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Abstract

With the worsening of climate change, the complications brought on by floods every
year create an increasing need for forecasting systems that humanitarian organizations
can use to help populations in danger. This research presents a literature review of
machine-learning models for impact-based flood forecasting, and compares them with
existing humanitarian projects. The results examine the characteristics of the models
surveyed, while the discussion focuses on understanding how these characteristics can
define whether the machine learning models proposed can actually be translated to hu-
manitarian settings. The main takeaways include the prevalent choice of deep learning
and ensemble models, used to improve the adaptability of the models, the problems
with data availability and data quality in different areas considered, and the differ-
ence between lead times, usability, and scalability of the models proposed in contrast
with already used humanitarian projects. This study then highlights the importance of
transparency and reproducibility of the survey by detailing the queries and databases
used, ensuring accessibility of selected articles, and explaining the selection criteria and
methodology. Ultimately, the review concludes with the key insights on the connection
between academic prototypes and real-life humanitarian projects, as well as key areas
for future research.

1 Introduction
Floods can cause devastating damage to cities, the environment, and animal populations,
and climate change only worsens this situation [1]. In addition, floods cause huge long-term
problems, such as contamination of water supplies or spread of diseases among populations
accessing the waters or crops [2]. It is complicated and expensive for communities to counter
a flood event once it starts happening, so predicting them has become increasingly important.

1.1 Research Question
The main question that the research tries to answer is the following:

Under what conditions can machine learning techniques be used effectively
for impact-based flood humanitarian forecasting?

In order to produce a satisfactory answer and to carry out the literature review appro-
priately, multiple subquestions have emerged:

1. What types of machine learning models are used?

2. What are the sources and challenges of data collection?

3. How are impacts considered in these models?

4. What practical considerations influence the adoption of these models in humanitarian
settings?

The first research question (RQ1) involved understanding the differences and types of
machine learning models used throughout the different solutions. The second one (RQ2)
focused on the sources, problems, and characteristics of the data collection pipeline. RQ3
involved the aspects of impact-based forecasting between different models and how each
solution approaches them. Lastly, RQ4 considered the limitations of the models chosen and
the comparison with already existing humanitarian projects for a better understanding of
real-life usability.
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1.2 Research Gap
Historically, predicting floods was done through the use of hydrological models, which rep-
resent the act of analyzing the water flow in a river or stream system using mathematical
and computer tools [3]. This approach focuses directly on the hazards and what they may
be, while recent research is moving toward what hazards may do and the warning systems
around them [4]. In the past few years, it has been shown that machine learning algorithms
have the ability to analyze large amounts of hydrological, meteorological, and topographical
data, enabling solutions that improve upon accuracy and reliability while also quantifying
the impacts [5]. This is the exact reason why more and more papers have been focusing on
impact-based forecasting using machine learning in recent years, while, at the same time,
comprehensive literature reviews on the topic are still lacking. For example, the recent sys-
tematic review on deep learning applications [6] for flood forecasting by Kumar et al. [7]
provides an extensive review on solutions that use deep learning to predict floods or create
mappings, being a great starting point to look into a big set of models, but it also does not
focus on impact-based solutions and does not apply knowledge from gray literature.

The systematic review by Aljohani et al. [8] provides a comprehensive overview of flood
prediction modeling techniques, categorizing them into hydrologic and machine learning
models, and objectively assessing their advantages and disadvantages. Their work also ex-
plores the potential of hybrid strategies and includes a bibliometric analysis, offering valuable
insights for researchers and practitioners in the field. Similarly, El Baida et al. [9] present a
systematic literature review on classification machine learning models for urban flood hazard
mapping, a novel contribution, as it systematically explores this specific area. This review
is structured according to established guidelines and provides a detailed methodology in-
cluding research questions and a robust search strategy across five major digital libraries,
ultimately evaluating different ML classifiers and their performance. Bukhari et al. [10] of-
fers a comprehensive data analytic perspective on flood monitoring and prevention, uniquely
integrating discussions on various techniques such as IoT [11], machine learning, remote sens-
ing, and early warning systems [12], thereby bridging gaps between different approaches and
highlighting their utility in real-time data collection and informed decision-making.

Despite their valuable contributions, a recurring challenge, also evident in the work by
Kumar et al. and in the review by Aljohani et al., is the difficulty in consistently reproducing
their findings. The reporting of the search strategy for both of these reviews is often unclear
and imprecise, which would make it complicated to recreate the same settings for a new
review with similar objectives. Furthermore, while models discussed in these reviews are
often intended for use by humanitarian agencies or local governments, many reviews on the
topic, including El Baida et al. and Bukhari et al., do not incorporate insights from gray
literature, which can be crucial for practical application and real-world scenarios.

This research focuses on conducting a literature review on impact-based forecasting using
machine learning techniques for flood impacts. Ideally, this research would fill the gaps left
by other papers, while also investigating them as a starting point for a systematic review
on the matter. An important point that will be addressed is the actual feasibility of the
methods surveyed, precisely in humanitarian settings, with the help of gray literature such
as journals, conferences, or other reports from organizations.
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2 Methodology
This study is based on a literature review conducted using the SALSA framework [13].
The following subsections highlight the different parts of the SALSA methodology and their
respective descriptions related to the research itself. A flowchart of the whole process is
displayed under this section (see Figure 1).

2.1 Search
The Search part of the SALSA methodology incorporates all activities related to the scouting
and selection process of relevant papers for inclusion in the succeeding stages of the review.
This involves the queries used and the search strategy.

2.1.1 Queries

The queries chosen for the search were run on Scopus because it was shown to produce the
most relevant results. The first query was aimed at finding most of the papers relevant to
the exact purpose of the research:

("flood") AND ("impact-based") AND ("forecasting" OR "machine learning" OR "AI"
OR "big data") AND ("humanitarian" OR "aid") AND PUBYEAR > 2018 AND PUB-
YEAR < 2026

This query yielded 166 results. Then, another query was created to find the papers that
mentioned impact-based flood forecasting, but did not mention humanitarian aid. Addi-
tionally, synonyms of machine learning used in the previous query were removed to avoid
having the results inflated from other types of forecasting. Ultimately, this was the second
query chosen to compensate the deficiencies of the first one:

("flood") AND ("impact-based") AND ("machine learning") AND ("early warning")
AND PUBYEAR > 2018 AND PUBYEAR < 2026

135 papers were found through this query, amounting to a total of 301 articles before
any of the eligibility criteria were applied.

2.1.2 Search Strategy

After having run the queries, the search strategy involved examining titles and abstracts of
the papers retrieved to select an initial subset of articles. Then, out of this subset, they were
evaluated to determine compliance with the inclusion and exclusion criteria. Moreover, the
papers were briefly read to understand whether they were relevant to the subquestions or
to the literature review in general. This last subset was then used in the appraisal phase.

The inclusion criteria of the search were strictly related to the queries created and to
the way papers were then selected from the search results. These were the inclusion criteria
chosen for this research:

• Papers focusing on machine learning techniques for flood forecasting.
OR

• Papers related to humanitarian applications of flood forecasting.
OR

• Papers mentioning the limits of humanitarian adoption of flood forecasting.
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OR

• Papers mentioning impact-based flood forecasting.

OR

• Publications from humanitarian sources about flood forecasting.

And then, the criteria that each paper was required to satisfy:

• Papers published from 2019 onward.

AND

• Papers written in English.

Subsequently, the exclusion criteria were applied to the papers selected through the
inclusion process. These were the exclusion criteria for this research:

• Duplicates across different databases.

AND

• Papers that are only summaries of others.

The search strategy resulted in an initial subset of 35 papers to be analyzed in the suc-
cessive phases of SALSA. Additionally, 24 articles coming from gray literature sources were
found manually from the Directory of AI-Enabled Humanitarian Projects, the Catalogue of
Predictive Models in the Humanitarian Sector, and the Anticipation Hub. These reports still
adhered to inclusion and exclusion criteria, but no automated query was used. Nevertheless,
the keywords from the queries mentioned before were used in these different databases to
obtain the 24 new results.

2.2 Appraisal
In the appraisal phase, the initial subset of papers was reviewed briefly by reading the
important sections, such as the abstract, introduction, and results, taking notes of the
useful elements, and saving notable references. The snowballing of references during the
appraisal phase added 12 papers to the total number reviewed. Additionally, the remaining
papers were ordered in different categories based on the elements covered:

• Papers describing single machine learning forecasting models, their use, and limita-
tions.

• Papers that perform systematic literature reviews on models.

• Reports from gray literature sources that mention use cases of models.

2.3 Synthesis
In the synthesis phase, the main findings of the papers retained after appraisal were system-
atically organized to prepare for a structured analysis. Each selected article and report was
read in full, and its key insights were extracted using a predefined annotation scheme based
on the research questions. Specifically, the synthesis involved:

• Extracting information relevant to the subquestions, such as technical descriptions of
machine learning (ML) models, operational challenges, and humanitarian applications.
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• Summarizing the key contributions, limitations, and context of use for each source.

• Identifying and tagging elements of the text that aligned with specific research ques-
tions.

• Compiling a draft comparative table to track which research questions each paper
contributed to, and to facilitate clustering by theme.

The outcome of the synthesis phase was a refined subset of 10 academic articles and
9 gray literature reports, each clearly linked to specific research questions. This laid the
foundation for the more in-depth analysis that followed.

2.4 Analysis
When analyzing the final subset of papers, the main takeaways considered were models
used, type of data sources, the geographical location of the use case, the type of impact
considered, the eventual limitations of the solution, and whether the solution is ready for
humanitarian use. These findings were useful to compile a table (see Table 1) highlighting
the most important papers in the review and to provide a useful overview to answer the
research questions.

From this annotated and grouped information, results were drawn out in direct response
to the initial research questions, completing the final analysis and the research itself.

Figure 1: Flowchart illustrating the screening and selection process of the papers
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3 Results
Starting with RQ1 and the models used, the key outcome is that most recent solutions
adopt ensemble methods to combine multiple machine learning classifiers to forecast new
data. The ones that do not, still tend to use bigger models like Convolutional Neural Net-
works [14] or Multi-Layer Perceptrons [15]. This is because ensemble learning significantly
improves predictive performance by combining the strengths of multiple base models, re-
ducing overfitting, and enhancing robustness across various tasks. Similarly, deep learning
models such as CNNs and MLPs can automatically extract high-level features from complex
data [16], making them well-suited for tasks like flood forecasting. However, both approaches
have trade-offs as mentioned by the report of Mohammed and Kora [16]: while ensemble
methods improve generalization by aggregating diverse learners, deep learning models often
require careful hyperparameter tuning and large computational resources [16].
Moving on to RQ2, the data sources used for flood forecasting vary widely, including satel-
lite imagery, rainfall records, flood maps, and historical data. This diversity demonstrates
that effective forecasting can rely on multiple data types, which is a promising insight given
that data scarcity remains a major barrier to humanitarian adoption, particularly in re-
gions lacking real-time or high-quality information. Flexibility in these use cases is the key
to achieving positive results in different conditions and regions. In order to overcome the
problems with data availability, the solution by Roy et al [17] does not incorporate all of
the features selected (with drainage data), or adjusts others to still provide a positive input
(with rainfall data).
When looking at RQ3, not all papers explicitly adopt an impact-based forecasting frame-
work, but many incorporate impact-related variables to tune or feed their models. In this
context, impacts are defined as the measurable consequences of flooding on natural systems,
infrastructure, and human activity, including changes in water level, inundation extent,
damage to transport networks, displacement of people, and economic loss. One exception
is the study by Noor et al. [18], which primarily focuses on predicting water levels using
hydrological data, without addressing downstream consequences of flooding. Despite this,
their approach demonstrates potential utility in humanitarian applications, where timely
water level forecasts can inform evacuation or relief decisions. In contrast, the majority
of the reviewed papers address physical and hydrological impacts, including variables such
as river discharge, rainfall intensity, flood extent, and inundation mapping, elements that
influence or directly represent the physical dynamics of flood events. Some studies go fur-
ther by quantifying infrastructure-specific impacts, such as disruptions to transportation
networks [17], or even socioeconomic consequences, such as economic losses, population ex-
posure, or vulnerability metrics [19].
Lastly, mentioning RQ4, the main limitations of the solutions mentioned from the authors
are the data quality and availability, which are a big problem in areas without a huge
database of hydrological information. Approaches like the one from Nahak et al. [20] or de
Lima et al. [15] use data sources from smaller areas that do have better coverage, thanks
to humanitarian or governmental agencies, but would fail to be transposed in other regions
without this rich availability. Another important limitation is the scalability of the solution
proposed, as shown in the work by El Baida et al [14]. Additionally, the paper by Ren et
al. [21], describes problems with the biases of sampling the data.
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Models Data Source Case Study Impact Type Limitations

Lee et
al. [19] LSTM [22] Geospatial,

historical
Dorim, South

Korea
Hydrological,
Socioeconomic

Data quality,
complexity

Ren et
al. [21]

RF[23],
XGBoost [24]

Satellite
imagery

Kunming,
China Hydrological Data

availability

Mia et
al. [25]

ADT [26], NB [27],
ANN [28],
DLNN [29]

Geospatial Padma,
Bangladesh Hydrological Data

availability

Roy et
al. [17] LSTM, seq2seq [30] Sequential,

runoff
Norfolk,
Virginia Transportation Data

Availability

El Baida et
al. [14] CNN [31] Rainfall, flood

maps Zaio, Morocco Hydrological Data quality,
scalability

de Lima et
al [15] MLP [32] Water level,

rainfall Brazil Hydrological Data
availability

Noor et
al. [18] STALSTM [33] Water Level Bangladesh N/A Data

availability

Won et
al. [34] ANN, LSTM Hydrological,

Geospatial
Dorim, South

Korea Hydrological Data quality

Mangukiya
et al. [35]

RF, DT [36],
XGBoost Geospatial Surat, India Hydrological Data quality

Nahak et
al. [20] FFNN [37], CNN Regional,

hydrological N/A Hydrological Data
availability

Table 1: Overview of flood forecasting studies analyzed in the review

4 Discussion
One of the most important goals of this research is to understand the conditions that make
a machine learning model usable in humanitarian settings. To understand the connection
between the models shown in the papers analyzed and humanitarian action, it is necessary
to compare the two using real-life examples and to use the following criteria:

1. Direct mention or explanation of the model used for humanitarian use in the article.

2. Scalability of the solution proposed.

3. Lead time of a possible trigger warning.

4. Possible fast deployment of the solution proposed.

5. Comparison of the limitations shown by a model with humanitarian examples.

6. Comparison of the type of model and data used with real-life humanitarian examples.

The first five points are directly addressed in the table below this subsection (see Table
2), while comparison and readiness of models are discussed in later paragraphs. The first
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criterion is fulfilled in a paper if it directly mentions the focus for humanitarian help, and
presents element that suggest an integration with real-time aid. The second one, scalability,
is used to describe whether a solution proposed could actually be transposed to other cases,
and it is not location or data specific, as described directly in the article. Lead times are
not present in all papers, but they are useful for comparison with humanitarian projects.
Moreover, fast deployment is a concept related to multiple aspects described in the articles
like complexity, data sources, and availability, which describe the speed of integration in a
real situation of a model. Lastly, limitations consider additional aspects that limit the use
of a model in humanitarian settings.
One example of the first criterion applied to a paper is the work of Lee et al. [19], which
provides a full section showing the applications of their model, directly mentioning early
warning for humanitarian action with lead times from 10 to 90 minutes. There are data and
complexity limitations for this model, but in the case studies it still performed positively.
This paper is a great case of a well-tested model, especially for further humanitarian use,
and it states that in the results too, so it is marked as aid-ready.
Other models like the one by Ren et al. [21] and by Mia et al. [25] do not directly mention
humanitarian use in their papers. Ren et al. model requires lots of data and resources, has
issues with the sampling of the dataset, and accuracy is reduced with incomplete historical
data, while the Mia et al. model needs complex hydrodynamic data, shows a bias in the
non-flood location selection, and its deep learning models do not adapt to different locations.
On the other hand, already deployed solutions like UNOSAT and HYDRAFloods have clear
humanitarian focus, a fast deployment, higher data availability, minimal calibration, auto-
matic activation for humanitarian response, and useful web dashboards. Ren et al. and Mia
et al. are not yet ready for humanitarian use following the three criteria mentioned above,
while they still represent useful case studies for lab work and academia.
On the other hand, the model of Roy et al. [17] focuses on street-scale nuisance flood forecast-
ing using impacts on transportation, providing an improved connection with humanitarian
action. For a small subset of 22 streets, the Roy et al. solution raises warnings for a storm
event from 0.09 to 0.11 seconds for the short-term forecast to 0.30 to 0.35 seconds for the
long-term one, proving its low computational complexity. On the other hand, in the IFRC re-
ports for Early Action Protocols for flood forecasting in Djibouti [38] and in Bangladesh [39]
the deployed solutions have respectively a 7-day and a 5-day lead, emphasizing the need
for enough time to organize humanitarian help. Still, the report from Roy et al. provides
warnings that can be used in real-time flood problems, which can be helpful in different
scenarios. Nevertheless, to integrate its solution in humanitarian settings, much more data
needs to be fed to the model, as well as a full integration with an operating agency and
proper disclosure of the data collected. Even with these limitations, this solution proves to
be ready in a city-like setting for humanitarian use, so it is marked accordingly.
Other solutions like El Baida et al. [14] and de Lima et al. [15] are partially ready to be
used in humanitarian settings, but still lack decisive characteristics explained before. The
first one has the ability to predict both pluvial and fluvial floods, but has the problem of
being too location-specific, of needing a complex training, and lots of data. Moreover, the
second one has a similar problem with the ability to adapt to different locations, and with
the fact that it works on a 1 to 3-hour lead, while EAP in Bangladesh, Indonesia [40], and
Djibouti show, respectively, a 5, 6, and 7-day lead.
Other papers show the possibility of being used as a support for humanitarian operations,
but they are not ready on their own. For example, the model by Noor et al. [18] does not
consider impacts, but only predicts the water level, which could still contribute to early
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warning systems for floods, but that does not yet fulfill the criteria mentioned before. On
the other hand, the model by Nahak et al. [20] is one of the latest papers considering fed-
erated learning for flood forecasting, which combines smaller models from multiple sources,
trains them with regional data, and issues flood alerts with a 5-day lead time. This appears
as a great solution, but that has yet to find a real-life case study to be applied and tested,
so it is not being marked as aid-ready.
Lastly, two papers show promising and possibly working results in humanitarian settings.
Starting with the work by Won et al. [34], which has a process-oriented approach, from
the data collection to the warning system, integrating real-time information and creating
inundation maps. In order to be used in humanitarian settings, it is only missing a proper
integration with humanitarian agencies or with an alert and warning system that is more
interactive, as well as a more refined data collection pipeline, but the process would be
possible. To conclude, the work by Mangukiya et al. [35] is showing directly actionable
input, producing flood inundation maps with depth information, estimating the affected
populations, considering evacuations, and planning logistical routes. It is a system of fast
deployment, and can be scaled to multiple situations. On the other hand, it is also missing
a proper real-time integration and suffers from a data quality problem, but projects like
Google’s Flood Forecasting pipeline, which also provides inundation maps, show a similar
solution already deployed with real-time alerts, proving that a humanitarian implementation
is indeed possible.

Aid-focus Scalability Lead time Fast
Deployment Limitations Aid-ready

Lee et
al. [19] ✓ ✓ 10-90

minutes ✓ Integration,
short warning ✓

Ren et
al. [21] X X N/A X Humanitarian

focus X
Mia et
al. [25] X X N/A X Humanitarian

focus X
Roy et
al. [17] ✓ ✓ 0.09-0.35

seconds ✓ Short warning ✓

El Baida et
al. [14] X X N/A X Humanitarian

focus X
de Lima et

al [15] X X 1-3 hours X Integration,
short warning X

Noor et
al. [18] ✓ ✓ N/A ✓ Not redy on its

own X
Won et
al. [34] ✓ ✓ 30 minutes ✓ Integration ✓

Mangukiya
et al. [35] ✓ ✓ N/A ✓ Integration ✓

Nahak et
al. [20] ✓ X 5-7 day X No case study X

Table 2: Overv iew of the aid-readiness of flood forecasting models studied
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5 Responsible Research
The first aspect to consider when conducting a literature review is the reproducibility of
the findings. To support reproducibility, this paper ensures transparency in the queries and
databases used, all of which are documented. Additionally, the articles selected are open-
access or accessible through institutional subscriptions, and some were retrieved through
references within initially selected papers rather than direct query results. The only excep-
tions to this last statement are the three articles from reports of the Red Cross that directly
come from the authors. Although they are not present in an online version right now, it is
still possible to request them from the related agencies.
Another related but distinct aspect is the transparency of the research process itself. This
includes not only detailing the limitations and challenges of the models surveyed but also
being explicit about the selection criteria and methodology followed in this review. Still,
this is not intended to be a fully systematized literature review, so it might lose precision,
and biases of the author are part of the process to select the articles.
Many of the chosen papers support transparency by providing access to their code and data,
allowing for independent verification of their findings. The papers in this review are consid-
ered trustworthy, as well as the data sources that they provide in their research. Additionally,
the data used in this review does not influence or is in any way related to individuals.
Of course, there risks related to the review itself, as it is considering aspects of humanitarian
help, which involve disasters and human lives. On the other hand, every research in this
field is essential, as every new insight contributes to improving humanitarian forecasting
and, ultimately, the effectiveness and timeliness of aid delivery.
Lastly, this paper does not use in any way the help of LLMs, not to rewrite, not to generate
ideas, or not to assist in the analysis process in any way.

6 Conclusions and Future Work
This research focused on identifying the conditions necessary for the effective adoption of
impact-based flood forecasting using machine learning in humanitarian contexts. In order
to understand this problem, it was necessary to review the papers that, in the past few
years, have developed models that would show promising results in humanitarian settings.
Secondly, multiple sources of gray literature were reviewed to grasp the difference between
projects that are already deployed and others that are only prototypes in academia.
Answering RQ1, most of the models used by the articles reviewed were ensemble and deep
learning models, as they were shown to be able to handle multiple sources of data simultane-
ously and adapt to different situations and locations, which is fundamental in humanitarian
settings.
To cite RQ2, a recurring problem in the papers surveyed was data collection, as availability
and the quality of this information were shown to be huge problems in certain regions of
the world. There was either no historical collection of flood data, or it was simply hard
to retrieve qualitative data for multiple regions, so the case studies were usually located
in smaller and controlled environments, which could avoid some of the data problems. Of
course, this also meant that these models could not scale properly in humanitarian settings.
Another important point of the research was the consideration of impacts in the forecasting
pipeline, as mentioned in RQ3, which has been used more and more in the past few years,
as previously the focus was primarily on hazards. Most of the models surveyed did consider
an impact-based approach that favors the creation of warning systems, as it is necessary
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for humanitarian agencies to understand the possible damages that floods could cause in
a specific region to organize the response on time. The main impacts considered by the
papers were hydrological, so directly on the physical damages that the flood would cause,
but others, totally or partially, also considered socioeconomic and transportation impacts.
Finally, answering RQ4, the main focus of the discussion was on the practical considerations
that limit the use of the models reviewed in actual humanitarian settings. Most of the ar-
ticles did not consider a proper integration with humanitarian agencies, making a possible
integration for a real-life use quite harder. The ones who did, on the other hand, usually
described the whole pipeline from the data collection to the warning system in the same
article, making it easier to adopt for humanitarian organizations. Another issue was that no
model showed graphical interfaces to test their solution, which is a very common practice
for already deployed projects, as well as the ability to receive multiple different sources of
data and locations as input. Additionally, some big differences between the articles surveyed
and humanitarian projects were the lead times; most of the newer models were focused on
alerting to flood events minutes or hours before they happen, while most of the accepted and
used solutions preferred multiple-day warnings. This last point proves the preference of the
models that give warnings over a longer period, since they allow humanitarian organizations
to better manage their forces and finances.
It is important to mention that, out of the 10 articles reviewed, only 4 of them are marked
as ready to be used in humanitarian settings, and they would still need proper integration
in a real-life environment. Most of the papers surveyed still show a case study on a specific
location, but most of the humanitarian projects already deployed are working in multiple
different regions. This happens because it is necessary to be efficient with the resources and
organization, especially in a time of huge new budget cuts [41]. This is exactly why recently
updated humanitarian projects like InaSAFE provide ways of combining data from multiple
sources, as well as creating natural hazards impact scenarios, creating a whole pipeline that
is ready to use. Of course, it is still incredibly important to research new machine learning
models that can provide interesting results even in localized settings, but papers that do
provide space for limitations, integration, data collection, and scalability are going to be
much more easily used in real-life settings.
Another useful approach used in humanitarian contexts is combining multiple databases to
gain information about different early warning systems at the same time. For example, the
Anticipation Hub shows the lead time of multiple EAP triggers, which is incredibly useful
when trying to facilitate the exchange in the development process by practitioners. Another
significant project that aggregates information is WorldFloods, a newly compiled dataset
of 119 globally verified flooding events from disaster response organizations [42]. A similar
type of collaboration would also be useful using the models developed by university groups,
as it can lead to new, promising developments.
To conclude, this research only covers a few years of advances on impact-based humani-
tarian forecasting using machine learning, and the amount of material found was still very
significant, so new reviews could be written in the next few years to find new conclusions on
the topic. Additional surveys could cover the characteristics and metrics used by machine
learning models to understand further what aspects are favored in the field of humanitarian
forecasting and which are not, as well as the pipeline to bring a machine learning model to
be used in real-life settings.
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