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Summary

Performance modeling plays a significant role in predicting the effects of a particular design
choice or in diagnosing the cause for some observed performance behavior. Especially for
complex systems such as parallel computer, typically, an intended performance cannot be
achieved without recourse to some form of predictive models.

In performance prediction of parallel programs we distinguish static and dynamic pre-
diction approaches of which the choice represents a fundamental trade-off between the
amount of information and its accuracy. Static techniques offer the advantage of pro-
ducing analytical information on the performance effects of symbolic program/machine
parameters without requiring costly execution or multiple simulation runs for each differ-
ent parameter setting or input data set. However, their limitations in modeling dynamic
program behavior may have a profound negative impact on prediction accuracy. Besides
dynamic behavior due to scheduling and resource contention, another important source
of dynamic behavior is the dependency of a program on the input data set. For such
data-dependent programs, the execution time of the program can vary greatly across the
space of input data sets.

In this thesis we present a new approach to symbolic performance modeling of parallel
programs that provides information on the distribution of execution times when consid-
ering a large space of input data sets. Our approach is based on statistical moments
representation of distribution. We present a low-cost algorithm that computes the mo-
ments of the program execution time based on the moments associated with sequential,
conditional and parallel composition. The novelty of our analysis technique is the combi-
nation between the general validity of the analysis with moment representation and ultra
low solution complexity. The accuracy of our approach is experimentally evaluated for
synthetic workloads as well as many empirical workloads measured from real parallel pro-
grams. Considering its ultra-low solution complexity, our approach provides an attractive
cost-performance trade-off in analytical performance modeling of data-dependent parallel
programs.

xi





Chapter 1

Introduction

Parallel computer systems are being used more and more and are becoming more im-
portant economically across a whole range of application areas in science, engineering,
medicine, industry, and commerce. To meet this increasing demand major vendors pro-
duce a wide variety of parallel computer systems, ranging from a cluster of work-stations
connected through a local area network to special-purpose machines consisting of a large
number of identical, relatively simple, processing elements. In general, high performance
computing requires high arithmetic performance, high storage capacity, and fast data
access and analysis.

Parallel computer systems are deployed rather than sequential ones because they are
potentially more cost-effective [111]. From a hardware perspective the ratio between
the price and performance of parallel processing is low. The development of very fast
computer systems, i.e., systems having a faster processor, memory, and I/O, becomes ever
more difficult and expensive. With the necessary and inevitably increasing complexity
of the chips the probability of production or design errors steadily grows. In terms of
computation power and speed (fast execution time), only parallel computer systems can
handle large-scale and/or time-constrained computing problems, such as fluid turbulence
and climate modeling.

Despite the above advantages, deploying parallel computer systems is not trivial since
adding more processors does not always mean speedup (the ratio between sequential
and parallel program execution time). Ideally, a linear speedup would occur, but often
sublinear speedup or even slow down occurs. Since today’s parallel computer systems are
highly complex, it is not trivial to obtain speedup. Parallel computer systems are complex
because they involve a wide variety of different architectures, many of which have a limited
success and short life [39]. Consequently, due to these factors parallel programming is
much more complex than traditional sequential programming since there exists a variety
of programming models, offering various forms of parallel composition, next to sequential
and conditional compositions1. Because of the different models, programmers sometimes
have to completely rewrite algorithms, either turning from sequential to parallel and/or
from one parallel version to another parallel version. Moreover, writing parallel programs
involves making many decisions, such as how to partition computation tasks and data,
how to map computation tasks on the available processors, and how and when to perform

1The various compositions are explained in Appendix B.

1



2 Chapter 1. Introduction

processor communications.
In view of the potential performance gains, the above problems related to parallel

computers are nevertheless viewed as challenges. From the perspective of the programmer
it is important to predict whether the intended speedup will be achieved. If the results do
not meet the expectations, a programmer needs to identify the program bottlenecks. In
general, programmers need to understand program behavior to be able to obtain speedup.
This cannot be achieved without recourse to some form of predictive models. Hence,
performance prediction plays a significant role in predicting the effects of a particular
design choice or in diagnosing the cause for some observed performance behavior. In this
respect performance modeling can be seen as a way to map the design of a parallel system
to an optimization problem in the mathematical domain.

1.1 Performance Prediction

Performance prediction is an approach based on a computable model, ranging from a
simple expression to a complex algorithm, which is generated from a (parallel) program
in conjunction with a (parallel) machine. In this thesis we consider merely performance
prediction of parallel programs since from our viewpoint parallel machines can also be
modeled as parallel programs. Moreover, we intend to develop a general performance
prediction model for parallel programs which is not machine-specific.

There are two approaches to predicting the performance of parallel programs: static
and dynamic prediction; the choice between them represents a fundamental trade-off be-
tween prediction cost and accuracy. Static techniques offer the advantage that they pro-
duce analytical (and diagnostic) information on how symbolic program/machine parame-
ters, such as the problem size, the number of processors, and the computation/communi-
cation bandwidths, affect the performance, without requiring costly execution or multiple
simulation runs for each different parameter setting or input data set. However, they
can only model dynamic program behavior to a limited extent, which can make their
prediction inaccurate. One source of dynamic program behavior is the non-determinism
introduced by dynamically scheduling tasks onto a limited number of processors, and
other forms of contention for operating system services and resources like communication
links, disks, memories, etc. An important example is memory hierarchies, for which it
is difficult to predict whether a cache access results in a hit or a miss. Another form of
dynamic behavior comes from the dependency of a program on the input data set. Espe-
cially for data processing applications such as sorting, the execution time of the program
can vary greatly across the space of input data sets, even when parameters such as the
data set size, are kept constant. Clearly, a static technique that cannot model execution
time distributions is of limited practical use, in particular when one has to predict, for
example, execution time bounds on hard real-time applications.

Static techniques range from low-cost symbolic techniques to numeric analytic tech-
niques based on timed and stochastic Petri nets [45, 67, 69, 77, 78, 86, 90], queuing
networks [12, 13, 38, 57, 85, 96, 116], timed process algebras [7, 15, 35, 40, 42], task
graphs [27, 30, 59, 114], and hybrids (task graphs and queuing networks) [47, 48, 105].
Apart from a subset of task graphs, these techniques involve a costly numeric process in
many cases (e.g., solving a Markov chain steady state equation). Compared to numeric
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techniques, where the solution time complexity can range up to exponential (state space
explosion), symbolic techniques are quite simple, and hence attractive. Symbolic program
performance prediction is a static technique that predicts execution time in terms of a
closed-form expression that retains all program parameters of interest. Hence, it provides
maximum diagnostic information about the performance behavior of a program. Another
motive for using symbolic performance prediction is the solution cost. Since the system
characteristics are parametrized, due to the regularity of the parallel programs and/or ma-
chines we can usually apply symbolic simplification, which typically decreases evaluation
complexity by orders of magnitude.

This thesis presents a symbolic, probabilistic approach to performance modeling of
parallel programs that symbolically predicts the execution time distribution of a parallel
program; this distribution reflects its non-deterministic (data-dependent) behavior. Our
approach minimizes the solution cost while providing a prediction accuracy that is ac-
ceptable during the first phase of parallel program design. While focusing on parallel
programs, our approach naturally applies to sequential programs.

Traditionally, symbolic methods model control variables such as loop bounds and
branch probability values as being deterministic. For example, consider the following
program fragment:

for (i = 1; i <= n; i++)

if (x[i] != 0)

x[i] = x[i] * alpha;

that scales a sparse double precision vector x of length n. For the purpose of the example,
let the execution time be given by the double precision multiplication time τ , ignoring
other program contributions. Let p denote the truth probability of the branch condition
(x[i] != 0). Then it follows that the mean execution time T is predicted by

T =
n∑
i=1

pτ = npτ (1.1)

which conveniently represents T as a symbolic performance model in terms of the symbolic
program parameters n, p, and τ .

While the above approach is based on the deterministic assumptions mentioned above,
in practice, program parameters are often data-dependent. This implies that in our sym-
bolic approach the values of n, p, and τ , and therefore T should be modeled as stochastic
parameters rather than deterministic parameters, reflecting the diverse effects of input
data sets. Hence, it is more appropriate to take an approach to performance prediction as
illustrated in Figure 1.1. Figure 1.1 shows the performance prediction process involving
the three program parameters of interest, i.e., n, p, and τ . Reflecting the diversity of a
large space of input data sets, represented by the training vector of S data sets, program
parameters are represented by their probability density function (pdf) rather than, e.g.,
(deterministic) mean values (the horizontal axis is normalized). The statistical informa-
tion on n, p, and τ is assumed to be provided through either program analysis [106], user
performance annotation [108], profiling information [11, 25, 91], or a combination of these
(denoted by the ’*’ in the figure), which treatment is beyond the scope of this thesis.
The performance prediction process yields an estimate of the execution time T , which is
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also represented by its pdf, which is expressed as a symbolic function g of the program
parameters (or some suitable representation).

E[   ]

E[   ] E[   ]

*

E[   ]

g1, 2, 3, ... S
data sets

pdf(   )T

Tτ

pdf

pdf

Performance

p

program
n

p

τ

n

τ n

T

time

n τ

p

analysis

T ppdf(   ) =   (pdf(  ),pdf(  ),pdf(  ))

Figure 1.1: Performance prediction of data-dependent parallel programs

Figure 1.1 also illustrates that the use of deterministic mean values would only yield
the mean value of T (denoted E[T ]). The mean value, however, contains limited informa-
tion about T , whereas in some systems, knowledge on the (tail) distribution of program
execution time may be crucial, such as in time-critical systems. Furthermore, even when
only the mean execution time E[T ] is of concern, we still require more information, such
as the variance, to analyze parallel programs, than just simply the mean execution time
of the tasks running in parallel. For example, consider a parallel composition of N tasks,
each having a stochastic execution time Xi. The resulting execution time Y is given by

Y =
N
max
i=1

Xi. (1.2)

Many authors have used Eq. (1.2) as part of a static prediction technique [3, 5, 9, 18,
24, 66, 80, 92, 102, 110]. Again, in these approaches, Xi (and Y ) are implicitly assumed
to be deterministic. While Eq. (1.2) indeed yields a correct prediction when all Xi are
deterministic, interpreting Eq. (1.2) in terms of mean values in the sense of

E[Y ] =
N
max
i=1

E[Xi] (1.3)

would introduce a severe error when Xi are stochastic. This goes as follows. For example,
let Xi be normally distributed with E[Xi] = 1 and standard deviation σ. According to
Eq. (1.2), E[Y ] is given in Figure 1.2. For σ = 0, E[Y ] is independent from N and equal
to E[Xi] = 1. For σ = 1, E[Y ] increases logarithmically as function of N [36]. The value
of E[Y ] is approximately doubled for N = 4. While for σ = 0 Eqs. (1.2) and (1.3) can be
applied, clearly, for σ �= 0 applying Eq. (1.3) would result in a less accurate prediction.
Thus, one cannot accurately predict the performance of (parallel) programs using only
mean values. Hence, performance prediction exploiting statistical parameter information
is much more effective and realistic [94].
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Figure 1.2: The impact of variability on parallel execution time

Ideally, a performance prediction technique will take into account all the statistical in-
formation on each program parameter, for example expressed in terms of the pdf, to avoid
loss of prediction accuracy. However, such elaborate analysis is generally computationally
very complex and therefore not always of practical use. In the loop program example, one
would already have to compute the pdf of a product of three stochastic variables. Even if
the model could be expressed symbolically, the underlying (numerical) solution procedure
would be prohibitive.

1.2 Problem Statement

The choice of a distribution representation form is a determining factor in the trade-off
between accuracy and solution complexity. For example, a workload representation which
is based on the pdf (see, e.g., [27]), could be used to capture the statistical information,
but leads to high analysis complexity. There are a number of approaches that aim at
a decreasing analysis complexity by characterizing execution-time distributions through
representations other than the pdf [2, 14, 59, 91, 89, 94, 103]; their parametric represen-
tations are usually based on standard distributions.

Once a workload representation has been selected, one has to determine whether it is
amenable to the mathematical operations used for the different forms of control-flow, i.e.,
sequential, conditional, and parallel compositions. Many approaches consider stochastic
basic block delays, and control variables such as loop bounds and branch probabilities [2,
29, 54, 89, 91, 109]. However, none of the above approaches provides a general method
for the analysis of programs that have an arbitrary control structure and distribution, and
that model data-dependent control flow in terms of stochastic variables. We will defer our
discussion of related work until Chapter 2.

When using symbolic performance modeling for parallel systems based on a proba-
bilistic approach, one will have to address the following problems:
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1. To what extent can program parameters be captured in terms of statistical models?
Considering the large space of input data sets, program variables are typically
stochastic due to data dependencies in programs. Their distribution may vary across
a large range of shapes.

2. How can a stochastic workload be represented symbolically?
There is a wide range of workload representation; the choice of representation affects
the trade-off between prediction accuracy and solution complexity. Most (symbolic)
approaches still suffer from a high solution complexity accounting for stochastic
program parameters.

3. To what extent can we assume parameters to be uncorrelated?
Often, in a compositional analysis approach, a simplification is made by assuming
program parameters to be uncorrelated to each other. In practice, such assumption
is not always true.

4. To what extent can a compositional approach be applied?
Related to the point above, one cannot always compose a model of elementary
sequential, conditional, and parallel constructs while assuming that these have un-
correlated behavior.

5. What constitutes a representative training corpus?
Since we deal with data-dependent parallel programs, the choice of a representative
training corpus is significant, as parallel programs can behave significantly different
on different input data sets.

We address these research questions in the context of our novel symbolic, statistical per-
formance prediction approach, which is described in the next section.

1.3 Approach

In this thesis, we introduce a symbolic performance modeling method, where workload
distribution is represented in terms of a number of statistical moments as a generic rep-
resentation of distributions. Our motivation for using the method of moments is twofold.
Our moment approach does not limit the approach to specific distributions, and is ef-
fectively a low-cost generalization of the use of mean and variance in distribution char-
acterization as used in some of the related work. Another reason is that the method of
moments is a general approach to estimate the parameters from a data set and equate the
sample moments to their population counterparts.

In static techniques, a parallel program is often represented in terms of a Directed
Acyclic Graph (DAG), with nodes representing tasks, and edges representing task in-
terdependencies. In terms of this DAG, static prediction corresponds to computing the
distribution of the critical path of the stochastic DAG, where each node represents a
task workload distribution. For arbitrary parallel programs, the analysis of correspond-
ing DAGs is complex since for general DAGs, the computation of the critical path in-
volves combining path length distributions which are not always independent. In general,
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only bounding approximations are possible [19, 37, 60, 98, 114], or solution techniques
that are based on the assumption of an exponential workload distribution [89, 105] or
based on a combination of deterministic and exponential distributions [103]. For the
well-known subset of DAGs that have a recursive fork-join structure, i.e., series-parallel
DAGs (SP-DAGs)2, this dependency problem can be circumvented, which allows for more
practical solution techniques. As many parallel algorithms can be modeled in terms of
SP-DAGs [31, 34, 33], in this thesis we will only consider (recursive) fork-join programs.

In our static technique, we assume an unbounded availability of resources. Like with
data-dependency, we account for the effects of scheduling and resource contention by
assigning an execution time distribution to each task. While in modeling sequential and
parallel control flows our approach uses DAGs, in modeling conditional control flow we
extend static analysis beyond the use of DAGs. In current DAG approaches, conditional
composition is implicitly modeled by stochastic task execution times. In our approach we
model branches explicitly in terms of a statistical model for branch sequences.

1.4 Contributions

The contributions of this thesis are as follows.

• We develop a symbolic technique for the performance prediction of data-dependent
parallel programs. Our model is based on use of moments to represent workload.
Although the method of moments is not new, to our knowledge it has not been used
before to model the performance of parallel computer systems.

• We present a complete analysis for parallel programs modeled in terms of sequential,
conditional, and parallel compositions. The analysis produces exact solutions for
the first two compositions and an approximate solution for the latter. The solution
complexity is O(1) for all (N -ary) compositions, while for many cases the prediction
error is in the percent range.

• To validate our approach, we perform experiments using synthetic workloads as
well as empirical workloads measured from real programs including the NAS Em-
barrassingly Parallel (NAS-EP) benchmark [8], Parallel Single-Source Shortest-Path
(SSSP) [82], Parallel Sorting by Regular Sampling (PSRS) [97], WATOR [4], and
Speculative Search using web search engines.

• We study to what extent our approach can deal with correlated program parame-
ters. Since we assume that program parameters are independent, it is important to
investigate the accuracy of our approach for various degrees of correlation.

• We present an implementation of our method: a symbolic performance prediction
tool that fully supports the use of stochastic workloads.

2A DAG is said to be SP-DAG if the DAG can be reduced to a single vertex by applying series and
parallel reduction rules [37]. For further explanation, we refer to Appendix B.
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1.5 Thesis Outline

In the previous sections we have introduced the context of our research, and stated the
challenges and contributions. The thesis is organized as follows.

In Chapter 2 we present a survey of related work on symbolic performance modeling
of parallel systems. We put our approach into perspective by comparing our work to that
of others, especially to approaches that use a stochastic approach to workload modeling
and DAGs for control flow modeling.

In Chapter 3 we present our performance modeling methodology and the rationale
behind our approach. We describe our statistical moment analysis technique and demon-
strate how basic compositions of programs are analyzed. We briefly introduce the chal-
lenges related to conditional and parallel composition analysis.

In Chapter 4 we focus on the specific issues related to conditional composition. We
describe the problem of branch modeling in terms of branch probability. We evaluate three
statistical approaches to modeling branching behavior, viz., the Empirical approach, the
Bernoulli approach, and the Alternating Renewal Process approach.

In Chapter 5 we focus on the specific issues related to parallel compositions. We de-
scribe the problem of analyzing parallel composition in terms of order statistics. We show
how we solve the problem by introducing the use of Generalized Lambda Distributions as
intermediate workload representation. Our symbolic solution covers and-parallel as well
as or-parallel composition.

In Chapter 6 we present a tool based on our approach which is an extension of an
existing tool, which only handles deterministic workload. We show that our extended tool
fully supports the use of stochastic workloads. We demonstrate the tool using workloads
measured from PSRS.

Finally, in Chapter 7 we summarize our work, draw the conclusions from the research,
and present some recommendations for future work.



Chapter 2

Symbolic Performance Modeling

To put our moment approach into perspective, in this chapter we survey related work on
symbolic performance modeling. First, we explain the principles of symbolic performance
modeling. Then we characterize existing symbolic performance modeling approaches in
terms of control flow modeling and the workload models used.

As mentioned in Chapter 1, symbolic performance prediction is a static technique that
predicts execution time in terms of a closed-form expression that retains all program pa-
rameters of interest. Moreover, symbolic performance models offer analytic and diagnostic
insight in the complex interplay of system parameters. Consider a parallel version of a
simple, sparse vector scaling code shown in Figure 2.1 (left), where each processor has
to scale a subvector (block partitioned). If x[i] is tested non-zero, then x[i] is multi-
plied by alpha. The corresponding symbolic performance model (based on simple, static

Program:

forall (p = 1; p <= P; p++)

for (i = (p-1)*N/P+1; i <= p*N/P; i++)

if (x[i] != 0)

x[i] = x[i] * alpha;

Performance:

T =
P
max
p=1

pN/P∑
i=(p−1)N/P+1

〈ci〉τ

Figure 2.1: A parallel version of vector scaling and the related symbolic performance model.

analysis [29]) is given in Figure 2.1 (right) where 〈. . .〉 : {true, false} → {0, 1} denotes
Iverson’s operator [43]) defined by

〈c〉 =
{
1, if c = true;
0, otherwise,

(2.1)

and τ represents the workload of the loop body (ignoring loop overhead and branch test).
From the figure we can see that all system parameters (P,N, τ) are still retained in the
performance model.

Symbolic performance modeling offers the potential of reducing model evaluation com-
plexity. As parallel programs typically feature a large degree of regularity, the cost models
are also regular, for which reason it is possible to make the evaluation cost a lot cheaper
using symbolic simplification. In the above example, the regularity of the program is

9
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shown by the fact that each processor has the same task. Furthermore, also assuming a
regular vector density d (i.e., the non-zero elements are uniformly distributed across i),

the summation term
∑pN/P
i=(p−1)N/P+1〈ci〉τ reduces to (N/P )dτ , which is independent from

p. Consequently, T reduces to

T =
N

P
dτ, (2.2)

which has O(1) evaluation complexity. This symbolic reduction is a major distinguishing
feature of performance modeling using task graph representations compared to Petri nets,
queuing networks, and process algebra, whose associated numerical processes are less
amenable to complexity reduction. Another distinguishing feature is that the reduction
process can be carried out automatically using contemporary mathematical computer-
based tools.

From the above example it can be seen that the problem related to symbolic perfor-
mance modeling is twofold, i.e., not only the control flow must be modeled, but also the
workload. In the rest of this chapter we survey approaches in terms of these two aspects.

2.1 Control Flow Modeling

Symbolic performance modeling approaches are implicitly based on SP-DAGs, as they
account for the effects of parallel and sequential task compositions in the same way: their
critical path composition is isomorphic [29]. Only SP-DAGs can be represented by regular
expressions and hence be treated by mathematical reduction techniques. For example,
the DAG corresponding to the parallel/sequential control structure of the vector scaling
code is a parallel composition of a sequential composition of tasks having a conditional
workload 〈ci〉τ . This is isomorphic to the computation graph of T in Figure 2.1 (right).
In the following, we survey SP-DAG-based approaches.

2.1.1 Deterministic DAGs

Many performance prediction approaches are implicitly based on deterministic DAGs. The
reason why deterministic rather than stochastic DAGs are used is that the performance
solution merely involves scalar operations. Consequently, the mathematical reduction for
deterministic DAGs is much more simple than that for stochastic DAGs. Let Xi be the
execution time of task i. The performance, denoted by Y , simply uses scalar addition and
maximum operations as given by

Y =
N∑
i=1

Xi (2.3)

and

Y =
N
max
i=1

Xi, (2.4)

for sequential and parallel composition, respectively.
Many deterministic DAG-based approaches have been introduced within the context

of compile-time optimization since very fast predictions are required for this purpose.
Approaches that fall into this category are, for example, those of Balasundaram, Fox,
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Kennedy, and Kremer [9], Sarkar [92], Atapattu and Gannon [5], and Van Gemund [29].
The approach of Van Gemund is important in the context of this thesis since we present
its implementation in Chapter 6 and compare it with our extended version, which fully
supports the use of stochastic workloads.

2.1.2 Stochastic DAGs

As mentioned earlier, a fundamental limitation of deterministic DAGs is that they can-
not model the data variability introduced by non-deterministic task completion times. In
order to model data dependency in parallel programs, stochastic values are used to model
the task workloads in the DAGs. Unlike deterministic DAGs, the complexity of critical
path analysis is prohibitive unless some restrictions are introduced: either the scope of
graph structure must be limited or the presentation of workload must be limited to spe-
cific distributions. Similar to our symbolic approach, in most work only SP-DAGs are
considered because of the analytical problems that arise when non SP-DAGs are used, as
mentioned in Chapter 1. For the SP-DAGs case, the performance evaluation of sequential
and parallel compositions merely becomes a matter of convolution and order statistics,
respectively. Consider the example corresponding to Eqs. (2.3) and (2.4). Now, let Xi be
stochastic and mutually independent. For sequential composition, the pdf of Y is given
by the convolution of the individual pdf’s according to

fY (y) = fX1(x) � fX2(x) � . . . � fXN
(x), (2.5)

where

fXi
(x) � fXj

(x) =
∫ ∞

−∞
fXi
(x)fXj

(y − x)dx. (2.6)

For parallel composition, the cumulative distribution function (cdf) of Y is the product
of the individual cdfs [106] according to

FY (y) =
N∏
i=1

FXi
(y). (2.7)

Unlike that of Eqs. (2.3) and (2.4), the solution complexity of Eqs. (2.6) and (2.7) is
generally very high. We describe these issues further in Chapter 3.

2.1.3 Branch Modeling

Unlike sequential and parallel compositions, conditional composition in terms of branching
cannot be modeled explicitly by DAGs. To the best of our knowledge there exists no
symbolic performance modeling work which also deals with branching, except the work of
Sarkar [91] and Van Gemund [32]. Their work is based on the use of a single, deterministic
parameter to model branching probability. In contrast, in this thesis, we extend this
approach by modeling branch behavior in a much more general statistical manner. This
approach is further elaborated in Chapter 4.
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2.2 Workload Modeling

As mentioned in Chapter 1, the trade-off between prediction accuracy and solution com-
plexity is largely determined by how the execution time distributions are represented. We
argued in Section 1.1 that one needs more than a deterministic model to predict the ex-
ecution time of data-dependent parallel programs. In this section, we review approaches
which use stochastic models for the workload of programs, e.g., the execution time of basic
blocks and program parameters such as loop bounds. In terms of Figure 2.1, workload
modeling is related to modeling the execution time of τ, d and N .

To avoid a complicated analysis of sequential and parallel compositions, most ap-
proaches based on stochastic models assume parameters to be independent. For sequential
composition most of the related work aims to predict the mean and variance of Eq. (2.5).
Let E[Y ] and Var[Y ] denote the mean and variance of Y , respectively. Then the mean
and variance of Y in Eq. (2.5) are given by

E[Y ] =
N∑
i=1

E[Xi] and (2.8a)

Var[Y ] =
N∑
i=1

Var[Xi], (2.8b)

respectively. In contrast to sequential composition, parallel composition poses more an-
alytical problems. In the following, we review approaches based on stochastic models
which consider binary and/or N -ary parallel composition. We assume that parameters
are independent.

2.2.1 Pdf-based Models

An approach using the pdf has been described by Gelenbe to determine the completion
times of SP-DAGs [27]. However, the high-cost numerical integration has a serious draw-
back regarding practical use since the cost of computing integrals, e.g., Eq. (2.6), increases
linearly as a function of the considered time domain.

Another way of characterizing the pdf is based on series approximation, for example
the Gram-Charlier series of type A. We show in Appendix D that the analysis is asymptot-
ically exact. Unfortunately, the number of Gram-Charlier terms needed for a sufficiently
accurate approximation is prohibitive.

Lester approximates the pdf using the z-transform [59]. For example, if X is normally
distributed with parameter µ and σ, the probability mass function (pmf) of X can be
approximated by

fX(x) = .00621(xµ−3σ+xµ−3σ)+.0606(xµ−2σ+xµ−2σ)+.2417(xµ−σ+xµ−2σ)+ .3829xµ. (2.9)

In particular, sequential and conditional compositions can be easily expressed in terms of
the z-transform. While the real pdf can be approximated well, the solution complexity of
the underlying numerical process is still high.

Schopf and Berman [93] use histograms with a limited number of intervals. However,
the analysis complexity grows rapidly with the number of histogram intervals needed



2.2 Workload Modeling 13

to accurately characterize a distribution. Also Lüthi et al. [62] characterize parameter
variabilities in terms of histograms. In contrast to program (task graph) analysis, they
address the problem of solving queuing models with load variabilities.

2.2.2 Specific Distribution Models

Many approaches reduce solution complexity by using specific distributions that are char-
acterized by a limited number of parameters: generality is traded for cost reduction.
Thomasian and Bay [105] consider the exponential distribution. For example, let X be
exponentially distributed with parameter θ, then the rth moment of Y in Eq. (2.7) for
independent and identically distributed (iid) Xi is given by [106]

E[Y r] =
N∑
i=1

(
N

i

)
(−1)i−1 r!

(iθ)r
. (2.10)

Since program parameters are typically correlated, exponentially distributed program
workloads are hardly found in practice.

Sötz uses an exponential distribution with parameter θ combined with a deterministic
offset d. His approximation is based on the use of Erlang distributions with mean µ and
standard deviation σ. Then the parameters can be found by θ = 1/σ and d = m − σ.
While the analysis is straightforward, the approach may introduce significant errors [103].

Mak and Lundstrom [64] use Erlang distributions1 instead of using exponentially dis-
tributed task times. The Erlang distribution corresponds to a series of r identical expo-
nentially distributed stages each with a mean of 1/λ. Using Erlang distributions, they
analyze Eq. (2.7) for N = 2 (binary parallel composition) as follows. Let X1(λ1, r1) and
X2(λ2, r2) be Erlang random variables. For binary parallel composition it holds that

E[Y ] = E[X1] + E[X2]− λr11
(λ1 + λ2)r1+1

r2−1∑
k=0

(
λ2

λ1 + λ2

)k
(r1 + k)!

(r1 − 1)!k!

− λr22
(λ1 + λ2)r2+1

r1−1∑
k=0

(
λ1

λ1 + λ2

)k
(r2 + k)!

(r2 − 1)!k! , (2.11a)

Var[Y ] = E[X1]
2 + E[X2]

2 + Var[X1] + Var[X2]− E[Y ]2

− λr11
(λ1 + λ2)r1+2

r2−1∑
k=0

(
λ2

λ1 + λ2

)k
(r1 + k + 1)!

(r1 − 1)!k!

− λr22
(λ1 + λ2)r2+2

r1−1∑
k=0

(
λ1

λ1 + λ2

)k
(r2 + k + 1)!

(r2 − 1)!k! . (2.11b)

Liang and Tripathi [61] derive the mean and variance of parallel composition for Erlang
and/or hyperexponential distributions2. The use of both distributions depends on the co-
efficient of variation. Let X1(λ11, λ12, l1, ) and X2(λ21, λ22, l2) be hyperexponential random

1The cdf of Erlang random variable X is given by FX(x) = 1 −∑r−1
k=0

(λx)k

k! e−λx, where x > 0 and
λ > 0.

2The cdf of hyperexponential random variable X used in [61] is given by FX(x) = l(1− e−λ1x)+ l(1−
e−λ2x), where x > 0, λ1, λ2 > 0, and 0 ≤ l ≤ 1.
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variables. For binary parallel composition it holds that

E[Y ] = E[X1] + E[X2]

− l1l2
λ11 + λ21

− (1− l1)l2
λ12 + λ21

− l1(1− l2)

λ11 + λ22

− (1− l1)(1− l2)

λ12 + λ22

, (2.12a)

Var[Y ] = E[X1] + E[X2] + Var[X1] + Var[X2]− E[Y ]2

− 2l1l2
λ11 + λ21

− 2(1− l1)l2
λ12 + λ21

− 2l1(1− l2)

λ11 + λ22

− 2(1− l1)(1− l2)

λ12 + λ22

. (2.12b)

If the distribution of Xi are mixed, the mean and variance of Y are as follows. Let
X1(λ11, λ12, l1, ) and X2(λ2, r2) be hyperexponential and Erlang random variables, respec-
tively. For binary parallel composition it holds that

E[Y ] = E[X2] +
l1
λ11

(
λ2

(λ11 + λ2)

)r2
+
1− l1
λ12

(
λ2

(λ12 + λ2)

)r2
, (2.13a)

Var[Y ] = E[X2]
2 + Var[X2]

2 − E[Y ]2

+ 2

[
l1
λ2

11

(
λ2

(λ12 + λ2)

)r2
+
(1− l1)

λ12

(
λ2

(λ12 + λ2)

)r2]

+ 2
r2

λ2


 l1
λ2

11

(
λ2

(λ11 + λ2)

)r2+1

+
(1− l1)

λ12

(
λ2

(λ12 + λ2)

)r2+1

 . (2.13b)

Sahner and Trivedi [89] use exponomial distributions3. Exponomial distributions in-
clude exponential, hyperexponential and Erlang distributions, and mixtures of Erlang dis-
tributions. Their technique uses the fact that exponomial distributions are closed under
various operations including maximum. Let X1 and X2 be exponomial random variables
having cdfs FX1(x) = 1 − e−4x and FX22(x) = 1 − e−5x, respectively. For binary parallel
composition, it holds that

FY (x) = FX1(x)FX2(x)

= (1− e−4x)(1− e−5x)

= 1− e−4x − e−5x + e−9x, (2.14)

where FY (x) is also an exponomial distribution. While exponential, Erlang, hyperexpo-
nential, and exponomial workloads offer low cost, analytic tractability, and are appropriate
for, e.g., reliability modeling, such workloads are often only a coarse approximation of the
workloads as measured in real programs. Note that these distributions are all special
cases of the phase-type distribution [71] which is characterized by a Markov chain and a
transition probability matrix. Although the phase-type distribution are computationally
efficient, but the distribution applies only to restrictive models when the fitting method
is based on the statistical moments [46].

Schopf and Berman [95] use normal distributions. While the application to sequential
programs is straightforward, binary parallelism is approximated heuristically, entailing
large errors when both workloads are similar (see Section 5.3.1).

3A random variable X is said to be exponomially distributed if the cdf can be expressed as FX(x) =∑
i aix

kiebix.
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2.2.3 Arbitrary Distribution Models

Having the purpose to extend the analysis to more arbitrary workloads, other approaches
approximate the workload distribution in terms of, e.g., mean, variance, and/or bounds.
Gumbel [36] approximates the mean execution time of a parallel composition with N
tasks having iid symmetric distributions, provided that their mean (E[Xi])and variance
(Var[Xi]) are known. The approximation is given by

E[Y ] ≈ E[Xi] +
√
2Var[Xi] log(0.4N). (2.15)

Axelrod [6] also uses Eq. (2.15) to approximate the execution time of parallel tasks with
synchronization barriers on multiprocessors. Under the same assumptions, Robinson [87]
introduces upper and lower bounds on the mean execution time while allowing dependen-
cies among subtasks. These bounds were later improved by Madala and Sinclair [63]. To
include wider-than-symmetric distributions, Kruskal and Weiss [54] use increasing failure
rate (IFR) distributions4 to approximate the mean execution time of parallel compositions
for iid subtasks. IFR includes exponential, gamma with µ/σ ≥ 1, Weibull with rate ≥ 1,
truncated normal, i.e., normal distribution constrained to be positive, and uniform on the
interval (0, c) for any c > 0.

While the approximation error of these approaches is quite reasonable, only the first
moment can be obtained. As, in turn, mean and variance are required inputs, this ap-
proach cannot be applied to DAGs with nested parallelism, thus seriously limiting their
applicability.

2.2.4 Moment-based Models

There are other approaches that also characterize the execution time distribution in terms
of the mean and variance. These approaches include the work of Sarkar [91] for sequential
compositions. Although they are not aimed at analyzing parallel composition, they show
that moment-based models are straightforward for the analysis of sequential compositions.

Reijns et al. [84] use Pearson distributions for the analysis of parallel composition.
Although Pearson distributions include a wide range of distributions, the associated anal-
ysis does not always yield a closed-form expression, e.g., for a parallel composition with
N tasks having iid, normally distributed workloads.

2.3 Summary

In this chapter we have reviewed approaches that propose the use of cdf or pdf, and other
representations that impose restrictions on the allowable distributions. Some choose a
characterization in terms of mean and variance, which allows arbitrary distributions while

4A random variable X is said to be IFR if the following equation holds

FX(x) =




0, if x = 0, positive random variable,
1− FX(x + ε)
1− FX(x)

, if ε > 0, monotone decreasing in x.
(2.16)
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still sacrificing accuracy. None of the approaches addresses the effect of stochastic loop
bounds or branching, which are essential in stochastic program modeling. An exception
is the approach taken by Adve and Vernon [1] which allows a sequential loop bound to be
stochastic.

Table 2.1 summarizes the related work in symbolic performance modeling in terms of
the distribution type used, and whether the approach addresses sequential composition
(SC), stochastic loop bounds (LB), condition probabilities (CP), binary parallel compo-
sition (BP) and N -ary parallel composition (NP). NA means that the approach is not
applicable to the corresponding composition. Our approach is included for reference.

Table 2.1: Summary of related work in symbolic performance modeling.

First author Distribution type SC LB CP BP NP
Adve [1] Mean & Var. NA

√
NA NA NA

Axelrod [6] Normal NA NA NA NA
√

Gautama (Appendix D) Series NA NA NA
√ √

Gelenbe [27] Pdf
√

NA NA
√ √

Gumbel [36] Normal NA NA NA NA
√

Kruskal [54] IFR NA NA NA NA
√

Lester [59] Z-transform
√

NA NA NA
√

Liang [61] Erlang & Hyperexp.
√

NA NA
√ √

Lüthi [62] Histogram
√

NA NA
√

NA
Madala [63] Normal NA NA NA NA

√
Mak [64] Erlang

√
NA NA

√ √
Reijns [84] Pearson NA NA NA

√ √
Robinson [87] Normal NA NA NA NA

√
Sahner [89] Exponomial

√
NA NA

√ √
Sarkar [91] Mean & Var.

√
NA NA NA NA

Schopf [93] Histogram
√

NA NA
√

NA
Schopf [95] Normal

√
NA NA

√
NA

Sötz [103] Det & Exp
√

NA NA
√ √

Gautama (this thesis) Moments (4)
√ √ √ √ √



Chapter 3

Statistical Moment Analysis

As mentioned in Section 1.3, our performance prediction approach is based on modeling
workload in terms of a number of statistical moments, in order to combine good accuracy
with minimum solution complexity. In this chapter we introduce our statistical moment
approach. First, we present the rationale, modeling methodology, and the analysis of
sequential and conditional compositions. Second, we formulate the parallel composition
problem. We then proceed with the analysis of sequential, conditional, and parallel com-
position in terms of our moment approach.

3.1 Rationale

The choice for using statistical moments to characterize the pdf is primarily based on two
reasons. First, our moment approach is effectively a generalization of the use of mean and
variance in distribution characterization. Like the use of mean and variance, the associated
benefit is a low analysis complexity. Unlike the mean and variance approach, however,
our approach captures essential information on the cdf (e.g., upper percentiles, which are
relevant for time-critical applications), while retaining the low-complexity benefit. Second,
the method of moments is a general approach to estimate the parameters from a data set
and to equate the sample moments to their population counterparts. Another approach
such as Maximum Likelihood is unsuited for many practical purposes because it does not
reveal the origin of the actual value of the parameters [104]. Although in general, the
method of moments does not completely determine a cdf, in our case, knowledge of all
moments is equivalent to knowledge of the distribution since execution time distributions
can be assumed to be finite [104]. For detailed discussion of the method of moments, we
refer to Appendix A.

Theoretically, an unlimited number of statistical moments can be incorporated in our
performance prediction approach. However, we only consider the first four moments for
the following three reasons. First, lower moments are more important than higher mo-
ments for the characterization of a distribution, as has been frequently discussed in statis-
tics, such as for Pearson distributions and Johnson distributions. It has been shown [83]
that the first four moments allow to reconstruct and approximate the original distribution
while introducing an acceptable error, and to distinguish between well-known standard
distributions. Second, in measurements, lower moments are more robust than higher mo-

17



18 Chapter 3. Statistical Moment Analysis

ments. The measured values of higher moments are so sensitive to sampling fluctuations
that including higher moments in the analysis will not always improve the prediction ac-
curacy. Finally, our analysis of parallel composition is specifically aimed at using only the
first four moments (see Chapter 5).

3.2 Methodology

Our approach towards program performance prediction is depicted in Figure 3.1. In
the figure (left), we distinguish between modeling approach (top) and the measurements
(bottom). In the figure (right), we show the focus of our research, i.e., the moment
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Figure 3.1: Our performance prediction approach

analysis. As described in Chapter 2, due to program regularity (sequential and parallel
composition represented by SP-DAGs), the moment expression can be reduced. To verify
the prediction accuracy, we will compare the predicted execution time with the measured
one.

3.2.1 Modeling Approach

In the first step of our modeling approach, the source code is modeled (Figure 3.1, top
left). This modeling step yields a performance simulation model in which all data depen-
dencies have been removed, isolating only those terms that are relevant for performance
modeling. Because the program is in SP form, in the modeling step we can use a per-
formance modeling language, which is reminiscent to ordinary mathematics in the sense
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that deriving formulae for the execution time is straightforward. Subsequently, we apply
static analysis, which yields the program execution time.

3.2.2 Measurements

As mentioned in Section 2, the purpose of the measurements we perform is to evaluate
our analytical prediction. Since the focus of this thesis lies in developing an analysis
technique, we have kept the applied measurement technique simple.

Profiling

The first step of our measurement method is instrumenting the source code with coun-
ters, known as counter-based profiling. This profiling method probes the frequency of
control constructs rather than counting the execution frequency of each basic block. If
the instrumented program terminates, output files containing all counters are saved. We
run a program under study many times to obtain data samples. We also instrument the
source code with a global counter to measure the program execution time. The use of
counter-based profiling is attractive since this way of profiling is machine-independent.

In the following, we show how the program described in Section 1.1 is instrumented
with counters. For a much longer instrumented program example we refer to Appendix E.

for_call_c++;

for (i = 1; i <= n; i++) {

for_true_c++;

if_call+c++;

if (x[i] != 0) {

if_true_c++;

x[i] = x[i] * alpha;

exec_time_c++;

}

}

All counter values are initialized to zero. Each if, for, or while control construct always
has two counters. The first counter, _call_c, is placed right before the control construct,
and the second counter, _true_c, is placed right after the control construct. If the control
construct is executed, then _call_c is incremented. And if the condition is true, that is,
if the statement inside the control construct is executed, _true_c is incremented. The
frequency of a control construct is obtained by dividing _true_c by _call_c.

Data Processing

After instrumentation, the program is ready to be compiled and executed. Instrumented
source codes take a bit longer to execute than the original source code. Obviously, ad-
ditional time is needed to increment the counters and to execute input and output file
functions. The measurement is repeated for different sample data sets to obtain the data
samples.
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After the data samples are obtained, the samples are processed to obtain the first
four moments of measured variables. The results of the data processing are moments
of control constructs as well as the total execution time T , which is used to verify the
predicted execution time.

3.3 Preliminaries

This section defines the terminology of probability theory (mostly taken from [58, 106])
which we use in this thesis. Readers who are familiar with the terminology can skip this
section. We begin by discussing the notion of random experiments, conditional probabil-
ity, random variables, the cumulative distribution function, and the probability density
function. Based on the continuity of the cdf, we distinguish two types of random variables,
i.e., discrete and continuous random variables.

Since statistical moments of random variables are an important issue in this thesis, we
introduce the notion of expected values and moments. We present the relation between
the raw and central moments of random variables. It is discussed what individual effect
the first four central moments have on the distribution of random variables. Furthermore,
transform methods are introduced, which are used in our analysis, in which two generating
functions are presented, i.e., the moment generating function (mgf) and the probability
generating function (pgf). Statistical operators are printed in the sans serif font, while
abbreviations are printed in normal fonts.

3.3.1 Probability and Random Variables

A random experiment is an experiment in which the outcome varies in an unpredictable
fashion when the experiment is repeated under the same conditions [58]. An outcome of
a random experiment is defined as a result that cannot be decomposed into other results,
while the set of all possible outcomes is defined as the sample space (S). A subset of S is
defined as an event. Given a sample space S, a probability measure P on S is a rule that
assigns to each event E a real number P[E].

The conditional probability is defined by

P[E1|E2] =
P[E1 ∩ E2]

P[E2]
for P[E2] > 0. (3.1)

We define two events E1 and E2 to be independent if

P[E1 ∩ E2] = P[E1]P[E2]. (3.2)

We define cumulative distribution function (cdf) X according to

FX(x) = P[X ≤ x] for −∞ < x < +∞. (3.3)

Based on the continuity of the cdf, we define two types of random variables [58]. A discrete
random variable is defined as a random variable whose cdf is a right-continuous staircase
function of x, with jumps at a countable set of points x0, x1, x2, . . .. Discrete random vari-
ables take on values from a finite or at most a countably infinite set SX = {x0, x1, x2, . . .}.
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They arise mostly in applications that usually have SX = {0, 1, 2, . . .}. The cdf of a
discrete random variable can be written as the weighted sum of unit step functions

FX(x) =
∑
i

pX(xi)u(x− xi), (3.4)

where pX(xi) = P [X = xi] gives the magnitude of the jumps in the cdf. The set of
probabilities pX(xi) = P [X = xi] of the elements in SX is known as the probability mass
function (pmf) of X.

A continuous random variable is defined as a random variable whose cdf FX(x) is
continuous everywhere, and which, in addition, is sufficiently smooth, so that it can be
written as an integral of some non-negative function f(x):

FX(x) =

x∫
−∞

f(t) dt. (3.5)

The probability density function (pdf) of X is defined as the derivative of FX(x):

fX(x) =
dFX(x)

dx
. (3.6)

3.3.2 Expected Values and Moments

The expected value or mean of a random variable X, denoted by E[X], is defined by

E[X] =



∑
i
xipX(xi) if X is discrete,

∞∫
−∞

x dFX(x) if X is continuous.
(3.7)

The first expression is obtained by substituting Eq. (3.4) into Eq. (3.7), while the second
expression is valid provided that the integral exists. Eq. (3.7) also defines the expectation
of any function of X, say h(X). Since h(X) is itself a random variable, it follows from
Eq. (3.7) that

E[h(X)] =

∞∫
−∞

x dFh(X)(x), (3.8)

where Fh(X) is the cdf of h(X). If h(X) = Xr, the expected value of the function h(X) is
called the rth raw moment of random variable X according to

µ′
r = E[Xr] =

∞∫
−∞

xr dF (x), for r = 1, 2, 3, . . .. (3.9)

The rth central moment, µr, is defined as follows

µr = E[(X − E[X])r] =

∞∫
−∞

(x− E[X])r dF (x). (3.10)
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Specifically, µ2 is called the variance of X, also denoted by Var[X], while the positive
square root of the variance is called the standard deviation, and denoted by σ or Std[X]
according to

σ = Std[X] = |√µ2|. (3.11)

The dimensionless ratio of µ3 to σ3 is called the skewness of the distribution, denoted by
Skw[X], and the ratio of µ4 to σ4 is called the kurtosis of the distribution, denoted by
Kur[X]. That is,

Skw[X] =
µ3

σ3
, (3.12)

Kur[X] =
µ4

σ4
. (3.13)

The graphical interpretation of the first four moments is shown in Figures 3.2 and 3.3,
respectively. The mean represents the center of mass of the distribution as depicted in
Figure 3.2 (left). This figure also shows the notion of the mode of distribution that is
the value of random variable at which the pdf or pmf peaks. The variance is a measure
of dispersion of the random variable around E[X]. The smaller the variance, the more
sharply the pdf is concentrated around E[X] as shown in Figure 3.2 (right). The skewness
is a measure of asymmetry of the distribution while the kurtosis represents the degree of
peakedness of the distribution as shown in Figure 3.3.

X
pd

f(
   

)

X

mode mean

X
pd

f(
   

)

small variance

large variance

X

Figure 3.2: Definition of the mean and mode of distribution (left) and probability density
functions for large and small variances (right)

Using the binomial theorem, we summarize the relation between the central moments
µr and the raw moments µ

′
r below [104]:

µr =
r∑
j=0

(
r

j

)
(−1)r−jµ′

jµ
′
1
r−j

, (3.14)

µ′
r =

r∑
j=0

(
r

j

)
µjµ

′
1
r−j

, (3.15)
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Figure 3.3: Skewness (left), kurtosis (right) and shape of probability density functions

where µ0 = µ′
0 = 1 and µ1 = 0. The relation of the first four moments are therefore

µ1 = 0, (3.16a)

µ2 = µ′
2 − µ′

1
2
= Var[X], (3.16b)

µ3 = µ′
3 − 3µ′

1µ
′
2 + 2µ

′
1
3
, (3.16c)

µ4 = µ′
4 − 4µ′

1µ
′
3 + 6µ

′
1
2
µ′

2 − 3µ′
1
4
, (3.16d)

and

µ′
1 = µ1, (3.17a)

µ′
2 = µ2 + µ2

1, (3.17b)

µ′
3 = µ3 + 3µ1µ2 + µ3

1, (3.17c)

µ′
4 = µ4 + 4µ1µ3 + 6µ

2
1µ2 + µ4

1. (3.17d)

Another useful definition for our analysis is conditional expectation. Let X and Y be
joint continuous random variables. Then the conditional expectation of Y given X = x is
defined by

E[Y |x] =
∫ ∞

−∞
yfY (y|x)dy, (3.18)

where fY is the pdf of Y . Note that E[Y |x] is the center of mass associated with the
conditional pdf. In particular, in our analysis we will be using the following result

E[E[Y |X]] =
∫ ∞

−∞
E[Y |x]fX(x)dx

=
∫ ∞

−∞

∫ ∞

−∞
yfY (y|x)dyfX(x)dx

=
∫ ∞

−∞
y
∫ ∞

−∞
fX,Y (x, y)dxdy

=
∫ ∞

−∞
yfY (y)dy = E[Y ]. (3.19)

The above result also holds for the expected value of a function of Y , i.e.,

E[E[h(Y )|X]] = E[h(Y )]. (3.20)
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3.3.3 Transform Methods

In this section we introduce two transform methods: the moment generating function
(mgf) and the probability generating function (pgf). The mgf and pgf will play an im-
portant role in our analysis.

The moment generating function (mgf) of X is defined by

MX(t) = E[etX ] (3.21)

=



∑
i
pX(x)e

txi if X is discrete,
∞∫

−∞
fX(x)e

txdx if X is continuous.

Although the mgf does not always exist for the problems that we encounter, there will
always be an interval of t values in which MX(t) does exist.

If random variables are a non-negative integer-valued discrete random variables, then
it is more convenient to evaluate related problems through the probability generating
function (pgf), defined by

GX(z) = E[zX ] (3.22)

=
∞∑
k=0

pX(k)z
k.

The first expression is the expected value of the function of zX . The second expression is
the z-transform of the pmf.

The reason why transform methods are useful lies in the following properties of the
transforms. We will give the properties of the mgf, and by appropriate substitution for t,
similar properties can be stated for the pgf as well.

Definition 3.1 The convolution theorem [106]
Let X1, X2, . . . , Xn be mutually independent random variables on a given probability space,

and let Sn =
n∑
i=1

Xi. If MXi
(t) exists for all i, then MSn(t) exists, and it holds that

MSn(t) =MX1(t)MX2(t) · · ·MXn(t). (3.23)

✷

Thus the mgf of a sum of independent random variables is the product of the individual
mgf of those variables. The convolution theorem states that we may find the transform
of a sum of independent random variables without n-dimensional integration.

From Eq. (3.23), it is easy to show that the mean and variance of Sn are given by

E[Sn] = E[X1] + E[X2] + · · ·+ E[Xn] (3.24)

and
Var[Sn] = Var[X1] + Var[X2] + · · ·Var[Xn]. (3.25)

The mean of Sn in Eq. (3.24) is equal to the sum of individual means. Since independency
between Xis is not a necessary, Eq. (3.24) is generally valid. This property is called the
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linearity property of expectation. However, the independent condition is necessary for
Var[Sn], which in general is given by

Var[Sn] =
n∑
k=1

Var(Xk) +
n∑
j=1
j �=k

n∑
k=1

Cov(Xj, Xk), (3.26)

where Cov(X,Y ) denotes the covariance between random variablesX and Y and is defined
by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]. (3.27)

Thus in general, the variance of a sum of random variables is not equal to the sum of the
individual variances. The covariance will play an important role in our program analysis
and measurements since it reflects the dependency between two random variables.

Since fX(x) and MX(t) form a transform pair, it is possible to obtain the moments of
X from MX(t).

Definition 3.2 The moment theorem [58]
The rth raw moments of X are given by

E[Xr] =
dr

dtr
MX(t)

∣∣∣∣∣
t=0

. (3.28)

✷

The corresponding property for pgf makes that the pmf of X is given by

pX(r) =
1

r!

dr

dzr
GX(z)

∣∣∣∣∣
z=1

. (3.29)

3.4 Analysis

In this section, we present the analysis of sequential, conditional, and parallel task com-
positions. We explicitly derive the relationship between statistical moments of a program
composition in terms of the moments of the constituting components.

As mentioned in Chapter 1, our moment approach is compositional, as illustrated in
Figure 3.4. Recall the example in Section 1.1. If the input moments E[Xr],E[N r], and
E[P r] represent the execution time of basic block, loop bound, and branch probability,
respectively, the equivalent output moments E[Y r] can be evaluated. In turn, the output
moments E[Y r] can be used as the input for the embedding control flows related to Y .
Hence, the analysis typically proceeds in a bottom-up fashion. Recursive application
of the analysis stops when the outermost control flow construct is reached, yielding the
moments of the execution time T of the whole program.

As mentioned in Section 3.1 we consider the first four moments as workload represen-
tation. The execution time distribution of a basic block, loop bound, branch probability,
etc. is given by

X = (E[X],Var[X], Skw[X],Kur[X]), (3.30)
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Figure 3.4: Compositional approach.

i.e., the mean, variance, skewness, and kurtosis, respectively. The values can simply be
obtained through measurements on a real program or from previous analysis results of
the inner control flow compositions.

In our analysis (e.g., see Section 3.4.3), we may encounter a deterministic workload.
We define a deterministic program parameter X as

X = (E[X],Var[X] = 0, Skw[X] = 0,Kur[X] = 3). (3.31)

3.4.1 Binary Sequential Composition

In this section we present the analysis of binary sequential composition. Consider the
following binary sequential composition:

statement_1;

statement_2;

which specifies a strict sequence of two statements (basic blocks). Let the workload
distribution of statement_i be denoted by Xi where i ∈ {1, 2}. The following proposition
describes the execution time distribution of the above sequential composition.

Proposition 3.1 Binary sequential composition
Let Y be defined as an addition of two independent random variables X1 and X2,

Y = X1 +X2, (3.32)

where E[Xr
1 ] and E[Xr

2 ] exist. Then the rth raw moment of Y is given by

E[Y r] =
r∑
j=0

(
r

j

)
E[Xj

1 ]E[X
r−j
2 ]. (3.33)

Proof:
The moments of Y can be derived using the mgf of Y as follows:

E[etY ] = E[et(X1+X2)] = E[etX1 ]E[etX2 ]. (3.34)

Through expansion of the right-hand side into a power series with respect to t, Eq. (3.34)
becomes

E[etY ] = (1 + tE[X1] +
t2E[X2

1 ]

2!
+ . . .)(1 + tE[X2] +

t2E[X2
2 ]

2!
+ . . .)
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= 1 + t(E[X1] + E[X2]) + . . .+
ti

i!

i∑
j=0

(
i

j

)
E[Xj

1 ]E[X
i−j
2 ] + . . .

=
∞∑
i=0

ti

i!

i∑
j=0

(
i

j

)
E[Xj

1 ]E[X
i−j
2 ]. (3.35)

By Eq. (3.28), the rth moment of Y is given by

E[Y r] =
drE[etY ]

dtr

∣∣∣∣∣
t=0

.

At t = 0, the derivative of the series is equal to zero except for i = r. Hence, Eq. (3.35)
reduces to

E[Y r] =
r∑
j=0

(
r

j

)
E[Xj

1 ]E[X
r−j
2 ].

✷

A specific moment expression is derived by substituting r. From Eq. (3.33) we have
derived the first four moments of Y according to

E[Y ] = E[X1] + E[X2], (3.36a)

Var[Y ] = Var[X1] + Var[X2], (3.36b)

Skw[Y ] =
Skw[X1]Std[X1]

3 + Skw[X2]Std[X2]
3

Std[Y ]3
, (3.36c)

Kur[Y ] =
(Kur[X1]− 3)Std[X1]

4 + (Kur[X2]− 3)Std[X2]
4

Std[Y ]4
+ 3. (3.36d)

The derivation can be found in Appendix C.1.1.

3.4.2 N-ary Sequential Composition

In the following, we derive the moments for an N -ary sequential composition (a program
loop), according to

for (i = 1; i <= N; i++)

statement_i;

whereXi, i ∈ {1, 2, . . . , N}, are independent identically distributed (iid) random variables.
Note that in addition to Xi, N may also be stochastic, reflecting the fact that many loop
bounds are data dependent as well.

Proposition 3.2 N -ary sequential composition
Let Y be defined as the sum of a random number N of random variables Xi,

Y =
N∑
i=1

Xi, (3.37)
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where Xi are iid variates of random variable X, and N is independent from Xi. Let also
E[Xr] and E[N r] exist. Then the rth raw moment of Y is given by

E[Y r] = E


 dr
dtr


 r∑
j=0

tjE[Xj]

j!



N
∣∣∣∣∣∣∣
t=0


 . (3.38)

Proof:
The moment generating function of Y can be found using conditional expectation in
Eqs. (3.19) and (3.20):

E[etY ] = E[E[etY |N ]]. (3.39)

For N = n, we have

E[etY |n] = E[et(X1+···+Xn)]

= E[etX1 ] . . .E[etXn ]

=
n∏
i=1

E[etXi ]. (3.40)

As Xi = X, Eq. (3.39) becomes

E[etY |N ] = E[etX ]N . (3.41)

By Eq. (3.20), it follows that

E[etY ] = E[E[etX ]N ]. (3.42)

The rth moment of Y is given by

E[Y r] =
drE[etY ]

dtr

∣∣∣∣∣
t=0

=
drE[E[etX ]N ]

dtr

∣∣∣∣∣
t=0

.

Using the linearity property of expectation, and expanding E[etX ] into a power series with
respect to t (similar to the proof in Proposition 3.1), we obtain

E[Y r] = E


 dr
dtr


 ∞∑
j=0

tjE[Xj]

j!



N
∣∣∣∣∣∣∣
t=0


 . (3.43)

Since the derivative of the jth term of the series is equal to zero at t = 0 for j > r,
Eq. (3.43) reduces to

E[Y r] = E


 dr
dtr


 r∑
j=0

tjE[Xj]

j!



N
∣∣∣∣∣∣∣
t=0


 . (3.44)

✷
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A specific moment expression is derived by substituting r. For instance, for the first
four moments we have derived the following results

E[Y ] = E[N ]E[X], (3.45a)

Var[Y ] = E[N ]Var[X] + E[X]2Var[N ], (3.45b)

Skw[Y ] = (E[N ]Skw[X]Std[X]3 + E[X]3Skw[N ]Std[N ]3

+ 3E[X]Var[X]Var[N ])/Std[Y ]3, (3.45c)

Kur[Y ] = (E[N ]Kur[X]Var[X]2 + E[X]4Kur[N ]Var[N ]2

+ 6E[X]2Var[X]Skw[N ]Std[N ]3 + 4E[X]Var[N ]Skw[X]Std[X]3

+ 3Var[X]2Var[N ])/Var[Y ]2. (3.45d)

The derivation can be found in Appendix C.1.2.

3.4.3 Binary Conditional Composition

In this section we describe the analysis of the binary conditional composition

if (C)

statement_1;

else

statement_2;

with branch condition C. If C is true, statement_1will be executed, otherwise statement_2.
Note that we include the optional else clause for completeness of our analysis (a sim-
ple if-statement is modeled by assigning the workload of statement_2 to zero). The
execution time distribution of the branch is expressed by the following proposition.

Proposition 3.3 Binary conditional composition
Let Y be defined as

Y =

{
X1, if C = true
X2, if C = false,

(3.46)

where C and Xi are independent. Let C have truth and false probability P and Q = 1−P ,
respectively, and let E[P r], E[Qr] and E[Xr

i ] exist. Then the rth raw moment of Y is given
by

E[Y r] = E


 dr
dtr


 r∑
j=0

tjE[Xj
1 ]

j!



P
∣∣∣∣∣∣∣
t=0


+ E


 dr
dtr


 r∑
j=0

tjE[Xj
2 ]

j!



Q
∣∣∣∣∣∣∣
t=0


 . (3.47)

Proof:
The moments of Y can be derived using conditional expectation based on the mgf of Y :

E[etY ] = E[E[etX1|C = true]] + E[E[etX2|C = false]]
= E[E[etX1|P ]] + E[E[etX2|Q]. (3.48)
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By Eq. (3.42), it follows that

E[etY ] = E[E[etX1 ]P ] + E[E[etX2 ]Q]. (3.49)

The rth moment of Y is given by

E[Y r] =
drE[etY ]

dtr

∣∣∣∣∣
t=0

=
drE[E[etX1 ]P ]

dtr

∣∣∣∣∣
t=0

+
drE[E[etX2 ]Q]

dtr

∣∣∣∣∣
t=0

. (3.50)

Using the linearity property of expectation, and expanding E[etX ] into a power series with
respect to t, we obtain

E[Y r] = E


 dr
dtr


 ∞∑
j=0

tjE[Xj
1 ]

j!



P
∣∣∣∣∣∣∣
t=0


+ E


 dr
dtr


 ∞∑
j=0

tjE[Xj
2 ]

j!



Q
∣∣∣∣∣∣∣
t=0


 . (3.51)

Since the derivative of the jth term of the series is equal to zero at t = 0 for j > r,
Eq. (3.51) reduces to

E[Y r] = E


 dr
dtr


 r∑
j=0

tjE[Xj
1 ]

j!



P
∣∣∣∣∣∣∣
t=0


+ E


 dr
dtr


 r∑
j=0

tjE[Xj
2 ]

j!



Q
∣∣∣∣∣∣∣
t=0


 .

✷

Note that the random variables P and Q are correlated linearly, i.e., Q = 1− P . Conse-
quently,

E[Q] = 1− E[P ], Var[Q] = Var[P ], Skw[Q] = −Skw[P ] and Kur[Q] = Kur[P ]. (3.52)

From Eq. (3.47) we have derived the first four moments of Y according to

E[Y ] = E[P ]E[X1] + E[Q]E[X2], (3.53a)

Var[Y ] = E[P ]Var[X1] + Var[P ]E[X1]
2 + E[Q]Var[X2] + Var[Q]E[X2]

2

− 2E[P ]E[Q]E[X1]E[X2], (3.53b)

Skw[Y ] = (E[P ]Skw[X1]Std[X1]
3 + E[X1]

3Skw[P ]Std[P ]3 + 3Var[P ]E[X1]Var[X1]

+ E[Q]Skw[X2]Std[X2]
3 + E[X2]

3Skw[Q]Std[Q]3 + 3Var[Q]E[X2]Var[X2]

− 3E[P ]E[X1](E[Q]Var[X2] + (Var[Q]− E[Q]2)E[X2]
2)

− 3E[Q]E[X2](E[P ]Var[X1] + (Var[P ]− E[P ]2)E[X1]
2))/Std[Y ]3, (3.53c)

Kur[Y ] = E[P ]Kur[X1]Var[X1]
2 + E[Q]Kur[X2]Var[X2]

2

+ 4E[P 2]E[X1]Skw[X1]Std[X1]
3 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3

+ E[X1]
4((Kur[P ] + 3)Var[P ]2 + 4E[P ]Skw[P ]Std[P ]3 + 6E[P ]2Var[P ] + E[P ]4)

+ E[X2]
4((Kur[Q] + 3)Var[Q]2 + 4E[Q]Skw[Q]Std[Q]3 + 6E[Q]2Var[Q] + E[Q]4)

+ 6E[X1]
2Var[X1](Skw[P ]Std[P ]3 + 3E[P ]Var[P ] + E[P ]3)

+ 6E[X2]
2Var[X2](Skw[Q]Std[Q]3 + 3E[Q]Var[Q] + E[Q]3)

+ 3(E[P ] + E[P ]2 + Var[P ])Var[X1]
2 + 3(E[Q] + E[Q]2 + Var[Q])Var[X2]

2.(3.53d)
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Eq. (3.53) expresses the output moments Y of the conditional composition in terms of the
input moments Xi, P and Q. The derivation can be found in Appendix C.2.1.

Like in sequential composition, it is straightforward to model the workload distribution
Xi. However, modeling the truth probability P (also Q) in conditional composition is far
from trivial. The issues concerning statistical branch modeling will be discussed in depth
in Chapter 4.

3.4.4 N-ary Conditional Composition

Consider the following N -ary conditional composition

if (C_1)

statement_1;

elseif (C_2)

statement_2;

...

elseif (C_N)

statement_N;

In the composition, only one condition Ci is assumed to be true. The analysis is given by
the following proposition.

Proposition 3.4 N -ary conditional composition
Let Y be defined as

Y =




X1, if C1 = true,
X2, if C2 = true,
...

...
XN , if CN = true

(3.54)

where Ci and Xi are independent, while Ci are mutually exclusive. Let Ci have truth
probabilities Pi, and let E[P ri ] and E[Xr

i ] exist. Then the rth raw moment of Y is given by

E[Y r] =
N∑
i=1

E


 dr
dtr


 r∑
j=0

tjE[Xj
i ]

j!



Pi
∣∣∣∣∣∣∣
t=0


 . (3.55)

Proof:
We prove Proposition 3.4 by induction.
(1) For i = 2, we have proven Eq. (3.55) in Proposition 3.3.
(2) Assume that (1) holds for i = n, that is,

E[Y rn ] =
n∑
i=1

E


 dr
dtr


 r∑
j=0

tjE[Xj
i ]

j!



Pi
∣∣∣∣∣∣∣
t=0


 . (3.56)

We must now show that it also holds for i = n + 1. Since in Eq. (3.56) it holds that∑n
i=1 Pi = 1, we let Pn+1 = 0. It follows that

E[Y rn+1] =
n∑
i=1

E


 dr
dtr


 r∑
j=0

tjE[Xj
i ]

j!



Pi
∣∣∣∣∣∣∣
t=0


+ E


 dr
dtr


 r∑
j=0

tjE[Xj
n+1]

j!



Pn+1

∣∣∣∣∣∣∣
t=0
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=
n+1∑
i=1

E


 dr
dtr


 r∑
j=0

tjE[Xj
i ]

j!



Pi
∣∣∣∣∣∣∣
t=0


 (3.57)

due to the linearity property of expectation. Eq. (3.57) still holds for Pn+1 �= 0, provided
that

∑n+1
i=1 Pi = 1.

✷

Unlike Xi, the statistical moments of P are very difficult to obtain in practice. As men-
tioned earlier, the problems related to statistical branch modeling will be discussed in
depth in Chapter 4.

3.4.5 Parallel Composition

Parallel composition can be divided in and-parallel and or-parallel compositions. In and-
parallelism, the parallel composition has finished when all constituent tasks have finished
(i.e., the last task). In or-parallelism, the parallel composition has finished when any con-
stituent task has finished (i.e., the first task). Of the two forms, and-parallel composition
is most common in parallel computing, and typically results from task or data parallelism,
where each task essentially involves different computation (workload), or the tasks involve
the same computation (on different data), respectively.

Or-parallel composition, in contrast, results from speculative parallelism, where each
task is initiated without being sure that its execution needs to complete. Examples of or-
parallel composition include searching in parallel for a solution, such as finding a unique
pattern in a data base, where the event of the solution found terminates the entire parallel
process.

Consider the following and-parallel composition:

forall (i = 1; i <= N; i++)

statement_i;

which comprises N processes running in parallel without any intermediate form of syn-
chronization. For simplicity, let statement_i have an iid workload distribution, denoted
by Xi. Since in and-parallelism the slowest computation (largest workload) determines
the overall execution time, the execution time Y is defined as

Y = max(X1, X2, . . . , XN). (3.58)

Unlike in the sequential domain, in parallel composition, there is in general no analytic,
closed-form solution for E[Y r] in terms of E[Xr] due to the following integration problem.
From Eqs. (2.7) and (3.9), we obtain

E[Y r] =
∫ ∞

−∞
xrdFY (x)

=
∫ ∞

−∞
xrd(FX(x))

N

= N
∫ ∞

−∞
xr(FX(x))

N−1dFX(x) (3.59)
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The right-hand side integration is in general fundamentally impossible to solve analytically
in such a way that E[Y r] can be expressed directly as function of E[Xr]. The same problem
as in Eq. (3.59) also applies for or-parallel composition. In this thesis, we present an
approximate solution to this problem, which is described in Chapter 5.

3.5 Examples

While our approach to conditional and parallel compositions will be elaborated in Chap-
ters 4 and 5, respectively, in this section, we apply our approach to three simple sequential
codes in order to illustrate how our moment analysis is used to predict real program per-
formance. Three small example codes are analyzed: Vector Scaling, Straight Selection
Sort, and a version of Quicksort. In Straight Selection Sort we focus on control flow struc-
tures while in Quicksort we focus on the stochastic basic block execution times due to the
effect of memory hierarchy. The choice of applications was based on two considerations.
The first is a high data set dependency of the programs, as we are interested in analyzing
stochastic program behavior. The second is the simplicity of the programs so that we
could fully instrument and analyze the programs by hand. In order to avoid measure-
ments on real machines while validating our analysis technique, we typically modeled a
basic block by a deterministic unit time, which allows a simple counter-based measure-
ment technique for T . This would imply that all Xi are deterministic. However, since
the programs typically involve multiple compositions, a higher-level composition typically
involves a stochastic workload. For example, consider a loop statement with a stochastic
loop bound N . Although Xi are deterministic, from Eq. (3.45) we can verify that Y is
stochastic due to N . Thus, the approach can be applied without loss of generality. Of
course, if the actual moments of the real basic-block execution times, Xi, were known
in advance, these values could be incorporated in the analysis in a trivial manner. To
compare the prediction with actual program performance, we carried out measurements
where every basic block in the program simply increments a unit counter whose final value
represents the measured execution time T .

Typically, when analyzing loops, one assumes statistical independence between iter-
ations, while often characterizing branches in terms of a deterministic truth probability,
thus ignoring the fact that a condition will not always behave like a Bernoulli process.
Apart from validating our analysis method, we will also study to what extent such as-
sumptions actually hold.

3.5.1 Vector Scaling

An implementation of Vector Scaling is given by

for (i = 1; i <= n; i++)

if (x[i] != 0)

x[i] = x[i] * alpha;

which scales a sparse double-precision vector x of length n. Let the execution time be
given by the double-precision multiplication time τ , ignoring other program contributions.
Let p denote the truth probability of the branch condition (x[i] != 0).
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Let n and τ be deterministic, and let the branch condition be modeled by a Bernoulli
distribution with parameter p. Let the random variable P denote the branch probability.
For a Bernoulli process, the first four moments of P are given by [106]

E[P ] = p, (3.60a)

Var[P ] = p(1− p), (3.60b)

Skw[P ] = p(1− p)(1− 2p)/Std[P ]3, (3.60c)

Kur[P ] = p(1− p)(1− 3p+ 3p2)/Std[P ]4. (3.60d)

As the moment approach can be applied in a bottom-up fashion, we begin by analyzing
the conditional composition. Let the execution time be denoted by X. From Eqs. (3.53)
and (3.60), we obtain (τ deterministic)

E[X] = pτ, (3.61a)

Var[X] = p(1− p)τ 2, (3.61b)

Skw[X] = p(1− p)(1− 2p)τ 3/Std[X]3, (3.61c)

Kur[X] = p(1− p)(1− 3p+ 3p2)τ 4/Std[X]4. (3.61d)

Note that since the else-clause of the conditional composition is empty, we can assign
X2 in Eq. (3.53) to zero. In the last step, we apply N -ary sequential composition using
Eq. (3.45). By substituting Eq. (3.61) in Eq. (3.45), our analysis yields the following
prediction (n deterministic) :

E[T ] = npτ, (3.62a)

Var[T ] = np(1− p)τ 2, (3.62b)

Skw[T ] = np(1− p)(1− 2p)τ 3/Std[T ]3, (3.62c)

Kur[T ] = (np(1− p)− 6np2(1− p)2 + 3(np)2(1− p)2)τ 4/Std[T ]4. (3.62d)

The Vector Scaling code was measured for n = 1, 000 and 5,000 random data sets x. The
elements of vector x are generated according to a Bernoulli distribution with probability
p = 0.1 (p true → x[i] �= 0) to resemble data sets with average density d = 0.1. The
moments of n and P are given in Table 3.1 The measured probability mass function (pmf)

Table 3.1: n and E[P r] for Vector Scaling

X E[X] Var[X] Skw[X] Kur[X]
n 10,000 0 0 3
P 0.1 9 10−2 2.7 8.1

of T is given by the histogram in Figure 3.5. In the figure, the pmf of T is compared
with the predicted execution time distribution corresponding to E[T ] = 100,Var[T ] =
90, Skw[T ] = 0 and Kur[T ] = 3, as predicted according to Eqs. (3.62b) to (3.62d) with
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Figure 3.5: The execution time of array scaling.

n = 1, 000, p = d, τ = 1. The agreement between measurement and prediction shows
that in this example the Bernoulli assumption used in deriving Eqs. (3.62b) to (3.62d) is
indeed valid. This result is not surprising since the input array elements are generated
with Bernoulli distributed random variables. In the next examples we will show that
branch conditions cannot be modeled by a Bernoulli distribution in all cases.

3.5.2 Straight Selection Sort

In this section, we apply our analysis technique to Straight Selection Sort. Our discussion
is close to that in [106] where a symbolic formula for the sorting program is derived by
hand. Although in [106] also a closed-form symbolic formula for the execution time is
derived, our method is directly based on mechanically deriving the overall execution time
distribution based on the control structure of the program.

Consider the following Straight Selection Sort implementation

for (i=N; i>=2; i--) {

k = i;

for (j=i-1; j>=1; j--)

if (a[j]>a[k])

k = j;

swap(a[i],a[k]);

}

where swap exchanges the value between two elements. The code comprises a two-fold
nested loop and a conditional statement in the innermost loop. The execution frequency
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of the statements swap and k = i is deterministic and equals N − 1, while the execution
frequency of k = j is stochastic. To define program performance, we choose the statement
k = j to take a unit time execution time delay while the rest of the constructs are assumed
to take zero execution time. Although in practice the statement k = j will not represent
any significant execution time, this setup provides the most interesting scenario since the
sorting program yields stochastic execution time.

We analyze the program in a bottom-up fashion. First, we study the innermost for
loop, which we call Max. Let the branch condition a[j]>a[k] be modeled by a Bernoulli
process with parameter p. If the branch probability is denoted by P , the first four moments
are given by Eq. (3.60). The analysis of the Max loop is similar to the analysis of the vector
scaling program in the previous example. It follows that the first four moments of TMax

are given by

E[TMax,i] = (i− 1)E[P ] = (i− 1)p, (3.63a)

Var[TMax,i] = (i− 1)Var[P ] = (i− 1)p(1− p), (3.63b)

Skw[TMax,i] = (i− 1)Skw[P ]Std[P ]3/Std[TMax,i]
3

= (i− 1)p(1− p)(1− 2p)/Std[TMax,i]
3, (3.63c)

Kur[TMax,i] = (i− 1)(Kur[P ]− 3)Std[P ]4/Std[TMax,i]
4

= ((i− 1)p(1− p)− 6(i− 1)p2(1− p)2

+ 3((i− 1)p)2(1− p)2)/Std[TMax,i]
4. (3.63d)

To study the validity of the Bernoulli assumption, we show in Figure 3.6 a plot of the
predicted TMax for i = 1000, where E[P ] = 6.44 × 10−3 as measured from 5,000 random
data sets. The input data set is modeled by an array with length i, where each element is
independently generated according to a continuous uniform distribution with sample space
[0, 1]. To compare the predicted execution time with the measured TMax, shown in Figure
3.6 by the histogram, we have used a Chi-square test [21]. Although the distributions seem
alike, the results of this test as shown in Table 3.2 indicates that the branch conditional in
Max cannot be modeled by a Bernoulli process (due to the assignment k=j). This is also
demonstrated by Figure 3.7, which shows the measured first four moments as a function of
i. Although the skewness and kurtosis are approximately equal to 0 and 3, respectively,
the mean and variance increase logarithmically as a function of i. This implies that
the average probability p is a function of i rather than a constant. Furthermore, the
measured values are far from our results, which predict that the mean and variance are
linear functions of i.

Next, we continue with the complete analysis of Straight Selection Sort. Based on the
fact that the average probability p is a function of i rather than a constant, we now account
for all moments associated with the previous branch condition through measurement of
E[P r] rather than by just predicting E[P ] = p by assuming Bernoulli behavior1. Since
Xi depends (linearly) on i, we use Eq. (3.36) rather than Eq. (3.45), since a dependency
exists between the inner and outer loops. The last step is analyzing the outer loop. From

1The issues involved in branch modeling are discussed in depth in Chapter 4.
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Table 3.2: A Chi-square test for the pmf of Max to the normal distribution

Interval Observed Expected (O − E)2/E

0 7 7.87 0.1
1 43 50.95 1.24
2 136 164.79 5.03
3 347 354.97 0.18
4 518 572.90 5.26
5 791 738.97 3.66
6 843 793.51 3.09
7 774 729.62 2.70
8 586 586.42 0.00
9 414 418.54 0.05
10 262 268.57 0.16
11 148 156.51 0.46
12 83 83.53 0.00
13 28 41.10 3.56
14 14 18.76 1.21
15 2 7.99 3.11
16 1 3.18 1.50

≥ 17 1 1.82 0.37

Chi-Square Value = 31.69
Threshold = 28.87

Eqs. (3.36) and (3.63) our analysis yields

E[T ] =
N∑
i=2

(i− 1)E[P ], (3.64a)

Var[T ] =
N∑
i=2

(i− 1)Var[P ], (3.64b)

Skw[T ] =
N∑
i=2

(i− 1)Skw[P ]Std[P ]3/Std[T ]3, (3.64c)

Kur[T ] =
N∑
i=2

(i− 1)(Kur[P ]− 3)Std[P ]4/Std[T ]4. (3.64d)

When mathematical reduction is applied, Eq. (3.64) reduces to

E[T ] = E[P ]
N∑
i=2

(i− 1) = N(N − 1)E[P ]/2, (3.65a)

Var[T ] = Var[P ]
N∑
i=2

(i− 1) = N(N − 1)Var[P ]/2, (3.65b)
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Skw[T ] = Skw[P ]Std[P ]3
N∑
i=2

(i− 1)/Std[T ]3

= Skw[P ]Std[P ]3(N(N − 1)/2)/(N(N − 1)Var[P ]/2)3/2

=
√
2Skw[P ]/

√
N(N − 1), (3.65c)

Kur[T ] = (Kur[P ]− 3)Std[P ]4
N∑
i=2

(i− 1)/Std[T ]4

= (Kur[P ]− 3)Std[P ]4(N(N − 1)/2)/(N(N − 1)Var[P ]/2)2

= 2(Kur[P ]− 3)/(N(N − 1)). (3.65d)

Unlike Eq. (3.64), Eq. (3.65) has O(1) time complexity.
For N = 1, 000 the moments of P obtained from measurements are E[P ] = 1.1 ×

10−2,Var[P ] = 1.7×10−2, Skw[P ] = 4.4×10−3, and Kur[P ] = 3. Figure 3.8 shows the pmf
of the Straight Selection Sort execution time. We compare the measured pmf with the
predicted pmf as shown by Figure 3.8. As illustrated in the figure, the mean is predicted
quite accurately. However, the predicted execution time has a smaller variance than
the observed one, which suggests that a correlation must exist between individual Max
invocations in each iteration of the Straight Selection Sort i-loop, resulting in non-zero
covariance between individual iterations.
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Figure 3.8: The pmf(T ) of Straight Selection Sort for N = 1, 000

To obtain a better prediction for the execution frequency, we modified our prediction
by taking covariance into account. The fact is that in general, the variance of a sum of
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random variables is not equal to the sum of the individual variances. From Eq. (3.26) it
follows that Var[T ] is given by

Var[T ] =
N∑
i=2

Var[TMax,i] +
N∑
j=2
j �=k

N∑
k=2

Cov[TMax,j, TMax,k]. (3.66)

The last term is responsible for the covariance in each iteration. If the TMax,i are inde-
pendent, the last term is equal to zero. The measured covariance between the jth and
kth iteration of the i-loop over the entire range of data sets is shown by Figure 3.9. The
results show that the covariance is indeed positive. The covariance is especially large
when the distance between j and k is small. Therefore, in our modified prediction we
only neglect the covariance if | j−k |≥ 10. By including the covariance in the analysis we
obtain a much better prediction for the variance (which is illustrated by the modified exe-
cution time in Figure 3.8). In summary, the experiment shows that although our analysis
technique applies, branches should be modeled with caution, because the “loop-carried”
covariance cannot always be ignored.
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Figure 3.9: The covariance between i-loop iterations j ≥ 500 and k ≥ 500

3.5.3 Memory Hierarchy

Thus far, we have analyzed the stochastic effects at the program level, showing that the
effect of variance on the branch truth probability and loop bounds is very important.
Another source of stochastic behavior is the effect of memory hierarchy, which manifests
itself in basic blocks having a stochastic execution time. This adds a third source of
stochastic behavior of program execution time next to branches and loop bounds.
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In this section we apply our analysis technique to predict cache performance. For the
purpose of the example, the cache model we use is as follows:

if (hit(a))

move_local(a);

else

move_global(a);

where a denotes a memory address. If an address is found in the cache, hit(a) is true,
and the corresponding data is moved locally to the processor. Otherwise, the data must
be moved globally from the lower-level memory hierarchy. In the model we ignore the fact
that usually a complete cache line consisting of multiple words is loaded from memory.

As driver program we use Quicksort [81], which generates a highly data-set-dependent
memory-address stream using trace-driven simulation [99]. A trace is usually gathered by
interpretively executing a program and recording every main memory location referenced
by the program during its execution. We mention two advantages of the trace-driven
simulation above over direct measurement:

1. It is possible and easy to vary the parameters of the simulation model, for example
cache size, line size, set associativity, replacement algorithm etc. In direct measure-
ment, this is not possible since it requires access to a computer and to hardware
measurement tools.

2. The experiment using trace-driven simulation is reproducable, while in direct mea-
surement, we require a single-user machine. This requirement is important because
the effectiveness of a cache memory depends on the total workload of the computer
system [100].

We have modified Quicksort such that memory reference can be recorded. The Quick-
sort program contains 27 loads and stores and the instrumented version is given in Ap-
pendix E. Note that we interpret loads and stores as memory references. We applied the
cache model in all parts of the program where memory reference occurs. Apart from the
cache model we account for 6 loop bounds and 8 if statements. As input for Quicksort we
have chosen an array with length 1, 000 and the addresses were assigned to element ad-
dresses 0 to 999. The number of memory references in the simulation was approximately
N ≈ 14, 000. Figure 3.10 shows the resulting trace obtained from the Quicksort program.
The simulations show that the memory reference pattern of Quicksort is stochastic, as it
differs per data set.

In order to maximize the variance for this particular application, we have chosen a
2-way set associative cache with cache size 0.125K bytes, block size 32 bytes with random
replacement, which yields a hit ratio that is sufficiently less than one. For a hit we charged
τl = 10

−9 time units local access time including cache directory search, and for a miss we
charged τg = 10

−8 time units of global memory access time including the cache directory
update. In practice, the typical local access was indeed in the nano seconds range and
the ratio between τg and τl can varied from 10 to 100.

Figure 3.11 shows the measured execution time of cache program from measurements
with 5,000 random data sets. The mean and variance are 3.09 × 10−5 and 6.55 × 10−13,
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respectively (i.e., a 49% hit rate). The predicted execution time of the cache program is
obtained by substituting Eq. (3.53) into Eq. (3.45). Let the branch condition hit(a) be
modeled by Bernoulli process with parameter E[P ] = p, which is determined by instru-
menting the if statement to measure the truth probability (i.e., cache hit ratio). The pre-
dicted execution time is given in Figure 3.11, where the mean and variance are 3.07×10−5

and 1.59× 10−11, respectively. In the figure, the mean prediction is accurate while in this
case the predicted variance is too large.

To obtain a better prediction for the variance we again include the covariance in
our analysis. However, it turns out that including the covariance in the analysis does
not improve the predicted variance. Figure 3.12 shows the measured covariance for the
dominant outer loop in Quicksort as function of the loop index i. For the modified
execution time the mean and variance are 3.07× 10−5 and 1.58× 10−11, respectively. The
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Figure 3.12: The covariance of Quicksort

predicted variance cannot be improved due to the fact that the cache only contributes
0.6% to the total covariance, while the largest part of covariance appears to be contributed
by loop bounds and branches in the Quicksort program code.

As program performance is usually largely determined by cache performance, one
would also expect the stochastic behavior of the program execution time to depend mostly
on cache behavior. Even though in our model the cache is the only source of delay, our
results show, however, that for our experiment the cache contribution to the variance is
small.
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3.6 Summary

In this chapter we have introduced our statistical technique which predicts the execution
time distribution of data-dependent programs in terms of statistical moments. Using the
program control flow structure, our static technique combines the statistical moments of
sequential loop bounds, branch probabilities, and basic block execution times in terms of
a symbolic process that has a time complexity that is linear in the symbolic size of the
program. To illustrate our analysis technique we have applied our analysis to three small
sequential test programs, which exhibit a high degree of data dependency. In Vector
Scaling and Straight Selection Sort we were able to successfully predict the execution
time. In Memory Hierarchy we can predict the mean execution time with high accuracy
and the variance with low accuracy. We have also shown that often one cannot make
Bernoulli assumptions in modeling branch behavior. The same holds for the assumption
that correlations between individual loop iterations often cannot be made. Chapter 4 will
further discuss this issue in depth.

We summarize the capability of our analysis technique in Table 3.3 in terms of the
prediction accuracy and the appropriate workload. For sequential and conditional compo-
sitions, these aspects are exact and general, respectively. Although we have demonstrated
the derivation for the first four moments only, higher moments can be also obtained in a
similar manner.

For parallel composition, we use an approximate method to represent the first four
moments. This approximation is necessary due to the integration problem related to
parallel composition. A more elaborate and precise method for obtaining the first four
moments in parallel composition is treated in Chapter 5. Note that for all cases, the
prediction cost is O(1) and independent of N .

Table 3.3: Summary of moment analysis characteristics

Aspect
Composition

Sequential Conditional Parallel
Accuracy exact exact approximate
Workloads general general the first four moments
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Conditional Composition

As mentioned in Section 3.5, conditional composition poses additional problems with
respect to modeling branch probability. Although the moments calculus underlying con-
ditional composition is well-understood, statistically characterizing branching behavior
turns out to be quite far from trivial. Recall Straight Selection Sort in Section 3.5.2.
While the prediction accuracy for the mean is very good, that for the variance is quite
poor. It shows that a simple Bernoulli model is not always applicable.

As the branches we consider are typically executed in a loop (nest), we will consider
the following conditional composition sequence:

for (i = 1; i <= N; i++)

if (C)

statement_i;

as the basic kernel for which we derive the execution time distribution T in terms of
the first four moments. Let the truth of branch condition C be modeled by the random
variable P , while the loop bound N and the workload of the ith statement instance are
represented by random variables N and Xi, respectively. Let the conditional composition
have execution time distribution Z. In Section 3.4.2, it is proven that the execution time
of the above loop is given by (N -ary sequential composition)

E[T r] = E


 dr
dtr


 r∑
j=0

tjE[Zj]

j!



N
∣∣∣∣∣∣∣
t=0


 , (4.1)

where (conditional composition)

E[Zr] = E


 dr
dtr


 r∑
j=0

tjE[Xj]

j!



P
∣∣∣∣∣∣∣
t=0


 . (4.2)

Note that E[Xr] denotes the rth raw moment of random variable X, from which the
first four moments can be derived straightforwardly. Since we focus on the branch, for
simplicity, we let statement_i take unit execution time, i.e., X = 1. From Section 3.5.2,
the first four moments of T are given by

E[T ] = E[N ]E[P ], (4.3a)

45
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Var[T ] = E[N ]Var[P ] + E[P ]2Var[N ], (4.3b)

Skw[T ] = (E[N ]Skw[P ]Std[P ]3 + E[P ]3Skw[N ]Std[N ]3

+ 3E[P ]Var[P ]Var[N ])/Std[T ]3, (4.3c)

Kur[T ] = (E[N ]Var[P ]2(Kur[P ]− 3) + E[P ]4Kur[N ]Var[N ]2

+ 6E[P ]2Var[P ](Skw[N ]Std[N ]3+E[N ]Var[N ])

+ 4E[P ]Var[N ]Skw[P ]Std[P ]3 + 3Var[P ]2(E[N ]2 + Var[N ]))/Std[T ]4.(4.3d)

Thus, given the first four moments of P and N , we can evaluate the execution time
distribution of the above loop using Eq. (4.3).

In our compositional approach we aim to statistically model the behavior of C, rather
than modeling, e.g., the entire sequential composite, in which case we would sacrifice
analytical information on the effect of N and X. However, in statistically modeling the
behavior of C, of which the truth probability is denoted by P , we are confronted with the
fact that, unlike N and X, C yields only false (0) or true (1). Being a discrete distribution,
the pmf of P can be given, for example, by a histogram where the mass is either in 0 or
1. This interpretation is far from the real behavior of the branch since this interpretation
would imply a Bernoulli model. In this interpretation we implicitly assume that the
occurrence of 0 and 1 is independent. As shown later on, this model often fails to predict
branch behavior that is typically far from memoryless.

In this chapter we address the following question: How can branches be statistically
modeled such that the model parameters can be accurately determined by measurements,
and can subsequently be successfully used within our compositional approach to obtain
execution time distribution prediction?

We propose and evaluate three different approaches to statistically modeling data-
dependent branching behavior to reflect the large impact of data-dependent branching on
program execution time distribution, as well as the difficulty of integrating branching into
a statistical framework. The approaches are called the Empirical approach, the Bernoulli
approach, and the ARP (Alternating Renewal Processes) approach, respectively. The
Empirical approach was inspired by taking into account that p actually has a distribution
of its own when measured across the spectrum of input data sets, which allows P to be
(indirectly) measured through p. In the Bernoulli approach, a branch is simply modeled
by a Bernoulli model with (measured) parameter p. In the ARP approach, a branch is
modeled in terms of Alternating Renewal Processes; this approach extends the Bernoulli
approach by modeling a branch in terms of (measured) two parameters, instead of one.
To the best of our knowledge, such an in-depth study on statistical branch modeling in
the context of static performance prediction has not been conducted before.

The remainder of the chapter is organized as follows. In Section 4.1, we review cur-
rent approaches towards modeling branching behavior. In Sections 4.2, 4.3, and 4.4 we
describe the Empirical approach, Bernoulli approach, and ARP approach, respectively.
In Sections 4.5, 4.6, and 4.7, we test our method using synthetic, Markovian branch dis-
tributions, as well as distributions measured from real applications, respectively. Finally,
in Section 4.8 we draw our conclusions.
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4.1 Branch Modeling

Because data-dependent branching has such a large impact on program behavior, quite
a lot of work on branch behavioral modeling has been done, although from an entirely
different perspective. Branch modeling is applied for various reasons. In dynamic (run-
time) approaches, branching behavior is modeled in order to predict the branch outcomes
such that performance loss due to, e.g., pipeline stalls can be minimized. This approach
is often referred to as branch prediction. The branch outcome can be predicted at run
time based on the execution history during previous n outcomes [101, 23, 75] or it can be
predicted statically at compile time based on either branch profile information [113] or
heuristically [10, 17] (e.g., prediction is based on the location of the branch). Although
the dynamic approach differs from ours, the branch behavior models it uses are a valuable
source of modeling information, as can be seen in Section 4.6.

In static approaches, like our statistical performance prediction approach, branching
behavior is predicted at compile time with the intention to predict program execution
time rather than branch outcomes at run time. Typically, branches are only modeled
in terms of their mean truth probability. Approaches to this effect include the work of
Adve and Vernon [2], Lester [59], Van Gemund [32], Sarkar [91], and Wagner, Maveric,
Graham and Harrison [109]. In these approaches, branch probabilities are effectively
assumed to have zero variance, while, in fact, the variance across the spectrum of data
sets can be considerable. In the approach by Trivedi [106], variance is taken into account
as it models branch probabilities in terms of a Bernoulli distribution. In our work we
essentially generalize over all the above static approaches.

4.2 Empirical Approach

As an intuitive baseline, in this section we present an empirical approach to modeling
branching that is inspired by how branches are measured in practice. Given input data
sets, we can study branch patterns using the basic loop kernel mentioned earlier. For
instance, consider the branch outcome patterns in Table 4.1, expressed in terms of true
(t) and false (f). For simplicity, the table shows two streams of the same length, i.e.,

Table 4.1: Branch outcome patterns in terms of true and false

Data sets Branch outcome patterns N T

1 ttfftffttfffttttfttfffttttfftf 30 16
2 tttttttfffffffftttttttffffffff 30 14

N = 30, although typically N is stochastic (data dependent). In the first stream shown
in the table, there is much more switching between t and f than in the second stream.

An alternating process whose properties are represented in a similar way as in our
branching process in Table 4.1 is that presented by Pham-Gia and Turkkan [79]: it uses
two states (an ‘on’ and an ‘off’ state) for this purpose. They introduced the ratio between
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the proportion of time that the system is on and the total time. They showed that this
ratio is a good measure to predict the system behavior for a few cycles ahead. Therefore,
to obtain the branch probability, we use random the variable Pm defined by the ratio
between the loop execution time T and the loop bound N according to

Pm =
T

N
. (4.4)

Similar to [79], for simplicity, we will consider Eq. (4.4) for deterministic (i.e., data-
independent) loop bounds N , since deriving the moments of Pm for stochastic N is math-
ematically very complex [79]. The first four of Pm are given by

E[Pm] = E[T/N ] = E[T ]/E[N ] = E[T ]/N, (4.5a)

Var[Pm] = E[(T/N)2]− E[T/N ]2

= (E[T 2]− E[T ]2)/E[N ]2

= Var[T ]/E[N ]2 = Var[T ]/N2, (4.5b)

Skw[Pm] = (E[(T/N)3]− 3E[T/N ]E[(T/N)2] + 2E[T/N ]3)/Var[Pm]
3/2

= (E[T 3]− 3E[T ]E[T 2] + 2E[T ]3)/((Var[T ]/N2)3/2E[N ]3)

= (E[T 3]− 3E[T ]E[T 2] + 2E[T ]3)/Var[T ]3/2

= Skw[T ], (4.5c)

Kur[Pm] = (E[(T/N)4]− 4E[T/N ]E[(T/N)3] + 6E[T/N ]2E[(T/N)2]− 3E[T/N ]4)/Var[Pm]
2

= (E[T 4]− 4E[T ]E[T 3] + 6E[T ]2E[T 2]− 3E[T ]4)/((Var[T ]/N2)2E[N ]4)

= (E[T 4]− 4E[T ]E[T 3] + 6E[T ]2E[T 2]− 3E[T ]4)/Var[T ]2

= Kur[T ]. (4.5d)

The above results express the moments of Pm in terms of the measured moments of
N and T . Conversely, we can, of course, simply reproduce the moments of T from the
moments of N and Pm. However, since Pm is derived in terms of a loop composition rather
than in terms of an isolated branch, Pm is not directly applicable to our compositional
method in Eq. (4.2). Yet Pm can serve as the basis for our compositional method. As
an estimation of P , we introduce a truth probability Pe, the ‘e’ denoting our empirical
approach, by relating Eq. (4.5) with Eq. (4.3) for Var[N ] = 0. Then the moments of Pe
are defined according to

E[Pe] = E[T ]/N, (4.6a)

Var[Pe] = Var[T ]/N, (4.6b)

Skw[Pe] = (Skw[T ]Std[T ]3)/(NStd[Pe]
3)

= (Skw[T ]Std[T ]3)/(N(Var[T ]/N)3/2),

= Skw[T ]/N1/2, (4.6c)

Kur[Pe] = ((Kur[T ]Std[T ]4 − 3N2Var[Pe]
2)/(NVar[Pe]

2)) + 3
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= ((Kur[T ]Std[T ]4 − 3N2(Var[T ]/N)2)/(N(Var[T ]/N)2)) + 3

= (Kur[T ]− 3)/N + 3. (4.6d)

Using Eq. (4.6), we can determine Pe in terms of N and T . To obtain the first four
moments of T using the Empirical approach, denoted by Te, we substitute Pe into Eq. (4.3).

Clearly, the Empirical approach delivers high accuracy, provided that N is determin-
istic. However, although the moments of Pe have been derived empirically, the branching
behavior itself has not been modeled explicitly (i.e., we have applied a black-box, rather
than a white-box approach). Consequently, we have no insight in the effect of N and X,
the opposite of what we want from our compositional method (once the isolated branch
has been modeled, we still want to be able to vary N and X.). Hence, in the next sections
we study the Bernoulli and ARP approach. The Empirical approach, however, serves as
a reference model, with which the alternative approaches will be compared.

4.3 Bernoulli Approach

An intuitive approach to modeling branches statistically is to assume P to be a Bernoulli
trial with a deterministic parameter p that equals the average value of the truth frequency
ratio as profiled across an input data set training corpus. The Bernoulli random variable
Pb, which will serve as an estimate of P , is defined by

Pb =

{
1, if C = true,
0, if C = false.

(4.7)

In other words, the random variable Pb maps true and false branch outcomes to ones and
zeros, respectively. For instance, consider Table 4.2, which shows the branch outcome pat-
terns corresponding to those in Table 4.1, expressed in terms of ones and zeros. Table 4.2

Table 4.2: Branch outcome patterns in terms of one and zero

Data sets Branch outcome patterns p

1 110010011000111101100011110010
0.5

2 111111100000000111111100000000

also shows that p = 0.5 as determined from the entire measurement (i.e., when all rows
are combined).

For a Bernoulli variable with parameter p, the rth raw moment of Pb is given by

E[P rb ] = p. (4.8)

From Eq. (4.8), the first four moments are given by

E[Pb] = p, (4.9a)

Var[Pb] = p(1− p), (4.9b)

Skw[Pb] = p(1− p)(1− 2p)/Std[Pb]
3, (4.9c)

Kur[Pb] = p(1− p)(1− 3p+ 3p2)/Std[Pb]
4. (4.9d)
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Eq. (4.9) shows that the moments of Pb can be determined from the single value p. Taking
Pb as estimator for P in Eq. (4.7) we obtain the first four moments of T , denoted by Tb.

By definition, a Bernoulli model is only appropriate for branches that do not depend on
previous outcomes, while many practical branches are far from memoryless. For instance,
consider a cyclic branch which generates 1010 . . . 1010 across the training data sets, i.e.,
p = 0.5. While obviously Var[T ] = 0 for N constant, in contrast Eq. (4.9b) predicts
Var[Tb] = 0.25E[N ] (linear in E[N ]). Consequently, the Bernoulli model is often incapable
to provide a statistical explanation of a program execution time variance (and higher
moments) as caused by many branches in practice. Rather than a branching model using
a single value p, we use an alternative one based on two parameters that we present in
the next section.

4.4 ARP Approach

In reality, the variance of Tm is sensitive to permutation between true and false values
(consider all 1’s for data set 1, and all 0’s for data set 2). In contrast, in the Bernoulli
approach the measurement of p is insensitive to any permutation. In this section, we
introduce the use of Alternating Renewal Process (ARP) theory since ARP takes the
permutation into account.

The ARP theory has been used in various applications relating to the branching pro-
cesses, such as estimating cache miss ratios [112], predicting the ratio of opening/closing
rates of biological membranes due to fluctuation [16], determining the instantaneous re-
liability in modeling aircraft systems [89], and modeling air-conditioning loads (the ON
duration and OFF duration) on electrical power systems [68]. These good results mo-
tivated us to investigate the use of ARP in statistical modeling of branching to predict
static performance.

While the Bernoulli process considers the branch outcomes individually, ARP considers
the outcomes as consecutive trues (in terms of up time, U) or falses (in terms of down
time, D) from which the total execution time distribution T can be derived. For instance,
consider Table 4.3, which shows the branch outcome patterns corresponding to those in
Table 4.1, expressed in terms of U and D. Each cluster of true and false outcomes is

Table 4.3: Branch outcome patterns in terms of U and D

Data sets Branch outcome patterns E Var

1
U → 2 1 2 4 2 4 1

[U ]=3.3 [U ]=4.9
D → 2 2 3 1 3 2 1

2
U → 7 7

[D]=3.3 [D]=6.7
D → 8 8

labeled according to the cluster length and accounted for in terms of the sample of U
and D, respectively, each of which comprises nine samples as shown in the table. By
combining the samples across all runs, we can determine the mean and variance of U and
D, and evaluate the branch probability as follows.
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To obtain the branch probability P we use the estimator Pa based on ARP. Since in
ARP it is customary to address the analysis in terms of total down time, TD, rather than
up time, TU , in the following we will derive the moment of Qa = 1− Pa. Note that TU is
equal to the execution time distribution T .

Following [70], we introduce a random variable which is defined as the conditional
probability of TD(t)/t, t denoting the time, given that TD(t) > 0 according to

Qa(t, x) = P

[
TD(t)

t
≤ x | TD(t) > 0

]
. (4.10)

Note that t is comparable with N in the conditional composition sequence. In the rest of
this section we simply use Qa rather than Qa(t, x). The reason for representing Qa using
Eq. (4.10) is twofold. First, Eq. (4.10) is a valid distribution for branching model since
Eq. (4.10) lies in the interval [0, 1]. Second, Eq. (4.10) represents known properties of
TD(t) from which the exact mean and variance of TD(t) can easily be derived [70].

In [70] it is shown that the density of Qa can be approximated using the beta distri-
bution according to

fQa(x) ≈
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for 0 < x < 1, a > 0, b > 0, (4.11)

where

a =
(E[D]2(E[U ]− Var[U ]) + E[U ]2(E[D]− Var[D]))E[D]

(E[D] + E[U ])(E[D]2Var[U ] + E[U ]2Var[D])
, b =

E[U ]

E[D]
a. (4.12)

Note that the beta distribution exhibits a large diversity of shapes in a finite interval so
that the approximation does not limit our analysis, as Qa is by definition finite in the
interval [0, 1]. The rth raw moment of Qa is given by

E[Qra] =
Γ(a+ b)Γ(a+ r)

Γ(a)Γ(a+ b+ r)
. (4.13)

From Eqs. (4.12) and (4.13) the mean and variance of Qa can be expressed in terms of
input moments D and U according to

E[Qa] =
E[D]

E[D] + E[U ]
, (4.14a)

Var[Qa] =
E[D]2Var[U ] + E[U ]2Var[D]

(E[D] + E[U ])3
. (4.14b)

Extending this result derived in [70] for the purpose of our moment approach we have
derived the skewness and kurtosis of Qa in Appendix C.2.2 according to

Skw[Qa] =
−2(E[D]− E[U ])(E[D] + E[U ])2Std[Qa]

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])
, (4.14c)

Kur[Qa] = 3(E[D] + E[U ])[(E[D] + E[U ])E[D]2E[U ]2

+ (2(E[D]− E[U ])2 + E[D]E[U ])(E[D]2Var[U ] + E[U ]2Var[D])]

× [E[D]2(E[U ] + 2Var[U ]) + E[U ]2(E[D] + 2Var[D])]−1

× [E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])]−1. (4.14d)
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Note that the random variables P and Q are correlated linearly, i.e., P = 1−Q. Conse-
quently,

E[P ] = 1− E[Q], Var[P ] = Var[Q], Skw[P ] = −Skw[Q] and Kur[P ] = Kur[Q]. (4.15)

Using Eqs. (4.14) and (4.15), we can express the first four moments of Pa in terms of the
input moments E[U ],Var[U ],E[D], and Var[D]. Then by substituting Pa into Eq. (4.3) we
obtain the first four moments of T , denoted by Ta.

Since the ARP approach takes into account clustering effects in branch outcome pat-
terns, the approach applies to semi-Markovian branches [88]. Since the up and down time
(U and D) may take any valid distribution, the semi-Markovian branches is a superset of
those having Bernoulli behavior. We have proven in Appendix C.2.2 that if U and D are
geometrically distributed, then the ARP approach reduces to the Bernoulli approach.

4.5 Synthetic Workloads

In this section we evaluate the three approaches by predicting the execution time distri-
bution of the earlier loop kernel for different standard distributions for P . To exclude
other potential sources of error, we choose N to be deterministic while statement takes
unit execution time, i.e., X = 1. Since the mean of T for all approaches is exact, we
need only consider the higher moments of T . In our experiments we exclusively focused
on the execution time variance, which next to the mean is the most important moment,
especially in the prediction of parallel composition [1]. The variance error is defined as
follows

ε =
| Var[Tm]− Var[Tp] |

Var[Tm]
, (4.16)

where Tm and Tp are values obtained from measurement and prediction, respectively.
Since Tm is the number of taken branches in a run, it can be obtained straightforwardly
(cf. Tables 4.1, 4.2, and 4.3). In some cases measurement is not necessary since Tm can be
derived analytically. In our experiments, we predicted the execution time using Eq. (4.3b),
where the three models for P are Pe (the Empirical approach, Eq. (4.6)), Pb (the Bernoulli
approach, Eq. (4.9)), and Pa (the ARP approach, Eq. (4.14)).

4.5.1 Bernoulli Branches

In our first experiment we chose a genuine Bernoulli branch, i.e., P = Pb, to test whether
all three approaches yield the same results. It is obvious that Pe = Pb, while Pa is obtained
as follows. According to Bernoulli behavior, let D and U be geometrically distributed with
parameter p such that E[U ] = 1/(1 − p) and Var[U ] = p/(1 − p)2 and E[D] = 1/p and
Var[D] = (1 − p)/p2. From Eqs. (4.14) and (4.15), it follows that the moments of Pa in
Eq. (4.14) conform to those of Pb in Eq. (4.9) as derived in Appendix C.2.2. It holds that

E[Pa] = p, (4.17a)

Var[Pa] = p(1− p), (4.17b)

Skw[Pa] = p(1− p)(1− 2p)/(p(1− p))3/2 (4.17c)

Kur[Pa] = p(1− p)(1− 3p+ 3p2)/(p(1− p))2 (4.17d)



4.5 Synthetic Workloads 53

Thus, the P ’s are equal in terms of their moments (E[P r] = E[P re ] = E[P rb ] = E[P ra ]).
The moments agree exactly with those obtained with the ARP approach, even though the
latter is an approximation method due to the use of the beta distribution.

4.5.2 Deterministic Branches

In the second experiment, we apply the approaches to deterministic branches, i.e., some
predetermined number of true and false evaluations (e.g., cyclic branches). Clearly, for
deterministic branches, the variance of execution time is equal to zero (Var[Tm] = 0). To
generate the branches let D and U be deterministic according to E[D] = d,Var[D] = 0
and E[U ] = u,Var[U ] = 0. For Pe in the Empirical approach, Eq. (4.6) yields

E[Pe] =
u

d+ u
, Var[Pe] = 0, Skw[Pe] = 0 and Kur[Pe] = 3 (4.18)

since in Eq. (4.5) Pm = u/d is constant. For the ARP approach, the same (correct)
moment values are obtained from Eq. (4.14). By substituting Pe and Pa into Eq. (4.3),
we obtain Var[Te] = Var[Ta] = 0. For the Bernoulli approach it follows that

p =
u

d+ u
. (4.19)

The prediction based on the Bernoulli estimator Pb results in a dramatic maximum vari-
ance error of ε → ∞ (Var[Tm] = 0 in Eq. (4.16)) for d = u, i.e., p = 1/2 and yields a
minimum error of ε → 0 as p → 0 or p → 1.

4.5.3 Uniform Branches

As a final experiment using synthetic workloads, we let D and U take discrete uniform
distributions with sample space [aD, bD] and [aU , bU ], respectively, where 1 ≤ aX ≤ bX .
The mean and variance of D and U are given by E[X] = (aX + bX)/2 and Var[X] =
(bX − aX)

2/12. We choose aD = aU = 1 while we vary bD and bU . To obtain Tm, we
simulate the branching process for N = 50, 000 over 6, 000 random data sets. For the
Empirical approach, Te is equal to Tm (ε = 0) since N is constant. For the Bernoulli
approach, we obtain p = (1 + bU)(2 + bD + bU). Subsequently we applied p in Eqs. (4.9)
and (4.3) to obtain the variance error of the Bernoulli approach for various values of bD
and bU as shown in Figure 4.1. The figure shows that ε is extremely large for small bD
and bU , while slowly decreasing to zero for increasing bD and bU . For bD = bU = 1 it holds
that ε → ∞ since P is deterministic, as discussed previously. Clearly, for these branches
that are not memoryless, the Bernoulli model is useless.

In contrast to the Bernoulli approach, the ARP approach has a negligible error, as
shown by Figure 4.2. For all values of bD and bU , the error is consistently below 1%,
which is within the noise margin. Note that the ARP approach is clearly applicable to all
workloads.

Summarizing this section, we conclude that all approaches are correct for branches with
the memoryless Bernoulli workload. When the workload is no longer memoryless, only
the Empirical and ARP approach can be applied. The results show that both approaches
consistently perform equal to or better than the Bernoulli approach, effectively reducing
the variance error by more than one order of magnitude.
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4.6 Markovian Workloads

In this section we evaluate the three approaches on branching streams generated from
state diagrams adopted from [115] and shown in Figure 4.3, where the branching behavior
is not memoryless. Originally these state diagrams were Moore finite-state machines
(FSM) used to predict dynamic branch behavior. The current state determines whether
the next branch is predicted to be taken and the subsequent state transition depends on
whether the branch was actually taken. Designed to achieve high prediction performance,
the FSMs represent a model of realistic branching behavior, which make them useful as a
basis for synthesizing branches for our study. In fact, these models have been successfully
proven to resemble real program branches [75, 101, 113, 115]. To enable the use of the state
diagrams in our experiments we modified the FSMs such that streams of ones and zeros
can be generated, according to the following Markov interpretation shown by Figure 4.3.
Each state is labeled by ({a,b,c,d},{0,1}). The output stream is determined by the state
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Figure 4.3: Markov chains of branch trace generator.

label {0,1}, while the transition between two states is determined by taking a Bernoulli
sample with parameter shown by the value of the corresponding arc. Our experiments
have indeed shown that when supplied with a branch stream generated by our generators,
the original branch predictors achieve hit rates ranging from 90% to 96%, similar to
the ones reported in [115]. This proves the validity of our interpretation. (An identical
branch behavior could also have been achieved by a different interpretation where the
truth probability is associated with the states rather than the arcs.) Note that the arc
values were chosen such that all nodes will be visited with probability larger than 0.

As is to be expected, the variance error of the Empirical approach is equal to zero,
while that of the other two approaches is shown in Figure 4.4. For the Bernoulli approach,
the variance error is approximately between 90% and 100%, showing that the Bernoulli
method is indeed inadequate to model Markovian branches. In sharp contrast to the
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Bernoulli approach, the ARP approach yields exact results. For small N , the error is due
to inaccuracies in measuring U and D. Again, the ARP approach is much better than the
Bernoulli approach, and has the same accuracy as the Empirical approach in capturing
branch behavior.
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Figure 4.4: Variance error [%] for Markovian workloads

4.7 Empirical Workloads

In this section we illustrate to what extent the branching models apply in practice. We
have measured and predicted T for codes containing stochastic branches for 6,000 in-
put data sets, using our counter-based measurement technique. Our experiments include
simple kernels, namely Vector Scaling (VS), Straight Selection Sort (SSS) and Cache
Simulator (CS) (introduced in Section 3.5.3), as well as larger applications, namely Gaus-
sian Elimination (GE), Single Source Shortest Path (SSSP), Quicksort (iterative fashion),
and Compress from SPECint95. Other benchmarks in SPECint95 are not considered in
our experiments due to the absence of stochastic branches and/or an insufficient number
of input data sets. In all benchmarks we ignored all data-independent branches in our
experiments.

In the following we briefly describe the working of the particular benchmarks. Vector
Scaling scales a vector of constant length if the vector element is not equal to zero.
SSS and Quicksort sort a vector of constant length in increasing order. SSSP finds the
shortest path between two nodes for a weighted graph. Gaussian Elimination reduces a
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two-dimensional matrix to triangular form. Cache Simulator simulates hit and miss in
a cache for obtaining data given cache addresses. Compress is a file compression utility.
Specifically, for Compress we only consider branches (bi) with high invocation frequency.

We summarize our results in Table 4.4 including the error percentages. The highest
measured variance Var[Tm] is 2.0 10

8 in Compress b2. Significant errors are produced by
SSSP b2, Quicksort b2 and b6, and Compress b4, which are branches that execute a break
statement, in which case the effective loop frequency is highly stochastic, as well as fully
correlated with P . Clearly, to this branch category our conditional composition models
cannot be applied. Other highly correlated branches that do not execute break, which
produce a large error, are SSSP b1 and b3, and Compress b1 and b2. For this branch
category the large error is due to the correlation between branch invocations. However,
when the loop frequency is constant, the Empirical approach can be applied, such as in
SSS and Quicksort b1.

The comparison between the prediction error of the various approaches allows us to
characterize the branches as Bernoulli (ε in Var[Te],Var[Tb] and Var[Ta] is small), Marko-
vian (ε in Var[Tb] is large), and other branches (ε in Var[Tb] and Var[Ta] is large). From the
19 branches shown in Table 4.4, 3 branches can be categorized as Markovian branches,
i.e., Gaussian Elimination, Quicksort b5 and Compress b5. From the other 16 branches, 5
branches can be categorized as Bernoulli branches, i.e., Vector Scaling, Quicksort b3, b4

and b7, and Compress b3. Thus, our compositional approach applies to almost half of the
19 branches.

Table 4.4: Var[T ] prediction based on Pa, Pb and Pe (ε [%])

Experiment Var[Tm] Var[Te] Var[Tb] Var[Ta] Type
VS 9.0 102 9.0 102 (0.0 100) 9.0 102 (0.0 100) 9.0 102 (0.0 100) B
SSS 2.2 104 2.2 104 (0.0 100) 5.4 103 (7.6 101) 1.5 104 (3.2 101)
CS 1.0 106 7.6 105 (2.7 101) 7.2 105 (2.7 101) 1.8 106 (7.7 101)
GE 9.4 103 9.4 103 (5.6 10−1) 6.5 103 (3.2 101) 9.4 103(5.6 10−1) M
SSSP b1 3.6 104 3.1 104 (1.4e 101) 7.7 103 (7.9 101) 2.4 106 (6.5 103)
SSSP b2 4.4 102 6.2 103 (1.3 103) 4.3 103 (8.6 102) 4.3 105 (9.6 104)
SSSP b3 3.6 104 3.1 104 (1.4 101) 7.7 103 (7.9 101) 3.1 104 (6.5 103)
Quicksort b1 1.7 101 1.7 101 (0.0 100) 1.1 102 (5.7 102) 3.2 101 (1.9 102)
Quicksort b2 6.7 101 5.3 102 (6.8 102) 6.9 102 (9.2 102) 7.0 102 (9.4 102)
Quicksort b3 5.3 101 5.2 101 (8.2 10−1) 5.2 101 (1.6 100) 5.2 101 (1.1 100) B
Quicksort b4 4.3 101 4.3 101 (0.0 100) 4.3 101 (0.0 100) 4.3 101 (0.0 100) B
Quicksort b5 4.2 101 4.3 101 (5.5 10−1) 4.4 101 (3.5 100) 4.3 101 (1.5 10−1) M
Quicksort b6 1.7 101 3.1 101 (8.5 101) 1.8 102 (9.6 102) 7.5 101 (4.5 102)
Quicksort b7 5.1 101 5.2 101 (3.3 100) 5.2 101 (2.3 100) 5.2 101 (3.1 100) B
Compress b1 3.9 107 2.4 107 (3.8 101) 2.0 107 (4.7 101) 2.0 107 (4.7 101)
Compress b2 2.0 108 1.8 108 (1.1 101) 1.7 108 (1.3 101) 1.7 108 (1.4 101)
Compress b3 1.4 106 1.4 106 (1.5 10−1) 1.4 106 (6.9 10−1) 1.4 106 (7.0 10−1) B
Compress b4 2.5 101 1.4 102 (4.3 102) 1.7 102 (5.7 102) 2.1 102 (7.3 102)
Compress b5 9.3 100 9.3 100 (0.0 100) 2.7 100 (7.1 101) 1.0 101 (7.8 100) M
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4.8 Summary

Data-dependent branches are an important source of program execution time variability
across the spectrum of possible input data sets. In this chapter we have evaluated the
Empirical, the Bernoulli, and the ARP approach to statistically modeling branching be-
havior, to be used within our compositional method to predict program execution time
distribution in terms of statistical moments.

The summary of the branching model characteristics is given in Table 4.5. Unlike the
two other approaches, the Empirical approach is not based on any branching model since
it is implicitly assumed that the branch cannot be separated from the loop. Consequently,
there is no specific branch behavior for which the approach is fully accurate. Furthermore,
the Empirical approach assumes that N is deterministic. Each approach has a specific
measurement technique to obtain P . In the Empirical approach, we have to record the
sample of Pe strictly per data set, i.e., the data-set axis is taken into account (t.i.c.)
(vertical direction in Tables 4.1, 4.2, and 4.3). The sample of Pe is independent from the
permutation of zeros and ones in the loop-bound axis (horizontal direction in Tables 4.1,
4.2, and 4.3).

For the Bernoulli approach, the measurement is the simplest since Pb can be obtained
from the samples irrespective of the permutation in the data-set axis (vertical) and in the
loop-bound axis (horizontal). For the ARP approach, we measure D and U per clusters.

Table 4.5: Summary of branching approach characteristics

Aspects Pe Pb Pa

Branch model not applicable Bernoulli semi Markovian
Loop bound N deterministic stochastic stochastic
Measurement per data set whole data set per cluster
Loop-bound axis not t.i.c. not t.i.c. t.i.c.
Data-set axis t.i.c. not t.i.c. t.i.c.

While the Empirical approach is based on merely measuring branching behavior in
terms of the surrounding loop construct, the other approaches aim at deriving a sta-
tistical model of the branch itself, which offers a higher level of compositionality. Our
measurement results, based on synthetic as well as real programs, show that the Em-
pirical approach delivers the highest accuracy, whereas the alternative approaches trade
accuracy for compositionality. For Markovian branches (half of the branches studied),
the compositional approaches deliver high prediction accuracy. In contrast to what we
might expect intuitively and from our synthetic experiments, in real programs, the two-
parameter ARP approach does not always outperform the one-parameter Bernoulli ap-
proach. This is because the ARP approach is much more sensitive to correlation than the
Bernoulli approach.
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Parallel Composition

As mentioned in Section 3.4.5, expressing E[Y r] explicitly in terms of E[Xr] poses a major
problem due to the integration problem in Eq. (3.59). Recall the and-parallel composition:

forall (i = 1; i <= N; i++)

statement(i);

which specifies N processes running in parallel without any intermediate form of synchro-
nization. Let statement(i) have workload denoted by Xi. The total execution time,
denoted Y , is given by

Y = max(X1, X2, . . . , XN). (5.1)

Let Xi be independent from N . The cdf of Y is given by

FY (x) =
N∏
i=1

FXi
(x). (5.2)

From Eq. 5.2 we derive two important special cases: N -ary parallel composition involving
iid workloads and binary parallel composition involving different workloads. For N -ary
parallel composition (Xi are iid), Eq. (5.2) reduces to

FY (x) = (FX(x))
N . (5.3)

From Eqs. (3.9) and (5.3) we obtain

E[Y r] =
∫ ∞

−∞
xrdFY (x)

=
∫ ∞

−∞
xrd(FX(x))

N

= N
∫ ∞

−∞
xr(FX(x))

N−1dFX(x). (5.4)

In general, the right-hand side integration is fundamentally impossible to solve analytically
in such a way that E[Y r] can be expressed directly as function of E[Xr].

Unlike N -ary parallel composition, binary parallel composition poses a much more
complicated problem since two different workloads are involved in the analysis. When X1

and X2 are not identical, from Eq. (5.2) the cdf is given by

FY (x) = FX1(x)FX2(x). (5.5)

59
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From Eqs. (3.9) and (5.5) we obtain

E[Y r] =
∫ ∞

−∞
xrdFY (x)

=
∫ ∞

−∞
xrd(FX1FX2)

=
∫ ∞

−∞
xrFX1(x)fX2(x)dx+

∫ ∞

−∞
xrFX2(x)fX1(x)dx. (5.6)

Again, in general, the right-hand side integration is fundamentally impossible to solve
analytically in such a way that E[Y r] can be expressed directly as function of E[Xr

i ].
In this chapter, we introduce the use of generalized lambda distributions (GLD) to

allow the application of our moment method to parallel composition. The choice is based
on three reasons. First and most importantly, due to the specific formulation of the
GLD we can solve the integration problem in Eq. (5.4) so that it becomes straightforward
to obtain the moments of Y . Second, unlike other approximating distributions such as
the Pearson and Johnson distributions, the GLD uses only one function (see Eq. (5.7))
and is computationally simpler [83]. Third, the GLD covers a wide range of parameter
values which are frequently used in modeling workloads, e.g., well-known and symmetric
distributions.

Based on the use of the GLD as intermediate representation, the entire analysis ap-
proach for N -ary and binary parallel compositions is described in Figure 5.1. Given the
first four input moments E[Xr

i ], the GLD parameters (lambda values) can be evaluated
by table look-up [83] or running a Nelder-Mead (NM) simplex procedure [72] for more
precision. By using the lambda (and N) values in our analysis method, we obtain the
resulting moments E[Y r] for N -ary and binary parallel compositions, respectively.

XE r[     ]i

−ary compositionN
YE r[     ]

YE r[     ]NM simplex [72]

Table [83] or
λ i,l

Binary composition

N

Figure 5.1: Performance analysis of parallel composition

This chapter is organized as follows. In the next section, we describe the general-
ized lambda distribution (GLD) as intermediate representation for our moment approach.
Using GLD in Sections 5.2 and 5.3, we derive E[Y r] for N -ary and binary parallel com-
position, respectively. In Sections 5.5 and 5.6, we evaluate the accuracy of our moment
approach using synthetic as well as real programs, respectively.

5.1 Generalized Lambda Distribution

The generalized lambda distribution (GLD) is a four-parameter distribution defined by
the percentile function R as function of the cdf, 0 ≤ F ≤ 1, according to [83]

X = RX(F ) = λ1 +
F λ3 − (1− F )λ4

λ2

, (5.7)



5.1 Generalized Lambda Distribution 61

where λ1 is a location parameter, λ2 is a scale parameter and λ3 and λ4 are shape pa-
rameters. Eq. (5.7) is also known as the Ramberg-Schmeiser (RS) parameterization of
GLD1.

While the cdf does not exist in closed form, the pdf is given by

f(x) =
dF

dRX(F )
=

1

R′
X(F )

=
λ2

λ3F λ3−1 + λ4(1− F )λ4−1
. (5.8)

This four-parameter distribution includes a wide range of curve shapes. Specifically,
the distribution can provide good approximations to well-known densities as shown in
Table 5.1 [83]. In the table, the GLD can exactly represent the continuous uniform

λr U(a, b) E(θ) N(µ, σ)
λ1 (a + b)/2 (1 + 7.100e−3)/θ µ

λ2 2/(b − a) (−1.081e−3)θ 0.1975/σ
λ3 1 −4.070e−6 0.1349
λ4 1 −1.076e−3 0.1349

Table 5.1: λ values for well-known distributions.

distribution with sample space [a, b], denoted U(a, b) (the second column of Table 5.1).
The limit form of the GLD can represent the exponential distribution with parameter θ
(i.e., E[X] = 1/θ), denoted E(θ), as λ4 → 0 when λ1 = λ3 = 0 and λ2 = λ4/θ. While those
lambda values provide a good approximation to E(θ) [83], for our experiments the lambda
values in the third column of Table 5.1 are of more practical use. Another example is
an approximation to the normal distribution, denoted N(µ, σ), where the lambda values
are given in the fourth column of Table 5.1. The maximum error of the standard cdf
Φ(x) is maxx | Φ(x)− R−1(x) | ≈ 10−3 as found in [83]. Hence, the GLD can be used to
approximate a wide range of distributions of which the first-four statistical moments are
known.

Provided that the lambda values are given, obtaining the statistical moments proceeds
as follows. Without loss of generality let λ1 = 0. Then from Eqs. (3.9) and (5.7) the rth
raw moment of X is given by

E[Xr] =
1

λr2

r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + 1, λ4i+ 1), (5.9)

where B denotes the beta function as defined by

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt. (5.10)

Since the beta function has been provided in current standard mathematical libraries, the
computation cost of Eq. (5.9) for r up to four is negligible.

1Another GLD parametrization is also available, e.g., the Freimer, Mudholkar, Kollia and Lin (FMKL)
representation [26]. Due to incompatibility with our analysis approach we do not consider the FMKL
representation.
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There are many approaches to obtain the lambda values: moment matching [83],
probability-weighted moment estimates [44], least square [73], starship [52], percentiles [49],
and quasi-random Sobol sequences [55]. Since in our analysis the moment values are avail-
able, the moment matching method is the most appropriate to use. In [83] it is shown
how to obtain the four lambda values from the moments using a table. If more precise
lambda values are required, an alternative to looking up the table is to apply a method
based on function minimization such as the Nelder-Mead simplex procedure [72]. This
procedure requires a constant number of iteration steps. Even for a 10−10 precision for the
lambda values, our experiments show that no more than 100 iteration steps are required
in evaluating Eq. (5.9) (i.e., in total less than 105 floating point operations). Thus in
providing the first four moments, the cost of obtaining the lambda values from the table
is also negligible.

5.2 N-ary Parallel Composition

In this section we present how the GLD is applied in the analysis of N -ary parallel
composition, as presented in terms of Theorem 5.1.

Theorem 5.1 The nth order statistic
Let Y1 ≤ Y2 ≤ . . . ≤ YN be random variables obtained by permuting N iid variates
of continuous random variables X, i.e., X1, X2, . . . , XN , in increasing order. Let E[Xr],
r = 1, 2, 3, 4 exists while X can be expressed in terms of GLD(λ1, λ2, λ3, λ4) where λj are
functions of E[Xr]. Without loss of generality let λ1 = 0. Then for n = 1, 2, . . . , N the
rth raw moment of Yn is given by

E[Y rn ] =
n

λr2

(
N

n

)
r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + n, λ4i+N − n+ 1), (5.11)

where B denotes the beta function.

Proof:
The rth raw moment of Yn, expressed in terms of its cdf, is given by the Stieltjes inte-
gral [104]

E[Y rn ] =

∞∫
−∞

xrdFYn(x), (5.12)

where FYn(x), expressed in terms of FX(x), is given by [104]

FYn(x) =
N∑
k=n

(
N

k

)
(FX(x))

k(1− FX(x))
N−k. (5.13)

The derivative of Eq. (5.13) with respect to x is given by

dFYn(x)

dx
=

N∑
k=n

(
N

k

)(
k(FX(x))

k−1(1− FX(x))
N−kdFX(x)

dx

− (N − k)(FX(x))
k(1− FX(x))

N−k−1dFX(x)

dx

)
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= N
N∑
k=n

(
N − 1
k − 1

)
(FX(x))

k−1(1− FX(x))
N−kdFX(x)

dx

− N
N∑

k=n+1

(
N − 1
k − 1

)
(FX(x))

k−1(1− FX(x))
N−kdFX(x)

dx

= N

(
N − 1
n− 1

)
(FX(x))

n−1(1− FX(x))
N−ndF (x)

dx
. (5.14)

Since the GLD is conveniently expressed as function of the cdf, i.e., X = R(F ), we
substitute all variables in the right-hand side by the cdf. As FX = F , xr may be directly
substituted by (R(F ))r. Consequently, the lower and upper bound follow 0 ≤ F ≤ 1 since
FXi

(x) = 0 for x → −∞ and FXi
(x) = 1 for x → ∞. Substituting Eq. (5.14) and the

lower and upper bounds to Eq. (5.12), it follows

E[Y rn ] = N

(
N − 1
n− 1

) 1∫
0

(R(F ))rF n−1(1− F )N−ndF, (5.15)

where (R(F ))r can be expanded into a power series according to

(R(F ))r =
1

λr2

r∑
i=0

(
r

i

)
(−1)iF λ3(r−i)(1− F )λ4i. (5.16)

Substituting Eq. (5.16) within Eq. (5.15) yields

E[Y rn ] =
N

λr2

(
N − 1
n− 1

)∫ 1

0

r∑
i=0

(
r

i

)
(−1)iF λ3(r−i)+n−1(1− F )λ4i+N−ndF

=
N

λr2

(
N − 1
n− 1

)
r∑
i=0

(
r

i

)
(−1)i

∫ 1

0
F λ3(r−i)+n−1(1− F )λ4i+N−ndF.

Reducing the integral to a beta function results in

E[Y rn ] =
N

λr2

(
N − 1
n− 1

)
r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + n, λ4i+N − n+ 1).

✷

Theorem 5.1 enables us to express E[Y rn ] in terms of E[Xr] and the problem size N (the
number of tasks involved in the parallel section) while the value of n ranges from 1 to N .

5.2.1 N-ary And-Parallel Composition

As in and-parallel composition Y is determined by the largest Xi, the specific instance
n = N of Theorem 5.1 applies (i.e., the largest order statistic). Our result is stated in the
following corollary.

Corollary 5.1 N -ary parallel composition
Under the same assumption as in Theorem 5.1 let random variable Y be defined as

Y = max(X1, X2, . . . , XN). (5.17)
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Then the rth raw moment of Y is given by

E[Y r] =
N

λr2

r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) +N, λ4i+ 1). (5.18)

✷

The proof is obtained from Eq. (5.11) by substituting n = N . Similar to sequential
compositions the solution complexity of Eq. (5.18) is entirely independent from N (i.e.,
O(1)) while its computation cost is negligible (cf. Eq. (5.9)).

5.2.2 N-ary Or-Parallel Composition

In this section we present how the GLD is applied in the analysis of speculative, N -ary
or-parallel composition.

As in speculative parallel composition Y is determined by the smallest Xi, the specific
instance n = 1 of Theorem 5.1 applies (i.e., the smallest order statistic). Our result is
stated in the following corollary.

Corollary 5.2 N -ary Or-parallel composition
Under the same assumption as in Theorem 5.1 let random variable Y be defined as

Y = min(X1, X2, . . . , XN). (5.19)

Then the rth raw moment of Y is given by

E[Y r] =
N

λr2

r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + 1, λ4i+N). (5.20)

The proof can be straightforward obtained from Eq. (5.11) by substituting n = 1. Again,
similar to sequential compositions the solution complexity of Eq. (5.20) is entirely inde-
pendent from N (i.e., O(1)) while its computation cost is negligible (cf. Eq. (5.9)).

5.3 Binary Parallel Composition

While in the previous section, we consider Xi to be identical (thus narrowing the applica-
tion), in this section, we present the analysis of binary parallel composition where Xi may
be different. In the following, we discuss and-parallel and or-parallel binary composition
separately.

5.3.1 Binary And-Parallel Composition

Recall the problem related to binary parallel composition in Eq. (5.6). As mentioned
in Chapter 2, a number of heuristic approaches have been proposed as a result of the
difficulties in finding a low-cost, accurate, analytical solution to solving the binary parallel
composition problem. A good example of such an approach is found in [94]. Y is calculated
by simply choosing Xi with the largest mean or by selecting the stochastic value with the
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largest magnitude value in its entire range. For example (adapted from [94]), consider
the maximum of X1 = 4 ± 0.5 and X2 = 3 ± 2. X1 has the largest mean, and X2 has
the largest value within its range. On average however, the values of X1 are likely to be
higher than the values of X2. We formulate the heuristic as described in [94] as follows

Y =




X1, E[X1] > E[X2]
X1, E[X1] = E[X2] and E[X2

1 ] > E[X2
2 ]

X2, otherwise.
(5.21)

Being a simple heuristic, despite its attractive low-cost property, Eq. (5.21) only takes
into account the first two moments E[Xr

i ], and, amongst other things, does not compute
the offset in E[Y ] as established by the order statistics. Nevertheless, next to our posi-
tive experience with generalized lambda distributions, this heuristic has partly been the
inspiration for our low-cost, analytic solution to the binary parallel composition problem.

While Theorem 5.1 and associated corollary restrict the workloadX be iid, for different
workload in binary and-parallel composition we present the following theorem.

Theorem 5.2 Binary And-parallel composition
Let random variable Y be defined as

Y = max(X1, X2)

where Xi are independent random variables for which E[Xr
i ], r = 1, 2, 3, 4 exists. Let Xi

be expressed in terms of the GLD(λi,1,λi,2,λi,3,λi,4) where λi,j are functions of E[Xr
1 ] and

E[Xr
2 ]. Then the rth raw moment of Y is given by

E[Y r] =
∫ 1

0
(RX2(F ))

rFX1(RX2(F ))dF +
∫ 1

0
(RX1(F ))

rFX2(RX1(F ))dF. (5.22)

Proof:
The rth raw moment of Y , expressed in terms of its cdf, is given by the Stieltjes inte-
gral [104]

E[Y r] =

∞∫
−∞

xrdFY (x), (5.23)

where FY (x), expressed in terms of FXi
(x), is given by [104]

FY (x) = FX1(x)FX2(x). (5.24)

The derivative of Eq. (5.24) with respect to x is given by

dFY (x)

dx
= FX1(x)

dFX2(x)

dx
+ FX2(x)

dFX1(x)

dx
. (5.25)

Since the GLD is conveniently expressed as function of the cdf, we substitute all variables
in the right-hand side by the cdf. As FXi

= F , x may be directly substituted by RXi
(F ).

Consequently, the lower and upper bound follow 0 ≤ F ≤ 1 since FXi
(x) = 0 for x → −∞

and FXi
(x) = 1 for x → ∞. Substituting Eq. (5.25) and the lower and upper bounds to

Eq. (5.23), it follows

E[Y r] =
∫ 1

0
(RX2(F ))

rFX1(RX2(F ))dF +
∫ 1

0
(RX1(F ))

rFX2(RX1(F ))dF.
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✷

Note that Eq. (5.22) indeed expresses the commutative property of the binary parallel
composition.

Eq. (5.22) shows that E[Y r] can be evaluated from the distributions of X1 and X2

by efficiently computing the integral from F = 0 to F = 1 rather than from x = −∞
to x = ∞. Unlike Eq. (5.18) for N -ary parallel composition, in Eq. (5.22), FXi

(RXj
(F ))

poses a computation problem since the cdf of GLD cannot be expressed explicitly in terms
of λ. Hence, in the following, we describe three approximation techniques to compute
Eq. (5.22). The first approach is based on a graphical interpretation. The second is based
on the generalized beta distribution. Finally, we introduce a solution based on Newton’s
method. The three methods represent different trade-offs between cost and accuracy.

5.3.2 Graphical Interpretation Method

To illustrate the principle of our approach, we consider the following example. Let X1

and X2 be uniformly distributed random variables given by

FX1 =



0, x < 0
mx, 0 ≤ x < 1/m
1, x > 1/m,

(5.26)

where m is a shape parameter, and

FX2 =



0, x < 1
2(x− 1), 1 ≤ x < 3/2
1, x > 3/2.

(5.27)

Figure 5.2 shows a trivial case form = 1. From Eq. (5.5) we immediately obtain FY = FX2

since FX1 = 1 for FX2 > 0. In contrast, Figure 5.2 (right) shows the resulting FY (dashed
line) using Eq. (5.5) for m = 1/2. Due to the integration problem of Eq. (5.6) this exact
solution FY cannot be evaluated explicitly in terms of E[X

r
i ]. Applying heuristic Eq. (5.21)

would simply yield Y = X2 independent of Var[X1]. Consequently this heuristic causes a
large estimation error shown by area between FX2 and FY which increases monotonically
as function of Var[X1].

A better approximation can be obtained by taking the minimum of FX1 and FX2 :

FY = min(FX1 , FX2), (5.28)

as shown by the bold solid line in Figure 5.2 (right). In contrast to the heuristic method
in Eq. (5.21), this approach implicitly takes Var[X1] into account such that the estimation
error is less sensitive to Var[X1]. Using Eq. (5.28), we can compute E[Y r] in Eq. (5.22).
Let F0 be the value of F at the intersection of FX1 and FX2 (see Figure 5.2 (right)). A
straightforward implementation is given by evaluating the integration for 0 ≤ F ≤ F0 and
F0 ≤ F ≤ 1 according to

E[Y r] =
∫ F0

0
(RX2(F ))

rFX1(RX2(F )) dF +
∫ 1

F0

(RX1(F ))
rFX2(RX1(F )) dF. (5.29)

Eq. (5.29) is straightforward to compute since each integration involves one cdf (cf.
Eq. (5.22). However, Eq. (5.29) still suffers from inaccuracy for E[X1] = E[X2].
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Figure 5.2: Y = max(X1, X2) for m = 1 (left) and Y = max(X1, X2) for m = 1/2 (right)

5.3.3 GBD Method

As mentioned before, the cdf of the GLD does not exist in closed-form, while in the analysis
of binary parallel composition, a closed-form cdf is required. As an approximation, we
can compute the cdf of X based on generalized beta distributions. The Generalized Beta
Distributions (GBD) is a four-parameter distribution defined by the cdf

FX(x) =
∫ x−β1

β2

0

tβ3−1(1− t)β4−1

B(β3, β4)
dt = I(x−β1)/β2(β3, β4), (5.30)

where β1 is a location parameter, β2 is a scale parameter and β3 > 0 and β4 > 0 are shape
parameters, and Ix(a, b) is known as incomplete beta function. Similar to the GLD, the
distribution can provide good approximations to well-known distributions [50].

All the raw moments of X exist and can be derived from the relation X = β1 + β2X̄
where X̄ denotes a beta distribution whose the rth moment is given by the following
convenient recursive expression

E[X̄r] =
β3 + r − 1

β3 + β4 + r − 1E[X̄r−1]. (5.31)

From Eq. (5.31) the raw moments of GBD are given by

E[Xr] = E[(β1 + β2X̄)
r] =

r∑
k=0

(
r

k

)
βk1β

r−k
2 E[X̄r−k]. (5.32)

GBD covers a great diversity of shapes and has found wide application in modeling mea-
surements that are restricted to a finite interval. Although we can refer to a table as found
in [50], unlike the GLD, obtaining a solution for the β values given the first four moments
can be quite difficult [50]. Yet, in providing the first four moments, the cost of obtaining
the β values are typically small. Table 5.2 shows β for U(a, b), E(θ), and N(µ, σ). While
the β values are exact for U(a, b), for E(θ), and N(µ, σ), the β’s are valid for values of
L that are sufficient large from the mean. Our results show that L = 103 is sufficiently
large.
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Table 5.2: β values for well-known distributions for L → ∞

β U(a,b) E(θ) N(µ, σ)
β1 a 0 µ − σ

√
2L

β2 b − a L/θ σ
√
8L

β3 1 1 L

β4 1 L L

To compute E[Y r] in Eq. (5.22), we use Eq. (5.30) for evaluating FXi
(RXj

(F )) where
RXj

(F ) is evaluated using GLD. An implementation of Eq. (5.22) is given by

E[Y r] =
1

K

K∑
k=1

((RX2(
k

K
))rFX1(RX2(

k

K
)) + (RX1(

k

K
))rFX2(RX1(

k

K
))). (5.33)

Although Eq. (5.33) yields accurate values for E[Y r], obtaining the β values can be quite
difficult as mentioned before.

5.3.4 Newton’s Method

Another interesting method to approximate the cdf of X is Newton’s method, which is
given by

Fi+1 = Fi − RX(Fi)

R′
X(Fi)

(5.34)

where i is the iteration index. The use of Newton’s method is appropriate since the
method converges quadratically and converges to a solution within a few iterations due
to the fact that Fi is close to Fi+1. For instance, to compute a cdf for 10

4 intervals it
requires 30 ms on a 1 GHz Pentium III processor.

As in Eq. (5.22) the integration proceeds from F = 0 to F = 1 rather than x = −∞
to x =∞, a straightforward implementation of Eq. (5.22) is given by the summation

E[Y r]=
1

K

K∑
k=1

((RX2(k/K))
rFX1(RX2(k/K))+(RX1(k/K))

rFX2(RX1(k/K))) .(5.35)

In practice, K = 104 is sufficiently large while FXi
(RXj

(k/K)) can be computed using
Newton’s method as the following.

FXi,l+1
(RXj

(k/K)) = FXj,l
−RXj

(FXj,l
)/R′

Xj
(FXj,l

) (5.36)

where FXj,0
= 1/K. The computation of Eq. (5.35) costs 60 ms on a 1 GHz Pentium III

processor.
One might wonder why Eq. (5.22) would not suffice as the N -ary parallel composition

might be implemented by the binary parallel composition. The reasons are that the
related computation requires �2log(N)� times evaluation of Eq. (5.22) and the accuracy
of Eq. (5.22) is worst for iid workload.
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5.4 Binary Or-Parallel Composition

For different workloads in binary or-parallel composition we present the following theorem.

Theorem 5.3 Binary Or-parallel composition
Let random variable Y be defined as

Y = min(X1, X2) (5.37)

where Xi are independent random variables for which E[Xr
i ] for r = 1, 2, 3, 4 exist. Let Xi

be expressed in terms of GLD(λi,1, λi,2, λi,3, λi,4), where λi,j are functions of E[Xr
i ]. Then

the raw moments of Y are given by

E[Y r] =
∫ 1

0
(RX1(F ))

r(1− FX2(RX1(F ))) + (RX2(F ))
r(1− FX1(RX2(F )))dF. (5.38)

Proof:
The rth raw moment of Y , expressed in terms of its cdf, is given by the Stieltjes inte-
gral [104]

E[Y r] =

∞∫
−∞

xrdFY (x), (5.39)

where FY (x), expressed in terms of FXi
(x), is given by [104]

FY (x) = 1− (1− FX1(x))(1− FX2(x)). (5.40)

The derivative of Eq. (5.40) with respect to x is given by

dFY (x)

dx
= (1− FX2(x))

dFX1(x)

dx
+ (1− FX1(x))

dFX2(x)

dx
. (5.41)

Since the GLD is conveniently expressed as function of the cdf, we substitute all variables
in the right-hand side by the cdf. As FXi

= F , x may be directly substituted by RXi
(F ).

Consequently the lower and upper bound follow 0 ≤ F ≤ 1 since FXi
(x) = 0 for x → −∞

and FXi
(x) = 1 for x → ∞. Expressed in terms of Eq. (5.39), it follows

E[Y r] =
∫ 1

0
(RX1(F ))

r(1− FX2(RX1(F ))) + (RX2(F ))
r(1− FX1(RX2(F )))dF.

✷

A straightforward implementation of Eq. (5.38) is as follows

E[Y r]=
1

K

K∑
k=1

((RX1(
k

K
))r(1− FX2(RX1(

k

K
))) + (RX2(

k

K
))r(1− FX1(RX2(

k

K
)))) (5.42)

where K is large. In practice, K = 104 is sufficiently large.
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5.5 Synthetic Workloads

In this section we describe the quality of our prediction approach when applied to synthetic
distributions and those measured from applications. The prediction quality is expressed
in terms of the relative error εr which is defined according to

εr =
|E[Y rm]− E[Y rp ]|

E[Y rm]
, (5.43)

where E[Y rm] and E[Y rp ] are the measured and predicted moments, respectively. Synthetic
distributions such as the uniform, exponential and normal distributions are frequently
used for modeling workloads. The pdf of these distributions is available in close-form
from which the moments E[Y rm] for parallel composition can be obtained. While for the
uniform and exponential distributions E[Y rm] can be expressed explicitly in terms of the
input moments, for normal distributions, however, E[Y rm] is evaluated from numerical
integration since the cdf is not available in closed form. For synthetic distributions, E[Y rm]
is obtained numerically using Maple Mathematical Software [65] since the pdf of Ym is
available in closed form. To determine E[Y rp ] we use Eqs. (5.18) and (5.20) for N -ary and-
parallel and or-parallel compositions, respectively, while for binary parallel composition
based on graphical interpretation, GBD and Newton’s methods we use Eqs. (5.29), (5.33)
and (5.35), respectively. The input moments E[Xr

i ] are also measured from 6,000 random
samples. The prediction errors are presented in figures and finally summarized in tables.

5.5.1 Uniform Distribution

The first synthetic distribution is the continuous uniform distribution. When the input
workloadsXi are continuous uniformly distributed, then E[Y rm] is exactly equal to E[Y rp ] for
N -ary parallel composition2 since Xi are exactly determined by the GLD (see Table 5.1).
For binary parallel composition, the error is also equal to zero. Such a good result is not
achieved using the low-cost graphical interpretation method in Eq. (5.29) and the heuristic
method in Eq. (5.21). Consider the following example. Let X1 and X2 be continuous
uniform distributions defined by Eqs. (5.26) and (5.27), respectively. These distributions
are also illustrated in Figure 5.2. Parameter m in X1 is introduced to evaluate the relative
error between X1 and X2 for various scenarios. For m ≥ 1, both methods have no error
since the cdf’s are disjunct (i.e., Y = X2). For 2/3 ≤ m < 1, both methods yield the
same error while for 0.1 ≤ m < 2/3, the graphical interpretation method is much better
than the heuristic method as shown in Figure 5.3. The maximum error of the graphical
interpretation method is 15% while ε1 is less than 5%.

5.5.2 Exponential Distribution

When Xi are exponentially distributed, our results for and-parallel composition are as fol-
lows. Figure 5.4 shows εr for θ = 1 and N ranging from 2 to 1, 000 (numerical instabilities

2This applies to both and-parallel and or-parallel compositions due to symmetry of the pdf.
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Figure 5.3: εr[%] for uniform distribution

in Maple prohibit larger values for N). The figure shows that the error decreases mono-
tonically as a function of N because the GLD, in limit form, approaches the exponential
distribution. The largest error, for N = 2, is less than 1%.

For binary parallel composition we consider two exponential distributions with param-
eters θ1 = 1 and 0.1 ≤ θ2 ≤ 10. Figure 5.5 shows εr for binary and-parallel composition
using graphical interpretation method. As a consequence of the prediction principle in
Section 5.3.2, the error is the largest when E[X1] = E[X2]. In this case, the heuristic
method in Eq. (5.21) has the same performance since FX2 < FX1 in the entire range
causes both methods to return X with the greatest mean value. Figures 5.6 and 5.7 show
εr for binary and-parallel composition using GBD and Newton’s methods, respectively.
In contrast to Figure 5.5, these two figures show that εr is in the few percent range and
insensitive to the θ2 value variation. Specifically, ε1 is less than 1%.

For or-parallel composition, we obtain similar results as shown by Figures 5.8 and 5.9.
For binary or-parallel composition, we only present the results using Newton’s method
since the method outperform the others.

5.5.3 Normal Distribution

To study N -ary parallel composition using normal distributions we let E[X] = 0 and
Var[X] = 1. Figure 5.10 shows εr for N up to 10, 000. Again, numerical instabilities
prohibit larger values for N . In the figure we also compare our approach with Gumbel’s
approximation formula for general symmetric distributions as given in [36]

E[YN ] ≈ E[X] + Std[X]
√
2 log(0.4N). (5.44)
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Figure 5.10: εr[%] for the normal distribution (N -ary and-parallel composition)

The error of Eq. (5.44) approaches zero very slowly for large N , while our approximation
is much better for N < 100 and is still better for N up to 10, 000.

For binary and-parallel composition we consider two normal distributions where E[X1] =
Var[X1] = 1, while E[X2] = µ and Var[X2] = σ2. We vary µ and σ as shown in Figures 5.11
and 5.12, respectively, using the graphical interpretation method. Again, the prediction
error decreases as the workloads diverge, while for larger variance, graphical interpretation
method outperforms the heuristic in Eq. (5.21). In Figure 5.11, both methods have the
same error since the predicted Y is X2. In Figure 5.12, the decreasing εr for r = 2 and
σ = 2 is due to E[Y 2] > E[X2

2 ] for 1 < σ < 2 while E[Y 2] < E[X2
2 ] for σ > 2. The max-

imum error of E[Y ] is 35%, while the error of graphical interpretation method decreases
with Var[X2] whereas the error of heuristic steadily increases.

A similar scenario is also used for the prediction error of binary and-parallel compo-
sition using GBD and Newton’s methods as shown in Figures 5.13, 5.14, 5.15 and 5.16,
respectively. In Figures 5.13 and 5.15, εr decreases logarithmically as function of µ while
in Figures 5.14 and 5.16, εr increases logarithmically as function of σ. In all cases εr
is below 1%. Numerical instabilities in the computation of E[Y rm] using Maple prohibit
larger values for σ. These figures show that for the same mean, the error increases as the
variance is large while for the same variance the largest error occurs when the mean is the
same. The prediction error is much better than that using the graphical interpretation
method.

For N -ary or-parallel composition, we obtain similar prediction error as shown in
Figure 5.10 due to the fact that the normal distribution is symmetric. For binary or-
parallel composition, the prediction error is shown in Figures 5.17 and 5.18 using Newton’s
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Figure 5.11: εr[%] for the normal distribution with σ = 1 (binary and-parallel composition
using graphical interpretation method).
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Figure 5.15: εr[%] for the normal distribution with σ = 1 (binary and-parallel composition
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method. Again, we present Newton’s method only since the prediction outperforms the
other methods.

Summarizing this section, we conclude that the maximum error of our method is in
the few percent range and insensitive to the variation in distributions. For binary parallel
composition Newton’s method outperforms the other two methods. Finally, we note that
the reason for the error shape in Figures 5.3 to 5.18 is caused by numerical instabilities
and the effects of the higher moments (5th, 6th, etc), that are not accounted for in our
four-moments approach.

5.6 Empirical Workloads

In this section, we describe to what extent our approximation approach applied on work-
loads measured from real applications. Our study involves 6 applications. The first appli-
cation, the NAS Embarrassingly Parallel benchmark (NAS-EP), is an example of identical
and independent normal distributions occurring in practice. While standard distributions
are often used to represent task execution time, in practice distributions may be totally
different so that a representation based on standard distributions is inadequate. To illus-
trate this, we study a simple data parallel version of Single Source Shortest Path (SSSP)
problem [82] where the measured workloads are lightly correlated. To investigate the
effect of different levels of correlation between the tasks we also apply our analysis tech-
nique to a Parallel Sorting by Regular Sampling algorithm (PSRS) [97] which comprises
three data parallel sections. Next to the correlation we also investigate to what extent
our approach requires distributions to be unimodal. To this end, we apply our technique
to WATOR, a data parallel simulation program in which extreme workload imbalances
can occur. To investigate the accuracy using workload from task parallel programs we
perform an experiment where two workloads are pipelined and form a binary and-parallel
composition The above applications employ and-parallelism which is the predominant
form of parallel composition. In order to evaluate or-parallelism, we study speculative
parallel in the context of distributed web search-engine in which both binary and N -ary
or-parallel scenarios are studied.

5.6.1 NAS-EP

The NAS benchmark suite has been developed for the performance evaluation of highly
parallel supercomputers [8]. For our experiments we only consider the first parallel kernel,
called the Embarrassingly Parallel kernel (EP), since the other benchmarks merely exhibit
deterministic behavior due to the limited dependency of their workload on the input data.
NAS-EP essentially generatesM Gaussian deviates whose number is not constant on each
run which implies a stochastic workload for each parallel task. This number is selected as
our workload Xi.

In our experiment we consider an average workload for each processor corresponding
to M = 1020. Hence, the workload per processor can be assumed to be iid to which
Eq. (5.18) applies. The benchmark is run 6, 000 times from which the same number of
samples for X1, . . . , XN and Y is obtained. The moments of the workload are presented in
Table 5.3, in terms of central moments for convenience. The results show that the input
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distribution (X1) approximates the normal distribution based on the Chi-Square test (χ
2)

(the χ2 value of X1 is 65.3 for a 5% significance level while the threshold is 67.5). The
pdf of Xi is shown in Figure 5.19. Thus Xi is well-fitted to the normal distribution.

Table 5.3: The moments of X1 for NAS-EP

E[X1] Var[X1] Skw[X1] Kur[X1]
823, 549 180, 756 0.04 2.98
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Figure 5.19: Normalized pdf(X1) for NAS-EP.

As the moments ofX are available, the moments of Y can be predicted using Eq. (5.18)
and compared to the measured value of Y using Eq. (5.43). As shown in Figure 5.20,
indeed the small error is consistent with Figure 5.10 for the standard normal distribution.
The difference between both figures is due to the largely differing coefficient of variance
between the two workloads, and also due to measurement inaccuracies. Figure 5.20 also
shows the error of Eq. (5.44) which decreases for large N . For N up to 128 our method
is better than that in Eq. (5.44).

5.6.2 SSSP

In this experiment we model a simple parallel version of single-source shortest-path (SSSP)
problem as described in [82]. The input is a V × V matrix representing a weighted,
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Figure 5.20: εr [%] for NAS-EP.

directed graph with V vertices, while the output of SSSP is a vector denoting the shortest
distance between the source vertex to all other vertices. The weight matrix is assigned
real values, uniformly distributed in the interval (0,10), while infinite weights are assigned
with probability 0.1. As workload Xi we count the floating point operations per task.
The moments of X1 are presented in Table 5.4. The pdf of normalized, left-skewed X1 for
V = 1, 000 is given in Figure 5.21.

To evaluate N -ary and-parallel composition we let N independent SSSP programs run
in parallel. Each computes the vector for a different vertex, referred to as APSP, all-pairs
shortest path, performing SSSP for all nodes. Figure 5.22 shows that εr[%] is less than 1
% where N ranges from 2 to 128. We also compared our approach with that of Gumbel
in Eq. (5.44). In contrast to the prediction error in Figure 5.20 the ε1 for the Gumbel
approach now increases for large N due to the left-skewed X1.

To evaluate binary parallel composition we have parallelized SSSP, based on an internal
farmer/worker organization. As a result, correlation of the two tasks is to be expected.
The corresponding εr[%] for various V is given in Figure 5.23 where V ranges from 100
to 1,000. Indeed, due to the correlation effect εr[%] for binary parallel composition is

Table 5.4: The moments of X1 for SSSP

E[X1] Var[X1] Skw[X1] Kur[X1]
4.7 106 1.7 1011 0.48 3.34
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Figure 5.21: Normalized pdf(X1) for SSSP

0.01

0.1

1

2 4 8 16 32 64 128

= 1r
= 2r

= 4r

= 3r

N

[%
]

rε

Eq. (5.44)
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somewhat larger than that for N -ary parallel composition, but is insensitive to V value
variation.
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Figure 5.23: εr[%] for SSSP

5.6.3 PSRS

In this experiment we apply our prediction method to the parallel sorting by regular
sampling (PSRS) algorithm. The algorithm features three (data) parallel sections. The
first parallel section, called sort, divides the array in P equal subarrays. Each partition
is sorted in parallel, after which a number of global pivots is determined. Based on these
pivots, the second parallel section, called disjoin, divides the subarray in P parts. The
third section, called merge, merges the subarrays cyclically with regard to the processor
index. As a result, a sorted array is obtained. A description of the algorithm can be found
in [97].

The working of sort implies that each task has an iid workload (uncorrelated), since
we generate the input array with a uniform random variable using sample space [0, 1]. In
contrast, the tasks in the other two parallel sections are correlated, since their workload
depends on the same global pivot values. Again, as workload Xp we choose the number
of floating point operations per task.

In our experiments we keep the average workload of each task constant (1,000 array
elements per task), while N ranges between 2 and 128 (measurements for larger N values
prohibited by current run time systems limitations). Table 5.5 shows the central moments
of the execution times X1 for N = 2 for 1,000 sample data sets. The pdf of X1 is given
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in Figure 5.24, where the mean and variance are normalized. Clearly, the distributions
of X are quite different from any of the standard distributions we have examined in the
previous section.

Table 5.5: The moments of X1 for PSRS

Sections E[X1] Var[X1] Skw[X1] Kur[X1]
sort 9,581 1.04 105 0.94 4.31

disjoin 496 177 -1.64 5.58
merge 1,475 545 -1.54 6.06
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Figure 5.24: Normalized pdf(X1) for PSRS

The εr for the three parallel sections are given in Figures 5.25, 5.26, and 5.27, respec-
tively. As the tasks in the first section are independent and have equal workload, the
iid requirement applies, which permits Eq. (5.18) to be used. Figure 5.25 shows that the
error is less than 1% for N ≤ 128 (cf. Figure 5.10). Figure 5.26 indicates that Eq. (5.18)
still provides a good approximation although the iid assumption does not quite hold.

Figure 5.27 shows that the relative error is much larger than that in Figures 5.25 and
5.26. Clearly, our approach is inadequate to predict E[Y r] when Xi are highly correlated.
Correlation data for the merge parallel section is shown in Figure 5.28 in terms of co-
efficient of correlation between P1 and Pj for P = 16. Despite the small coefficient of
correlation the actual covariance is large due to large variance values.
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Figures 5.25, 5.26, and 5.27 also show the error using Gumbel’s prediction in Eq. (5.44).
Since Eq. (5.44) does not apply for N = 2, the error is computed for N = 4 to N = 128.
Figures 5.25 and 5.26 show that Eq. (5.18) is better than that of Gumbel in Eq. (5.44),
which only applies to symmetric distributions. Since the third parallel section is highly
correlated, the prediction error of both methods is comparable as shown by Figure 5.27.

5.6.4 WATOR

WATOR is a Monte Carlo simulation in which idealized fishes and sharks live, move ran-
domly, breed, and eat one another in a two-dimensional ocean with toroidal topology [4].
The characteristic of such an algorithm is that the workload can be severally unbalanced
because of computational scenario. Hence, the workload in each processor is changing
with the increasing simulated time t. The load inbalance comes about naturally because
of the dynamics of the problem: the fishes and sharks tend to aggregate in schools as
they breed, move, and eat each other. Figure 5.29 shows an initial condition of the fishes
(“+”) and sharks (“×”) in the ocean with 10,000 grid points. They agregate in schools
gradually as shown in Figures 5.30 to 5.32.
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Figure 5.29: Snapshot of WATOR for t = 0

In our experiment, we perform a simple rectangular subdomain decomposition of the
ocean such that each processor is assigned to process 2,500 grid points. As workload
Xi, (X1 shown in Table 5.6), we choose the number of fish within each processor which
on initialization is generated randomly over each location in the ocean. The moments
in the table are based on 6,000 simulation runs. The pdf of workload X1, where X1 is
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Figure 5.30: Snapshot of WATOR for t = 16
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Figure 5.31: Snapshot of WATOR for t = 48
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Figure 5.32: Snapshot of WATOR for t = 128

normalized, is also shown in Figure 5.33. As shown in this figure, the workload exhibits
a bimodal distribution for t = 256.

Table 5.6: The moments for WATOR

t E[X1] Var[X1] Skw[X1] Kur[X1]
0 1, 000 594 −0.02 2.99
4 491 175 0.07 3.01
16 895 7, 421 0.36 2.80
64 1, 762 208, 695 −0.40 2.50
128 1, 278 230, 641 1.02 3.32
256 1, 487 495, 116 0.22 1.86

Since in WATOR the slowest processor determines the performance, we apply Xi to
N -ary and-parallel composition using Eq. (5.18). The εr for t = 0, 4, 16, 64, 128, and 256
are presented in Figures 5.34, 5.35, 5.36, 5.37, 5.38 and 5.39, respectively. We vary N
from 2 to 128. The smallest εr appears in Figure 5.34 for t = 0 since Xi are still iid. In the
figure, εr increases logarithmically for large N (cf. Figure 5.10). The error increases with
increasing t due to higher correlation between the tasks caused by clustering of workload
within certain processors as shown in Figures 5.29 to 5.32 which displays the grid for
t = 0, 16, 48 and 128, respectively. In these figures, the toroidal topology has 100 × 100
grids.



5.6 Empirical Workloads 91

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3

pd
f(

   
 )

X 1

Norm[    ]X1

t = 16
t = 4 t = 0

= 256t

t = 64

t = 128

Figure 5.33: Normalized pdf(X1) for WATOR

Figure 5.40 summarizes the correlation between P1 and Pj for P = 16 processors.
Again, despite the small coefficient of correlation the actual covariance is large due to
large variance values. As to be expected, Figure 5.40 shows that the correlation is the
largest for the processors nearest to P1 (P2 and P16, the processors are interconnected in
a 1-D torus). Figure 5.40 also shows that the correlation increases with t.

Apart from correlation effects we observe a bimodal distribution for X1 (t = 256).
Such variability of distribution strongly influences the accuracy of our approach since our
(GLD) analysis applies to unimodal distributions only. Consequently, for workloads with
multi-modal distributions a different approach needs to be taken. A method that deals
with multi-modal workloads is presented in [62] for queuing network models.

5.6.5 Pipeline

In this section we determine the quality of our approximation when applied to a pipelined
application of two tasks whose execution times are denoted by X1 and X2, respectively.
The pipeline comprises a Gaussian random generator task that supplies one-dimensional,
real-valued vectors of length N to a PSRS sorting task. In steady state the total execution
time per vector of the pipelined application is given by Y = max(X1, X2), assuming both
tasks use different resources. The generator task is implemented using the data parallel
NAS-EP benchmark [8]. The PSRS sorting task has been described in Section 5.6.3.

To have an interesting scenario for our experiment (i.e., the worst case for Eqs. (5.22)
and (5.21)), we adjust the parameters such that both tasks have approximately an equal
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Figure 5.36: εr for WATOR (t = 16)

0.1

1

10

100

2 4 8 16 32 64 128

N

[%
]

rε

= 3r

= 4r

= 2r

r = 1

Figure 5.37: εr for WATOR (t = 64)
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Figure 5.40: Coefficient of correlation for WATOR

workload (which also balances the pipeline). Hence, we choose P = 1 processor for
NAS-EP and P = 24 for PSRS. The pipeline processes 6, 000 arrays with length N per
experiment. To verify the sensitivity of prediction accuracy on N , we perform a number of
experiments where N varies from N = 4 · 104 to N = 105. The execution times of X1 and
X2 are given in Tables 5.7 in terms of the first four moments, based on 6, 000 simulation
runs. The pdfs of X1 and X2 are shown in Figure 5.41 for N = 105. In this figure X1

is approximately normal while X2 has a long right tail. Furthermore, the variance of X2

(the sorting task) is much larger than that of X1.

Table 5.7: The first four moments of X1 and X2

N E[X1] Var[X1] Skw[X1] Kur[X1] E[X2] Var[X2] Skw[X2] Kur[X2]
4 · 104 4.55 104 6.78 103 0.17 2.90 4.57 104 5.52 105 0.74 4.09
5 · 104 5.68 104 8.55 103 −0.07 3.11 5.64 104 7.92 105 0.36 2.81
6 · 104 6.82 104 1.06 103 0.04 2.79 6.75 104 1.17 106 0.74 4.32
7 · 104 7.96 104 1.19 104 0.06 3.05 7.84 104 1.25 106 1.17 6.18
8 · 104 9.09 104 1.39 104 0.03 3.12 8.95 104 1.68 106 0.64 3.53
9 · 104 1.02 105 1.69 104 −0.02 3.02 1.01 105 1.73 106 0.73 3.89
1 · 105 1.14 105 1.73 104 −0.04 2.93 1.12 105 2.15 106 0.73 4.25

We apply the moments of X1 and X2 in the binary and-parallel composition based on
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Newton’s method and the heuristic in Eqs. (5.35) and (5.21), respectively. Figure 5.42
shows εr of Newton’s method and the heuristic. For both methods εr is decreasing for
large N due to the disjunction of X1 and X2. Although E[X1] = E[X2], εr is excellent
since the coefficient of variance is small (in practice, task variance is indeed much smaller
than we have assumed in our analysis in Section 5.5).

5.6.6 Parallel Search

While the previous distributions already provide an indication of the performance of our
technique, in this section we present the results for empirical distributions as measured
from a distributed search application (using search engines) on the internet. For a large
number of queries, each query is sent to each site in parallel. Since the response time is
determined by the fastest response, this experiment constitutes or-parallel composition.
The search engines are located at URL addresses in the USA (dot com), Europe (dot nl),
and Latin America (dot cl). As query we search 2,000 large cities around the world while
as response we obtain html text.

In order to obtain more workload distributions, in our experiment, we distinguish two
workload distributions associated with input distribution X, i.e., the response time Tr
and the search time Ts (both in seconds). Tr denotes the time needed for sending a query,
searching, and receiving the response from the search engines while Ts presents only the
time needed for a search engine to find the query excluding the round trip communication
delay. Although both workloads are measured from the same experiment, the distribution
of Ts has different shape from Tr.
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Figure 5.42: εr for pipeline

In an N -ary or-parallel search, we represent all sites on one particular domain in terms
of one workload distribution X and apply Eq. (5.20). To resemble identical distributions
for X we repeat the search on one domain up to 128 times in unconsecutive manner to
avoid probable caching mechanism in the search engine. For X = Tr the distributions
are shown in Figure 5.43. All distributions are unimodal and slightly left-skewed. The
corresponding moment error for N -ary or-parallel composition is shown in Figures 5.44,
5.45 and 5.46 for the dot cl, dot com, and dot nl domains, respectively. The errors are
moderate while the mean errors are in the few percent range. In general, the errors
increase slowly for large N .

The distributions of Ts are shown in Figure 5.47. The dot cl domain has a left-
skewed distribution while the dot com and dot nl domains have bimodal distributions.
For all three distributions the left tails are much sharper in comparison with those of
Tr. The corresponding prediction error for the N -ary or-parallel composition is shown
in Figures 5.48, 5.49 and 5.50 for the dot cl, dot com and dot nl domains, respectively.
For all three cases εr increases for larger N . The average error for the dot cl domain is
appreciable since the distribution is sharply left-skewed where the distribution mass is
concentrated near the minimum value. In such case the fitting for lambda values is very
sensitive. The error for the dot com and dot nl domains are much worse and increase
rapidly for larger N , which is caused by the fact that the distribution of X is no longer
unimodal, a requirement of our technique. Another error source is the small number of
discrete points for X. Consequently, for N large the minimum of X will be deterministic.

To study a binary or-parallel search we combine each possible combination of two
domains and apply Eq. (5.42). For X = Tr the prediction error for all three cases is in the
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Figure 5.44: εr[%] for N -ary or-parallel using Tr (.cl)
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Figure 5.45: εr[%] for N -ary or-parallel using Tr (.com)
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Figure 5.46: εr[%] for N -ary or-parallel using Tr (.nl)
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Figure 5.48: εr[%] for N -ary or-parallel using Ts (.cl)
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Figure 5.49: εr[%] for N -ary or-parallel using Ts (.com)
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Figure 5.50: εr[%] for N -ary or-parallel using Ts (.nl)
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few percent range as shown in Table 5.8 (left) since again, the workloads are unimodal.
For X = Ts the prediction error for the mean is in the few percent range as given in
Table 5.8 (right) while for the higher moments the prediction error is moderate, since
again, the workloads are no longer unimodal.

Table 5.8: εr[%] for binary Or-parallel (Tr: left and Ts: right)

Tr,1 Tr,2 ε1 ε2 ε3 ε4

.cl .com 0.2 0.5 1.0 1.6

.com .nl 0.1 0.4 1.1 2.5

.nl .cl 0.3 0.9 1.8 3.5

Ts,1 Ts,2 ε1 ε2 ε3 ε4

.cl .com 4.0 8.5 21 73

.com .nl 1.1 9.3 21 45

.nl .cl 1.8 4.7 19 37

5.7 Summary

In this chapter we have presented an analytical model of the execution time distribution
Y of N -ary and binary parallel compositions of stochastic tasks. Our approach is based
on approximating the distributions Xi and Y in terms of the first four moments, in
conjunction with the use of the GLD as an intermediate vehicle, to derive a closed-form,
O(1) complexity expression for E[Y r] in terms of E[Xr

i ] and N . Our model is intended to
cover the effects of data and task parallelism, and forms an integral part of an analytic,
ultra-low complexity approach to parallel program performance prediction that already
covers sequential and conditional compositions.

We have also studied to what extent the moment approximation and the GLD ap-
proximation has affected the accuracy of our model. Measurements using a large variety
of distributions, both synthetically generated as well as empirically obtained from real
programs, indicate that the relative error for N -ary composition is in the 1% range for
iid workloads, merely increasing slowly with N , while for different workloads the error for
binary composition is insensitive to the variation of parameter values. Our results also
confirm the fact that the model only degrades when applied to distributions that either
exhibit large correlation or that are no longer unimodal. Considering its ultra-low solution
complexity, our approach provides an attractive cost-performance trade-off in analytical
performance modeling of data-dependent parallel programs.

While the εr plots provide ample information on the accuracy of the individual mo-
ments, we also investigate the quality of our approach in terms of how well Eq. (5.18)
actually predicts the pdf of the actual distribution. To this end, we perform the χ2 test
to fit pdf(Yp) to pdf(Ym). Table 5.9 lists the χ2 values for NAS-EP, PSRS, and WATOR
for which the χ2 value is under or close to the threshold for a 5% significance level. The
ratio between the χ2 values and the threshold is also included for interpretation conve-
nience. As our method typically is used recursively in program performance prediction,
we have also included the εr values. From the table it can be seen that, besides the low
εr values, for a quite number of distributions and parameter values, our approximation
even passes the χ2 test, which implies that in those circumstances the distribution Yp is
virtually identical to Ym.
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Table 5.9: Scope of distributions for which the Eq. (5.18) distribution error is virtually negli-
gible

Experiment ε1[%] ε2[%] ε3[%] ε4[%] χ2/Threshold Ratio
NAS-EP (N = 2) 1.2 10−4 2.4 10−4 3.8 10−4 5.0 10−4 50.0 / 67.5 0.7
NAS-EP (N = 4) 5.9 10−4 1.2 10−3 1.8 10−3 2.4 10−3 80.7 / 90.5 0.9
NAS-EP (N = 8) 6.4 10−4 1.3 10−3 1.9 10−3 2.5 10−3 55.1 / 55.8 1.0
NAS-EP (N = 16) 3.1 10−3 6.1 10−3 9.2 10−3 1.2 10−2 170.1 / 55.8 3.0
PSRS (N = 2, sort) 5.7 10−2 1.6 10−1 1.8 10−1 2.4 10−1 22.7 / 35.2 0.6
PSRS (N = 4, sort) 6.4 10−2 1.3 10−1 1.9 10−1 2.5 10−1 33.0 / 43.8 0.8
PSRS (N = 8, sort) 5.9 10−2 1.2 10−1 1.8 10−1 2.5 10−1 27.7 / 37.7 0.7
PSRS (N = 16, sort) 1.7 10−1 3.5 10−1 5.2 10−1 7.0 10−1 40.9 / 28.9 1.4
PSRS (N = 32, sort) 2.4 10−1 4.7 10−1 7.1 10−1 9.6 10−1 32.3 / 25.0 1.3
WATOR (N = 2, t = 0) 3.8 10−3 7.3 10−3 1.0 10−2 1.2 10−2 88.1 90.5 1.0
WATOR (N = 2, t = 4) 3.8 10−1 7.4 10−1 1.1 1.4 183.2 / 79.1 2.3
WATOR (N = 4, t = 0) 1.6 10−2 3.2 10−2 4.7 10−2 6.0 10−2 75.7 / 79.1 1.0
WATOR (N = 4, t = 4) 2.6 10−1 5.1 10−1 7.7 10−1 1.0 132.8 / 55.8 2.4
WATOR (N = 8, t = 0) 1.1 10−2 2.2 10−2 3.3 10−2 4.5 10−2 75.3 / 79.1 1.0
WATOR (N = 8, t = 4) 2.5 10−1 5.0 10−1 7.4 10−1 9.6 10−1 160.8 / 79.1 2.0
WATOR (N = 16, t = 0) 5.7 10−2 1.1 10−1 1.7 10−1 2.3 10−1 93.9 / 101.9 0.9
WATOR (N = 16, t = 4) 2.1 10−1 4.2 10−1 6.2 10−1 8.0 10−1 134.1 / 90.5 1.5
WATOR (N = 32, t = 0) 9.1 10−2 1.8 10−1 2.7 10−1 3.6 10−1 110.5 / 79.1 1.4
WATOR (N = 32, t = 4) 3.6 10−2 4.8 10−2 3.5 10−2 5.9 10−3 141.7 / 67.5 2.1
WATOR (N = 64, t = 0) 1.3 10−2 2.7 10−2 4.2 10−2 5.8 10−2 78.4 / 43.8 1.8
WATOR (N = 64, t = 4) 2.0 10−2 6.0 10−2 1.2 10−1 2.1 10−1 153.8 / 43.8 3.5
WATOR (N = 128, t = 0) 1.7 10−1 3.4 10−1 5.2 10−1 6.9 10−1 224.1 / 67.5 3.3





Chapter 6

Tool Implementation

In this chapter, we present an implementation of our methodology in terms of a process-
oriented modeling language and compiler. The language is called Pamela+ of which a
prototype version, Pamela (PerformAnce ModEling LAnguage [28]), based on the use
of deterministic variables, has been described in [29]. We choose to extend Pamela to
implement our methodology because Pamela also features symbolic analysis which is
reminiscent to ordinary mathematics in the sense that deriving formulae for the execution
time is straightforward. In contrast to Pamela, however, Pamela+ fully supports the use
of stochastic variables. Furthermore, the methodology is supported by a public-domain
research compiler that automatically translates a Pamela process model into an analytic
model that predicts the first four moments of the execution time at minimum cost. In
this chapter we will focus on the symbolic evaluation and transformation capabilities of
the compiler rather than on the low-level implementation details.

The chapter is organized as follows. In Section 6.1 we summarize the main syntax and
semantics ofPamela. In Section 6.2 we present the stochastic extensions inPamela+ and
the associated compiler implementation issues. In Section 6.3 we describe the accuracy of
Pamela+ with respect to condition synchronization and mutual exclusion. In Section 6.4
we present an application case study.

6.1 Pamela

6.1.1 Formalism

Pamela is a process algebraic language that allows a parallel program-machine combi-
nation to be modeled in terms of a sequential, conditional, and parallel composition of
processes which are synchronized in terms of condition synchronization and resource con-
tention. A Pamela program or process (whose root process is usually denoted by L) is
written as a set of algebraic equations that constitute the entire model. Hereafter, we will
often refer to a Pamela program as a Pamela model.

In Pamela, work is described by the use process construct, like in use(s, τ), in which
the invoking process exclusively acquires service from a server s for τ units time (workload,
excluding possible queuing delay). A resource s has a multiplicity, denoted by |s|, which
may be larger than 1. In simulation mode, the service time τ may be deterministic or
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stochastic. In symbolic analysis mode, only deterministic values are considered. Like in
queuing networks, it is convenient to define an infinite server ρ such that |ρ| =∞. Instead
of use(s, τ), we can simply write delay(τ).

Pamela provides process composition operators for

• Sequential composition, which includes the binary operator ′ ; ′ as in L1 ;L2, which
defines a sequential composition of submodels L1 and L2, and the replication oper-
ator seq as in seq (i = a, b) Li, which equals La ; . . . ;Lb.

• Parallel composition, which includes the binary operator ′ ‖ ′ as in L1 ‖L2, which
defines a parallel composition of submodels L1 and L2 including barrier synchro-
nization at the exit, and the replication parallel operator par as in par (i = a, b) Li,
which equals La ‖ . . . ‖Lb.

• Conditional composition, as in if (c) L, where c is a stochastic condition. For
programming convenience, an else construct is provided.

The implicit condition synchronization of the sequential and parallel composition con-
structs allow for the expression of models that are similar to SP-DAGs. We conclude this
section by an example that forms a typical demonstration of the modeling approach.

Consider a machine repair model (MRM)) [56] in which P clients either spend τl on
local processing or request service from a single First Come First Served (FCFS) server
s with service time τs for a total cycle count of N iterations (unlike the steady-state
analysis typical for queuing systems or Petri nets, in our approach we require models to
terminate). The Pamela model of the MRM is given by

L = par (p = 1, P )
seq (i = 1, N) {

delay(τl) ;
use(s, τs)

}

For reading convenience we have given the above process-algebraic expression L in pro-
gram format including the usual indentation.

The example illustrates the top-down, material-oriented modeling approach [53] taken
in Pamela, in which the server is modeled by a passive resource. In a machine-oriented
approach (the dual modeling paradigm), the server would have been modeled by a sepa-
rate process that synchronizes through explicit message passing such as in Communicating
Sequential Processes (CSP) [41]. Unlike our approach however, the latter paradigm is not
amenable to automatic analysis process where a Pamela model is automatically compiled
to analytic execution time expressions. This is due to the inherent difference in model-
ing condition synchronization and mutual exclusion. In message-passing paradigms, both
forms of synchronizations are implicitly expressed through the same constructs, i.e., syn-
chronous communication, combined with a non-deterministic choice operator (selective
communications). This makes it impossible to symbolically and automatically express
the separate timing effects of both synchronization types, which is the basis of Pamela’s
approach. In the Pamela top-down modeling approach, problem parallelism (including
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condition synchronization) is modeled explicitly in terms of par (or ‖ ) operators, explic-
itly constrained by mutual exclusion (use as a result of scheduling when the processes
need to share resources such as, e.g., software locks, file servers, processors, communication
links, memories, and/or I/O disk handlers).

6.1.2 Symbolic Analysis

In this section, we summarize the symbolic analysis technique for two synchronization
types, i.e., condition synchronization and mutual exclusion (for details we refer to [29]).
It is necessary to describe the symbolic analysis technique here since the next section
will show how we modified this scheme in order to support our moment approach. The
symbolic analysis approach is based on a lower bound approximation of contention delays,
integrated within a condition synchronization delay analysis similar to critical path anal-
ysis of SP-DAGs. Let L denote a Pamela model and let T (L) denote its execution time
(i.e., the result of simulating L). To keep the description simple we present the analy-
sis for unconditional models. Conditional composition is incorporated in the compilation
scheme by simply transferring the condition to the time domain according to the symbolic
transformation

T (if (c) L) = 〈c〉 T (L), (6.1)

where 〈c〉 returns 1 if c is true and 0 otherwise (see also Eq. (2.1)).
Let L denote a Pamela model comprising some sequential and parallel composition

of use or delay tasks. One estimate of the execution time of L is given by computing
the effects of condition synchronization, based on a critical path analysis in which we
ignore the effect of contention (i.e., each use statement is interpreted as if it were a delay
statement). Let ϕ(L) denote the critical path estimate. In terms of the binary Pamela
operator ’;’ and ’‖’, the following symbolic transformation applies

ϕ(L) =




ϕ(L1) + . . .+ ϕ(LN), L = L1 ; . . . ;LN ,
ϕ(L1)max . . .max ϕ(LN), L = L1 ‖ . . . ‖ LN ,
τ, L = delay(τ) or L = use(r, τ).

(6.2)

As mutual exclusion is disregarded, it holds that ϕ(L) ≤ T (L).
Another estimate of T (L) is given by computing the effect of mutual exclusion in

which we use the fact that, regardless of the preemptive or non-preemptive scheduling
order in which processes access resources, the total time spent per resource establishes a
lower bound on T . Let δ(L) = (δ1, . . . , δM) denote the total service demand vector of L,
where M is the total number of resources involved and δm denotes the service demand on
resource rm. We will write δm(L) to denote the m-th element of δ(L). Clearly,

δ(L) =

{
δ(L1) + . . .+ δ(LN), L = L1 ; . . . ;LN or L = L1 ‖ . . . ‖ LN ,
τem, L = use(rm, τ).

(6.3)

where em = (0, . . . , 0, 1, 0, . . . , 0) is theM -dimensional unit vector in the m direction, and
addition and multiplication are defined element-wise. Let ω denote the lower bound on
the execution time of L due to mutual exclusion. Then

ω(L) = max
m=1...M

δm(L)

| rm | . (6.4)



108 Chapter 6. Tool Implementation

As condition synchronization is disregarded, this results in ω(L) ≤ T (L).
If the lower bound due to contention (ω) is combined with the result of critical path

analysis (ϕ), it follows that the lower bound on TL is predicted by

T l = max(ϕ(L), ω(L)), (6.5)

where Eq. (6.5) applies to simple parallel sections (involving a single par). For more
complex models, the following recursive generalization provides a much sharper bound:

T l(L) =




T l(L1) + . . .+ T l(LN), L = L1 ; . . . ;LN ,
ϕ(L1)max . . .max ϕ(LN)max ω(L), L = L1 ‖ . . . ‖ LN ,
max(ϕ(L), ω(L)), otherwise.

(6.6)

Eq. (6.6) shows that the two synchronization types are mapped to the mathematical
operators ’+’ and ’max’. The above process has a linear solution time complexity.

Recall the MRM example. By Eqs. (6.2) and (6.4), it follows that

ϕ = max
p=1...P

N∑
i=1

(τl + τs) = N(τl + τs) (6.7)

and

ω =
∑
p=1

P
N∑
i=1

τs = PNτs. (6.8)

Hence, by Eq. (6.5) or Eq. (6.6), it follows that

T l = N max(Pτs, τl + τs). (6.9)

Unlike traditional static DAG analysis, T l accounts for the additional queuing delay when
s is saturated. The above analysis yields the same result as asymptotic bound analysis in
queuing theory [116]. Let R denote the response time and let Z = τl denote the local time.
Then the mean cycle time R + Z equals ϕ/N for P � P ∗ and ω/N for P � P ∗, where
the saturation point P ∗ = (τs + τl)/τs denotes the crossover between the asymptotes.

6.1.3 Implementation

The Pamela language and associated symbolic analysis is implemented in terms of a
source-to-source compiler that translates a Pamela model into a symbolic execution
time prediction. The internal intermediate representation of the compiler is implemented
using Tm [107].

A Pamela model is a list of equations of the form

type [parameter] identifier [paramlist] [= expression]

which defines an identifier by an algebraic expression, possibly with argument parameters,
of type numeric, process, or resource. The identifier can be annotated as parameter
using the optional parameter modifier, which is explained later on. In this case, the
expression can be omitted, effectively yielding an identifier declaration, rather than an
equation. Returning to the MRM example, the Pamela model is coded as follows:
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numeric P = 1000 % # clients
numeric N = 1000000 % # iterations
numeric tl = 10
numeric ts = 0.1
resource s = fcfs(0,1)
process main = par (p = 1, P) % fork P clients

seq (i = 1, N) { % each loops N times
delay(tl) ; % something local
use(s,ts) % obtain service

}

where fcfs is a predefined FCFS resource array in which the first and second argument de-
note the index and its multiplicity, respectively. For each identifier used in the expressions
there must be a matching definition/parameter declaration.

Apart from the process operators mentioned above, Pamela includes the usual unary
and binary numeric operators such as +, *, /, mod, div, ==, <, max, etc., as well as the
reduction operators sum (<index> = <lb>, <ub>) and max (<index> = <lb>, <ub>).
Conditional numeric expressions are described using if-then just like in conditional pro-
cess expressions. Furthermore, as parts of the analysis result are expressed in terms of vec-
tors, the numeric abstract data type includes vectors as well as scalars, implying that all
numeric operators are overloaded. A vector is denoted as [<scalar>, ..., <scalar>].
Hence, the expression [1,2,3] * 4 is legal and, incidentally, will be compiled to [4,8,12].
In order to generate unbounded symbolic vectors, Pamela features the unitvec operator,
which returns a unit vector in the dimension (base 0) given by its argument. For instance,
the expression τ * unitvec(3) will be compiled to [0,0,0,τ].

Compilation

The compiler is typically used in terms of the following pipeline

pampp | pamparse | pameval | pam2time | pameval | pamprint

Apart from the first pipe, which carries Pamela source code, all intermediate pipes carry
the Tm representation. The compiler is implemented using the C programming language
in terms of the following modules (comprising more than 8,000 lines of source code):

• preprocessor pampp.
Supports file inclusion (include statement) and removes comments (% starts com-
ment until end of line).

• parser pamparse.
Parses Pamela sources, generating an intermediate Tm representation. The parser
is implemented using Flex [76] and Bison [20].

• evaluator pameval.
Implements expression evaluation, which involves substituting expressions where
possible as well as numerically evaluating expressions where possible. The evalua-
tor is used at least at two stages of the performance modeling process (see above
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script): (1) before transformation to time, in order to perform all necessary resource
expression substitutions, (2) to further optimize the expressions resulting from the
transformation process. The resulting model is the model returned to the user.
Typically, however, the user will again call the evaluator after assigning all or some
of the remaining symbols (parameters) to a numeric value.

• analyzer pam2time.
Transforms process and resource equations into numerical equations according to
the calculus described in Section 6.1.2.

• unparser pamprint.
Prints Pamela equations from Tm representation back into Pamela source gram-
mar. This is the readable form in which the results are fed back to the user.

The above example model is compiled as follows. After the first pameval pass, the fol-
lowing model results (the intermediate .tm output shown has been unparsed by pamprint):

numeric P = 1000
numeric N = 1000000
numeric tl = 10
numeric ts = 0.1
resource s = fcfs(0,1)
process main = par (p = 1, 1000)

seq (i = 1, 1000000) {
delay(10) ;
use(fcfs(0,1),0.1)

}

In process main, symbols P and N have been substituted by their right-hand sides (rhs).
If P and N would involve evaluable expressions, pameval would evaluate these expressions
immediately. Resource s has been substituted by the fcfs definition.

At this point, the process equation is in a form suitable for transformation into the cor-
responding time equations using pam2time. For each Pamela process, four performance
models are generated, i.e., T l, ϕ, δ and ω, all of which are explained in Section 6.1.2.
Thus for some process identifier L, the compiler will generate the identifier T_L, phi_L,
delta_L and omega_L. After the first pameval pass, the following model results (again,
the .tm output shown has been unparsed by pamprint)

numeric P = 1000
numeric N = 1000000
numeric tl = 10
numeric ts = 0.1
numeric T_main = max(max (p = 1, 1000) {

sum (i = 1, 1000000) {
(10 + (0.1 / 1))

}
},max(sum (p = 1, 1000) {

sum (i = 1, 1000000) {
((0.1 / 1) * unitvec(0))
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}
}))

numeric phi_main = max (p = 1, 1000) {
sum (i = 1, 1000000) {

(10 + (0.1 / 1))
}

}
numeric delta_main = sum (p = 1, 1000) {

sum (i = 1, 1000000) {
((0.1 / 1) * unitvec(0))

}
}

numeric omega_main = max (sum (p = 1, 1000) {
sum (i = 1, 1000000) {

((0.1 / 1) * unitvec(0))
}

})

Finally, the second pameval pass yields the following time domain model:

numeric P = 1000
numeric N = 1000000
numeric tl = 10
numeric ts = 0.1
numeric T_main = 100000000
numeric phi_main = 10100000
numeric delta_main = 100000000 * unitvec(0)
numeric omega_main = 100000000

Thus, as in ordinary mathematics, the semantics of a Pamela model is based on an alge-
braic model. Although for readability a model may be coded in terms of many equations,
internally each expression is evaluated by recursively substituting every global variable by
its corresponding rhs expression.

Parameterization

By virtue of the symbolic nature of the analysis process, Pamela models are typically
parameterized, thus parameters are preserved in the resulting time domain model. In order
to enable parameterization, Pamela supports the parameter modifier, which blocks the
substitution process from attempting to substitute a rhs expression for the particular
variable that is intended to become a parameter. Consider the MRM model presented
earlier. As all variables are bound to numeric values, the compiler will already evaluate
the model for the given values of P, N, tl, and ts. In order to investigate the effect of P,
N, tl, and tc, however, we want to redefine these variables according to

numeric parameter P
numeric parameter N
numeric parameter tl
numeric parameter ts



112 Chapter 6. Tool Implementation

Symbolic compilation now yields the intermediate result (T_main shown only)

numeric T_main = max(max (p = 1, P) {
sum (i = 1, N) {

(tl + (ts / 1))
}

}, max(sum (p = 1, P) {
sum (i = 1, N) {

((ts / 1) * unitvec(0))
}

})

Although parameterized, this model is automatically and symbolically simplified as a
result of simple transformation rules, such as

sum (i = a, b) scalar = (b-a+1) * scalar

yielding the following symbolic performance model:

numeric T_main = max(N * (tl + ts), P * N * (ts))

which is in accordance with Eq. (6.9). This model can now be evaluated for different values
of P, N, tl, and ts, possibly using mathematical tools other than the Pamela compiler.
In Pamela, further evaluation is achieved as described earlier, by recompiling the above
result after removing one or both parameter modifiers while providing a numeric rhs
expression. Note that the evaluation cost may decrease by orders of magnitude due to
regularity of model.

6.2 Pamela+

In this section we present an extension of the compiler, denoted as Pamela+, which
supports our statistical moments analysis technique. The extension involves modification
of pamparse, pameval and pamprint (comprising more than 500 additional lines of source
code). Pamela+ is available in the public domain [74].

In pamparse,we define stochastic workloadusing the moments operator,which returns a
vectorof the type numeric consisting of exactly4 scalars.For instance,moments(m1,m2,m3,m4)
denotes a stochastic workload with mean m1, variance m2, skewness m3, and kurtosis m4.
Consequently, in Pamela+, the eventual results are also expressed in terms of moments.

In order to evaluate operations involving moments variables, we redefine the operators
given in Table 6.1 by modifying pameval. When one or more operands have non-zero
variance, the corresponding equations in the table will be applied, otherwise the operands
are treated as (deterministic) scalars. Therefore, the operators must test the non-zero
variance of the operands. Additionally, when we deal with the reduction operators sum
(<index> = <lb>, <ub>) and max (<index> = <lb>, <ub>), it is necessary to check
the independence between the expression and the corresponding index. If a dependence
occurs, we apply the binary equations Eqs. (3.45) and (5.35) rather than the N -ary equa-
tions Eqs. (3.45) and (5.17), respectively. For the conditional operator, we express the
probability of cond in terms of moments, as shown by the following example:



6.2 Pamela+ 113

Table 6.1: Modified operators

Operator Equation
binary + (3.36)

sum (<index> = <lb>, <ub>) (3.45)
if (cond) ... else ... (3.53)

switch (3.55)
binary max (5.35)

max (<index> = <lb>, <ub>) (5.18)

Program:

for (i = 1; i <= N; i++)

if (x[i] != 0)

x[i] = x[i] * alpha;

Pamela+ model:

seq (i = 1, N)

if (moments(5e-3, 2e+0, 4e+0, 2e+1))

delay(moments(1,1,2,9))

The program (left) shows a conditional statement in a loop with bound N . In the example
(right) we show the corresponding Pamela+ model for the truth probability of x[i] != 0

and the execution time of x[i]= x[i]* alpha;given by moments(5e-3, 2e+0, 4e+0,2e+1)
and moments(1,1,2,9), respectively. To evaluate the total moments of the Pamela+

model, we use Eqs. (3.53) and (3.45) respectively. As shown in the Pamela+ model
above, the user can print a readable form of the model involving the moments operator.
To make this feature possible we have modified pamprint such that the moments operator
can be unparsed from the intermediate Tm representation.

In the following, we present the Pamela+ model for the MRM example:

numeric exponential(mu) = moments(mu,mu*mu,2,9) % appr exp distr
numeric parameter P % # clients
numeric parameter N % # iterations
numeric tl = exponential(10) % exp (mu = 10)
numeric ts = exponential(0.1) % exp (mu = 0.1)
resource s = fcfs(0,1)
process main = par (p = 1, P) % fork P clients

seq (i = 1, N) { % each loops N times
delay(tl) ; % something local
use(s,ts) % obtain service

}

Symbolic compilation now yields the intermediate result (T_main shown only)

numeric T_main = max(max (p = 1, P) {
sum (i = 1, N) {

(moments(10,100,2,9) +
moments(0.1,0.01,2,9))

}
},max(sum (p = 1, P) {

sum (i = 1, N) {
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moments(0.1,0.01,2,9) * unitvec(0)
}

})

As P and N have not yet been bound to numeric values, the symbolic simplification en-
gine within the Pamela+ compiler yields the following cost model, which is the final
compilation result:

numeric parameter P
numeric parameter N
numeric T_main = max(max (p = 1, P) {

N * moments(10.1,100.01,2,9)
},(P * N * (moments(0.1,0.01,2,9))))

Note that in contrast to the deterministic simplification in Pamela, in Pamela+ the
max reduction has not yet been symbolically simplified because of the order statistical
evaluation that is involved (Eq. (5.18)). The above result can be subsequently evaluated
for different values of P and N. Using the Pamela+ compiler, further evaluation is sim-
ply achieved by recompiling the above model after removing parameter modifiers and
providing a numeric rhs expression. For example, the following modification

numeric P = 1000
numeric N = 1000000

causes the model to be compiled (i.e., evaluated) to

numeric T_main = moments(1.01+07,4.11+03,4.69-01,3.23+00)

During this evaluation process, Eqs. (3.36), (3.45), (5.18) and (5.35) are used.
As described in Section 6.1.1, Pamela supports two synchronization types, i.e., con-

dition synchronization and mutual exclusion. In the symbolic analysis, both synchroniza-
tions are mapped to the mathematical operator ’+’ and ’max’. Note that we have im-
plemented our moment approach in Pamela+ without discriminating whether the math-
ematical operator ’+’ and ’max’ come from a different synchronization type, while our
moment approach applies only to the analysis of condition synchronization. The conse-
quences in terms of accuracy are discussed in Section 6.3.

To conclude the example, we derive the mean cycle time of the MRM as function
of P by dividing T_main by N. The resulting prediction TMOM = T_main/N is shown in
Table 6.2. As a comparison to TMOM, we compute T analytically using Mean Value

Table 6.2: MRM mean cycle time

P 1 2 5 10 20 50 100 200 500
T l 10.10 10.10 10.10 10.10 10.10 10.10 10.10 20 50

TMVA 10.10 10.10 10.11 10.12 10.12 10.19 10.82 20 50
TMOM 10.10 10.11 10.12 10.12 10.12 10.12 10.13 20 50

Analysis (MVA) [85], denoted by TMVA (as tl and ts are approximately exponential).
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Since the MRM maps to separable queuing networks [13], MVA may be applied, which
yields

TMVA = N(R(P ) + τl), (6.10)

where the response time R(n) for the server for n clients in the closed system is given by
the MVA recursion [57]

R(0) = 0, R(n+ 1) =

[
1 +

PR(n)

τl +R(n)

]
τs. (6.11)

In the table we also compare the results with the deterministic lower bound analysis T l

in Eq. (6.9) using the mean values of tl and ts.
Table 6.2 illustrates the effects of the low-cost approximation in Pamela+ of the effects

of mutual exclusion (queuing). While the prediction error ε1 for P = 0 and P → ∞ is
zero, near the saturation point (P = 100) the error is around 8%. Experiments [30]
indicate that for very large systems (O(1000) resources) the worst-case average error is
limited to 50% and only occurs in the region near the saturation point (the cross-over
region). However, these situations seldom occur: typically, systems are either dominated
by condition synchronization or mutual exclusion, in which case the approximation error
is in the percent range.

Although in this particular example the introduction of variance in tl and ts has a
negligible effect on the prediction of E[T ], unlike T l and TMVA, TMOM provides approxi-
mations of Var[T ], Skw[T ], and Kur[T ], respectively, from which the distribution of T can
be approximated. Furthermore, based on the distribution approximation, we can show
that T tends to go to the normal distribution since the value of N is large. For small
P the prediction values of TMOM are slightly higher than the deterministic lower bound
T l = τl + τs due to the order statistics effect computed by Eq. (5.18).

The effect of our O(1) symbolic analysis technique on the solution complexity is pro-
found. For instance, on a 1 GHz Pentium III, the symbolic performance model of the
MRM merely requires 0.3 seconds CPU time per point (irrespective of N and P ), where
most of the CPU time is required to evaluate Eqs. (5.17) and (5.35). In contrast, similar
to Pamela, the evaluation of the model before symbolic simplification would take ap-
proximately 7,000 seconds CPU time per point, where most of the CPU time is required
to P*N times evaluate Eq. (3.36). The O(104) time reduction provides a compelling case
for the use of symbolic cost models in performance prediction. Solution time reductions
in excess of 108 have been reported in [32].

6.3 Accuracy

As mentioned before, in principle our moment method is targeted to the analysis of
condition synchronization. The previous example, however, included mutual exclusion.
As our analysis applies to all ’+’ and ’max’ operators, the effects of mutual exclusion
are therefore approximately covered. In this case, however, we are confronted with the
fact that a correlation occurs between φ and ω in Eq. (6.5) since φ and ω are obtained
from the same operands. For example, for main = use(s,ts), where s = fcfs(0,1)

and ts = moments(0.1,0.01,2,9), the final prediction yields T_main = max(ts,ts). In
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Pamela+, the prediction overestimates the actual execution time due to the independency
assumption in Eq. (5.35). In the example, the overestimation depends on the variance
of ts. Since we deal with operands having limited variance, the overestimation is also
limited.

Another example of overestimated prediction is also shown in Table 6.2 for MRM,
where P = 5 due to the overestimation of Eq. (6.4). Clearly, when we apply our moment
method to the analysis of mutual exclusion, the prediction is no longer guaranteed to be a
lower bound. On the other hand, the overestimation by including mutual exclusion in our
analysis is quite limited. Note that the correlation issue with ϕ and ω only applies when
their first four moments are equal (i.e., in the cross-over region). This region, however,
is the area where the prediction accuracy is already limited due to the lower bound
(as explained in Section 6.2). Consequently, the correlation effect does not degrade the
essentially approximate technique, while for models including condition synchronization
only (or mutual exclusion only), our technique fully applies.

6.4 Modeling Example

In this section we present an example of how PSRS can be modeled using Pamela+. We
model the algorithm for a shared-memory architecture, including the effect of memory
communication delays.

In the Pamela+ model of PSRS, given in Figure 6.1, some numeric variables are
declared in the first seven lines of the model, i.e., the array length N and the processor
number P. The moments of c1, c2, and c3 are obtained from profiling, where the parameter
c in sortmust be profiled separately for each function call. The next lines declare the CPU
resources and the shared memory resource. Although in the current model the workload
of each parallel process is mapped onto a unique CPU (see the flop model), the explicit
use of CPU resources also allows the modeler to investigate the effects of multithreading,
where multiple tasks may be mapped on the same CPU. Note that the shmem multiplicity
is currently set to a value such that no contention will ever occur as our moments method
focuses on condition synchronization. The evaluation of the model starts from the main
process, which consists of 3 parallel and 2 sequential sections. In order to simplify the
presentation, we have chosen Straight Selection Sort instead of Quicksort (which requires
a much larger sequential model). The main process calls the other 3 processes, i.e.,
the program (sub)model sort (Straight Selection Sort), and the machine models flop
and move, which model the floating-point workload and the shared memory load/store
workload, respectively. The latter 2 processes represent workloads with exponential time
delay tf and tm. Note that the move interface allows the possibility of modeling, e.g.,
caching or memory contention without requiring further model modification.

In our experiments we use random input vectors of size N = 81, 920. Instead of
comparing our predictions with the run times of the actually running parallel program
(which would require a much more detailed Pamela+ model) we compare our prediction
to a multithreaded version of PSRS that has been instrumented with counters to measure
the actual execution time. The predicted execution time for P ≥ 2 is obtained from
profiling and running the program in Figure 6.1. while for P = 1 we choose Straight
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selection sort as the sequential program, instead of simply running PSRS for P = 1 (i.e.,
process sort in Figure 6.2).

To observe the effect of memory communication on the speedup we consider both tm =
0 and tm = moments(10,100,2,9). In Figure 6.2, the measured and predicted speedup
are shown by solid and dashed lines, respectively, for P ≤ 128. The speedup increases lin-
early with the number of processors for P ≤ 64 and decreases for large P since the working
of PSRS becomes inefficient for small array sizes. For tm = moments(10,100,2,9), the
speedup degrades such that for P = 2 the speedup is less than 1. This is caused by the
fact that for P ≥ 2 the parallel version generates much more communication in disjoin

and sort2 than for P = 1, while the degree of parallelism is still low for P = 2. For both
values of tm the speedup prediction is approximately accurate while the error is mainly
caused by the inaccuracy in profiling c. Note that the predicted execution times are very
sensitive to the value of c, since c is located in a loop nest with high invocation frequency.

The corresponding ε1 of Figure 6.2 is shown in Figure 6.3. The highest error is ε1 =
18% at P = 16 for tm = 0 and ε1 = 15% at P = 2. ε1 decreases as P increases since our
measurements show that the correlation in sort is high for large array size. The error
is quite acceptable and the evaluation of the compiled version of the above model only
requires 0.6 seconds CPU time on a 1 GHz pentium III.

6.5 Summary

In this chapter we have presented a tool implementation of our statistical moment ap-
proach. The tool has been coined the Pamela+ compiler. The Pamela+ compiler
provides modeling support for predicting program execution time by automatically gener-
ating analytic performance models, and automatically producing the first four moments.
Our experimental results show that for models with condition synchronization-only, the
prediction error is in the few percent range, while the evaluation of the models only takes
a few seconds. For models including mutual exclusion, our technique delivers results
comparable to the approximate, lower-bound prediction of the former deterministic tool
version (Pamela).
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numeric parameter N % array length
numeric parameter P % # processors
numeric tf = moments(1,1,2,9) % computation time
numeric tm = moments(10,100,2,9) % communication time
numeric c1 = moments(5e-3, 2e+0, 4e+0, 2e+1) % profiled for # runs
numeric c2 = moments(1e-2, 3e-2, 9e+0, 7e+1) % profiled for # runs
numeric c3 = moments(4e-3, 5e+0, 2e+0, 6e+0) % profiled for # runs
resource cpu(p) = fcfs(p,1) % the P CPUs
resource shmem = fcfs(P,P) % shared memory

process main = par (p=0, P-1) { % sort1:
sort(p*N/P,(p+1)*N/P-1,p,c1) ; % sort subarray
seq (i=0, P-1) % collect samples

move(p)
} ;
sort(0,P*P-1,p,c2) ; % sort samples
seq (i=0, P-2) { % choose pivots

move(p)
} ;
par (p=0, P-1) { % disjoin:

seq (i=0, P-1) {
seq (j=0, (N-N/P)/(P*P)-1) {
flop(p) ;
move(p)

}
}

} ;
par (p=0, P-1) { % sort2:

seq (i=0, P-1) { % collect subarray
seq (j=0, (N-N/P)/(P*P)-1)
move(p)

} ;
sort(p*N/P,(p+1)*N/P-1,p,c3) % sort subarray

}

process sort(lb,ub,p,c) = seq (i=lb+1, ub) { % sort
seq (j=lb, i-1) {
if (c)

flop(p)
} ;
move(p) % swap

}

process flop(p) = use(cpu(p),tf) % computation
process move(p) = use(shmem,tm) % memory communication

Figure 6.1: Pamela+ model of PSRS
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Chapter 7

Conclusion

In this thesis we have presented a probabilistic approach to the symbolic performance
modeling of parallel computer systems. In order to meet the challenges, i.e., a sym-
bolic, closed-form solution that accounts for stochastic program behavior, having low
solution complexity, and high prediction accuracy, we have introduced a new analytical
approach based on statistical moment distributions. Our approach is aimed at analyz-
ing the stochastic behavior of data-dependent parallel programs across the entire system
parameter space and for a wide variety of input data. Our approach provides a general
model that effectively captures the distribution of synthetic as well as real-life workloads
and applies to sequential, conditional, and parallel compositions. Furthermore, our ap-
proach is aimed at providing a balanced trade-off between reasonable prediction accuracy
and low solution complexity.

7.1 Contributions

We summarize our major contributions as follows.

• Modeling
We have introduced a workload modeling technique based on the use of statisti-
cal moments as workload representation. For parallel composition, we represent
stochastic workload using GLD as intermediate vehicle such that our moment ap-
proach can be applied. Apart from modeling sequential and parallel composition
based on SP DAGs, we have presented how branches can be modeled statistically.
In particular, we have introduced the ARP approach which accounts for some forms
of correlation between individual branch invocations.

• Analysis
We have presented the symbolic analysis of sequential, conditional, and parallel com-
positions which can be integrated successfully within our compositional approach.
As a result, we can predict the execution time distribution for arbitrary composi-
tions. Under workload independence and unimodality assumptions we have derived
exact formulae for the execution time distribution of sequential and conditional
composition, and derived an approximation formulae for the first four moments of
the execution time distribution of parallel composition. In the analysis of parallel
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composition, we have succeeded to symbolically solve the order statistics integration
problem.

Some restrictions under which our moment approach applies are summarized as follows.
We have represented a parallel program in terms of an SP-DAG of which the modeling
power is limited to modeling condition synchronization. Modeling stochastic workloads
using statistical moments is restricted to unimodal workloads. In particular, statistical
moments cannot represent the Laplace distribution [22]. In our moment analysis, we
assume that all parameters are independent random variables. Our moment analysis does
not apply to non-tail recursive functions.

Apart from the mathematical framework, our contributions also cover the following
associated performance modeling aspects:

• Related work
We have presented a survey on probabilistic approaches to symbolic performance
modeling. We have classified the approaches based on two important aspects, i.e.,
control-flow modeling and stochastic workload representation. We have shown that
the approaches do not cover arbitrary composition and/or arbitrary workload dis-
tribution. The approaches have either high solution cost, or limited application to
a small range of distributions. Many of those suffer from insufficient accuracy.

• Measurement
To validate our moment approach, we have measured the execution frequency of
control flows as well as the total program execution time. We have shown how
parallel programs are instrumented based on counter-based profiling. Using the
profiling technique we can obtain the moment values in a straightforward manner
while we keep our analysis method machine-independent. In the profiling, we also
have dealt with how to generate and select representative input data.

• Case studies
We have applied our moment approach using synthetic workloads, i.e., uniform, ex-
ponential and normal distributions, as well as real-life workloads from many test
applications, including well-known benchmarks which exhibit various forms of in-
put data related non-determinism: Vector Scaling (a branch in a loop which ex-
hibits Bernoulli behavior), Straight Selection Sort (a branch which behaves other
than Bernoulli), Memory Hierarchy (next to branches and loop bounds, machine
level non-determinism), NAS-EP (iid parallel composition having normal distributed
workload), SSSP (lightly correlated parallel tasks), PSRS (three fork/join parallel
tasks with increasing correlation), WATOR (data parallel with extreme workload im-
balances), and Parallel search on the internet (speculative parallelism with stochastic
workloads).

• Accuracy
We have investigated the accuracy of our moment approach using the above synthetic
and empirical workloads for various compositions. For synthetic workloads, the
prediction error is in the percent range. For empirical workloads, the prediction
error depends strongly on the correlation and the unimodality of the distributions.
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Furthermore, the prediction accuracy is not sensitive to the variance. In particular,
the analysis of branch behavior shows that there is a trade-off between accuracy and
compositionality.

• A tool implementation
We have presented a tool implementation of our moment method with full support
for the use of stochastic variables in terms of the first four statistical moments.
The tool is coined the Pamela+ compiler. We have shown that for condition
synchronization-only models, the Pamela+ compiler accurately predicts the exe-
cution time distribution at low cost. Using the compiler we have also investigated
the prediction accuracy with respect to the application to mutual exclusion.

With respect to related work, our approach distinguishes itself as follows.

Unlike workload distribution representations such as pdf, statistical moments
are limited in representing the diversity of a large space of input data sets,
such as multimodal workloads. The Pdf-based model expresses the density of
workload exactly in terms of summation (discrete type) or integral (contin-
uous type). While the use of pdf-based models is typically computationally
intensive, our moment approach provide a low-cost, symbolic performance
prediction. Unlike specific distribution models, in many cases, our moment
approach does not require a unique distribution shape. Especially for parallel
composition, the prediction cost using specific distribution models, such as ex-
ponomial distributions, is typically low while our moment approach requires
much more computation to find the parameters of GLD. While specific distri-
bution models provides a coarse approximation of the workloads as measured
in real programs, our moment approach can fit a wide range of distributions
with high accuracy.
Compared to arbitrary distribution models, our moment approach covers all
possible mathematical operations corresponding to the various types of pro-
gram control flows.
Compared to moment-based approaches, our approach is a generalization of
approaches using up to the first two moments in the sequential domain only.
The examined branching models have led to a closer understanding of branch-
ing behavior in static performance modeling. While other models are limited to
Bernoulli behavior (with one parameter), which assumes independent branch
invocation, we have introduced the ARP branching model (with two param-
eters) which accounts for some forms correlation between branch invocations,
although the possibility of a high variance error still exists. Unlike pdf-based
models, our analysis approach is symbolic which allows algebraic optimization
techniques to be applied. Unlike arbitrary distribution models, such as Gum-
bel’s method, our approach can be applied to programs with arbitrary nested
parallelism.
Like other moment-based approaches, our analysis has O(1) complexity. How-
ever, our analysis is also applicable in the parallel domain.

In summary, our statistical moment approach considers various related aspects of sym-
bolic performance modeling of data-dependent parallel programs. Our analysis technique
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is symbolic and general, i.e., yields a closed-form performance model based on SP-DAGs,
and applies to arbitrary composition and a wide range of workload distribution, respec-
tively. Our technique combines low-cost analysis complexity by critical path analysis in
SP-DAGs with acceptable accurate prediction of the execution time distribution by sta-
tistical moments for stochastic workloads. This combination offers a balanced trade-off
which is appropriate in the first phase of design. To the best of our knowledge, such a
comprehensive approach has not been presented before.

7.2 Recommendations

In this research we have been involved in the following areas: analysis, symbolic modeling,
program instrumentation, probability theory, and simulation. However, the research could
be extended to further improve the accuracy of predicting the execution time of parallel
programs. We give the following recommendations for future work in order to address the
current limitations of our work:

• Modeling
Our moment approach is limited to model unimodal workloads. As multimodal
workloads can occur in practice, as we have shown in WATOR, these workloads
lead to severe degradation of the prediction accuracy. A better approximation for a
multimodal workload may be achieved by combining multiple unimodal workloads.
Although our moment approach cannot represent the Laplace distribution, some
distributions can approximate the Laplace distribution very well as described in [22].
We have introduced three models for branching behavior. In these models we assume
that branch correlation is limited to some sequence of branch invocations due to data
dependency. However, some branches also depend on the entire sequence, or behave
explicitly as function of the loop bound, which lead to errors in almost half of the
branches studied (those branches that were input-data set dependent). In the latter
cases, the ARP approach turns out to be very sensitive. From these results, a better
branch model should account for correlation function

• Analysis
We have shown that correlated parameters can degrade the prediction accuracy.
Although we have introduced an analysis to include the correlation in terms of
covariance, the covariance values are hard to measure in practice. Furthermore,
correlation can exist in more than two program parameters so that the analysis be-
comes even more complicated.
In the Pamela+ compiler, the moment approach is applicable to the analysis of
condition synchronization (ϕ) and mutual exclusion (ω). Yet, the correlation be-
tween ϕ and ω causes an additional prediction error. Although the correlation can
be determined by the compiler, there is no analysis technique yet available to handle
this problem.

• Tooling
An ambitious plan for future work is designing a complete automatic performance
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evaluation tool for data-dependent parallel programs. The future tool should provide
automatic program profiling (where a persistent, incremental profile is maintained,
and possibly fed back into the program in terms of performance annotations), bot-
tleneck diagnosis, parameter optimization, and performance visualization.





Appendix A

The Method of Moments

In this appendix, we present a detailed discussion of the method of moments. In Sec-
tion A.1, we show that the method of moments can approximate distributions in terms
of lower moments. In Section A.2, we show that the method of moments is efficient to
approximate a distribution under a certain condition.

A.1 Moments as Characteristics of a Distribution

In general the method of moments does not completely determines a distribution, even
when moments of all orders exist. Only under certain conditions a set of moments de-
termine a distribution uniquely. Typically, those conditions are satisfied by most of the
distributions encountered in practice. A full discussion of the conditions is given in [104].
For most ordinary purposes, knowledge of the moments is equivalent to knowledge of
the distribution, in the sense that it should be possible theoritically to exhibit all the
properties of the distribution in terms of the moments.

In particular, if moments up to order r ≥ 1 are identical, we expect that as r tends to
infinity, the distributions approach each other. Consequently, we expect that by account-
ing for the lower moments of two distributions, we bring them to approximate equality.
Some mathematical support for this may be derived from the following approach [104].

Proposition A.1 Approximation by R moments
A continuous function in a finite range a to b can be represented in that range by a

uniformly convergent series of polynomials in x as follows.

f(x) =
∞∑
r=0

Pr(x) (A.1)

where Pr(x) is of degree r. Suppose we want to approximate f(x) by the finite series of
powers

∑R
r=0 arx

r. The coefficient ar may be determined by the principle of least squares,
i.e. to make ∫ b

a

(
f(x)−

R∑
r=0

arx
r

)2

dx (A.2)
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a minimum by taking the derivative with respect to ar and equating to zero. We obtain

2
∫ b
a

(
f(x)−

R∑
r=0

arx
r

)
xidx = 0 (A.3)

or ∫ b
a
xif(x)dx = µ′

i =
∫ b
a

R∑
r=0

arx
r+idx. (A.4)

If two distributions have equal moments up to R ≥ 1, they must have the same least-
squares approximation. The coefficient of ar are determined by the moments in Eq. (A.4).
Furthermore, if the distribution f1(x) differs from

∑R
r=0 arx

r by ε1 and f2(x) by ε2, then
f1(x) differs from f2(x) by not more than ε1 + ε2.

✷

Thus, distributions that have equal lower moments up to R will be approximations to
one another. Hence, we can approximate a distribution by finding another distribution
of known form that has the same lower moments. In practice, this approximation often
turn out to be remarkably good, even when only the first two, three or four moments are
equated. In our approach, we use the first four moments.

A.2 Efficiency of the Method of Moments

In Section A.1, we focus on the properties of populations only and no description about
the reliability of the estimation. If the observations are a sample from a population, fitting
by moments provides the efficient estimators of the unknown parameters as follows [104].

Proposition A.2 Efficiency of the method of bounded moments
Consider a distribution dependent on R = 4 parameters. Note that our approach uses
the first four moments. If the maximum-likelihood (ML) estimators of these parameters
are to be obtained in terms of linear functions of the moments, we obtain

∂ logL

∂θr
= a0 + a1

∑
x+ a2

∑
x2 + a3

∑
x3 + a4

∑
x4, r = 1, . . . , 4, (A.5)

and consequently

f(x | θ1, . . . , θ4) = exp(b0 + b1x+ b2x
2 + b3x

3 + b4x
4), (A.6)

where the bs depend on the θs. This is the most general form for which the method of
moments gives ML estimators. The bs are conditioned by the requirement that f(x) is a
valid pdf.

Without loss of generality we may take b1 = 0. If, then, b3 and b4 are zero, the
distribution is normal and the method of moments is efficient. In other cases, Eq. (A.6)
yield an approximation. For example, consider

∂ logL

∂x
= 2b2x+ 3b3x

2 + 4b4x
3. (A.7)
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If b3 and b4 are small, this is approximately

∂ logL

∂x
=

2b2x

1− 3b3
2b2

x− 2b4
b2

x2
. (A.8)

Only when b3 and b4 are small compared with b2, we can expect the method of moments
to give estimators of high efficiency.

✷





Appendix B

Task Compositions

In this appendix we represent sequential and parallel compositions in terms of a Directed
Acyclic Graph (DAG), with nodes representing tasks, and edges representing task inter-
dependencies. Note that a conditional composition cannot be represented by DAGs. For
this composition, we use if (cond) ... else ... (see Eq. (3.53)) and switch (see
Eq. (3.55)).

We distinguish DAGs in SP-DAG and non SP-DAG as shown in Figure B.1. Since
the analysis for non SP-DAGs is complex, next we consider SP-DAGs only. An SP-DAG
is a DAG which can be reduced to a single node using series-parallel reduction. Series
and parallel reductions for a composition with N tasks are shown in Figures B.2 and B.3,
respectively. The constituting tasks have workloads Xi and the reduced task has workload
Y .

SP−DAG non SP−DAG

Figure B.1: SP-DAG (left) and non SP-DAG (right)

A sequential composition with N tasks is shown in Figure B.2 (top). The tasks are
processed in a strict sequence, from X1 to XN . If the tasks are iid (N -ary sequential
composition), the associated moment reduction is given by Eq. (3.38). If N = 2 and the
tasks are different (binary sequential composition), the associated moment reduction is
gicen by Eq. (3.33).
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1X X2 iX XN

Y

Figure B.2: Series reduction of a sequential composition with N tasks

A parallel composition composition with N tasks is shown in Figure B.3 (left). The
tasks are running in parallel without intermediate form of of synchronization. If the
tasks are iid (N -ary parallel composition), the associated moment reduction is given by
Eq. (5.18). If N = 2 and the tasks are different (binary parallel composition), the associ-
ated moment reduction is given by Eq. (5.35).

XN1X X2 iX Y... ...

Figure B.3: Parallel reduction of a parallel composition with N tasks



Appendix C

Derivations

In this appendix we provide the full derivations of the four moments for sequential and
conditional compositions.

C.1 Sequential Composition

C.1.1 Binary Sequential Composition

Recall the output moments of the binary sequential composition given in Eq. (3.33).

E[Y r] =
r∑
j=0

(
r

j

)
E[Xj

1 ]E[X
r−j
2 ]. (C.1)

From Eq. (C.1) we derive the first four moments of Y as follows.

Mean and Variance

For r = 1, it follows

E[Y ] =

(
1

0

)
E[X0

1 ]E[X2] +

(
1

1

)
E[X1]E[X

0
2 ]

= E[X2] + E[X1]

= E[X1] + E[X2]. (C.2)

For r = 2, it follows

E[Y 2] =

(
2

0

)
E[X0

1 ]E[X
2
2 ] +

(
2

1

)
E[X1]E[X2] +

(
2

2

)
E[X2

1 ]E[X
0
2 ]

= E[X2
2 ] + 2E[X1]E[X2] + E[X2

1 ]. (C.3)

From Eqs. (C.2) and (C.3) the variance of Y is given by

Var[Y ] = E[Y 2]− E[Y ]2

= E[X2
2 ] + 2E[X1]E[X2] + E[X2

1 ]− (E[X1] + E[X2])
2
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= E[X2
2 ] + 2E[X1]E[X2] + E[X2

1 ]− (E[X1]
2 + 2E[X1]E[X2] + E[X2]

2)

= E[X2
1 ]− E[X1]

2 + E[X2
2 ]− E[X2]

2

= Var[X1] + Var[X2]. (C.4)

Skewness and Kurtosis

For r = 3, it follows

E[Y 3] =

(
3

0

)
E[X0

1 ]E[X
3
2 ] +

(
3

1

)
E[X1]E[X

2
3 ] +

(
3

2

)
E[X2

1 ]E[X2] +

(
3

3

)
E[X3

1 ]E[X
0
2 ]

= E[X3
2 ] + 3E[X1]E[X

2
2 ] + 3E[X

2
1 ]E[X2] + E[X3

1 ] (C.5)

From Eqs. (C.2), (C.3) and (C.5) the skewness of Y is given by

Skw[Y ] = (E[Y 3]− 3E[Y 2]E[Y ]2 + 2E[Y ]3)/Std[Y ]3

= (E[X3
2 ] + 3E[X1]E[X

2
2 ] + 3E[X

2
1 ]E[X2] + E[X3

1 ]

− 3(E[X2
2 ] + 2E[X1]E[X2] + E[X2

1 ])(E[X1] + E[X2])
2

+ 2(E[X1] + E[X2]))/Std[Y ]3

= (E[X3
2 ] + E[X3

1 ]− 3E[X1](2E[X1]E[X2] + E[X2
1 ]). (C.6)

For r = 4, it follows

E[Y 4] =

(
4

0

)
E[X0

1 ]E[X
4
2 ] +

(
4

1

)
E[X1]E[X

3
3 ] +

(
4

2

)
E[X2

1 ]E[X2]

+

(
4

3

)
E[X3

1 ]E[X
0
2 ] +

(
4

4

)
E[X4

1 ]E[X
0
2 ]

= E[X4
2 ] + 4E[X1]E[X

3
2 ] + 6E[X

2
1 ]E[X2]

2 + 4E[X3
1 ]E[X2] + E[X4

1 ] (C.7)

From Eqs. (C.2), (C.3), (C.5) and (C.7) the kurtosis of Y is given by

Kur[Y ] = (E[Y 3]− 3E[Y 2]E[Y ]2 + 2E[Y ]3)/Std[Y ]3

= (E[X3
2 ] + 3E[X1]E[X

2
2 ] + 3E[X

2
1 ]E[X2] + E[X3

1 ]

− 3(E[X2
2 ] + 2E[X1]E[X2] + E[X2

1 ])(E[X1] + E[X2])
2

+ 2(E[X1] + E[X2]))/Std[Y ]3

= (E[X3
2 ] + E[X3

1 ]− 3E[X1](2E[X1]E[X2] + E[X2
1 ]). (C.8)

C.1.2 N-ary Sequential Composition

This section presents the derivation of the moments of sums of random number N of iid
random variables

Y =
N∑
i=1

Xi, (C.9)

where N is assumed to be a random variable that is independent of the Xi’s.
Since the thesis deals with determining the distribution of random variables where

random sums as given in Eq. (C.9) occurs, it is extremely important to evaluate the



C.1 Sequential Composition 135

various parameters of the distribution such as the mean, variance, skewness and kurtosis.
In Section C.1.2 the mean and variance of Y are derived [58]. In addition, in this section
we extend the existing analysis for the skewness and kurtosis of Y .

Mean and Variance

The mean of Y is found readily by using conditional expectation:

E[Y ] = E[E[Y |N ]]
= E[NE[X]]

= E[N ]E[X]. (C.10)

The second equality follows from the fact that

E[Y |N = n] = E[
n∑
k=1

Xi] = nE[X],

so
E[etY |N ] =MX(t)

N .

Therefore

MY (t) = E[E[etY |N ]]
= E[MX(t)

N ]

= E[zN ]
∣∣∣
z=MX(t)

= GN(MX(t)). (C.11)

Thus, the characteristic function of Y is found by evaluating the generating function of
N at z =MX(t). If N is a continuous random variable, then similarly we can show that

MY (t) = E[MX(t)
N ] =MN(MX(t)), (C.12)

where MN(t) is the mgf of N . Thus N is not necessary a discrete random variable. This
result is very important because Eq. (C.12) also gives the representation of a conditional
composition in the transform domain irrespective of the Bernoulli assumption. Next in
the derivation of formulae we use the mgf rather than the pgf.

To compute Var[Y ], we differentiate MY (t) as follows:

M
(1)
Y (t) = E[NMX(t)

N−1M
(1)
X (t)N ], (C.13)

M
(2)
Y (t) = E[N(N − 1)MX(t)

N−2M
′
X(t)

2 +NMX(t)
N−1M

′′
X(t)]. (C.14)

Evaluating at t = 0 gives

E[Y ] = E[NE[X]] = E[N ]E[X] (cf. Eq. C.10), (C.15)

E[Y 2] = E[N(N − 1)E[X]2 +NE[X2]]

= E[N ]Var[X] + E[N2]E[X]2. (C.16)

Hence,

Var[Y ] = E[Y 2]− E[Y ]2

= E[N ]Var[X] + E[X]2Var[N ]. (C.17)
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Skewness and Kurtosis

In Section C.1.2 we have found the mean and variance of Y . In this section we derive the
skewness and kurtosis of Y as function of the central moments of X and N using the mgf.

To obtain the skewness of Y we need to evaluate the third derivative of Y by taking
the derivative of Eq. (C.14), we have

M
(3)
Y (t) = E[N(N − 1)(N − 2)MX(t)

N−3(M
(1)
X (t))3

+3N(N − 1)MX(t)
N−2M

(1)
X (t)M

(2)
X (t)

+NMX(t)
N−1M

(3)
X (t)]. (C.18)

Evaluating at t = 0 gives

E[Y 3] = E[N(N − 1)(N − 2)E[X]3 + 3N(N − 1)E[X]E[X2] +NE[X3]]

= E[N ]Skw[X]Std[X]3 + 3E[N2]E[X]Var[X] + E[N3]E[X]3. (C.19)

Using Eq. (3.12) the skewness of Y is found

Skw[Y ] =
E[(Y − E[Y ])3]

Std[Y ]3
(C.20)

= (E[N ]Skw[X]Std[X]3 + E[X]3Skw[N ]Std[N ]3

+3E[X]Var[X]Var[N ])/Std[Y ]3. (C.21)

If N is a constant random variable, then

Skw[Y ] =
Skw[X]√

N
. (C.22)

Eq. (C.22) shows that Skw[Y ] approaches zero as function of squared N . The bigger N ,
the closer Skw[Y ] to zero. It means that the pdf is more symmetric.

Now, we obtain the kurtosis of Y by taking the fourth derivative of Y

M
(4)
Y (t) = E[N(N − 1)(N − 2)(N − 3)MX(t)

N−4(M
(1)
X (t))4

+6N(N − 1)(N − 2)MX(t)
N−3(M

(1)
X (t))2M

(2)
X (t)

+ 4N(N − 1)MX(t)
N−2M

(1)
X (t)M

(3)
X (t)

+ 3N(N − 1)MX(t)
N−2(M

(2)
X (t))2

+NMX(t)
N−1M

(4)
X (t). (C.23)

Evaluating at t = 0 gives

E[Y 4] = E[N(N − 1)(N − 2)(N − 3)E[X]4 + 6N(N − 1)(N − 2)E[X]2E[X2]

+ 4N(N − 1)E[X]E[X3] + 3N(N − 1)E[X2]2 +NE[X4]]

= E[N ]Var[X]2Kur[X] + 4E[N2]E[X]Skw[X]Std[X]3

+3(E[N ] + E[N2])Var[X]2 + 6E[N3]E[X]2Var[X] + E[N4]E[X]4. (C.24)
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Substituting above expression to Eq. (3.13) we have

Kur[Y ] = (E[N ]Kur[X]Var[X]2 + E[X]4Kur[N ]Var[N ]2

+ 6E[X]2Var[X]Skw[N ]Std[N ]3 + 4E[X]Var[N ]Skw[X]Std[X]3

+ 3Var[X]2Var[N ])/Var[Y ]2. (C.25)

If N is a constant random variable, then Eq. (C.25) is given by

Kur[Y ] =
Kur[X]

N
. (C.26)

The greater N , the closer Kur[Y ] to 0. Note that this value is relative to the kurtosis of
the normal distribution.

C.2 Conditional Composition

C.2.1 Binary Conditional Composition

We derive the formulae for binary conditional composition.

E[Y ] = E[P ]E[X1] + E[Q]E[X2], (C.27)

Var[Y ] = E[Y 2]− E[Y ]2

= E[P ]Var[X1] + E[P 2]E[X1]
2 + E[Q]Var[X2] + E[Q2]E[X2]

2

− (E[P ]E[X1] + E[Q]E[X2])
2

= E[P ]Var[X1] + Var[P ]E[X1]
2 + E[Q]Var[X2] + Var[Q]E[X2]

2

−2E[P ]E[Q]E[X1]E[X2], (C.28)

Skw[Y ] = E[Y 3]− 3E[Y ]E[Y 2] + 2E[Y ]3

= E[P ]Skw[X1]Std[X1]
3 + 3E[P 2]E[X1]Var[X1] + E[P 3]E[X1]

3

+ E[Q]Skw[X2]Std[X2]
3 + 3E[Q2]E[X2]Var[X2] + E[Q3]E[X2]

3

− 3(E[P ]E[X1] + E[Q]E[X2])(E[P ]Var[X1] + E[P 2]E[X1]
2

+ E[Q]Var[X1] + E[Q2]E[X2]
2) + 2(E[P ]E[X1] + E[Q]E[X2])

3

= E[P ]Skw[X1]Std[X1]
3 + 3E[P 2]E[X1]Var[X1] + E[P 3]E[X1]

3

+ E[Q]Skw[X2]Std[X2]
3 + 3E[Q2]E[X2]Var[X2] + E[Q3]E[X2]

3

− 3(E[P ]E[X1] + E[Q]E[X2])(E[P ]Var[X1] + E[P 2]E[X1]
2

+ E[Q]Var[X2] + E[Q2]E[X2]
2)

+ 2(E[P ]3E[X1]
3 + 3E[P ]2E[X1]

2E[Q]E[X2]

+ 3E[P ]E[X1]E[Q]
2E[X2]

2 + E[Q]3E[X2]
3)

= E[P ]Skw[X1]Std[X1]
3 + 3E[P 2]E[X1]Var[X1] + E[X1]

3Skw[P ]Std[P ]3

+ E[Q]Skw[X2]Std[X2]
3 + 3E[Q2]E[X2]Var[X2] + E[X2]

3Skw[Q]Std[Q]3
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− 3E[P ]E[X1](E[P ]Var[X1] + E[Q]Var[X2] + E[Q2]E[X2]
2)

− 3E[Q]E[X2](E[P ]Var[X1] + E[P 2]E[X1]
2 + E[Q]Var[X2])

+ 2(3E[P ]2E[X1]
2E[Q]E[X2] + 3E[P ]E[X1]E[Q]

2E[X2]
2)

= E[P ]Skw[X1]Std[X1]
3 + E[X1]

3Skw[P ]Std[P ]3 + 3Var[P ]E[X1]Var[X1]

+ E[Q]Skw[X2]Std[X2]
3 + E[X2]

3Skw[Q]Std[Q]3 + 3Var[Q]E[X2]Var[X2]

− 3E[P ]E[X1](E[Q]Var[X2] + E[Q2]E[X2]
2)

− 3E[Q]E[X2](E[P ]Var[X1] + E[P 2]E[X1]
2)

+ 2(3E[P ]2E[X1]
2E[Q]E[X2] + 3E[P ]E[X1]E[Q]

2E[X2]
2)

= E[P ]Skw[X1]Std[X1]
3 + E[X1]

3Skw[P ]Std[P ]3 + 3Var[P ]E[X1]Var[X1]

+ E[Q]Skw[X2]Std[X2]
3 + E[X2]

3Skw[Q]Std[Q]3 + 3Var[Q]E[X2]Var[X2]

− 3E[P ]E[X1](E[Q]Var[X2] + Var[Q]E[X2]
2 + E[Q]2E[X2]

2)

− 3E[Q]E[X2](E[P ]Var[X1] + Var[P ]E[X1]
2 + E[P ]2E[X1]

2)

+ 2(3E[P ]2E[X1]
2E[Q]E[X2] + 3E[P ]E[X1]E[Q]

2E[X2]
2)

= E[P ]Skw[X1]Std[X1]
3 + E[X1]

3Skw[P ]Std[P ]3 + 3Var[P ]E[X1]Var[X1]

+ E[Q]Skw[X2]Std[X2]
3 + E[X2]

3Skw[Q]Std[Q]3 + 3Var[Q]E[X2]Var[X2]

− 3E[P ]E[X1](E[Q]Var[X2] + Var[Q]E[X2]
2)

− 3E[Q]E[X2](E[P ]Var[X1] + Var[P ]E[X1]
2)

+ 3E[P ]2E[X1]
2E[Q]E[X2] + 3E[P ]E[X1]E[Q]

2E[X2]
2

= E[P ]Skw[X1]Std[X1]
3 + E[X1]

3Skw[P ]Std[P ]3 + 3Var[P ]E[X1]Var[X1]

+ E[Q]Skw[X2]Std[X2]
3 + E[X2]

3Skw[Q]Std[Q]3 + 3Var[Q]E[X2]Var[X2]

− 3E[P ]E[X1](E[Q]Var[X2] + (Var[Q]− E[Q]2)E[X2]
2)

− 3E[Q]E[X2](E[P ]Var[X1] + (Var[P ]− E[P ]2)E[X1]
2). (C.29)

Kur[Y ]Var[Y ]2 = E[Y 4]− 4E[Y ]E[Y 3] + 6E[Y ]2E[Y 2]− 3E[Y ]4 − 3Var[Y ]2

= E[Y 4]− 4E[Y ](Skw[Y ]Std[Y ]3 + 3E[Y ]E[Y 2]− 2E[Y ]3)
+ 6E[Y ]2E[Y 2]− 3E[Y ]4 − 3Var[Y ]2 (C.30)

= E[Y 4]− 4E[Y ]Skw[Y ]Std[Y ]3 − 6E[Y ]2E[Y 2] + 5E[Y ]4 − 3Var[Y ]2

= E[Y 4]− 4E[Y ]Skw[Y ]Std[Y ]3 − 6E[Y ]2(Var[Y ] + E[Y ]2) + 5E[Y ]4 − 3Var[Y ]2

= E[Y 4]− 4E[Y ]Skw[Y ]Std[Y ]3 − 6E[Y ]2Var[Y ]− E[Y ]4 − 3Var[Y ]2. (C.31)

Kur[Y ] = E[P ]Kur[X1]Var[X1]
2 + 4E[P 2]E[X1]Skw[X1]Std[X1]

3

+ 3(E[P ] + E[P 2])Var[X1]
2 + 6E[P 3]E[X1]

2Var[X1] + E[P 4]E[X1]
4

+ E[Q]Kur[X2]Var[X2]
2 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3

+ 3(E[Q] + E[Q2])Var[X2]
2 + 6E[Q3]E[X2]

2Var[X2] + E[Q4]E[X2]
4

= E[P ]Kur[X1]Var[X1]
2 + E[Q]Kur[X2]Var[X2]

2

+ 4E[P 2]E[X1]Skw[X1]Std[X1]
3 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3
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+ 3(E[P ] + E[P 2])Var[X1]
2 + 6E[P 3]E[X1]

2Var[X1] + E[P 4]E[X1]
4

+ 3(E[Q] + E[Q2])Var[X2]
2 + 6E[Q3]E[X2]

2Var[X2] + E[Q4]E[X2]
4

= E[P ]Kur[X1]Var[X1]
2 + E[Q]Kur[X2]Var[X2]

2

+ 4E[P 2]E[X1]Skw[X1]Std[X1]
3 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3

+ E[X1]
4(Kur[P ]Var[P ]2 + 4E[P ]Skw[P ]Std[P ]3

+ 6E[P ]2Var[P ] + E[P ]4 + 3Var[P ]2)

+ E[X2]
4(Kur[Q]Var[Q]2 + 4E[Q]Skw[Q]Std[Q]3

+ 6E[Q]2Var[Q] + E[Q]4 + 3Var[Q]2)

+ 3(E[P ] + E[P 2])Var[X1]
2 + 6E[P 3]E[X1]

2Var[X1]

+ 3(E[Q] + E[Q2])Var[X2]
2 + 6E[Q3]E[X2]

2Var[X2]

= E[P ]Kur[X1]Var[X1]
2 + E[Q]Kur[X2]Var[X2]

2

+ 4E[P 2]E[X1]Skw[X1]Std[X1]
3 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3

+ E[X1]
4(Kur[P ]Var[P ]2 + 4E[P ]Skw[P ]Std[P ]3

+ 6E[P ]2Var[P ] + E[P ]4 + 3Var[P ]2)

+ E[X2]
4(Kur[Q]Var[Q]2 + 4E[Q]Skw[Q]Std[Q]3

+ 6E[Q]2Var[Q] + E[Q]4 + 3Var[Q]2)

+ 6E[X1]
2Var[X1](Skw[P ]Std[P ]3 + 3E[P ](Var[P ] + E[P ]2)− 2E[P ]3)

+ 6E[X2]
2Var[X2](Skw[Q]Std[Q]3 + 3E[Q](Var[Q] + E[Q]2)− 2E[Q]3)

+ 3(E[P ] + Var[P ] + E[P ]2)Var[X1]
2 + 3(E[Q] + Var[Q] + E[Q]2)Var[X2]

2

= E[P ]Kur[X1]Var[X1]
2 + E[Q]Kur[X2]Var[X2]

2

+ 4E[P 2]E[X1]Skw[X1]Std[X1]
3 + 4E[Q2]E[X2]Skw[X2]Std[X2]

3

+ E[X1]
4((Kur[P ] + 3)Var[P ]2 + 4E[P ]Skw[P ]Std[P ]3

+ 6E[P ]2Var[P ] + E[P ]4)

+ E[X2]
4((Kur[Q] + 3)Var[Q]2 + 4E[Q]Skw[Q]Std[Q]3

+ 6E[Q]2Var[Q] + E[Q]4)

+ 6E[X1]
2Var[X1](Skw[P ]Std[P ]3 + 3E[P ]Var[P ] + E[P ]3)

+ 6E[X2]
2Var[X2](Skw[Q]Std[Q]3 + 3E[Q]Var[Q] + E[Q]3)

+ 3(E[P ] + E[P ]2 + Var[P ])Var[X1]
2 + 3(E[Q] + E[Q]2 + Var[Q])Var[X2]

2.

(C.32)

C.2.2 ARP Approach

In this section we derive the moments of branch probability Qa for the ARP approach
expressed in terms of D and U . Recall Eq. (4.13), the rth raw moment of the beta
distribution Qa is given by

E[Qra] =
Γ(a+ b)Γ(a+ r)

Γ(a)Γ(a+ b+ r)
(C.33)
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where

a =
(E[D]2(E[U ]− Var[U ]) + E[U ]2(E[D]− Var[D]))E[D]

(E[D] + E[U ])(E[D]2Var[U ] + E[U ]2Var[D])
and b =

E[U ]

E[D]
a. (C.34)

From Eq. (C.33) the moments of Qa, expressed in terms of a and b, are given by

E[Qa] =
a

a+ b
, (C.35a)

Var[Qa] =
ab

(a+ b)2(a+ b+ 1)
, (C.35b)

Skw[Qa] =
2(b− a)

√
a+ b+ 1√

ab(a+ b+ 2)
, (C.35c)

Kur[Qa] =
6(a3 + a2(1− 2b) + b2(1 + b)− 2ab(2 + b))

ab(a+ b+ 2)(a+ b+ 3)
+ 3. (C.35d)

The moments of Qa, now expressed in terms of D and U , are obtained by substituting
Eq. (C.34) to Eq. (C.35) according to

E[Qa] =
a

a+ b
=

1

1 + b/a

=
1

1 + E[U ]/E[D]

=
E[D]

E[D] + E[U ]
, (C.36a)

Var[Qa] =
ab

(a+ b)2(a+ b+ 1)
=

a

a+ b

b

a+ b

1

a+ b+ 1

=
E[D]E[U ]

(E[D] + E[U ])2

1
E[D]2(E[U ]−Var[U ])+E[U ]2(E[D]−Var[D])
(E[D]+E[U ])(E[D]2Var[U ]+E[U ]2Var[D])

(E[D] + E[U ]) + 1

=
E[D]E[U ]

(E[D] + E[U ])2

(E[D]2Var[U ] + E[U ]2Var[D])

E[D]2(E[U ]− Var[U ]) + E[U ]2(E[D]− Var[D]) + (E[D]2Var[U ] + E[U ]2Var[D])

=
E[D]2Var[U ] + E[U ]2Var[D]

(E[D] + E[U ])3
, (C.36b)

Skw[Qa] =
2(b− a)

√
a+ b+ 1√

ab(a+ b+ 2)

a+ b

a+ b
=
2(b− a)

a+ b

1

a+ b+ 2

(a+ b)
√
a+ b+ 1√
ab

=
2(E[U ]/E[D]− 1)
1 + E[U ]/E[D]
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1
E[D]2(E[U ]−Var[U ])+E[U ]2(E[D]−Var[D])
(E[D]+E[U ])(E[D]2Var[U ]+E[U ]2Var[D])

(E[D] + E[U ]) + 2

1

Std[Qa]

=
2(E[U ]− E[D])

E[D] + E[U ]

1

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])

1

Std[Qa]

Std[Qa]

Std[Qa]

=
2(E[U ]− E[D])

E[D] + E[U ]

(E[D]2Var[U ] + E[U ]2Var[D])

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])

Std[Qa](E[D] + E[U ])3

E[D]2Var[U ] + E[U ]2Var[D]

=
−2(E[D]− E[U ])(E[D] + E[U ])2Std[Qa]

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])
, (C.36c)

Kur[Qa] =
6(a3 + a2(1− 2b) + b2(1 + b)− 2ab(2 + b))

ab(a+ b+ 2)(a+ b+ 3)
+ 3

=
1

ab

1

a+ b+ 2

1

a+ b+ 3

=
(E[D] + E[U ])2(E[D]2Var[U ] + E[U ]2Var[D])2

(E[D]2(E[U ]− Var[U ]) + E[U ]2(E[D]− Var[D]))2E[D]E[U ]

(E[D]2Var[U ] + E[U ]2Var[D])

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])

(E[D]2Var[U ] + E[U ]2Var[D])

E[D]2(E[U ] + 2Var[U ]) + E[U ]2(E[D] + 2Var[D])

= 3(E[D] + E[U ])[(E[D] + E[U ])E[D]2E[U ]2

+ (2(E[D]− E[U ])2 + E[D]E[U ])(E[D]2Var[U ] + E[U ]2Var[D])]

× [E[D]2(E[U ] + 2Var[U ]) + E[U ]2(E[D] + 2Var[D])]−1

× [E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])]−1. (C.36d)

In the rest of this section, we derive the first four moments of Pa when D and U are
geometrically distributed with parameter p. The mean and variance of D and U are given
by

E[D] = 1/p, (C.37a)

Var[D] = (1− p)/p2, (C.37b)

E[U ] = 1/(1− p), (C.37c)

Var[U ] = p/(1− p)2, (C.37d)

respectively. From Eqs. (C.36) and (C.37) we obtain

E[Pa] = 1− E[D]

E[D] + E[U ]
=

E[U ]

E[D] + E[U ]
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=
1/(1− p)

1/p+ 1/(1− p)

=
p

(1− p) + p

= p, (C.38a)

Var[Pa] =
E[D]2Var[U ] + E[U ]2Var[D]

(E[D] + E[U ])3

=
(1/p)2(p/(1− p)2) + (1/(1− p))2((1− p)/p2)

(1/p+ 1/(1− p))3
(p(1− p))3

(p(1− p))3

=
p2(1− p) + p(1− p)2

(1− p) + p

= p(1− p)(p+ (1− p))

= p(1− p), (C.38b)

Skw[Pa] = − −2(E[D]− E[U ])(E[D] + E[U ])2Std[Qa]

E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])

=
2(1/p− 1/(1− p))(1/p+ 1/(1− p))2(p(1− p))1/2

(1/p)2(1/(1− p) + p/(1− p)2) + (1/(1− p))2(1/p+ (1− p)/p2)

(p(1− p))3

(p(1− p))3

=
2((1− p)− p)((1− p) + p)2(p(1− p))1/2

p((1− p)2 + p(1− p)) + ((1− p)(p2 + p(1− p))

=
2(1− 2p)(p(1− p))1/2

p(1− p) + p(1− p)

(p(1− p))1/2

(p(1− p))1/2

=
2p(1− p)(1− 2p)
2(p(1− p))3/2

= p(1− p)(1− 2p)/(p(1− p))3/2, (C.38c)

Kur[Pa] = 3(E[D] + E[U ])[(E[D] + E[U ])E[D]2E[U ]2

+ (2(E[D]− E[U ])2 + E[D]E[U ])(E[D]2Var[U ] + E[U ]2Var[D])]

× [E[D]2(E[U ] + 2Var[U ]) + E[U ]2(E[D] + 2Var[D])]−1

× [E[D]2(E[U ] + Var[U ]) + E[U ]2(E[D] + Var[D])]−1

= 3(1/p+ 1/(1− p))[(1/p+ 1/(1− p))(1/p)2(1/(1− p))2

+ (2(1/p− 1/(1− p))2 + (1/p)(1/(1− p)))

× (1/p2(p/(1− p)2) + (1/(1− p))2(1− p)/p2)]

× [1/p2(1/(1− p) + 2p/(1− p)2) + 1/(1− p)2(1/p+ 2(1− p)/p2)]−1

× [1/p2(1/(1− p) + p/(1− p)2) + 1/(1− p)2(1/p+ (1− p)/p2)]−1
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(p(1− p))4

(p(1− p))4

= 3((1− p) + p)[(1− p) + p) + (2p(1− p)(1− p− p)2) + p2(1− p)2)(p(1− p))]

× [p((1− p)2 + 2p(1− p)) + ((1− p)(p2 + 2p(1− p))]−1

× [p((1− p)2 + p(1− p)) + ((1− p)(p2 + p(1− p))]−1

= 3[1 + (2p(1− p)(1− 2p)2 + p2(1− p)2)p(1− p)]

× [p(1− p)2 + p(2− p)(1− p)2]−1

× [2p(1− p)]−1

=
3p(1− p)(1− 3p+ 3p2)

3(p(1− p))2

= p(1− p)(1− 3p+ 3p2)/(p(1− p))2 (C.38d)

Eq. (C.38) shows that E[P ra ] = E[P rB] for r ≤ 4 when D and U are geometrically dis-
tributed.





Appendix D

The Gram-Charlier Series of Type A

A general approximation technique of constructing a distribution from moments is the
Gram-Charlier series of type A [51]. The series provide an expansion of a distribution
in terms of its central moments, the standard normal density, and Hermite polynomials.
The pdf of the series is defined by

f(x) =
∞∑
i=0

ciHi(x)φ(x), (D.1)

where φ(x) is the density function of a standard normal distribution

φ(x) =
1√
2π

exp

(
−x2

2

)
, (D.2)

and where Hi(x) is Hermite polynomials of degree i defined by

Hi(x) = xi − i[2]

2.1!
xi−2 +

i[4]

22.2!
xi−4 − i[6]

23.3!
xi−6 + · · · (D.3)

where i[r] = i(i− 1)(i− 2) · · · (i− r + 1) and by convention H0(x) = 1, and where

ci =
1

i!

∫ ∞

−∞
f(x)Hi(x)dx. (D.4)

Substituting the explicit value of Hi(x) from Eq. (D.3) we find

ci =
1

i!
(µ′
i −

i[2]

2.1!
µ′
i−2 +

i[4]

22.2!
µ′
i−4 −

i[6]

23.3!
µ′
i−6 + · · ·). (D.5)

In particular, for moments about the mean, the series can then be written as

f(x) = φ(x)[1 +
1

2
(µ2 − 1)H2(x) +

1

6
(µ3 − 1)H3(x)

+
1

24
(µ4 − 6µ2 + 1)H4(x) + . . .]. (D.6)
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The cdf of the series in Eq. (D.6) can be obtained as follows

F (x) =
∫ x
−∞

f(t)dt =
∫ x
−∞

∞∑
i=0

ciHi(t)φ(x)dt

=
∫ x
−∞

(φ(t) +
∞∑
i=1

ciHi(t)φ(t))dt.

=
∫ x
−∞

φ(t)dt+
∫ x
−∞

∞∑
i=1

ciHi(t)φ(t)dt

= Φ(x) +
∞∑
i=1

ci

∫ x
−∞

Hi(t)φ(t)dt (D.7)

where
Φ(x) =

∫ x
−∞

φ(t)dt (D.8)

which known as the error function in mathematics. Using the fact that

Hi(t)φ(t) = (− d

dt
)iφ(t) (D.9)

Eq. (D.7) reduces

F (x) = Φ(x) +
∞∑
i=1

ci

∫ x
−∞

(− d

dx
)iφ(x)dx

= Φ(x)−
∞∑
i=1

ci

[
(− d

dx
)i−1φ(x)

]x
−∞

= Φ(x)−
∞∑
i=1

ci [Hi−1(x)φ(x)]
x
−∞

= Φ(x)−
∞∑
i=1

ciHi−1(x)φ(x). (D.10)

The series in Eq. (D.6) will converge for every x to f(x) if the following conditions are
satisfied

1. f(x) is continuous and has bounded variation on [−∞,∞].
2.
∫∞
−∞ f(x) exp (x2/4)dx is convergent.

Many investigation has been done in neglecting higher moments. These showed that
the finite series is useful only in cases of moderate skewness, and in such case a Pearson
distribution may be just as good.

From the statistical point of view, however, the important question is not whether an
infinite series can represent a density function, but whether a finite number of term can
do so to a satisfactory approximation. Two things seem clear:

1. The sum of a finite number of terms of the series may give negative values, partic-
ularly near the tails
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2. The series may behave irregularly in the sense that the sum of k terms may give a
worse fit than the sum of k − 1 terms.

Next, we will express the moments of distribution function corresponding to the binary
max operation using Gram-Charlier series. The following derivation shows that we can
express the moments as function of the moments of the two operands explicitly.

Theorem D.1 Given two mutually independent continuous random variables X1 and X2

defined by Gram-Charlier series by

f1(x) =
∞∑
i=0

c
′
iHi(x)φ(x), (D.11)

and

f2(x) =
∞∑
i=0

c
′′
iHi(x)φ(x), (D.12)

respectively. Let Y be the maximum of X1 and X2

Y = max(X1, X2).

then the rth moment of Y is given by

E[Y r] =
∞∑
i=0

(c
′
i + c

′′
i )l

′
ir −

∞∑
i=0

∞∑
j=1

(c
′′
i c

′
j + c

′
ic

′′
j )l

′′
ijr (D.13)

where l
′
ir and l

′′
ijr are equal to

l
′
ir =

∫ ∞

−∞
xrHi(x)Φ(x)φ(x)dx (D.14)

and
l
′′
ijr =

∫ ∞

−∞
xrHi(x)Hj−1(x)φ

2(x)dx. (D.15)

Proof
The cdf of Y is given by

FY (x) = F1(x)F2(x). (D.16)

To evaluate the pdf of Y we evaluate the derivation of F (x) to x

fY (x) = dF (x)/dx

= F1(x)f2(x) + F2(x)f1(x)

= (Φ(x)−
∞∑
j=1

c
′
jHj−1(x)φ(x))

∞∑
i=0

c
′′
iHi(x)φ(x)

+(Φ(x)−
∞∑
j=1

c
′′
jHj−1(x)φ(x))

∞∑
i=0

c
′
iHi(x)φ(x)

=
∞∑
i=0

(c
′
i + c

′′
i )Hi(x)Φ(x)φ(x)

−(
∞∑
j=1

c
′
jHj−1(x)

∞∑
i=0

c
′′
iHi(x) +

∞∑
j=1

c
′′
jHj−1(x)

∞∑
i=0

c
′
iHi(x))φ

2(x)

=
∞∑
i=0

(c
′
i + c

′′
i )Hi(x)Φ(x)φ(x)−

∞∑
i=0

∞∑
j=1

(c
′′
i c

′
j + c

′
ic

′′
j )Hi(x)Hj−1(x)φ

2(x).(D.17)
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From Eq. (D.17) the rth moment of X is obtained as follows

E[Y r] =
∫ ∞

−∞
xrf(x)dx

=
∞∑
i=0

(c
′
i + c

′′
i )
∫ ∞

−∞
xrHi(x)Φ(x)φ(x)dx

−
∞∑
i=0

∞∑
j=1

(c
′′
i c

′
j + c

′
ic

′′
j )
∫ ∞

−∞
xrHi(x)Hj−1(x)φ

2(x)dx

=
∞∑
i=0

(c
′
i + c

′′
i )l

′
ir −

∞∑
i=0

∞∑
j=1

(c
′′
i c

′
j + c

′
ic

′′
j )l

′′
ijr. (D.18)

✷

In practice l
′
ir and l

′′
ijr can be computed offline numerically for bounded r.

Table D.1: E[Y r] of standard distributions using Gram-Charlier series with Q = 4.

Distribution r = 1 r = 2 r = 3 r = 4

normal 0.564 1 1.410 3
uniform 0.022 0.083 0.215 1.8

exponential 0.837 4.019 11.502 36.703

Next, we will express the moments of a distribution function corresponding to the nth
order statistics using the Gram-Charlier series given by Eq. (D.1). The derivation shows
that the moments can be expressed explicitly as shown by the following theorem.

Theorem D.2 The rth moment of Y of Gram-Charlier series is given by

E[Y r] = lim
p→∞n

∞∑
i=0

n−1∑
m=0

ci

(
n− 1
m

)

∑
r1, r2, . . . , rp ≥ 0

r1 + r2 + · · · + rp = n−m− 1

(
n−m− 1
r1 r2 . . . rp

)
(−1)n−m−1

p∏
j=1

(cj)
rj lirmnp (D.19)

where lirmnp will be computed offline numerically and it is given by

lirmnp =

∞∫
−∞

xrHi(x)Φ
m(x)φn−m(x)

p∏
j=1

(Hj−1(x))
rjdx. (D.20)

Proof
From Eq. (D.17) providing that the moments of X exist, then the moments of Y are given
by

E[Y r] =

∞∫
−∞

yrfY (y)dy
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= n

∞∫
−∞

xrfX(x)(FX(x))
n−1dx

= n

∞∫
−∞

xr(
∞∑
i=0

ciHi(x)φ(x))(Φ(x)−
∞∑
j=1

cjHj−1(x)φ(x))
n−1dx. (D.21)

Using the binomial probability law

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i (D.22)

we obtain

E[Y r] = n

∞∫
−∞

xr
∞∑
i=0

ciHi(x)φ(x)
n−1∑
m=0

(
n− 1
m

)
Φm(x)(−

∞∑
j=1

cjHj−1(x)φ(x))
n−m−1dx

= n
∞∑
i=0

n−1∑
m=0

(
n− 1
m

)
ci

∞∫
−∞

xrHi(x)Φ
m(x)φ(x)(−φ(x)

∞∑
j=1

cjHj−1(x))
n−m−1dx

= n
∞∑
i=0

n−1∑
m=0

(
n− 1
m

)
(−1)n−m−1ci

∞∫
−∞

xrHi(x)Φ
m(x)φn−m(x)(

∞∑
j=1

cjHj−1(x))
n−m−1dx.

When we place cj outside the integration and apply the multinomial probability law, we
obtain Eq. (D.19).
✷

Unlike Eq. (D.13), Eq. (D.19) is much more complicated. Hence, we conclude that the
use of the Gram-Charlier series is prohibited for the analysis of parallel programs.





Appendix E

Source Code

In this appendix, we present an instrumented version of a Quicksort program. This
program shows how counters are placed to generate memory references to an input array.

/*------------------------------------------------------------------------

* generate memory reference to array arr[]

* the Quicksort algorithm

* instrumented version

*------------------------------------------------------------------------

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "qscache.h"

#include "../sorting/nrutil.c"

#include "../seq/rvgen.c"

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

#define M 7

#define NSTACK 500

/* Here M is the size of subarrays sorted by straight insertion and

NSTACK is the required auxiliary storage. */

#define c_num 27

float exec_time;

int c_if[c_num],counter[c_num];

void sort(unsigned long n, float arr[])

/* sorts an array arr[1...n] into ascending numerical order using the

quicksort algorithm. n is input; arr is replaced on output by its

sorted rearrangement.

*/

{

unsigned long i,ir=n,j,k,l=1;

int jstack = 0, *istack;

float a,temp;

istack=ivector(1,NSTACK);

for(;;) { /* Insertion sort when subarray small enough. */

if(ir-l < M) {

for(j=l+1;j<=ir;j++) {

c_if[0]++;

if(hit(j-1,&exec_time))

counter[0]++;

a=arr[j];

for(i=j-1;i>=1;i--) {

c_if[1]++;

if(hit(i-1,&exec_time))

counter[1]++;

if(arr[i] <= a) break;

c_if[2]++;
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if(hit(i-1,&exec_time))

counter[2]++;

c_if[3]++;

if(hit(i,&exec_time))

counter[3]++;

arr[i+1]=arr[i];

}

c_if[4]++;

if(hit(i,&exec_time))

counter[4]++;

arr[i+1]=a;

}

if(jstack == 0) break;

ir=istack[jstack--]; /* pop stack and begin */

l=istack[jstack--]; /* a new round of partitioning */

} else { /* choose median of left, center, and right */

k=(l+ir) >> 1; /* elements as partitioning element a. */

c_if[5]++;

if(hit(k-1,&exec_time))

counter[5]++;

c_if[6]++;

if(hit(l,&exec_time))

counter[6]++;

SWAP(arr[k],arr[l+1]); /* Also rearrange so that */

c_if[7]++;

if(hit(l,&exec_time))

counter[7]++;

c_if[8]++;

if(hit(ir-1,&exec_time))

counter[8]++;

if(arr[l+1] > arr[ir]) { /* a[l+1]<=a[l]<=a[ir]. */

c_if[9]++;

if(hit(l,&exec_time))

counter[9]++;

c_if[10]++;

if(hit(ir-1,&exec_time))

counter[10]++;

SWAP(arr[l+1],arr[ir]);

}

c_if[11]++;

if(hit(l-1,&exec_time))

counter[11]++;

c_if[12]++;

if(hit(ir-1,&exec_time))

counter[12]++;

if(arr[l] > arr[ir]) {

c_if[13]++;

if(hit(l-1,&exec_time))

counter[13]++;

c_if[14]++;

if(hit(ir-1,&exec_time))

counter[14]++;

SWAP(arr[l],arr[ir]);

}

c_if[15]++;

if(hit(l,&exec_time))

counter[15]++;

c_if[16]++;

if(hit(l-1,&exec_time))

counter[16]++;

if(arr[l+1] > arr[l]) {

c_if[17]++;

if(hit(l,&exec_time))

counter[17]++;

c_if[18]++;

if(hit(l-1,&exec_time))

counter[18]++;

SWAP(arr[l+1],arr[l]);

}
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i=l+1; /* Initialize pointers for partitioning */

j=ir;

c_if[19]++;

if(hit(l-1,&exec_time))

counter[19]++;

a=arr[l]; /* Partitioning element */

for(;;) { /* Beginning of innermost loop. */

do {

i++;

c_if[20]++;

if(hit(i-1,&exec_time))

counter[20]++;

} while(arr[i] < a);

/* Scan up to find element > a */

do {

j--;

c_if[21]++;

if(hit(j-1,&exec_time))

counter[21]++;

} while(arr[j] > a);

/* Scan down to find element < a */

if(j < i) break;

/* Pointers crossed. Partitioning complete. */

c_if[22]++;

if(hit(i-1,&exec_time))

counter[22]++;

c_if[23]++;

if(hit(j-1,&exec_time))

counter[23]++;

SWAP(arr[i],arr[j]);

/* Exchange element */

} /* End of innermost loop */

c_if[24]++;

if(hit(l-1,&exec_time))

counter[24]++;

c_if[25]++;

if(hit(j-1,&exec_time))

counter[25]++;

arr[l]=arr[j];

c_if[26]++;

if(hit(j-1,&exec_time))

counter[26]++;

arr[j]=a;

jstack += 2;

/* Push pointers to larger subarray on stack, */

/* process smaller subarray immediately. */

if(jstack > NSTACK)

nrerror("NSTACK too small in sort.\n");

if(ir-i+1 >= j-l) {

istack[jstack]=ir;

istack[jstack-1]=i;

ir=j-1;

} else {

istack[jstack]=j-1;

istack[jstack-1]=l;

l=i;

}

}

}

free_ivector(istack,1,NSTACK);

}





Appendix F

Glossary of Symbols and
Abbreviations

The following symbols and abbreviations are sometimes used:

ARP Alternating Renewal Process
B(a, b) the beta function with parameter a and b
cdf cummulative distribution function
εr the relative error of the rth raw moment
E(θ) exponential distribution with parameter θ
E mean
FCFS First Come First Served
GBD generalized beta distribution
GLD generalized lambda distribution
iid identical and independent distributed
Kur kurtosis
N(µ, σ) normal distribution with mean µ and standard deviation σ
NAS-EP Numerical Aerospace Simulation-Embarrassingly Parallel
P probability
PSRS Parallel Sorting by Regular Sampling
pdf probability density function
pmf probability mass function
RTL Run Time Library
Skw skewness
SSS Straight Selection Sort
U(a, b) uniform distribution with sample space [a, b]
Var variance
VS Vector Scaling
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Samenvatting

Prestatiemodellering speelt een belangrijke rol in het voorspellen van de gevolgen van een
ontwerpbeslissing en in het diagnostiseren van een specifiek prestatiegedrag. Met name
voor complexe systemen zoals parallelle computersystemen kan een gewenst prestatiege-
drag bijna niet worden verkregen zonder de hulp van voorspellende modellen.

In de prestatievoorspelling van parallelle programma’s onderscheiden we statische en
dynamische benaderingen die een geheel andere keuze maken in de fundamentele afweging
tussen de hoeveelheid voorspellende informatie en diens betrouwbaarheid. Statische tech-
nieken hebben het voordeel dat analytische informatie wordt verkregen over de prestatieef-
fecten van symbolische programma/machine-parameters, zonder dat dure executie of si-
mulatie is vereist voor elke denkbare input data set. Hun beperkingen in het modelleren
van dynamisch gedrag van programma’s heeft echter een negatief effect op hun voor-
spellende nauwkeurigheid. Behalve de toewijzing van gemeenschappelijke middelen is de
afhankelijkheid van de invoer een belangrijke oorzaak van dynamisch programmagedrag.
Bij veel programma’s kan de executietijd enorm varieren, afhankelijk van de invoer, zelfs
als de probleemgrootte constant wordt gehouden.

In dit proefschrift wordt een nieuwe benadering introduceerd binnen de symbolische
prestatiemodellering van parallelle programma’s waarbij de executietijd wordt voorspeld
in de vorm van een distributie over een verzameling van mogelijke invoer. De aanpak
is gebaseerd op het gebruik van statistische momenten om de distributie te karakteri-
seren. Algoritmen worden gepresenteerd die een zeer lage tijd- en ruimte-complexiteit
hebben die de statistische momenten van de programma-executietijd voorspellen in term-
en van de momenten van programma-onderdelen die betrokken zijn in de sequentiele,
conditionele, en parallelle composities die tot het parallelle programma hebben geleid.
De nieuwheid van deze analyse is de algemene toepasbaarheid wegens het gebruik van
momenten in tegenstelling tot veel-gebruikte specifieke distribuities, gecombineerd met
de zeer lage rekencomplexiteit. De voorspellende nauwkeurigheid van de aanpak is ex-
perimenteel getoetst aan de hand van synthetisch verkregen werklastdistributies alsmede
distributies verkregen uit bestaande parallelle programma’s. Bezien vanuit de zeer lage
rekencomplexiteit vormt deze benadering een aantrekkelijke kosten/baten afweging in de
analytische prestatiemodellering van parallelle programma’s.
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