
 
 

Delft University of Technology

Driver speed compliance following automatic incident detection
Insights from a naturalistic driving study
Varotto, Silvia F.; Jansen, Reinier; Bijleveld, Frits; van Nes, Nicole

DOI
10.1016/j.aap.2020.105939
Publication date
2021
Document Version
Final published version
Published in
Accident Analysis and Prevention

Citation (APA)
Varotto, S. F., Jansen, R., Bijleveld, F., & van Nes, N. (2021). Driver speed compliance following automatic
incident detection: Insights from a naturalistic driving study. Accident Analysis and Prevention, 150, Article
105939. https://doi.org/10.1016/j.aap.2020.105939

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.aap.2020.105939
https://doi.org/10.1016/j.aap.2020.105939


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Accident Analysis and Prevention 150 (2021) 105939

Available online 17 December 2020
0001-4575/© 2020 Elsevier Ltd. All rights reserved.

Driver speed compliance following automatic incident detection: Insights 
from a naturalistic driving study 

Silvia F. Varotto a,*, Reinier Jansen a, Frits Bijleveld a,b, Nicole van Nes a,c

a SWOV Institute for Road Safety Research, P.O. Box 93113, The Hague, 2509 AC, the Netherlands 
b Vrije Universiteit Amsterdam, School of Business and Economics, De Boelelaan 1105, Amsterdam, 1081 HV, the Netherlands 
c Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, the Netherlands   
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A B S T R A C T

Automatic incident detection (AID) systems and variable speed limits (VSLs) can reduce crash probability and 
traffic congestion. Studies based on loop detector data have shown that AID systems decrease the variation in 
speeds between drivers. Despite the impact on driver behaviour characteristics, most mathematical models 
evaluating the effect of AID systems on traffic operations do not capture driver response realistically. 

This study examines the main factors related to driver speed compliance with a sequence of three VSLs 
triggered by an AID system. For this purpose, the variable speed limit database of the executive agency of the 
Dutch Ministry of Infrastructure and Water Management (Rijkswaterstaat) was integrated into the UDRIVE 
naturalistic driving database for passenger car data collected in the Netherlands. The video data were annotated 
to analyse driver glance behaviour and secondary task engagement. A logistic regression model was estimated to 
predict driver speed compliance after each VSL in the sequence. 

The results reveal that the factors predicting compliance to the VSLs differ based on which of the three VSLs 
the driver is subjected to. Low speeds and accelerations before the gantry, approaching a slower leader, high 
proportion of time with eyes-on-road and close consecutive gantries were associated with high compliance with 
the first VSL in the sequence (i.e., indicating a speed limit of 70 km/h with flashing attention lights). Low speeds 
and accelerations before the gantry, close consecutive gantries and a small number of lanes resulted in high 
compliance with the second VSL (i.e., a speed limit of 50 km/h with flashing attention lights). Low speeds before 
the gantry and close consecutive gantries were linked to high compliance with the third VSL (i.e., indicating a 
speed limit of 50 km/h). Although further investigations based on a larger sample are needed, these findings are 
relevant to the development of human-like driving assistance systems and of traffic simulations that assess the 
impact of AID systems on traffic operations realistically.   

1. Introduction

Dynamic traffic management systems can reduce traffic congestion
and crash rates. These systems provide real-time traffic information to 
drivers using variable message signs (VMSs) and dynamically change the 
speed limits using variable speed limits (VSLs). VMSs and VSLs aim to 
improve driver responsiveness to the traffic conditions downstream by 
reducing the speed differences between road sections and road users. 
Low speeds and small speed differences within lanes are associated with 
lower crash probability (Aarts and Van Schagen, 2006; Choudhary et al., 
2018). Various traffic management measures have been implemented to 
maintain an optimal traffic flow and to decrease the crash probability 

depending on the type of incident (e.g., crash, traffic jam, weather 
conditions) (Fuhs, 2010). Since the 1980s, European and American 
motorways have been equipped with automatic incident detection (AID) 
systems that inform drivers upstream of incidents downstream (Martens, 
2013). The Dutch AID system activates a sequence of (at least) three 
VSLs. The system activates a 50 km/h VSL downstream a loop detector 
that registers a mean vehicle speed lower than 35 km/h. In addition, the 
system activates a 70 km/h and a 50 km/h VSLs with flashing attention 
lights on the first and on the second gantry upstream to warn the drivers 
approaching the congestion tail to decrease their speed gradually. 

The intended effect of the AID system is that drivers increase their 
awareness, decrease their speed, and maintain a larger time headway. 
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These improvements in driver behaviour should result in a lower 
probability of driver errors and crashes. However, unintended impacts 
of AID systems on driver behaviour (behavioural adaptations) have been 
reported (Martens, 2013). The activation of the system might distract 
drivers in their control task and result in sudden braking or steering 
responses. Due to overreliance on the system in the long term, drivers 
might maintain higher speeds when the system is not installed, is mal-
functioning, or has not detected traffic congestion yet. Drivers might 
also believe that the VSL corresponds to a safe speed in adverse weather 
conditions and increase their driving speed. Notwithstanding the po-
tential effects on traffic operations, very few studies have analysed these 
behavioural adaptations based on empirical data (Martens, 2013). 

Studies based on loop detector data have indicated that AID systems 
decrease the difference in speeds between vehicles (Hourdos et al., 
2017; Smulders, 1990; Van den Hoogen and Smulders, 1994) and the 
maximum deceleration while approaching congestion (Van Lint et al., 
2020). Loop detectors measure the speeds and counts of vehicles at a 
specific road location. Loop detector measurements are most often 
available at an aggregate level during a specific time interval (e.g., one 
minute). These measurements, however, shed limited light on the main 
factors that influence driver compliance with the VSLs. Driver response 
can be influenced by the traffic conditions, the road characteristics, and 
the characteristics and state of the drivers. For example, drivers might 
reduce their speed voluntary as a response to the VSL active on the 
gantry or they could be forced to reduce their speed when the lead 
vehicle slows down. In addition, drivers may fail to comply with the 
VSLs because they are distracted. Distracting tasks that require eyes 
off-road such as using a hand-held phone, reading, writing, reaching for 
objects, and looking at external objects are associated with the highest 
crash risk (Dingus et al., 2016). These behavioural mechanisms can be 
investigated in-depth based on data of individual drivers collected in 
naturalistic driving studies (Carsten et al., 2013). Insights from driver 
psychology and human factors are relevant to the development of 
advanced driving assistance systems (Bengler et al., 2014; Merat and 
Lee, 2012) and of microscopic traffic flow simulations (Hamdar et al., 
2020; McDonald et al., 2019; Saifuzzaman and Zheng, 2014; Van Lint 
and Calvert, 2018). 

1.1. Empirical studies and models for driver responses to roadside 
messages 

Several studies based on driving simulator experiments have found 
both intended and unintended impacts of roadside VMSs and VSLs on 
driver behaviour characteristics. Regarding intended impacts, drivers 
significantly reduce the mean speed (Boyle and Mannering, 2004), the 
speed variation (Van Nes et al., 2010), and the maximum deceleration 
while approaching traffic congestion (Reinolsmann et al., 2018) in the 
road sections where the messages are displayed. Drivers show higher 
compliance and shorter eye fixation times when the speed limits are 
posted on electronic signs installed on gantries above each lane than on 
standard traffic signs, rotation panels and electronic signs installed on 
roadside poles or carriageway gantries (Hoogendoorn et al., 2012). 
Some studies, however, also found unintended impacts of VMSs and 
VSLs on driver behaviour. Drivers might increase their speed down-
stream the incident to compensate for the speed reduction (Boyle and 
Mannering, 2004), they may fail to detect unforeseen changes in the 
VSLs on familiar roads (Harms and Brookhuis, 2016), and they may have 
a lower capability to recognize changes in the VSLs with waves and 
flashing lights (Harms and Brookhuis, 2017). 

Few studies have developed mathematical models that predict driver 
responses to VSLs and they were based on data collected in driving 
simulator experiments. Lee and Abdel-Aty (2008) analysed the degree of 
speed change and the compliance with VSLs and VMSs using logistic 
regression models. In the model predicting the speed regulation (binary 
variable), drivers were assumed to have changed their speed when the 
difference between the speed 200 m upstream and 200 m downstream 

the VSL sign was higher than 8 km/h (5 mph). The results showed that 
drivers were more likely to change their speed when they had already 
changed their speed at previous signs. In addition, they were more likely 
to reduce their speed at VSLs in light traffic, and to increase their speeds 
at VMSs after the end of the congestion tail. In the compliance model, 
drivers were assumed to comply with the VSLs when the difference 
between their speed 200 m downstream the VSL sign and the speed limit 
was smaller than 8 km/h (5 mph). The findings showed that drivers were 
more likely to comply with one sign when they had already complied 
with the previous signs and when the VSL reduction was gradual. Con-
ran and Abbas (2018) developed a microscopic traffic flow model that 
incorporates driver compliance with VSLs. They defined the degree of 
compliance for each individual driver as the ratio between the actual 
speed change (difference between the speed upstream and the speed 
downstream the VSL) and the desired speed change (difference between 
the speed upstream and the VSL). In a regression model, they found that 
driver compliance is high when the VMSs inform drivers of the speed 
reduction in advance, when the posted speed limit is equal to 100 km/h, 
and when the speed change implied by the VSL is small. The compliance 
model was incorporated into a microscopic traffic flow model to 
improve its prediction accuracy and assess the impacts of VSLs on traffic 
safety (Conran and Abbas, 2017). Further analysis based on on-road 
experiments is needed to investigate the validity of these findings for 
real traffic situations. 

Recently, driver response to the VSLs has also been analysed using 
mathematical models based on naturalistic driving data collected in the 
SHARP2 project. Wang et al. (2018) investigated the impact of road 
geometry, VSLs, posted speed limits and driver characteristics on the 
mean speed on horizontal curves in rural roads. They chose curves with 
a posted speed limit equal to 72 km/h or 89 km/h (45 mph or 55 mph). 
In a regression model, they found that the mean speed on the curve was 
low in case of small curve radius, low posted speed limit, active VSL, 
arrow signs and guardrail, lead vehicle, night time, female driver, and 
driver older than 25. The main limitation of this model with respect to 
the present study is that it focuses on speed behaviour on horizontal 
curves in rural roads only, as opposed to motorways including straight 
road sections. 

1.2. Glance behaviour and secondary task engagement in naturalistic 
driving studies 

A number of studies focused on the relationship between glance 
behaviour and driving performances based on naturalistic driving data. 
Naturalistic driving studies are particularly suited to investigate driver 
management of different tasks because participants’ behaviour in 
driving simulator and test track experiments tend to be biased by an 
instruction effect (Carsten et al., 2013). Peng et al. (2013) analysed the 
impact of glance behaviour and secondary task engagement on lane 
keeping performance. They compared three types of inattention during 
3 s-intervals: eyes-off-road (i.e., the driver glanced away from the for-
ward road), eyes-on-road inattentive (i.e., the driver looked forward 
while being engaged in non-driving tasks) and eyes-on-road attentive (i. 
e., the driver looked forward and was not engaged in non-driving tasks). 
Controlling for the roadway type, the lane width and the speed in a 
regression model, they found that drivers swerved more (i.e., high 
standard deviation of the lateral position) when they had eyes-off-road 
for a duration longer than 2 s compared to when they were attentive. 
Tivesten and Dozza (2014) analysed the effect of secondary task 
engagement and surrounding vehicles on glance behaviour. They 
compared eyes-on-road (i.e., the driver looked forward, at the other road 
users or at the mirrors to monitor the traffic situation) and eyes-off-road 
(i.e., the driver glanced away from the road forward) when the driver 
engaged in phone tasks and during the 30 s prior. The following glance 
metrics were analysed: percentage of time with eyes-on-road, maximum 
off-road glance duration, percentage of off-road glances longer than 2 s, 
the off-road glance frequency, and total off-road glance time. The results 
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showed that drivers have lower proportions of long off-road glances 
when turning, when following a leader, and when an upcoming vehicle 
was present. The authors concluded that the percentage of eyes-on-road 
is a metric suitable to analyse visual allocation in different driving sit-
uations, whereas glance frequency and percentage of long off-road 
glances are the best metrics to distinguish between different secondary 
tasks. Morando et al. (2016) analysed drivers’ glance behaviour during 
safety relevant situations when adaptive cruise control was engaged. 
Glance behaviour was analysed in terms of location (i.e., the area the 
eyes are directed to) and eccentricity (i.e., the radial angle between the 
glance location and the forward direction). They classified the glance 
locations as on-path, centre stack, driver information module, phone, 
interior object, passenger, eyes closed, rear-view mirror, side mirror or 
window, forward windshield not on-path, and over the driver shoulders. 
The results showed that the percentage of glances to the forward path 
increased over time in anticipation of the threat. The main cue that 
attracted the attention of the driver was the deceleration of the subject 
vehicle. The main conclusion from these naturalistic driving studies is 
that there is a significant relation between driver glance behaviour, 
engagement in secondary tasks, and driver performance. 

1.3. Knowledge gap and research objective 

Few studies have analysed the main factors determining driver 
compliance with the VSLs using statistical models. The models devel-
oped by Lee and Abdel-Aty (2008) and Conran and Abbas (2018) were 
based on data collected in driving simulator experiments and gained 
limited insights for driving behaviour in real traffic. Very few studies 
have analysed the main factors associated with driver response to the 
VSLs based on naturalistic driving data. The only example is the study by 
Wang et al. (2018), who used naturalistic data to model driver behav-
iour on curves in rural roads with VSLs. Despite the impact of glance 
behaviour and secondary task engagement on driver performance, none 
of these studies analysed the effect of the driver state on compliance 
with the VSLs. 

The objective of this study is to investigate the main factors associ-
ated with driver compliance with the VSLs within an AID sequence (i.e., 
70 km/h with flashing lights, followed by 50 km/h with flashing lights 
and 50 km/h) based on naturalistic driving data. In this study, driver 
compliance with the VSLs is defined based on the speed observed 
downstream the VSL sign and the minimum value for legal speed vio-
lations. A logistic regression model was developed to analyse the impact 
of several factors observed upstream the gantry (traffic conditions, 
driver state, environment characteristics and driver characteristics) on 
speed compliance downstream the gantry. For this purpose, the national 
road and variable speed limit databases of the executive agency of the 
Dutch Ministry of Infrastructure and Water Management (Rijkswater-
staat) were integrated into the naturalistic driving passenger car data 
collected in the Netherlands in the UDRIVE project (Van Nes et al., 
2019). The driver state was annotated based on the video data. In 
another study based on these data, we analysed the main factors influ-
encing the deceleration behaviour of drivers approaching the congestion 
tail with and without the AID system (Varotto et al., 2020). We found 
that presence and visibility of the VSLs triggered by the AID system 
resulted in smaller maximum decelerations and larger minimum time 
headways in dense traffic conditions. The objective of this study is 
relevant to the development of driving assistance systems that can 
anticipate driver response to the VSLs and intervene by increasing driver 
attention or regulating the speed. This objective is also relevant to the 
development of microscopic traffic flow models that assess the effect of 
VSLs on traffic congestion realistically. 

2. Method 

2.1. UDRIVE database 

The driver behaviour data were collected within the UDRIVE project 
in the Netherlands (Van Nes et al., 2019). Thirty-three participants were 
recruited in the Dutch population using advertisements, social media 
and the internal network. A minimum mileage of 10,000 km per year 
was considered a pre-requisite. Eighteen participants were males and 
fifteen were females. Three participants were aged between 18 and 29, 
ten between 30 and 39, nine between 40 and 49, and eleven between 50 
and 65. All participants were briefed about the project using standard 
protocols and signed a written informed consent form. Ten passenger 
vehicles (Renault Clio IV) were leased and equipped with the data 
acquisition system (DAS) developed in the UDRIVE project. Free use of 
the leased vehicle exclusive of the fuel costs was given to the participants 
as an incentive. Each participant drove the instrumented vehicle for six 
months between 2015 and 2017. Participants belonging to the same 
household shared the same vehicle but were considered different 
drivers. The DAS recorded, amongst others, date and time, GPS position, 
speed, acceleration, distance headway (from MobilEye smart camera), 
leader speed (from MobilEye), and videos from seven cameras recording 
the driver and the surrounding environment (Fig. 1). The data were 
recorded at a frequency of 1 Hz (GPS position) and 10 Hz (e.g., speed, 
acceleration). In total, the participants drove 230,842 km in 3,727 h 
(Christoph et al., 2019). 

2.2. Road database and variable speed limit database 

The variable speed limits of the Dutch motorway network in the 
period between January 1st, 2015 and December 31st, 2017 were pro-
vided by the executive agency of the Dutch Ministry of Infrastructure 
and Water Management (Rijkswaterstaat). Each observation in the 
variable speed limit database corresponds with a state change of a 
specific gantry at a certain time. The exact coordinates of each gantry 
were not available. The gantry position was obtained by mapping each 
gantry to the closest hectometre pole, the coordinates of which were 
available. Due to the hectometre spacing, the maximum error in the 
gantry position is 50 m. 

To link the different databases, the vehicle positions in the UDRIVE 
database and the gantry positions in the variable speed limit database 
were projected to a common hectometre pole grid. First, the GPS co-
ordinates in the UDRIVE database were converted to the Dutch grid 
(Rijksdriehoek) projection. The closest road in the National Road 
Database (Nationaal Wegenbestand) (Rijkswaterstaat, 2017) was esti-
mated for each Rijksdriehoek coordinate. Possible errors in the GPS 
coordinates were accounted for by comparing the current estimate of the 
closest road with the closest road estimated in previous data points. 
Through the road database, we obtained the motorway number, the 
driving direction and the road section identification number. We iden-
tified the closest gantry at each moment in front of the driver (hereafter: 
next gantry) and behind the driver (hereafter: previous gantry) by pro-
jecting the Rijksdriehoek coordinates on a hectometre pole grid and 
comparing the resulting hectometre pole numbers with the road data-
base. Thus, each Rijksdriehoek coordinate in the UDRIVE database was 
assigned a gantry state, the date and time of the last change, and the 
distance to the gantry. Multiple states are possible in different lanes on 
the same gantry simultaneously. In addition, Rijkswaterstaat provided 
information on the presence of electronic speed control, specified in 
terms of the road number and the hectometre number. These data were 
also integrated in the UDRIVE database. 

2.3. Event selection 

The events were defined as the following sequence of gantry states: 
70 km/h VSL with flashing lights (hereafter: 70-flashing VSL [*70*]), 50 
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km/h VSL with flashing lights (hereafter: 50-flashing VSL [*50*]) and 
50 km/h VSL (hereafter: 50 VSL [50]). The VSLs are lane specific and 
different VSLs can be active simultaneously on the same gantry. To 
understand whether the driver is subject to an AID sequence, the driving 
lane is needed. Given that the driving lane is not available in the UDRIVE 
database, the events were initially selected including all situations in 
which the AID sequence was active in at least one lane. A prerequisite for 
event selection was that three different physical gantries were passed by 
the driver. The gantry states are updated when the loops detect that 
congestion has moved upstream or downstream. Therefore, the gantry 
states might have been updated while the driver was passing through the 
AID sequence. The driver might have seen the 70-flashing VSL on the 
first gantry and the 50-flashing VSL being substituted by the 50 VSL on 
the second gantry. Events including such state changes were removed 
from subsequent analysis. 

2.4. Annotation 

Four annotators manually inspected and coded the videos related to 
the events. A dedicated toolbox written in Microsoft Visual Studio 2017 
was developed for annotation. Using the toolbox, the annotators load 
the selected trips, paused and played the videos at a self-chosen speed, 
and pressed labelled buttons to annotate. The annotation was completed 
in three weeks in July 2019. The first day was used for training the 
annotators. The training session consisted in the annotation of five 
events by each annotator and a plenary discussion to reach a mutual 
understanding on the variables annotated. Twelve randomly selected 
events were processed by all annotators to examine the degree of 
agreement. The other events were randomly assigned to one of the an-
notators. The annotation was executed from 500 m before the 70- 
flashing VSL to 200 m after the first 50 VSL of the AID sequence. 

For each event, the variables listed below were annotated once: 
weather conditions (limited visibility), density of the surrounding 
environment (open, half open, closed), and motorway exited by the 
driver at the end of the event. The gantry passing times and the VSL 
active on the driver’s lane were annotated three times during each 
event. The variables listed below were annotated at a frame-by-frame 
resolution during the event: glance direction (eyes off- and on-road, 
where on-road is defined as any glance through the front window), 

gantry visibility (gantry visible and VSL active, gantry visible and VSL 
inactive, gantry not visible), driving lane (counted from the centre of the 
road), type of road section (motorway mainline, weaving section, entry 
lane, or exit lane), and engagement in secondary tasks (yes or no). 
Secondary tasks were operationalised according to the codebook of the 
UDRIVE project (Carsten et al., 2017), consisting of phone use, electric 
device use, eating, drinking, smoking, reading, writing, grooming, 
talking, and singing. By combining the presence of an AID sequence (i.e., 
[*70*], [*50*], [50]) per lane with annotation of the driving lane, it was 
possible to identify whether drivers were subject to the AID regime at 
any given time, even if they did not drive through the whole sequence (e. 
g., due to lane changes). Furthermore, notes made by the annotators on 
playback errors (e.g., inaccurate synchronization between the camera 
views or video not loading) and on drivers wearing sunglasses (i.e., 
glance annotation impossible) were used to delete the corresponding 
events from subsequent analysis. 

2.5. Data analysis methods 

2.5.1. Interrater reliability of annotation 
The agreement achieved in the annotation was analysed by 

comparing the variables coded in twelve events processed by all four 
annotators based on statistical measures. Several variables derived from 
the data annotated (e.g., proportion of time with eyes-on-road and count 
of switches between eyes on and off road) were compared to understand 
which ones could be included into the statistical analysis. Krippendorff’s 
alpha was used as the primary measure of reliability, where values 
higher than 0.67 were considered as acceptable for analysis (Krippen-
dorff, 2004). Jeni et al. (2013) demonstrated that Krippendorff’s alpha is 
underestimated for variables with a skewed distribution. Therefore, 
percentage agreement was used as secondary measure of reliability, 
calculated only for variables with a Krippendorff’s alpha below 0.67 and 
a significantly skewed distribution. We used a criterion of 80 % agree-
ment across twelve events to determine which of those variables could 
be used in subsequent analysis. 

Krippendorff’s alpha was calculated using the R package ‘irr’ (Gamer 
et al., 2019). The R package ‘moments’ (Komstra and Novomestky, 
2015) was used to test if the variables that did not meet the minimum 
threshold of Krippendorff’s alpha were significantly skewed. If so, the 

Fig. 1. Views of seven video cameras in the UDRIVE data when encountering an active VSL: road front left, road front centre, road front right, vehicle cockpit, face of 
the driver, vehicle cabin, and feet of the driver. The face of the driver and of the passenger have been blurred due to privacy reasons. 
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percentage agreement, including a tolerance margin of 10 %, was 
calculated with the R package ‘irr’ (Gamer et al., 2019) as an indicator of 
the interrater reliability. 

2.5.2. Descriptive analysis and statistics 
The driver speed profiles and the distance to the gantries during the 

events were analysed. Driver compliance was assessed separately after 
each VSL sign as shown in Fig. 2. Drivers complied if the difference 
between the speed of the subject vehicle 200 m downstream the gantry 
and the VSL was lower than 6 km/h. This speed threshold was chosen 
based on the minimum value for legal speed violations in the 
Netherlands. The distance to the gantry was selected based on results 
from a previous study (Lee and Abdel-Aty, 2008), showing that drivers 
gradually regulate their speed in proximity to the VSL sign and 
compliance can be best assessed 200 m downstream the gantry. We 
analysed the mean driver behaviour characteristics and glance behav-
iour metrics registered 200− 300 m upstream the gantry to understand 
whether the conditions upstream could explain driver compliance 
downstream. This interval was chosen based on the mean distance at 
which drivers started to decelerate when the VSL signs were active (250 
m). At this distance, a driver monitoring system and a driving assistance 
system may predict whether drivers are likely to comply with the VSLs 
and intervene by increasing the attention of the driver or regulating the 
speed. Differences in the conditions upstream when drivers complied 
and did not comply with the VSLs were compared using descriptive 
statistics (mean and standard deviation) and statistical tests (two-sample 
Kolmogorov-Smirnov tests and Chi-squared test of independence). 

2.5.3. Logistic regression model 
The main factors associated with driver compliance with the VSLs 

are analysed in a logistic regression model. Logistic regression models 
allow to capture the impact of multiple explanatory variables on the 
observed behaviour of drivers accounting for correlations between 
repeated observations over time (Farah et al., 2019; Obeid et al., 2017; 
Paschalidis et al., 2018; Varotto et al., 2017, 2018). Driver compliance 
with each VSL is defined as described in Section 2.5.2. The latent 
regression functions for complying (C) and not complying (NC) with the 
VSLs for driver n at time t are given by Eqs. (1)–(2): 

Cn(t) = αC + βC∙XC
n (t) + εC

n (t) (1)  

NCn(t) = 0 + εNC
n (t) (2)  

where αC is the constant, βC is the vector of parameters related to the 
explanatory variables XC

n(t), and εC(t) and εNC(t) are logistic-distributed 
error terms. Relevant explanatory variables that can be included in the 
latent regression function are the driver behaviour characteristics of the 
subject vehicle and of the lead vehicle, driver glance behaviour metrics, 
driver characteristics, characteristics of the motorway segment and of 
the environment. The driver behaviour characteristics and glance 
behaviour metrics influencing compliance with each VSL are defined as 

described in Section 2.5.2. Eq. (1) can also include a driver-specific error 
term and an event-specific error term, capturing unobserved preferences 
that influence all situations by the individual driver over time and in the 
same event. The probability of complying with the VSL is presented in 
Eq. (3): 

P(Yn(t) = 1 ) =
exp

(
αC + βC∙XC

n (t)
)

1 + exp
(
αC + βC∙XC

n (t)
) (3) 

The parameters α and β are estimated using maximum likelihood 
methods in the R package ‘Apollo’ (Hess and Palma, 2019). The vari-
ables included in the final specification of the model were chosen based 
on their meaning (i.e., non-redundant variables) and statistical signifi-
cance. The explanatory variables were assumed to have a different 
impact on compliance after the 70-flashing VSL, the 50-flashing VSL and 
the 50 VSL. Differences between VSLs were tested statistically by 
comparing alternative model specifications using the likelihood ratio 
test. Variables that did not have a significantly different impact on 
compliance between VSLs were merged and variables that did not have a 
significant impact on any VSLs were omitted. When an explanatory 
variable was not available for part of the observations (e.g., the distance 
headway was missing because a leader was not detected by the Mobi-
lEye), a binary variable denoting the missing values was included in the 
latent regression function in addition to the variable of origin (dummy 
variable adjustment method). 

3. Results 

3.1. Interrater reliability of annotation 

Table 1 shows the list of derived variables that were considered 
eligible for analysis based on the results of the reliability tests using 
twelve events coded by four annotators. As described in Section 2.5.1, 
derived variables were considered eligible when the Krippendorff’s 
alpha was higher than 0.67, or when the distribution was significantly 
skewed and the percentage agreement was higher than 80 %. In total, 
fifteen derived variables met these criteria. Derived measures based on 
engagement in secondary tasks did not meet the reliability criteria. The 
weather conditions related to the visibility for the driver were not reli-
ably interpreted. The timing of the presence of weaving sections, exit 
lanes, and entry lanes was not reliably annotated. 

3.2. Descriptive analysis and statistics 

This section analyses 603 observations associated with 201 valid 
events. These events were observed in 185 distinct journeys by 27 
drivers. The number of events per driver was between 1 and 32 (M =
7.44, SD = 6.86). Overall, 33.83 % of the drivers complied with the 
speed limit after the 70-flashing sign (68 observations), 59.70 % after 
the 50-flashing sign (120 observations), and 71.64 % after the 50 sign 
(144 observations). A lead vehicle was present most of the time when 

Fig. 2. Driver compliance during the events (70-flashing VSL, 50-flashing VSL and 50 VSL). The main factors influencing compliance are calculated 200 m to 300 m 
before each gantry. Compliance is assessed based on the speed 200 m after each gantry. 
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the drivers complied: 97.06 % of the observations after the 70-flashing 
VSL (vs. 89.47 % when they did not comply); 96.67 % of the observa-
tions after the 50-flashing VSL (vs. 87.65 % when they did not comply); 
97.92 % of the observations after the 50 VSL (vs. 92.98 % when they did 
not comply). 

To gain insights into the conditions in which drivers complied after 
each VSL sign, we present the mean and the standard deviations of the 
continuous variables expressing the driver behaviour characteristics, the 
road segment characteristics, the driver characteristics, and the driver 
state when drivers complied and did not comply with each VSL in 
Table 2. Comparing the mean values in Table 2, we notice that drivers 
complied more often when the mean speeds before the gantries were 
lower, when the distance headways were smaller, when approaching a 
slower vehicle, and when the next gantry was closer. In addition, two- 
sample Kolmogorov-Smirnov tests were performed to test the similar-
ity of the distributions (not of the means) between the two groups for 
each VSL. The speed distributions differed significantly between the two 
groups before the 70-flashing and the 50-flashing VSLs (p-value <
0.005). The distance headway distributions differed significantly be-
tween the two groups before the 50-flashing VSL (p-value = 0.007). The 
relative speed distributions before the 70-flashing VSL differed 

significantly (p-value = 0.054). The distributions of the distance to the 
portals differed significantly between the two groups before the 70- 
flashing VSL (p-value = 0.005). The distributions of all other variables 
in Table 2 did not differ significantly between the two groups. The main 
conclusion from this analysis is that the driver behaviour characteristics 
and the characteristics of the road segment can have a significant impact 
on compliance with the VSLs. 

The number and the percentage of observations in each group based 
on the nominal variables are presented in Table 3. The Chi-squared test 
of independence was calculated to test the relation between these var-
iables and compliance with each VSL. Table 3 shows that there is a small 
number of observations available when the road environment was open, 
the electronic speed control was active, and the driver exited the 
motorway after the 50 VSL. Statistical tests on these variables were not 
conducted. The Chi-squared test of independence between closed and 
non-closed environment and between male and female drivers showed 
non-significant results. Further analysis is needed to understand the 
impact of these factors on compliance with the VSLs. 

Table 1 
List of variables considered eligible for analysis based on the results of the interrater reliability tests using twelve events coded by four annotators.  

Annotated variable Definition annotated variable Valid derived variables 

Glance direction On road (driver looks outside forward) or off road (driver looks sideways or inside the vehicle). 

Proportion of time with eyes-on-road 
Proportion of time with eyes-off-road 
Count of switches between eyes on and off road 
Proportion of time with eyes-off-road for a minimum 
duration of 2 s 
Proportion of time eyes with eyes-on-road for a 
minimum duration of 2 s 
Count of off-road glances with a minimum duration of 
2 s 

Gantry visibility 
Not visible (portal too far away or blocked view), visible (portal visible and not active), visible and 
active (portal visible and active irrespective of readability). 

Proportion of time when the portal is visible and not 
active 
Proportion of time when the portal is not visible 
Proportion of time when the portal is visible and active 

Driving lane Lane number counted from the centre of the road (most central = 1). If the number of lanes 
changes, the count starts again from the centre. 

Proportion of time in lane one 
Proportion of time in lane two 
Proportion of time in lane three 
Proportion of time in lane four 

Density of the 
environment 

Open (no trees, bushes, buildings), half-open (occasional trees, bushes, building) or closed (dense 
forestation or buildings). 

Open environment versus non-open environment 
(closed, semi-open) 

Exiting the 
motorway 

Yes (driver has passed the blocks to exit the motorway at the end of the event), no (driver is on the 
motorway at the end of the event). 

Binary variable indicating if the driver exited the 
motorway at the end of the event  

Table 2 
Mean and standard deviation of the driver behaviour characteristics and the characteristics of the road segment when the drivers complied (C) and did not comply (NC) 
with each VSL. The driver behaviour characteristics and the driver state are measured 200-300 m before the gantry. Compliance is assessed 200 m after the gantry.  

Variable Description *70* C *70* C *50* C *50* C 50 C 50 NC 

Speed Mean speed of the subject vehicle in km/h 78.57 (16.87) 95.82 (11.87) 74.52 (16.02) 86.09 (13.78) 41.58 (20.78) 44.99 (27.08) 
Acceleration Mean acceleration of the subject vehicle in  

m/s2 
− 0.2936 
(0.3445) 

− 0.2050 
(0.2858) 

− 0.3187 
(0.3480) 

− 0.1905 
(0.3139) 

− 0.3125 
(0.4981) 

− 0.2349 
(0.5386) 

DHW Mean distance headway (front bumper to rear 
bumper) in m 

39.38 (20.45) 46.08 (25.12) 38.90 (21.90) 47.69 (22.21) 25.57 (18.27) 27.18 (24.18) 

Relative speed Relative speed (leader speed − subject vehicle 
speed) in km/h 

− 1.850 
(7.406) 

− 0.1010 
(7.877) 

− 1.650 
(5.947) 

− 1.615 
(7.185) 

− 2.427 
(6.660) 

− 2.531 
(8.265) 

Dist 
NextGantry 

Distance to the next gantry in m 272.9 (132.1) 327.7 (129.1) 293.1 (115.4) 316.0 (97.99) 273.2 (118.0) 271.4 (130.2) 

NLanes Number of lanes in the road section 3.221 (0.9279) 3.293 (0.7665) 3.167 (0.8534) 3.444 (0.9220) 3.403 (0.9336) 3.211 (0.9207) 
Age Driver age in years 40.68 (13.56) 42.08 (12.06) 41.60 (12.20) 41.60 (13.18) 41.22 (12.70) 42.56 (12.30) 
pEyes OnRoad Proportion of time with eyes-on-road in % 90.54 (15.64) 86.70 (20.53) 89.11 (18.96) 85.42 (21.00) 86.77 (17.77) 86.23 (22.30) 
nOnOffRoad Number of switches between eyes on/off road 0.7647 

(0.9942) 
0.6617 

(0.8428) 
0.5583 

(0.8677) 
0.6667 

(0.8367) 
1.285 (1.960) 1.386 (1.943) 

pEyes 
OffRoad2s 

Proportion of time with eyes-off-road > = 2 s 
in.% 

0.8823 (7.276) 1.905 (12.73) 3.423 (13.41) 3.857 (15.30) 4.774 (12.80) 7.360 (21.01) 

pGantryVis Proportion of time portal visible and not 
active in % 

8.569 (22.79) 11.45 (26.29) 9.378 (25.46) 10.93 (26.55) 14.99 (32.01) 7.180 (22.14) 

pGantry VisAct Proportion of time portal visible and active  
in % 

37.24 (39.62) 32.79 (40.11) 39.77 (43.43) 35.04 (41.05) 33.42 (40.49) 27.66 (38.52)  
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3.3. Logistic regression model 

The goodness-of-fit measures and the estimation results are pre-
sented in Table 4 and Table 5 respectively. The latent regression func-
tion for complying (C) and not complying (NC) with the 70-flashing VSL 
(*70*), 50-flashing VSL (*50*) and 50 VSL (50) for driver n at time t are 
given by Eqs. (4)–(5): 

Cn(t) = α[∗70∗] + α[∗50∗] + α[50]

+ β[∗70∗]
Speed ∙ [Speed ∗ 70 ∗ ](t) + β[∗50∗]

Speed ∙ [Speed ∗ 50 ∗ ](t)

+ β[50]
LowSpeed ∙ [LowSpeed50](t)

+ β[∗70∗,∗50∗]
Acc ∙[Acc∗70∗, ∗50 ∗ ](t) + β[∗70∗]

RelSpeed∙[RelSpeed∗70 ∗ ](t)

+ β[∗70∗]
NoLead∙[NoLead∗70 ∗ ](t)

+ β[∗70∗]
pEyesOnRoad ∙ [pEyesOnRoad∗70∗](t)

+ βDistNextGan ∙ DistNextGan(t) + β[∗50∗]
Nlanes ∙ Nlanes(t) + εC

n (t) (4)  

NCn(t) = 0 + εNC
n (t) (5)  

where α[∗70∗], α[∗50∗] andα[50] are the constants associated with each 
gantry, β[∗70∗], β[∗50∗], and β[50] are vectors of parameters related to the 
explanatory variables presented in Table 5, and εC(t) and εNC(t) are 
logistic-distributed error terms. Due to the relatively small sample size 
(201 events), we have included a few parameters that are statistically 
significant at the 10 % level. However, most parameters are statistically 
significant at the 5% level. 

The constants associated with each VSL differ in their impact on 
compliance. The negative constant associated with the 70-flashing VSL 
indicates that, everything else being equal, drivers are unlikely to 
comply. The positive constant associated with the 50-flashing VSL in-
dicates that, everything else being equal, drivers are likely to comply. 
The constant associated with the 50 VSL does not have a significant 

Table 3 
Number and percentage of observations in each group when the drivers complied (C) and did not comply (NC) with each VSL. Compliance is assessed 200 m after the 
gantry.  

Variables *70* C *70* NC *50* C *50* NC 50 C 50 NC 

Environment 
Open 2 (6.1 %) 8 (3.0 %) 4 (7.4 %) 6 (3.4 %) 8 (3.5 %) 2 (5.6 %) 
Half-open 53 (75.0 %) 99 (79.1 %) 94 (71.6 %) 58 (79.7 %) 106 (80.7 %) 46 (74.6 %) 
Close 12 (18.9 %) 25 (17.9 %) 20 (21.0 %) 17 (16.9 %) 28 (15.8 %) 9 (19.7 %) 
Electronic speed control 
Yes 2 (2.9 %) 3 (2.3 %) 2 (1.7 %) 4 (4.9 %) 5 (3.5 %) 2 (3.5 %) 
No 66 (97.1 %) 130 (97.7 %) 119 (98.3 %) 77 (95.1 %) 139 (96.5 %) 55 (96.5 %) 
Exiting the motorway 
Yes 2 (2.9 %) 1 (0.8 %) 1 (0.8 %) 2 (2.5 %) 2 (1.4 %) 1 (1.8 %) 
No 66 (97.1 %) 132 (99.2 %) 119 (99.2 %) 79 (97.5 %) 142 (98.6 %) 56 (98.2 %) 
Gender 
Female (n = 13) 31 (45.6 %) 69 (48.1 %) 61 (50.8 %) 39 (48.1 %) 76 (52.8 %) 24 (42.1 %) 
Male (n = 14) 37 (54.4 %) 64 (51.9 %) 59 (49.2 %) 42 (51.8 %) 68 (47.2 %) 33 (57.9 %)  

Table 4 
Statistics of the logistic regression model.  

Statistics  

Number of parameters K associated with the explanatory variables 9 
Number of constants 3 
Number of drivers 27 
Number of events 201 
Number of observations 603 
Constant log likelihood L(c) − 384 
Constant Akaike information criterion 774 
Constant Bayesian information criterion 787 
Final log likelihood L(β̂) − 319 

Final Akaike information criterion 661 
Final Bayesian information criterion 714 

Adjusted likelihood ratio index (rho-bar-squared) ρ2 = 1 -
(L(β̂)-K )

L(c)
0.147  

Table 5 
Estimation results of the logistic regression model. Compliance with the VSLs is assessed 200 m after the gantry. The driver behaviour characteristics and the glance 
behaviour metrics are measured as mean values in the interval 200-300 m before the gantry. The distance to the next gantry and the number of lanes are measured in 
correspondence of each gantry.  

Variable Description Parameters Estimate t-stat. p-value 

– Constant α[∗70∗] − 0.832 − 4.19 < 0.0005 

– Constant α[∗50∗] 0.339 2.10 0.036 

– Constant α[50] 0.367 1.27 0.205 

Speed Speed of the subject vehicle before the *70* gantry in km/h β[∗70∗]
Speed  

− 0.0994 − 6.46 < 0.0005 

Speed Speed of the subject vehicle before the *50* gantry in km/h β[∗50∗]
Speed  

− 0.0623 − 5.15 < 0.0005 

LowSpeed Binary variable equal to one when the speed of the subject vehicle before the 50 gantry is lower than 56 km/h β[50]
LowSpeed  

0.730 2.10 0.036 

Acc Acceleration of the subject vehicle before the *70* and *50* gantry in m/s2 
β[∗70∗, ∗50∗]

Acc  
− 1.47 − 3.67 < 0.0005 

RelSpeed Relative speed (leader speed - subject vehicle speed) before the *70* gantry in km/h β[∗70∗]
RelSpeed  

− 0.0443 − 1.71 0.087 

NoLead Binary variable equal to one when there is no lead vehicle before the *70* gantry β[∗70∗]
NoLead  

0.0712 0.08 0.932 

pEyesOnRoad Proportion of time with eyes-on-road before the *70* gantry β[∗70∗]
pEyesOnRoad  

1.82 1.71 0.087 

DistNextGan Distance to the next gantry in m βDistNextGan  − 0.00253 − 3.07 0.002 
Nlanes Number of lanes at the location of the *50* gantry β[∗50∗]

Nlanes  
− 0.522 − 2.73 0.006  

S.F. Varotto et al.                                                                                                                                                                                                                               



Accident Analysis and Prevention 150 (2021) 105939

8

impact on compliance. 
Several driver behaviour characteristics of the subject vehicle before 

each gantry have a significant impact on compliance afterwards. Drivers 
are more likely to comply at lower speeds. The impact of speed on 
compliance is significantly higher after the 70-flashing VSL than after 
the 50-flashing VSL. Drivers are more likely to comply after the 50 VSL 
when their speed is lower than the speed limit. Speed included as a 
linear predictor did not have a significant impact on compliance. Drivers 
are more likely to comply after the 70- and the 50-flashing VSLs when 
their acceleration is low. The effect of acceleration on compliance does 
not differ significantly between the 70- and the 50-flashing VSLs. Ac-
celeration did not have a significant impact on compliance after the 50 
VSL. Drivers are more likely to comply after the 70-flashing VSL when 
they are approaching a slower leader (p-value = 0.087). The relative 
speed did not have a significant effect on compliance after the 50- 
flashing and the 50 VSLs. The time headway did not have a significant 
impact on compliance. Lane changes did not influence compliance 
significantly. 

Various characteristics of the road segment significantly influenced 
compliance. Drivers complied more often when the distance between 
gantries was shorter. This effect did not differ significantly between 
VSLs. Drivers were more likely to comply after the 50-flashing VSL when 
the number of lanes in the road section was smaller. In contrast, the 
number of lanes did not have a significant impact on compliance after 
the 70-flashing and after the 50 VSLs. The presence of an electronic 
speed control system did not have a significant impact on compliance. 
Exiting the motorway after the 50 VSL did not influence significantly 
compliance. 

The glance behaviour of the driver had a significant impact on 
compliance after the 70-flashing VSL. Drivers are more likely to comply 
when the proportion of time with eyes-on-road is larger (p-value =
0.087). However, the proportion of long glances off road and count of 
switches between on and off-road glances did not have a significant 

impact on compliance. Glance behaviour did not have a significant 
impact on compliance with the 50-flashing and with the 50 VSLs. The 
proportion of time when the gantry was visible and when the gantry was 
visible and active did not have a significant impact on compliance. 

The gender and the age of the driver did not have a significant impact 
on compliance. In addition, we tested a driver-specific error term and an 
event-specific error term. Both resulted to be non-significant and 
therefore were not included in the final specification of the model. 

To analyse the effect of changes in the explanatory variables on the 
probability to comply, the probability to comply was calculated for 
observations in which only one variable was changed while keeping all 
the other variables fixed. In the baseline observation, the speed was 
equal to 90.05 km/h before the 70-flashing VSL, decreasing to 79.18 
km/h before the 50-flashing VSL, and to 42.55 km/h before the 50 VSL. 
The acceleration was equal to − 0.251 m/s2 and the relative speed was 
− 1.54 km/h. The distance to the next portal was equal to 295 m and the 
number of lanes in the road section was equal to 3. The proportion of 
time with eyes-on-road was 87.5 %. The characteristics of the baseline 
condition were chosen based on the mean values in the sample. The 
probability to comply after the 50 VSL is equal to 59 % when the speed is 
higher than 56 km/h (vs. 75 % in the baseline observation). Fig. 3 
presents the results for the continuous variables, which are all consistent 
with previous discussions. Visual inspection suggests that low speeds 
and low accelerations have the strongest impact on compliance after the 
70- and the 50-flashing VSLs. The other variables have a medium to 
moderate effect on compliance. 

3.4. Validation analysis 

A validation analysis was performed in which the final model in 
Table 5 was compared to a logistic regression model that has only a 
constant. The aim of this analysis is to evaluate the final model ability to 
forecast the responses of drivers not comprised in the estimation sample. 

Fig. 3. Impact of the explanatory variables included in the model on the probability to comply after the 70-flashing VSL (blue solid line), 50-flashing VSL (green 
dashed line) and 50 VSL (red dotted line). The variables are listed as follows: (a) speed; (b) acceleration; (c) relative speed; (d) distance to the next gantry; (e) number 
of lanes in the road section; (f) proportion of time with eyes-on-road (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article). 
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Ideally, the final model should be applied to other databases to under-
stand its predictive ability. Given that we do not have other comparable 
databases at the time of writing, we performed an out-of-sample vali-
dation approach. A five-fold cross validation method was preferred 
because of the small number of drivers available (Hastie et al., 2009). 
We randomly divided the drivers into five groups, estimated the models 
based on the observations of four groups (80 % of the drivers), and 
validated the models based on the observations of the group not 
comprised in the estimation sample (20 % of the drivers). The validation 
procedure was repeated five times. The final log likelihood of the models 
on the validation subsamples was chosen as an evaluation metric to 
compare the model performances. This metric allows us to identify 
which model has the highest prediction ability out of sample. The 
smaller the log likelihood, the higher the accuracy reached. 

Table 6 presents the final log likelihood values of the models on the 
validation subsamples. The last column shows the improvement in ac-
curacy. The findings show that the final model has higher prediction 
accuracy than the constant model on all validation subsamples. The final 
model shows the smallest accuracy improvement when it is validated on 
group two, meaning that some drivers in this group behaved differently 
than the other drivers did. These differences might be explained by 
heterogeneity in personality traits or driving styles that are not captured 
in the final model. This analysis suggests that the final model is suitable 
to predict the responses of individual drivers not comprised in the 
estimation sample. 

4. Discussion and conclusions 

This study investigated the main factors associated with driver 
compliance with variable speed limits (VSLs). The variable speed limit 
database of Rijkswaterstaat was integrated into the Dutch passenger car 
data in the UDRIVE naturalistic driving database. The video data were 
manually annotated and the resulting dataset was analysed in a logistic 
regression model. This model allowed us to investigate the link between 
multiple explanatory variables and the observed behaviour of drivers. 
Caution must be applied in the interpretation of the results due to the 
relatively small number of observations available, the sample of par-
ticipants, and the type of AID system. The findings are relevant to the 
development of driving assistance system and to the assessment of the 
impacts on traffic operations. 

4.1. Main findings 

The speed and the acceleration of the subject vehicle observed before 
the gantry are the main factors influencing compliance with the 70- and 
the 50-flashing VSLs. These findings are consistent with those of Lee and 
Abdel-Aty (2008) and Conran and Abbas (2018) who showed that 
compliance is high when the speed change implied by the VSL is small. 
We can conclude that drivers are more likely to comply when they start 
to reduce their speed early. The initial speed has a larger effect on 
compliance after the 70-flashing than after the 50-flashing VSL. A 

possible explanation could be that drivers are more constrained by the 
surrounding traffic conditions as they approach congestion. Drivers are 
also more likely to comply with the 70-flashing VSL when approaching a 
slower leader. This result indicates that they are influenced by the re-
sponses of the drivers downstream in medium-dense traffic conditions. 

Glance behaviour is moderately associated with compliance with the 
VSLs. Drivers are more likely to comply with the 70-flashing VSL when 
the proportion of time with eyes-on-road is larger. This result reflects 
those of Peng et al. (2013) who found that eyes-off-road have a negative 
impact on lane keeping performance. The finding suggests that 
compliance increases with awareness of the traffic situation down-
stream. Further analysis is needed to link glance behaviour to the visi-
bility of the VSLs on the gantries and to engagement in secondary tasks. 

The characteristics of the road segment are significantly associated 
with compliance with the VSLs. Drivers are more likely to comply when 
the gantries are closer. A possible explanation could be that they can see 
multiple gantries at a time as the inter-gantry distance decreases. 
Further research is needed to investigate if drivers can indeed see mul-
tiple gantries simultaneously, or if this result can be explained by other 
characteristics of the road segment that are associated with the inter- 
gantry distance. Drivers comply less with the 50-flashing gantry when 
there are more lanes and the road is wider. A possible explanation could 
be that drivers were approaching a connection between motorway 
segments with distinct VSLs across the road section. Further research is 
needed to investigate the impact of road width on compliance after the 
70-flashing and the 50 VSLs. 

4.2. Recommendations for future research 

The study analysed the main factors associated with driver compli-
ance with the VSLs in an AID sequence on Dutch motorways, in situa-
tions during which the state of the VSLs did not change. The number of 
events available was limited to 201. Certain factors in this study (rela-
tive speed and proportion of time with eyes-on-road) were statistically 
significant at the 90 % confidence level but not at the 95 % confidence 
level. Future studies are suggested to investigate driver compliance with 
the AID system based on a larger sample of observations. The results are 
also influenced by the traffic conditions in which the Dutch AID system 
is activated. Further investigations are needed to generalize the results 
to other AID systems and to different traffic conditions (e.g., free-flow 
traffic). 

The generalizability of the findings towards the general population 
of drivers is subject to certain limitations. The sample of participants 
was not representative of the general Dutch population of drivers in 
terms of age, years of driving experience, and gender. Furthermore, the 
sample size was relatively small (27 drivers). The validation analysis 
suggests that, to increase the prediction ability of the model, future 
studies should investigate the effect of driver characteristics on 
compliance with the VSLs. Finally, a single vehicle model (Renault Clio) 
was driven by all participants. Future studies are needed to understand 
the generalizability of the findings to other types of vehicles and to 
advanced driving assistance systems. 

Engagement in secondary tasks was not analysed in this study 
because the measures derived from annotation showed low levels of 
inter-rater reliability. To evaluate the effect of secondary task engage-
ment on compliance with the VSLs, further investigations using different 
annotation procedures may be required. In this study, engagement in 
secondary tasks was coded as ‘true’ when at least one of the secondary 
tasks defined in the UDRIVE codebook (Carsten et al., 2017) was 
observed. Hence, annotators had to memorize the definitions of a rela-
tively large number of secondary tasks. Future studies might propose 
simpler definitions of engagement in secondary tasks and develop 
annotation procedures concentrating on individual secondary tasks (e. 
g., phone use, reading, smoking) as opposed to one global variable. 
Distinct buttons in the annotation panel for each type of secondary task 
can be introduced. 

Table 6 
Five-fold cross validation of the logistic regression model. C denotes the model 
that has only a constant and β̂ indicates the final model in Table 5.  

Validation 
subsample 

Drivers Observations Constant 
log 
likelihood 
L(c)

Final log 
likelihood 
L(β̂)

L(c) − L(β̂)
L(c)

1 6 123 − 78.6 − 69.9 0.1107 
2 6 117 − 78.9 − 72.7 0.0794 
3 5 123 − 82.0 − 69.2 0.1556 
4 5 120 − 74.6 − 61.4 0.1778 
5 5 120 − 74.3 − 63.5 0.1450 
M 5.4 121 − 77.7 − 67.3 0.1337 
SD 0.55 2.51 3.23 4.72 0.0388  
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4.3. Recommendations for practice 

Driver behaviour can be investigated in-depth in real traffic condi-
tions by using the data collection techniques (variable speed limit 
database, naturalistic driving data and video data annotation) and the 
data analysis methods (logistic regression model) developed in this 
study. This advanced database allows us to gain insights that are unique 
and have a high level of validity. The results have practical implications 
for the development of intelligent transport systems and for the impact 
assessment of these systems on traffic operations. 

Connected vehicle technologies and advanced driving assistance 
systems that account for the main factors identified in this study are 
required to replicate human driving style with VSLs. To increase the 
attention of the driver and elicit an early deceleration response while 
approaching the gantries, VMSs and VSLs could be also posted in in- 
vehicle devices (similar to the warning systems in Van Nes et al., 
2010; Farah et al., 2012; Farah and Koutsopoulos, 2014) using infra-
structure to vehicle communication systems. Based on these results, 
future studies should focus on developing systems as adaptive cruise 
control that gradually reduce the speed to comply with the VSLs while 
approaching the AID sequence. The driving assistance systems should 
account for within driver variability based on the driver state (propor-
tion of eyes-on-road) and characteristics of the infrastructure (distance 
between gantries and number of lanes). Drivers are expected to adopt 
advanced driving assistance systems based on these insights in a wider 
variety of situations. 

Traffic flow models that assess the effect of VSLs on traffic congestion 
may increase their accuracy by incorporating the main factors identified 
in this study. The results have shown that the traffic conditions, the 
driver state and the road characteristics explain part of the within driver 
variability in compliance with the VSLs. Most traffic simulation models 
currently available are not grounded on empirical results in naturalistic 
driving experiments. Based on the findings in this study, future work 
should develop advanced car-following models that describe driver 
compliance with the AID based on probabilistic decision rules, 
mimicking how drivers gradually reduce their speed and are influenced 
by the road characteristics (similar to the advanced car-following 
models incorporating driver distraction developed by Hoogendoorn 
et al., 2013; Saifuzzaman et al., 2015). Implementing this advanced 
car-following model into a microscopic traffic flow simulation, we will 
be able to forecast the effect of VSLs on traffic congestion realistically. 
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