that is initially conflict free. However, as
a result of unforeseen events such as delays in other sectors, or
the presence of adverse weather, the controller will be required
to realign them in order to ensure safe operations. More details
on the design of the TSR can be found in previous work [16];
in this paper, the user interaction with the TSR is central.

A. Practical Use of the Travel Space Representation

The TSR is a direct manipulation interface that allows the
ATCo to select and modify the trajectory of an aircraft by means
of click and drag operations with a mouse input device. To
illustrate how the TSR can support the controller in a manual
trajectory revision task, Fig. 1 shows three subsequent images
of its use in a hypothetical traffic scenario. The task considered
here consists of deconflicting a selected aircraft (Aobs), and
rerouting it around a restricted airspace (RA) while meeting the
planned sector exit time at waypoint FIX . The initial situation

Figure A.3: TSR in an hypothethical traffic scenario. (a) Traffic scenario with two conflicting aircraft and a restricted airspace. (b) TSR
and placement of an intermediate waypoint. (c) Resulting trajectory for the observed aircraft [12].

The TSR has been evaluated in two experiments by Klomp et al. [11, 12]. In the first experiment the
overall objective was to see whether the TSR would support the task of en-route ATM in various traffic and
perturbation scenarios. The result of this was that the tool never suffered from a breakdown and only four
safety-critical events occurred out of 2232 total flights. Next to this the subjects accepted the tool and found it
supportive. The workload did increase though, but was still experienced manageable, considering the novel
system with relatively advanced settings [11].

In the second experiment the focus was on how effective the interface was to support the preservation
of airspace robustness. Three groups of participants with various levels of operational ATC experience. The
results showed that the level of expertise of the participants mainly influenced the robustness of the airspace.
Which indicated that the interface would be most effective for experienced domain experts, because with
the interface they can make smarter, knowledge-based, decisions with regard to the trade-off between safety.
Although the control with this interface did not negatively influence the robustness, it might not be desirable
in more dense traffic situations or situations with larger perturbations. In this situation an interface with a
higher level of flow-based control might be more efficient [12].

Previous work by Pinto et al. was also focussed on creating a flow-based interface for 4D trajectory man-
agement in ATM [13]. Flow-based in this research means that multiple aircraft are controlled at the same
time by the air traffic controller. By selecting multiple aircraft a joint TSR would show the possible field of safe
travel for all selected aircraft. A human-in-the-loop experiment with this interface was performed by Nagaraj
et al.[14] Results from the experiment suggested that multiple aircraft control was beneficial for maintaining
airspace structure and robustness at low conflict angles. However, at higher conflict angles using multiple
aircraft control would lead to head-on trajectories because the aircraft merge to the same selected waypoint,
something air traffic controllers try to avoid.
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A.3. Control Sophistication
In the past many Level of Automation (LoA) taxonomies have been thought off to rank systems on a scale of
automation. Examples of such taxonomies are the levels of automation for ATC by Charles E. Billings [15] ,
the 10 levels by Wickens et al. [16] or the stages and levels by Parasuraman et al. [17] The problem with these
taxonomies are however that they have been thought of many years ago and the discrete taxonomies do not
necessarily have a place in these discrete taxonomies to place our systems.

Another interesting tool is the use of levels of control sophistication, as introduced by Amelink [18]. It is a
way of showing at what level the system is controlling and what needs to automated to reach that level.

The levels of control sophistication can be used as an extension to the work domain analysis. Instead
of adding the whole-part decomposition of a system to the AH as a second dimension, the levels of control
sophistication are added as a second dimension. This is called the Abstraction-Sophistication Analysis (ASA)
[18, 19]. The result of an ASA is a two dimensional matrix where the description at each level of sophistication
all the levels below that level but not the whole system.

Each level of sophistication in the ASA is characterized by the following: [18]

• Each level of sophistication is a layer of control based on the levels below, achieving more sophisticated
control of the system.

• Each level of sophistication holds functions and concepts for control specific to that level.

• Lower levels describe the inner control loops and higher levels describe the outer control loops of the
total system.

• At each level of sophistication five levels of abstraction are used to find the means–ends structure of
the control problem described at that level of sophistication. These levels correspond to the levels
Rasmussen found for process control.

A setup of levels of sophistication for ATC was introduced by Borst et al. (in press) and is depicted in Figure
A.4. The outer levels imply a more strategic form of control, whereas the inner nested loops are more tactical
forms of control. For this research the aim is to let the Air Traffic Controller (ATCo) control the highest level of
sophistication, the flow management level. All levels below it need to be automated. In the current TSR the
ATCo is controlling in the aircraft missions level, with the levels below it again automated. It is also possible
to shift from level of control sophistication during usage of the system. For example, when the automation
fails at the flow management level, it is possible to shift one level lower to control aircraft on an individual
mission level.
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Figure A.4: Levels of control sophistication in the ATC work domain. [Van Paassen et al. 2017 (in press)]
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A.4. Path Planning Algorithms
Path planning, or trajectory planning when associated with time [20], is the study of finding a sequence of
actions that connect an initial state to a desired goal state. In path planning the location the agent has are
the states and the transition between states are the actions the agent can take, each with an associated cost.
An path is optimal when it brings the agent from the initial state to the goal state with minimal cost. A path
planning algorithm is considered complete when it always finds a path between the two states within finite
time and notifies the user when no possible path is available [21].

Over the years many path planning algorithms have been thought off, which can be categorized into four
main categories: Sampling Based Algorithms, Node Based Optimal Algorithms, Mathematic Model Based Al-
gorithms, Bio-inspired Algorithms [20]. A fifth category is a fusion of combination of algorithms, but is not
further considered in this research. An overview of the path planning taxonomy is found in Figure A.5.

The rest of this section is structured such that each category, including its most important algorithms, will
be discussed.

Path Planning 
Algorithms

Sampling Based 
Algorithms

RRT, PRM

Node Based 
Optimal 

Algorithms

Dijkstra, A*, D*

Mathematical 
Model Based 

Algorithms

Linear Algorithms Optimal Control

Bioinspired 
Algorithms

Neural Network Evolutionary 
Algorithms

GA, ACO

Figure A.5: Path planning algorithm taxonomy (Adapted from [22]).

A.4.1. Sampling Based Algorithms
Sampling based algorithms are algorithms that have a basis in probability, in which they connect points sam-
pled randomly through the space. The sampling based algorithms are not considered complete, because of
the randomness, but they provide probabilistic completeness guarantees. This is because the probability that
the algorithm fails to provide a solution (if one exists) goes to zero as the number of samples approaches in-
finity [23].

The two most important sampling based path finding algorithms are the Probabilistic Roadmap (PRM)
[24] and the Rapidly-exploring Random Tree (RRT) [25]. Both algorithms are based on the sampling of ran-
dom points through the state space and connecting these to find an optimal path. However, the ways these
two algorithms construct the graph to connect the points are different. For both methods means that each
time the algorithm is performed on the same problem a different solution is found.

Probabilistic Roadmap
The PRM algorithm is a multi-query method, that consists out of two phases. In the first phase, the construc-
tion phase, a graph (roadmap) is constructed which represents a set of obstacle avoiding trajectories. In the
second phase, the query phase, the optimal path from the initial state to the final state is computed through
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the graph. An example of how the PRM works, with a simple graph construction algorithm, is found in Figure
A.6.

Figure A.6: Three steps in the PRM algorithm, from constructing a roadmap to finding the optimal path. The triangle indicates the
starting point and the star the goal.

Rapidly-exploring Random Trees
The RRT algorithm rapidly searches the space by incrementally constructing a tree from the starting state,
using random samples from the space. At each step a new node is sampled, and if a path can be drawn from
the sampled node to the nearest node, a new node will be added. In Figure A.7 a simplified example of how
the RRT algorithm works is found.

Figure A.7: Construction of a simplified RRT. The triangle indicates the starting point and the star the goal.

A.4.2. Node Based Optimal Algorithms
Node based optimal algorithms explore the space in a discretized manner. These kind of algorithms explore a
set of nodes in the space and find the optimal path by calculating the cost while running through these placed
nodes. The most well-known shortest path finding algorithm is Dijkstra’s algorithm, invented by Edsger W.
Dijkstra [26]. Based on Dijkstra’s algorithm many other variants have been constructed, such as A*[27, 28]
and D*[29].

Each of the node based algorithms is heavily influenced by it settings. An increase in the step size or nodes
has an influence on the computation time and the optimality of the solution. In contrast to sampling based
algorithms, node based algorithms provide the same solution each time the algorithm is run.

Dijkstra’s Algorithm
Dijkstra’s algorithm is an exploring algorithm that expands from the starting node outwards [26]. The al-
gorithm depends on dynamic programming and looks at the local path cost to each following node. The
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algorithm has no information of where to go and will thus explore everything in the space, until the goal has
been reached with creating new nodes and paths. At each node the shortest local path to it is determined,
so once the goal is reached the shortest path from destination to the goal is known. The Dijkstra’s algorithm
will always find the shortest path due to the fact that the whole space is being explored. However, a drawback
of this is that the algorithm is slow due to the large amount of calculations that need to be performed. An
qualitative example of the Dijkstra’s algorithm at work is shown in Figure A.8.

Figure A.8: Three consecutive steps in the Dijkstra algorithm. The triangle indicates the starting point and the star the goal.

A*
The A* algorithm is an extension of the work of Dijkstra’s algorithm, with the goal of achieving a higher per-
formance speed performance by means of heuristics [27, 28]. The algorithm uses heuristics to guide the
algorithm towards the goal. An example of how the A* algorithm works is found in Figure A.9. As can be seen
from the figure, compared to the Dijkstra’s algorithm in Figure A.8 it needs much less nodes to find the short-
est path and thus will run faster and more efficient than the Dijkstra algorithm.

Figure A.9: Three consecutive steps in the A* algorithm. The triangle indicates the starting point and the star the goal.

D*
The D* algorithm is a variant based on the A* algorithm. Its name is derived from Dynamic A* [29]. The
algorithm works just as the A* star algorithm, except that it has a better performance when something in the
space changes, such as dynamic obstacles changing in real time. Whereas A* will need to do all calculations
again, D* has implemented an efficient way to enable searching in dynamic environments.

A.4.3. Mathematical Model Based Algorithms
Mathematical model based algorithms are algorithms that model the environment and the system. The en-
vironment is modelled as kinematic constraints and the system as dynamic constraints. To find an optimal
solution to the path planning problem, these constraints are added to the cost function as inequalities or
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equations. The problem with these algorithms is that they have a complex formulation, because the whole
environment and system needs to be modelled, they tend to be computational expensive. The mathemati-
cal model based algorithms can be mainly categorized in to two categories: Linear Algorithms and Optimal
Control [22].

Linear Algorithms
Linear algorithms are used to model the complete environment, including kinematic and dynamic con-
straints. These linear algorithms are able to handle the control disturbances and model uncertainty. An
example of a linear algorithm, implemented with Mixed-Integer Linear Programming (MILP) is found in Ref-
erence [30].

Optimal Control
Optimal control can be seen as an extension to the linear algorithms. In optimal control it is a lot easier
to model the uncertainty as linear chance constraints, because of a infinite number of variable conditions.
Optimal control can be used to path planning, by posing the problem in the optimal control form. In this
form the state and control oriented path can by found on the basis of a set of differential equations [31]. An
variant of optimal control has been implemented in Reference [32].

A.4.4. Bio-inspired Algorithms
Bio-inspired algorithms are based on the idea of mimicking nature to find an optimal solution. These algo-
rithms have the ability to solve problems with many variables and non-linearity, something which his hard
to do with mathematical model based algorithms. Within the field of bio-inspired algorithms there are two
categories: Evolutionary Algorithms and Neural Networks.

Evolutionary Algorithms
Evolutionary algorithms are based, as the name suggests, on the evolution of a species. Evolutionary algo-
rithms are based on stochastic processes. In general they start with selecting randomly feasible solutions as
a first generation. From this first generation the fitness of each solution is determined by taking into account
the constraints. This leads to the next generation, after which mutation and crossover is applied. This pro-
cess repeats it self until a solution is found. The two most well known evolutionary algorithms are the Genetic
Algorithm [33] and the Ant Colony Optimization Algorithm [34].

Neural Networks
Neural Networks is used as an algorithm to mimic the way that a human brain solves problems. By using a
large collection of neural units the algorithm can be self-learning and trained to find the optimal solution.
Glasius et al. first introduced neural networks to the path planning and obstacle avoidance problem. [35]

A.5. Trajectory Planning Algorithms in ATM
In Section A.4 the main categories and most important path planning were discussed. These discussed al-
gorithms mainly form the basis of all path planning variants that have been designed throughout the years.
In this section the focus will shift to specific trajectory planning algorithms that can be used for ATM. Note
that the terminology changed to trajectory planning instead of path planning algorithms, this is because in
4D air traffic management the time factor is key and thus should be called trajectory planning according to
the definition in Reference [20].

For the design of a shared human-automation representation for flow-based perturbation management
an algorithm is necessary that a human can understand and which choices for certain trajectories can be
explained, as discussed in Section A.1. From this it is quite clear that an algorithm should be chosen which
is based on Node Based Optimal Algorithms, since the other algorithms are either based on stochastic prin-
ciples or are simply too complex to grasp by a human. Node based algorithms can be programmed such that
the human will be able to understand its choices. Another reasons to pick an node based optimal algorithm
is that the computational power necessary can be kept relatively low.

An interesting algorithm however, which is not a node based algorithm but an linear mathematical model
based algorithm, is Supervision of Route Optimization (SUPEROPT) [36, 37]. This algorithm has been devel-
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oped as part of SESAR workpackage E and uses the Mixed-Integer Linear Programming approach. SUPEROPT
allows the ATCo to influence the trajectory planning algorithm by defining the sense of the conflict resolution
or by specifying which aircraft passes ahead of another.

Another approach has been developed by Idris et al. and is known as the Trajectory Flexibility Metric [38–
40]. With this metric Idris aims to preserve the airspace flexibility by trajectory planning. The idea behind the
concept is that by implementing trajectory flexibility on individual aircraft, the traffic complexity of the whole
airspace can be maintained on acceptable levels. The approach is based on a node based optimal algorithm
and discretises the space in position and time to account for dynamic objects. The algorithm is constructed
such that it is not only possible to optimize for shortest path, but also for the metrics robustness and adapt-
ability, which are defined as follows:

"Robustness is defined as the ability of the aircraft to keep its planned trajectory unchanged in
response to the occurrence of disturbances, for example, no matter which trajectory or conflict
instances materialize."[39]

"Adaptability is defined as the ability of the aircraft to change its planned trajectory in response to
the occurrence of a disturbance that renders the current planned trajectory infeasible."[39]

Using robustness and adaptability should lead to a more human-like way of controlling the airspace, as pro-
fessional ATCos also apply them in their control strategies.

A.6. Discussion Best Trajectory Planning Algorithm
As could be seen in Sections A.4 and A.5, there are many forms of path planning algorithms, which in theory
could all be used for this research. The goal is this research is however to design an interface in which the con-
troller can easily understand the algorithm’s choices and influence the choices of the algorithm, as explained
in Section A.1. Also, as stated by Billings, the automation needs to be predictable and thus be consistent in
the solution it provides [15].

Because of this predictability constraint the sampling based algorithms can directly be considered as in-
feasible. Sampling based algorithms, as the name suggests, are highly random and provide a different solu-
tion each time. Also bio-inspired algorithms can be considered as infeasible, due to their stochastic proper-
ties.

Mathematical model based algorithms can be considered infeasible for this research due to their com-
plexity and computational expense. This leaves us with node based algorithms. Each of the base algorithms
discussed in Subsection A.4.2 could be feasible. However, each of these algorithms needs quite some modifi-
cation to fit into the ATM environment. For example, time and moving objects need to be incorporated into
the algorithm. For the algorithms in Section A.5 this is already the case. From the two algorithms considered
in this section, the Trajectory Flexibility Metric by Idris et al. was considered the best for this research for the
following reasons:

• The algorithm is transparent in its workings and has the ability to make the same kind of control choices
as a human controller.

• The algorithm’s settings are easily controllable (such as number of waypoints and multi-dimensional
cost function) and adjustable to the aircraft performance envelopes.

• Built-in implementation of robustness and adaptability.

• Overlap with the TSR in its constraints.

A.7. Implementation Trajectory Flexiblity Metric Idris
This section will elaborate on the how the trajectory flexibility metric exactly works and how it is implemented
in the TSR software. The algorithm is a node based optimal algorithm and works in 2D space, with the addi-
tion of time. The algorithm’s main workings can be divided into four steps:

1. Define metric grid, based on grid strategy, number of segments, state change strategy and obstacle list.
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2. Perform forward propagation to determine all reachable cells.

3. Perform backward propagation to determine all feasible cells and branches.

4. Find best trajectory based on the cost function.

If no solution is found in step 4, the process starts again but with an increase in the number of segments
by one. In the next four subsections each step will be explained in detail.

A.7.1. Define Metric Grid
In the first step the metric is defined, which consists of four different parts. The first part is the grid strategy,
in which is defined how the space is discretized in 2D. An illustration of this is found in Figure A.10, where the
start point is the current position of the aircraft and the end point is where the aircraft leaves the airspace.
For this illustration a linear grid space of 11 by 11 cells is used, for the implementation however a much finer
grid of 101 by 101 cells is used. Next to this it would also be possible to implement a non-linear grid, to get
for example a finer grid in the middle of the grid and more coarse on the outer edges. This is however left for
further research.

End

Start

y

x

Figure A.10: Grid strategy: discretize the space in 2D.

In the second part the 2D grid needs to be converted to 3D, where the third dimension is time. This is
done by discretizing the time from T = 0 to T = RT A in to a number of segments, an illustration is found in
Figure A.11. As can be seen the time is discretized in to equal time steps ε, but this could also be changed to
a non-linear variant. The points in between segments can be considered as the waypoints the aircraft will fly
through. By discretizing the time in this manner, it must be assumed that the speed and heading changes at
the waypoints are instantaneous and that the speed and heading will stay constant in between waypoints.

The third part of the definition of the metric grid is the choice of a state change strategy. The state change
strategy is based on a heading and a speed strategy. In the heading strategy the minimum heading angleΨmi n

and maximum heading angle Ψmax of the aircraft are defined. To complete the strategy a choice need to be
made of in how large steps the heading can be changed, ∆Ψ. The speed strategy is build up in the same way,
with a minimum Vmi n and a maximum speed Vmax and the possible changes in speed ∆V .

Finally, the fourth part is to add the obstacles in the airspace to the metric grid. Obstacles can be station-
ary, such as no-fly zones or weather cells, or dynamic, such as other aircraft. Stationary obstacles are blocked
by marking them in the metric grid on the same cells in every time step. Dynamic obstacles move through
time, and therefore the blocked cells differ in each time step. An example of a dynamic obstacle moving
through the grids is found in Figure A.13.
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T ime step "

T = 0 T = RTA
t

Figure A.11: Convert grid space to 3D to include the time variable.

Vmax

 min  max

� 

Vmin

�V

Start

Figure A.12: State change strategy

A.7.2. Forward Propagation
With the metric grid fully defined, it is now possible to determine all reachable cells, i.e. all cells which the
aircraft can reach, taking into account the heading and speed constraints. From the center of the start cell all
reachable branches to the next 2D grid are drawn. From the center of the cells reached in the second 2D grid
again all reachable branches are drawn. This process continues until the last 2D grid. Once this process is
complete, a set of all reachable trajectories from the starting cell is known. An example of this process can be
found in Figure A.14.

A.7.3. Backward Propagation
From the set with all reachable trajectories it is now necessary to determine all feasible trajectories. A trajec-
tory is considered feasible when it reaches the end cell and does not cross any obstacles. To determine the
feasible trajectories a backward propagation is performed, starting from the end cell. From here all branches
to the next 2D grid, that do not lead to an object, are marked as feasible. From the center of these feasible cells
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T ime step "

T = 0 T = RTA
t

Figure A.13: Dynamic obstacle moving through the 3D grid.

T ime step "

T = 0 T = RTA
t

Figure A.14: Forward propagation to determine all reachable cells.

the process is again repeated until the start cell is met. The result is a complete set of feasible trajectories.

A.7.4. Find Optimal Trajectory
From the set of feasible trajectories the most optimal trajectory now needs to be selected. For this research
four different cost functions have been defined, based on the work of Idris et al [40]. These cost functions are
used to optimize for shortest path, adaptability, robustness, or a combination of the three. The cost functions
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are defined as follows:

Shor test path = SP = Mi ni mi ze(Di st ance) (A.1)

Ad apt abi l i t y = ADP = M axi mi ze(Reachabl e tr a j ector i es) (A.2)

Robustness = RBT = M axi mi ze(
Feasi ble tr a j ector i es

Reachabl e tr a j ector i es
) (A.3)

Combi nati on = M axi mi ze(−CSP ∗SP +C ADP ∗ ADP +CRBT ∗RBT ) (A.4)

Where in Equation A.4 CSP , C ADP & CRBT are weights that trade off shortest path, adaptability and ro-
bustness.



B
Experiment Briefing

Thank you for participating in this experiment. The goal of this experiment is to investigate the influence of
human control on a trajectory planning algorithm in an 4D (space and time) trajectory based ATC perturba-
tion management task.

In future air traffic control, all flight trajectories are planned way ahead of the actual flight with 4D trajectory-
based operations (TBO). With the addition of time, this means aircraft not only need to follow certain way-
points, but also reach these waypoints at a certain time. All flight plans are de-conflicted beforehand, however
a perturbation such as a weather cell, no-fly zone or an aircraft in distress could occur in an airspace, which
means all trajectories in that airspace need to be rerouted. This research investigates a method to re-plan
these trajectories automatically by means of a trajectory planning algorithm, but allow a human controller to
influence the algorithm. Figure B.1 shows an example of a perturbation (no-fly zone) in an airspace, in which
it is required to reroute the airways.

Figure B.1: Example of a perturbation (no-fly zone) in an airspace.

B.1. The Experiment
In this experiment, it is your task to steer the trajectory planning algorithm by means of constraining the
solution space of the algorithm to cope with the perturbation. You will be presented several scenarios in
which the de-conflicted airspace is perturbed by a no-fly zone. You will be asked to apply a structure to the
airspace, which you think will lead to the most optimal solution. Only after you indicate that your happy with
the structure, the actual flight scenario will start to show you the results of your choices.

39
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Consider the following criteria during the execution of the task:

• Safety buffers

• Additional trajectory length

• Airspace structure

You are free to give a weighting to these interdependent criteria yourself.
The experiment will start with several training scenarios to familiarize yourself with the control task and

interface. Please make sure that you ask all questions that you have in relation to the task and interface during
the training scenarios. Once the actual experiment begins I cannot answer any questions you have.

B.2. Timeline
Table B.1 shows the timeline of the experiment.

Table B.1: Timeline of the experiment

Activity Estimated duration
Introduction to the experiment 5 min
Training 30 - 40 min
Measured runs 6 x 8 min
Debriefing 5 - 10 min

In total the experiment will take around 1.5 hours.

B.3. Experiment Set-up
The experiment will be conducted in the Air Traffic Management Laboratory (ATMLab), on the second floor
of the SIMONA-building. This lab uses a 30-inch LCD screen on which the interface is shown, which provides
a top-down view of the airspace and traffic. Input can be given by a standard mouse and keyboard input
devices.

The following mouse and keyboard inputs are available to interact with the interface:

• LMB click: select constraint / airway / draw constraint

• RMB click: accept, cancel, delete constraint

• Backspace: deselect airways

• A: re-plan selected aircraft trajectory

The following colors are used in the interface:

• Red: no fly-zone, air traffic should be guided around this. Also used when an airway is fully blocked by
a constraint

• Cyan: color used to indicate the airway’s solution space

• Magenta: constraints drawn by human controller, automation will not cross these areas

• Grey: Airways

B.4. Training
Before the actual experiment will start, you will go through a number of training scenarios to familiarize
yourself with the interface. As stated before, please ask all the questions you have regarding the interface
during the training, make sure you feel fully comfortable in using the interface.
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Training 1 - Interface familiarization part 1
The interface shows all airways on which air traffic will enter the airspace. You will perform the task of con-
straining the automation before any traffic enters the airspace.

1. Shown is an airspace with one airway, where the two arrows indicate the direction of the airway. On
this airway aircraft will enter once the scenario is started.

2. In the top bar a magenta polygon and circle are shown, these are constraints you can draw to steer the
trajectory planning algorithm.

3. Draw a polygon constraint, accept with RMB. See Figure B.2a.

4. Now the experimenter will let the aircraft enter the airspace, assess the result.

5. Draw a circle constraint, accept with RMB. See Figure B.2b.

6. Delete both constraints.

(a) (b)

Figure B.2: Two examples of steering the trajectory planning algorithm around self-drawn constraints

Training 2 - Interface familiarization part 2
1. Shown is an airspace with one airway, where the two arrows indicate the direction of the airway. On

this airway aircraft will enter once the scenario is started.

2. Hovering over or selecting an airway shows the solution space, also seen in Figure B.3, in which the
automation is able to find solutions for possible new trajectories of aircraft entering the airspace, while
still maintaining the required time of arrival at the exit waypoint. This experiment is restricted to new
trajectories with two additional waypoints, which is indicated by the two curved areas, which are the
possible areas in which the waypoints will be placed by the automation.

3. Draw constraints to guide the algorithm through the top half of the airspace.

4. The solution space can guide you in drawing the constraints.

These were the basic functionalities of the interface. In the next training will be shown what these will be
used for.

Training 3 - Perturbations
1. Shown is an airspace with one airway and a no-fly zone indicated in red.

2. The automation does not see the no-fly zone, so it will be your task to draw a circle constraint around
the no-fly zone.

3. Assess the result of the automation.



42 B. Experiment Briefing

Figure B.3: Solution space trajectory algorithm for two waypoints.
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Training 4 - Multiple airways
1. Shown is an airspace with two airways and a no-fly zone.

2. Apply the circle constraint as in the previous scenario.

3. The experimenter will start the scenario to show you the result of the automation.

4. For the horizontal airway, now draw a constraint to force the algorithm to find a solution the other side
of the no-fly zone. Do this by drawing the constraint as big as indicated in Figure B.4. As you can see
the vertical airway now highlights in red as it is fully blocked by the constraint and is thus won’t able to
find a solution.

5. Delete the constraint

6. Now draw a constraint that will guide the trajectory the other side, without blocking the other airway.

Figure B.4: Assignment training 4

Training 5 - Optimize goals
Please apply a structure to this airspace, consider the goals as stated in Chapter 1.

Why did you make these choices?

Training 6 - Multiple strategies, same goal
You are asked to apply a structure to this airspace with different control strategies, which all lead to the same
result.

Try to come up with three different strategies yourself to guide the horizontal east-west airway below.
After this the experimenter will show you his options.
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Training 7 - Full scenario
Now you are familiarized with the interface and know how you can influence the algorithm it is time to do a
full scenario.

Apply a structure to the scenario as you see fit. Notify the experimenter once you are satisfied with your
applied structure.

Please note that all traffic is deconflicted beforehand and that conflicts that will be induced by the rerout-
ing of the trajectories are automatically solved.

Training 8 - Full scenario
Apply a structure to the scenario as you see fit. Notify the experimenter once you are satisfied with your
applied structure.

You are now ready to participate in the actual experiment. If you still have any questions, this is your last
chance to ask them.

Good luck!



C
Analysis Placement Perturbation

This chapter investigates the effect of the placement of a perturbation in an airspace. For this analysis a
circular perturbation with a radius of 25 NM is chosen. The focus of this research is on a structured type of
airspace.

The airspace and the locations of the perturbations that are analysed are shown in Figure C.1.
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Figure C.1: Locations of all analysed perturbations.

The perturbations are placed in to three categories, as shown in Figure C.2. Category 0 has no airways
intersecting the perturbation through the center, category 1 has one airway and category 2 has two airways
intersecting through the center.

In Table C.1 it is shown which perturbation falls in to which category.
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(a) PL0 (b) PL1 (c) PL2

Figure C.2: Three categories in to which the perturbations are placed.

Table C.1: Perturbations per category

Category Perturbation
PL0 14, 15, 16, 17, 18, 19
PL1 2, 4, 6, 8, 9, 10, 11, 12, 13
PL2 1, 3, 5, 7, 20, 21

The reason why these categories where chosen is because it is hypothesized that for each category the
influence a human operator can have differs. As one can imagine for category 0 the human will not make
much different choices than the automation as it is planning around this. For category 2 however, the human
can make the choice to guide the airway around either side of the circular perturbation.

In Section C.1 an overview of all data is given that was found by running the scenario in full automation
mode for the high traffic density scenario. In the sections following the data is focussed per category and the
most interesting perturbation location selected. This selected perturbation is then used in the human-in-
the-loop experiment to investigate whether the human is able to find a more optimal solution.

The metrics investigated to find the most interesting locations are the following:

1. Added track miles.

2. Knock-on reroutes

3. Average sector robustness.

4. Minimum sector robustness.

Where the knock-on reroutes are defined as aircraft that need to deviate from their original trajectory due
to conflicting with other aircraft and not due to the perturbation.

To find the most interesting location it is tried to find one with a relatively high added track miles and
rerouted trajectories. For robustness a relatively low value is most interesting.

C.1. Overview data
This section summarizes all data collected.

Interesting to see are the averages for each metric per category in Table C.2. For category 0 the track miles
and modified trajectories are relatively low and the robustness high. For category 2 however, the track miles
and modified trajectories are relatively high and the robustness low. Which could suggest that for category 2
the human can have a larger positive influence on the outcome of the trajectory algorithm.
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Figure C.3: (a) Added track miles per perturbation location. (b) Knock-on reroutes per perturbation location.
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Figure C.4: (a) Average sector robustness per perturbation location. (b) Minimum sector robustness per perturbation location.

Table C.2: Averages of each metric per category

Cat 0 Cat 1 Cat 2
Added track miles [NM] 85.0 103.9 132.2
Modified trajectories [-] 2.1667 4.7778 7.5
Avg sector robustness [-] 0.9407 0.9398 0.9306
Min sector robustness [-] 0.6448 0.6125 0.5814



48 C. Analysis Placement Perturbation

C.2. Category 0 - no center intersections
This section shows the data for category 0. By analysing the data and scenarios perturbation number 14 was
chosen for the experiment because of the following reasons:

• Looking at the track miles the most obvious choice would be location 19. However, the placement of
this scenario lead to some traffic situations which bias the data and thus can be seen as an outlier.

• Following the knock-on reroutes trajectories graph, location 14 is the most interesting.

• From the average sector robustness data no clear conclusion can be drawn due to the small differences
between the locations.

• As for the average sector robustness, also for the minimum robustness there is no location that stands
out. Difference are small, except for location 16.

Following that location 19 is a bit flawed and the difference for sector robustness are small perturbation
location 14 is chosen.
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Figure C.5: (a) Added track miles per perturbation location. (b) Knock-on reroutes per perturbation location.
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Figure C.6: (a) Flexibility metric average robustness per perturbation location. (b) Flexibility metric minimum robustness per
perturbation location.
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(a) 14 (b) 15 (c) 16

(d) 17 (e) 18 (f) 19

Figure C.7: Results trajectories full automation

C.3. Category 1 - one center intersection
This section shows the data for category 1. By analysing the data and scenarios perturbation number 11 was
chosen for the experiment because of the following reasons:

• Track miles indicates location 8 as the most interesting and 6 and 12 as the least interesting.

• Knock-on reroutes shows location as 8 and 11 as most interesting.

• Average sector robustness only shows small differences between the locations

• Minimum sector robustness indicates location 9 and 11 as most interesting.

Location 11 is chosen because it has the most interesting combination of values, especially with the low
minimum robustness and a high value of knock-on reroutes.
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Figure C.8: (a) Added track miles per perturbation location. (b) Knock-on reroutes per perturbation location.
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Figure C.9: (a) Flexibility metric average robustness per perturbation location. (b) Flexibility metric minimum robustness per
perturbation location.
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Figure C.10: Results trajectories full automation



C.4. Category 2 - two center intersections 51

C.4. Category 2 - two center intersections
This section shows the data for category 2. By analysing the data and scenarios perturbation number 1 was
chosen for the experiment because of the following reasons:

• Location 1 is by far the most interesting in terms of track miles.

• Location 1, closely followed by 7 and 21, are most interesting in terms of knock-on reroutes.

• Average sector robustness does not show large differences, but 3 and 20 seem slightly more interesting.

• Location 3 and 20 are more interesting for the minimum sector robustness.

Although quite some locations are interesting in this category, it is chosen for 1. Mainly, because it is expected
that the track miles and knock-on reroutes can be improved substantially.
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Figure C.11: (a) Added track miles per perturbation location. (b) Knock-on reroutes per perturbation location.
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Figure C.12: (a) Flexibility metric average robustness per perturbation location. (b) Flexibility metric minimum robustness per
perturbation location.
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Figure C.13: Results trajectories full automation



D
Additional data

D.1. Metrics averaged over perturbation locations
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Figure D.1: Per traffic density the average sector robustness shown for perturbation location and participant. Including perturbation in
robustness calculation.
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Figure D.2: Per traffic density the difference in average sector robustness with automation shown for perturbation location and
participant. Including perturbation in robustness calculation.
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(b) Low traffic density

Figure D.3: Per traffic density the average sector robustness shown for perturbation location and participant. Without perturbation in
robustness calculation.
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Figure D.4: Per traffic density the difference in average sector robustness with automation shown for perturbation location and
participant. Without perturbation in robustness calculation.
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Figure D.5: Per traffic density the minimum sector robustness shown for perturbation location and participant. Including perturbation
in robustness calculation.
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Figure D.6: Per traffic density the difference in minimum sector robustness with automation shown for perturbation location and
participant. Including perturbation in robustness calculation.
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Figure D.7: Per traffic density the minimum sector robustness shown for perturbation location and participant. Without perturbation in
robustness calculation.
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Figure D.8: Per traffic density the difference in minimum sector robustness with automation shown for perturbation location and
participant. Without perturbation in robustness calculation.
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Figure D.9: Per traffic density added track miles shown for perturbation location and participant.
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Figure D.10: Per traffic density the difference in added track miles with automation shown for perturbation location and participant.
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Figure D.11: Per traffic density knock-on reroutes shown for perturbation location and participant.
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Figure D.12: Per traffic density the difference in knock-on reroutes with automation shown for perturbation location and participant.
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D.2. Traffic scenario results per perturbation location

(a) Participant 1 - 0o (b) Participant 2 - 0o (c) Participant 3 - 0o

(d) Participant 4 - 0o (e) Participant 5 - 0o (f) Automation

(g) Participant 1 - 90o (h) Participant 2 - 90o (i) Participant 3 - 90o

(j) Participant 4 - 90o (k) Participant 5 - 90o

Figure D.13: Result trajectories perturbation location 0 for 0o and 90o scenarios.
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(a) Participant 1 - 0o (b) Participant 2 - 0o (c) Participant 3 - 0o

(d) Participant 4 - 0o (e) Participant 5 - 0o (f) Automation

(g) Participant 1 - 90o (h) Participant 2 - 90o (i) Participant 3 - 90o

(j) Participant 4 - 90o (k) Participant 5 - 90o

Figure D.14: Result trajectories perturbation location 1 for 0o and 90o scenarios.
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(a) Participant 1 - 0o (b) Participant 2 - 0o (c) Participant 3 - 0o

(d) Participant 4 - 0o (e) Participant 5 - 0o (f) Automation

(g) Participant 1 - 90o (h) Participant 2 - 90o (i) Participant 3 - 90o

(j) Participant 4 - 90o (k) Participant 5 - 90o

Figure D.15: Result trajectories perturbation location 2 for 0o and 90o scenarios.
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D.3. Participant’s average and minimum robustness over time - including
perturbation
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Figure D.16: Average sector robustness high density traffic scenario participant 1
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Figure D.17: Average sector robustness low density traffic scenario participant 1
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Figure D.18: Minimum sector robustness high density traffic scenario participant 1
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Figure D.19: Minimum sector robustness low density traffic scenario participant 1
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Figure D.20: Average sector robustness high density traffic scenario participant 2
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Figure D.21: Average sector robustness low density traffic scenario participant 2
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Figure D.22: Minimum sector robustness high density traffic scenario participant 2
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Figure D.23: Minimum sector robustness low density traffic scenario participant 2
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Figure D.24: Average sector robustness high density traffic scenario participant 3



D.3. Participant’s average and minimum robustness over time - including perturbation 71

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(a) Perturbation Location 0

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(b) Perturbation Location 1

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(c) Perturbation Location 2

Figure D.25: Average sector robustness low density traffic scenario participant 3



72 D. Additional data

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.26: Minimum sector robustness high density traffic scenario participant 3



D.3. Participant’s average and minimum robustness over time - including perturbation 73

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.27: Minimum sector robustness low density traffic scenario participant 3



74 D. Additional data

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(a) Perturbation Location 0

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(b) Perturbation Location 1

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(c) Perturbation Location 2

Figure D.28: Average sector robustness high density traffic scenario participant 4



D.3. Participant’s average and minimum robustness over time - including perturbation 75

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(a) Perturbation Location 0

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(b) Perturbation Location 1

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(c) Perturbation Location 2

Figure D.29: Average sector robustness low density traffic scenario participant 4



76 D. Additional data

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.30: Minimum sector robustness high density traffic scenario participant 4



D.3. Participant’s average and minimum robustness over time - including perturbation 77

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.31: Minimum sector robustness low density traffic scenario participant 4



78 D. Additional data

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(a) Perturbation Location 0

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(b) Perturbation Location 1

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(c) Perturbation Location 2

Figure D.32: Average sector robustness high density traffic scenario participant 5



D.3. Participant’s average and minimum robustness over time - including perturbation 79

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(a) Perturbation Location 0

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(b) Perturbation Location 1

0 1000 2000 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

0o

90o

A
TSR

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

0 1000 2000 3000
-0.2

-0.1

0

0.1

0.2

(c) Perturbation Location 2

Figure D.33: Average sector robustness low density traffic scenario participant 5



80 D. Additional data

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.34: Minimum sector robustness high density traffic scenario participant 5



D.3. Participant’s average and minimum robustness over time - including perturbation 81

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(a) Perturbation Location 0

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(b) Perturbation Location 1

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0o

90o

A
TSR

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

0 1000 2000 3000

-0.5

0

0.5

(c) Perturbation Location 2

Figure D.35: Minimum sector robustness low density traffic scenario participant 5



82 D. Additional data

D.4. Participant’s average and minimum robustness over time - without
perturbation
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Figure D.54: Minimum sector robustness (no perturbation) high density traffic scenario participant 5
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Figure D.55: Minimum sector robustness (no perturbation) low density traffic scenario participant 5
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