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Abstract

Preparation of multi-partite entangled quantum states under realistic experimen-
tal conditions invariably results in states with non-unit fidelity to the target state.
Purification protocols address the need for higher fidelity states than what can be
directly prepared. These protocols consume several noisy input states and return
an output state of higher fidelity, succeeding probabilistically. We introduce a re-
currence based purification protocol for two-colorable graph states on d-dimensional
quantum systems (qudits). We analyze the performance of the protocol in terms
of the minimal required fidelity of input states as well as the expected number of
attempts required to successfully reach a specific target fidelity. We find that not
only is the purification regime larger for states of greater qudit dimension, but the
expected number of attempts to successfully purify a state may be orders of mag-
nitude lower. We develop error thresholds for the protocol with faulty two-qudit
operations using a general uncorrelated error model and study the dependence on
system dimension and state node number. We observe that the gate error threshold
of the protocol improves with increasing dimension and moreover that the threshold
depends on the degree of the graph but is otherwise independent of the number of
nodes. The qualitative behaviour of the error threshold is captured by an analyt-
ically solvable model in which a restricted class of errors is considered. The error
thresholds determined here may serve as one benchmark of assessing whether fu-
ture experimental implementations of two qudit operations function well enough to
realize a practical advantage of replacing qubit with qudit states in a multi-partite
quantum information protocol.
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1
Introduction

Essentially every task in the realms of quantum communication and fault tolerant
quantum computation rely upon the preparation and possible distribution of entan-
gled quantum states. In general though, these states cannot be prepared perfectly,
meaning they have non unital fidelity to the target state. In addition, quantum
states are subject to decoherence and noise processes, resulting in further decrease
of the fidelity over time. Purification protocols are procedures which can allow for
high fidelity states to be prepared from a large number of lower fidelity initial states,
at the cost of outputting only a fraction of the number of input states. For multi-
partite quantum states, purification needs to be targeted towards a specific class of
input states, because multi-partite entangled quantum states can be divided into
non-equivalent categories of entanglement structure [1]. Transformation between
entanglement categories using (possibly stochastic) local operations and classical
communication is not possible. One fundamentally interesting class of multi-partite
quantum states are called graph states – so named because each N -partite graph
state has a direct correspondence with some mathematical graph with N vertices.
Within the description of graph states, there is a category called two-colorable graph
states (TCGS), which correspond to mathematical graphs which are two-colorable.
Because they have a more rigid description than general graph states, TCGS are
simpler to treat mathematically, but already many applications that make use of
graph states only require TCGS. In the context of multiparty quantum communi-
cation, several proposals for quantum secret sharing [2, 3], which is an interesting
protocol in it’s own right that also constitutes a primitive for secure multi-party
computation, use a type of TCGS called GHZ type states as a resource. With re-
gards to fault tolerant quantum computation, TCGS are important both in one
way quantum compuation and in the more mainstream circuit model. For one way
computation, a type of TCGS known as a cluster state has been proven to be a
universal resource [4], [5]. In order to achieve fault tolerance in the circuit model
for quantum computation, it is necessary to consider encoding information vital
to the computation using quantum error correcting codes [6]. Any quantum error
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correcting code that is based on stabilizers can be seen also as a graph code1 and
the codewords of stabilizer codes are graph states [9]. Certain stabilizer codes have
codewords that are in fact TCGS, for example every CSS code [9].

To date, the vast majority of research in the fields of quantum communication,
computation, and information have focused on two level quantum systems, called
qubits2. There is however mounting evidence suggesting that there are potential ad-
vantages to considering higher dimensional quantum systems, called qudits3. The
most direct avenue in which qudits present an advantage is in terms of their in-
formation and communication capacity; specifically, log2(d) qubits are required to
encode the same amount of information that a single d dimensional qudit can encode
[10]. Of a different vein, theoretical research into fault tolerant quantum computing
with qudit systems has suggested, among other promising results, that higher error
thresholds may be achievable for popular quantum error correcting codes [11, 12],
that codes with the rare yet desirable property of a transversal non-Clifford gate
can be constructed [13, 14], and that the circuit complexity of computations can
be reduced [15, 16]. With regards to fundamentals of quantum information, there
is experimental evidence that qudit quantum states are more robust to noise than
their qubit counterparts, and that the heightened noise tolerance improves with in-
creasing dimension. In [17] the authors tested the robustness of qubit and qudit
bi-partite entangled states to tunable environmental noise by completing entangle-
ment witness testing to determine the error threshold for which states were no longer
entangled; they found that the error thresholds improved with dimension.

Many traditional qubit platforms allow encoding of higher dimensional systems,
including neutral atoms [18], superconducting circuits [19], trapped ions [20] and
photonic systems [21]. The state of the art in terms of experimental demonstrations
of high dimensional multi-partite entangled states is currently for photons using
either orbital angular momentum or time/frequency degrees of freedom [21, 22, 23].
In [22] the authors create a genuinely multi-partite entangled 3-qudit GHZ type state
with dimension d = 3. In [23] the authors create genuinely multi-partite entangled
4-partite cluster states with dimension d = 3. The authors of [22] explain that
the primary technical challenge in creating multi-partite entangled states in higher
dimensions has been obtaining experimental realizations of the generalized CNOT
gate. Getting around this challenge may require unconventional experimental design
1The correspondence between stabilizer codes and graph codes is valid in consideration of quantum
systems where the dimension is a prime power [7, 8].

2Qubit stands for quantum bit.
3Qudit stands for quantum digit. This term refers to the fact that a d dimensional qudit has
d orthogonal basis states, each of which can be used as a letter or digit in a computational or
cryptographic alphabet.
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such as the reliance by the authors of [22] on an in-house designed computer program
[24] to search for arrangements of optical components capable of preparing a high
dimensional multi-partite entangled state in the orbital angular momentum degree
of freedom of photons.

In this work we present a new purification protocol for qudit TCGS, and we inves-
tigate whether the performance of the protocol with states of various qudit dimen-
sions promises advantages compared to the qubit case. Direct comparisons cannot
be made between protocols on different dimensional systems, due to potentially
meaningful changes in experimental implementation of operations. Nevertheless,
favorable dimension dependent scaling of performance metrics can constitute a pos-
itive indicator that working with higher dimensional systems could be beneficial.
The protocol we present is restricted to qudit systems of prime dimension, a choice
that takes advantage of the particularly simple mathematical structure available in
describing qudit graph states of prime dimension. Here we primarily focus on rela-
tively low qudit dimensions, such as 3, 5, 7, 11; in the analytic analysis of Section 7.1
we take a look also at higher prime dimensions, up to and including 97. Considera-
tion of quantum states with each of these dimensions is justified since single qudits
can be achieved and coherently manipulated using qudit platforms relying on one
or more of the various photonic degrees of freedom [21].
We address the following research questions:

Can we extend the recurrence based purification protocol of [25] for qubit
TCGS to a protocol that works for states where the underlying quantum
systems are qudits of any prime dimension?

How does the performance of the error-less purification protocol, as quantified
by achievable output fidelities, the size of the purification regime and the
expected number of attempts required to purify noisy input states to a given
target fidelity depend on the qudit dimension and the number of nodes of the
TCGS?

How does the error tolerance of the purification protocol with faulty two-qudit
operations depend on the the qudit dimension and the number of nodes of the
TCGS?

1.1. Outline and contributions
The structure of this thesis is the following,

• In Chapter 2 we present the mathematical preliminaries necessary to describe
both qudit systems and error processes in quantum mechanics.
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• Chapter 3 provides a brief review of quantum state purification protocols, with
a focus on recurrence type purification.

• Chapter 4 contains background on quantum graph states where the underlying
physical systems are qudits. We contribute several short mathematical results
regarding the transformation of quantum graph states by qudit operators, and
a procedure for transforming any input state to a form that is diagonal in the
graph state basis.

• Chapter 5 details the main result of this work, which is a novel recurrence
type purification protocol that applies to TCGS on qudit systems of prime
dimension. In Section 5.1, we elaborate the two subroutines that comprise the
purification scheme and in Section 5.2 we explain how the subroutines can be
combined to achieve purification. Overall, this chapter provides an affirmative
answer to the first research question.

• Chapter 6 deals with the performance analysis of the proposed purification
protocol, for three classes of input states: binary-like states (Section 6.1),
where errors in the state preparation are confined to one node subset of the
target TCGS; a one-parameter family of fully mixed states (Section 6.2); and
depolarized states (Section 6.3), where each qudit of a TCGS is subject to
depolarizing noise. For each class of states we study how increasing dimension
and node numbers of the input states impacts the performance of the proto-
col, and we present models to explain the observed scaling relations. Overall
we demonstrate explicitly that the error-less protocol effectively purifies each
class of input states considered and that the efficacy of purification improves
with qudit dimension in each case. The physical models we explore provide
motivation that the protocol remains effective, especially for higher dimen-
sions, on classes of input states not explicitly investigated here. This chapter
constitutes a thorough investigation of the second research question.

• In Chapter 7 we demonstrate the performance of the protocol when all two-
qudit operations are subject to errors, by developing both analytic (Section
7.1) and numeric results (Section 7.2). Here we extensively address the third
research question. We quantify the advantage of working with qudit systems of
larger dimension in terms of improvements in the gate error threshold, which
can be of the magnitude of several percent between dimensions.
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Mathematical preliminaries

In quantum mechanics unitary operators play a large role because they describe
reversible transformations which preserve the norm of quantum states [6]. The
spectral theorem for unitary matrices expounds several points that are useful for
characterizing unitary operators; it is important in quantum mechanics because it
provides the groundwork for constructing a basis in which quantum states can be
written.

Theorem 2.1. [26] Spectral theorem for unitary matrices:
For a unitary matrix,

(a) All eigenvalues have absolute value 1.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthogonal basis of the whole space, consisting of eigenvectors.

2.1. Operations on qudits
In order to work with individual quantum systems of dimension d > 2, known as
quantum digits or qudits, it is necessary to introduce appropriate generalizations of
the mathematical structure familiar from the study of qubits. A full representation
of the state of a qubit is possible on a complex Hilbert space of dimension 2, which
is a constituent of C2. All possible single qubit unitary operations can be generated
by the Pauli group1, P [6], which is the 16 element matrix group consisting of the
2× 2 identity matrix, the matrices

σX =
[

0 1
1 0

]
, σZ =

[
1 0
0 −1

]
, σY =

[
0 −i
i 0

]
, (2.1.1)

and all unique products thereof, with the scalar factors ±1, ±i. The Pauli group
itself is generated by the three Pauli matrices2, 〈σX , σZ , σY 〉.
1Explicitly, P = {±1,±i1, ,±σX ,±iσX ,±σZ ,±iσZ ,±σY ,±iσY }
2The angled brackets are not to be confused with expectation values in quantum mechanics. In
this work 〈·〉 refers only to the generator of a group.

5
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In order to obtain an equally powerful formalism for understanding single qudit
operations, it is possible to generalize the Pauli group, and introduce the related
discrete Weyl group. In doing so, we mainly follow [27]. For further information,
see [28, 8, 9].

2.1.1. The generalized Pauli group
The Hilbert space of a single d-dimensional quantum system, Hd, is a constituent
of Cd. Label the computational basis for Hd by {|0〉 , |1〉 , · · · , |d− 1〉}. The
shift operator, X, and the phase operator, Z, are an analog of the Pauli matrices
σX and σZ [28]. These operators are defined as,

X =
d−1
Σ
j=0
|j ⊕ 1〉 〈j| , (2.1.2)

Z =
d−1
Σ
j=0

ωj |j〉 〈j| . (2.1.3)

Throughout this work, define ω to be the first d-th primitive root of unity, ω := e
2πi
d .

In the above definition, ⊕ denotes addition modulo the dimension, d. The most
glaring thing to notice about the shift and phase operator is that they are both
unitary, but for d > 2 neither is Hermitian. As a consequence of unitarity (Theorem
2.1, [26] ), they each possess orthogonal eigenspaces and all eigenvalues are of the
form ωj for some j ∈ Zd; hence they may still be interpreted as physical observables
[29], and measurement outcomes can be labelled by their complex eigenvalues. The
Hermitian conjugates of X and Z are given by Xd−1 and Zd−1 respectively. For
proper bookkeeping in d dimensions, it is important to note that there are differences
between the cases of even and odd dimensions. To present a unified treatment,
introduce τ = (−1)de iπd = eiπ

(d2+1)
d , and notice that τ2 = ω. Allow D to denote the

order of τ , meaning that D is the lowest number such that τD = 1. In the case of
d even, then D = 2d, whereas in the case d is odd, D = d directly. The analog of
the third Pauli operator σY can be constructed as Y = τX†Z† = τXd−1Zd−1, in
order to preserve the commutation relation XY Z = τ1 from the qubit case (τ = i

when d = 2). The generalized Pauli group, Pd,N , where N is the number of qudits,
is generated by the shift, phase, and Y operators, 〈X,Z, Y 〉. From the action of
the shift and phase operator on the basis vectors, it is simple to verify the following
commutation relation,

ZaXb = τ2abXbZa. (2.1.4)

For a register of N qudits, the associated Hilbert space, Hd,N is (Cd)⊗N and the
computational basis vectors are |q〉 = |q1, q2, · · · , qN 〉 = |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qN 〉,
where each qi ∈ Zd. The elements of the generalized Pauli group for an N qudit
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register or quantum state are all possible N fold tensor products of the operators
from a single copy of the group. A generating set for the group is given by

〈X ⊗ 1⊗(N−1), 1⊗X ⊗ 1⊗(N−2), · · · , 1⊗(N−1) ⊗X,
Z ⊗ 1⊗(N−1), 1⊗ Z ⊗ 1⊗(N−2), · · · , 1⊗(N−1) ⊗ Z,
Y ⊗ 1⊗(N−1), 1⊗ Y ⊗ 1⊗(N−2), · · · , 1⊗(N−1) ⊗ Y 〉.

2.1.2. The Clifford group
The Clifford group is the natural symmetry group of the (generalized) Pauli group,
meaning that it consists of all unitaries which map Pauli operators to Pauli operators
[27]. That is, a unitary operator UC is a Clifford operator if for any Pauli operator
P ∈ Pd,N it holds that,

UCPU
†
C = P ′ ∈ Pd,N . (2.1.5)

For two states to be local Clifford equivalent means that one of the states can be
transformed into the other by the action of local Clifford operations. The Clifford
group is important to the study of graph states because many graph states are local
Clifford equivalent to other interesting quantum states, such as stabilizer states (see
Section 4.2).

An example of a Clifford operator is the generalized Hadamard [30] operator. For
qudits of dimension d the operator is defined as,

H = 1√
d

d−1
Σ

x,y=0
ωxy |x〉 〈y| . (2.1.6)

That the Hadamard is a Clifford operator follows from the two relations,

HXH† = Z (2.1.7)
HZH† = X(d−1), (2.1.8)

which generalize the qubit relations and can be easily verified using Equations 2.1.6,
2.1.2 and 2.1.3.

2.1.3. The discrete Weyl group
A more complete3 foundation for operations on N qudits is given by the discrete
Weyl group. In the study of continuous variable systems with canonical coordi-
nates4[33], [31] all possible states of a system with N constituents may be rep-
resented in phase space, such that each state has a unique position in the 2N -
dimensional space.
3In the descriptive sense, not in the analysis sense.
4Canonical coordinates typically are given in terms of position and momentum [31] but more
generally may be specified by any two canonically conjugate operators [32], meaning operators A
and B which satisfy the relation [A,B] = i1.
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Definition 2.1. (Symplectic form and vector space). Let V be an N -dimensional
vector space over R and let u : V × V 7→ R be a bilinear map. Denote by V ∗ the
dual space to V . If the map u is:

1. skew-symmetric: u(s, t) = −u(t, s) for all s, t ∈ V .

2. non-degenerate: u is non-degenerate if the linear map ũ : V 7→ V ∗ given by
ũ(s)(t) = u(s, t), for all s, t ∈ V, is a bijection.

then u is a symplectic form on V and (V, u) is a symplectic vector space [34].

The phase space is a symplectic vector space, defined in Definition 2.1. The coor-
dinates in phase space of a system are given by the N canonical coordinate pairs
of the constituents. A useful feature of this picture is that operators on states can
be described purely in terms of the translations they induce in phase space. With
the language of discrete Weyl systems, it is possible to give a phase space type of
formulation to finite-dimensional systems.

In order to properly introduce the elements of the Weyl group, the Weyl operators,
it is helpful to first equip the vector space Z2N with the standard symplectic scalar
product, given in the following definition.

Definition 2.2. (Standard symplectic scalar product). The standard symplectic
scalar product [·, ·] is a symplectic form defined by,

[(s, t), (s′, t′)] := (s, t)
[
0N −1N
1N 0N

]
(s′, t′)T = t · s′ − s · t′, (2.1.9)

where s, t, s′ and t′ ∈ V , with V an N -dimensional vector space over R.

We will often replace the symplectic vector space
(
Z2N , [·, ·]

)
with the space

(
Z2N
D , [·, ·]

)
,

where it is helpful to recall that D = d if d is odd, and D = 2d in the case of even
d. Notice that in the case of prime d, the base vector space Zd is an isomorphically
equivalent instance of the unique finite field of order d, Fd.

Definition 2.3. (Weyl Operator). For a system of N qudits, fix any pair of multi-
indices x = (s, t) ∈ Z2N and define the Weyl operator,

Wx = Ws,t = τ−s·t(Zs1Xt1)⊗ (Zs2Xt2)⊗ · · · ⊗ (ZsNXtN ) (2.1.10)
= τ−s·tZsXt.

The notation ZsXt is a short hand for (Zs1Xt1)⊗(Zs2Xt2)⊗· · ·⊗(ZsNXtN ). Each
Weyl operator is an element of the generalized Pauli group on N constituents, and
conversely every element of the generalized Pauli group is a Weyl operator, up to a
phase that is a power of τ .
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Notice that each Weyl operator Wx is described entirely by the vector x ∈ Z2N .
This means that the operators can be specified in the phase space picture solely
by the vectors x. It is also useful to note that it follows from the definition of the
Clifford group that Weyl operators remain Weyl operators under Clifford operations.
Let UC be a Clifford operator and Wx a Weyl operator. Then,

UCWxU
†
C = Wx′ , for some x′ ∈ Z2N . (2.1.11)

Before introducing more properties of the Weyl operators, a preliminary to the
commutation relations can be stated, which is a consequence of equation 2.1.4,

Wv+w = τ [v,w]WvWw, (2.1.12)

where v = (v1,v2), w = (w1,w2) ∈ Z2N .

Proof.

Wv+w = τ−(v1+w1)·(v2+w2)Zv1+w1Xv2+w2

= τ−(v1·v2+w1·w2+v1·w2+v2·w1)τ2(w1·v2)(Zv1Xv2
)(
Zw1Xw2

)
= τv2·w1−w2·v1τ−v1v2τ−w1w2

(
Zv1Xv2

)(
Zw1Xw2

)
= τ [v,w]WvWw.

The commutation relations as well as other nice properties of the Weyl operators
are collected in Lemma 2.1, which was originally stated in [28]. A short proof is
given in Appendix A for the purpose of demonstrating that these properties follow
from those already established.

Lemma 2.1. [28] For any two Weyl operators Wv and Ww with v,w ∈ Z2N the
following properties hold:

(i) WvWw = τ2[w,v]WwWv = ω[w,v]WwWv, these are the commutation relations
for Weyl operators.

(ii)
[
Wv,Ww

]
= 0 if and only if [v,w] = 0 mod d. This is a corollary of (i).

(iii) W t
v = Wtv for t ∈ Z. In particular, W †v = W−v.

(iv) The order of Wv divides d.

It will also be particularly useful for the purposes of Section 4.3 to note that it is
possible to use modular arithmetic with Weyl operators. This follows from Lemma
2.2, which was originally stated in [28]. A proof is provided in Appendix A.
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Lemma 2.2. [28] For all v,w ∈ Z2N we have Wv ∝Ww if and only if w = v+d ·x
for some x ∈ Z2N , in which case

Ww = (−1)(d+1)[x,v]Wv. (2.1.13)

In particular, Ww = Wv if w = v mod D.

Recall that in two dimensions, the importance of the Pauli group is underpinned
by the fact that the group generates all possible unitary operations on the Hilbert
space, H2. In higher dimensions, the Weyl operators are similarly important because
the re-scaled Weyl operators, {dN2 Wx} for x ∈ Z2N

d , form an orthonormal basis for
the Hilbert space Hd,N , where orthonormality is defined with respect to the Hilbert-
Schmidt inner product 〈A, B〉 = Tr

(
A†B

)
[27]. As a consequence, any operator B

on Hd,N can be expanded as

B = d−
N
2 Σ
x
cB(x)Wx, (2.1.14)

where {cB(x)} is a set of expansion coefficients and x ∈ Z2N
d .

2.1.4. Construction of controlled two qudit operations
For quantum systems with dimension greater than two, there are multiple non-
equivalent ways that a CNOT type of operation may be realized. An operation is
a generalized CNOT if it is a two-qudit operation in which the state of the second
qudit is changed from one basis state to another, according to the state of the first
qudit. Several possible forms of generalized CNOT operations have been presented
[35, 36, 30]. Here the focus is on the same two realizations of the CNOT as in
[36]. These generalizations can be constructed from the phase and shift operators
and may be characterized by their action on a general two qudit input state. First,
we introduce the operator CX+

d , which we will refer to as the controlled raising
operation,

CX+
d |i〉 |j〉 7−→ |i〉 |j ⊕ i〉 . (2.1.15)

Note that this operator is unitary but not Hermitian. It’s inverse is given by
(CX+

d )d−1. As in the qubit case, this gate admits a decomposition in terms of
the shift and phase matrices,

CX+
d = 1

d

(
|0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗X + |2〉 〈2| ⊗X2 + · · ·+ |d− 1〉 〈d− 1| ⊗Xd−1

)
= 1
d

(d−1
Σ
n=0
|n〉 〈n| ⊗Xn

)
= 1
d

(d−1
Σ
n=0

[
d−1
Σ
m=0

ωd−mnZm]⊗Xn
)
. (2.1.16)
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As a second generalization of the qubit CNOT gate, we introduce the operator CX−d ,
which we will refer to as the controlled lowering operator,

CX−d |i〉 |j〉 7−→ |i〉 |j 	 i〉 . (2.1.17)

Note that 	 denotes subtraction modulo d. As for the controlled raise operation,
the controlled lowering operator is unitary but not Hermitian. It’s inverse is given
by (CX−d )d−1. The decomposition in terms of shift and phase matrices is as follows:

CX−d = 1
d

(
|0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗Xd−1 + |2〉 〈2| ⊗Xd−2 + · · ·+ |d− 1〉 〈d− 1| ⊗X1

)
= 1
d

(d−1
Σ
n=0
|n〉 〈n| ⊗Xn·(d−1)

)
= 1
d

(d−1
Σ
n=0

[
d−1
Σ
m=0

ωd−mnZm]⊗Xn·(d−1)
)
. (2.1.18)

In Chapter 3 these decompositions are used together with the relations in Section
4.3 in order to characterize the action of the operators CX+

d and CX−d on graph
basis states.

2.2. Quantum channels
A large variety of processes affecting quantum states can be understood in terms of
the quantum channel framework [37].

Definition 2.4. (Quantum Channel). A quantum channel is a process E(·), which
maps density operators to density operators. It has the following properties,

1. Linearity:
E(αρ1 + βρ2) = αρ1 + βρ2, (2.2.1)

for α, β ∈ C and ρ1, ρ2 ∈ Hd,N .

2. Preserves Hermiticity:

ρ = ρ† implies E(ρ) = E(ρ†). (2.2.2)

3. Preserves positivity:
ρ ≥ 0 implies E(ρ) ≥ 0, (2.2.3)

where for an operator A the notation A ≥ 0 means that A is positive semi-
definite.

4. Preserves trace:
Tr
(
E(ρ)

)
= Tr(ρ). (2.2.4)
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Furthermore, quantum channels are often called Completely Positive Trace Pre-
serving (CPTP) maps. The qualifier “completely positive” means that the channel
remains positive when it acts on a system which is only part of a larger system.

In analogy to the familiar notion of a classical communication channel, one example
of a quantum channel is a system, such as an optical fiber, which is used to transport
quantum information between a sender and receiver. The description of such a
quantum channel includes information about errors that could possibly affect the
quantum information over the course of transmission. In fact, this notion of quantum
channel encapsulates situations beyond communication. An important example is
the storage of a quantum system. Since quantum systems are subject to decoherence,
due to coupling with an external environment [6], in general errors are incurred in
the storage and later retrieval of a quantum state. In the most wide conception,
quantum channels can describe any trace preserving process which affects a quantum
state.

Whenever considering a quantum channel we will make use of an error model to
specify the action of the channel on quantum states. To this end, we distinguish be-
tween two classes of errors, correlated and uncorrelated errors. Uncorrelated errors
are noise processes which independently affect single qudits, which may be part of
a larger state, and do not affect the rest of the qudits. This type of error model
is especially useful when considering systems without short range local interactions
between qudits, such as states composed of spatially distant qudits. In contrast,
correlated errors are joint quantum operations acting on several qudits of a system,
possibly relying on multiple ancilliary qudits. All errors can be grouped into one of
these two classes. In this work we will consider only uncorrelated error models, and
moreover we will be interested in two types of quantum channel: depolarizing chan-
nels and shift error channels. Since these processes act on qudits independently, it
is possible to characterize them by their action on a single qudit.

2.2.1. Depolarizing channels
The usual formulation of a depolarizing channel describes a process whereby a single
qudit of a quantum state is replaced by the maximally mixed state with some
probability p. We can model this process [38] by writing the depolarizing quantum
channel with parameter p ∈ [0, 1], acting on qudit j as,

Ej(ρ) = (1− p)ρ+ p
1j

d
⊗ Trj(ρ), (2.2.5)

where Trj denotes the partial trace over qubit j. An equivalent formulation of a
depolarizing channel describes a process whereby a quantum state is exposed to
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white noise with probability q. In the qubit case [6], this formulation is also well
known and is alternatively modelled by,

E(d=2)
j (ρ) = (1− q)ρ+ q

3
(
σXjρσXj + σXjσZjρσXjσZj + σZjρσZj

)
,

where q = 3
4p. Note that the use of σXσZ in the previous equation is equivalent to

σY .

Similarly in the d dimensional case it is possible to construct a quantum depolar-
izing channel in the d dimensional Hilbert space [38], using the action of the Weyl
operators (Section 2.1.3) on a quantum state. This formulation of the depolarizing
channel is preferable from the operational standpoint because it is written explicitly
in terms of operators, and hence can be applied naturally to any specific quantum
state. Define the standard basis vectors for ZND by {ek}, k ∈ Z. In this form the
depolarizing quantum channel with parameter q ∈ [0, d2−1

d2 ], acting on qudit j is

Ej(ρ) = (1− q)ρ+ q

(d2 − 1) Σ
{m,n}\(0,0)

W(mej ,nej)ρ
(
W(mej ,nej)

)†
. (2.2.6)

In the above reformulation of the depolarization channel, we changed from param-
eter p to q to quantify the level of noise in the channel; the two parameters are
related as q = (d2−1)p

d2 . From now on, in referring to the depolarization channel we
will make use of the form in 2.2.6. The multi-partite state that results from sending
each qudit of an N qudit quantum state ρ0 through such a channel is,

ρ(q) = E1 ◦ E2 ◦ · · · ◦ EN (ρ0). (2.2.7)

Notice that q = 0 (p = 0) corresponds to perfect transmission, whereas q = d2−1
d2

(p = 1) corresponds to a completely depolarized state.

2.2.2. Shift error channels
The shift error channel is the higher dimensional generalization of the well known
bit flip channel [6]. The shift error channel describes a process in which a quantum
state remains unaffected with probability (1 − q), but is exposed to each of the
possible (d − 1) shift type errors with probability q

d−1 . Physically speaking, this
model applies in the case that shift type errors are the dominant error mechanism.
We can model this process by writing the shift error channel with parameter q,
acting on qudit j as,

Ej(ρ) = (1− q)ρ+ q

d− 1
d−1
Σ
m=1

Xm
j ρ(Xm

j )†

= (1− q)ρ+ q

d− 1
d−1
Σ
m=1

W(mej ,0)ρW
†
(mej ,0), (2.2.8)



2

14 2. Mathematical preliminaries

where as before {ek}, k ∈ Z are the standard basis vectors of ZND . This error channel
is useful for treating situations where we want to analytically study the effect of
adding some noise to a process, since it is simpler to treat than the more general
depolarizing noise. In Section 7.1 we will use this restricted model to analytically
study the effect of imperfect two qudit local operations in a purification protocol.



3
Purification of quantum

states

For many applications in quantum information science and quantum computing it is
necessary for a group of independent and possibly spatially separated users to share
a specific entangled quantum state, either as a resource state, or as an encoding
of the information which a computation takes as input. In the well known case of
quantum teleportation [39], the resource states are two copies of a bi-partite qubit
state with perfect correlations between the two qubits, |Φ00〉 = 1√

2 (|00〉 + |11〉),
which is known as the Bell state |Φ00〉. In the field of quantum error correction,
a tool necessary to achieve fault tolerant quantum computation, stabilizer codes
[40] require the preparation of large multi-partite entangled states as codewords.
No matter the application, a global characteristic of schemes that rely on resource
states or encoded information is that the probability that the scheme succeeds, or
even the result of the scheme, is tied to the quality of the resource states or the en-
coding of the information. In the ideal scenario, all the quantum states used during
execution of a quantum application would perfectly match their description by the
application. In reality, the physical states are subject to errors both during their
preparation and throughout the time taken to execute the application. Preparation
errors may for example be the cause of imperfect operations or faulty measurements
in the lab where the state is prepared. Over the course of running the application,
errors may be due to a coupling between the target systems and the environment,
communication of quantum information through noisy channels, or once again faulty
operations and measurements. Since in reality all applications currently interface
with imperfect quantum states, it is necessary both to have a way of quantifying
how well the physical realization reproduces the target state, as well as to have a
method for systematically improving this overlap. One quantitative measure of the
“closeness” of two quantum states is the fidelity, stated in Definition 3.1.

Definition 3.1. Let ρ, σ be density operators on two equal dimension Hilbert
spaces H1, H2, that is dim(H1) = dim(H2). The fidelity of states ρ and σ is

15
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defined as
F (ρ, σ) =

(
Tr(

√
ρ1/2σρ1/2)

)2
. (3.0.1)

In the special case where one of the two states is pure, |ψ〉, the fidelity can be written
in a simpler manner,

F (|ψ〉 , ρ) = 〈ψ| ρ |ψ〉 . (3.0.2)

In particular, throughout this work we will only need to make use of the fidelity
between a pure state, which is the target state of the application, and a general
state ρ, the physical state prepared for use in the application. As a quantifier for
the distance between two quantum states the fidelity has several nice properties
[6]. Here we list those that will be relevant to the discussion in this chapter and in
Chapter 5:

1. Fidelity is bounded: 0 ≤ F (ρ, σ) ≤ 1. If ρ 6= σ then F (ρ, σ) < 1 and ρ =
σ ⇒ F (ρ, σ) = 1. If F (ρ, σ) = 0, it implies that ρ and σ have support on
orthogonal subspaces.

2. Fidelity is Symmetric: F (ρ, σ) = F (σ, ρ).

3. Fidelity is invariant under unitary transformations: Let U be a unitary oper-
ator. Then,

F (UρU†, UσU†) = F (ρ, σ).

4. Monotonicity of the Fidelity: Restrict E to be a trace-preserving quantum
operation. Then,

F (E [ρ], E [σ]) ≥ F (ρ, σ).

Properties one and two guarantee that the fidelity reproduces intuitive expectations
of how a measure for the similarity of states should function. Namely property
one specifies that if two states are identical, the fidelity is maximum; whereas if
the two states have support only on orthogonal subspaces, then the fidelity attains
its minimum; any non-identical states with support on the same subspace of basis
functions have an intermediate fidelity. In complement property two guarantees
that the measure of similarity does not depend on how the states are labelled, or on
the order of the comparison. Armed with the fidelity for measuring the similarity
between states, it is desirable also to have a method of increasing the similarity.
Properties three and four guarantee that any operations which are unitary, or even
simply trace-preserving, will not cause the fidelity to decrease. Hence these types
of operations can be useful in a scheme aimed at improving the fidelity. As a fi-
nal remark on the fidelity, note that there are many other measures by which the
quality of a physically realized quantum state may be judged. Some of these other
methods, such as the trace distance [6] are true mathematical distance measures,
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while others are measures of the entanglement, such as the concurrence [41] and its
multi-dimensional counterpart the D-concurrence [42]. In light of the large variety
of existing measures, the motivation to focus on the fidelity is that it is not only
theoretically simple to calculate, but also can typically be calculated in a straight-
forward method from experimental measurements (see for example Equation 1 in
[43]). Moreover, in the presentation of experimental results, the fidelity achieved is
typically the measure reported on, even for higher dimensional quantum systems,
as in [22] and [44].

3.1. Purification protocols
Methods which have as their goal increasing the fidelity of physically realized states
with respect to a specific target state are known as purification protocols. Typ-
ically, these protocols take as input many copies of a flawed quantum state with
fidelity F to the target state and aim to output one copy of a state with increased
fidelity F̃ > F . Primarily this work will be focused on recurrence type protocols.
These consist of one or more subroutines, which are iteratively applied, taking al-
ways states output by the previous iteration as input. These subroutines rely on
application of local operations, local measurements and classical communication of
the measurement results. In each subroutine a post-selection condition is applied
based on the observed measurement outcomes, resulting in probabilistic success of
the routine. The number of successful iterations performed can be selected by the
users of the protocol, in order to reach a targeted final fidelity and based on how
efficiently the protocol is expected to work under the given experimental conditions
(which may be only approximately known to the users). The other types of pu-
rification protocols of interest are hashing and breeding protocols, which succeed
deterministically and operate on a large number N of input copies. These protocols
are especially effective in the limit N → ∞. There is also another kind of purifi-
cation, called filtering, which applies to a single copy of a given state and depends
on local measurements, succeeding probabilistically according to the measurement
outcomes. Unfortunately filtering protocols are applicable only to a restricted class
of input states, and cannot for example be used to increase the fidelity of any full
rank mixed two qubit state [45].

Recurrence type protocols were first introduced for bi-partite qubit states, with
Bell states as the target states [46, 47]. Following the introduction of these ini-
tial bi-partite protocols, recurrence type protocols were also introduced for various
multi-partite input states (see Section 7 from [45] for a review which covers most
possibilities), especially for target states within the class of graph states (introduced
in Chapter 4) [25, 48].
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All recurrence type protocols have a similar skeleton structure, and their effective-
ness and conditions of applicability share some common characteristics. The setup
and general structure is delineated in Box 1.

Box 1: Anatomy of purification: Recurrence Type Protocols.

The target state is a multi-partite entangled quantum state consisting of
N qudits. There are N independent and possibly spatially separated users
who wish to share a physical realization of the target state between them,
with a fidelity F̃ that is at least sufficient for their intended application. The
users decide on the sequence of purification subroutines to use, and how many
iterations are needed.

Setup: To begin the first subroutine, the N parties collaborate to pre-
pare two copies of a noisy entangled state, with fidelity F < F̃ to their target
state. The two copies are usually considered to be identical, however results
can also be stated for non-identical states, usually with the help of the quantum
de Finetti theorem [49], [50]. Each of the N collaborators holds one qudit from
each of the two noisy copies, so they each hold two qudits in total (Figure 3.1a)
and are responsible for any operations or measurements on these systems.

To begin the n-th subroutine two states output by the subroutine n-1
are retrieved from memory. Retrieval from memory is accomplished locally by
the N parties, who each swap their two qudits belonging to the two states out
of local quantum memories.

Phase 1: Copy information. Each participant independently per-
forms local operations on their two qudits, which will include a controlled
two-qudit gate (Figure 3.1b). The goal of the multi-lateral application of
controlled two-qudit gates is to copy information from the first noisy state to
the second.

Phase 2: Measure and read out information. The N participants
measure their second qudit in the basis indicated by the subroutine, which
in total means that the second noisy state is measured (Figure 3.1c). The
outcomes of the local measurements provide information about the second
copy of the state.
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Phase 3: Post-select and declare success/failure. To determine
whether success is achieved, the participants communicate their measurement
results over a classical channel and apply a post selection condition, such that
success if declared if the condition is met, or else failure is declared (Figure
3.1d). Whenever success is declared, then because of the selection condition the
participants can be sure that the measurement results reveal information about
the remaining noisy state. If failure is declared the subroutine is restarted
when appropriate.

Continue to next subroutine or stop.

In quantum mechanics, learning information about a state is akin to de-
creasing the classical uncertainty about what the state is, which implies
purification. Hence heuristically speaking each subroutine in a purification
protocol can be seen as increasing the fidelity by way of extracting information
about the noisy states, and selecting for instances where the information is
useful in decreasing uncertainty.

As for the conditions of applicability, every recurrence type protocol requires that
the input states meet at least some minimal fidelity, Fmin. If the input fidelity
F < Fmin, then the protocol will not be able to achieve purification. In the case of
perfect operation of the protocol (i.e. all operations, measurements and communi-
cation are ideal and noiseless), then any input state satisfying F > Fmin converges
towards a state with fidelity F̃ = 1, given sufficiently many applications of the
purifying subroutines. In the more realistic case where noise is introduced into
the protocol, there is also a maximum reachable fidelity, Fmax < 1. In general,
recurrence protocols have a lower minimal fidelity Fmin than hashing or breeding
protocols, meaning that they can be applied to a wider range of input states. As a
drawback however, in the presence of noise the maximal reachable fidelity, Fmax, is
lower than the corresponding maximum achievable using a hashing or breeding pro-
tocol. In this way, recurrence and hashing or breeding protocols are complementary,
in that for input states of low initial fidelity, recurrence type protocols may be used
to purify until the fidelity is greater than the minimum for a hashing or breeding
protocol, at which point these protocols may be used to complete the purification
and reach a greater final fidelity [45].
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(a) Recurrence protocols take as input two
copies of a noisy entangled state.

(b) In phase 1 information is copied from the
second state to the first. The copying of
information is facilitated by a sequence of
local operations, including a controlled

two-qudit operation.

(c) In phase 2 the second state copy is
measured.

(d) In phase 3 it is determined whether the
measurement results satisfy a post-selection
condition. If so, the protocol is declared
successful and the first state is kept. The
output state is a less noisy version of the

target entangled state.

Figure 3.1: Phases of a recurrence type purification protocol. Here we demonstrate with a noisy
bi-partite entangled state (i.e. N = 2), but in general we consider N -partite states. The

underlying physical systems (represented by the purple circles) are qudits of any dimension.
Curved blue lines between qudits represent entanglement and green shapes surrounding states

represent noise.
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Definition 3.2 (Yield of a purification protocol). The yield of a purification pro-
tocol is the ratio of the single purified state output by the protocol to the average
number of input state copies consumed during purification.

Another important consideration is that an output state with unit fidelity, F̃ = 1
can only be achieved in the asymptotic limit, meaning a large number of subroutine
iterations are necessary. In this limit however the yield of the protocol (Definition
3.2) vanishes. To see this intuitively, note that each successful subroutine has a yield
of one half, and subroutines succeed only probabilistically. Hence as the number
of iterations grow, the expected number of times a subroutine or chain of iterated
subroutines must be repeated also grows. For these reasons, the yield is zero in
the asymptotic regime. For completeness, an explicit calculation of the yield is
demonstrated in Appendix B. Nevertheless, for any desired final fidelity within the
purification regime accessible given a specific purification protocol and noise level,
the target fidelity is achievable in a finite number of iterations and the overall process
has a finite yield.

The main constraint on existing multi-partite recurrence protocols1 is that they are
restricted to working for states with qubits as the underlying physical systems. In
contrast, in the case of bi-partite states, several works have presented purification
protocols which are suitable for higher dimensional systems [35, 51, 52]. Another
major constraint is that qubit multi-partite recurrence protocols require a very large
expected number of attempts to successfully output states of reasonably high fidelity,
essentially due to the low yield and success probabilities of each purification stage.
To address these restrictions, a recurrence type protocol which has graph states
on qudits of prime dimension as the target states is presented in Chapter 5 and
constitutes the main result of this thesis. In Section 6.3 we demonstrate that for
qudits of sufficiently high dimension, the proposed protocol requires a much lower
expected number of attempts to successfully output states of reasonably high fidelity.

1Note that in [51] the authors propose a hashing type protocol for qudit GHZ-type states.





4
General dimension graph

states

Consider a mathematical graph, G. Let V denote the set of vertices of the graph,
E the set of edges and N the size of the set of vertices, N := |V |. A graph is
called undirected if the edges do not have an orientation, meaning that if one was
to trace their finger over the graph, they could choose in which direction to follow
each edge. The graph may be fully specified by its adjacency matrix Γ, which is an
N ×N matrix with one row and column per vertex. The matrix entries Γij encode
the number of edges shared between vertices i and j. The matrix entry Γij will
of course be zero whenever vertices i and j do not share an edge. The degree of
a vertex is the number of edges which terminate at that vertex. In terms of the
adjacency matrix, the degree of vertex j is the number of non-zero entries in the
the jth row or column of the matrix. In this work the degree of the graph will be
used as shorthand terminology to refer to the maximum degree of any vertex in the
graph.

Very often we will focus specifically on two colorable graphs, which are graphs
where the set of vertices can be split into a bi-partition of subsets VA and VB of
sizes NA := |VA| and NB := |VB |, such that there are no edges between vertices
of one subset. As such, all edges of these graphs are between a vertex of VA and
another vertex of VB . It is of interest to focus on two-colorable graphs because
already many applications in quantum information processing and communication
which require reference to mathematical graphs actually only require the specific
class of two colorable graphs [9]. In reference to any two colorable graph we will
assume that a suitable bi-partition has been made. For the sake of clarity, when
numbering the veritces of a two-colorable graph we will always number the vertices
of set VA first, and those of set VB second, unless otherwise indicated. The effect
of this choice is that in the adjacency matrix of a two colorable graph the first NA
rows and columns will correspond to vertices of set VA.

23
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Now that we have introduced the relevant notation relating to mathematical graphs,
we can shift attention to quantum graph states, each of which is essentially the
quantum analog of a particular mathematical graph. This is to say that there is
a surjective mapping from the set of all possible mathematical graphs on N ver-
tices to the set of quantum graph states on N identical quantum systems, which
may be d-dimensional. There are two ways to understand the correspondence be-
tween mathematical graphs and quantum graphs states, known as the constructive
formulation and the stabilizer formulation [9]. In the constructive formulation a
mathematical graph is used as a set of instructions for how to prepare a quantum
graph state. In complement, in the stabilizer formulation the mathematical graph
specifies a complete set of generators for the stabilizer group of the quantum graph
state. Each of these formulations is expanded upon in the following sections.

4.1. Constructive formulation
A graph state on N vertices with adjacency matrix Γ can be built by first associating
each vertex with a d dimensional qudit prepared in the state

|+〉 := 1√
d

d−1
Σ
j=0
|j〉 . (4.1.1)

Next, for each entry Γab of the adjacency matrix, repeatedly perform the generalized
CPHASE (G-CZ) gate, C(a,b)

z , between the qudits labelled a and b, Γab times. As in
the qubit case the G-CZ gate is invariant with respect to swapping the control and
target qudit. For this reason qudit graph states correspond to undirected graphs
and we can choose to always write the G-CZ gate as,

C(a,b)
z : =

d−1
Σ
j=0
|j〉 〈j|a ⊗ Z

j
b ⊗ 1V \{a,b} (4.1.2)

= 1
d

d−1
Σ
j=0

[ d−1
Σ
m=0

ωd−jmZm
]
a
⊗ Zjb ⊗ 1V \{a,b}

Recall that the weighted edges of the graph are specified by the adjacency matrix, so
that the edge between vertices a and b is given by Γab. In the constructive formalism
then, a graph state |G〉 is specified by

|G〉 = Π
a,b∈V
a>b

(
C(a,b)
z

)Γab |+〉⊗N . (4.1.3)

If one considers measuring a graph state, which can be done by choosing a basis
and measuring each qudit in that basis, then it is useful to start by writing the
graph state explicitly in the eigenbasis of the Z operator. For the sake of clarity, we
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introduce the string of labels q ∈ F
⊗N
d , i.e. q = (q1, q2, · · · , qN ), where qi ∈ Fd.

Denote by {ek}, k ∈ Z, the standard basis vectors of ZN . With some algebra,
Equations 4.1.1, 4.1.2 and 4.1.3 can be combined to re-express the graph state |G〉
in the phase basis,

|G〉 = 1
d
N
2

Σ
q
ω

Σ
{a,b∈V |a>b}

Γab(q·ea)(q·eb)
|q〉 . (4.1.4)

4.2. Stabilizer formulation
A quantum stabilizer state on N d-dimensional quantum systems is a simultaneous
+1 eigenstate of a commutative subgroup S of the Weyl group, which does not
contain any multiples of the identity, except for 1 itself [8], [9]. For a stabilizer state
to be uniquely defined (up to a global phase), it is necessary that the order of S is
dN . In the case that d is a prime number, S can be generated by only N operators
[9], [7], called the stabilizer generators. In the case that d has multiple prime factors,
then the number of generators is m, where N ≤ m ≤ 2N [8]. The framework of
stabilizer states is instrumental to the study of graph states because it has been
proven that whenever d is a prime power i.e. d = pk for prime p and integer k,
then any stabilizer state is local Clifford equivalent (Section 2.1.2) to a graph state,
and conversely each graph state is local Clifford equivalent to a stabilizer state [7,
8]. Motivated by these known results, we will henceforth make the restriction to
consider only prime dimensions (not prime powers), which will stand throughout
the rest of this work. With this restriction in place, all graph states considered
are also stabilizer states, and the stabilizer is generated by only N operators. One
advantage of relating graph states to stabilizer states is that the known action of the
stabilizer can be exploited to determine how other operators act on the states; this
approach is explored in Section 4.3. Following from these considerations, a graph
state can be viewed in terms of its stabilizer generators [9, 7]. For each vertex v ∈ V
there is an associated stabilizer generator [9],

gv = Xv Π
w∈N (v)

ZΓvw
w , (4.2.1)

where we have introduced the notation N (v) to denote the neighbors of vertex v,
meaning all the vertices which share a weighted edge with v.

The stabilizer formulation can be linked to the constructive formulation in another
way as well. It is possible to form a basis, called the graph state basis, for the
dN dimensional space in which |G〉 itself is a basis state. We will denote this basis
{|Ψµ〉G} and label |Ψ0〉G := |G〉. If it is clear from context we will drop the label
G and write instead {|Ψµ〉} and |Ψ0〉. Like |G〉, elements of the graph state basis
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are superposition states over all length N strings with values in Fd. States in
the basis are differentiated by the relative phases of the superposition. As shown in
Section 4.1, the relative phases of components in the graph state itself are essentially
determined by the adjacency matrix of the graph. Since only the relative phases
change between different elements of the graph state basis, each element of the basis
can be generated from |G〉 by appropriate application of the phase operators, Zµi ,
on each qudit. That is, for every label µ ∈ F

⊗N
d there is an element of the graph

state basis generated from |G〉 according to

|Ψµ〉G = Zµ1
1 ⊗ · · · ⊗ Z

µN
N |Ψ0〉G ≡W(0,µ) |Ψ0〉G . (4.2.2)

Since there are dN of these states, it is only necessary to confirm orthogonality in
order to prove that they are an orthogonal basis of the Hilbert space.

Consider the inner product of two states, |Ψµ1〉 and |Ψµ2〉, defined according to
Equation 4.2.2 and a known graph G. The inner product is,

〈Ψµ1 |Ψµ2〉 = 〈Ψ0| (Zµ1)†Zµ2 |Ψ0〉 . (4.2.3)

If µ1 = µ2 then Equation 4.2.3 is equal to 1. We focus on the case µ1 6= µ2.
Employing Equation 4.1.3, the sequence of operations (Zµ1)†Zµ2 |Ψ0〉 may be re-
written,

(Zµ1)†Zµ2 |Ψ0〉 = (Zµ1)†Zµ2 U |+〉⊗N , (4.2.4)

where we denote the the sequence of unitary operations Π
a,b∈V
a>b

(
C

(a,b)
z

)Γab by U , since
taken together they constitute a unitary process with Hermitian conjugate U†. From
Equation 4.1.2, we see that U commutes with Zν ∀ ν ∈ F⊗Nd , since each

(
C

(a,b)
z

)Γab
can be written entirely in terms of identity and phase type operators on the N
qudits. Equation 4.2.4 is equivalent to,

(Zµ1)†Zµ2 |Ψ0〉 = U (Zµ1)†Zµ2 |+〉⊗N

= U Zµ2+(d−1)µ1 |+〉⊗N . (4.2.5)

Overall then,

〈Ψµ1 |Ψµ2〉 = 〈+|⊗N U†U Zµ2+(d−1)µ1 |+〉⊗N

= 1
dN

Σ
k
〈k| 1N

[
Σ
m
ωm·[µ2+(d−1)µ1] |m〉 〈m|

]
Σ
j
|j〉

= 1
dN

Σ
m
ωm·[µ2+(d−1)µ1] Σ

k
Σ
j
δk,mδm,j

= 0. (4.2.6)



4.3. The graph state basis

4

27

In the second line we used Equations 4.1.1 and 2.1.3, and in the final line we used
that the sum over all powers of the roots of unity is equal to zero. Having confirmed
the orthogonality, we conclude that the states |Ψµ〉 constitute a basis.

We focus on two-colorable graph states (TCGS) in this work, which are quantum
graph states where the corresponding graph is two-colorable. Recall that for two-
colorable graphs we chose the convention that all vertices from set VA are numbered
before those of set VB , so that the first NA rows and columns of the adjacency matrix
are associated with the vertices in VA. In light of these considerations, we introduce
a modified notation for two-colorable graph basis states. If G is two-colorable, then
µ = (µA,µB), where µA ∈ F⊗NAd and µB ∈ F⊗NBd , and the graph basis states are,

{|Ψµ〉G} = {|ΨµA,µB 〉G}. (4.2.7)

4.3. The graph state basis
As introduced in Section 4.2, the states |Ψµ〉G = W(0,µ) |Ψ0〉G form a basis for
the dN dimensional quantum space, known as the graph state basis. For certain
applications, such as purification protocols where the performance is evaluated based
on the fidelity of the output state, it is useful to work explicitly in the graph state
basis. For this reason we set about establishing some basic facts about how the basis
states transform under the action of specific operators. The relations presented here
are well known in the qubit case [25].

Proposition 4.1. The states |Ψµ〉G are eigenstates of the stabilizers presented in
Equation 4.2.1, {

gj = Xj Π
k∈N (j)

Z
Γjk
k

}
∀ j ∈ V.

In particular, for every gi, |Ψµ〉G is an eigenstate with eigenvalue ω−µj .

Proof.
By definition, gj |Ψ0〉G = |Ψ0〉G , ∀ j ∈ V and hence W(0,µ)gj |Ψ0〉G = |Ψµ〉G.
To determine gjW(0,µ) |Ψ0〉G it is useful to evaluate the full set of commutation
relations

[
gj ,W(0,µ)

]
∀ j ∈ V . First, define Γj to be the j− th row of the adjacency

matrix Γ and ej to be the j − th standard basis vector of ZN . The stabilizers can
then be re-written as a Weyl operator, using Definition 2.3, gj = τej ·ΓjW(ej ,Γj).
Using the commutation relations from Lemma 2.1, it then holds automatically that,

gjW(0,µ) = τej ·Γj W(ej ,Γj)W(0,µ)

= ω[(ej ,Γj),(0,µ)] W(0,µ)τ
ej ·ΓjW(ej ,Γj)

= ω−ej ·µ W(0,µ)gj (4.3.1)
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Overall then, the commutation relations are,

gjW(0,µ) = ω−µj W(0,µ)gj . (4.3.2)

Therefore, the state |Ψµ〉G is an eigenstate of each gj , with corresponding eigenvalue
ω−µj ,

gj |Ψµ〉G = ω−µjW(0,µ)gj |Ψ0〉G = ω−µj |Ψµ〉G . (4.3.3)

Proposition 4.2. The action of a phase type operator Z on qudit j of an N qudit
graph state is given by

Zj |Ψµ〉G =
∣∣Ψµ+ej

〉
G
. (4.3.4)

It follows by repeated action of Zj that the action of powers of phase type operators
is given by,

Zmj |Ψµ〉G =
∣∣Ψµ+mej

〉
G
, ∀ m ∈ Zd. (4.3.5)

Proof.

Zj |Ψµ〉G = W(0,ej)W(0,µ) |Ψ0〉G
= W(0,µ+ej) |Ψ0〉G
=
∣∣Ψµ+ej

〉
G

(4.3.6)

Proposition 4.3. The action of a shift type operator X on qudit j of an N qudit
graph state is given by

Xj |Ψµ〉G = ωµj(d−1) ∣∣Ψµ+(d−1)Γj
〉
G
. (4.3.7)

It follows by repeated action of Xj that the action of powers of shift type operators
is given by,

Xm
j |Ψµ〉G = ωm

(
µj(d−1)

) ∣∣Ψµ+m(d−1)Γj
〉
G
∀ m ∈ Zd. (4.3.8)

Proof.
The transformation is actually simplest when the d− 1 power of the shift operator
is applied, so this is considered first,

Xd−1
j |Ψµ〉G = ωµjXd−1

j gj |Ψµ〉G
= ωµj W((d−1)ej ,0) τ

ej ·Γj W(ej ,Γj)W(0,µ) |Ψ0〉G
= ωµjW(0,Γj)W(0,µ) |Ψ0〉G
= ωµjW(0,µ+Γj) |Ψ0〉G
= ωµj

∣∣Ψµ+Γj

〉
G
. (4.3.9)
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Following a similar derivation, the action of the shift operator on a graph basis
state can be calculated by repeatedly invoking the stabilizer operator eigenvalue
equations,

Xj |Ψµ〉G = ωµj(d−1)Xjg
d−1
j |Ψµ〉G

= ωµj(d−1)X1+d−1
j W(0,(d−1)Γj)W(0,µ) |Ψ0〉G

= ωµj(d−1)
1W(0,µ+(d−1)Γj) |Ψ0〉G

= ωµj(d−1) ∣∣Ψµ+(d−1)Γj
〉
G

(4.3.10)

4.4. Depolarization of states
For the sake of tractability, it is frequently useful to restrict the type of input states
to a quantum information protocol to have a standard form. Furthermore, many
simple models of noisy quantum states are diagonal in the graph state basis. An
example is the state which corresponds to the target state with probability p, but
to the maximally mixed state with probability 1 − p. Studying only a restricted
form for input states may raise concerns however as to the wider applicability and
performance of a protocol. In this section we demonstrate that there exists a pro-
cedure, called the depolarization procedure, by which a general multi-partite qudit
state ρ with fidelity F to some target graph state |G〉 can be brought into a form
that is diagonal in the graph state basis, without decreasing the fidelity F . This
procedure may however decrease the overall entanglement of the state (according to
some entanglement measure, such as the D-concurrence [42]), [51]. The existence
of such a procedure allows restricting the class of input states to those which are
diagonal in the graph state basis, without loss of generality.

Consider an arbitrary graphG withN vertices, V = {v1, v2, · · · , vN}, andN distinct
spatially separated parties, each holding one of N qudits belonging to a general
mixed state ρ. We consider the N particle graph basis states associated with G,
{|Ψµ〉}G. Since these states form a basis for the dN dimensional state space Hd,N ,
the density operator ρ may be expressed

ρ = Σ
µ,ν
λµ,ν |Ψµ〉 〈Ψν |G . (4.4.1)

We demonstrate that it is possible to depolarize ρ to a state ρG which is diagonal
in the graph state basis using only LOCC operations, without altering the diagonal
coefficients. Now, consider two graph basis states |Ψµ〉G and |Ψν〉G which differ in
at least one bit, say µ1 6= ν1. Then, using the stabilizer generators introduced in
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Section 4.2 and the eigenvalue equations for graph basis states from Section 4.3, we
have that g1 |Ψµ〉G = ω−µ1 |Ψµ〉G and g1 |Ψν〉G = ω−ν1 |Ψν〉G, where ω is the first
d − th primitive root of unity. If the N parties then jointly perform with uniform
probability 1

d the operations corresponding to one of {1, g1, g
2
1 , · · · , gd−1

1 }, then the
resulting state is

ρG = 1
d

(
ρ+ g1ρ(g1)† + g2

1ρ(g2
1)† + · · ·+ gd−1

1 ρ(gd−1
1 )†

)
. (4.4.2)

The amplitude of the term |Ψµ〉 〈Ψν |G resulting from this process is

λµ,ν
d

(1 + ω(ν1−µ1) + ω2(ν1−µ1) + · · ·+ ω(d−1)(ν1−µ1)). (4.4.3)

For any possible combination of ν1 and µ1 such that µ1 6= ν1 (both elements of FNd ),
this amplitude is simply a multiple of the sum of the d− th primitive roots of unity,
and hence is equal to zero. If instead µ1 = ν1, then the sum in Equation 4.4.3 is
equal to d and the diagonal coefficients remain fixed. Following suit, all off diagonal
elements can be eliminated in a total of N rounds by probabilistically applying the
operations corresponding to a power of {gj} ∀ j ∈ {1, · · · ,N} to the state resulting
from the previous round. Overall, the resulting state is

ρG = Σ
µ
λµ |Ψµ〉 〈Ψµ|G ,

with λµ ≡ λµ,µ.

4.5. Examples of two-colorable graph states
There are many possible configurations of two-colorable graphs possible, especially
when allowing graphs that have weighted edges, as is appropriate for graphs corre-
sponding to qudit graph states. For the sake of testing the efficacy of a purifica-
tion protocol for graph states, it is helpful to have a particular class of TCGS in
mind. In this work we will introduce and focus on two classes of TCGS: Green-
berger–Horne–Zeilinger (GHZ) type states, and Linear Cluster states.

4.5.1. GHZ type states
GHZ type states on N qudits are an important class of entangled quantum state.
In two dimensions, GHZ type states maximally violate N qubit Bell inequalities
[53]. In general dimensions, GHZ type states are a useful resource for quantum
communication protocols, including quantum secret sharing [2], [3], which can be
used as a primitive for secure function evaluation. A GHZ state can be written as
[54],
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|GHZd,N 〉 = 1√
d

(
|0〉⊗N + |1〉⊗N + · · ·+ |d− 1〉⊗N

)
= 1√

d

(
|0〉+ |1〉+ · · ·+ |d− 1〉

)
. (4.5.1)

A quantum graph state corresponding to either the complete graph or the star graph,
of which examples are shown in Figure 4.1, is local Clifford equivalent to a GHZ
type state. In Appendix C we demonstrate the local unitary equivalence of GHZ
type states and star graph states by applying generalized Hadamard operations to
all but the first qudit of a GHZ type state.

Definition 4.1. (Local complementation). For two sets X and Y define the sym-
metric difference between the sets by,

X∆Y =
(
X
⋃
Y
)
\
(
X
⋂
Y
)
. (4.5.2)

Local complementation about a vertex v of a graph G is an operation τv which
complements the induced subgraph on the neighborhood of v [9]. The neighborhood
Nv of a vertex v consists of all the vertices which share an edge with v, i.e. Nv =
{u | (v, u) ∈ E}. For each vertex u of G, with neighborhood Nu, the graph τv(G)
resulting from local complementation about vertex v has the updated neighborhood,

N (τv(G))
u =

{
Nu∆(Nv\{u}), if (u, v) ∈ E,
Nu, otherwise.

(4.5.3)

The complete graph is related to the star graph with vertex n as the central vertex
by local complementation (Definition 4.1) about vertex n. In both the qubit case [9]
and the qudit case with prime dimension d > 2 [55], local complementation about a
single vertex can be accompished by a Clifford operator; hence the complete graph
state is local Clifford equivalent to the GHZ type state. Note that the complete
graph is not two colorable, whereas the star graph is always two-colorable. For
this reason, it is preferable to reference star graphs and not complete graphs when
working with GHZ type states.
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(a) The complete graph with 8 vertices

1

2

3

4

5 6

7

8

(b) The star graph with 8 vertices

Figure 4.1: Graphs corresponding to graph states with local Clifford equivalence to GHZ type
states.

4.5.2. Linear Cluster States
Cluster states are graph states corresponding to a square lattice graph in s spa-
tial dimensions. For s ≥ 2 it has been shown both for qubits [4] and for qudits
with d > 2 [5] that cluster states constitute a universal resource for the so-called
one way quantum computer [4]. One way quantum computation is an alternative
approach to the circuit model of quantum computation, and it is based on perform-
ing measurements of resource states in order to perform a computation. Examples
of s-dimensional cluster states for the first three spatial dimensions are shown in
Figure 4.2. The name linear cluster states is given to cluster states in one spatial
dimension. Note that the 3-dimensional cluster state shown in Figure 4.2c is only a
single unit cell of the lattice.

1 5 2 6 3 7 4 8

(a) Linear cluster state: spatial dimension 1.

1 6 3 8

4725

(b) Spatial dimension 2.

1 6

25

7 4

83

(c) Spatial dimension 3, unit cell.

Figure 4.2: Cluster states in the first three spatial dimensions.

Despite the simplicity of the description of cluster states within the stabilizer for-
malism, an explicit form for these states, in any basis, requires a number of terms
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that is exponential in the number of qudits in the state. For the case of qubits,
the tie between entanglement of cluster states and the large number of basis states
needed to express them has been expressed in terms of the Schmidt measure – a
measure for multi-partite entanglement [56]. For qubit states in spatial dimensions
1, 2, and 3 the entanglement as quantified by the Schmidt measure scales with the
number of qubits and is

⌊
N
2
⌋
[9]. For comparison, the Schmidt measure of any qubit

GHZ type state is 1 [9], and hence does not scale with the number of qubits in the
state.

Although linear cluster states are not a universal resource for one way quantum
computation, unlike their higher spatial dimension counterparts, they are appealing
as example states for performance evaluation of a protocol. From a performance
evaluation standpoint linear cluster states are interesting because they are simple
to work with in calculations, but they have the same degree structure (constant
degree) as their higher spatial dimension counterparts. Additionally, at least by
one measure (the Schmidt measure – proven in the qubit case) they have the same
entanglement structure.





5
Recurrence scheme for

qudit graph state
purification

The recurrence based purification scheme for qudit TCGS we here propose is a sim-
ple extension of the qubit scheme presented in reference [25], with some important
modifications that account for the difficulties presented by working over a config-
uration space with elements in Fd as opposed to F2. Recall that the vertices of a
two-colorable graph can be split into two subsets, VA and VB of size NA = |VA| and
NB = |VB |, such that all vertices within one subset only share edges with vertices
from the other subset; the set of edges of the graph is E. A perfect graph state
corresponding to graph G is denoted |Ψ0,0〉G. As explained in Equations 4.2.2 and
4.2.7, any N qudit quantum state can be represented in the graph state basis of the
graph G and each of these basis states is uniquely labeled by a vector µ = (µA,µB),
where µA ∈ FNAd and µB ∈ FNBd .

As setup, we consider N spatially separated experimenters who each require one
qudit of a specific N qudit TCGS, corresponding to a graph G. They organize
themselves into two groups, according to the sets VA and VB . The experimenters
are able to collaborate in order to prepare identical copies of N qudit quantum
states of fidelity F to their target graph state. These states are distributed such
that each experimenter corresponds to a vertex of the desired graph state, and
for every imperfect copy of the graph state an experimenter has control of the
qudit matching their vertex. We will assume that the experimenters perform the
depolarization procedure presented in Section 4.4, so that their input states are
always diagonal in the graph state basis. That is, they can jointly prepare states

ρ = Σ
µA,µB

λµA,µB |ΨµA,µB 〉 〈ΨµA,µB | , (5.0.1)

where λ0,0 = F . We propose a purification protocol relying on local operations by
each individual experimenter and classical communication between experimenters.

35
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Success of the protocol is achieved probabilistically, as long as F > Fmin, where
Fmin is the minimal required initial fidelity. With this protocol, the group uses
many input states of fidelity F to the desired graph state to prepare a single output
state of target fidelity F̃ , where F̃ > F . The protocol consists of two subroutines, P1
and P2, which target errors on the subsets of qudits VA and VB , respectively. The
subroutines take two identical copies of a state as input and are applied iteratively,
so that two states output by the previous level of subroutines are used as input in
the subsequent level of subroutines. In this way, the number of initial input states
required is exponential in the number of levels of subroutine processing applied.

5.1. Purification subroutines
Each purification subroutine takes as input two identical copies ρ1, and ρ2 of a state
ρ (Equation 5.0.1), diagonal in the graph state basis and with fidelity F to the target
graph state. If the subroutine is successful, a single copy ρ̃ with fidelity F̃ is output.
The total input state is ρ12 = ρ1 ⊗ ρ2. The lack of initial correlations between the
two input copies is guaranteed by the initial depolarization procedure (Section 4.4).

The exact sequence of actions which make up subroutine P1 are detailed in Box 2.
Subroutine P2 can be obtained from P1 by exchanging the roles of set VA and VB .
The main difference in these sub-routines from the qubit version of the protocol,
presented in [25], is that the parties in VA apply different realizations of the CNOT
gate to their qudits than the parties in VB . In the qubit case all parties apply
CNOT’s because there is a unique realization of the CNOT gate in two dimensions.

Box 2: Subroutine: P1

Phase one: Local operations.

1. All parties belonging to set VA apply local controlled raise operations,
CX+

d , to their two qudits, with the one from state ρ2 as source and the
one from state ρ1 as target. See Figure 5.1c.

2. All parties from set VB apply controlled lowering operations, CX−d , to
their two qudits, with the one from ρ1 as source and the one from ρ2 as
target. See Figure 5.1d.

The action of this sequence of multilateral controlled raising and lowering op-
erations is,
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|ΨµA,µB 〉 |ΨνA,νB 〉 7−→ |ΨµA,µB⊕νB 〉
∣∣ΨνA⊕(d−1)µA,νB

〉
, (5.1.1)

where ⊕ denotes addition modulo d. A proof is given in Appendix D.

Phase two: Measurements.

3. All qudits belonging to the set VB of the second state copy ρ2 are measured
in the eigenbasis of the phase operator, {|0〉 , |1〉 , · · · , |d− 1〉}.

4. All parties belonging to set VA apply a Hadamard operation to their qudit
from state ρ2. This changes the measurement basis from the phase basis
to the shift basis.

5. All qudits belonging to set VA of the second state copy, ρ2, are measured
in the eigenbasis of the shift operator {|0〉x , |1〉x , · · · , |d− 1〉x}.

6. Each experimenter announces their measurement result over a classical
communication channel.

The measurement results in the sets VA and VB yield results ωαj and ωβi ,
respectively, with αj , βi ∈ Fd, i ∈ ZNA , j ∈ ZNB .

Phase three: Post-selection.

7. Each party belonging to set VA adds to their measurement result, αj , the
results of all parties from set VB that share an edge with their vertex,
{βk | Γjk 6= 0}, weighted by the corresponding edge weight, Γjk, from the
adjacency matrix Γ.

8. Each party belonging to set VA announces the result of their calculation
modulo d. If every member of subset VA obtains a result that is 0, then
the subroutine is declared to have been successful.

That is, subroutine P1 is successful and the first state is kept if the measurement
results fulfill the condition,

(αj + Σ
(k,j)∈E

Γjkβk) mod d = 0, ∀j ∈ ZNA . (5.1.2)

Fulfillment of this condition implies that µA ≡ νA. A full proof that subroutine
P1 works as described is given in Appendix D. In the case that the measurement
condition is not satisfied, the first state is also discarded and subroutine P1
failed.
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Resulting state.

When the protocol is successful, the resulting state ρ̃ remains diagonal
in the graph state basis and has the updated coefficients

λ̃γA,γB = Σ
{(µB ,νB)|µB⊕νB=γB}

1
K1

λγA,µBλγA,νB , (5.1.3)

where K1 is a normalization constant, such that tr(ρ̃) = 1, and indicates the
success probability of the protocol. Explicitly,

K1 = Σ
µA

Σ
µB

Σ
νB

λµA,µBλµA,νB . (5.1.4)

To understand why the normalization factor K1 corresponds to the success
probability of the sub-routine, note that it is simply the probability that the
measurement results are compatible with the post-selection condition, which
determines the success of the sub-routine.

(a) Symbols for controlled raise (CX+
d
)

and controlled lower (CX−
d
) operations.

(b) Input: Two identical copies of an N
qudit state.

(c) Step 1: members of set VA do CX+
d

operations from state two to state one.
(d) Step 2: members of set VB do CX−

d

operations from state one to state two.

Figure 5.1: Local operation sequence of subroutine P1. In (b), (c) and (d) the colored nodes of
the two graphs represent qudits; the edges of the graphs represent entanglement between qudits.
In each graph, the nodes in subset VA are colored pink and drawn lower than the nodes in subset

VB , which are colored green.
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The sequence of operations in phase one of subroutines P1 and P2 are visualized in
Figures 5.1 and 5.2 respectively. Since subroutine P2 is simply obtained from P1 by
exchanging the roles of set VA and VB , we do not explicitly run through the steps of
the routine. Rather, we state only the post-selection condition and the formula for
the coefficients of an updated state. Subroutine P2 is successful if the measurement
results fulfill the condition

(βi + Σ
(i,k)∈E

Γki αk) mod d = 0, ∀i ∈ ZNB , (5.1.5)

where {βj} is the set of measurement results recorded when all parties in set VB
measure their qudit from state copy two in the shift basis, and {αk} is the set of
measurement results recorded when all parties in set VA measure their qudit from
state copy two in the phase basis. When P2 is successful, the resulting state ρ̃
remains diagonal in the graph state basis and has the updated coefficients,

λ̃γA,γB = Σ
{(µA,νA)|µA⊕νA=γA}

1
K2

λµA,γBλνA,γB . (5.1.6)

The normalization constant K2 is given by,

K2 = Σ
µA

Σ
νA

Σ
µB
λµA,µBλνA,µB . (5.1.7)

(a) Symbols for controlled raise (CX+
d
)

and controlled lower (CX−
d
) operations.

(b) Input: Two identical copies of an N
qudit state.

(c) Step 1: members of set VB do CX+
d

operations from state two to state one.
(d) Step 2: members of set VA do CX−

d

operations from state one to state two.

Figure 5.2: Local operation sequence of subroutine P2. In (b), (c) and (d) the colored nodes of
the two graphs represent qudits; the edges of the graphs represent entanglement between qudits.
In each graph, the nodes in subset VA are colored pink and drawn lower than the nodes in subset

VB , which are colored green.
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5.2. Full purification protocol
The full purification protocol proceeds by iterative application of sub-protocols P1
and P2, always using two identical copies output by the previous iteration as input
for the new round. For general input states diagonal in the graph state basis and
an initial fidelity greater than the minimum, simple alternation between P1 and P2,
starting with either P1 or P2 is an effective scheme for purification. We have not been
able to devise a general proof that this scheme is effective – that is, without making
reference to a particular class of input states – however in the following chapter
we provide analysis of the efficacy with respect to three classes of input states,
including both analytic and numeric results. We can however offer a general heuristic
discussion of why the protocol works. Successful application of subroutine P1 reveals
information about µA, resulting in purification within the subset VA. On the other
hand, subroutine P2 reveals information about µB , resulting in purification within
the subset VB . Overall purification requires interleaving the two subroutines, in
order to extract information about both subsets of vertices. This scheme is not
optimized, in the sense that for particular forms of input states, a sequence such as
P1-P2-P1-P1-P1-P2-P2 may be more effective. In Section 6.1, we consider a type
of input state for which repeated application of only sub-protocol P1 suffices.

P1: target errors in VA

P2: target errors in VB
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Figure 5.3: Subroutine structure of the purification protocol.



6
Performance analysis of
the error-less protocol

In order to characterize the performance of the purification protocol presented in
Chapter 5 we study the effect of purification on three different classes of input states.
The performance of the protocol for states of different dimensions and node numbers
is primarily measured using the minimal required fidelity of an input state as metric.
In Section 6.3 we introduce the expected number of attempts required to success-
fully purify a noisy input state to a given target fidelity as another quantitative
performance metric.

6.1. Binarylike mixtures
The first type of input state that we will consider are those where all of the errors
are confined to one subset of nodes, either VA or VB . Given a specific two-colorable
graph G, take for example states where all errors are confined to set VA (i.e. µB = 0),

ρA = Σ
µA
λµA,0 |ΨµA,0〉 〈ΨµA,0|G . (6.1.1)

Physically, this type of state could arise if an experimenter in an ideal laboratory
locally prepares a perfect graph state |Ψ0,0〉G and keeps all of the nodes belong-
ing to set VB in noiseless memories, while sending each of the nodes from set VA
through dephasing channels to NA other experimenters. For this type of state only
application of sub-protocol P1 is needed in order to achieve purification, since only
errors on set VA need to be corrected. Given two identical copies of any state of
this type, the result of a single successful round of protocol P1 is an output state
ρ̃A. According to Equations 5.1.3 and 5.1.4 the updated coefficients are

λ̃µA,0 =
λ2
µA,0

Σ
µA
λ2
µA,0

. (6.1.2)

Hence, conditioned upon success, this process applies a map which amplifies the
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weight of the largest coefficient relative to the other coefficients. For distillation of
these states to be possible it is then sufficient that λ0,0 > λµA,0 ∀µA 6= 0.

For the sake of concreteness, we examine a one-parameter family of states,

ρA(F ) := F |Ψ0,0〉 〈Ψ0,0|G + Σ
µA 6=0

(1− F )
(dNA − 1) |ΨµA,0〉 〈ΨµA,0|G , (6.1.3)

defined by the fidelity F between ρA(F ) and the ideal graph state. Using Equations
6.1.1 and 6.1.2, we determine the fidelity of the output state ρA(F̃ ) to be

F̃ = F 2

F 2 + (1−F )2

dNA−1

. (6.1.4)

The probability that a single round of protocol P1 is successful can be read from the
normalization constant in the denominator of F̃ , and is equal to F 2 + (1−F )2

dNA−1 . As
mentioned in Section 5.1, the normalization constant indicates the success probabil-
ity of the protocol because it corresponds to the probability that the measurement
results are compatible with the post-selection condition, which determines whether
the protocol succeeds. The continuous map resulting from successful application of
protocol P1 has attractive fixed points at F = 0 and F = 1, which are separated by
a repulsive fixed point Fmin = 1

dNA
, corresponding to the minimum initial fidelity

to achieve purification. The fixed point of fidelity equal to one is attractive for all
initial fidelities greater than the minimum.

One observation that can already be made from the simple analysis of these bina-
rylike input states is that the output fidelity F̃ increases both with the dimension
d and NA, the number of nodes in set VA. Hence the dimension of the underlying
quantum systems and the type of graph state under consideration influence the ef-
ficacy of the protocol. Notice however that the final fidelity is independent of the
total number of nodes in the graph state, and depends only on the number of nodes
in the targeted subset, here VA. In Figure 6.1 the initial and final fidelity are com-
pared for various dimensions of the underlying quantum systems, first for a GHZ
type state with any number of nodes (Figure 6.1a ) and then for a five node linear
cluster state (Figure 6.1b). Recall that a GHZ type state has only one node in the
set VA, so an N node GHZ type state has N −1 nodes in the set VB , which are each
connected by an edge to the single node in set VA. Since for this type of input state
the efficacy of sub-routine P1 depends only on NA and not on N , the performance
is the same for GHZ type states of any number of nodes, N . In contrast, for linear
cluster states the number of nodes in set VA scales with the number of nodes, N .
The analytic results from Figure 6.1 confirm that the dimension of the underlying
quantum systems makes a dramatic impact on the efficacy of the protocol, which
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(a) GHZ state (NA = 1). (b) 5 node linear cluster state (NA = 3).

Figure 6.1: Input fidelity vs. output fidelity following a single application of P1 for various
dimensions of the underlying quantum systems. Note that due to the different sizes of VA in (a)

the minimum fidelity to purify is 1
d
, whereas in (b) it is 1

d3 .

produces a much higher output fidelity for a given input fidelity for systems of larger
dimension.

To paint an intuitive picture of why purification should benefit so much from larger
system dimension, we can consider the Von Neumann entropies [6] of the graph
states before and after purification.

Definition 6.1. (Von Neumann entropy). The Von Neumann entropy of a quantum
state ρ is

S(ρ) = −Tr
(
ρ log2(ρ)

)
, (6.1.5)

where the logarithm is usually defined to have base 2. If {λx} are the eigenvalues
of ρ, then the Von Neumann entropy may be re-expressed as

S(ρ) = −Σ
x
λx log2(λx). (6.1.6)

In fact, using the change of base formula for the logarithm it is straightforward to
show that changing the base of the logarithm in the Von-Neumann entropy yields a
simple re-scaling of the entropy.

Definition 6.2. (Re-scaled Von Neumann entropy). For a quantum state ρ, the
re-scaled Von Neumann entropy is given by

Sa(ρ) = −Tr(ρ loga(ρ)). (6.1.7)

The relation between Sa(ρ) and S(ρ) is as follows,

Sa(ρ) = S(ρ)
log2(a) . (6.1.8)
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An insightful interpretation of the re-scaled Von Neuman entropy is provided by
Achim Kempf [57], “the amount of ignorance, i.e. the entropy, Sa, is the number
of questions – of the type that possess a possible outcomes – that we would need to
have answered to remove our ignorance”. It follows from this interpretation that
when working with qudits of dimension d, it is most natural to use Sd to measure
the entropy, since any questions we ask about the quantum states (i.e. measure-
ments), will have d possible outcomes. For the one parameter family of states under
consideration, the entropy of the initial states is given by

Sa,In = −
(
F · loga(F ) + (1− F ) · loga

(
1− F
dNA − 1

))
. (6.1.9)

Following a single successful round of purification the density matrix has coefficients
given by (6.1.2) and has entropy:

Sa,Out = −
(
F̃ · loga(F̃ ) + (dNA − 1)(1− F̃ ) · loga(1− F̃ )

)
. (6.1.10)

To emphasize the role of dimension, first fix a = 2 in Equations 6.1.9 and 6.1.10,
meaning that the entropies are calculated with log base 2, as in the standard Von
Neumann entropy. Note that for any fixed fidelity and number of nodes in VA, the
initial entropy of the states rises with the dimension of the qudits, since increasing
the dimension shrinks the argument of the logarithm. In contrast, the entropy of the
output states decreases with the dimension, which can easily be verified by numeric
evaluation of Equation 6.1.10. In terms of entropy then, the purification process
is more effective for larger dimensions because a greater total amount of entropy is
removed by the procedure and an output state of lower entropy relative to those from
smaller dimensions is achieved. The preceding statements are illustrated in Figure
6.2a, which compares for several dimensions the initial Von Neumann entropy of a
five node linear cluster state to the ratio of the initial to final entropy, in a single
log plot. Now, for the sake of emphasizing that for d dimensional qudits it is helpful
to consider the re-scaled entropy Sd, set a = d in Equations 6.1.9 and 6.1.10. As
can be seen in Figure 6.2b, with this change the previous remarks – that for larger
dimensions the purification process is more effective because a greater total amount
of entropy is removed – still hold true. The benefit of working with the re-scaled
entropy, Sd, is that it removes the staggering of magnitudes of the initial entropy,
which are due to the differences in minimum initial fidelity between the dimensions,
allowing for a clearer comparison.

6.2. One parameter family of fully mixed states
Another simple type of input state that can be considered is a one parameter mixture
between the perfect graph state and a fully mixed state. Given a specific two-
colorable graph G with |V | = N and taking x to be the control parameter, this
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(a) Standard Von Neumann entropy, S2. (b) Re-scaled entropy, Sd.

Figure 6.2: Ratio of the initial and final Von Neumann entropy (log scale) compared with the
initial Von Neumann entropy of a 5 node linear cluster state (NA = 3).

family of states can be written,

ρ(x) = x |Ψ0,0〉 〈Ψ0,0|G + 1− x
dN

1, (6.2.1)

where d is the dimension of the qudits which form the nodes of the graph state.
This type of state is realized physically if an experimenter executes a preparation
procedure that works flawlessly with probability x, but malfunctions and creates a
completely unknown state on the N qudits with probability (1−x). For this family
of states we analytically examine the effect of applying one round of purification,
using either sub-protocol P1 or P2 and then numerically simulate further rounds
of purification which proceed by alternating between P1 and P2. The fidelity of
an input state from this family to the perfect graph state is x + 1−x

dN
. Following

a single successful application of sub-routine P1 or P2, the fidelity of the output
state is calculated using Equation 5.1.3 or 5.1.6, resulting in Equation 6.2.2 or 6.2.3,
respectively.

F̃ (P1)(x) = dNA

(x2(dNA − 1) + 1)

(
x2 + 2x1− x

dN
+ dNB

(1− x)2

d2N

)
, (6.2.2)

F̃ (P2)(x) = dNB

(x2(dNB − 1) + 1)

(
x2 + 2x1− x

dN
+ dNA

(1− x)2

d2N

)
. (6.2.3)

The success probabilities of sub-protocols P1 and P2 can be read off from the pre-
factor in the updated fidelity, and are p(P1)

succ = d−NA(x2(dNA − 1) + 1) and p(P2)
succ =

d−NB (x2(dNB−1)+1), respectively. Comparison of the updated fidelity and success
probability corresponding to each of the sub-protocols exposes that differences in
magnitude between the two are dictated entirely by the number of nodes in the
subsets VA and VB .
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By analytically studying the updated coefficients following a single application of
sub-routine P1 or P2 we determine the minimum fidelity on input states necessary
to achieve purification. Each of the functions corresponding to P1 or P2 respectively
has three fixed points in the fidelity1, i.e. where F̃ (F ) = F ; for both functions the
first is F̃ = 1 = F , which occurs when x = 1; for both functions the second is
F̃ = 1

dN
= F , which occurs for x = 0; the third fixed point for either function2 can

be used to determine the minimum purification fidelity. The third fixed point of the
two functions occurs at the parameter:

x∗
(P1) = dN − 2dNA + 1

1− dN − dNA + dN+NA
(6.2.4)

x∗
(P2) = dN − 2dNB + 1

1− dN − dNB + dN+NB
(6.2.5)

Having analytically determined the points x∗(P1), x∗(P2), we numerically verify that
for any input state ρ(x) such that x > max(x∗(P1), x∗

(P2)) purification can be
achieved by nested alternating application of P1 and P2, and an output state of
fidelity 1 can be achieved asymptotically in the number of purification steps. In
the non-asymptotic regime, meaning when we consider any specific finite number of
purification subroutine iterations, a final fidelity that is arbitrarily close to one can
be achieved given any initial x value greater than the minimum and using a finite
number of purification stages, succeeding with a non-zero cumulative probability.
Figure 6.3 illustrates for a 3 node GHZ type state with d = 5 that starting from an
initial x value greater than the minimum by only 1e − 4, updated fidelities larger
than 1−1e−2, 1−1e−3, 1−1e−6 and 1−1e−7 can be achieved after 4, 5, 6, and
7 rounds of purification respectively. Note that the cumulative success probability
of the protocol in Figure 6.3 is very low, at about 20%; in contrast, the individual
purification subroutine success probability is less than 50% only for the first itera-
tion, and the probabilities subsequently rise to near 100% by the fifth iteration. We
conclude that the cumulative probability is limited by the success probability of the
first purification subroutine, which for the case of an input state with nearly the
minimal initial fidelity, is very low. Thus the drawback of purifying states near the
boundary of the purification regime is a limited probability of success.

Keeping in mind that any state in this family with initial x value greater than the
minimum can be purified to a fidelity arbitrarily close to one, the minimum initial
fidelity is a quantitative measure that can be used to draw comparison between
1As opposed to fixed point in the parameter x, which would be F̃ (x) = x.
2The expression of the fidelity of the third fixed point is more complicated, so we confine ourselves
to only presenting the formula for the parameter at which it occurs.
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Figure 6.3: Left axis: Fidelity of output state ρ(x̃) versus number of purification steps applied,
beginning with sub-protocol P2 and alternating between P1 and P2 thereafter, for a 3 node GHZ
type state (NA = 1, NB = 2) with underlying system dimension of 5. Right axis: probability
that the indicated purification step succeeds (red markers) and probability that the overall

sequence of purification steps succeeds (teal markers). For this input state x∗(P1) = 0.2339 and
x∗(P2) = 0.0255, and the initial x value (corresponding to purification step 0) was chosen to be

x = 1e− 4 + max(x∗(P1), x∗(P2)).

states of different dimensions, as well as between linear cluster and GHZ type states.
In Figure 6.4 we plot the minimum initial fidelity required to achieve purification
against the number of qudits in the graph state for (a) linear cluster states and (b)
GHZ type states, for various dimensions of the qudits making up the graph states.
From Figure 6.4a, it is apparent that for every dimension of qudit considered the
minimum initial fidelity decreases approximately exponentially in the number of
qudits that make up the state. In contrast, for GHZ states, (Figure 6.4b) the
minimum fidelity required actually increases with the size of the graph state. For
both types of states we see that states made up of qudits of larger dimension have
far less stringent minimal initial fidelities that their lower dimension counterparts,
and hence can be distilled for a much larger range of fidelities.

6.3. Depolarized states
The most important family of noisy quantum states that we will consider are depo-
larized states. These are states where each of the qudits in the state has been subject
to depolarizing noise. Physically, this type of state corresponds to the preparation of
a perfect graph state in an ideal laboratory, followed by subsequently sending each
qudit through a depolarizing channel to a new laboratory, where a different experi-
menter will have control of that qudit throughout the rest of the protocol. Within
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(a) Linear cluster state. (b) GHZ type state.

Figure 6.4: Minimum initial fidelity required to achieve purification vs. the number of qudits in
the graph state, N for (a) linear cluster type states and (b) GHZ type state, for various

dimensions of the states qudits.

the restriction to uncorrelated error models this is a sort of worst case preparation
procedure, since real sources of uncorrelated noise are not perfectly depolarizing.
We expect any noise source where some errors are less common than others to have
a less harmful effect on entangled states than depolarizing noise, as long as any
quantitative comparison considers the error parameter for the weaker noise to be
based on the most probable error type. For modelling of the depolarizing channel,
refer to Section 2.2.1. For a TCGS G, label the nodes in subset VA of size NA = |VA|
by {a1, a2, · · · , aNA} and the nodes in VB of size NB = |VB | by {b1, b2, · · · , bNB}.
The multi-particle state that results from sending each node of the perfect TCGS
through such a channel is

ρ(q) = Ea1 ◦ · · · EaNA ◦ Eb1 ◦ · · · ◦ EbNB
(
|Ψ0〉 〈Ψ0|G

)
, (6.3.1)

where each Ej is given by 2.2.6. Notice that q = 0 corresponds to perfect trans-
mission, whereas q = d2−1

d2 corresponds to a completely depolarized state. Observe
from Equation 2.2.6 that charting the effect of the depolarization channel requires
the action of d2 − 1 operators per qudit in the N qudit state. The depolarization
process may introduce up to dN terms (the size of the graph state basis) into the
quantum state. Overall then, determining the depolarized state ρ(q) involves the
action of N × (d2 − 1) operators on up to dN graph basis states. As a result of
the exponential scaling involved in determining and representing the depolarized
input state, we proceed by numerical analysis to study the purification regime for
depolarized input states. In Appendix F.1 we verify the correctness of the numerical
depolarization channel by comparison to an analytical calculation for a qubit GHZ
type state with three nodes.

The purification regime for depolarized input states is defined by two different met-
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(a) Maximum depolarization noise per qudit. (b) Minimum fidelity to achieve purification.

Figure 6.5: Purification regimes for depolarized GHZ type states of qudits of low prime
dimensions.

rics. The first is the maximum depolarization noise that is tolerated per qudit of an
N qudit state, meaning the maximum q such that the state ρ(q) can still be purified
by the purification protocol. We consider the depolarization noise applied per qudit
to be equal across the entire state. In a realistic scenario we may suppose that
each qudit of a graph state may be subjected to a slightly different level of noise,
for example in the case of white noise where the noise parameter q is distributed
according to a Gaussian distribution with some mean µ and standard deviation σ.
If the standard deviation of the noise is small relative to the mean, then we expect
the performance with a constant noise level on each qudit to be a faithful reflection
of the performance with variable per qudit noise. The other metric of interest is
the minimal fidelity to the perfect graph state that a depolarized state can have
and still be purified. The minimal fidelity of a depolarized input state is set by the
maximum depolarization noise per qudit. In Figures 6.5 and 6.6 we plot for GHZ
type states and linear cluster states, respectively, first the scaling of the maximum
depolarization parameter with d and N , and then the scaling of the minimal initial
fidelity with d and N . Immediately it is evident from the figures that there is very
favorable scaling with the dimension, both in the maximum depolarization noise
tolerated per qudit as well as in the minimum initial fidelity, for both families of
states. The scaling with N however, differs between the two families of states. For
GHZ type states the maximal amount of depolarization noise tolerated per qudit
decreases as the number of nodes of the graph state increases. In contrast, for
linear cluster type states the maximal amount of depolarization noise tolerated is
essentially constant in the number of nodes, N .
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(a) Maximum depolarization noise per qudit. (b) Minimum fidelity to achieve purification.

Figure 6.6: Purification regimes for depolarized linear cluster states of qudits of low prime
dimensions.

To explain the differences in scaling of the purification range with N between GHZ
and linear cluster type states, we look to the structure of the graphs. We propose
that noise tolerance per qudit of a TCGS is chiefly dependent upon the degree of
the related graph. Recall that the degree of a vertex in a graph is the number
of edges which terminate at that vertex, and we call the degree of the graph the
maximum degree of any of the vertices. From Sections 4.5.1 and 4.5.2, the degree
of the graph corresponding to a GHZ type state is N − 1, whereas the degree of a
linear cluster state is 2 – independent of N . In the qubit case, the proposition that
the noise tolerance per qudit depends on the degree of the graph as opposed to N
is supported by previous analysis [25]. Understanding why the degree of the graph
has the dominant impact on the noise tolerance per qudit is possible with reference
to Equation 4.3.7, which says that when a shift type error occurs on a qudit, it is
equivalent to phase type errors occuring on each of the qudits with which it shares
an edge in the graph. This means that any vertex with high connectivity (large
degree) is exposed to a large amount of excess errors. It is as if vertices with high
degree see a higher effective noise level than that which is being strictly applied per
qudit.

The proposition that degree of the graph dictates the noise tolerance per qudit is
also instrumental in explaining why the minimal fidelity required to purify linear
cluster states drops exponentially with the number of nodes in the state, Figure
6.6b. Since the degree of linear cluster states is constant, the amount of noise
tolerated per qudit in the state is independent of the node number. As the number
of nodes in a state is increased then, the total amount of noise tolerated increases,
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resulting in a decrease of the minimal initial fidelity. Although it is theoretically
quite interesting that states with very low initial fidelity (example: F = 1e − 3 for
a 7 node linear cluster state with d = 7) can be purified by the protocol, there
is a practical limitation restricting the usefulness of such low fidelity states. The
success probability of the protocol is proportional to the fidelity of the input state, so
the expected number of attempts necessary to a successfully complete a subroutine
iteration grows sharply for states of very low input fidelity. Moreover, for states
of lower input fidelity a greater number of subroutine iterations will be required in
order to reach any specific target fidelity.

To look closer at the practicality of using this protocol we will consider a scenario in
which a target fidelity of 0.99 is set for purification, and the depolarized input states
have been prepared with 20% depolarization noise, i.e. q = 0.20. For linear cluster
states with 3 or 7 nodes and in various prime dimensions, we determine how many
purification subroutine iterations are necessary to reach the target fidelity, as well as
the expected number of attempts needed to successfully complete the protocol. The
expected number of attempts needed to complete the total protocol can be calculated
from the number of attempts required to complete each subroutine iteration, which
follows a geometric distribution [58], with iteration success probability pk, where k
is the iteration number. Recall from Section 5.1 that the probability of success for
an iteration of subroutine P1 (P2) is given by Equation 5.1.4 (5.1.7). Because each
subroutine iteration takes two states from the previous iteration as input, reaching
the k − th subroutine iteration requires completing the first iteration 2(k−1) times,
the second iteration 2(k−2) times, etc. Overall, the expected number of attempts to
complete a protocol consisting of K subroutine iterations is given by,

Expected number of attempts = 2
K(K−1)

2

⌈
1

p1p2 · · · pM

⌉
(6.3.2)

The results indicated in Figure 6.7 indicate that both the number of subroutine it-
erations required as well as the corresponding expected number of attempts needed
to reach the target fidelity drop dramatically with increasing dimension. The min-
imum number of iterations needed to reach the target fidelity for a depolarized
input state is 2, since one iteration of each of subroutines P1 and P2 is needed.
Of particular importance is the steep decline of the expected number of attempts,
as this consideration can be considered a limiting factor for the practical execu-
tion of the protocol. We see from comparison of Figures 6.7a and 6.7b that the
expected number of attempts is especially favorable for smaller linear cluster states
with dimensions greater than 7. It is also interesting to point out that for d = 2 the
expected number of attempts is inordinate (1015 for the 3 node state and 1011 for
the 7 node state), which partially occurs because the depolarization parameter 0.2
is very near the critical parameter (Figure 6.6a) for d = 2.
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(a) 3 Node Linear Cluster State.

(b) 7 Node Linear Cluster State.

Figure 6.7: The number of purification subroutine iterations (left axis), and the corresponding
overall expected number of attempts (right axis) required in order to reach a target fidelity of

F̃ = 0.99 by purifying a depolarized input state with depolarization parameter q = 0.2.



7
Performance analysis with
imperfect local operations

Up until this point we have considered perfect execution of the purification proto-
col, including perfect two-qudit operations and perfect measurements. In reality,
quantum operations are imperfect and generally are associated with some level of
error. We now study the performance of the purification protocol when all two-qudit
operations (2.1.15 and 2.1.17) mandated by the protocol are faulty. We consider an
error model where faulty local two qudit operations are described by the completely
positive map,

EUjk(ρ) = Ujk[Ej ◦ Ek(ρ)]U†jk, (7.0.1)

in which Ujk is a local unitary operation between qudits j and k of a quantum state,
and Ej , Ek are given by Equation 2.2.6 or 2.2.8, with error parameter q. That is,
a two qudit faulty unitary operation is modelled by applying a noise process with
probability q to each qudit independently, followed by application of the perfect
unitary operation.

Throughout the performance analysis of the error-less protocol conducted in Chap-
ter 6 one of the most important performance metrics is the minimal initial fidelity
that an input state must have, since this fidelity marks the boundary of the pu-
rification regime. The upper boundary of the purification regime in the error-less
case is always a final state fidelity of F̃ = 1. When errors are introduced into the
purification protocol the upper boundary of the purification regime changes, and
there is for every gate error parameter a maximal reachable fidelity for the purifi-
cation protocol. In studying the protocol with faulty two qudit operations the size
of the purification regime, defined as the region between the minimum required and
maximal reachable fidelity, for any specific gate error, is used to define the perfor-
mance metric of interest, which is the gate error threshold. The error parameter
for which the purification regime disappears (the minimum initial fidelity and max-
imum reachable fidelity converge) is defined to be the gate error threshold. Viewed

53
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another way, the error threshold is the maximum value of qg for which purification
remains possible.

To study the performance of the protocol we first develop analytic results under a
limited noise model, where the error processes E are restricted to shift type errors,
given by Equation 2.2.8, for a restricted class of input states. Then, we remove these
constraints and numerically study the performance when the operations are afflicted
by white noise and the input states are depolarized states (Equation 2.2.7). The
numerical analysis is computationally limited by speed and memory requirements,
since the density matrix for two copies of an imperfect state ρ12 = ρ1⊗ ρ2, diagonal
in the graph state basis, with N nodes in d dimensions, contains d2N terms. This
unfavorable exponential scaling of the number of terms in the states restricts the
numerical analysis to low dimensions and node numbers.

7.1. Analytical analysis under a restricted noise model
It is possible to derive analytic results for the gate error threshold of the purification
protocol with two qudit gate errors by restricting both the error model and the class
of input states considered. As a consequence of the restrictions, such results are
only an upper bound on the tolerance of the protocol to errors under a more general
error model. From the upper bounds we can extract predictions about the trends
of scaling with dimension and node number when a more general error model and
input states are considered.

To begin, we restrict to input states that are binary-like mixtures, meaning that the
input states have been subject to dephasing noise only on nodes from one subset,
VA or VB . The performance of the error-less protocol with this class of input states
is covered in Section 6.1. As before, without loss of generality we work through
the analysis with input dephasing noise constrained to subset VA, so that the input
states have the form,

ρA = Σ
µA
λµA,0 |ΨµA,0〉 〈ΨµA,0|G . (6.1.1)

Since the input state only has imperfections on one subset of nodes, it is suitable
to only execute the purification subroutine targeting that subset. In the case of our
example that means subroutine P1, targeting subset VA.

The next restriction is to the error model, describing the functioning of the two-
qudit operations in the purification subroutine. We consider shift error type noise,
as described by Equation 2.2.8. Moreover, we impose the constraint that only
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operations on qudits from set VB are faulty. That is, we model faulty two-qudit
operations by,

EUjk(ρ12) = Ujk
[
MjMk(ρ12)

]
U†jk, (7.1.1)

with the error processesM given by,

Mj(ρ) =

1, if j ∈ VA,(1− q)ρ+ q
d−1

d−1
Σ
m=1

Xm
j ρ(Xm

j )†, if j ∈ VB .
(7.1.2)

Notice that these faulty gates act on the opposite subset from the one involved in
the binary mixture, 6.1.1. The reason for this choice follows from Equation 4.3.7,
which says that shift type errors on vertices of subset VB are equivalent to phase
type errors on the adjacent nodes from subset VA. The advantage of this combined
choice of error model and binary-like input states is that the states maintain their
binary-like form under the noise model, making it possible to treat the purification
process analytically.

It is useful to ask whether the error processes and the two qudit unitaries commute,
because if this is the case then it is sufficient to determine the effect of the error pro-
cesses on the input state, followed by the known action of the perfect subroutine P1,
given by Equation 5.1.3. The answer to this question is affirmative, as summarized
by proposition 7.1, which is proven in Appendix E.

Proposition 7.1. Application of purification subroutine P1 (P2)1 with faulty two-
qudit operations modeled by Equations 7.1.1 and 7.1.2 is equivalent to first applying
all noise processes, followed by application of the errorless purification subroutine.

Having established the setting of the analytical treatment, we present the analysis
for two particular classes of input states, namely GHZ type states and closed linear
cluster states. These two classes of states are amenable to analytical treatment
primarily because they correspond to graphs with very simple adjacency matrices.

7.1.1. GHZ type states
For GHZ type states the vertex subset VA contains only one node. We will consider
binary-like mixture type input states belonging to the one parameter family,

ρA(x) = x |Ψ0,0〉 〈Ψ0,0|+ (1− x)1VA
d
, (7.1.3)

1For use of P2 we must consider binarylike input states with noise confined to subset VB and
the the restricted error model must be modified by swapping the role of subsets VA and VB in
equation 7.1.2
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where 1VA :=
d−1
Σ
l=0
|Ψl,0〉. The full input state is ρ12 = ρA(x)⊗ ρA(x), however since

we will apply all of the error processes before the two-qudit gates, we can apply them
to each state independently. Since the two state copies begin unentangled and the
error processes are uncorrelated, the copies remain unentangled following the error
processes. Overall then, it suffices to determine MbNB

◦ · · · ◦ Mb2 ◦ Mb1

(
ρA(x)

)
,

where bi is the i-th vertex in VB , i ∈ {1, · · · , NB}. The following proposition, which
is proven in Appendix E, makes it possible to determine the effect of the sequence
of error processes.

Proposition 7.2. The state resulting from the error processMbj (·), j ∈ {1, · · · , NB},
given by Equation 7.1.2, on an input state given by Equation 7.1.3, remains of the
same form but with the new parameter x(1− q). That is,

Mbj

(
ρA(x)

)
= ρA(x(1− q)). (7.1.4)

The following Corollary, which summarizes the effect of all N − 1 error processes,
can be established by repeated application of Equation 7.1.4.

Corollary 7.1. The state resulting from the error processes affecting all N − 1
nodes of subset VB is given by,

MbNB
◦ · · · ◦Mb2 ◦Mb1

(
ρA(x)

)
= ρA(x′), with x′ = x(1− q)N−1. (7.1.5)

The meaning of this corollary is that for input states of the form described in Equa-
tion 7.1.3, the effect of purification subroutine P1 with faulty two qudit operations is
equivalent to the action of the perfect subroutine on input states ρA(x′), with x′ =
x(1−q)N−1, where q is the parameter which characterizes the error level of the faulty
operations. With this result in hand, the effect of the faulty purification subroutine
can be determined by applying the coefficient update formula for subroutine P1,
adapted to binary-like mixtures – Equation 6.1.2, to the state ρA(x′). Of particular
interest is the effect that this procedure has on the fidelity of the state. The fidelity
of the original input state, ρA(x) is F = x + 1−x

d . Following the noise processes,
the state ρA(x′) has fidelity F ′ = x′ + 1−x′

d = x(1 − q)N−1 + 1−x(1−q)N−1

d . Us-
ing Equation 6.1.4, the updated fidelity resulting from application of the error-less
subroutine P1 to ρA(x′) is given by,

F̃ = F ′
2

F ′2 + (1−F ′)2

d−1

=

(
x(1− q)N−1 + 1−x(1−q)N−1

d

)
(
x(1− q)N−1 + 1−x(1−q)N−1

d

)2
+
(

1−x(1−q)N−1− 1−x(1−q)N−1
d

)2

d−1

. (7.1.6)
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To achieve purification, it is necessary that F̃ > F . To determine the critical values
for q and x, that is the values which define the boundary of the purification regime,
we look for fixed points in of the fidelity, F̃ (x, q) = F (x). In Appendix E we derive
the maximum value of x for a given error parameter q, which defines the maximum
reachable fidelity for a given error parameter q, as well as the error threshold qcrit.

When purification subroutine P1 with faulty two-qudit operations of the form de-
scribed by Equations 7.1.1 and 7.1.2 is used to purify states of the form given in
Equation 7.1.3, the maximum state parameter xmax, which defines the maximum
reachable fidelity, is given by,

xmax =
d−2
d−1 (1− q)2(N−1) +

√(
d−2
d−1
)2(1− q)4(N−1) + 4(1− q)2(N−1)

(
2(1−q)N−1−1

d−1

)
2(1− q)2(N−1) . (7.1.7)

The maximum reachable fidelity for a given error level, q, is F̃max(xmax, q), where
F̃ is as in Equation 7.1.6. Moreover, the error threshold qcrit is,

qcrit = 1−
[

2 (d− 1)
(d− 2)2

(√
4 + (d− 2)2

d− 1 − 2
)] 1

N−1

. (7.1.8)

Observe from Equation 7.1.8 that the error threshold scales positively in the di-
mension, by a multiplicative factor, whereas the scaling with the node numbers is
repressed by a power relationship. Together these relationships are in line with the
scaling with d and N observed in Chapter 6. In Table 7.1 we tabulate the error
threshold for various sets of dimension and node numbers. We expect that these
gate error thresholds for binary-like GHZ type states purified by subroutine P1
within a restricted model of faulty two-qudit operations provide an upper bound to
the error threshold for GHZ type states purified by the full protocol and under the
more general gate error model with depolarizing noise. Although this is expected
to be a rather loose upper bound due to the constraints imposed in the derivation,
we expect the scaling with d and N indicated by the analytic results to be faithful
because of the agreement with the scaling relationships observed for the error-less
protocol in Chapter 6.

d N = 3 N = 4 N = 5 N = 6

3 0.30 0.21 0.17 0.13
5 0.33 0.24 0.18 0.15
7 0.36 0.26 0.20 0.16
11 0.40 0.29 0.22 0.18

Table 7.1: Gate error thresholds qcrit for various qudit dimensions and GHZ state node numbers,
as given by Equation 7.1.8.
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(a) Previous numbering
convention:

All nodes from VA numbered
before those in VB .

1 2

3

4

56

7
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(b) New numbering convention:
Sequential, starting with VA.

Figure 7.1: Graph corresponding to a closed linear cluster state with 8 vertices. Deletion of the
edge between the 1st and 8th vertices would return the graph of the 8 node linear cluster state of

Figure 4.2a.

7.1.2. Closed linear cluster states
Closed linear cluster states are linear cluster states that have one extra edge, joining
the two terminal vertices of the state. The closure changes the topology of the graphs
so that they are only two-colorable if there is an even number of vertices; for this
reason we restrict to considering an even number of vertices N = 2M , so that M
characterizes the number of vertices in each vertex subset, |VA| = |VB | = M . Figure
7.1 shows an example of a closed linear cluster state with 8 vertices. We look at
closed linear cluster states for the analytical analysis because they have constant
degree and no boundary nodes. For ease of analysis, in this section we change the
numbering scheme for the nodes of a two-colorable graph state, so that vertices are
numbered sequentially and odd numbered nodes correspond to vertex subset VA,
while even numbered nodes correspond to vertex subset VB , see Figure 7.1b. The
analysis differs slightly depending on whether M is even or odd, so we here choose
to present results in the case that M is odd.

We consider binary-like mixture type states belonging to the one parameter family,

ρA(x) = x |Ψ0,0〉 〈Ψ0,0|+ (1− x)1VA
dM

, (7.1.9)

where 1VA = Σ
µA
|ΨµA,0〉 〈ΨµA,0|. Notice that ρA(x) has rank dM = dNA , since

µA ∈ FMd , and that the initial fidelity of the state to the perfect graph state is
F = x+ 1−x

dM
.

To determine the effect of purification subroutine P1 with faulty two-qudit opera-
tions we make use of Proposition 7.1 so that we only need to determine how the
sequence of error processes M2M ◦ · · · ◦ M2(·) acts on ρA(x), where Mj is as in
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Equation 7.1.2. Once the action of the error processes is established we apply the
perfect subroutine P1 on binary-like inputs, dictated by Equation 6.1.2. The ef-
fect of a single error process from a faulty operation is summarized in the following
Proposition 7.3, which is proven in Appendix E.

Proposition 7.3. A single error process Mj , given by Equation 7.1.2, preserves
the identity on subset VA, Mj(1VA) = 1VA , and acts on binary-like closed linear
cluster graph basis states as,

Mj

(
|ΨµA,0〉 〈ΨµA,0|

)
= (1− p) |ΨµA,0〉 〈ΨµA,0|

+ p

d− 1
d−1
Σ
k=1

∣∣ΨµA⊕k[ej−1⊕ej+1],0
〉 〈

ΨµA⊕k[ej−1⊕ej+1],0
∣∣, (7.1.10)

where (1− p) = 1
d

(
(d− 1)(1− q) + 1

)
.

Having characterized the action of a single error process we see that the sequence
of error processes M2M ◦ · · · ◦ M2(·) will leave 1VA fixed, and it remains only to
to calculate the effect on the |Ψ0,0〉 part of the input state ρA(x), which we do in
Appendix E, by iterative application of Equation 7.1.10.

Proposition 7.4. The effect of the error sequenceM2M ◦· · ·◦M2(·) on the perfect
closed linear cluster state, |Ψ0,0〉 with N = 2M vertices, where M is odd, can be
described using a subset of the basis states {|ΨµA,0〉}. Define {|ΦK〉} to be the
subset of basis states2 with the phase type errors Zl1 , Zl2 , · · · , ZlK on K pairs
of next nearest neighbor vertices, such that the error Zli applies to both nodes of
the i-th pair of next nearest neighbor nodes. Furthermore, if we write a sum over
bM,K |ΦK〉 〈ΦK |, where bM,K =

(
M
K

)
(d−1)K , it is to be interpreted as the sum of all

possible samples of states from {|ΦK〉}, of which there are bM,K . In this notation,
the effect of the error sequence is,

M2M ◦ · · · ◦M2

(
|Ψ0,0〉 〈Ψ0,0|

)
= (1− p)M |Ψ0,0〉 〈Ψ0,0|

+
M

Σ
K=1

(1− p)M−K
( p

d− 1

)K
bM,K |ΦK〉 〈ΦK |. (7.1.11)

Corollary 7.2. The state resulting from the sequence of error processes
M2M ◦ · · · ◦M2(·) on an input state of the type in Equation 7.1.9, with M odd is,

M2M ◦ · · · ◦M2

(
ρA(x)

)
= x

[
(1− p)M |Ψ0,0〉 〈Ψ0,0|+

M

Σ
K=1

(1− p)M−K
( p

d− 1

)K
bM,K |ΦK〉

]

+ (1− x)1VA
dM

. (7.1.12)
2For example: {|Φ0〉} = {|Ψ0,0〉},
{|Φ1〉} =

{ ∣∣Ψl1[e1⊕e3],0
〉
,
∣∣Ψl1[e3⊕e5],0

〉
, · · · ,

∣∣Ψl1[e2M−1⊕e1],0
〉}

,

{|Φ2〉} =
{ ∣∣Ψl1[e1⊕e3]⊕l2[e3⊕e5],0

〉
, · · · ,

∣∣Ψl1[e1⊕e3]⊕l2[e2M−1⊕e1],0
〉
, · · · ,∣∣Ψl1[e3⊕e5]⊕l2[e5⊕e7],0

〉
, · · · ,

∣∣Ψl1[e3⊕e5]⊕l2[e2M−1⊕e1],0
〉
, · · ·

}
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Recall from Equation 6.1.1 that a binary-like mixture state can be completely de-
scribed in terms of the coefficients λµA,0 of the binary-like basis vectors |ΨµA,0〉. To
determine explicitly the coefficients of the state in Equation 7.1.12, we ask whether
the sum over all bM,K states |ΦK〉 plus the state |Ψ0,0〉 covers all states from 1VA .
Note that we can absorb |Ψ0,0〉 into the sum, since it is the unique state |Φ0〉. Each
basis state in the sum occurs only once. The number of basis states in the sum is,

M

Σ
K=0

(
M

K

)
(d− 1)K =

M

Σ
K=0

(
M

K

)
(d− 1)K1M−K = dM , (7.1.13)

where we used the binomial theorem to carry out the summation. The meaning of
the calculation is that there are dM unique binary-like basis states, hence they cover
all states from 1VA . Overall then, the coefficients of the stateM2M◦· · ·◦M2

(
ρA(x)

)
can be written as,

λ′M,K = x(1− p)M−K
( q

d− 1

)K
+
(1− x
dM

)
, K ∈ {0, 1, · · · ,M}, (7.1.14)

each of which occurs bM,K =
(
M
K

)
(d − 1)K times. The coefficients of the state

resulting from the faulty purification subroutine P1 acting on input state ρA(x) can
then be determined by applying the map in Equation 6.1.2 to the coefficients. The
fidelity of the output state is,

F̃ =
(λ′M,0)2

M

Σ
K=0

bM,K(λ′M,K)2

=

(
x(1− p)M +

(
1−x
dM

))2
M

Σ
K=0

bM,K

[
x(1− p)M−K

(
p
d−1

)K
+
(

1−x
dM

)]2 . (7.1.15)

To achieve purification, it is necessary that F̃ > F . To determine the critical values
for p and x, that is the values which define the boundary of the purification regime,
we look for fixed points in of the fidelity, F̃ (x, p) = F (x). Recall that the parameter
p relates to the gate error parameter through (1− p) = 1

d

(
(d− 1)(1− q) + 1

)
.

When purification subroutine P1 with faulty two-qudit operations of the form de-
scribed by Equations 7.1.1 and 7.1.2 is used to purify states of the form given in
Equation 7.1.9, the maximum (x+) and minimum (x−) state parameters, which
define the maximum reachable fidelity and minimal initial required fidelity, are,

x± = BC −A2 ±
√

∆
2C(B − 1) , (7.1.16)
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where ∆ =
(
A2−BC

)2 +4C
(
1−B

)[
2AB−B

(
1−B

)]
, and we define the functions,

A(p, d) := (1− p)M − 1
dM

,

B(d) := 1
dM

,

C(p, d) :=
[
(1− p)2 + p2

d− 1
]M − 1

dM
.

See Appendix E for the derivation of Equation 7.1.16. The critical parameter pcrit,
which defines the critical gate error parameter qcrit through (1− p) = 1

d

(
(d− 1)(1−

q) + 1
)
is obtained by solving ∆ = 0 for p, which can be done numerically.

To get a sense for how the gate error threshold, qcrit depends on the qudit dimension,
d, and number of nodes N of the closed linear cluster state, we study separately
the scaling with N for a fixed dimension and the scaling with d for a fixed number
of nodes. In Section 6.3 we proposed that the amount of depolarizing noise that
can be applied per qudit to a graph state depends primarily on the degree of the
graph, and found that for linear cluster states, which always have degree 2, the error
tolerance per qudit is independent of N . According to this model, we expect to see
a similar insensitivity to increasing N reflected in the gate error threshold. Figure
7.2a offers evidence in support of the relative insensitivity to increasing N of the
gate error threshold for closed linear cluster states, especially in the large N regime.
This relationship contrasts the sharp suppression of error tolerance with increasing
N observed for GHZ type states, in Section 7.1.1.

Also made accessible by the analytic results is the scaling of gate error tolerance
with qudit dimension in the large dimension regime. Figure 7.2b demonstrates the
scaling with dimension for a closed linear cluster state with M = 53 (N = 2M =
106), for prime qudit dimensions up to 97. In the low dimension regime, where
d . 20 there is a sizeable benefit to increasing the dimension, in terms of the
improved error threshold. For dimensions across the mid range 20 . d . 60 and
into the large dimension range d & 60, the increase in error tolerance with dimension
slowly approaches saturation. This suggests that when there exists an experimental
tradeoff between costs of working with states of larger dimension (examples: lower
fidelity operations, operations requiring longer amounts of time, etc.) and the benefit
of higher error thresholds, the greatest net benefit likely exists in the range 3 < d <

20.
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(a) Gate error threshold scaling with
node number, N = 2M .

(b) Gate error threshold scaling with
qudit dimension, and M = 53 fixed.

Figure 7.2: Scaling of the gate error threshold value for purification of closed linear cluster type
graph states in a binary-like mixture (Equation 7.1.9), using subroutine P1 with faulty two qudit
operations as modelled by Equations 7.1.1, 7.1.2. In (b) the points are unevenly spaced because

only prime dimensions are plotted.

7.2. Numerical analysis
By numerically simulating3 the purification protocol it is possible to examine the
gate error tolerance under a depolarization error model, which constitutes the most
general uncorrelated error model. Moreover, in the numerical analysis it is possible
to consider depolarized input states, the purification of which are examined for the
error-free protocol in Section 6.3. The numerical analysis allows a more realistic
look at the scaling of gate error thresholds with dimension and node number than is
offered by the upper bounds derived in the previous section. The drawback is that
the numerical approach is computationally heavy and large dimensions and node
numbers remain inaccessible with this technique4. In Appendix F.2 we assess the
validity of the numerics in the qubit case by comparison to the results published in
[25].

For a TCGS G, label the nodes in subset VA of size NA = |VA| by {a1, a2, · · · , aNA}
and the nodes in VB of size NB = |VB | by {b1, b2, · · · , bNB}. As in Section 6.3,
3The software developed for simulating the protocol with two-qudit gate errors is publicly available
on GitHub [59].

4Working computer has the following specs:
CPU: Intel Xeon Gold 6230 @ 80x 3.9GHz
RAM: 59260MiB / 193114MiB.
Example completion times for data points in Figure 7.3a: (d = 7, N = 2, time= 131 seconds),
(d = 7, N = 3, time= 3.1 hours), (d = 7, N = 4, time= 184 hours).
Each simulation used multiprocessing across an average of 20 of the available 80 cores.
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(a) Linear cluster state. (b) GHZ type state.

Figure 7.3: Gate error threshold vs. number of nodes for (a) linear cluster type states and (b)
GHZ type state, for various dimensions of the state’s qudits.

we consider depolarized input states, which result from sending each node of the
perfect TCGS through a depolarization channel,

ρ(qs) = Ea1 ◦ · · · EaNA ◦ Eb1 ◦ · · · ◦ EbNB
(
|Ψ0〉 〈Ψ0|G

)
, (7.2.1)

where each Ej is given by Equation 2.2.6, with depolarization parameter qs. We
study the effect of using an imperfect realization of the purification protocol de-
scribed in Section 5.2, where all of the two qudit gates in each of subroutines P1
and P2 (see Section 5.1) are replaced with faulty operations, as modelled by Equa-
tion 7.0.1, where each Ej is given by Equation 2.2.6, with error parameter qg. In
Figure 7.3 we plot the calculated error thresholds for both linear cluster and GHZ
type states of low node numbers. The results indicate very favorable scaling of the
error tolerance with qudit dimension, as each increment from one prime dimension
to the next yields an increase of several percent in the error threshold. In an exper-
imental setting, these results may serve as one possible benchmark of whether two
qudit operations are of high enough fidelity to be useful in applications. Moreover,
they may serve as an indicator of whether there is an experimental advantage to
working with states of higher dimension; an advantage may exist if for a particu-
lar dimension the difference between the gate error levels and the threshold value
exceeds the difference obtained for qubit systems.

Another question addressed by the numerical analysis is whether the scaling of the
gate error thresholds with the node number is consistent with the model that the
error threshold for states of fixed qudit dimension only depends on the degree of the
graph. In Figure 7.3 we see that the numeric results for states of dimension d = 2
and d = 3, suggest that the model remains consistent, as for linear cluster states
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(which have constant degree) the threshold is essentially constant with N, whereas
for GHZ type states (where the degree is N − 1) the error threshold decreases as N
increases. It is also worth noting that the qualitative nature of the scaling of error
threshold with node number matches that of the analytically derived upper bounds,
suggesting that the analytic bound meaningfully captures the qualitative trends.



8
Conclusions and Outlook

We have proposed a recurrence based purification protocol for TCGS where the
underlying quantum systems are qudits of prime dimension and analyzed from a
variety of angles how the system dimension and number of nodes in a state impact
the performance of the protocol. The proposed protocol is an extension of the work
in [25], in which the qubit case was studied. In Chapter 5 we detail the protocol and
in Chapter 6 we study the performance of the protocol in the absence of errors. In
the error-less case the minimum fidelity of input states, which is the primary metric
for characterizing this scenario, is found to decrease dramatically with increasing
system dimension. In Section 6.1 we presented a conceptual model explaining the
improvement in performance of the protocol with increasing dimension, which relies
on the interplay of entropy and information in quantum mechanics. In higher di-
mensions a greater amount of information is learned during the measurement step of
each purification subroutine, leading to a greater decrease in the entropy of the state.
In Section 6.3 the relation between node number and the maximum amount of noise
tolerated per node of a TCGS was found to depend on the topology of the TCGS
under consideration. We extended an existing model from the qubit case which at-
tributes the maximum error tolerance per node of a graph state to the degree of the
graph state, in order to explain the dependence on graph topology. In the context
of the error-less protocol we have demonstrated using linear cluster states that for a
given per-qudit noise level and target fidelity, there is a practical advantage to using
the protocol to purify states of higher dimension (Section 6.3); we found that the
expected number of attempts required to complete the protocol could drop by sev-
eral orders of magnitude when increasing the qudit dimension. In an experimental
setting, such a practical advantage will of course have to be weighted against any
experimental costs incurred by working with higher dimensional systems.

In Chapter 7 we obtained both analytic and numeric results indicating the error
tolerance of the protocol with respect to faulty two-qudit operations, and we have
studied how this tolerance depends on qudit dimension and state node number. The
analytic results, derived in Section 7.1 under a restricted error model for the two-

65
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qudit operations and considering a restricted class of input states, can reasonably
be expected to provide an upper bound to the error tolerance under more general
error models and with arbitrary input states. A study of the error tolerance in
the regimes of high qudit dimension (d & 20) and large node numbers (N & 10)
was made possible by the analytic results. The upper bound in the scaling of error
tolerance with dimension indicates that while there remains an incentive (in the form
of improved error tolerance) to increasing system dimension in the high dimensional
regime, the benefits of increasing dimension are greatest in the low dimensional
regime (2 . d . 20). In the high dimensional regime the magnitude of the slope of
the upper bound on gate error threshold versus dimension decreases towards zero,
despite remaining always positive; this indicates saturation of the error threshold
for higher dimensions. The main result of the protocol performance analysis is the
numerically determined favorable scaling of the gate error threshold with dimension
(Section 7.2). We observe by studying several dimensions (2, 3, 5, 7, 11) that in each
case a gain of several percentage points in the gate error threshold is possible by
increasing the dimension. In the numerical study we have considered white noise in
the gate error model and depolarized input states. The primary benefit of the larger
error threshold is that higher dimensional states can allow successful completion of
the protocol when faced with gate error levels that would cause the protocol to
fail for lower dimensions. The secondary benefit is that for a given gate error level
the protocol will work better for higher dimensional states, since the protocol will
be operating further from the error threshold, and the performance of the protocol
near the error threshold tends to deteriorate severely. In terms of the scaling with
node number, both the analytic and numeric results are consistent with the model
suggesting that the error tolerance per node of a graph state depends entirely upon
the topology of the graph.

There is in principle no reason why the protocol presented here cannot be extended
to apply to TCGS on qudits with prime-power dimensions (as opposed to only
prime dimensions, considered here). To do so would require properly accounting
for the N < K < 2N stabilizer generators of an N qudit TCGS and reformulating
the analysis, especially of Section 4.3, in terms of these stabilizer generators. A
promising direction for future work on this topic would be to present a recurrence
type purification protocol for arbitrary graph states. In the qubit case, one such
protocol exists [48] which is an extension of the protocol for TCGS [25] and which
uses noisy TCGS as resources. Another interesting direction would be to develop
a hashing type purification protocol for TCGS, possibly by extending the protocol
for GHZ type states discussed in [51]. A hashing type protocol would be expected
to function deterministically and achieve a finite yield and generally higher output
fidelities as compared with recurrence type purification. A drawback of hashing
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type purification is that input states of higher fidelity are typically required.

The increased error tolerances for states of higher dimension observed in the analysis
of this protocol adds to a growing body of research [10, 11, 12, 13, 14, 15, 16,
17] demonstrating the advantages of using qudit systems as the basis of quantum
information, communication and computing protocols. Practically, the advantages
promised by higher dimensional systems have to be balanced against possible costs
of working with these systems. One example is that the achievable gate error level
for higher dimensional systems may exceed the level achievable for qubits. To the
best of our knowledge the question of how to experimentally realize generalizations
of the CNOT operation for d > 2 remains an open problem. When techniques
for executing these operations are eventually developed, the numerically calculated
gate error thresholds for the protocol presented here may serve as one benchmark
of the performance of these operations. Specifically, if these operations for a given
dimension can be demonstrated to work with error levels below those presented
here, then the gates will be useful for at least one type of quantum information
protocol. If the error levels are significantly below the threshold level, then it will
be reasonable to expect working with higher dimensional systems to offer a practical
advantage.





A
Properties of Weyl

operators

Lemma 2.1. [28] For any two Weyl operators Wv and Ww with v,w ∈ Z2N the
following properties hold:

(i) WvWw = τ2[w,v]WwWv = ω[w,v]WwWv, these are the commutation relations
for Weyl operators.

(ii)
[
Wv,Ww

]
= 0 if and only if [v,w] = 0 mod d. This is a corollary of (i).

(iii) W t
v = Wtv for t ∈ Z. In particular, W †v = W−v.

(iv) The order of Wv divides d.

Proof.
Recall that τ := (−1)de iπd = eiπ

d2+1
d .

(i) The commutation relations follow directly from Equation 2.1.12,

WvWw = τ−[v,w]Wv+w

= τ [w,v]Ww+v

= τ [w,v]τ [w,v]WwWv

= τ2[w,v]WwWv. (A.0.1)

(ii) (⇒) Assume
[
Wv,Ww

]
= 0. Making use of the commutation relations in (i),

WvWw = WwWv ⇒ ω[w,v] = 1. (A.0.2)

In turn, this implies that [w,v] = 0 mod d and hence also [v,w] = 0 mod d.

(⇐) Assume [v,w] = 0 mod d. Then, ω[w,v] = 1. Using the commutation
relations in (i), it then follows that

[
Wv,Ww

]
= 0.

69
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(iii) Here, it is helpful to again recall Equation 2.1.12. A single application of the
relation yields,

Wtv = Wv+(t−1)v = τ [v,v]WvW(t−1)v = WvW(t−1)v. (A.0.3)

Iterated application of Equation 2.1.12 yields the desired result.

(iv) In lieu of proving explicitly this point, we will state exactly the order of Wv

for all of the cases of interest to this work, which is given in Corollary 11a of
[28]. Recall that D denotes the order of τ , which is d in the case that d is
odd, and 2d in the case that d is even. For all cases of interest we consider
v ∈ ZmD , where m = 2N . First, we establish some notation. Define the
harmonic number η(v) = gcd(v1, v2, · · · , vm, d) of v. If η(v) = 1, we say that
v is fundamental.

By Corollary 11a of [28], for any v ∈ Z2N
D , the order of Wv is d

η(v) . In
particular, Wv has order 1 if and only if v is fundamental.

Lemma 2.2. [28] For all v,w ∈ Z2N we have Wv ∝Ww if and only if w = v+d ·x
for some x ∈ Z2N , in which case

Ww = (−1)(d+1)[x,v]Wv. (2.1.13)

In particular, Ww = Wv if w = v mod D.

Proof.
(⇒) Suppose that Ww ∝Wv, with proportionality constant α, so that Ww = αWv.
We proceed by comparing the actions of Ww and αWv on an element of the basis
for the N qudit Hilbert space, Hd,N , |i〉 = |i1, · · · , iN 〉 with ij ∈ Zd. Denote the
parts of v,w ∈ Z2N by v = (v1,v2), w = (w1,w2).

Ww |i〉 = τw1·w2Zw1Xw2 |i〉
= τ2w1·iτw1·w2 |i⊕w2〉 (A.0.4)

Similarly,

αWv |i〉 = ατ2v1·iτv1·v2 |i⊕ v2〉 . (A.0.5)

Following the hypothesis, we equate A.0.4 and A.0.5. There are two implications of
this equality. First,

i⊕w2 = i⊕ v2 mod d

⇒ w2 = v2 + dx2, for some x2 ∈ ZN . (A.0.6)
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The second implication is that

τ2w1·i = τ2v1·i mod d

⇒ w1 = v1 + dx1, for some x1 ∈ ZN . (A.0.7)

Writing now x = (x1,x2), it follows directly from Equation A.0.7 and A.0.6 that
w = v + dv. Before considering the other direction, it is helpful to continue by
determining the proportionality constant α. To do so, we again equate A.0.4 and
A.0.5, this time making use of the relations in A.0.7 and A.0.6,

τ2(v1+dx2)·iτ (v1+dx1)·(w2+dx2) |i⊕ v2〉 = ατ2v1·iτv1·v2 |i⊕ v2〉

⇒ τ (v1+dx1)·(w2+dx2) = ατv1·v2 . (A.0.8)

More simplification to the equation for α is still possible. Recall that the order of τ
is D = d for odd d and D = 2d for even d, so in any case τ2d = 1. Proceeding,

α = τd(v1·x2+v2·x1+x1·dx2)

= (−1)(d2+1)(v1·x2+v2·x1)(−1)(d2+1)d(x1·x2)

= (−1)(d+1)(v1·x2+v2·x1)

= (−1)(d+1)(v1·x2−v2·x1+2v2·x1)

= (−1)(d+1)[x,v]. (A.0.9)

In the third line we made use of the fact that (d2 + 1)d has even parity, regardless
of the parity of d, and also that (d2 + 1) has the same parity as (d+ 1), regardless
of the parity of d. Overall then,

α = (−1)(d+1)[x,v]. (A.0.10)

(⇐) The second direction follows very simply, making use of the previous derivation
of α. Assume that w = v + dx. Then, the expansion of Ww is,

Ww = τ−(v1·v2+v1·dx2+v2·dx1+dx1·dx2)Zv1+dx1Xv2+dx2

= τ−v1·v2τ (v1·dx2+v2·dx1+dx1·dx2)τ−2(v1·dx2+v2·dx1+dx1·dx2)Zv1Xv2

= τ−v1·v2τ (v1·dx2+v2·dx1+dx1·dx2)Zv1Xv2

= τ (v1·dx2+v2·dx1+dx1·dx2)Wv

= αWv. (A.0.11)

In the last line of the proof, we made use of Equation A.0.9.





B
Yield calculation for
recurrence protocols

Suppose that there are N parties who can undertake a repeatable, distributed quan-
tum state preparation procedure, which allows them to prepare noisy copies of their
targeted entangled state. These parties may decide that to purify their noisy states
they will use a recurrence based purification protocol, and perform a sequence of I
subroutine iterations in total.

Each successful subroutine has a yield of one half, since two copies are taken as
input and one purified copy is the output. Since each iteration may have a differ-
ent success probability, denote by pi the probability that the i-th iteration in the
sequence succeeds. The number of attempts required to successfully complete a
single subroutine iteration follows a geometric distribution [58] with probability pi.
From the properties of the geometric distribution, the expected number of attempts
to complete an iteration is 1

pi
. Hence the expected yield of iteration i is Yi = pi

2 .
In order to carry out the purification, all iterations must be repeated with success
enough times to produce the purified input states needed as input for subsequent
iterations. Moreover, the full chain of iterations needs to be completed sequentially
and thus failure may require restarting. The yield for the protocol can therefore be
written

Y = (p1

2 )2I−1
· (p2

2 )2I−2
· · · (pI−1

2 )2 · (pI2 ). (B.0.1)

Notice that since pi is bounded between zero and 1, pi
2 < 1 ∀ i, and hence the

yield is strictly less than 1. To calculate an upper bound, determine pmax :=
max(p1, p2, · · · , pI). Then, the following inequality holds

Y ≤ (pmax

2 )2s , with s = I(I + 1)
2 . (B.0.2)

It is then clear that the yield is zero in the asymptotic limit, since it tends to zero
super-exponentially,

lim
I→∞

Y → 0. (B.0.3)
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C
Local unitary equivalence

of GHZ type states and
star graph states

Here we demonstate that a GHZ type state can be transformed into a star graph
state by applying a generalized Hadamard operation to all but the first qudit of
a GHZ type state. The first qudit will be the central qudit from the star graph
state following the transformation. Since the generalized Hadamard is a unitary
operator, this verification establishes local unitary equivalence of the two states.
The equivalence of different classes of graph states and the effect of local unitary or
Clifford operations has been extensively studied in the qubit case [9, 60, 61].

To begin, we write down the star graph state explicitly, using Equation 4.1.4 and
the adjacency matrix of the star graph. The entries of the adjacency matrix are
given by,

Γij =
{

1, if (i = 1 and j 6= 1) or (i 6= 1 and j = 1)
0, otherwise.

(C.0.1)

Recall that the vectors {ej} are the standard basis vectors of ZN
d
, and that {q} =

ZNd . The star graph state for N qudits of dimension d is then,

|Stard,N 〉 = 1
d
N
2

Σ
q
ω

N

Σ
j=2

(q·e1)(q·ej)
|q〉 . (C.0.2)

Next, we look at the result of applying a generalized Hadamard operator to the state
|GHZd,N 〉, given by Equation 4.5.1. Recall the generalized Hadamard operator on
qudits of dimension, given in Equation 2.1.6. The effect of applying the Hadamard
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C. Local unitary equivalence of GHZ type states and star graph

states

operator to the second qudit of the GHZ type state is,

H2 |GHZd,N 〉 = 1√
d

1√
d

d−1
Σ

x,y=0
ωxy(1⊗ |x〉 〈y| ⊗ 1⊗(N−2))

d−1
Σ
k=0
|k〉⊗N

=
( 1√

d

)2 d−1
Σ

x,k=0
ωxk |k〉 |x〉 |k〉⊗(N−2)

. (C.0.3)

The star graph is then obtained by applying Hadamard operators to the last N − 2
qudits of the state in Equation C.0.3. The result is,

HN ⊗ · · · ⊗H3 ⊗H2 |GHZd,N 〉 =
( 1√

d

)N d−1
Σ
k=0

d−1
Σ

x2=0

d−1
Σ

x3=0
· · ·

d−1
Σ

xN=0
ωk(x2+x3+···+xN )

· |k〉 |x2〉 |x3〉 · · · |xN 〉 (C.0.4)

= 1
d
N
2

Σ
x
ω

N

Σ
j=2

(x·e1)(x·ej)
|x〉 . (C.0.5)

That Equations C.0.2 and C.0.5 are the same completes the proof.



D
Proof of subroutine P1

The proof of protocol P1 relies upon the decomposition of the controlled lower and
controlled raise gates in terms of phase and shift operators, detailed in Section 2.1.
In tandem, we will also make use of the known action of phase and shift matrices
on graph basis states, detailed in Section 4.3

Claim 1. The sequence of multilateral controlled raising and lowering operations(NB
Π
j=1

CX−d
)(NA

Π
i=1
CX+

d

)
, where the lowering operations work with state copy one as

source and copy two as target, and the raising operations work with copy two as
source and copy one as target, perform the following map:

|ΨµA,µB 〉 |ΨνA,νB 〉 7−→
∣∣ΨµA,µB⊕(d−1)νB

〉
|ΨνA⊕µA,νB 〉 .

Proof. As a first step, we demonstrate how CX+
d

(vai ) (Equation 2.1.15) with state
copy two as source and copy one as target acts on input state |ΨµA,µB 〉 |ΨνA,νB 〉.
In complement, we determine the action of CX−d

(vbj ) (Equation 2.1.17) with state
copy one as source and two as target, on the same input state. Define Γai as
the row of the adjacency matrix Γ of graph G which corresponds to the vertex
vai ∈ VA with all columns corresponding to VA deleted. This means Γai ∈ F

⊗NB
d

and Γai = [Γaib1 ,Γaib2 , · · · ,ΓaibNB ]. Similarly, Γbi is the row of the adjacency
matrix corresponding to vertex vbj ∈ VB with all the columns corresponding to
vertices of VB deleted. We will need the standard basis vectors eai , ebj of lengths
NA and NB , respectively. To understand the following derivation, recall Equations
4.3.8 and 4.3.4. The controlled raising (lowering) operator acts on the two qudits
corresponding to vertex vai (vbj ) of the pair of graph basis states as,
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CX+
d

(vai ) |ΨµA,µB 〉 |ΨνA,νB 〉=
1
d

(d−1
Σ
n=0

Xn ⊗ [
d−1
Σ
m=0

ωd−mnZm]
)
|ΨµA,µB 〉 |ΨνA,νB 〉

= 1
d

d−1
Σ
n=0

(
ωn(d−1)µai

∣∣∣ΨµA,µB⊕n(d−1)Γai

〉 ( d−1
Σ
m=0

ωd−mn
∣∣ΨνA⊕meai ,νB〉 ))

= 1
d

d−1
Σ

n,m=0

(
ωn(d−1)µaiωd−mn

∣∣∣ΨµA,µB⊕n(d−1)Γai

〉 ∣∣ΨνA⊕meai ,νB〉 ) (D.0.1)

CX−d
(vbj ) |ΨµA,µB 〉 |ΨνA,νB 〉=

1
d

(d−1
Σ
n=0

[
d−1
Σ
m=0

ωd−mnZm]⊗Xn·(d−1)
)
|ΨµA,µB 〉 |ΨνA,νB 〉

= 1
d

d−1
Σ
n=0

( d−1
Σ
m=0

(
ωd−mn

∣∣∣ΨµA,µB⊕mebj〉 )ωnνbj ∣∣∣ΨνA⊕nΓbj ,νB

〉)
= 1
d

d−1
Σ

n,m=0

(
ωnνbjωd−mn

∣∣∣ΨµA,µB⊕mebj〉 ∣∣∣ΨνA⊕nΓbj ,νB

〉)
(D.0.2)

From examining the action of the controlled raising and lowering gates employed in
the protocol it is clear that protocol P1 will leave fixed the indices of all vertices
from set VA of the first input state, as well as the indices of all vertices from set
VB of the second input state. This means that if the input state of protocol P1 is
|ΨµA,µB 〉 |ΨνA,νB 〉, then the output state will be of the form |ΨµA,ηB 〉 |Ψ ηA,νB 〉, for
some ηB ∈ F⊗NBd and ηA ∈ F⊗NAd .

With the action of the controlled raising and lowering operators made plain, it is
straightforward to determine the effect of the two parts of the protocol. In the
first stage, NA CX+

d gates are applied with state copy two as source and copy one
as target. These are between the two qudits held by each of the NA parties with
qudits from the set VA. In the second stage, NB CX−d gates are applied with state
copy one as source and copy two as target. These are between the two qudits held
by each of the NB parties with qudits from the set VB . Before demonstrating the
effect of each stage, define the row vectors K(1),K(2) ∈ F

⊗NA
d . Furthermore,

define a weighted sum of the adjacency matrix partial row vectors: Γ · K(1) :=
Γa1K

(1)
a1 + · · ·+ ΓaNAK

(1)
aNA

. Define also a weighted sum of the entries of the multi-
index µA : µA ·K(1) := µa1K

(1)
a1 + · · ·+ µaNAK

(1)
aNA

. Note that Γ ·K(1) ∈ F
⊗NB
d

and µA ·K(1) ∈ F
⊗NA
d

The state which results from applying
NA
Π
i=1
CX+

d

(vai ) with state copy two as source
and copy one as target, to the product state |ΨµA,µB 〉 |ΨνA,νB 〉 is a superposition
state with dNA · dNA terms. It can be calculated by repetition of Equation D.0.1 for
each of the vertices in VA,
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NA
Π
i=1
CX+

d

(vai ) |ΨµA,µB 〉 |ΨνA,νB 〉=
NA
Π
i=2
CX+

d

(vai )
[

1
d

d−1
Σ

K
(1)
a1 ,K

(2)
a1 =0

ωK
(1)
a1 (d−1)µa1ωd−K

(2)
a1 K

(1)
a1

∣∣∣ΨµA,µB⊕K(1)
a1 (d−1)Γa1

〉 ∣∣∣ΨνA⊕K(2)
a1 ea1 ,νB

〉]

=
NA
Π
i=3
CX+

d

(vai )
[

1
d

d−1
Σ

K
(1)
a1 ,K

(2)
a1 =0

d−1
Σ

K
(1)
a2 ,K

(2)
a2 =0

ω(d−1)(µa1K
(1)
a1 +µa2K

(1)
a2 )

ωd−(K(2)
a1 K

(1)
a1 )+K(2)

a2 K
(1)
a2

∣∣∣ΨµA,µB⊕(d−1)(K(1)
a1 Γa1⊕K

(1)
a2 Γa2 )

〉
∣∣∣ΨνA⊕(K(2)

a1 ea1⊕K
(2)
a2 ea2 ),νB

〉]
...

= 1
dNA

Σ
K(1)

Σ
K(2)

ω(d−1)µA·K(1)
ωd−K

(1)·K(2)

∣∣ΨµA,µB⊕(d−1)Γ·K(1)
〉 ∣∣ΨνA⊕K(2),νB

〉
(D.0.3)

With the action of the controlled raise operations known, it is possible to determine
the form of the resulting state after the subsequent controlled lowering operations.
The calculation consists of iteratively applying Equation D.0.2 to the state in Equa-
tion D.0.3. The result will be a superposition state with (dNA)2 · (dNB )2 terms. One
observation is that since µA and νB remain fixed in the procedure, the number of
unique terms in the superposition is limited to dNA+NB , suggesting a large amount of
repetition of basis states in the resulting superposition. Define now the multi-indices
M (1), M (2) ∈ F

⊗NB
d . Note that Γ ·M (2) ∈ F

⊗NA
d and νB ·M (2) ∈ F

⊗NB
d .

P1
(
|ΨµA,µB 〉 |ΨνA,νB 〉

)
=

NB
Π
j=1

CX−d
(vbj )NAΠ

i=1
CX+

d

(vai ) |ΨµA,µB 〉 |ΨνA,νB 〉

= 1
dNA+NB

Σ
M(1),M(2)

Σ
K(1),K(2)

ω(d−K(1)·K(2))+(d−M(1)·M(2))

ωνB ·M
(2)+(d−1)µA·K(1) ∣∣ΨµA,µB⊕(d−1)Γ·K(1)⊕M(1)

〉∣∣ΨνA⊕K(2)⊕Γ·M(2),νB

〉
. (D.0.4)

The first important thing to notice about the resulting state concerns the updated
multi-index of the vertices in VB of state 1. If we fix a multi-index K(1), then
(d − 1)Γ ·K(1) is a fixed vector in F⊗NBd . Hence if we have a sum over all multi-
indices M (1) ∈ F

⊗NB
d , then we can introduce the multi-index B ∈ F

⊗NB
d and

make the replacement,

(d− 1)Γ ·K(1) ⊕M (1) ≡ B. (D.0.5)
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Following a similar argument, for fixed M (2) we can introduce the multi-index
A ∈ F

⊗NA
d and make the following replacement,

Γ ·M (2) ⊕K(2) ≡ A. (D.0.6)

With both replacements made, the resulting state is

P1
(
|ΨµA,µB 〉 |ΨνA,νB 〉

)
= 1
dNA+NB

Σ
A
· Σ
B
· Σ
M(2)

· Σ
K(1)

ωd−M
(2)·(Γ·K(1))ωd−(d−1)(K1·(Γ·M(2)))

ωM
(2)·(νB	B)ωK

(1)·((d−1)µA	A) |ΨµA,µB⊕B〉 |ΨνA⊕A,νB 〉

= 1
dNA+NB

Σ
A
· Σ
B
· Σ
M(2)

· Σ
K(1)

ωM
(2)·(νB	B)ωK

(1)·((d−1)µA	A)

|ΨµA,µB⊕B〉 |ΨνA⊕A,νB 〉

= Σ
A
· Σ
B
δνB ,B δ(d−1)µA,A |ΨµA,µB⊕B〉 |ΨνA⊕A,νB 〉 . (D.0.7)

In the last line of the equation we note that the sums overM (2) andK(1) are over all
the roots of unity, with each root raised to some exponent νB	B and (d−1)µA	A,
respectively. These sums are zero if the two exponents are non-zero, and equal to
dNB and dNA respectively if the exponents are both zero. We have introduced
a multi-indexed Kronecker-delta δi,j used to represent the product of Kronecker-
delta’s, one for each index in the multi-index, δi,j := δi1,j1δi2,j2 · · · δiNi jNj . Finally,
we carry out the summation, making use of the Kronecker-deltas,

P1
(
|ΨµA,µB 〉 |ΨνA,νB 〉

)
= |ΨµA,µB⊕νB 〉

∣∣ΨνA⊕(d−1)µA,νB
〉
. (D.0.8)

During the measurement stage, all parties belonging to set VA measure their qu-
dits from state copy ρ2 in the eigenbasis of the shift operator, recording in results
ωα1ωα2 · · ·ωαNA := ωαA , αA ∈ F

⊗NA
d , and all parties belonging to the set VB

measure their qudits from state copy ρ2 in the eigenbasis of the phase operator,
recording results ωβB , βB ∈ F

⊗NB
d .

Claim 2. If the measurement results fulfill the condition

(αj + Σ
k,j∈E

Γjkβk) mod d = 0, ∀j ∈ ZNA

then µA ≡ νA and the output state will have the updated coefficients

λ̃γA,γB = Σ
{(µB ,νB)|µB⊕νB=γB}

1
K1

λγA,µBλγA,νB ,

where K1 = Σ
µA

Σ
µB

Σ
νB
λµA,µBλµA,νB .
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Proof. To begin, we write the graph state corresponding to a graph G in the eigen-
basis of the phase operator Z, which we also reference as the standard basis.

|Ψ0,0〉G = 1
d
N
2

Σ
iA

Σ
iB
ω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(ea·iA)(eb·iB)

|iA, iB〉 , (D.0.9)

where the multi-indices labelling the state are iA ∈ F
NA
d , iB ∈ F

NB
d . Recall the

Weyl operators 2.3 from Section 2.1.3. By applying the Weyl operator W(0,µ), with
µ = (µA,µB), the action of which follows from Equation 4.3.4, we can then write
an arbitrary graph basis state in the standard basis as,

|ΨµA,µB 〉G = 1
d
N
2

Σ
iA

Σ
iB
ωµA·iAωµB ·iBω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(ea·iA)(eb·iB)

|iA, iB〉 . (D.0.10)

Recall that we consider as input two identical copies of a mixed state that is diagonal
in the graph state basis,

ρ12= ρ1 ⊗ ρ2

= Σ
µA,µB

λµA,µB |ΨµA,µB 〉 〈ΨµA,µB |G ⊗ Σ
νA,νB

λνA,νB |ΨνA,νB 〉 〈ΨνA,νB |G. (D.0.11)

Allow CG(·) to represent the transformations implemented by the sequence of mul-
tilateral gates applied in P1. It then follows from claim 1 that the state is updated
to,

CG(ρ12) = Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G

⊗
∣∣ΨνA⊕(d−1)µA,νB

〉 〈
ΨνA⊕(d−1)µA,νB

∣∣
G
. (D.0.12)

Since the protocol mandates measuring each qudit of the second copy of the state,
we write the second part of the state in the eigenbasis of the Z operator,

CG(ρ12) = Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G

⊗
{ 1
dN

Σ
iA,kA

Σ
iB ,kB

ω(νA⊕(d−1)µA)·(iA−kA)ωνB ·(iB−kB)

ω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab[(ea·iA)(eb·iB)−(kA·ea)(kB ·eb)]}

|iA, iB〉 〈kA,kB | . (D.0.13)

The first step of the measurement stage in protocol P1 is for each of the parties
belonging to set VB to measure their qudit belonging to the second state in the
Z eigenbasis. Denote the measurements1 as MB(·) and their measurement results
1For a resource explaining the formalism of measurements in quantum mechanics see [6]. Here we
only require projective measurements.
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ωjB := ωj1ωj2 · · ·ωjNB , where ji ∈ Fd. Let πjl be the projector [6] onto the jl-th
eigenstate of the Z operator. The post-measurement state is as follows,

MB(CG(ρ12)) = (πj1 ⊗ πj2 · · ·πjNB )CG(ρ12)(πj1 ⊗ πj2 · · ·πjNB )†

Tr
(
(πj1 ⊗ πj2 · · ·πjNB )CG(ρ12)

)
= 1

Tr
(
(πj1 ⊗ πj2 · · ·πjNB )CG(ρ12)

)[ 1
dN

Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G

⊗
(

Σ
iA,kA

ω(νA⊕(d−1)µA)·(iA−kA)
)(

Σ
iB ,kB

δiB ,jBδkB,jB ωνB ·(iB−kB)

ω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab[(ea·iA)(eb·iB)−(kA·ea)(kB ·eb)])

|iA, jB〉 〈kA, jB |

]

= Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G⊗

( 1
dNA

Σ
iA,kA

ω(νA⊕(d−1)µA)·(iA−kA)ω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(ea·(iA−kA))(eb·jB))

|iA, jB〉 〈kA, jB |, (D.0.14)

where in the last line we compute the normalization factor Tr((πj1 ⊗ πj2 · · ·πjNB )CG(ρ12)
)

= 1
dNB

. In order to measure the qudits of state two belonging to set VA in the X
eigenbasis, we first make a basis transformation by applying a Hadamard operator
to each qudit in the set. The resulting state is:

MB(CG(ρ12))x= H⊗NAMB(CG(ρ12))(H†)⊗NA

= Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G⊗

( 1
d2NA

Σ
iA,kA

ω(νA⊕(d−1)µA)·(iA−kA)ω

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(ea·(iA−kA))(eb·jB))

Σ
x,z
ωx·iA−kA·z |x, jB〉 〈z, jB | , (D.0.15)

where, the multi-indices x, z ∈ FNA
d

. With the basis transformation implemented,
we measure each qudit of state two belonging to the set VA. As before, denote
the measurements by MA(·) and the measurement results of the NA parties by
ωj

′
A := ωj

′
1ωj

′
2 · · ·ωj

′
NA , where each j′i ∈ Fd. The post-measurement state is as
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follows,

MA(MB(CG(ρ12)))x=
(πj′1 ⊗ πj′2 · · ·πj′NA )(MB(CG(ρ12)))x(πj′1 ⊗ πj′2 · · ·πj′NA )†

Tr
(
(πj′1 ⊗ πj′2 ⊗ · · · ⊗ πj′NA )(MB(CG(ρ12)))x

)
= Σ

µA,µB
Σ

νA,νB
λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G⊗

( 1
d2NA

Σ
iA,kA

ω
[νA⊕(d−1)µA⊕jA⊕(

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(eb·jB))ea]·(iA−kA))

|jA, jB〉 〈jA, jB |

= Σ
µA,µB

Σ
νA,νB

λµA,µBλνA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G⊗

δ
[νA⊕(d−1)µA⊕jA+(

NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(eb·jB))ea],0

|jA, jB〉 〈jA, jB |. (D.0.16)

In the third line we obtain the multi-indexed Dirac delta because the sum over the
d-th primitive roots of unity vanishes unless the exponent of each is zero. The multi-
indexed Dirac delta in the post-measurement state gives rise to the post-selection

condition, which is to require that: jA ⊕ (
NA
Σ
a=1

NB+NA
Σ

b=NA+1
Γab(eb · jB)ea)) = 0 mod d,

because this implies that νA ⊕ (d − 1)µA = 0 mod d, and hence µA = νA mod d.
The post selection condition can be re-written explicitly as a system of Equations,
in which case we have that for each node of set VA, ai, i ∈ {0, · · ·NA} the
measurement results must satisfy the following Equations with the results from
nodes of set VB , bl, l ∈ {0, · · · , NB}:(

jai + Σ
(i,l)∈E

Γiljbl
)
mod d = 0. (D.0.17)

Furthermore, by applying the post-selection condition and tracing out the qudits
from the second state copy, we arrive at the updated state which is output by
sub-routine P1,

ρ̃ =
Σ

µA,µB
Σ
νB
λµA,µBλµA,νB |ΨµA,µB⊕νB 〉 〈ΨµA,µB⊕νB |G

Σ
µA,µB

Σ
νB
λµA,µBλµA,νB

, (D.0.18)

which has the updated coefficients

λ̃γA,γB = Σ
{(µB ,νB)|µB⊕νB=γB}

1
K1

λγA,µBλγA,νB , (D.0.19)

where K1 = Σ
µA

Σ
µB

Σ
νB
λµA,µBλµA,νB .

The proof of subroutine P2 is exactly analogous, and hence will not be demonstrated
here.
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Proofs for Section 7.1

Proposition 7.1. Application of purification subroutine P1 (P2)1 with faulty two-
qudit operations modeled by Equations 7.1.1 and 7.1.2 is equivalent to first applying
all noise processes, followed by application of the errorless purification subroutine.

Proof.
We will show here only the proof for subroutine P1, as the proof for P2 is analagous.

The sequence of faulty gates in subroutine P1 is represented by,

EŨbNB,1,bNB,2
◦ · · · ◦ EŨb1,1,b1,2

◦ EUaNA,2,aNA,1 ◦ · · · ◦ EUa2,2,a2,1
◦ EUa1,2,a1,1

(·) (E.0.1)

where U and Ũ represent CX+
d and CX−d , respectively, and ai,j (bi,j) represents

the i-th qudit of set VA (VB), belonging to state copy j. We must demonstrate that
this faulty sequence is equivalent to the sequence where all noise processes act first,
followed by the perfect two-qudit operations,

ŨbNB,1,bNB,2 ⊗ · · · ⊗ Ua1,2,a1,1

[
(MbNB,1

◦MbNB ,2) ◦ · · · ◦

(Ma1,2 ◦Ma1,1)(·)
](
ŨbNB,1,bNB,2⊗ · · ·⊗Ua1,2,a1,1

)†
. (E.0.2)

Notice that because of the definition ofMj in Equation 7.1.2, we could have omitted
theMai,j from the previous equation. The question of the equivalence of Equations
E.0.1 and E.0.2 reduces to checking the equivalence of,(

CX−d
)
i

[
Mbj,1 ◦Mbj,2(ρ12)

]
(CX−d )†i , (E.0.3)

and,
Mbj,1 ◦Mbj,2

((
CX−d

)
i
(ρ12)

(
CX−d

)†
i

)
, (E.0.4)

where (CX−d )i acts on the i-th qudits of set VB , with the one from state copy one
as control, and the one from state copy two as target. For the verification, we write
1For use of P2 we must consider binarylike input states with noise confined to subset VB and
the the restricted error model must be modified by swapping the role of subsets VA and VB in
equation 7.1.2

85
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explicitly the error processesMbj,1 ◦Mbj,2(ρ12) and demonstrate the commutation
with the two-qudit operators term-wise. We have,

(CX−d )i
[
Mbj,1 ◦Mbj,2(ρ12)

]
(CX−d )†i = (1− q)2(CX−d )iρ12(CX−d )†i (E.0.5)

+ q(1− q)
d

(CX−d )i
[(
1
⊗N ⊗

d−1
Σ
l=0

X lej
)

(ρ12)
(
1
⊗N ⊗

d−1
Σ
l=0

X lej
)†](CX−d )†i (E.0.6)

+ q(1− q)
d

(CX−d )i
[(d−1

Σ
l=0

X lej ⊗ 1⊗N
)

(ρ12)
(d−1

Σ
l=0

X lej ⊗ 1⊗N
)†](CX−d )†i (E.0.7)

+ q2

d2 (CX−d )i
[(d−1

Σ
l=0

X lej ⊗
d−1
Σ
m=0

Xmej
)

(ρ12)
(d−1

Σ
l=0

X lej ⊗
d−1
Σ
m=0

Xmej
)†](CX−d )†i (E.0.8)

For the first term (E.0.5), the commutation is automatic, since 1⊗N ⊗ 1⊗N always
commutes with any operator. To verify the commutation for the remaining terms,
recall the decomposition of CX−d , as given by Equation 2.1.18. For term E.0.6 we
then consider,

(CX−d )i
(
1
⊗N ⊗

d−1
Σ
l=0

X lej
)

= 1
d

d−1
Σ
s=0

d−1
Σ
t=0

ωd−(st)Zsei ⊗Xt(d−1)ei
(
1
⊗N ⊗

d−1
Σ
l=0

X lej
)

=
(
1
⊗N ⊗

d−1
Σ
l=0

X lej
) 1
d

d−1
Σ
s=0

d−1
Σ
t=0

ωd−(st)Zsei ⊗Xt(d−1)ei

=
(
1
⊗N ⊗

d−1
Σ
l=0

X lej
)
(CX−d )i. (E.0.9)

The commutation in the second line follows because [1, Z] = 0 and [Xk1ei , Xk2ei ] =
0 ∀ k1, k2. Without writing the calculation explicitly for the other two terms, we ex-
plain why it is possible. For term three (E.0.7), the relevant identities are [1, X] = 0,
and Equation 2.1.4, which dictates that Zk1eiXk2ej = ωk1k2ei·ejXk2ejZk1ei ∀ k1, k2.
Hence in term 3 the commutation introduces a phase factor, which cancels out due
to the commutation of the Hermitian conjugates. Finally term 4 (E.0.8) does not
contain any components not already covered by terms 2 and 3, and hence the error
process commutes with the controlled lowering operation.

We have shown the equivalence of Equations E.0.3 and E.0.2, thus confirming the
equivalence of Equations E.0.1 and E.0.2. To finish the proof we point out that
when all error processes occur before the two-qudit controlled operations, then it is
as if the error free protocol is applied to input states that have passed through an
additional noisy quantum channel.
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Proposition 7.2. The state resulting from the error processMbj (·), j ∈ {1, · · · , NB},
given by Equation 7.1.2, on an input state given by Equation 7.1.3, remains of the
same form but with the new parameter x(1− q). That is,

Mbj

(
ρA(x)

)
= ρA(x(1− q)). (7.1.4)

Proof.
The calculation called for by Equation 7.1.4 is rather straightforward and makes use
of the identity in Equation 4.3.8. For the GHZ type state, which corresponds to the
star graph (see Figure C.0.2) every vertex in subset VB shares a single egde with
the lone vertex in subset VA. By Equation 4.3.8,

Xkej |Ψl,0〉 =
∣∣Ψl+k(d−1),0

〉
. (E.0.10)

Equation E.0.10 is used to calculate the action ofMbj on ρA(x),

Mbj

(
ρA(x)

)
= x(1− q) |Ψ0,0〉 〈Ψ0,0|+ x

q

d

d−1
Σ
k=0

Xkej |Ψ0,0〉 〈Ψ0,0| (Xkej )†

+ 1− x
d

(1− q)1VA + 1− x
d

q

d

d−1
Σ
k=0

d−1
Σ
l=0

Xkej |Ψl,0〉 〈Ψl,0| (Xkej )†

= x(1− q) |Ψ0,0〉 〈Ψ0,0|+ x
q

d
1VA + 1− x

d
(1− q)1VA + 1− x

d

q

d
d1VA

= x(1− q) |Ψ0,0〉 〈Ψ0,0|+
1− x(1− q)

d
1VA

= ρA(x(1− q)). (E.0.11)

Here we proceed by deriving equations 7.1.7 and 7.1.8.

Derivation.
To obtain an equation for xmax we look for a fixed point of the fidelity as a result
of purification. That is, we search for x such that F̃ (x, q) = F (x), for a given
error level, q. The fidelity of the input states is F (x) = x + 1−x

d . The fidelity of
the state following purification subroutine P1 is stated in Equation 7.1.6. Define
β := x(1−q)N−1 and note that immediately we use the identity 1−F ′

(d−1) = 1−β
d , where

F ′ = β + 1−β
d .

β
(1−q)N−1 (d− 1) + 1

d
=

((d− 1)β + 1)2 1
d2

((d− 1)β + 1)2 1
d2 + (d− 1)(1− β)2 1

d2

(d− 1) β
(1−q)N−1 + 1
d

= [(d− 1)β]2 + 1 + 2(d− 1)β
[(d− 1)β]2 + 1 +�����2(d− 1)β + (d− 1) + (d− 1)β2 −�����2β(d− 1)

(d− 1) β

(1− q)N−1 + 1= [(d− 1)β]2 + 1 + 2(d− 1)β
1 + (d− 1)β2 .
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Rearranging leads to,

0= [(d− 1)β]2 + 1 + 2(d− 1)β − (1 + (d− 1)β2)
(
(d− 1) β

(1− q)N−1 + 1
)

0= [(d− 1)β]2 + �1 + 2(d− 1)β − �1− (d− 1) β

(1− q)N−1 − (d− 1)2 β3

(1− q)N−1 − (d− 1)β2

0= β(d− 1)
(

(d− 2)β + 2− 1
(1− q)N−1 −

(d− 1)
(1− q)N−1 β

2
)

(E.0.12)

For β > 0 Equation E.0.12 is,

(d− 1)
(1− q)N−1 β

2 − (d− 2)β − 2 + 1
(1− q)N−1 = 0

x2(1− q)2(N−1) − xd− 2
d− 1(1− q)2(N−1) − 2(1− q)N−1 − 1

d− 1 = 0 (E.0.13)

Using the quadratic formula one obtains,

xmax =
d−2
d−1 (1− q)2(N−1) +

√(
d−2
d−1
)2(1− q)4(N−1) + 4(1− q)2(N−1)

(
2(1−q)N−1−1

d−1

)
2(1− q)2(N−1) .

(E.0.14)

To derive the gate error threshold from Equation 7.1.7 we solve for q by setting
the radical equal to zero. The point at which the radical disappears defines the
boundary of the purification regime because beyond that point there can be no real
xmax, and therefore no maximal reachable fidelity. Define α := (1− q)N−1.

(d− 2
d− 1

)2
α4 + 4α2

(2α− 1
d− 1

)
= 0

(d− 2)2

d− 1 α2 + 8α− 4 = 0. (E.0.15)

Using the quadratic formula and simplifying,

α = 2 (d− 1)
(d− 2)2

(√
4 +

( (d− 2)2

d− 1
)
− 2
)
. (E.0.16)

Finally, isolating for q,

qcrit = 1−
[

2 (d− 1)
(d− 2)2

(√
4 + (d− 2)2

d− 1 − 2
)] 1

N−1

. (E.0.17)
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Proposition 7.3. A single error process Mj , given by Equation 7.1.2, preserves
the identity on subset VA, Mj(1VA) = 1VA , and acts on binary-like closed linear
cluster graph basis states as,

Mj

(
|ΨµA,0〉 〈ΨµA,0|

)
= (1− p) |ΨµA,0〉 〈ΨµA,0|

+ p

d− 1
d−1
Σ
k=1

∣∣ΨµA⊕k[ej−1⊕ej+1],0
〉 〈

ΨµA⊕k[ej−1⊕ej+1],0
∣∣, (7.1.10)

where (1− p) = 1
d

(
(d− 1)(1− q) + 1

)
.

Proof.
To establish the action of the error processMj as in Equation 7.1.2 on binary-like
graph basis states, we look to the relation in Equation 4.3.8, which describes the
action of powers of shift operators on graph basis states. Here,

Xk
j |ΨµA,0〉 = ωk(d−1)µA·ej

∣∣ΨµA+⊕kΓj ,0
〉
. (E.0.18)

For a closed linear cluster state the j-th row of the adjacency matrix Γ always
contains two entries, which are ones in columns j − 1 and j + 1. That is, Γj =
ej−1 + ej+1. Applied to Equation E.0.18 we have,

Xk
j |ΨµA,0〉 = ωk(d−1)µA·ej

∣∣ΨµA+⊕k[ej−1⊕ej+1],0
〉
. (E.0.19)

Overall the equation indicates that shift type errors on one node of a closed linear
cluster state are equivalent to phase type errors on the adjacent two vertices. In
determining the effect of the error process Mj , we first look at the effect on the
identity of subset VA 1VA ,

Mj(1VA) = (1− q)1VA + q

d

d−1
Σ
k=0

Xk
j 1VA(Xk

j )†

= (1− q)1VA + q

d

d−1
Σ
k=0

Σ
µA

Xk
j |ΨµA,0〉 〈ΨµA,0| (Xk

j )†

= (1− q)1VA + q

d

d−1
Σ
k=0

Σ
µA

∣∣ΨµA⊕k[ej−1⊕ej+1],0
〉 〈

ΨµA⊕k[ej−1⊕ej+1],0
∣∣

= (1− q)1VA + q

d

d−1
Σ
k=0

Σ
νA
|ΨνA,0〉 〈ΨνA,0|

= (1− q)1VA + q

d
d 1VA

= 1VA . (E.0.20)

In the fourth line we noticed that µA ⊕ k[ej−1 ⊕ ej+1] is some vector νA, and
{µA} ≡ {νA} up to re-ordering since {µA} includes all elements of FMd . Having
established that the error process preserves the identity of subset VA, we demonstrate
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the effect on binary-like basis vectors,

Mj

(
|ΨµA,0〉 〈ΨµA,0|

)
= (1− q) |ΨµA,0〉 〈ΨµA,0|

+ q

d

d−1
Σ
k=0

∣∣ΨµA⊕k[ej−1⊕ej+1],0
〉 〈

ΨµA⊕k[ej−1⊕ej+1],0
∣∣

= (1− p) |ΨµA,0〉 〈ΨµA,0|

+ p

d− 1
d−1
Σ
k=1

∣∣ΨµA⊕k[ej−1⊕ej+1],0
〉 〈

ΨµA⊕k[ej−1⊕ej+1],0
∣∣,

(E.0.21)

where (1− p) = 1
d

(
(d− 1)(1− q) + 1

)
.

Proposition 7.4. The effect of the error sequenceM2M ◦· · ·◦M2(·) on the perfect
closed linear cluster state, |Ψ0,0〉 with N = 2M vertices, where M is odd, can be
described using a subset of the basis states {|ΨµA,0〉}. Define {|ΦK〉} to be the
subset of basis states2 with the phase type errors Zl1 , Zl2 , · · · , ZlK on K pairs
of next nearest neighbor vertices, such that the error Zli applies to both nodes of
the i-th pair of next nearest neighbor nodes. Furthermore, if we write a sum over
bM,K |ΦK〉 〈ΦK |, where bM,K =

(
M
K

)
(d−1)K , it is to be interpreted as the sum of all

possible samples of states from {|ΦK〉}, of which there are bM,K . In this notation,
the effect of the error sequence is,

M2M ◦ · · · ◦M2

(
|Ψ0,0〉 〈Ψ0,0|

)
= (1− p)M |Ψ0,0〉 〈Ψ0,0|

+
M

Σ
K=1

(1− p)M−K
( p

d− 1

)K
bM,K |ΦK〉 〈ΦK |. (7.1.11)

Proof.
Equation E.0.21 error process Mj maps a single closed linear cluster graph basis
state into a mixed state consisting of the input state with probability (1 − p), and
(d − 1) states with the additional phase type error Zl, l ∈ {1, · · · , d − 1} on the
next nearest neighbour nodes j − 1 and j + 1, each with probability p

d−1 . Hence
M2M ◦ · · · ◦ ∈

(
|Ψ0,0〉 〈Ψ0,0|

)
is a mixed state of the perfect closed linear cluster

state and the states with phase errors on K of the M pairs of next nearest neighbor
nodes in set VA, where K ∈ {1, · · · ,M}. For illustration, we demonstrate here the
first few lines of the calculation of M2M ◦ · · · ◦ M2

(
|Ψ0,0〉 〈Ψ0,0|

)
, for M > 3.

Recall that we are considering M odd, which impacts the calculations because it
2For example: {|Φ0〉} = {|Ψ0,0〉},
{|Φ1〉} =

{ ∣∣Ψl1[e1⊕e3],0
〉
,
∣∣Ψl1[e3⊕e5],0

〉
, · · · ,

∣∣Ψl1[e2M−1⊕e1],0
〉}

,

{|Φ2〉} =
{ ∣∣Ψl1[e1⊕e3]⊕l2[e3⊕e5],0

〉
, · · · ,

∣∣Ψl1[e1⊕e3]⊕l2[e2M−1⊕e1],0
〉
, · · · ,∣∣Ψl1[e3⊕e5]⊕l2[e5⊕e7],0

〉
, · · · ,

∣∣Ψl1[e3⊕e5]⊕l2[e2M−1⊕e1],0
〉
, · · ·

}
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means that each of the basis states in the superposition only occurs once.

M2M ◦ · · · ◦M2

(
|Ψ0,0〉 〈Ψ0,0|

)
=M2M ◦ · · · ◦M4

(
(1− p) |Ψ0,0〉 〈Ψ0,0|

+ p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e1⊕e3],0
〉 〈

Ψl1[e1⊕e3],0
∣∣)

=M2M ◦ · · · ◦M6

(
(1− p)2 |Ψ0,0〉 〈Ψ0,0|

+(1− p) p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e3⊕e5],0
〉 〈

Ψl1[e3⊕e5],0
∣∣

+(1− p) p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e1⊕e3],0
〉 〈

Ψl1[e1⊕e3],0
∣∣

+
( p

d− 1
)2 d−1

Σ
l1=1

d−1
Σ
l2=1

∣∣Ψl1[e1⊕e3]⊕l2[e3⊕e5],0
〉 〈

Ψl1[e1⊕e3]⊕l2[e3⊕e5],0
∣∣)

=M2M ◦ · · · ◦M8

(
(1− p)3 |Ψ0,0〉 〈Ψ0,0|

+(1− p)2 p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e5⊕e7],0
〉 〈

Ψl1[e5⊕e7],0
∣∣

+(1− p)2 p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e3⊕e5],0
〉 〈

Ψl1[e3⊕e5],0
∣∣

+(1− p)2 p

d− 1
d−1
Σ
l1=1

∣∣Ψl1[e1⊕e3],0
〉 〈

Ψl1[e1⊕e3],0
∣∣

+(1− p)
( p

d− 1
)2 d−1

Σ
l1=1

d−1
Σ
l2=1

∣∣Ψl1[e3⊕e5]⊕l2[e5⊕e7],0
〉 〈

Ψl1[e3⊕e5]⊕l2[e5⊕e7],0
∣∣

+(1− p)
( p

d− 1
)2 d−1

Σ
l1=1

d−1
Σ
l2=1

∣∣Ψl1[e1⊕e3]⊕l2[e5⊕e7],0
〉 〈

Ψl1[e1⊕e3]⊕l2[e5⊕e7],0
∣∣

+(1− p)
( p

d− 1
)2 d−1

Σ
l1=1

d−1
Σ
l2=1

∣∣Ψl1[e1⊕e3]⊕l2[e3⊕e5],0
〉 〈

Ψl1[e1⊕e3]⊕l2[e3⊕e5],0
∣∣

+
( p

d− 1
)3 d−1

Σ
l1=1

d−1
Σ
l2=1

d−1
Σ
l3=1∣∣Ψl1[e1⊕e3]⊕l2[e3⊕e5]⊕l3[e5⊕e7],0

〉 〈
Ψl1[e1⊕e3]⊕l2[e3⊕e5]⊕l3[e5⊕e7],0

∣∣)
(E.0.22)

Before introducing a system of grouping terms in the superposition, it remains to
be shown that when M is odd each of the terms in the superposition is unique. To
illustrate why this is the case, we temporarily relax the restriction on M and give an
example. Suppose one wants to write the pair of next nearest neighbor basis vectors
[e1, e3], using only multiples (mod d) of the pairs of next nearest neighbor vectors
in the set S = {[e3, e5], [e5, e7], · · · , [e2M−1, e1]}. If the set S contains an odd
number of vectors, the unique non-trivial solution consists of sequentially eliminating
all of the vectors other than, e1 and e3 using multiples alternating between 1 and
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(d− 1) of the vectors from S,

[e1, e3] = [e2M−1, e1]⊕ [e3, e5]⊕ (d− 1)[e5, e7]⊕ (d− 1)[e2M−3, e2M−1]
⊕ [e2M−5, e2M−3]⊕ [e7, e9]⊕ · · · .

If the set S contains an even number of vector pairs then no solution is possible.
WhenM is even, then the number of vector pairs in S is odd, whereas whenM is odd
the number of vectors in S is even. These considerations extend to all possible sums
of vectors from the set S, hence whenM is odd all basis vectors of the superposition
state in Equation E.0.22 are unique.

To obtain a system for grouping the terms in the superposition of Equation E.0.22,
define {|ΦK〉} to be the subset of basis states with the phase type errors Zl1 , Zl2 ,
· · · , ZlK onK pairs of next nearest neighbor vertices, such that the error Zli applies
to both nodes of the i-th pair of next nearest neighbor nodes. Furthermore, if we
write a sum over bM,K |ΦK〉 〈ΦK |, where bM,K =

(
M
K

)
(d−1)K , it is to be interpreted

as the sum of all possible samples of states from {|ΦK〉}, of which there are bM,K .
Using this notation, we can fill in the conclusion of the calculation,

M2M ◦ · · · ◦M2

(
|Ψ0,0〉 〈Ψ0,0|

)
= (1− p)M |Φ0〉 〈Φ0|

+(1− p)M−1
( p

d− 1

)
bM,1 |Φ1〉 〈Φ1|

+(1− p)M−2
( p

d− 1

)2
bM,2 |Φ2〉 〈Φ2|

+ · · ·+ (1− p)
( p

d− 1

)M−1
bM,M−1 |ΦM−1〉 〈ΦM−1|

+
( p

d− 1

)M
bM,M |ΦM 〉 〈ΦM |

= (1− p)M |Ψ0,0〉 〈Ψ0,0|

+
M

Σ
K=1

(1− p)M−K
( p

d− 1

)K
bM,K |ΦK〉 〈ΦK | . (E.0.23)

Here we proceed by deriving equation 7.1.16

Derivation.
To achieve purification, it is necessary that F̃ > F . To determine the maximum and
minimum values of x, that is the values which define the boundary of the purification
regime, we look for fixed points in of the fidelity, F̃ (x, p) = F (x), where F̃ is as in
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Equation 7.1.15, and F = x+ 1−x
dM

. To begin, we work with Equation 7.1.15,

F̃=

(
x(1− p)M +

(
1−x
dM

))2
M

Σ
K=0

bM,K

[
x(1− p)M−K

(
p
d−1

)K
+
(

1−x
dM

)]2

=
(
xA(p, d) +B(d)

)2
Σ
K=0

bM,K

[
x2 (1− p)2(M−K)

(
p
d−1
)2K + (1−x)2

d2M + 2x 1−x
dM

(1− p)M−K
(

p
d−1
)K ]

=
(
xA(p, d) +B(d)

)2
Σ
K=0

(
M
K

)[
x2 (1− p)2(M−K)

(
p2

d−1
)K + (1−x)2

d2M (d− 1)K + 2x 1−x
dM

(1− p)M−K pK
]

=
(
xA(p, d) +B(d)

)2
x2
[
(1− p)2 + p2

d−1
]M + (1−x)2

dM
+ 2x (1−x)

dM

=
(
xA(p, d) +B(d)

)2
x2
[
(1− p)2 + p2

d−1
]M + (1−x2)

dM

=
(
xA(p, d) +B(d)

)2
x2C(p, d) +B(d) . (E.0.24)

In the fourth line we use the binomial theorem to carry out the sums. The fixed
point of the fidelity is then calculated by re-arranging the equation F̃ (x, p) = F (x),
and using the quadratic formula.

F̃ (x, p) = F (x)(
xA+B

)2
x2C +B

= x+ (1− x)B

x2A2 +B2 + 2xAB = x3C + x2(1− x)BC +Bx+ (1− x)B2

0 = x2C(B − 1) + x(BC −A2)−
(
2AB −B(1−B)

)
(E.0.25)

The solutions are,

x± = BC −A2 ±
√

∆
2C(B − 1) , (E.0.26)

where ∆ =
(
A2 −BC

)2 + 4C
(
1−B

)[
2AB −B

(
1−B

)]
.





F
Verification of numerics

F.1. Sending a qubit GHZ state through depolarization
channels

In order to verify the correctness of the numeric implementation of depolarization
channels used in Sections 6.3 and 7 we here perform an analytic calculation of the
state that results from successively sending each node of a simple graph state through
a depolarization channel with fixed parameter value, q. The updates to the density
matrix due to the Weyl operators (here these are simply Pauli operators) that make
up the channel follows from the relations in Section 4.3. Since the number of terms
present in the density matrix describing the state after the action of the depolarizing
channel scales as an exponential of the number of nodes in the graph state with base
the dimension of the underlying system (qudit dimension), we choose to examine a
qubit GHZ type state with 3 nodes for the sake of simplicity. Note that for a three
node GHZ type state the set of vertices is V = {1, 2, 3}, and since the graph is
two colorable, we partition the vertices as VA = {1}, VB = {2, 3}. The edges of the
graph are defined by the adjacency matrix

Γ =

0 1 1
1 0 0
1 0 0

 .

Initially, we have a perfect graph state ρ = |Ψ0,00〉 〈Ψ0,00|. Since the state is at all
times diagonal in the graph state basis, each diagonal entry of the density matrix
corresponds uniquely to the label of a graph basis state. For maximum clarity, it
will be useful to describe the quantum state solely terms of the diagonal entries of
its denstiy matrix. We write below the diagonal of the initial density matrix, with
each entry explicitly labelled. For the subsequent density matrices, the labels will
not be explicitly indicated, but the ordering will remain unchanged from the initial
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matrix.

ρ = diag
(
{0, 00} = 1, {0, 01} = 0, {0, 10} = 0, {0, 11} = 0, {1, 00} = 0,

{1, 01} = 0, {1, 10} = 0, {1, 11} = 0
)

We begin by sending the qubit 1, which is in set VA through the depolarizing channel.
The resulting density matrix is

E1(ρ) = (1− q)ρ+ q

3
(
X1ρX1

† + Z1ρZ1
† +X1Z1ρ(X1Z1)†

)
E1(ρ) = diag

(
(1− q), 0, 0, q3 ,

q

3 , 0, 0, q3
) (F.1.1)

Next, qubit 2, which is in set VB is sent through the depolarizing channel. The
resulting density matrix is

E2 ◦ E1(ρ) = (1− q)E1(ρ) + q

3
(
X2E1(ρ)X2

† + Z2E1(ρ)Z2
† +X2Z2E1(ρ)(X2Z2)†

)

E2 ◦ E1(ρ) = diag
(

(1− q)2 + (q3)2, 2(q3)2,
q

3(1− q) + (q3)2,
q

3(1− q) + (q3)2, (F.1.2)

2q3(1− q), 2(q3)2,
q

3(1− q) + (q3)2,
q

3(1− q) + (q3)2 ).
Finally, qubit 3, which is in set VB is sent through the channel. The resulting density
matrix is

E3 ◦ E2 ◦ E1(ρ) = (1− q)E2 ◦ E1(ρ) + q

3
(
X2E2 ◦ E1(ρ)X2

†

+ Z2E2 ◦ E1(ρ)Z2
† +X2Z2E2 ◦ E1(ρ)(X2Z2)†

)
, (F.1.3)

E3 ◦ E2 ◦ E1(ρ) = diag
(
(1− q)3 + 3(1− q)(q3)2 + 4(q3)3, (1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q),

(1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q), (1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q),

3(1− q)2 q

3 + 5(q3)3, (1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q),

(1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q), (1− q)2 q

3 + 3(q3)3 + 4(q3)2(1− q)
)
.

(F.1.4)

With the analytic form in hand, it is possible to draw a comparison against the
numeric results achieved when each node of a qubit based, 3 node GHZ state is sent
through the depolarizing channel with parameter q. For example, setting q = 0.4 in
the numeric implementation we obtain,

E3 ◦ E2 ◦ E1(ρ) = diag
(
0.257, 0.098, 0.098, 0.098, 0.156, 0.098, 0.098, 0.098

)
. (F.1.5)

As can be simply verified by substitution into F.1.4, the numeric results agree with
the analytic calculation, hence the numeric implementation of the depolarization
channel functions appropriately in this case.
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F.2. Comparison to published numerics for the qubit case
In this appendix we restrict all discussion to the case of qubits. Reference [25]
presents a purification protocol for qubit TCGS, to which the protocol of Chapter
5 reduces in the qubit case. One method of validating the numeric routines [59]
used in Chapters 6 and 7 for assessing the performance of our protocol of Chapter
5 is to compare the results obtained in the qubit case to the results published in
[25]. Although differences in the exact quantities presented in each study may be
expected to differ since they are reported by independent numeric routines, the
qualitative features of the results of our study should be in accordance with those
of [25] for us to conclude that our study is functioning appropriately.

The authors of [25] numerically study the performance of the error-less protocol with
depolarized input states. Note that the authors use a description of depolarization
noise that is different but equivalent to the description given by equation 2.2.6. The
alternative description is,

Ej(ρ) = pρ+ (1− p)1j2 ⊗ Trj(ρ). (F.2.1)

The parameter p of equation F.2.1 is related to the parameter q in equation 2.2.6
by q = 3

4 (1− p). Notice that in this formulation of depolarizing noise the extremal
value of noise that can be applied to the state is given by pmin. In the figures of
this appendix we work with the depolarization noise as in equation F.2.1. In Figure
F.1 we plot the results obtained when studying the performance of the error-less
protocol with depolarized input states using our numeric routine as well as the data
presented in Figure 2 of [25]. One important consideration is that the numeric study
determines the value of pmin, and Fmin simply follows from the value of pmin. For
this reason we emphasize comparison of the values of pmin. From Figure F.1 we see
that the qualitative behaviour of our results for pmin are consistent with those of
[25]; in particular, for linear cluster states (Figure F.1a) we notice that the observed
values of pmin are essentially constant as N increases; for GHZ type states (Figure
F.1b) we notice that the observed values of pmin increase as N increases. Another
consideration is that the values we report for pmin are consistently higher than those
of [25], hence our results can be considered a conservative bound when compared to
[25].

Another important case where comparison is available is in the performance analysis
of the protocol with faulty two-qubit operations. In Figure F.2 we consider depolar-
ized states as input and faulty two-qubit operations given by Equation 7.0.1 with the
error processes of Equation F.2.1; the purification regimes reported by our numeric
simulation framework (Figure F.2a) are compared to the results presented in Fig-
ure 4 of [25] (Figure F.2b). For each gate error parameter, the purification regime
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(a) Linear cluster state. (b) GHZ type state.

Figure F.1: Minimal values of the input state fidelity F and depolarization parameter p for
various node numbers, with perfect local operations. Orange dataset (circle and square markers)
corresponds to numerics from this work. Blue dataset (x and + markers) corresponds to data

extracted from [25] using the plot digitization tool available at https://apps.automeris.io/wpd.

consists of the area between the minimal required input state fidelity to achieve
purification and the maximum obtainable output fidelity, for any input state.

From observation of Figure F.2a, we notice that the purification regime broadens
with increasing N , and in general both the maximum reachable and minimal re-
quired fidelity decrease as N increases, both of which are consistent with Figure
F.2b. We note also that the numeric values reported in Figures F.2a and F.2b are
similar. We conclude that our numeric simulation of the protocol with faulty two
qubit operations captures the qualitative behaviour of the results reported in [25],
and we take this as validation that the simulation functions appropriately in this
case.

https://apps.automeris.io/wpd
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(a) Numeric simulation results. (b) Results extracted from Figure 4 of [25].

Figure F.2: Purification regimes of depolarized linear cluster input states for various node
numbers, N . For each N in both (a) and (b) the critical gate error parameter is the point where

the maximum obtainable fidelity and minimum required fidelity converge. Data in (b) was
extracted from [25] using the plot digitization tool available at https://apps.automeris.io/wpd.

https://apps.automeris.io/wpd
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