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Wavefield focusing is often achieved by Time-Reversal Mirrors, where wavefields emit-6

ted by a source located at the focal point are evaluated at a closed boundary and sent back,7

after Time-Reversal, into the medium from that boundary. Mathematically, Time-Reversal8

Mirrors are derived from closed-boundary integral representations of reciprocity theorems.9

In heterogeneous media, Time-Reversal Focusing theoretically involves in- and output sig-10

nals that are infinite in time and the resulting waves propagate through the entire medium.11

Recently, integral representations have been derived for single-sided wavefield focusing. Al-12

though the required input signals for this approach are finite in time, the output signals13

are not and, similar to Time-Reversal Mirroring, the resulting waves propagate through the14

entire medium. Here, an alternative solution for double-sided wavefield focusing is derived.15

This solution is based on an integral representation where in- and output signals are finite16

in time, and where the energy of the waves propagating in the layer embedding the focal17

point is smaller than with Time-Reversal Focusing. We explore the potential of the proposed18

method with numerical experiments involving a head model consisting of a skull enclosing a19

brain.20

I. INTRODUCTION21

With Time-Reversal Mirrors, wavefields can be focused at a specified focal point in an22

arbitrary heterogeneous medium1. To realize such a mirror, wavefields from a source at the23

focal point are evaluated at a closed boundary and sent back, after Time-Reversal, into the24

medium from that boundary. As can be demonstrated from Green’s theorem, this25

procedure leads to a solution of the homogeneous wave equation, consisting of an acausal26

wavefield that focuses at the focal point and a causal wavefield, propagating from the focal27

point through the entire medium to the boundary2;3. Applications can be found in various28

areas. In medical acoustics, Time-Reversal Mirroring has been applied for kidney stone and29

tumor ablation4;5. The Time-Reversal concept is also a key ingredient for various source30

localization6;7 and reflection imaging8;9 algorithms. Assuming that the medium is lossless31

and sufficiently heterogeneous, both the acausal wavefield that propagates towards the32

focal point and the causal wavefield that propagates through the medium to the boundary33

are unbounded in time.34

Recently, it was shown that wavefields in one-dimensional media can also be focused35

from a single open-boundary by solving the Marchenko equation10, being a familiar result36

from inverse scattering theory11. In this case a different focusing condition is achieved12,37

and when the solution of the Marchenko equation is emitted into the medium from a single38

open-boundary, a focus emerges at the focal point, followed by a causal Green’s function39

that propagates from the focal point through the entire medium to the boundary13. This40

result can be extended to three-dimensional wave propagation14 and various focusing41

conditions15 and has seen various applications in exploration geophysics, such as reflection42
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imaging16 and acoustic holography17. Although the focusing function is finite in time, the43

Green’s function that emerges after wavefield focusing has infinite duration. In this paper,44

it will be discussed how to craft a focusing wavefield that, once injected in the medium45

from two open-boundaries, propagates to a specified focal point in finite time, without46

being followed by any Green’s function. It will also be discussed how this focusing method47

theoretically reduces wavefield propagation in the layer which embeds the focal point.48

Numerical tests involving a complex model will show that wavefield propagation is largely49

reduced in the layer embedding the focal point despite the fact that exact focusing50

functions cannot be retrieved.51

II. THEORY52

Coordinates in three-dimensional space are defined as x = (x1, x2, x3), and t denotes53

time. Although the derived theory can be modified for various types of wave phenomena,54

acoustic wave propagation is considered. The medium is lossless and characterized by55

propagation velocity c (x) and mass density ρ (x). It is assumed that these properties are56

independent of time. The acoustic pressure wavefield is expressed as p (x, t). For simplicity57

all derivations are carried out in the frequency domain, and the temporal Fourier transform58

of p (x, t) is defined by p (x, ω) =
∫∞
−∞ p (x, t) exp (iωt)dt, where ω is the angular frequency.59

All wavefields obey the wave equation, which is defined in the frequency domain as60

∂i

(
1

ρ(x)
∂ip (x, ω)

)
+

ω2

ρ(x)c2(x)
p (x, ω) = iωq (x, ω), (1)

with ∂i standing for the spatial derivative ∂
∂xi

, where i takes the values 1, 2 and 3.61

Einstein’s summation convention is applied, meaning that summation is carried out over62

repeated indeces. Note that the source function q (x, ω), standing for volume-injection rate63

density, is scaled by iω. Since the wave equation is often defined without this scaling factor64

elsewhere in the literature, the wavefields that appear in this paper should be divided with65

(iω) to be consistent with that literature. The Green’s function G (x,xS, ω) is defined as66

the solution of the wave equation for q (x, ω) = δ (x− xS), where xS is the source location.67

It has been shown how the real part of the Green’s function with a source at xA and a68

receiver at xB can be expressed by integrating a specific combination of observations from69

sources at xA and xB over any boundary ∂D that encloses volume D, where xA ∈ D and70

xB ∈ D (Fig. 1a):71

2<{G (xB,xA;ω)}

=

∮
∂D
d2x

1

jωρ(x)
(G (x,xB, ω)ni∂iG

∗ (x,xA, ω)−G∗ (x,xA, ω)ni∂iG (x,xB, ω)) ,
(2)
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Figure 1: (Color online) (a) Cross-section of the configuration in the (x1, x3)-plane for Eq.
(2). Volume D is enclosed by ∂D (solid line) with outward-pointing normal vectors n. (b)
Cross-section of the configuration for Eq. (3). Volume D is enclosed by ∂D1 ∪ ∂D2 ∪ ∂Dcyl

(solid black lines). (c) Cross-section of the configuration for Eq. (13) Volume D is splitted
into D1 and D2, surrounded by ∂D1∪∂DA (blue line) and ∂D2∪∂DA (red line), respectively.
Note that the normals n relative to ∂D1 ∪ ∂DA and ∂D2 ∪ ∂DA across ∂DA are antiparallel.
The focal point is at xA ∈ ∂DA.

where ni is the outward pointing normal of ∂D and superscript ∗ denotes complex72

conjugation. We call Eq. (2) a representation of the Green’s function G(xB,xA;ω). In73

Time-Reversed acoustics, observations from a source at xA are reversed in time and74

injected into the medium at ∂D. The complex-conjugate Green’s function G∗(x, xA, ω)75

stands for the Fourier transform of the time-reversed observations. Equation (2) can thus76

be interpreted as if the injected field were propagated forward in time to any location xB77

by the Green’s function G (xB,x, ω), which is equal to G (x,xB, ω) through source-receiver78

reciprocity18. As can be learned from Eq. (2), this procedure yields for any location xB the79

real part of the Green’s function G (xB,xA;ω), which can be interpreted as the Fourier80

transform of the superposition of an acausal Green’s function, focusing at x = xA, and a81

causal Green’s function that propagates from xA through the entire medium to ∂D. Since82

the source functions of this acausal and causal Green’s function cancel each other, their83

superposition satisfies the homogeneous wave equation (i.e. Eq. (1) for q (x, ω) = 0). Note84

that this homogeneous wave equation is valid also for heterogeneous media. Note also that85

Time-Reversed acoustics results in a wavefield that at time t = 0 is non-zero just at the86

focal point19, but it poses no constraints on the wavefield at other times.87

We also consider a peculiar closed boundary ∂D = ∂D1 ∪ ∂D2 ∪ ∂Dcyl, where ∂D1 and88

∂D2 are horizontal boundaries connected by a cylindrical surface ∂Dcyl with infinite radius89

(Fig. 1b). For this configuration, the contribution of the integral in Eq. (2) over ∂Dcyl90

vanishes and the following representation holds17:91
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2<{G (xB,xA;ω)}

=

∫
∂D1∪∂D2

d2x
1

jωρ(x)
(G (x,xB, ω)n3∂3G

∗ (x,xA, ω)−G∗ (x,xA, ω)n3∂3G (x,xB, ω)) .

(3)

In addition to standard Time-Reversed acoustics, interesting focusing wavefields can92

be derived also by using focusing functions, which have recently been introduced to denote93

the solutions of the multidimensional Marchenko equation14. In this derivation, the same94

horizontal boundaries ∂D1 and ∂D2 as in Eq. (3) are used, but an additional auxiliary95

boundary ∂DA is introduced. Here, ∂DA is a horizontal plane inside D that intersects with96

the focal point xA = (x1,A, x2,A, x3,A), so that volume D is divided into a subvolume D1,97

located above ∂DA, and a subvolume D2, located below ∂DA (Fig. 1c). Note that the98

normals along ∂DA associated with subvolumes D1 and D2 are antiparallel (Fig. 1c).99

We deduce new sets of representation theorems for volumes D1 and D2. First of all, a100

reciprocity theorem of the convolution type18 associated with volume D1 is introduced:101

∫
D1

d3x (pAqB − pBqA) =

∫
∂D1

d2x
1

jωρ
(pBn3∂3pA − pAn3∂3pB)−

∫
∂DA

d2x
2

jωρ

(
p+A∂3p

−
B + p−A∂3p

+
B

)
.

(4)
Subscripts A and B indicate two states. The integral over ∂DA has been modified by102

using fundamental properties20 of the (Helmholtz) operator in Eq. (2), where the wavefields103

have been decomposed into downgoing (indicated by superscript +) and upgoing (indicated104

by superscript −) constituents. In addition, the field has been normalized such that105

p = p+ + p−. Similarly, a reciprocity theorem of the correlation type21 can be modified as106

∫
D1

d3x (p∗AqB + pBq
∗
A) =

∫
∂D1

d2x
1

jωρ
(pBn3∂3p

∗
A − p∗An3∂3pB)−

∫
∂DA

d2x
2

jωρ

(
p+∗A ∂3p

+
B + p−∗A ∂3p

−
B

)
.

(5)
Two representations will be derived for subvolume D1. In both representations, state107

A is source-free (qA = 0). The medium properties in this state are identical to the physical108

properties c (x) and ρ (x) within D1, and can be arbitrarily set below ∂DA
14. Here, the109

properties of the medium are chosen such that the halfspace below ∂DA is non-scattering.110

A particular solution of the source-free wave equation will be substituted in this state,111

which is referred to as focusing function pA = f1(x,xA, ω), where xA is the focal point and112

x is a variable coordinate inside the domain D14. This focusing function is subject to a113
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different focusing condition than what is achieved by Time-Reversed acoustics. In this114

paper, the condition is defined as f+
1 (x,xA;ω) |x∈∂DA

= δ (xH − xH,A), where xH = (x1, x2)115

is a point in the focal plane, while f−1 (x,xA;ω) |x∈∂DA
vanishes.116

The first condition states that the downgoing part of the focusing function focuses at117

xA not followed by any other event. This is achieved by cancelling any further down-going118

wave via destructive interference with propagation of the coda of the focusing function119

(see14 for more details). After having focused, this downgoing function continues its120

propagation into the lower half-space. Since the lower half-space was chosen to be121

scattering-free, the upgoing part of the focusing function at ∂DA is zero. Note that this122

condition does not pose any constraint on the wavefield at time t = 0 away from the focal123

plane ∂DA. In state B, the medium properties are equivalent to the physical medium,124

where an impulsive source is located at xB ∈ D, yielding qB = δ(x− xB) and125

pB = G (x,xB;ω). Substituting these quantities into Eqs. (4) and (5) brings126

θ (x3,A − x3,B)f1 (xB,xA;ω) +
2

jωρ(xA)
∂3G

− (xA,xB, ω) =

∫
∂D1

d2x
1

jωρ (x)
×

(G (x,xB, ω)n3∂3f1 (x,xA, ω)− f1 (x,xA, ω)n3∂3G (x,xB, ω)) ,

(6)

and127

θ (x3,A − x3,B)f ∗1 (xB,xA;ω) +
2

jωρ(xA)
∂3G

+ (xA,xB, ω) =

∫
∂D1

d2x
1

jωρ (x)
×

(G (x,xB, ω)n3∂3f
∗
1 (x,xA, ω)− f ∗1 (x,xA, ω)n3∂3G (x,xB, ω)) ,

(7)

where θ (x3) is a Heaviside function, with θ (x3) = 0 for x3 < 0, θ (x3) = 1
2

for x3 = 0 and128

θ (x3) = 1 for x3 > 0.129

Convolution and correlation reciprocity theorems associated with volume D2 are also130

introduced:131

∫
D2

d3x (pAqB − pBqA) =

∫
∂D2

d2x
1

jωρ
(pBn3∂3pA − pAn3∂3pB)+

∫
∂DA

d2x
2

jωρ

(
p+A∂3p

−
B + p−A∂3p

+
B

)
,

(8)

∫
D2

d3x (p∗AqB + pBq
∗
A) =

∫
∂D2

d2x
1

jωρ
(pBn3∂3p

∗
A − p∗An3∂3pB)+

∫
∂DA

d2x
2

jωρ

(
p+∗A ∂3p

+
B + p−∗A ∂3p

−
B

)
.

(9)
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Two representations can be similarly derived for subvolume D2. For both132

representations, state A is source-free (qA = 0), with medium properties as in the physical133

state in D2 and a non-scattering halfspace above ∂DA. Focusing function pA = f2(x,xA, ω)134

will be substituted, being a solution of the source-free wave equation, with the focusing135

condition f−2 (x,xA;ω) |x∈∂DA
= δ (xH − xH,A), while f+

2 (x,xA;ω) |x∈∂DA
vanishes. In state136

B, conditions are the same as in the derivation of the previous representations.137

Substituting these quantities into Eq. (8) and Eq. (9) yields138

θ (x3,B − x3,A)f2 (xB,xA;ω)− 2

jωρ(xA)
∂3G

+ (xA,xB, ω) =

∫
∂D2

d2x
1

jωρ (x)
×

(G (x,xB, ω)n3∂3f2 (x,xA, ω)− f2 (x,xA, ω)n3∂3G (x,xB, ω)) ,

(10)

and139

θ (x3,B − x3,A)f ∗2 (xB,xA;ω)− 2

jωρ(xA)
∂3G

− (xA,xB, ω) =

∫
∂D2

d2x
1

jωρ (x)
×

(G (x,xB, ω)n3∂3f
∗
2 (x,xA, ω)− f ∗2 (x,xA, ω)n3∂3G (x,xB, ω)) .

(11)

In the following we discuss two focusing strategies based on the focusing functions140

introduced in Eqs. (6)-(7) and (10)-(11).141

Standard (double-sided) Marchenko Focusing can be achieved by injecting f1 and f2142

from ∂D1 and ∂D2, respectively. The corresponding wavefields propagate from ∂D1 and143

∂D2 to the focal point, subsequently generating scattering events in D2 and D1. Note that144

focusing functions f1 and f2 are defined in reference states involving non-scattering media145

below or above ∂DA
14, but in this physical experiment they are injected in the actual146

medium, thus generating scattering events below or above ∂DA. These scattered wavefields147

eventually interfere with the focal plane. Standard (double-sided) Marchenko Focusing can148

be mathematically expressed by the summation of Eqs. (6) and (10):149

θ (x3,A − x3,B) f1 (xA,xB;ω) + θ (x3,B − x3,A) f2 (xB,xA;ω) +

2

jωρ(xA)
∂3G

+ (xA,xB, ω)− 2

jωρ(xA)
∂3G

+ (xA,xB, ω) =∫
∂D1

d2x
1

jωρ (x)
× (G (x,xB, ω)n3∂3f1 (x,xA, ω)− f1 (x,xA, ω)n3∂3G (x,xB, ω)) +∫

∂D2

d2x
1

jωρ (x)
× (G (x,xB, ω)n3∂3f2 (x,xA, ω)− f2 (x,xA, ω)n3∂3G (x,xB, ω)) ,

(12)
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An additional focusing strategy can be derived by further inspection and150

manipulation of Eqs. (6)-(7) and (10)-(11). The different orientation of the normals along151

∂DA when associated with subvolumes D1 or D2 results in opposite signs of the Green’s152

functions terms in the left-hand sides of Eqs. (6)-(7) and (10)-(11), respectively. Therefore,153

when Eq. (6), (7), (10) and (11) are added together, these Green’s functions terms cancel154

out and it follows that:155

2<{f (xB,xA;ω)}

=

∫
∂D1∪D2

d2x
1

jωρ (x)
(G (x,xB, ω)n3∂32<{f (x,xA, ω)} − 2<{f (x,xA, ω)}n3∂3G (x,xB, ω)) ,

(13)

where156

f (x,xA;ω) = θ (x3,A − x3) f1 (x,xA;ω) + θ (x3 − x3,A) f2 (x,xA;ω) . (14)

Akin to Eqs. (2) and (12), this result can be used for wavefield focusing. By injecting157

the real part of the wavefield f (x,xA;ω), as defined by Eq. (14), into the medium at158

boundaries ∂D1 and ∂D2, one can reconstruct this wavefield throughout the volume, as159

shown by Eq. (13). Due to the intrinsic properties of focusing functions, i.e. the160

destructive interference of the codas with up- and down-going reflections, any scattering161

event is confined within a spatial-temporal window defined by the propagation of the initial162

component of the focusing function (for more details see14). As a consequence, the163

wavefield in Eq. (13) propagates towards the focal point in finite time and back to the164

surface in finite time again.165

Moreover, due to the focusing properties of f1 and f2, the wavefield f theoretically166

interacts with the focal plane ∂DA only at x = xH,A at t = 0. We refer to the focusing167

achieved by Eq. (13) as ’Finite Time Focusing with reduced spatial exposure’, which we168

will often abbreviate as ’Finite Time Focusing’.169

III. NUMERICAL EXAMPLES170

For illustration purposes, the right-hand sides of Eqs. (2), (3), (12) and (13) are171

computed in a two-dimensional layered medium (Fig. 2(a)). The focusing function f1 is172

retrieved using a standard configuation23;22. More precisely, iterative substitution of the173

coupled Marchenko equations allows to retrieve up- and down-going components of focusing174

functions associated with arbitrary locations in a medium. The methodology requires as175

input the single-sided reflection response at the acquisition surface and an estimate of the176
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Figure 2: (Color online) (a) True velocity model used in the first numerical experiment,
corresponding to a 1.5D model associated with a cross-line of a human head model (see
Fig. 4 and Table 1). The red star and the dashed line represent the focal point and plane,
respectively. For the Time-Reversal Focusing experiment associated with Eq. (2) (see the
first column in Fig. 3), wavefields emanating from the focal point and recorded at evenly
sampled receivers distributed along a closed boundary ∂D1∪∂D2∪∂Dcyl (thick red and green
lines) are used. For the Time-Reversal Focusing experiment associated with Eq. (3) (see the
second column in Fig. 3), only wavefields recorded along horizontal boundaries ∂D1 ∪ ∂D2

(thick red lines) are used. For the focusing experiment associated with Eqs. (12) and (13) (see
the third and fourth columns in Fig. 3), a total of evenly sampled 481×2 co-located sources
and receivers (indicated by the thick red lines) are used to compute reflection data along the
upper (∂D1) and the lower (∂D2) horizontal boundaries. Standard Marchenko methods are
employed to retrieve focusing functions f1 and f2 using reflection data associated with ∂D1

and ∂D2, respectively14. (b) Smooth velocity model used to compute the initial focusing
function emanating from the focusing point (red star) and recorded along the upper (∂D1)
and the lower (∂D2) horizontal boundaries (thick red lines).
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initial focusing function, i.e. the Time-Reversed direct wavefield from the specifed location177

in the subsurface to the acquisition surface. Here, to retrieve the focusing function f1,178

reflection data are then collected along the upper boundary of the model (∂D1 in Fig.179

2(a)), while the estimate of the initial focusing function with a 0.8 MHz Ricker wavelet180

emanating from the focal point (red star in Fig. 2(b)) is computed in a smooth velocity181

model (see Fig. 2(b)). Similarly, the focusing function f2 is retrieved using reflection data182

collected along the lower boundary of the model (∂D2 in Fig. 2(a)). The estimate of the183

initial focusing function emanating from the focal point (red star in Fig. 2(b)) to the lower184

boundary receivers is also computed in the smooth velocity model in (Fig. 2(b)).185

Note that all data used in this paper are computed using a Finite Difference Time186

Domain vector-acoustic forward solver22.187

The solutions (i.e., the left-hand sides) from Eqs. (2), (3), and (12) have infinite188

support in time, which could be disadvantageous for various applications. Things are189

different when Eq. (13) is considered: since the focusing functions f1 and f2 are confined in190

time and space by the direct propagation path from the boundary to the focal point11, so191

is their superposition f . Hence, the solution associated with Eq. (13) seems preferable for192

wavefield focusing in finite time rather than those related to Eqs. (2), (3), and (12). More193

precisely, the real part of the focusing function f contains a series of wavefronts that are194

emitted into the medium from the upper and lower boundaries, and only the first of these195

wavefronts reaches the focal point. The remaining events are encoded such that any196

ingoing reflection of the first wavefront is canceled. The focusing conditions satisfied by197

Time-Reversed acoustics and Finite Time Focusing differ drastically with respect to198

wavefield propagation in the focal plane. While in Time-Reversed acoustics no constraint is199

posed on the propagation along the focal plane before or after time t = 0, Finite Time200

Focusing limits the interaction of the wavefield with the focal plane at the focal point and201

at time t = 0 only.202

We illustrate this in Fig. 3 by showing propagation snapshots associated with the203

right-hand sides of Eqs. (2), (3), (12) and (13). Note that for the sake of brevity in the204

following we only focus on positive times, but identical considerations apply for the acausal205

components of the wavefields associated with Eqs. (2), (3), and (13), while no acausal206

Green’s functions terms propagate in Eq. (12). In Time-Reversed acoustics, the207

superposition of an acausal and a causal Green’s function focusing and propagating away208

from x = xA, is expected (Eqs. (2) and (3)). Propagation around the foci is perfectly209

isotropic when Eq. (2) is used (green arrows in Figs. 3(a,e,i)), while the solution of Eq. (3)210

results in spurious events (black arrows in Fig. 3(b,f,j)) and artefacts, especially in the211

estimates of the direct wavefield along the focal plane (compare the amplitude of the212

wavefronts indicated by the green arrows in Figs. 3(e,i) and 3(f,j)). These low amplitude213

artefacts are due to the finite extent of the horizontal boundaries employed in our214
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Figure 3: (Color online) First Column: Snapshots of the Time-Reversed solution when a
closed boundary is considered (Eq. (2)). The focusing condition is satisfied, and the wavefield
at time t = 0 is perfectly isotropic (green arrow). At time t > 0 direct (green arrows) as
well as scattered (blue arrows) components of the wavefield are properly reconstructed. Red
arrows indicate propagation of scattered waves through the focal plane. Light-red horizontal
strips indicate strong reflectors, shown here for interpretation only, while the red star and
the black dashed line stand for the focal point and plane, respectively. Second Column:
Snapshots of the Time-Reversed solution when partial boundaries are considered (Eq. (3)).
Due to the finite extent of the injection boundaries ∂D1 and ∂D2, the wavefield at time
t = 0 is not perfectly isotropic (green arrow), and artefacts, with maximum amplitude
∼ 5% of the focus magnitude, contaminate the wavefield throughout the entire simulation
(black arrows). At times t > 0 scattered components of the wavefield are relatively well
reconstructed (blue arrows), but the direct component of the wavefield exhibits distorted
amplitudes along the horizontal direction (green arrows). Red arrows indicate propagation
of scattered waves through the focal plane. Third Column: Snapshots corresponding to
Standard (double-sided) Marchenko Focusing (Eq. (12)). The focusing condition is only
satisfied at time t = 0 At times t > 0 scattered (red arrows) components of the wavefield
are not suppressed by destructive interference with propagation of the coda of f . Fourth
Column: Snapshots corresponding to Finite Time Focusing (Eq. 13). The focusing condition
is satisfied except for low amplitude artefacts, with amplitude ∼ 2% of the focus magnitude,
propagating along the focal plane at times t > 0 (green arrows). Note that the wavefield at
time t = 0 is not supposed to be vanishing throughout the domain (black arrows indicate
propagation of the coda of f). At times t > 0 scattered (blue arrows) components of the
wavefield are suppressed by destructive interference with propagation of the coda of f .
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Figure 4: (Color online) (a) True velocity model used in the second numerical experiment.
The red star and the gray dashed line represent the focal point and plane, respectively.
The green line indicates the 1D profile used for the first numerical experiment. For the
Time-Reversal Focusing experiment associated with Eq. (3) (see first columns of Figs. 5
and 6), wavefields emanating from the focal point and recorded at evenly spaced receivers
located along horizontal boundaries ∂D1 ∪ ∂D2 (thick red lines) are used. For the focusing
experiments associated with Eqs. (12) and (13) (see second and third columns of Figs. 5
and 6), a total of 481×2 evenly sampled co-located sources and receivers (thick red lines)
are used to compute reflection data along the upper (∂D1) and the lower (∂D2) horizontal
boundaries. Standard Marchenko methods are employed to retrieve focusing functions f1
and f2 using reflection data associated with ∂D1 and ∂D2, respectively. This velocity model
is also used to compute the initial focusing function emanating from the focal point (red
star) and recorded along the upper (∂D1) and the lower (∂D2) horizontal boundaries (thick
red lines). (b) True density model used in the second numerical experiments. (c) Anatomy
of the brain used in the second numerical experiment. Keys as for (a).

numerical experiment when Eq. (3) is considered19. Note that in any case reflected waves215

propagating through the focal plane are well recovered both by Eqs. (2) and (3) (red216

arrows in Figs. 3(i) and 3(j)). In Standard (double-sided) Marchenko Focusing (Eq. (12)),217

focusing is achieved at time t = 0, but at later times Green’s functions terms propagate218

within the layer embedding the focal plane (red arrows in Fig. 3(k)). In Finite Time219

Focusing, destructive interference of up- and down-going wavefields prevents primary as220

well as multiple reflections to propagate through the focal plane at any time (blue arrows221

in Fig. 3(h,l)). The interaction of the wavefield with the layer embedding the focal point is222

therefore limited to the propagation of the direct components of f . Note that no direct or223

scattered waves propagating from and to the acquisition surfaces interact with the focal224

plane except that at the focal point.225
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Tissue velocity (m/s)
density
(kg/m3)

Muscle 1588 1090
Skull 2813 1908
Water 1578 994
Blood 1578 1050
Brain 1546 1046

Table 1: Velocity and density values for the head model used in the second experiment (see
Fig. 4).

The theory and methodology presented here hold also for laterally variant models,226

and we show this by applying our focusing strategy to a second numerical experiment. In227

this case we consider a model consisting of a slice of a human head (see Fig. 4 and Table 1)228

and explore the applicability of the method to medical imaging/treatment24. This second229

example is chosen since it is particularly challenging for Marchenko focusing due to the230

presence of thin layers, diffractors and dipping layers14. As for the previous example, the231

focusing functions f1 and f2 are retrieved using standard Marchenko configurations, with232

reflection data collected along the upper and the lower boundaries of the model. Note that233

for actual therapy curved arrays are usually preferred over the linear acquisition234

configurations used here. The derivation of a new formulation of Finite Time Focusing to235

conform to more realistic therapeutical configurations will be the topic of future research.236

Initial focusing functions with a 0.8 MHz Ricker wavelet emanating from the focal point237

(red star in Fig. 4) to receivers at the upper and the lower boundaries are used. Note that238

for this example the initial focusing functions are computed in the true model (Fig. 4).239

We first compare the focusing properties of solutions of Eqs. (3), (12) and (13) by240

showing in Figs. 5 and 6 snapshots of the corresponding wavefields associated with time241

intervals [0-0.4] s. and [1.2-1.6] s., respectively. Note that for the sake of brevity in the242

following we only focus on positive times, but identical considerations apply for the acausal243

components of the wavefields associated with Eqs. (3), and (13), while no acausal Green’s244

functions terms propagate in Eq. (12). In Time-Reversed acoustics (first column in Fig. 5),245

the superposition of an acausal and a causal Green’s function focusing and propagating246

away from x = xA, is expected. However, due to the employed truncated boundaries, low247

amplitude artefacts occurring at time t = 0 contaminate the wavefield throughout the248

domain, especially in the proximity of the focal point (red arrows in Fig. 5(a)). Similar249

artefacts at time t = 0 also contaminate the wavefield associated with Eqs. (12) (second250
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Figure 5: (Color online) Focusing properties of solutions of Eqs. (3), (12) and (13) in the
time interval [0-0.4] s. First column: Snapshots of the Time-Reversed solution when partial
boundaries are considered (Eq. (3)). Due to the finite extent of the injection boundaries ∂D1

and D2, small amplitude artefacts contaminate the wavefield at time t = 0 (red arrows in
(a)). Due to the strong lateral reflections, at times t > 0 direct components of the wavefield
are relatively well reconstructed (green arrows in (d) and (g)). The red arrow in (g) indicates
a scattered wave reflected at the interface above the focal plane. Second column: Snapshots
corresponding to Standard (double-sided) Marchenko Focusing (Eq. (12)). The focusing
condition is satisfied except that for low amplitude artefacts, contaminating the domain at
time t = 0 (red arrow in (b)). Note that the wavefield at time t = 0 is not supposed to
be vanishing throughout the domain (black arrows indicate propagation of the coda of f).
At times t > 0 scattered components of the wavefield are not attenuated by destructive
interference with propagation of the coda of f (red arrow in (h)). Third column: Snapshots
of the focusing in finite time with minimal spatial exposure solution (Eq. (13)). The focusing
condition is satisfied except for low amplitude artefacts, contaminating the domain at time
t = 0 (red arrow in (c)). Note that the wavefield at time t = 0 is not supposed to be
vanishing throughout the domain (black arrows indicate propagation of the coda of f). At
times t > 0 scattered components of the wavefield are attenuated by destructive interference
with propagation of the coda of f (blue arrow in (i)). Keys as in Fig. 3.

.
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Figure 6: (Color online) Focusing properties of solutions of Eqs. (3), (12) and (13) in the
time interval [1.2-1.6] s. First column: Snapshots of the Time-Reversed solution when partial
boundaries are considered (Eq. (3)). Red arrows point at reflections with the skull walls.
Second column: Snapshots corresponding to Standard (double-sided) Marchenko Focusing
(Eq. (12)). The red arrows in (b, e, h) indicate scattered waves reflected at the interface
above and below the focal plane. Third column: Snapshots of the focusing in finite time
with minimal spatial exposure solution (Eq. (13)). Black and blue arrows point at the coda
of the focusing functions and attenuated reflections, respectively. Keys as in Fig. 3.
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column in Fig 5) and 13 (third column in Fig 5). In Figs. 5(d) and 5(g) the wavefield251

associated with Eq. (3) is shown to propagate almost isotropically around the focal point.252

More precisely, direct components of the wavefield G(xB, xA), associated via Eq. (3) with253

laterally scattered waves G(x, xA) and G(x, xB)25, interact with the focal plane (green254

arrow in Fig. 5(d)) at positive times. By contrast, the wavefields associated with Eqs. (12)255

and (13) do not exhibit similar components (green arrows in Figs. 5(e,f,h,i)). The red256

arrow in Fig. 5(g) indicates a primary reflection associated with the wall of the skull above257

the focal plane. A similar event, corresponding to a Green’s function term, is present Fig.258

5(h). On the other hand, the coda of the focusing function (black arrows in Figs. 5(f))259

interferes destructively with this reflection (blue arrow in Fig. 5(i)). Due to the complexity260

of the model, i.e., the presence of thin layers, diffractors and dipping layers14, the261

cancellation of the ingoing reflection is not perfect (red arrows in Fig. 6(c)), but the262

amplitude of the reflected wave is generally reduced (blue arrow in Fig. 6(c)). Similar263

considerations apply also for the reflection associated with the wall of the skull below the264

focal plane, where again the coda of the focusing function (black arrows in Fig. 6(c)) is265

shown to interfere destructively (blue arrows in Figs. 6(f) and 6(i)) with the266

ingoing-reflection (red arrows in Figs. 6(g) and 6(h)).267

The differences between the three discussed focusing strategies are visualized in268

another way in Fig. 7, where the L2 norm of the pressure wavefields associated with Eqs.269

(3), (12) and (13) is plotted as a function of space. Note that all maps are normalized to270

allow proper comparison of the three focusing methods. In Standard Time-Reversal271

Focusing, the norm of the pressure wavefield exhibits a peak at the focal point (blue arrow272

in Fig. 7a), and significant values are almost homogeneously distributed throughout the273

brain (red arrows in Fig. 7(a)). This indicates that wave propagation occurs in the entire274

brain, which could be undesirable for medical treatments designed to target the focal point275

while not affecting other portions of the brain. Significant wavefield propagation276

throughout the brain occurs also when Standard (double-sided) Marchenko Focusing is277

employed (red arrows in Fig. 7(b)). The situation is rather different when focusing is278

achieved via solution of Eq. (13). Due to the peculiar focusing condition associated with279

Marchenko schemes12, the corresponding wavefield still exhibits a peak at the focal point280

(blue arrow in Fig. 7(c)) while being mostly confined into a double cone centered at the281

focal point (blue cones in Fig. 7(c)). Black and green arrows point at regions of the brain282

with minimal wavefield propagation inside the brain and large amplitude spots outside the283

brain associated with the propagation of the coda of the focusing functions, respectively.284

The different performances of Time-Reversal, Standard (double-sided) Marchenko and285

Finite Time Focusing can be better appreciated in Figs. 7(d-e), where horizontal (d) and286

vertical (e) sections of the maps in Fig. 7(a-c) are plotted in Decibel scale (20log10(‖p‖)).287

As expected, along the horizontal section (d) Finite Time Focusing exhibits reduced288
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Figure 7: (Color online) Normalized L2 norm of the pressure wavefields associated with the
left-hand sides of Eqs. (3) (a), (12) (b) and (13) (c), respectively, plotted as functions of
space. In Standard Time-Reversal Focusing (a), the norm of the pressure wavefield exhibits
a peak at the focal point (blue arrow in a), and significant values are almost homogeneously
distributed throughout the model (red arrows in (a)). A similar distribution, with large
values along the focal plane, is obtained when Standard (double-sided) Marchenko Focusing
is used (b). In Finite Time Focusing, the wavefield is still exhibiting a peak at the focal
point (blue arrow in Fig. (c)) while being somehow confined into a double cone centered at
the focal point (blue cones in (c)). Black and green arrows point at regions of the brain with
minimal wavefield propagation and large amplitude spots associated with the propagation of
the coda of the focusing functions, respectively. Red and blue dashed lines indicate horizontal
and vertical sections used in (d-e), respectively. Horizontal (d) and vertical (e) slices of the
maps in Fig. (a-c), plotted in Decibel scale (20log10(‖p‖)). Black arrows in (d) indicate
large portions of the focal plane (red dashed lines in (a-c)) where wavefield propagation in
Finite Time Focusing is significantly reduced as opposed to Time-Reversal and Standard
(double-sided) Marchenko Focusing. The red and black arrows in (e) indicate zones along
the green dashed lines in Fig. (a-c) where Finite Time Focusing and Time-Reversal Focusing
involves slightly larger and slightly smaller wavefield intensity, respectively. Green arrows
point at zones outside of the skull where Standard (double-sided) Marchenko and Finite
Time Focusing involve propagation of coda exhibiting large amplitudes (see green arrows in
Fig. (c)). Keys as in Fig. 4.
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Brain Blue Cones Red Cones
SMF +1% +16% -26%
FTF -14% +5% -45%

Table 2: Norm differences of the wavefields associated with the two new focusing strategies
discussed in this paper (Standard (double-sided) Marchenko Focusing, here SMF, and Finite
Time Focusing, here FTF) in the whole brain, first column, in the blue cones, second column,
and in the red cones, third column. Values are compared to the norm associated with Time-
Reversal Mirroring in each domain.

wavefield propagation, whereas along the vertical direction (e) the three diagrams are289

rather similar. Note that in Time-Reversal Mirroring wavefield propagation across the focal290

plane occurs before and after time t = 0, in Standard (double-sided) Marchenko Focusing291

at time t ≥ 0 and in Finite Time Focusing the interaction of the wavefield with the focal292

point theoretically takes place only at time t = 0. Therefore, in Time-Reversal Mirroring293

and Standard (double-sided) Marchenko Focusing the norm of the wavefield at the focal294

point is intrinsically associated with both direct and scattered waves, while in Finite Time295

Focusing it is theoretically only associated with direct components of the focusing function296

f . The overall focusing performances of the discussed methods are summarized in Table 2.297

The brain is divided in four domains, enclosed by the blue and the red curves in Figures298

7(a-c), which represent cones converging to the focal plane from the horizontal (i.e. the299

acquisition surface) and the vertical sides of the model, respectively. The norm of the300

wavefields associated with the three focusing strategies discussed in this paper is computed301

in the whole brain and in the areas enclosed by the blue and red curves. Values are302

normalized with respect to the norms associated with Time-Reversal Mirroring in each303

individual domain. While in the whole brain and in the blue areas the three focusing304

strategies exhibit similar norm values, in the red areas Finite Time Focusing involves305

significantly smaller values than Time-Reversal Mirroring and Standard (double-sided)306

Marchenko Focusing.307

IV. DISCUSSION308

The wavefields resulting from the Time-Reversal and Standard (double-sided)309

Marchenko methods, as formulated by Eqs. (2), (3) and (12) have infinite support in time,310

which could be disadvantageous for various applications. Things are different in Finite311

Time Focusing (Eq. (13)), which involves wavefields that are confined in time and space by312

the direct propagation path from the boundary to the focal point. As can be observed in313

Figs. 3, 5, and 6, the real part of the focusing function f contains a series of wavefronts314
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that once emitted into the medium from the surrounding boundary interfere destructively315

with any ingoing reflection of the first pulse. Even when perfect focusing is not achieved,316

the amplitude of ingoing reflections is at least suppressed. Hence, the focusing function317

might be an attractive solution of the wave equation for focusing below strong acoustic318

contrasts. By canceling or reducing the amplitude of ingoing reflections, we achieve the319

desirable situation of a single wavefront or reduced energy to reach the focal point and320

propagate along the focal plane. Moreover, the peculiar nature of the focusing achieved by321

Eq. (13) minimizes the spatial exposure to the incident wavefield of the layer embedding322

the focal point, and this could possibly be beneficial for sensitivity analysis and/or safety323

concern in medical treatment26. Focusing functions associated with Eq. (13) may also324

therefore be useful input for inversion. Akin to Green’s functions, they obey the wave325

equation, which can be inverted for the medium properties c (x) and ρ (x). In particular326

cases, they may be preferred over Green’s functions for this purpose, since the entire327

signals can be captured by a concise recording in the time domain and exhibit peculiar328

sensitivity distributions. In the numerical tests considered here, we used either329

kinematically equivalent (first numerical experiment) or exact velocity models (second330

numerical experiment) to compute the initial focusing functions. When a poor background331

model is used, solutions from above and below could focus at different points, and the332

terms associated with the Green’s functions in Eqs. (6)-(7) and (10)-(11) would not cancel333

out, thus violating the focusing condition exhibited by f . Note that this restriction holds334

also for the Time-Reversal method when applied from two sides. The human skull involves335

some of the most critical challenges for Marchenko applications, i.e. the presence of thin336

layers, diffractors, dipping layers and strong absorption. In our numerical test an acoustic337

and loseless model was employed. Note that using a lossless head model allowed us to test338

the method on a simplified and yet very challenging problem. However, neglecting339

dissipation, which plays a key role in medical treatment, limits the immediate applicability340

of the current algorithm of Finite Time Focusing, and a new theoretical framework to341

include absorption needs to be devised. Recent research has shown that when media are342

accessible from two sides (which is a strict requirement in the focusing strategy discussed343

in this paper), Marchenko redatuming can be adapted to account for dissipation27, and344

these insights could foster future research devoted to extension of the proposed method to345

account for dissipative media.346

V. CONCLUSIONS347

A new integral representation has been derived for wavefield focusing in an acoustic348

medium. Unlike in the classical representation for this problem based on Time-Reversed349

acoustics, the input and output signals for this type of focusing are finite in time and only350

involve propagation of direct waves in the layer that embeds the focal point. This leads to351
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a reduction of spatial and temporal exposure when wavefield focusing is applied in practice.352

The method has been validated numerically for a head model consisting of hard (skull) and353

soft (brain) tissue. There results confirm that the proposed method can outperform354

classical Time-Reversed acoustics.355
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