
Measuring Energy Consumption during
Continuous Integration of Open-Source

Java Projects

Master’s Thesis

Robert Arntzenius





Measuring Energy Consumption during
Continuous Integration of Open-Source

Java Projects

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Robert Arntzenius
born in Heemstede, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl


©2024 Robert Arntzenius. All rights reserved.



Measuring Energy Consumption during
Continuous Integration of Open-Source

Java Projects

Author: Robert Arntzenius
Student id: 5643740

Abstract

Continuous Integration (CI) is a widely used quality-assurance measure within
software development. It empowers developers to spot bugs and integration issues
early in the development cycle and helps to maintain a coherent codebase, both in terms
of quality and styling, even in open-source environments. But CI might have a hidden
cost. Projects need to be built and tested continuously throughout the development
cycle. It is not uncommon for projects to have multiple commits per day, reaching
thousands of commits per year, with each commit having one or multiple build and
test cycles. In this thesis, over 200 open-source Java projects were measured with the
aim of making developers more aware of how much energy these builds can take and
the measures that can be taken to reduce energy consumption where possible.

Thesis Committee:

Chair: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. P. Pawełczak, Embedded Systems Group

r.f.arntzenius@student.tudelft.nl




Preface

I want to express immense gratitude to my supervisor Professor Zaidman, who helped me
after having spent over two months at an impasse, hopelessly looking for a subject that fit
my interest and ability. You guided me throughout this thesis giving valuable feedback at
every turn and never putting much pressure which gave me confidence in my own abilities.
I’m very proud of the research we were able to do.

I also want to thank Dr. Pawełczak for finding the time to read and judge this thesis.
Your evaluation and insights are greatly appreciated.

This thesis marks the end of my journey as a student. I began studying Computer
Science in 2017 without having seriously considered any other studies. Honestly, it was an
intuitive decision that turned out to be a perfect fit. Now, in 2024, I can finally conclude this
chapter and move away from the academic world to begin my working career.

Robert Arntzenius
The Hague, the Netherlands

September 27, 2024

iii





Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 History of CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Benefits of CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Considerations of CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Measuring energy consumption . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Servers and power consumption . . . . . . . . . . . . . . . . . . . . . . . 8

3 Experimental setup 11
3.1 Goal of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Repository list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 CI setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Experiments overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Alternate setup with caching . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Results 19
4.1 Energy consumption of Gradle Projects . . . . . . . . . . . . . . . . . . . 21
4.2 Energy consumption of Maven Projects . . . . . . . . . . . . . . . . . . . 22
4.3 Energy-time correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



CONTENTS

4.4 Phase proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Discussion 31
5.1 Reliability Gradle results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Hardware accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Maven results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Yearly estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Highest energy readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Influence of dependency-caching . . . . . . . . . . . . . . . . . . . . . . . 42

6 Related Work 45
6.1 Short-paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 E-Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Green Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Threats to Validity and Limitations 47
7.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Crashes and build fails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Environmental factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Conclusions and Future Work 49
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

vi



List of Figures

3.1 Communication sequence diagram of the experiment for one project. . . . . . . 15
3.2 Hardware setup schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Example of Gradle experiment down-scaled 1000 times. . . . . . . . . . . . . 19
4.2 Example of Gradle experiment zoomed-in to single second (low intensity). . . . 20
4.3 Example of Maven experiment zoomed-in to single second (high intensity). . . 20
4.4 Total energy consumption from the upper third of Gradle projects ordered by

energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Total energy consumption from the middle third of Gradle projects ordered by

energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Total energy consumption from the lower third of Gradle projects ordered by

energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Total energy consumption from the upper half of Maven projects ordered by

energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 Total energy consumption from the lower half of Maven projects ordered by

energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Scatter-plot of energy-runtime correlation for Gradle projects; dotted lines rep-

resent minimum power draw (low) and TDP (high) of the system respectively. . 26
4.10 Scatter-plot of energy-runtime correlation for Maven projects; dotted lines rep-

resent minimum power draw (low) and TDP (high) of the system respectively. . 26
4.11 Percentages of energy spent compiling during CI for Gradle projects. . . . . . . 28
4.12 Percentages of energy spent compiling during CI for Maven projects. . . . . . . 29

5.1 Z-score distribution of combined normalized data. . . . . . . . . . . . . . . . . 32
5.2 Device measuring error bounds for different runtimes. . . . . . . . . . . . . . . 34
5.3 Screenshot of recurring error during Maven experiments. . . . . . . . . . . . . 35
5.4 Total energy consumption from a subset of Maven projects with caching. . . . . 35
5.5 CPU usage of highest consuming projects. . . . . . . . . . . . . . . . . . . . . 39
5.6 Accumulative Disk IO blocks read by highest consuming projects; Y-scale is

logarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



LIST OF FIGURES

5.7 Accumulative Disk IO blocks written by highest consuming projects; Y-scale is
logarithmic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Total energy consumption from projects with caching. . . . . . . . . . . . . . . 43

viii



Chapter 1

Introduction

The software development industry seems ever-growing. We can see this in both the grow-
ing number of software developers worldwide [35] and the market growth and projections
of the industry as a whole [34]. With this growth and all sorts of industries looking to
digitize and electrify their respective processes, the world’s collective energy consumption
keeps increasing as well [13, 22]. Industries electrifying and digitizing their processes is
often a step towards carbon neutrality [38, 26]. However, we should not forget that today’s
electricity sources are still largely non-renewable

The world’s combined energy mix as of 2023 still adds up to only forty percent of our
energy mix being low-carbon sources, the other sixty percent being resourced from mostly
coal (35.5%) and gas (22.5%) [31]. Depending on where we are in the world, the electricity
we use ranges from less than 30 grams of CO2 equivalents per kilowatt-hour to over 1000g
CO2e per kWh with the worlds average being 481g CO2e per kWh according to data from
2023 [31]. This means that we need to think carefully about how we spend this energy
because there is a major cost to the energy we generate today and for the foreseeable future.

Together with the technological innovations and growth of the software industry, we
have also become more reliant on the quality of this software. The importance of software
reliability can hardly be overstated given all major industries including healthcare, travel,
and global economics depend on software in one way or another. While this has been known
for a long time, we have recently seen how vulnerable this makes us when a bug oversight
in a software update of CrowdStrike led to over 4200 flights being canceled, hospitals can-
celing non-emergency surgeries, and payment systems being affected [28, 30]. This is an
example of how vulnerable we are to failure in the software development industry in an
extreme case, however, there are of course many ways the software industry successfully
prevents these mistakes from reaching the end-user.

In software development, one of the ways software quality is ensured is by continuously
building and testing the application throughout the development lifetime of a project [7].
This allows faulty code to be spotted at an early stage before it reaches any release version.
While tests can be performed manually, in modern best practice it is most often done auto-
matically on (dedicated) servers where not only tests are performed, but also other types of
quality assurance measures, such as static analysis, branch coverage analysis, code-format
checking, dependency checks and integration testing. The continuous application of such

1



1. INTRODUCTION

a collection of processes we call Continuous Integration (CI) [15]. CI allows developers
to continuously integrate small changes into major software systems while maintaining the
reliability of these systems. This does come at the cost of having to build and test these large
complex software systems typically multiple times a day and for many different versions to
be able to perform this quality assurance, which can be very resource-intensive.

So where does this leave the software development industry? On one hand, CI is a
safety measure that the software development industry has embraced for years now. It is
estimated that over forty percent of open-source projects make use of CI [17, 19]. It allows
us to find bugs earlier and helps large codebases to be coherent, both in terms of coding
style and quality. On the other hand, CI might also have a hidden cost that comes from its
resource-intensive components such as building and testing. What is the cost of this process
to our environment and is this a sustainable way to reach the goal of reliable code? Is there
a way to lighten the load of CI or is its energy consumption just the cost of the quality it
produces?

1.1 Research questions

This section will give an overview of the questions we intend to answer with this research.
Our goal is to understand the energy cost that comes with the essential parts of CI: building
and testing. We of course want to be able to measure how much energy is being used by
software development projects. In order to target a more reasonable and specific scope we
decided to only look at open-source Java projects since Java is still one of the most used
languages in software development [9]. As there is no such thing as a “typical” Java project
the main question we are interested in is:

RQ1. How much energy is used by an open-source Java project during the
build and test phases of CI?

This is the question the rest of the thesis and the subjects discussed are shaped around.
We cannot answer this question for all Java projects that exist, but this thesis aims to give
an overview of a sizable representative subset. Another aspect of CI we want to understand
is how energy use is distributed across the runtime of its CI. We typically separate CI into
phases that all contribute to the overall quality assurance of the project. For example, you
can distinguish between retrieving the repository, building the application1, and testing the
application and describe these as different phases of the CI pipeline. This leads us to our
second research question:

RQ2. Which phases of the CI pipeline use more and which use less energy?

Lastly, we want to investigate the parts of a project that make it more or less energy-
efficient. We can do this by looking at overlapping characteristics in and resource allocation
of projects that consume a lot of energy. We also will be diving deeper into the impact

1We will be using the terms building and compiling interchangeably throughout this research.

2



1.2. Contributions

that caching has on energy usage and whether this could reduce the energy spent when
continuously building and testing these projects in a significant way.

RQ3. Which characteristics of a Java project impact its energy use the most?

RQ4. How does dependency caching affect the runtime and energy usage of
large Java projects?

Answering these four questions will provide deeper insight into the scale at which en-
ergy is being used during CI, where the energy is used, what characteristics of a project
cause it to use this energy, and lastly, whether we can reduce this amount.

1.2 Contributions

The most important contribution this thesis provides is mainly for developers to gain insight
into the energy consumption of CI in general. Software developers typically have little
knowledge about energy consumption [29]. Chowdhury et al. and Verdecchia et al. both
point out that software engineers need to have awareness about and feedback on energy
consumption before they can adjust their programming practices and behaviour [10, 36].
This research is especially useful because of its relatively large scale and because the topic
of energy consumption in the software development industry is of growing importance.
Besides this and providing answers to the research questions, this thesis also produces an
automated setup that can be used to replicate the experiment. The code for the experiment
can also be adapted to fit the purpose of a wide range of future research [3].

1.3 Thesis overview

This thesis is structured as follows. In Chapter 2 we will review the necessary background
on CI and energy measuring, especially regarding CI servers. Following that, Chapter 3
explains the experimental setup designed to answer our research questions. In Chapter 4 we
review the experiments’ results and make observations on the gathered data. We follow this
up with a discussion in Chapter 5, providing a deeper analysis of the results. In Chapter 6
we will briefly go over some work related to our research after which we discuss some
threats to validity and limitations in Chapter 7. Finally, in Chapter 8, we draw conclusions
and discuss future work.

3





Chapter 2

Background

To provide proper context on the subject of this thesis, this chapter will give an in-depth
overview of Continuous Integration (CI); its current state in modern software development,
the benefits it provides to the developer and end-product, and how it became industry stan-
dard. We also explain the intricacies of energy measuring and how these apply to our
research.

2.1 History of CI

As explained in Chapter 1, in software development software quality is often ensured by
continuous thorough testing throughout the development lifetime of a project. This has the
main purpose of spotting faulty code at the earliest stage possible before it reaches any re-
lease version. These tests can be performed manually, but in modern best practice, it is most
often done automatically on dedicated servers together with other types of quality assurance
measures, such as static analysis, branch coverage analysis, code-format checking, regres-
sion testing, dependency checks, and integration testing are applied as well. The continuous
application of such a collection of processes we call Continuous Integration (CI).

CI has existed for a long time in one form or another—for example with the introduc-
tion of automatic build tools such as C/C++ Makefiles—but it was in the late 1990s when
the book Extreme programming Explained was published which introduced CI as part of
the software development methodology of Extreme Programming [15, 2]. At the time, pre-
release integration was the norm. The software development methodology aimed to improve
software quality and responsiveness to changing customer requirements. Quality assurance
measures are automated and moved to dedicated machines where the project is built and
tested in a clean environment. This makes building the software easier and more repeatable.
In the publication, the methodology emphasizes short development cycles, automated test-
ing, and frequent releases [4]. The motivation Beck describes for these elements is that they
provide continuous and more specific feedback which allows developers to be aware of and
correct failing tests within a very short time frame.

From its origin in Extreme Programming, we see that CI is in many ways bound to Agile
practices. This combination works very well because both CI and Agile methodologies are

5



2. BACKGROUND

defined with short release cycles in mind [37]. Short here is of course a relative term and
some Agile methods have stricter definitions on this than others. For instance, Extreme
Programming explicitly states that the system is integrated and built many times a day.
Most Agile methods in the right context (where short development cycles are reasonable)
can use CI and some, like Scrum, KanBan and of course Extreme Programming almost
always use CI in software development [27, 1].

While the core concept of CI has stayed relatively stable, in modern software develop-
ment the integration cycle does not always stop with CI, but often continues as far as the
release phase; the whole process is then called CI/CD where CD stands for either Continu-
ous Delivery or Continuous Deployment. These concepts serve as an extension of CI where
the end goal is for the main integration branch to always be in a state that is ready to be
released. The key difference is that in Continuous Delivery, this ready-to-be-released state
is where the automation ends and in Continuous Deployment the project is automatically
released to production in short cycles. These extensions to the CI pipeline obviously fit the
philosophies that were already present in the original publication of Extreme Programming.

The growth of CI in popularity also caused the infrastructure to apply CI to a project to
be very accessible. There are many options for CI services like Jenkins, TravisCI, CircleCI,
and since 2018 even from GitHub with GitHub Actions to be deployed on dedicated servers
from the likes of Amazon, Microsoft or Google. This allows less experienced developers to
set up CI very easily. These CI services use workflow files that describe the steps that are
taken in the project’s CI. It also allows with only a few lines of code for the CI cycle to be
executed in different language versions, on different operating systems, or both [16].

2.2 Benefits of CI

Many developers and software development companies swear to the methodologies that
surround CI and this is not without reason. One of the benefits of CI is that complex inte-
gration can take a lot of time and it is hard to estimate beforehand how long it will take. Do-
ing integration in continuous small cycles removes this unknown element from a project’s
development. Small incremental integration is typically very predictable and thus removes
many of the risks that can form regarding delivery dates. For many software projects, this
predictability can be a great asset.

CI is also useful specifically for open-source projects because these lack a specific team
of trusted developers and need to check if the code is up to standard with every integration.
Here CI allows for a sometimes loose collection of developers to have a consistent codebase,
both in terms of quality and writing style, while also allowing the developers to make small
or incremental additions that are immediately integrated into the codebase. This might be
why it is observed by Hilton et al. that there is a likely correlation between a project’s usage
of CI and its popularity on GitHub.

In addition to these advantages, CI also promotes early detection of bugs and integra-
tion issues. By automating the testing and integration process, CI ensures that problems
are identified and addressed promptly, reducing the chances of major issues arising later in
development. This leads to faster feedback loops and more reliable code, ultimately im-

6



2.3. Considerations of CI

proving overall software quality and reducing the time and effort needed for debugging and
troubleshooting.

2.3 Considerations of CI

When CI is used well by a team of developers it can have great benefits as seen in Sec-
tion 2.2, but there are ways CI can be over-relied-on, wasteful, and ineffective. In contrast
to other styles of integration, CI is by definition done in short release cycles and frequent
integration into a single main branch. This is not the case for other integration methodolo-
gies such as feature branch integration which allows for a wide range of release schedules
to adhere to its core concepts. This can be quite wasteful. For one, when a team relies on
how responsive their CI is, it can impact the work-time efficiency of development.

However, when we talk about CI being a wasteful process, we are mostly referring to
the resources it uses and the cost of those. As we have stated, CI is by definition a process
that is continually applied, most often referring to at least once a day, but in its original
definition even many times a day. This can lead to a lot of computational power that gets
invested in this process. Besides this, there are very few downsides to CI, which leads to a
process that has very obvious benefits and a mostly unseen downside.

2.4 Measuring energy consumption

Measuring the energy consumption of software is not as simple as it may sound at first
glance. It involves a lot of decisions on what to measure and with what tools. Since software
is never a completely isolated instance—there is always your operating system running in
the background for example—there is no definitive way that software ought to be measured.
Often energy consumption is measured by the use of energy profilers. These are software
tools that estimate the power consumption of a system or even specific processes. These
profilers rely on estimation models that measure the load of certain system components,
most importantly the CPU, and then estimate based on the specific system what energy use
the system has and what portion the software is responsible for.

Because of their ease of use, these energy profilers are the most used way of measuring
energy consumption in studies about software, but they are not as reliable as hardware
power monitors since these profilers either only consider certain components—specifically
the CPU usage—or they rely on estimation models [11, 20]. The estimation models have
been shown to differ significantly depending on which profiler is used [23], which leads to
the conclusion that they can not be relied on exclusively.

We typically distinguish between black-box and white-box measuring [24]. These refer
to the insight we have into the energy cost of specific tasks. White-box measurements
allow us to see exactly which elements of the process are responsible for how much energy
consumption. In black-box measuring you have no idea where the energy is used, only the
total. This form of energy consumption measurement can be very useful through a lens
of comparison like regression testing as done in E-Compare: Automated energy regression
testing for software applications by Hagen [18].

7



2. BACKGROUND

In addition to the challenges mentioned, measuring energy consumption in software is
further complicated by factors such as workload variations, background processes, and even
hardware characteristics. All of these can influence the accuracy of energy measurements.
Moreover, software optimization techniques aimed at reducing energy usage might have
varying impacts depending on the specific environment in which they are deployed, making
it difficult to generalize findings.

2.5 Servers and power consumption

When we want to make claims about total energy usage, we need to consider on which
system(s) the software is being run. In the case of CI, this is mostly done on servers,
typically either private servers or cloud-based CI servers. In both cases, the servers often
run CI services from GitHub Actions, Jenkins, TravisCI, or CircleCI. One of the biggest
obstacles of measuring the energy consumption of these servers is that we do not know
what type of hardware is used. This varies a lot between different servers and pricings
listed by these servers. Open-source projects typically use cloud-based servers, the most
common options for these are Amazon Web Services, Google Cloud, and Microsoft Azure.

Servers are computer systems designed to allow many different users to perform tasks
simultaneously. They are equipped to be extremely powerful to make this possible but
consist of the same basic hardware components. These server components are designed for
way greater loads and draw way more power. Interestingly, a primary concern while design-
ing servers in many instances is its energy efficiency because this reduces the expenses of
keeping the server running. However, while the hardware manufacturers are always trying
to optimize their components, when you look at the actual component specifications they
typically do not have the most impressive efficiencies compared to some laptop or desktop
CPUs.

Servers often use CPUs from the AMD EPYC or Intel Xeon series. These CPUs are
very powerful compared to normal CPUs and can reach thread counts of 192. In speed,
they can beat any desktop CPU in every task that can be multi-threaded, but with incredible
power comes incredible power-draw. It is not uncommon for modern server CPUs to reach
a Thermal Design Power (TDP) of 300 Watts or higher1. When looking at the TDP per
thread, we see efficient laptop and desktop CPUs have similar capabilities and sometimes
even beat high-end server CPUs. Some examples are shown in Table 2.5.

There is one critical aspect that makes the comparison even harder to estimate: servers
have a lot more overhead in terms of energy consumption. The most important extra power
consumption comes from the cooling systems that are needed for these major servers. The
measure of how much energy is used effectively is called Power Usage Effectiveness (PUE).
For large data centers like those of Amazon, Google, and Microsoft, this PUE value typ-
ically lies between 1.1 and 1.5, which means that for every Watt of power that goes to a
system component, 0.1–0.5W goes to external factors such as cooling [8].

1Thermal Design Power describes the amount of heat measured in Watts that a component can withstand.
This is not the same as power-draw, but the two are closely related.

8



2.5. Servers and power consumption

Table 2.1: CPU specifications∗ and Watts per thread.

CPU Class
Clock speed

(GHz)
#threads TDP (W) Watts per thread∗∗

Intel Core
i5-13600T desktop 1.8 20 35 1.75

AMD Ryzen 7
6800U laptop 2.7 16 28 1.75

AMD EPYC
7702 server 2.0 128×2 200×2 1.56

Intel Xeon
Platinum 8570 server 2.1 112×2 350×2 3.13

AMD EPYC
9684X server 2.6 192 400 2.08

AMD Ryzen
Threadripper
PRO 3995WX

server 2.7 128×2 280×2 2.19

∗ Specifications taken from https://www.cpubenchmark.net
∗∗ Does not account for clock speed. Lower is more energy efficient.

Looking at these aspects of servers and comparing them to those of a smaller PC leads
us to believe that an efficient PC, while generally taking more time to execute a task, will
use less energy on average for the same task than a server would and will continue this
research under this base assumption.

9

https://www.cpubenchmark.net




Chapter 3

Experimental setup

To get a well-formed understanding of the current state of CI regarding its energy consump-
tion we need to conduct experiments. These experiments aim to gather energy consumption
measurements on a list of software projects during the build phase. This chapter will provide
insight into the important decisions made while designing the experimental setup and give
an overview of the elements involved in the automated process. The chapter is divided into
sections, each reviewing one of these parts in detail. The chapter concludes with Section 3.6
giving an overview of the complete experimental setup.

3.1 Goal of experiments

The experiments should provide reliable energy consumption data on a list of software
projects that form a representative sample of open-source software in general. This means
we require the projects to be ongoing and use CI to maintain code quality and reliability.
Besides a sizable sample of projects, an automated setup for executing and measuring the
CI is needed. This experimental setup needs to be as automated as possible and should
prioritize repeatability. Each measurement should be repeated five times to ensure the values
are consistent and, as is usual in energy measuring experiments, there needs to be a wait time
implemented between experiments to ensure this repeatability [12].

While finding these projects’ total energy consumption data will provide interesting
metrics by themselves, we also set the goal to segment the energy metrics by the individual
phases of the CI pipeline where possible. This will allow us to look deeper into which
parts of the CI process consume the most and least energy. We will also need an additional
alternative experimental setup with enabled caching after a first successful build to see how
this influences runtime and energy use.

With these goals in mind, the experiments will allow us to answer three of our research
questions:

RQ1. How much energy is used by a Java project during the build and test
phases of CI?

RQ2. Which phases of the CI pipeline use more and which use less energy?

11



3. EXPERIMENTAL SETUP

RQ4. How does dependency caching affect the runtime and energy usage of
large Java projects?

Experiments to answer our third research question will be described later on in Sec-
tion 5.5.

3.2 Hardware setup

While power consumption in software projects is generally measured with energy profilers
because of their ease of use, they are not as reliable as hardware power monitors since
these profilers either only consider certain components—specifically the CPU usage—or
they rely on estimation models [11, 20], while hardware power monitors have access to the
actual total power that a system uses to very high precision. This makes energy profilers
very useful for relative measurements like comparing different versions of similar projects
to each other. For our purposes however, we also want the absolute measurements to be as
accurate to the actual power consumed as possible. For this reason, we decided on a power
monitor.

The power monitor we use is the AVHzY CT-3. This is a small power monitoring de-
vice, which can throughput power via a USB-C in and output which can be measured on
the device itself or you can connect it to a computer via (micro-)USB. The power monitor
can be read in two ways, via the proprietary software or by use of its C# library1. In terms
of accuracy, the device is listed to have a voltage-current resolution accuracy of 0.0001V
0.0001A 0.1%+2d. In practice, this means that the error is about 0.1% for a single measure-
ment for both the current and the voltage alike. As we take more and more measurements,
the relative error will shrink as we will see in Section 5.2.

Since we need accurate energy data provided by a power monitor solution and we need
isolated measurements, the only feasible way forward is by using a local machine on which
the CI will be simulated. For this, we use a mini-PC without an internal battery so we
can directly measure the power intake. The specific device we decided on is the MinisFo-
rum EM680 2. This power-efficient device fits the established criteria and is well-equipped
to build and execute most resource-intensive projects, primarily because of its 8-core, 16-
thread Ryzen 7 6800U CPU and 16GB RAM. This is the same CPU as was listed in Ta-
ble 2.5, which we concluded to be very energy-efficient.

To get the most clean isolated measurements possible, we need to provide the system
with a lightweight OS with minimal background processes. For this, we decided to use
Ubuntu. To make sure the system has all basic necessities for building Java projects, we
provided it with four Java versions managed by an installation of SDKMAN!, Python2,
Python3, and Docker; the specific versions are listed in Table 3.2. We set up a separate user
on the system with only the basic permissions but did add it to the Docker group, which
allows it to use Docker. These restrictions ensure that we have a lot of control over where
to locate any residual cached information that could impact the reliability of the results.

1Both can be found on this forum: https://forum.avhzy.com/forum.php?mod=viewthread&tid=190
2Detailed specifications of the MinisForum EM680 can be found at https://store.minisforum.com/p

roducts/minisforum-em680

12

https://forum.avhzy.com/forum.php?mod=viewthread&tid=190
https://store.minisforum.com/products/minisforum-em680
https://store.minisforum.com/products/minisforum-em680


3.3. Repository list

Table 3.1: Manually installed software and versions.

Ubuntu 22.04.4 LTS
(GNU/Linux 5.15.0-119-generic x86 64)

Java

8.0.402-tem
11.0.22-tem
17.0.10-tem
21.0.2-tem

SDKMAN! script: 5.18.2
native: 0.4.6

Docker 26.1.1

3.3 Repository list

Before we describe the CI process we will be applying to our projects, we have to define
what projects we will be measuring. Our list of repositories is based on a list of locally
buildable Java projects from the results of Khatami and Zaidman [25]. The original set
of projects the study used was aimed to be made up of “projects that are likely to be in a
position to make optimal use of quality assurance practices,” which aligns with our goals
of being a representative set of Java projects that use CI for quality assurance. From their
original set of 1454 Java projects, they found 202 Gradle projects and 457 Maven projects
to be buildable locally.

Gradle and Maven are build tools for Java application development that handle all the
building, deployment, and testing of the application and allow these complex processes to be
executed with short commands that are independent of the project. This is very useful in our
case because it allows for a very simple command pipeline that will work for all applications
of a specific build tool. For example, the command gradle build will completely build
and test an application from scratch. This also allows us to differentiate between the major
phases of the CI. While we could make a setup that allows for a single list with both Gradle
and Maven projects, we decided to divide them into two separate lists.

This means that we only need to gather very basic information about each of the repos-
itories, some of which we already have from the original projects list. The info we need
about each repository for the automated setup to be applied in particular is the repository
owner and name, a commit hash of a working version of the application, the build tool
(Gradle or Maven), and the required Java version. These will allow for the setup to go
through the whole list without interference. From Khatami and Zaidman we already have
the repository owner and name. It also provides us with commit hashes and the build tool
used. However, to keep the data more relevant, we opted for more recent commits. For this
we used a simple Python script that scrapes GitHub for commits and returns the hash of
the most recent commit that passes all workflows, this gives us an indication of whether the
specific commit works correctly assuming there is a CI workflow present.

Finding the assumed Java version for a project was revealed to be far from trivial. To
find this information, we tried building all projects once on the system. Each project was
tested on Java 8, the ones that failed then on Java 11, and so on for versions 17 and 21.

13



3. EXPERIMENTAL SETUP

While this method is far from perfect, it does result in a list where all projects are tested and
do actually build and run the tests correctly on the system in our setup. Our resulting lists
consist of a total of 122 Gradle and 82 Maven projects.

3.4 CI setup

A CI pipeline design is often unique to the specific project it belongs to and can consist
of many components; typically this includes building the project, unit testing, integration
testing, and static analysis. The particular CI configuration of a project is described in
a YAML file; a human-readable configuration file that lays out steps that can be taken
from a clean containerized environment. Containerization is used most importantly because
it allows for parallel, repeatable testing while maintaining flexibility. This means that a
server can have many containers running simultaneously, each with its own project, and
even have these containers behave like different operating systems within the containerized
environment.

These advantages of containerization are important for large-scale servers with little
oversight of what kinds of software will be deployed on their system. Our use case is very
different however. For example, while for a server it is essential that the system is secure
and cannot be breached by any malicious user, the vulnerability of our system is not as much
of a concern as it does not have any valuable data on it and we will not be deploying multi-
ple projects on the system simultaneously. It has also been shown that containerization and
virtualization lead to increased energy use [32]. While we know that most CI servers do use
containerization, we want to make a conservative estimate, so with these considerations in
mind, we designed our setup to be run on the system itself without the use of containeriza-
tion. Some projects may involve containerization in their CI implementation. Because this
is essentially part of the project’s implementation, we allow these containers. We decided
to use the same design for a CI pipeline for each project with the essential components:
compiling and testing.

The CI pipeline uses a simple bash script which uses the build tools in three steps: first,
it clones the repository, then it compiles the application and lastly, it runs tests. Cloning a
repository is trivial and as mentioned previously the build tools Maven and Gradle need only
single commands for compiling and testing respectively. The specific commands for Gradle
are ./gradlew assemble to compile and ./gradlew check to run tests, for Maven these
are ./mvnw compile and ./mvnw test respectively. These steps make for a short bash
script of only a few lines per step. This bash script needs only slight alteration based on
the information of the specific repository detailed in Section 3.3. The script is therefore
generated with these details filled in by a Python script.

Lastly, to make sure each experiment starts from scratch, a cleanup script was written.
The goal of this script is to remove all caching files and directories; notable caching lo-
cations are the project directory, Docker containers, and the caching directories located in
the home directory: .cache, .gradle (for Gradle builds) and .m2 (for Maven builds). To
achieve this goal, the cleanup script, cleanup.sh, removes all files and folders from the
home directory except for the following: itself, the python script mentioned above, the hid-

14



3.5. Communication

:MinisForum:Controller system

Repo Info

Set Java version
Setup

Generate build script

Confirm

Run cleanup script

Confirm

Run build script

Confirm

Success

Projects
csv

Loop

Cleanup

Assemble

Check

:AVHzY CT-3

Start

Stop

Results
csv

Figure 3.1: Communication sequence diagram of the experiment for one project.

den directories .sdkman and .ssh, the session-specific .profile file and finally any files
with ‘bash’ in the name like .bashrc and .bash_history. It also specifically cleans up
Docker so no residual files are kept to guarantee all experiments start on an equal footing;
this is the only part of the system that gets cleaned outside of the home directory since the
user has no elevated permissions aside from being in the docker group. In Section 3.7 we
will explain our alternate setup that allows caching.

3.5 Communication

Measuring energy consumption with a power monitor device requires a system that controls
this device and reads it out. This can of course be done on the system we are measuring
but it is not part of the CI process and does draw power and system resources that can
otherwise be used by the CI. This is why we use a different system to communicate with
the power monitor. This system has to know which repository is being run, when it starts
and finishes, and the success status of the experiments to guide measurements. Because of
this, we decided to make this system the controlling force behind the experiments. It sends
out commands to start the CI pipeline for a specific project and reads out the power monitor
while waiting for the process to finish.

This communication between these systems is via SSH. Sending bash commands via
SSH can be done in two ways: singular separate commands or a continuous shellstream.
Since we need to set up the environment with the correct Java version and have continuous
feedback of the active CI phase we opted for a shellstream implementation. A communica-
tion channel is kept between systems through which commands are sent and messages are
received. Instead of relying on the predictability of the CI output, we prepared a messag-

15



3. EXPERIMENTAL SETUP

ing system for the controller to have up-to-date info on the current state of the CI system.
These messages are three special character strings of length six that mean success, failed,
and confirm respectively.

As seen in Figure 3.1, constant communication between the systems is kept; messages
and commands between systems are represented by arrows. The controller always waits for
confirmation before moving on to the next step. As you can see in the diagram, the con-
troller system can send (complex) commands to the MinisForum—like the command for
generating the build script with the relevant information about the repository—and the Min-
isForum then responds via the shellstream’s output with specific code words. The diagram
also shows the clear connection between the phases of the experiment and the messages that
start, end, and separate these phases.

3.6 Experiments overview

This section will provide a comprehensive overview of the completed experimental setup.
There are three main hardware devices to consider:

MinisForum A mini-PC on which CI will be simulated on a lightweight system. To min-
imize irrelevant power consumption, no peripherals are connected to the system. It
is only connected to power. It does, however, have a wireless network connection
available.

Power monitor A dedicated USB power monitor device called AVHzY CT-3, which mea-
sures power consumption with great accuracy.

Controller system A desktop system that sets up the experiments on the MinisForum via
SSH and reads out the power monitor.

The final setup looks something like Figure 3.2. Here we can see the three main hard-
ware components and how they are connected. The controller system is directly connected
to the power grid and the MinisForum is only connected through the AVHzY CT-3. From
the Controller system, communication with the power monitor is set up to be read out once
every millisecond and an SSH shellstream is created to communicate with the MinisForum.
We continue by setting up the message strings for success, failed, and confirm as global
variables on the MinisForum. From here, we take a repository from our list, which provides
all relevant information to set up and start the CI.

The sequence for a single repository is as follows. On the controller system, we cre-
ate a file to write our data to. This file is named <owner>-<repo><iteration> so, for
example, the name googlecloudplatform-spring-cloud-gcp4 would be the fourth ex-
periment for the project spring cloud gcp from googlecloudplatform. Via SSH we call
our Python script with the repository owner, name, and commit hash, which generates a
buildscript.sh. Also, we make sure we can execute this bash script by modifying its
permission flags. We further set up the environment on the MinisForum by setting the cur-
rent Java version to the required version. We want to start with a clean system without file
caching, so we run our cleanup script, after which the MinisForum sends a confirm message

16



3.6. Experiments overview

AVHzY CT-3

MinisForum

Figure 3.2: Hardware setup schematic.

to let us know the setup is complete. We synchronize the systems by waiting for the confir-
mation and then we let the system sleep for 20 minutes to make sure it is idle; this is a lot
longer than the wait time suggested by Cruz, but since there is no golden rule we decided to
keep it on the safe side. From here, we call the start the measure and call buildscript.sh.

On the MinisForum, the build script immediately starts cloning the repository and when
finished, moves into that directory and checks out the specified commit. From here, it
looks for wrappers of both Gradle and Maven. The wrappers are called gradlew and mvnw
respectively. For Gradle the CI is separated into the commands ./gradlew assemble
and ./gradlew check. Similarly, for Maven the commands are ./mvnw compile and
./mvnw test. After the first of the two commands has finished, the exit status is checked.
On success, a 0 is returned, in this case, the script sends a confirm message back to the
controlling system. That notifies the controlling system that the CI will move to the next
phase. This second phase moves very similar to the first but ends in a success message
instead of confirm.

When the success message is received, the measurements stop and the file is closed.
All repositories are tested five times, so when it finishes it either does another run without
changes, starting from the cleanup script, or we set up the system for the next repository. If
for any reason the CI fails at any phase, a failed message is sent. Every time this happens,
the setup allows for one more try to make sure it is not just a fluke. If two fails happen
consecutively, the experiment continues with the next repository. In the end, this should
result in reliable energy measurements of a complete list of repositories, each with five
successful CI runs with separation between the compiling and testing phases.

17



3. EXPERIMENTAL SETUP

3.7 Alternate setup with caching

The experimental setup thus far has been to answer our first two research questions, but we
need to slightly alter our setup to answer our fourth research question:

RQ4. How does dependency caching affect the runtime and energy usage of
large Java projects?

As discussed in Section 3.4, in our main experimental setup we remove all caching by
basically emptying our home directory and clearing our Docker installation to make every
build start from scratch. However, modern CI servers often do allow caching to some degree
on their servers. The main caching that is performed is called dependency caching. This
allows build tools to store all kinds of caching data such as dependencies, build artifacts and
task outputs to be used for later executions.

Gradle distinguishes between three types of caches: project-specific build caches, user-
specific build caches, and remote build caches. Remote build caches are used on CI servers
to allow cached results to be shared between multiple developers, CI servers, or build
environments. Project and user-specific build caches are stored in sub-directories named
.gradle found in separate locations on a system, the former being located in your project’s
root directory, the ladder in the user’s home directory.

For our experiments we will specifically not remove the caches that are stored in the
home directory, so we will not remove the ˜/.gradle and ˜/.m2 directories. This will
allow Gradle and Maven to cache data for projects to hopefully make builds faster and thus
less energy-intensive.

18



Chapter 4

Results

Over the span of about three months, the experiments described in Chapter 3 were per-
formed. This resulted in energy-measurement data describing over 200 Java projects. Be-
cause this is such a large number of repositories to describe in two graphs, we decided to
split both the Gradle and Maven results into multiple graphs ordered by their energy use
because it allows for more detailed graphs on each repository. This chapter will go over the
results of these experiments and make observations on the data that was gathered.

The results will be distilled from over 25GB of data. So before we take a look at the
big picture results we can look at some examples of data from a single project. Figure 4.1
shows the results of one experimental run of both the assemble and test phase of Picard
from Broadinstitute1. The figure shows the current in amperes (A) and voltage in volts (V)
throughout the CI runtime. From these, we can find all metrics of interest. We can combine
the voltage and current to get the power draw at any time t, and with the power over time,
we can calculate the energy used over a span of time ∆t either in joules (J) or (Wh). To have
some consistency, we will mostly use Wh and kWh when quantifying energy, because these
units are closely related to how we measure and see energy in real-world applications.

Figure 4.1: Example of Gradle experiment down-scaled 1000 times.

1“Picard is a set of command line tools for manipulating high-throughput sequencing (HTS) data and
formats such as SAM/BAM/CRAM and VCF.” URL https://broadinstitute.github.io/picard/

19

https://broadinstitute.github.io/picard/


4. RESULTS

Figure 4.2: Example of Gradle experiment zoomed-in to single second (low intensity).

Figure 4.3: Example of Maven experiment zoomed-in to single second (high intensity).

As you can see clearly in the graph, the voltage over the entire runtime is stable at 20V,
this is true for all measurements2. The current is everything but stable, rapidly moving up
and down between about 0.25A and 3.5A. Note that because of the frequency of measuring,
the data is down-scaled in the graph to make it more readable, taking only one data point
per second instead of millisecond.

When we remove the down-scaling and zoom in on a single second in Figure 4.2 and
Figure 4.3 we can see that even at millisecond precision, the current is constantly alternat-
ing3. We also see that the device can shift between low and high currents many times within
a second, this makes high-frequency readings all the more important for accurate readings.

While these figures show what kind of data and precision we are working with, they are
hardly readable and do not communicate the aspects we are most interested in. Therefore
most of the figures following in this chapter will zoom into the total energy readings we can
calculate from the data.

2The small dips you can see are from short bursts of high power draw where the current has large spikes
as seen in Figure 4.3. Here the current approaches the threshold where the power delivery would be 65W. This
threshold lies somewhere around 65W

20V = 3.25A
3The Maven project in Figure 4.3 is JavaParser URL https://javaparser.org/

20

https://javaparser.org/


4.1. Energy consumption of Gradle Projects

ap
ac

he
-ic

eb
er

g
ap

ac
he

-g
ro

ov
y

pr
av

eg
a-

pr
av

eg
a

lin
e-

ar
m

er
ia

ty
pe

to
ol

s-
ch

ec
ke

r-f
ra

m
ew

or
k

br
oa

di
ns

tit
ut

e-
pi

ca
rd

co
ns

en
sy

s-
te

ku
op

en
re

wr
ite

-re
wr

ite
od

pi
-e

ge
ria

hi
be

rn
at

e-
hi

be
rn

at
e-

or
m

en
on

ic-
xp

ke
rm

itt
2-

gr
ob

id
cb

eu
st

-te
st

ng
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

se
ss

io
n

al
lu

re
-fr

am
ew

or
k-

al
lu

re
-ja

va
m

ov
in

gb
lo

ck
s-

te
ra

so
lo

gy
as

cii
do

ct
or

-a
sc

iid
oc

to
rj

in
te

lle
ct

ua
lsi

te
s-

fa
st

as
yn

cw
or

ld
ed

it
m

icr
on

au
t-p

ro
je

ct
s-

m
icr

on
au

t-s
ec

ur
ity

lin
e-

ce
nt

ra
ld

og
m

a
ap

ac
he

-c
al

cit
e

sy
nt

he
tic

he
al

th
-s

yn
th

ea
sk

yl
ot

-ja
dx

sp
ot

bu
gs

-s
po

tb
ug

s
clo

ud
fo

un
dr

y-
ua

a
al

le
gr

o-
he

rm
es

op
en

em
s-

op
en

em
s

re
sil

ie
nc

e4
j-r

es
ilie

nc
e4

j
clo

ud
ne

ts
er

vi
ce

-c
lo

ud
ne

t-v
3

lin
e-

lin
e-

bo
t-s

dk
-ja

va
aw

sla
bs

-s
m

ith
y

va
zk

iim
od

s-
bo

ta
ni

a
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

ka
fk

a
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

st
at

em
ac

hi
ne

va
zk

iis
m

od
s-

bo
ta

ni
a

tw
itc

h4
j-t

wi
tc

h4
j

cr
nk

-p
ro

je
ct

-c
rn

k-
fra

m
ew

or
k

bo
ni

ta
so

ft-
bo

ni
ta

-e
ng

in
e

1c
-s

yn
ta

x-
bs

l-l
an

gu
ag

e-
se

rv
er

as
cii

do
ct

or
-a

sc
iid

oc
to

r-i
nt

el
lij-

pl
ug

in

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 4.4: Total energy consumption from the upper third of Gradle projects ordered by
energy intensity.

4.1 Energy consumption of Gradle Projects

To start, we look at the total energy spent for the complete CI build phases of the list of
Gradle repositories. Because of the sheer number of repositories in our dataset, we decided
to divide the repositories into three groups; this allows for more detailed graphs on each
repository. Each plot considers one-third of the repositories ordered by the lowest data
point of the project.

The highest consuming projects are shown in Figure 4.4, these projects gradually span
from 2Wh to about 9.5Wh with four projects reaching higher values that have larger gaps
between with a maximum of about 21.5Wh. The ranges between the measurements of most
projects are very small (< 1

2 Wh) with some exceptions that span about one watt-hour and
the two highest-consuming builds spanning about one and a half watt-hours. When we look
further down the list in Figure 4.5 we can see this general consistency of measurements

21



4. RESULTS

os
m

la
b-

at
la

s
al

lu
re

-fr
am

ew
or

k-
al

lu
re

2
za

la
nd

o-
na

ka
di

ba
om

id
ou

-m
yb

at
is-

pl
us

ky
or

ip
ow

er
ed

-a
dv

en
tu

re
re

ac
tiv

ex
-rx

ja
va

za
pr

ox
y-

za
pr

ox
y

es
se

nt
ia

lsx
-e

ss
en

tia
ls

va
zk

iim
od

s-
qu

ar
k

je
ne

tic
s-

je
ne

tic
s

tn
g-

ar
ch

un
it

sk
in

sr
es

to
re

r-s
ki

ns
re

st
or

er
x

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
in

te
gr

at
io

n-
sa

m
pl

es
hi

ve
m

q-
hi

ve
m

q-
co

m
m

un
ity

-e
di

tio
n

se
le

ni
de

-s
el

en
id

e
m

ar
qu

ez
pr

oj
ec

t-m
ar

qu
ez

te
am

m
at

es
-te

am
m

at
es

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
am

qp
sp

in
na

ke
r-h

al
ya

rd
al

ex
-th

e-
66

6-
ice

_a
nd

_f
ire

ko
m

am
its

u-
flu

en
cy

sp
oc

kf
ra

m
ew

or
k-

sp
oc

k
go

og
le

-d
at

a-
tra

ns
fe

r-p
ro

je
ct

ig
na

to
v-

in
te

llij
-e

rla
ng

wa
yo

fti
m

e-
bl

oo
dm

ag
ic

rs
oc

ke
t-r

so
ck

et
-ja

va
di

ta
-o

t-d
ita

-o
t

wi
re

m
oc

k-
wi

re
m

oc
k

jb
an

gd
ev

-jb
an

g
ro

ar
in

gb
itm

ap
-ro

ar
in

gb
itm

ap
m

icr
om

et
er

-m
et

ric
s-

m
icr

om
et

er
jsq

lp
ar

se
r-j

sq
lp

ar
se

r
fre

ya
co

de
s-

la
va

lin
k

m
ov

in
gb

lo
ck

s-
de

st
in

at
io

ns
ol

jb
ak

e-
or

g-
jb

ak
e

ap
ac

he
-lu

ce
ne

ve
lo

cit
yp

ow
er

ed
-v

el
oc

ity
do

m
af

ra
m

ew
or

k-
do

m
a

go
og

le
-s

ag
et

v
za

pr
ox

y-
za

p-
hu

d

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 4.5: Total energy consumption from the middle third of Gradle projects ordered by
energy intensity.

stays, but again with some exceptions: three builds have a range of about 1Wh and there is
Apache Lucene with a span of over two watt-hours, which is larger than its lowest total.

Unfortunately, we do not know exactly why Lucene has this wide span. One thing that is
interesting to note is that the measurements are also distributed in a peculiar way. There are
four of the five measurements which are very close to each other (within a span of 0.2Wh)
with the fifth being about 2Wh lower. The separation between these measurements and the
large gap without any data points suggests that there might be a specific part of the CI that
got skipped or delayed in either of the groups of data points. When looking into the data we
can at least say that the disparity occurred during the test phase. We see that the first run of
Lucene spent about 20 seconds in its testing phase, while the other three spent around 210
seconds. Also, we see that this extra time was not spent idle considering the four higher
runs did consistently use around 40 Watts. This fits our hypothesis that some part of the
testing phase was skipped rather than the other four runs experiencing a delay.

4.2 Energy consumption of Maven Projects

Now we can look at the results of the Maven experiment and make some comparative obser-
vations. When we look at Figure 4.7 and Figure 4.8 we also see that the general distribution
of project averages looks about the same as the one we saw for the Gradle projects with the
overwhelming majority of the projects having an average energy consumption of less than
5Wh and about half of the projects being around or below 2Wh. We also see that projects
only rarely reach an energy consumption above 10Wh just like we observed in our Gradle
experiments.

22



4.3. Energy-time correlation

dd
dj

av
a-

jig
jp

os
-jp

os
ja

va
co

rd
-ja

va
co

rd
vi

av
er

sio
n-

vi
av

er
sio

n
ne

tfl
ix

-z
uu

l
ap

ac
he

-p
ul

sa
r-m

an
ag

er
ne

tfl
ix

-d
yn

o
hi

ve
m

q-
hi

ve
m

q-
m

qt
t-c

lie
nt

pa
la

nt
ir-

co
nj

ur
e

en
gi

ne
hu

b-
wo

rld
gu

ar
d

ica
l4

j-i
ca

l4
j

iri
ss

ha
de

rs
-ir

is
ne

tfl
ix

-g
ov

er
na

to
r

ap
pi

um
-ja

va
-c

lie
nt

ne
tfl

ix
-ri

bb
on

in
te

lle
ct

ua
lsi

te
s-

pl
ot

sq
ua

re
d

tra
cc

ar
-tr

ac
ca

r
ec

lip
se

-io
fo

g-
ag

en
t

m
ar

yt
ts

-m
ar

yt
ts

fu
nc

tio
na

lja
va

-fu
nc

tio
na

lja
va

ju
ni

t-p
io

ne
er

-ju
ni

t-p
io

ne
er

we
ba

ut
hn

4j
-w

eb
au

th
n4

j
go

og
le

clo
ud

pl
at

fo
rm

-a
pp

-g
ra

dl
e-

pl
ug

in
ec

lip
se

-ls
p4

j
wy

nn
til

s-
wy

nn
til

s
dv

8f
ro

m
th

ew
or

ld
-jd

a
m

in
io

-m
in

io
-ja

va
pa

la
nt

ir-
gr

ad
le

-g
ra

al
fa

br
icm

c-
fa

br
ic-

lo
ad

er
au

th
0-

ja
va

-jw
t

m
in

ec
ra

ftf
or

ge
-fo

rg
eg

ra
dl

e
cr

ow
di

n-
cr

ow
di

n-
cli

wp
ilib

su
ite

-g
ra

dl
er

io
go

og
le

m
ap

s-
go

og
le

-m
ap

s-
se

rv
ice

s-
ja

va
db

fit
-d

bf
it

ko
by

ly
ns

ky
i-g

ra
ph

ql
-ja

va
-c

od
eg

en
au

th
0-

au
th

0-
ja

va
gr

ap
hq

l-j
av

a-
ki

ck
st

ar
t-g

ra
ph

ql
-ja

va
-s

er
vl

et
jso

n-
pa

th
-js

on
pa

th
to

ni
he

le
-o

pe
nk

ee
pe

r0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 4.6: Total energy consumption from the lower third of Gradle projects ordered by
energy intensity.

Another obvious thing we observe when we look at the figures is that the ranges be-
tween the data points of individual projects are a lot wider than with the Gradle data.
This is not only for the extreme cases such as Eclipse Lemminx seen in Figure 4.8, but
almost all projects have a noticeably wider range with only a few exceptions like Discor-
dRSV or MultiVerse-core. This inconsistency is not expected, especially since our exper-
imental setup has only been changed to fit our Maven commands—using mvnw compile
and mvnw test instead of gradlew assemble and gradlew check—and nothing else. In
Section 5.3 we will try to uncover the reason why Maven behaves this differently between
measurements.

4.3 Energy-time correlation

One interesting way to look at the data is to look at how the runtime of the CI is related
to the energy consumption. Even though the amount of energy per unit of time fluctuates
with the current, the total energy consumed and the runtime are obviously related since a
longer runtime allows the CI more time to spend energy. Figure 4.9 and Figure 4.10 show
scatterplots of how the runtime and energy consumption correlate in our Gradle and Maven
experiments respectively. In these plots each measurement is represented by a dot on the
graph, meaning there are five dots corresponding to a Gradle or Maven project respectively.
We can read the runtime in minutes, the total energy in Watt-hours, and by combining those
we can get the average power consumption in Watts. For example in Figure 4.9 we can see
two measurements very close to [15,2] which corresponds to a total energy consumption of
2Wh, a 15 minute runtime, and using P = E

t we find the average power to be: 2Wh
15
60 h

= 8W.

23



4. RESULTS

ap
ac

he
-io

td
b

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-s

tre
am

ap
ac

he
-d

ol
ph

in
sc

he
du

le
r

fa
br

ic8
io

-k
ub

er
ne

te
s-

cli
en

t
sm

al
lry

e-
sm

al
lry

e-
re

ac
tiv

e-
m

es
sa

gi
ng

ap
ac

he
-in

cu
ba

to
r-s

he
ny

u
ap

ac
he

-d
ub

bo
or

ie
nt

ec
hn

ol
og

ie
s-

or
ie

nt
db

go
og

le
clo

ud
pl

at
fo

rm
-s

pr
in

g-
clo

ud
-g

cp
sh

op
ize

r-e
co

m
m

er
ce

-s
ho

pi
ze

r
co

de
ce

nt
ric

-s
pr

in
g-

bo
ot

-a
dm

in
al

ib
ab

a-
sp

rin
g-

clo
ud

-a
lib

ab
a

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-s

le
ut

h
ig

ni
te

re
al

tim
e-

op
en

fir
e

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-c

om
m

on
s

se
at

a-
se

at
a

sm
al

lry
e-

sm
al

lry
e-

m
ut

in
y

sp
rin

g-
io

-s
ta

rt.
sp

rin
g.

io
pm

d-
pm

d
dr

op
wi

za
rd

-m
et

ric
s

op
en

zip
ki

n-
zip

ki
n

op
en

zip
ki

n-
br

av
e

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-a

ws
ki

eg
ro

up
-o

pt
aw

eb
-v

eh
icl

e-
ro

ut
in

g
ps

i-p
ro

be
-p

si-
pr

ob
e

ne
tw

or
kn

t-l
ig

ht
-4

j
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-jp
a

as
se

rtj
-a

ss
er

tj-
co

re
m

yb
at

is-
m

yb
at

is-
dy

na
m

ic-
sq

l
sp

rin
g-

clo
ud

-s
pr

in
g-

clo
ud

-n
et

fli
x

pw
m

-p
ro

je
ct

-p
wm

da
pr

-ja
va

-s
dk

m
oq

ue
tte

-io
-m

oq
ue

tte
ap

ol
lo

co
nf

ig
-a

po
llo

ct
rip

co
rp

-a
po

llo
m

yb
at

is-
sp

rin
g

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-c

on
su

l
m

yb
at

is-
jp

et
st

or
e-

6
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-n
eo

4j
pr

om
et

he
us

-c
lie

nt
_ja

va

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 4.7: Total energy consumption from the upper half of Maven projects ordered by
energy intensity.

One thing we find in both plots is that there are some natural restrictions that bound the
ratio between energy and time. These bounds fit the power ratings of the hardware. The
MinisForum has an idle state that uses a stable 5W, this can be seen as the hard lower bound.
The upper bound is similarly decided by the limitations of the MinisForum, the processor’s
Thermal Design Power (TDP) is rated at 28W , which means that its cooling can support
up to 28 watts of heat produced by the system (primarily the CPU). While the TDP of the
CPU gives us a measure, the value is not directly related to power-draw so it forms a softer
restriction that serves as a barometer for how much power the device can withstand; the
actual power draw that would produce this heat will in reality be higher than 28W . Besides
this, the TDP specifically considers the thermal capabilities of the processor, not the entire
system, so the power draw of other components could also be a factor. The power adapter
of the device can provide up to 65 watts of power, so that would be the actual hard limiting
bound.

24



4.3. Energy-time correlation

as
cii

do
ct

or
-a

sc
iid

oc
to

r-m
av

en
-p

lu
gi

n
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-jd
bc

ja
va

pa
rs

er
-ja

va
pa

rs
er

go
og

le
clo

ud
da

ta
pr

oc
-h

ad
oo

p-
co

nn
ec

to
rs

m
icr

os
of

t-a
zu

re
-m

av
en

-p
lu

gi
ns

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
da

ta
-e

la
st

ics
ea

rc
h

m
oc

k-
se

rv
er

-m
oc

ks
er

ve
r

ec
lip

se
-e

e4
j-j

ax
rs

-a
pi

dr
al

lg
oo

d-
jp

as
sk

it
ru

be
nl

ag
us

-te
le

gr
am

bo
ts

za
la

nd
o-

op
en

tra
cin

g-
to

ol
bo

x
di

sc
or

ds
rv

-d
isc

or
ds

rv
os

hi
-o

sh
i

jw
tk

-jj
wt

clo
ud

bu
rs

tm
c-

nu
kk

it
ec

lip
se

-le
m

m
in

x
ok

ta
-o

kt
a-

sp
rin

g-
bo

ot
fa

st
er

xm
l-j

ac
ks

on
-d

at
ab

in
d

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
da

ta
-c

ou
ch

ba
se

do
ck

er
-ja

va
-d

oc
ke

r-j
av

a
m

ar
co

sb
ar

be
ro

-s
pr

in
g-

clo
ud

-z
uu

l-r
at

el
im

it
ju

ni
t-t

ea
m

-ju
ni

t4
za

la
nd

o-
pr

ob
le

m
-s

pr
in

g-
we

b
re

ac
tiv

er
se

-e
s4

x
ju

lia
nh

yd
e-

sq
llin

e
sn

ow
fla

ke
db

-s
no

wf
la

ke
-jd

bc
m

ul
tiv

er
se

-m
ul

tiv
er

se
-c

or
e

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
da

ta
-re

st
ar

qu
illi

an
-a

rq
ui

llia
n-

co
re

fa
br

ic8
io

-d
oc

ke
r-m

av
en

-p
lu

gi
n

go
og

le
clo

ud
pl

at
fo

rm
-b

an
k-

of
-a

nt
ho

s
se

ar
ls-

ja
sm

in
e-

m
av

en
-p

lu
gi

n
cla

ss
gr

ap
h-

cla
ss

gr
ap

h
lo

gs
ta

sh
-lo

gs
ta

sh
-lo

gb
ac

k-
en

co
de

r
gi

tla
b4

j-g
itl

ab
4j

-a
pi

pr
om

et
he

us
-jm

x_
ex

po
rte

r
da

vi
db

-s
ca

la
-m

av
en

-p
lu

gi
n

fri
du

jo
-ra

bb
itm

q-
m

oc
k

za
la

nd
o-

pr
ob

le
m

za
la

nd
o-

ja
ck

so
n-

da
ta

ty
pe

-m
on

ey
pl

ay
tik

a-
te

st
co

nt
ai

ne
rs

-s
pr

in
g-

bo
ot

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 4.8: Total energy consumption from the lower half of Maven projects ordered by
energy intensity.

We can see in the Gradle experiments that the upper bound is sometimes overshot,
with most data points that do surpass it, staying close to the 28W bound. The five data
points that form a group relatively far above the bound with a runtime between 25 and 30
minutes are the data points of Apache Groovy; they form the strongest exception with an
average power of 36.91W. This suggests that Apache Groovy, over its approximate half-
hour runtime, spends most time on intensive tasks like running intensive tests in parallel
and only a short time on less intensive tasks such as retrieving dependencies and waiting
periods. We will examine the highest consuming projects including Apache Groovy in more
detail in Section 5.5.

In Figure 4.9 we find a relatively even spread between an average power draw of 8W
and 30W with some exceptions reaching a slightly higher average power draw of up to
about 37W. We also see that the majority of the data points—469 out of 620 (75.6%)—
have their entire CI performed within a ten-minute runtime. About half of the remaining
measurements fall between a runtime of 10 and 15 minutes (78 data points; 12.6%) and the
other half of those have a runtime longer than 15 minutes (73 data points; 11.8%).

With Maven things look very different. In Figure 4.10 we can see the same graph
for Maven4. The measurements all seem to hug the lower bound. This means that these
measurements of projects spent a lot of their runtime idle. When we consider the runtime
output, we know that time is spent retrieving and waiting for dependencies. The data points
also seem to be less clearly clustered than we saw for the Gradle projects, which is expected
looking at the spread we saw in Figure 4.7 and Figure 4.8.

4Note that we measured less Maven than Gradle projects and thus the graph is less dense.

25



4. RESULTS

0 5 10 15 20 25 30 35 40 45
Runtime (min)

0

2

4

6

8

10

12

14

16

18

20

22

To
ta

l E
ne

rg
y 

Co
ns

um
ed

 (W
h)

Gradle

Figure 4.9: Scatter-plot of energy-runtime correlation for Gradle projects; dotted lines rep-
resent minimum power draw (low) and TDP (high) of the system respectively.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Runtime (min)

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64

To
ta

l E
ne

rg
y 

Co
ns

um
ed

 (W
h)

Maven

Figure 4.10: Scatter-plot of energy-runtime correlation for Maven projects; dotted lines
represent minimum power draw (low) and TDP (high) of the system respectively.

26



4.4. Phase proportions

4.4 Phase proportions

For this research, we were not only interested in the total energy use, but we also wanted to
see how the energy usage is divided between the CI phases. We separated the data between
the two phases we performed: compiling and testing. We can now see for each project what
proportion of energy and time is spent in which phase. Every project is represented by a
dot that indicates the average relative time spent compiling (area under the dot) or testing
(area above the dot). For example PlotSquared, WorldGuard and Twitch4j all spend just
shy of 90% of their total energy while compiling and only a bit over 10% of their energy
testing. The entirety of Gradle projects can be seen in Figure 4.11 and the Maven projects
in Figure 4.12.

One obvious observation we make when we look at both figures is that the distribution
is quite even. While we can see there are more and less dense areas along the line, there
are data points almost everywhere in between 9–99% and 8–96% for the Gradle and Maven
projects respectively. The ordering of the data also closely follows the total one seen in the
energy consumption graphs from Figures 4.4–4.8. This close alignment between the graphs
tells us that the majority of the extra energy that is spent by larger projects is used during
the testing phase, because of how the proportion of energy between these phases shifts.

27



4. RESULTS

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y 

sp
en

t c
om

pi
lin

g 

irisshaders-iris tonihele-openkeeperintellectualsites-fastasyncworldedit viaversion-viaversionwayoftime-bloodmagic alex-the-666-ice_and_firegoogle-sagetv minecraftforge-forgegradledbfit-dbfit wynntils-wynntilsvazkiimods-quark enginehub-worldguardintellectualsites-plotsquared twitch4j-twitch4jdv8fromtheworld-jda vazkiimods-botaniaskinsrestorer-skinsrestorerx essentialsx-essentialsvazkiismods-botania spinnaker-halyardvelocitypowered-velocity line-armeriaapache-pulsar-manager freyacodes-lavalinkjson-path-jsonpath eclipse-lsp4jzaproxy-zap-hud eclipse-iofog-agentrefinedmods-refinedstorage traccar-traccarcloudnetservice-cloudnet-v3 javacord-javacordzaproxy-zaproxy google-data-transfer-projectkyoripowered-adventure asciidoctor-asciidoctor-intellij-pluginnetflix-zuul fabricmc-fabric-loadermicrometer-metrics-micrometer auth0-auth0-javawpilibsuite-gradlerio palantir-gradle-graalmarytts-marytts appium-java-clientpalantir-conjure ignatov-intellij-erlangjunit-pioneer-junit-pioneer netflix-governatordomaframework-doma graphql-java-kickstart-graphql-java-servletgooglemaps-google-maps-services-java movingblocks-destinationsolminio-minio-java netflix-ribboncrowdin-crowdin-cli functionaljava-functionaljavadddjava-jig allure-framework-allure2teammates-teammates netflix-astyanaxodpi-egeria roaringbitmap-roaringbitmapwebauthn4j-webauthn4j baomidou-mybatis-plus1c-syntax-bsl-language-server spring-projects-spring-amqpkermitt2-grobid kobylynskyi-graphql-java-codegenbonitasoft-bonita-engine hivemq-hivemq-community-editionskylot-jadx netflix-dynojenetics-jenetics hivemq-hivemq-mqtt-clientjpos-jpos line-centraldogmagooglecloudplatform-app-gradle-plugin line-line-bot-sdk-javaspring-projects-spring-integration-samples apache-calcitespotbugs-spotbugs ical4j-ical4jjbake-org-jbake allegro-hermesspring-projects-spring-statemachine openems-openemsauth0-java-jwt synthetichealth-syntheadita-ot-dita-ot resilience4j-resilience4jmovingblocks-terasology jsqlparser-jsqlparserapache-lucene marquezproject-marquezkomamitsu-fluency osmlab-atlasmicronaut-projects-micronaut-security tng-archunitconsensys-teku spring-projects-spring-kafkawiremock-wiremock cbeust-testngselenide-selenide hibernate-hibernate-ormzalando-nakadi rsocket-rsocket-javacrnk-project-crnk-framework spockframework-spockenonic-xp jbangdev-jbangapache-groovy reactivex-rxjavatypetools-checker-framework allure-framework-allure-javaawslabs-smithy spring-projects-spring-sessioncloudfoundry-uaa openrewrite-rewriteasciidoctor-asciidoctorj pravega-pravegaapache-iceberg broadinstitute-picard

Figure 4.11: Percentages of energy spent compiling during CI for Gradle projects.

28



4.4. Phase proportions

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y 

sp
en

t c
om

pi
lin

g 

discordsrv-discordsrv cloudburstmc-nukkitdrallgood-jpasskit spring-cloud-spring-cloud-sleuthshopizer-ecommerce-shopizer psi-probe-psi-probeplaytika-testcontainers-spring-boot multiverse-multiverse-coredavidb-scala-maven-plugin prometheus-jmx_exporteroshi-oshi mybatis-jpetstore-6spring-projects-spring-data-rest googlecloudplatform-spring-cloud-gcpprometheus-client_java mybatis-guicespring-projects-spring-data-couchbase kiegroup-optaweb-vehicle-routingspring-cloud-spring-cloud-commons eclipse-ee4j-jaxrs-apijulianhyde-sqlline dapr-java-sdkzalando-problem-spring-web pwm-project-pwmarquillian-arquillian-core mybatis-springspring-cloud-spring-cloud-aws spring-cloud-spring-cloud-netflixjwtk-jjwt fabric8io-docker-maven-pluginopenzipkin-zipkin codecentric-spring-boot-adminclassgraph-classgraph okta-okta-spring-bootspring-projects-spring-data-elasticsearch snowflakedb-snowflake-jdbcfasterxml-jackson-databind searls-jasmine-maven-pluginzalando-jackson-datatype-money mock-server-mockserverspring-projects-spring-data-jdbc assertj-assertj-coreigniterealtime-openfire gitlab4j-gitlab4j-apizalando-problem logstash-logstash-logback-encoderspring-cloud-spring-cloud-consul pmd-pmdgooglecloudplatform-bank-of-anthos seata-seatarubenlagus-telegrambots spring-cloud-spring-cloud-streamdocker-java-docker-java dropwizard-metricsfabric8io-kubernetes-client apache-dubbomybatis-mybatis-dynamic-sql apolloconfig-apollojunit-team-junit4 openzipkin-bravemicrosoft-azure-maven-plugins javaparser-javaparserzalando-opentracing-toolbox spring-projects-spring-data-neo4jmarcosbarbero-spring-cloud-zuul-ratelimit apache-incubator-shenyualibaba-spring-cloud-alibaba fridujo-rabbitmq-mockorientechnologies-orientdb eclipse-lemminxspring-projects-spring-data-jpa googleclouddataproc-hadoop-connectorsapache-dolphinscheduler ctripcorp-apollomoquette-io-moquette reactiverse-es4xsmallrye-smallrye-mutiny spring-io-start.spring.ioasciidoctor-asciidoctor-maven-plugin apache-iotdbnetworknt-light-4j smallrye-smallrye-reactive-messaging

Figure 4.12: Percentages of energy spent compiling during CI for Maven projects.

29





Chapter 5

Discussion

Now that we have presented the results and made some observations, this chapter will con-
tinue with discussing the results to try and provide some deeper insight and find answers to
our research questions. We will start discussing the consistency and reliability of our results.
We will also provide a thorough analysis on the accuracy on the power monitor we used in
our experiments. We continue by discussing more of our results and making estimations
based on the data we gathered. We will conclude by analyzing the projects with our highest
energy-readings and looking into the influences of dependency-caching on these projects.

5.1 Reliability Gradle results

Before we can interpret the data, we first need to ask whether the data shows signs of
reliability. The most indicative element of the data is how much spread there is between data
points of the projects. As we have seen in Figures 4.4–4.6, the data in general shows little
spread between the different measurements implying the data is reproducible. The spread
of data points of projects in general ranges between < 0.1Wh and 0.5Wh for projects with
a relatively small runtime, with longer projects mostly ranging between < 0.1Wh and 1Wh;
there are some exceptions to this however. The most pronounced exception is the Apache
Lucene project (seen in Figure 4.5) spanning between 1.2Wh and 3.4Wh.

Another aspect of the data we can look at to find out whether our results are reliable is
the shape of the distribution for individual projects. When performing energy measurements
in a well-automated and consistent setup, we expect the data to be normally distributed [12].
However, because we only have five measurements per project we cannot say anything
conclusive about the complete shape of these distributions. To gain some insight we can
normalize the data and combine it to see if that approximates a Gaussian distribution. Please
note that since we are working with very small groups of data, we cannot draw strong
conclusions about the actual distributions of our experiment. This is because small sample
sizes can lead to high variability in estimates of distribution characteristics like the mean and
standard deviation. This test can be helpful for finding patterns in our standard deviations
across all projects.

31



5. DISCUSSION

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Z-scores

0.0

0.1

0.2

0.3

0.4

De
ns

ity
Histogram and KDE of Z-scores

Figure 5.1: Z-score distribution of combined normalized data.

To standardize the data for their respective project we use Equation 5.1.

Z =
x−µ

σ
(5.1)

Where:
Z denotes the Z-score.
x denotes the actual value of the data point.
µ denotes the mean of the five values from the respective project.
σ denotes the standard deviation of the five values from the respective project.

When we apply this to all the data and combine it into one graph we hope it fits a
standard normal distribution with a mean of 0 and a standard deviation of 1. When we look
at Figure5.1 we can see that it is not an exact fit. If we apply the Shapiro-Wilk test statistic
we learn that it does not adequately fit a normal distribution with a p-value of 4.98e−10
where it has to be above 0.05 [33]. While we can say that the distribution does not resemble
a Gaussian, we can definitely see some of the main characteristics of a Gaussian. For one,
all of the Z-scores fall between -2 and 2, which does follow a standard normal distribution
where approximately 95% of all data points lie in this interval. We also find that even though
the most observed Z-scores lie around -0.5, the mean and standard deviation are the same
as a normal distribution with µ = 2.18e−16, σ = 1.0.

In Section 3.4, we described the way we try to eliminate caching from our experimental
setup. We can see in the consistency of the results, that this indeed has worked. This is
further supported by the fact that the chronological order of measurements of the same
project does not seem to have any correlation to the relative energy consumption of that
measurement. With caching, you would expect the energy consumption and runtime of a
project to be lower for the later projects, because they would have the benefit of the cached
information to reduce the workload, but we do not see any such pattern in the measurements.

32



5.2. Hardware accuracy

5.2 Hardware accuracy

In Section 3.2 we briefly mentioned the precision specification of the power monitor we
used. The AVHzY−CT3 has a voltage current resolution accuracy of 0.0001V 0.0001A
0.1%+ 2d. Now that we have the data we can estimate the error from this specification.
This estimate will only consider the device and not any other potential measuring errors
like timing or environmental influence. When we assume the error is independent between
measurements we can apply the propagation of uncertainty formula for addition to our total
summed energy readings as seen in Equation 5.2.

εE =

√
N

∑
i=0

(εP
i ·∆ti)2 (5.2)

With:

εE denoting the absolute energy error of all data points combined.
N denoting the total number of data points.
εP

i denoting the absolute power error for data point i.
∆ti denoting the duration of time interval i.

εP =
√

(I · εV )2 +(V · εI)2 (5.3)

With:

εP denoting the absolute power error.
εI denoting the absolute current error.
εV denoting the absolute voltage error.
I denoting the actual measured current.
V denoting the actual measured voltage.

To avoid calculating the exact error for all projects, we decided to use these formulas to
estimate an upper bound of this error. For this, we first need to know the range of each of
the variables. We know from our data that the voltage is very consistent at 20V, so we can
fill in V = 20 and εV = 0.0202. Our data shows the current typically ranges between 0.25A
and 3.5A.

ε
P
MIN =

√
(0.25 ·0.0202)2 +(20 ·0.00045)2 ≈ 0.01W

ε
P
MAX =

√
(3.5 ·0.0202)2 +(20 ·0.0037)2 ≈ 0.10W

Filling this in we find that the power error ranges between approximately 0.01W and
0.1W. From this, we can find a bound function in terms of time. Since we know our ∆t
should be a constant 1ms, the only unknown is the runtime duration, which is directly rep-
resented by the number of data points N. This gives us an adapted version of Equation 5.2.

εE =
√

N · (εP ·∆t)2 (5.4)

33



5. DISCUSSION

Figure 5.2: Device measuring error bounds for different runtimes.

Equation 5.4 filled in for the upper and lower bounds of εP gives us our error bounds
shown in Figure 5.2. From this graph, it is immediately clear that the error of both projects
with a short and long runtime has an error which is insignificant (< 1Ws)1. We also see
the growth of both bounds is logarithmic, which means the error grows significantly slower
than the runtime and the relative error will only shrink as this runtime increases.

5.3 Maven results

As we observed in Section 4.2, our Maven experiments lead to significantly less consistent
results than their Gradle counterparts. When observing the experiment output in real-time,
this was already apparent; sometimes a project would stop to a halt and have a delay of
minutes when downloading Maven packages, sometimes even resulting in failed builds due
to timeouts as seen in Figure 5.3. Even though this meant the results would be less consistent
we decided to continue the experiment to gather more data on this inconsistency.

To further investigate the cause of the inconsistencies in the Maven results, we designed
and performed an additional experiment on a subset of the dataset. We wanted to know
whether the dependency retrieval phase of the CI build shows evidence of being the cause
of the inconsistencies in the measurements. The only change in this experiment was that
this time we would build a project beforehand and not remove the .m2 directory containing

1The unit Ws is equivalent to J, which is exactly 1
3600 Wh

34



5.3. Maven results

Figure 5.3: Screenshot of recurring error during Maven experiments.

maven cache files and dependencies. This would ensure the build has no dependencies to
fetch, which we hypothesized to cause the delay. The results can be seen in Figure 5.4

se
at

a-
se

at
a

sm
al

lry
e-

sm
al

lry
e-

m
ut

in
y

op
en

zip
ki

n-
zip

ki
n

op
en

zip
ki

n-
br

av
e

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
da

ta
-jp

a
sp

rin
g-

clo
ud

-s
pr

in
g-

clo
ud

-c
om

m
on

s
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-n
eo

4j
sh

op
ize

r-e
co

m
m

er
ce

-s
ho

pi
ze

r
sp

rin
g-

clo
ud

-s
pr

in
g-

clo
ud

-n
et

fli
x

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-c

on
su

l
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-jd
bc

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-s

le
ut

h
sp

rin
g-

clo
ud

-s
pr

in
g-

clo
ud

-a
ws

za
la

nd
o-

op
en

tra
cin

g-
to

ol
bo

x
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-e
la

st
ics

ea
rc

h
os

hi
-o

sh
i

za
la

nd
o-

pr
ob

le
m

-s
pr

in
g-

we
b

ok
ta

-o
kt

a-
sp

rin
g-

bo
ot

sp
rin

g-
pr

oj
ec

ts
-s

pr
in

g-
da

ta
-re

st
sn

ow
fla

ke
db

-s
no

wf
la

ke
-jd

bc
re

ac
tiv

er
se

-e
s4

x
pr

om
et

he
us

-c
lie

nt
_ja

va
sp

rin
g-

pr
oj

ec
ts

-s
pr

in
g-

da
ta

-c
ou

ch
ba

se
se

ar
ls-

ja
sm

in
e-

m
av

en
-p

lu
gi

n
za

la
nd

o-
pr

ob
le

m
za

la
nd

o-
ja

ck
so

n-
da

ta
ty

pe
-m

on
ey

pl
ay

tik
a-

te
st

co
nt

ai
ne

rs
-s

pr
in

g-
bo

ot

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 5.4: Total energy consumption from a subset of Maven projects with caching.

Here we can see that almost all inconsistencies from our Maven results have been re-
duced to extremely small ranges, in most cases the data points of a single project can not be
distinguished from another because of their proximity to each other. There are still some in-
consistencies, most obviously the Shopizer project. This time, unlike with Apache Lucene
detailed in Section 4.1, there seems to be a near 5-minute delay in the compiling phase with
a power draw that is about idle. Again, as we have continuously seen throughout our exper-
iments, the outlier was not the first or last measurement of the project. Unfortunately, we
do not have any clear indication of what caused the delay in this instance. For now, we will
assume that the inconsistencies in our Maven experiment were caused by the dependency
retrieval phase. In Section 5.6 we continue looking into the influences caching has on the
runtime and energy performance.

After searching the internet for any know issues with Maven dependencies, we found a

35



5. DISCUSSION

Stack Overflow thread which discussed what we believe to be the same issue2. The thread
describes the problem as: “while executing mvn clean install the build start hanging
every single time” and later appends “UPDATE Actually the build does not hang forever
(only 20 - 25 mins).” These observations seem very much in line with our own delays.

The thread has two accepted responses that explain this occurrence. Both agree that
this has to do with specific Maven versions. The first says that there is a bug in 3.5.x
versions of Maven and that “if you are building a project with submodules or multiple
projects, Maven 3.5.x sporadically locks up when downloading duplicate dependencies.”
The second answer claims more versions of Maven had this issue and specifies the files that
are generated that cause Maven to deadlock. Both provided no solution other than changing
the Maven versions. According to the release notes of Maven 3.5.3, the issue “Deadlock in
dependency resolution has been fixed.”3

5.4 Yearly estimates

So now that we are able to tell for all these projects how much energy is used by one CI run,
we want to use this information to infer some estimation of the energy use for a project on a
yearly basis. We will estimate this for the twenty projects in our list with the highest energy
readings. To do this, we only need information on the number of commits a particular
project tends to have in a year and some base assumptions. To model the yearly number of
commits a project has, we use the total number of commits from 2023, which seems like
a fair comparison. We assume that only commits to a project’s HEAD will call the CI and
no other branches are involved—this follows the technical definition of CI, even though in
practice other branches are often also connected to a project’s CI setup. Besides this, we
will assume exactly one build and test phase will occur for every commit. The results are
shown in Table 5.4.

As we can see, most projects from this subset of projects had an average of at least
one commit a day to the mainline branch as we expect in a proper CI environment. The
standout project is Hibernate ORM with an average of almost 7 commits per day, which
makes it the third highest estimate despite its relatively low measured consumption. These
estimates do not show the complete picture however, since many of the projects are built
and tested multiple times per commit. While not all projects’ workflows are clearly labeled,
we can see that almost all of these projects build and run tests multiple times per commit.
The only exceptions that we found were Spring Cloud Stream, OpenRewrite, and Shopizer.
The reason projects are built and tested more than once per commit has often to do with
different versions like different Java versions or operating systems, which are all checked
separately.

The number of times a project is built and tested is unfortunately not always clear from
looking at the GitHub page, tasks’ titles can be unclear and often tests are split over different

2maven hangs for ∼20 mins during the project build (used to work fine)—last accessed: August 30 2024
URL https://stackoverflow.com/questions/43792427/maven-hangs-for-20-mins-during-the-p
roject-build-used-to-work-fine

3Maven release notes of version 3.5.3—last accessed: August 30 2024 URL https://maven.apache.o
rg/docs/3.5.3/release-notes.html

36

https://stackoverflow.com/questions/43792427/maven-hangs-for-20-mins-during-the-project-build-used-to-work-fine
https://stackoverflow.com/questions/43792427/maven-hangs-for-20-mins-during-the-project-build-used-to-work-fine
https://maven.apache.org/docs/3.5.3/release-notes.html
https://maven.apache.org/docs/3.5.3/release-notes.html


5.5. Highest energy readings

tasks. This makes it very difficult to give more specific estimates. However, to give some
indication we can look at Apache Iceberg since it is the project with our highest estimate
already. This project has fifty GitHub Actions checks of which it is hard to determine ex-
actly which build and/or test the project. Looking at the runtimes and titles, we can say that
there are at least fourteen separate runs of Spark CI using different version combinations
that seem to run the complete build and test suites. Factoring this in, we get a lower bound
yearly estimate of 442.54kWh which is roughly equivalent to 7.7% of the energy consump-
tion of a person in the EU4. This roughly equates to 213kg of CO2 per year according to
data from 2023 [31].

5.5 Highest energy readings

From the results seen in Chapter 4 we have observed which projects from our original
list had used the most energy during their combined build and test runtime. To find some
characteristics that might explain its relatively high energy consumption we will first go
through these projects one by one. The projects we will be looking at are Apache Iceberg,
Apache Groovy, and Pravega from the Gradle project list and Apache IoTDB, Spring Cloud
Stream, and Apache DolphinScheduler from the Maven list.

To investigate these projects we decided to take a look at their respective resource allo-
cations. We are specifically interested in operations that are notorious for being slow and
energy-intensive. For this, we designed an experiment to quantify the resources being used
by these six projects throughout their respective build durations. To measure the resources
a project utilized, we used the sar command from sysstat. This allowed us to get data on
disk IO and CPU usage for the six projects in question.

Please note that this experiment was less formally executed, in particular, this means that
for one, the monitoring and measuring were performed on the same device the build was
performed on, which means the resource allocation is influenced slightly by the experimen-
tal setup including writing the measurements to files. The measurements were also started
and stopped manually which caused short delays and the Spring Cloud Stream project was
accidentally cut off because the measurements were set with a limit of two hours. Moreover,
since we also wanted to take notes on the output of the build process during its runtime, the
MinisForum was connected to a display, mouse, and keyboard in contrast to the experimen-
tal setup described in Chapter 3. While this makes the experiment somewhat less exact, the
aim is to get a general understanding to be able to compare the resources being allocated by
these projects and not to gather any detailed information beyond that.

The drive of our MinisForum uses disk blocks with a size of 512 bytes. This means that
when you read 106 blocks, this is approximately equal to 512 · 106/1,000,000 = 512MB
worth of data. The actual data size might be somewhat lower because this calculation does
not take into account that some write operations may be smaller than the complete block
size. Therefore, we use the actual number of read-and-write operations instead of the ap-
proximate size equivalent in Figure 5.6 and Figure 5.7.

4Energy data from https://www.iea.org/regions/europe/electricity

37

https://www.iea.org/regions/europe/electricity


5. DISCUSSION

Table 5.1: Energy and commits of 20 projects with the highest energy consumption during
CI.

Project name
Mean energy
consumption

(Wh)

#commits
to HEAD
total∗

#commits
to HEAD

2023

Estimated yearly
energy

consumption∗∗

(kWh)
Apache Iceberg 21.47 5955 1472 31.61
Apache Groovy 17.51 21087 671 11.75
Apache IoTDB 15.56 11163 1742 27.11
Spring Cloud

Stream 15.47 4111 287 4.44

Pravega 14.10 3295 103 1.45
Apache

DolphinScheduler 12.10 8498 571 6.91

Armeria 11.66 4418 423 4.93
Fabric8

Kubernetes Client 10.57 6501 723 7.64

Apache ShenYu 9.82 3380 524 5.15
Typetools
Checker

Framework
9.20 18991 887 8.16

Picard 9.09 3046 38 0.35
Teku 9.07 5550 754 6.84

SmallRye
Reactive

Messaging
8.42 4475 616 5.19

OpenRewrite 7.66 6637 1499 11.48
Apache Dubbo 7.53 7673 1282 9.65

Egeria 7.48 20754 1080 8.08
Hibernate ORM 6.90 19260 2483 17.13

Enonic XP 6.18 24033 281 1.74
Spring Cloud

GCP 6.00 2860 493 2.96

Shopizer 5.94 29 25 0.15

∗ Counted on 4 September 2024.
∗∗ Assuming the number of commits is equal to 2023 and exactly one CI build per commit to HEAD.

38



5.5. Highest energy readings

0 20 40 60 80 100 120
Time (min)

0

20

40

60

80

100
CP

U 
Us

ag
e 

(%
)

pravega
spring-cloud-stream
iceberg
dolphinscheduler
iotdb
groovy

Figure 5.5: CPU usage of highest consuming projects.

Apache Iceberg

Iceberg is a high-performance format for huge analytic tables. Iceberg brings the
reliability and simplicity of SQL tables to big data, while making it possible for engines
like Spark, Trino, Flink, Presto, Hive and Impala to safely work with the same tables,
at the same time.5

One thing that stands out during Iceberg’s CI is that for the better part of its runtime,
we see a decrease in the number of tasks and therefore the number of threads being utilized.
We can see this in Figure 5.5 where, after a peak of high CPU utilization, the line crimps to
the point that only about 20% of the CPU is used by four tasks that continue for about half
of the runtime. This is seemingly because three or four tasks have a relatively long runtime.

Apache Groovy

Apache Groovy is a powerful, optionally typed and dynamic language, with static-
typing and static compilation capabilities, for the Java platform aimed at improving
developer productivity thanks to a concise, familiar and easy to learn syntax. It inte-
grates smoothly with any Java program, and immediately delivers to your application
powerful features, including scripting capabilities, Domain-Specific Language author-
ing, runtime and compile-time meta-programming and functional programming..6

5Description directly from https://iceberg.apache.org
6Description directly from https://groovy-lang.org

39

https://iceberg.apache.org
https://groovy-lang.org


5. DISCUSSION

0 20 40 60 80 100 120
Time (min)

102

103

104

105

106

107

Ac
cu

m
ul

at
iv

e 
Re

ad
 D

isk
 IO

 U
sa

ge
 (b

lo
ck

s)

pravega
spring-cloud-stream
iceberg
dolphinscheduler
iotdb
groovy

Figure 5.6: Accumulative Disk IO blocks read by highest consuming projects; Y-scale is
logarithmic.

0 20 40 60 80 100 120
Time (min)

104

105

106

107

Ac
cu

m
ul

at
iv

e 
W

rit
e 

Di
sk

 IO
 U

sa
ge

 (b
lo

ck
s)

pravega
spring-cloud-stream
iceberg
dolphinscheduler
iotdb
groovy

Figure 5.7: Accumulative Disk IO blocks written by highest consuming projects; Y-scale is
logarithmic.

40



5.5. Highest energy readings

As we have observed in Section 4.3, Apache Groovy is the project with the highest
average power draw. Similar to Iceberg, the purpose of Apache Groovy is closely aligned
with data, in this case, it is a programming language for the Java platform. Compilation is
typically a very intensive process because of its use of disk IO and lack of downtime. In this
case, we can also see in Figure 5.5 that for most of its runtime, Groovy used the complete
100% of all CPU capabilities, which means Groovy makes efficient use of its resources and
has proper parallelization across its CI. Here it seems to be the high intensity of the process
that makes for an energy-intensive CI.

Pravega

Pravega is about a new storage abstraction – a stream – for continuously generated
and unbounded data. A Pravega stream stores unbounded parallel sequences of bytes
in a durable, elastic and consistent manner while providing unbeatable performance
and automatically tiering data to scale-out storage.7

Although Pravega is again a project that involves storage, when looking at its measured
data-block reads this is not as visible as it is for Iceberg and Groovy. We can state that the
project does have a substantial number of write-actions. From the data we gathered, this is
the only indication of high resource use. We also see in this project that it leaves many of
the available threads unutilized.

Apache IoTDB

Apache IoTDB (Database for Internet of Things) is an IoT native database with high
performance for data management and analysis, deployable on the edge and the cloud.
Due to its light-weight architecture, high performance and rich feature set together
with its deep integration with Apache Hadoop, Spark and Flink, Apache IoTDB can
meet the requirements of massive data storage, high-speed data ingestion and complex
data analysis in the IoT industrial fields.8

When we look at the CPU utilization of IoTDB in Figure 5.5, we might not expect it to be the
third-highest project in terms of energy consumption. It does not use the many threads available to
their potential and while it has a long CI runtime, it is not even close to that of the Spring Cloud
Stream project. The main suspect of the high energy intensity is again in this case its high disk IO
usage. Like Iceberg, IoTDB reads more than 4 · 106 and writes more than 2 · 107 blocks worth of
data to memory. This together with its aforementioned longer runtime most likely leads to its high
energy use.

Spring Cloud Stream

Spring Cloud Stream is a framework for building highly scalable event-driven mi-
croservices connected with shared messaging systems.9

7Description directly from https://cncf.pravega.io
8Description directly from https://iotdb.apache.org
9Description directly from https://spring.io/projects/spring-cloud-stream

41

https://cncf.pravega.io
https://iotdb.apache.org
https://spring.io/projects/spring-cloud-stream


5. DISCUSSION

Spring Cloud Stream is a project that experiences a lot of downtime during CI. As we mentioned,
unfortunately, the experiment was cut off before the build was complete, but we know from our
other graphs that this project has a relatively low average power consumption. When looking at
Figure 5.6 and 5.7, this project has the lowest disk IO utilization out of the six we tested. It spends a
lot of its runtime fetching dependencies, and only after almost two hours did the project start utilizing
the CPU.

Apache DolphinScheduler

Apache DolphinScheduler is a distributed and extensible open-source workflow or-
chestration platform with powerful DAG visual interfaces10

Similar to Pravega, this project never reaches extreme values when it comes to CPU usage or
disk usage. Its number of write operations seems to be the most significant indication of resource
intensity.

Combining the observations on these six projects we see some patterns. For one, we see the
projects often reach very high disk read and/or write operations during their build and test phases.
This often involves using data from large Docker containers to perform tests. Besides this, we also
see that for most of the projects, the system resources—namely the available threads—were not
utilized to their full extent, which extends the runtime of these projects. This often involves large
test suites, which means that the disparity between tasks could probably be reduced or prevented by
separating the largest test suites among multiple tasks.

5.6 Influence of dependency-caching
When building a Gradle project for the first time you are greeted with a message:

Starting a Gradle Daemon (subsequent builds will be faster)

To investigate whether this rings true for our setup and how much enabling caching influences our
runtime and energy readings we configured the experimental setup as described in Section 3.7. This
enables Gradle and Maven to cache in the home directory. In CI servers the most common form of
caching is dependency-caching where the build tool stores artifacts and dependencies for later builds
to (drastically) reduce the load in subsequent builds. We tested the ten repositories with the highest
energy readings in our first experiment for both Maven and Gradle. We end up with twenty projects
which we can see in Figure 5.8.

In some of the projects, we saw a dramatic reduction in both runtime and total energy consump-
tion. What you could see in these projects is that some of the Gradle tasks read FROM CACHE which
indicates that Gradle skipped test execution and reused the outcomes of tests that were performed in
earlier iterations. This is an important factor when we look at the differences between Groovy with
and without caching. Do note that in this experiment we used the same commit and therefore same
code for each iteration; under normal circumstances, there would be some changes to the codebase
which would force the CI to rerun (some of) these tests which would increase the energy use.

Interestingly, our highest-consuming project out of all has no measured decrease with caching
enabled. This can be because it is disabled in the Gradle scripts in the project or because its caching
(mostly) takes place in the project-specific build location which we removed each iteration.

10Description directly from https://dolphinscheduler.apache.org

42

https://dolphinscheduler.apache.org


5.6. Influence of dependency-caching

ap
ac

he
-ic

eb
er

g

pr
av

eg
a-

pr
av

eg
a

ap
ac

he
-io

td
b

ap
ac

he
-d

ol
ph

in
sc

he
du

le
r

fa
br

ic8
io

-k
ub

er
ne

te
s-

cli
en

t

br
oa

di
ns

tit
ut

e-
pi

ca
rd

ty
pe

to
ol

s-
ch

ec
ke

r-f
ra

m
ew

or
k

sm
al

lry
e-

sm
al

lry
e-

re
ac

tiv
e-

m
es

sa
gi

ng

co
ns

en
sy

s-
te

ku

sp
rin

g-
clo

ud
-s

pr
in

g-
clo

ud
-s

tre
am

ap
ac

he
-in

cu
ba

to
r-s

he
ny

u

ap
ac

he
-d

ub
bo

go
og

le
clo

ud
pl

at
fo

rm
-s

pr
in

g-
clo

ud
-g

cp

or
ie

nt
ec

hn
ol

og
ie

s-
or

ie
nt

db

od
pi

-e
ge

ria

sh
op

ize
r-e

co
m

m
er

ce
-s

ho
pi

ze
r

ap
ac

he
-g

ro
ov

y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0

Di
st

rib
ut

io
n 

of
 To

ta
l E

ne
rg

y 
Co

ns
um

ed
 (W

h)

Figure 5.8: Total energy consumption from projects with caching.

43





Chapter 6

Related Work

This research is of course not the first to tackle software industry practices from an environmental
perspective. Just like in many other industries, the subject of energy consumption and the environ-
mental impact of software technology and development is getting more attention. To the point that
some universities are providing courses on the topic of sustainable software engineering. The Green
Software Foundation1, the Green Web Foundation2 and Green Coding Solutions3 are some examples
of the part of the software development industry trying to provide resources for software developers
to develop sustainable practices [5, 6, 14, 21].

6.1 Short-paper

This research is based on a short-paper called An Inconvenient Truth in Software Engineering? The
Environmental Impact of Testing Open Source Java Projects [39]. In it, Zaidman explores ten large
open-source Java projects and measures their energy usage over the runtime of their respective CI,
similar to our experiments. The main difference is that the experiments from this short-paper were
not automated, which introduces some variability. Experiments had to be manually started and
stopped, which drastically reduced the scale at which they could be performed. The main finding of
Zaidman was that individual build and test simulations did not use that much electricity, but looking
at the number of commits from these projects, they reached notable estimates of up to 161kWh
per year. Note that the experiments were executed on the same device used in this research (the
MinisForum EM680).

When comparing the results, we see that the individual energy readings of the short-paper mostly
fall within the range of projects we found in our research except for the ElasticSearch project which
places itself quite far above Apache Iceberg, taking 32Wh worth of energy to build. This high energy
reading combined with the incredibly high frequency of commits (5025 commits in the year 2022)
made the project account for the equivalent of about 9.7% of the average household energy con-
sumption of a citizen of the European Union. Fortunately, our results suggest that this combination
of high energy consumption and high commit frequency might not be very common. To know for
certain how common it is for a project to fall into both these categories we need to do more research.

1https://greensoftware.foundation/
2https://www.thegreenwebfoundation.org/
3https://www.green-coding.io/

45

https://greensoftware.foundation/
https://www.thegreenwebfoundation.org/
https://www.green-coding.io/


6. RELATED WORK

6.2 E-Compare
In another research called E-Compare: Automated energy regression testing for software applica-
tions, the energy consumption of software projects over time was investigated through the use of a
regression testing tool4 designed by Hagen [18]. The regression tool faced the same limitations as
we have seen in this research, namely that the hardware components of the servers are an unknown
factor. The tool was ultimately designed to use energy profilers from energy models based on ac-
cessible information, like the CPU load, which unfortunately makes the results hard to compare to
our data. The main focus of this research was the increase or decrease in energy use over time. To
measure this, the tool was used on about 50 commits for thirteen software projects spanning different
languages including TypeScript, Python, and JavaScript. This functioned as a proof of concept for
the tool to provide insight into the relative energy cost of a project over its versions.

In the paper, Hagen found two main influential factors that affect energy consumption in a
software project: the addition/removal of tests and package updates. In the experiments, the majority
of commits lead to minor changes that mostly seem to fall within the margin of error.

6.3 Green Mining
In Green mining: a methodology of relating software change and configuration to power consump-
tion, Hindle presents “a general methodology for investigating the impact of software change on
power consumption” [20]. The methodology aims to alleviate the need for expensive testing regard-
ing energy consumption. The study investigates how software changes and object-oriented metrics
influence power consumption, with case studies using the Firefox browser and Azureus/Vuze BitTor-
rent client. Additionally, it explores how library versioning affects power consumption in rTorrent,
offering insights into the relationship between software metrics and energy efficiency.

This is a very different approach to energy measurements relating to software energy efficiency
where the actual measurements by energy profilers or power monitors would become redundant. The
stateless regression model Hindle made from data on the Mozilla Firefox project based itself on three
variables found to be statistically significant: % user-time per second, transactions per second (disk
hits), and kB of active memory. The model was trained on 500 versions of Firefox and predicted the
mean power draw with an R2 value of 0.38.

The study also showed how small changes on a large scale can impact global energy savings.
In this case, a lower consumption branch of Mozilla Firefox showed a 0.25W saving on the main
branch. If applied at a broad scale of 4 million users, Hindle argues this could save 1.0 Mega-Watt
of power worldwide. This is roughly equivalent to saving an American household’s monthly power
use every hour.

4The tool can be found at https://koenhagen.github.io/E-Compare/

46

https://koenhagen.github.io/E-Compare/


Chapter 7

Threats to Validity and Limitations

In this chapter, before we draw conclusions about our research, we will take some time to go over
the limitations of the research. Each section discusses a shortcoming of the research or experiments
and describes how it came to be and its potential threats to the validity of the research.

7.1 Scope

Because of the simplicity of the way we approached compiling and testing the repositories, trying
to make the implementation as broad as possible, we introduced a form of survivorship bias. Our
set of projects was in a large way determined and shaped by whether the repository in question
would be able to build properly without any modifications to the system or the commands being
executed. This could influence the types of projects that could be measured and probably lead to
larger and more complex projects not being tested as often as smaller simpler projects. Examples of
some specific projects that we could not build in this design were ElasticSearch and Flink. These
are two projects which had very high readings in the short-paper this thesis is a continuation of [39].
Especially ElasticSearch would have been an interesting addition since it has so many commits per
year1.

Another limiting factor for the scope of this research was the time. Even though the time was
used economically, we still from the start decided to go for a quantitative analysis in regards to
the number of projects that were being researched, which came at the cost of the sample sizes for
individual projects. The thought process was that the combined total would still make for reliable
data about the distribution between the projects. It did allow us to measure our total of over 200
projects which was the bigger priority, but larger sample sizes could have given more credibility to
the results.

7.2 Crashes and build fails

One aspect of the experiments that we did not measure or keep track of was the occurrence of
crashes and errors. They did sporadically occur throughout the experiments as briefly mentioned
in Section 4.2. When builds failed we most often just repeated the experiment until we had five
measurements to make sure the different data points of a project had the same result. The occurrence

1In the last year there were a total of 6181 commits in the ElasticSearch project. Counted on 10 September
2024

47



7. THREATS TO VALIDITY AND LIMITATIONS

of these build fails does beg the question of why some projects would build one time and fail another.
For this, we have two explanations.

One explanation is the inclusion of timed tests in a project. When a test with a tight timeout
window exists within a project’s CI, this can introduce inconsistent results since these timeouts have
windows that are designed with large servers in mind. While our MinisForum is quite powerful for
a mini-PC, this is one area it can be restricted. Many errors that occurred during the formation of
our project list seemed to be because of timeouts.

The other explanation has to do with external factors such as dependency retrieval. This can be
somewhat inconsistent as we have seen with our Maven results. In our Maven cases, as we showed
in Section 5.3, this sometimes leads to crashes due to timeouts after long waits without responses.

7.3 Environmental factors
In any experiment, some environmental aspects cannot reasonably be controlled. While we have
made an effort to reduce the unknowns and unstable factors in our experiments, there are still some
environmental factors we want to acknowledge in this section.

Temperature The experiments in this thesis have been performed over the span of multiple
months including over the spring and summer. The weather and therefore temperatures have not
been consistent throughout this time. We acknowledge that this can influence the measurements to
some degree. Results from individual experiments are never measured further apart than a little over
one month (Our longest-running experiment was the main Gradle experiment which lasted from
May 23rd to June 28th).

Network Stability Another environmental factor was the network on which the experiments
were run. This is a home network with three different people which met all types of differences
in terms of network usage. Just like with temperature, we acknowledge this might influence the
measurements to some degree, but this is sadly a factor that could not reasonably be reduced.

Ordering In many types of experiments, it is a good idea to randomly order the experiments
to make the results of a single experiment independent. In our setup, it was significantly easier to
arrange the projects once and then run all measurements for a single project at once as it is already
set up on the server system. It would have been better to adjust the setup to one with stochastic
ordering.

48



Chapter 8

Conclusions and Future Work

This final chapter gives an overview of the contributions this research provides. After that, we will
reflect on the results we have seen and discussed to draw conclusions. Finally, we will discuss some
directions future work could take.

8.1 Contributions

This thesis aimed to contribute to research on the sustainability of software. One way this thesis
contributes is the experimental setup along with its replication package [3]. This allows researchers
to use a similar setup to the one used in this thesis. This automated setup is especially useful because
of its use of hardware power monitoring and its division of labour between the systems which allows
for isolated measurements on the specific system you need to measure with very little overhead. The
replication package is also useful in many other scenarios where a researcher wants to measure en-
ergy consumption with a hardware power monitor since the various scripts can all easily be adapted
to different tasks on the server system.

Besides this, this thesis serves as a continuation of exploratory research into the costs that come
with Continuous Integration in software development, but also the cost of building and testing soft-
ware in general. We provided a thorough analysis of the data we gathered to explain the extremes in
our findings. We also explored some simple but effective ways for projects that are energy-intensive,
which could impact their footprint dramatically.

8.2 Conclusions

In this thesis we have explored the topic of CI, in particular, we looked at the benefits it provides to
the developer and to the end product, the way CI is particularly useful in open-source development,
but also how the way CI is performed makes it a resource-intensive part of the modern software
development methodology. This comes down to its short development cycles and thorough testing.
Developers tend to be aware of the benefits CI brings, but not so much of the costs that come with it.
We have designed our experimental setup and measured over 200 Java projects to learn about their
energy uses. We were able to separate these measurements between two major phases—compiling
and testing—to show the relation these phases have to the total energy consumption of these projects.
Finally, we made observations about our data and discussed the patterns we have seen. Here we will
go over the research questions one by one.

49



8. CONCLUSIONS AND FUTURE WORK

RQ1. How much energy is used by an open-source Java project during the build and
test phases of CI?

As we have discussed extensively in Chapter 5, our measurements fortunately showed an over-
whelming majority of the projects built and tested with no cause for concern even in frequent commit
development environments like those that use CI. Individual builds and test runs from Gradle and
Maven projects alike most often consumed under 10Wh of energy. Some projects, like Apache Ice-
berg, showed significantly higher readings, measuring up to 21 1

2 Wh for a single cycle. When such
intensive builds are combined with high-frequency building development environments like the ones
that use CI, this results in a high yearly energy consumption. While it is hard to determine exactly
how many times some projects build and test the project per commit, for Iceberg we note at least
fourteen separate build and test cycles occur per commit. This makes this single project account
for at least 442kWh of energy on a yearly basis used for building and testing alone. This roughly
equates to 213kg of CO2 which is more than the emissions of a return flight between Amsterdam
and Dublin1.

RQ2. Which phases of the CI pipeline use more and which use less energy?

According to our findings, the ratios of energy use between the compiling and testing phases
of CI can differ a lot between projects. Projects ranged from > 98% of time spent compiling to as
little as 7%. We did find that there was a correlation between this ratio and a project’s total energy
consumption. Projects with high total energy consumption during compiling and testing typically
spent more of their energy during testing whereas projects with low combined energy consumption
spent more time compiling.

RQ3. Which characteristics of a Java project impact its energy use the most?

Looking at the projects with the highest energy readings, we saw a couple of recurring charac-
teristics. Many of the projects had purposes relating to data such as storage abstractions, databases,
or programming languages. Projects that are data-intensive can take a relatively long time to com-
pile and test, which increases energy use. They also often use large Docker containers to test their
projects. We also saw that some projects did not use the system’s capabilities to its full potential.
Leaving many threads unused, which leads to unnecessary long runtimes. Dividing large test suites
into multiple smaller test suites might be able to reduce these runtimes and with them, the energy
spent by these projects.

RQ4. How does dependency caching affect the runtime and energy usage of large
Java projects?

We have also seen that often, for some of these projects that do have energy-intensive compiling
and testing phases during CI, the energy consumption can be reduced dramatically by using caching
to its full extent. For Maven projects especially, we have seen that fetching dependencies can take
a lot of runtime, and thus removing the need to gather these dependencies can drastically reduce
the total energy consumption of the build. Besides this, test result caching can, when possible, also
heavily impact the test execution time. Our experiment modeled the extreme case where no changes
were added to the codebase; this allowed all test-result caches to be used, which would be admittedly
rare under normal circumstances. This does not change the fact that these caches can dramatically
impact energy consumption.

1According to Carbon Calculator; URL https://www.carbonfootprint.com/calculator.aspx

50

https://www.carbonfootprint.com/calculator.aspx


8.3. Future work

8.3 Future work
This research still leaves us with many questions regarding the energy consumption involved in CI.
One way in which this research can still be improved is the level at which the data was segmented.
In our experiments, we only made the distinction between compiling and testing as phases in CI.
Segmenting any further would quickly become complicated and less precise. One segmentation we
did not have that can easily be made is fetching the repository. This would form a small segment
which we included in the compiling phases. Finding a way to distinguish more phases or separate
elements like static analysis, gathering dependencies and integration testing would allow even more
analysis on the parts of a project that use the most energy.

Another thing to explore in future work is to look at the progression of energy consumption
for projects over time, similar to Hagen [18]. In this research, we looked at a single commit and
extrapolated that data to make conclusions about a longer timespan, but if we were to look at the
same project over time we would be able to see regressions and to more accurately compare the
influences of caching.

Lastly, we propose to expand this research into different programming languages. In this re-
search, we only looked at Java projects, specifically Gradle and Maven projects and it would be
very interesting if similar conclusions could be formed for projects written in other programming
languages.

51





Bibliography

[1] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. Kanban in software devel-
opment: A systematic literature review. In 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications, pages 9–16, 2013. doi: 10.1109/SEAA.2013.28.

[2] Samar Al-Saqqa, Samer Sawalha, and Heba Abdelnabi. Agile software development: Method-
ologies and trends. Int. J. Interact. Mob. Technol., 14:246–270, 2020. URL https://api.se
manticscholar.org/CorpusID:225548331.

[3] Robert Arntzenius. Measuring Energy Consumption during Continuous Integration of Open-
Source Java Projects - Replication package. 9 2024. doi: 10.6084/m9.figshare.27103042.v2.
URL https://figshare.com/articles/thesis/Measuring_Energy_Consumption_du
ring_Continuous_Integration_of_Open-Source_Java_Projects_-_Replication_pa
ckage/27103042.

[4] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Publishing
Company, 1999.

[5] Sara Bergman. How to measure the energy consumption of your backend service. Green
Software Foundation, October 2021.

[6] Sara Bergman. How to measure the energy consumption of your frontend application. Green
Software Foundation, September 2021.

[7] Amit Bhanushali. Ensuring software quality through effective quality assurance testing: Best
practices and case studies. International Journal of Advances in Scientific Research and Engi-
neering, 26(1), 2023.

[8] Mat Brown. Digging into data center efficiency, pue and the impact of hci. Nutanix, May 2023.

[9] Stephen Cass. The top programming languages 2024 > typescript and rust are among the
rising stars, August 2024. URL https://spectrum.ieee.org/top-programming-langu
ages-2024. Online graph; last accessed: September 8 2024.

[10] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hindle. Greenscaler:
training software energy models with automatic test generation. Empirical Software Engineer-
ing, 24(4):1649–1692, July 2018. doi: 10.1007/s10664-018-9640-7.

53

https://api.semanticscholar.org/CorpusID:225548331
https://api.semanticscholar.org/CorpusID:225548331
https://figshare.com/articles/thesis/Measuring_Energy_Consumption_during_Continuous_Integration_of_Open-Source_Java_Projects_-_Replication_package/27103042
https://figshare.com/articles/thesis/Measuring_Energy_Consumption_during_Continuous_Integration_of_Open-Source_Java_Projects_-_Replication_package/27103042
https://figshare.com/articles/thesis/Measuring_Energy_Consumption_during_Continuous_Integration_of_Open-Source_Java_Projects_-_Replication_package/27103042
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024


BIBLIOGRAPHY

[11] Luı́s Cruz. Tools to measure software energy consumption from your computer, July 2021.
URL https://luiscruz.github.io/2021/07/20/measuring-energy.html. Online; last
accessed: July 3 2024.

[12] Luı́s Cruz. Green software engineering done right: a scientific guide to set up energy efficiency
experiments, October 2021. URL https://luiscruz.github.io/2021/10/10/scientif
ic-guide.html. Online; last accessed: August 31 2024.

[13] Statista Research Department. Electricity consumption worldwide from 2000 to 2022, with a
forecast for 2030 and 2050, by scenario (in 1,000 terawatt-hours). Technical report, McKinsey
& Company, November 2023. URL https://www-statista-com.tudelft.idm.oclc.or
g/statistics/1426308/electricity-consumption-worldwide-forecast-by-scena
rio/. Online graph; last accessed August 7 2024.

[14] Green Software Foundation. Building green software through standards and collaboration.
Green Software Foundation, July 2024.

[15] M. Fowler and M. Foemmel. Continuous integration, 2005. URL http://www.martinfowl
er.com/articles/continuousIntegration.html. Online; last accessed: August 30 2024.

[16] GitHub Docs. About workflows, 2024. URL https://docs.github.com/en/actions/wri
ting-workflows/about-workflows. Online; last accessed: September 15 2024.

[17] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the rise and fall of ci services in github.
In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 662–672, 2022.

[18] K.A.P. Hagen. E-compare: Automated energy regression testing for software applications.
Master’s thesis, TU Delft, 2024. URL https://resolver.tudelft.nl/uuid:28d8b827-5d
50-4365-bff0-57a858658e91.

[19] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering, ASE ’16,
page 426–437, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450338455. doi: 10.1145/2970276.2970358. URL https://doi-org.tudelft.idm.o
clc.org/10.1145/2970276.2970358.

[20] Abram Hindle. Green mining: A methodology of relating software change to power consump-
tion. In 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pages
78–87, 2012. doi: 10.1109/MSR.2012.6224303.

[21] Asim Hussain. What is green software? Green Software Foundation, August 2021.

[22] Madhumitha Jaganmohan. Energy consumption worldwide from 2000 to 2019, with
a forecast until 2050, by energy source (in exajoules). Technical report, BP, January
2023. URL https://www-statista-com.tudelft.idm.oclc.org/statistics/222066/
projected-global-energy-consumption-by-source/. Online graph; last accessed Au-
gust 7 2024.

[23] Erik Jagroep, Jan Martijn E. M. van der Werf, Slinger Jansen, Miguel Ferreira, and Joost
Visser. Profiling energy profilers. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, page 2198–2203, New York, NY, USA, 2015. Association for

54

https://luiscruz.github.io/2021/07/20/measuring-energy.html
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://luiscruz.github.io/2021/10/10/scientific-guide.html
https://www-statista-com.tudelft.idm.oclc.org/statistics/1426308/electricity-consumption-worldwide-forecast-by-scenario/
https://www-statista-com.tudelft.idm.oclc.org/statistics/1426308/electricity-consumption-worldwide-forecast-by-scenario/
https://www-statista-com.tudelft.idm.oclc.org/statistics/1426308/electricity-consumption-worldwide-forecast-by-scenario/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://docs.github.com/en/actions/writing-workflows/about-workflows
https://docs.github.com/en/actions/writing-workflows/about-workflows
https://resolver.tudelft.nl/uuid:28d8b827-5d50-4365-bff0-57a858658e91
https://resolver.tudelft.nl/uuid:28d8b827-5d50-4365-bff0-57a858658e91
https://doi-org.tudelft.idm.oclc.org/10.1145/2970276.2970358
https://doi-org.tudelft.idm.oclc.org/10.1145/2970276.2970358
https://www-statista-com.tudelft.idm.oclc.org/statistics/222066/projected-global-energy-consumption-by-source/
https://www-statista-com.tudelft.idm.oclc.org/statistics/222066/projected-global-energy-consumption-by-source/


Bibliography

Computing Machinery. ISBN 9781450331968. doi: 10.1145/2695664.2695825. URL https:
//doi.org/10.1145/2695664.2695825.

[24] Timo Johann, Markus Dick, Stefan Naumann, and Eva Kern. How to measure energy-
efficiency of software: Metrics and measurement results. 2012 1st International Work-
shop on Green and Sustainable Software, GREENS 2012 - Proceedings, 06 2012. doi:
10.1109/GREENS.2012.6224256.

[25] Ali Khatami and Andy Zaidman. State-of-the-practice in quality assurance in java-based open
source software development. Software: Practice and Experience, mar. 2024. doi: 10.1002/sp
e.3321.

[26] Xiang Li, Dorsan Lepour, Fabian Heymann, and François Maréchal. Electrification and
digitalization effects on sectoral energy demand and consumption: A prospective study to-
wards 2050. Energy, 279:127992, 2023. ISSN 0360-5442. doi: https://doi.org/10.1016/
j.energy.2023.127992. URL https://www.sciencedirect.com/science/article/pii/
S0360544223013865.

[27] Dominik Maximini. The Scrum Culture. Springer International Publishing, Cham, Januari
2018. doi: 10.1007/978-3-319-73842-0.

[28] NOS Nieuws. Wereldwijd problemen door computerstoring: onder meer luchthavens en
ziekenhuizen getroffen. NOS, July 2024. URL https://nos.nl/artikel/2529464-werel
dwijd-problemen-door-computerstoring-onder-meer-luchthavens-en-ziekenhui
zen-getroffen. Online; last accessed: August 1 2024.

[29] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. What do programmers
know about software energy consumption? IEEE Software, 33(3):83–89, 2016. doi: 10.1109/
MS.2015.83.

[30] Sean Previl. Crowdstrike outage, cyberattacks a ‘wake-up call’ to dangers of big tech reliance.
GlobalNews, July 2024. URL https://globalnews.ca/news/10644838/tech-relianc
e-crowdstrike-outage-cybersecurity/. Online; last accessed: July 31 2024.

[31] Hannah Ritchie and Pablo Rosado. Electricity mix. Our World in Data, 2020. URL https:
//ourworldindata.org/electricity-mix. Last revised in January 2024.

[32] Eddie Antonio Santos, Carson McLean, Christopher Solinas, and Abram Hindle. How does
docker affect energy consumption? evaluating workloads in and out of docker containers.
Journal of Systems and Software, 146:14–25, 2018. ISSN 0164-1212. doi: https://doi.org/10.
1016/j.jss.2018.07.077. URL https://www.sciencedirect.com/science/article/pii/
S0164121218301456.

[33] S. S. SHAPIRO and M. B. WILK. An analysis of variance test for normality (complete sam-
ples)†. Biometrika, 52(3-4):591–611, 12 1965. ISSN 0006-3444. doi: 10.1093/biomet/52.3-4.
591. URL https://doi.org/10.1093/biomet/52.3-4.591.

[34] Naveen Tavva and Phuong-Ha Nguyen. Software: market data & analysis. Technical report,
Statista Market Insights, October 2023. URL https://www-statista-com.tudelft.idm.o
clc.org/study/102689/software-report/. Online; last accessed September 15 2024.

[35] Serhii Uspenskyi. How many software engineers are there in 2024? Technical report, Springs,
July 2024. URL https://springsapps.com/knowledge/how-many-software-enginee
rs-are-there-in-2024. Online; last accessed: September 3 2024.

55

https://doi.org/10.1145/2695664.2695825
https://doi.org/10.1145/2695664.2695825
https://www.sciencedirect.com/science/article/pii/S0360544223013865
https://www.sciencedirect.com/science/article/pii/S0360544223013865
https://nos.nl/artikel/2529464-wereldwijd-problemen-door-computerstoring-onder-meer-luchthavens-en-ziekenhuizen-getroffen
https://nos.nl/artikel/2529464-wereldwijd-problemen-door-computerstoring-onder-meer-luchthavens-en-ziekenhuizen-getroffen
https://nos.nl/artikel/2529464-wereldwijd-problemen-door-computerstoring-onder-meer-luchthavens-en-ziekenhuizen-getroffen
https://globalnews.ca/news/10644838/tech-reliance-crowdstrike-outage-cybersecurity/
https://globalnews.ca/news/10644838/tech-reliance-crowdstrike-outage-cybersecurity/
https://ourworldindata.org/electricity-mix
https://ourworldindata.org/electricity-mix
https://www.sciencedirect.com/science/article/pii/S0164121218301456
https://www.sciencedirect.com/science/article/pii/S0164121218301456
https://doi.org/10.1093/biomet/52.3-4.591
https://www-statista-com.tudelft.idm.oclc.org/study/102689/software-report/
https://www-statista-com.tudelft.idm.oclc.org/study/102689/software-report/
https://springsapps.com/knowledge/how-many-software-engineers-are-there-in-2024
https://springsapps.com/knowledge/how-many-software-engineers-are-there-in-2024


BIBLIOGRAPHY

[36] Roberto Verdecchia, Fabio Ricchiuti, Albert Hankel, Patricia Lago, and Giuseppe Procaccianti.
Green ICT Research and Challenges, pages 37–48. Springer International Publishing, 01 2017.
ISBN 978-3-319-44710-0. doi: 10.1007/978-3-319-44711-7 4.

[37] Hans van Vliet. Software Engineering: Principles and Practice. Wiley Publishing, 3rd edition,
2008. ISBN 0470031468.

[38] Max Wei, Colin A. McMillan, and Stephane de la Rue du Can. Electrification of indus-
try: Potential, challenges and outlook. Current Sustainable/Renewable Energy Reports, 6(4):
140–148, November 2019. doi: 10.1007/s40518-019-00136-1.

[39] Andy Zaidman. An inconvenient truth in software engineering? the environmental im-
pact of testing open source java projects. In Proceedings of the 5th ACM/IEEE Interna-
tional Conference on Automation of Software Test (AST 2024), AST ’24, page 214–218, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400705885. doi:
10.1145/3644032.3644461. URL https://doi-org.tudelft.idm.oclc.org/10.1145/
3644032.3644461.

56

https://doi-org.tudelft.idm.oclc.org/10.1145/3644032.3644461
https://doi-org.tudelft.idm.oclc.org/10.1145/3644032.3644461

	Preface
	Contents
	List of Figures
	Introduction
	Research questions
	Contributions
	Thesis overview

	Background
	History of CI
	Benefits of CI
	Considerations of CI
	Measuring energy consumption
	Servers and power consumption

	Experimental setup
	Goal of experiments
	Hardware setup
	Repository list
	CI setup
	Communication
	Experiments overview
	Alternate setup with caching

	Results
	Energy consumption of Gradle Projects
	Energy consumption of Maven Projects
	Energy-time correlation
	Phase proportions

	Discussion
	Reliability Gradle results
	Hardware accuracy
	Maven results
	Yearly estimates
	Highest energy readings
	Influence of dependency-caching

	Related Work
	Short-paper
	E-Compare
	Green Mining

	Threats to Validity and Limitations
	Scope
	Crashes and build fails
	Environmental factors

	Conclusions and Future Work
	Contributions
	Conclusions
	Future work

	Bibliography

