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1
Introduction

Rechargeable lithium-ion ba�eries are the power sources in many fields, ranging from portable

consumer electronics to electric vehicles.

Within the weight and size limitations of these devices, increasing power supply still remains

the most challenging problem; the current electrochemical technology is far from providing an

ideal—light, small, but powerful—ba�ery.

For example, the present-day cell phones are su�ering from the short-ba�ery-life problem, and

electric cars are always bothered by running out of charge, the so-called range anxiety.

1



2 1. Introduction

1.1 Aims of the thesis

Lithium-ion (Li-ion) batteries are receiving extensive research attention because of their
applications in a wide range of �elds and the growing energy demand from the market.
There have been a plenty of experimental activities in order to �nd more suitable materials
and more e�cient microstructures for better performance. However, most of the traditional
modeling approaches assume, implicitly or explicitly, a speci�c microstructure for the active
material, and thus they are not adequate to address the use of newly-emerging materials
such as �ber-based composites.

This thesis aims to contribute to improving battery performance by developing computa-
tional tools for battery microstructure exploration. To this end, we employ two computational
strategies: (1) a �ber-arrangement-based numerical approach that allows for the estimation
of e�ective conductivity and capacity using Monte Carlo method and an equivalent resistor
network model; (2) a FE2 multiscale method for solving physics-based governing equations
of batteries.

In the remainder of this general introduction, a succinct description of the basics of Li-ion
battery cell, especially the electrode microstructure, is presented. The modeling e�orts are
then reviewed to serve the context for computational tools discussed in this thesis.

1.2 Li-ion ba�eries and new developments

A typical Li-ion battery cell and its working process is sketched in Fig. 1.1. The battery cell
consists of �ve components: two current collectors, two electrodes, and a separator. The
electrodes and separator have porous microstructures with electrolyte �lling the pores to
conduct ions. In the discharge process, the negative electrode gives out lithium ions and
electrons. The lithium ions will move through the electrolyte to the positive electrode, while
the electrons travel through the external circuit and react with the lithium ion in the positive
electrode. In the charge process, the movement of electrons and lithium ions is reversed.

To get insights into how the battery works, we show the microstructure and composition
of commercial battery cathodes in Fig. 1.2. The porous cathode consists of active materials,
conductive materials, and the polymer binder. The pores are �lled with liquid electrolyte.
Present-day commercial batteries have two major types of cathodes di�ering in terms of the
active material: the NMC and LFP cathodes, composed of Lithium Nickel Manganese Cobalt
oxide (LiNiMnCoO2) and Lithium Iron Phosphate (LiFePO4), respectively. The porous anode
often takes graphite as the active material. The separator is a porous polymer membrane
with electrolyte �lling the pores.

To satisfy the increasing energy demand, researchers and scientists have been working



1.2. Li-ion batteries and new developments 3

electric
load

current

e− e−

Li+ X− e− e−e−e−

Li+ Li+

separatornegative
electrode

current
collector

positive
electrode

current
collector

Fig. 1.1. Schematic representation of a typical battery cell and its discharging process.
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Fig. 1.2. Schematic of the composition of two popular commercial Li-ion battery cathodes: (a) an NMC cathode
and (b) an LFP cathode [1]. The porous cathode consists of active materials, conductive carbon black, and PVdF
polymer binder. The two types of cathodes di�er in the choice of active materials: NMC electrodes use Lithium
Nickel Manganese Cobalt oxide (LiNiMnCoO2) while LFP takes Lithium Iron Phosphate (LiFePO4). The electrolyte
�lls in the pores.
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(a)

TiO2 PVdF-HFP LiNi0.5Mn1.5O4 LiCoO2

(b)

Fig. 1.3. (a) A Li-ion battery cell with all components consisting of electrospun nano�bers [6]. (b) SEM images of a
LiCoO2/C/PVdF cathode showing as-spun �ber mat [2].

intensively on exploring new materials and testing new battery cell designs. Among all these
e�orts, changing the material morphology from the current particle to nano�ber has been
shown to be e�ective in strengthening the battery performance. Compared to particles, �bers
possess higher surface-to-volume ratio and shorter di�usion paths, leading to improved
charge/discharge rate capabilities and extended cycle life of the electrodes [2–5]. In Fig. 1.3,
we show two examples of achieving exceptional performance by using electrospun nano�bers
in batteries. A discussion on the �ber morphology bene�ts can be found in Section 2.1.

Besides material morphology improvement, another strategy is to develop multi-functional
materials with combined structural and energy storage capabilities, called structural batteries.
Currently, stand-alone bulky batteries are directly incorporated into electric devices resulting
in a signi�cant weight addition and interior volume reduction. However, these traditional
batteries do not contribute to the structural performance of the devices: they are structurally
parasitic. By merging the battery function with the structural casing of mobile devices, we
can immediately reduce weight and size of our smart phones and laptops. Actually, 15%
weight reductions are possible with batteries used as part of the body panel in a conceptual
electric car as demonstrated by Volvo [7] (Fig. 1.4a). On the other hand, a slight power gain
has been reported in an unmanned aircraft vehicle [8] due to a multifunctional structural
battery embedded. Work by a Swedish interdisciplinary team of scientists has demonstrated
that such multi-functional materials can be synthesized from carbon �ber reinforced polymer
composites [9, 10]. An ideal structure battery model was proposed by Liu et al. [11] and
shown in Fig. 1.4b.
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(a)

anode

separator

cathode

(b)

Fig. 1.4. (a) Structure batteries made of carbon �bers could be used as the body panels of a car [12] for the combined
purposes of mechanical function and energy storage. (b) An ideal model of a structural battery cell [11]: the cathode
is made of LiCoO2 active material �bers (red) and conductive carbon �bers (black) blended in a structural polymer
binder (yellow); the separator is the structural polymer reinforced by insulating glass �bers (blue); the anode is
similar to the cathode but takes graphite (gray) as the active material. The structural polymer binder also functions
as the solid electrolyte to conduct ions.

1.3 Existing ba�ery modeling e�orts

Compared to experimental exploration, modeling and simulation are more e�cient ap-
proaches in terms of processing cost for understanding the physics of battery operation and
hence optimizing battery design and health management. This section brie�y reviews the
battery modeling strategies in the literature.

The most popular model up to the present is the pseudo-two-dimensional (P2D) model
introduced by Doyle et al. [13]. The P2D model is based on the porous electrode theory
and concentrated solution theory [13] to predict electrochemical responses. The porous
electrode consists of a solid porous matrix of the active material, conductive material, and
structural polymer binder, and the electrolytic solution �lling the void spaces of the porous
matrix [14]. According to the porous electrode theory, the composite electrode is homog-
enized as a superposition of two continuous phases—the solid porous matrix and liquid
electrolyte—at the cell level. The homogenized electrolyte phase is characterized by the
lithium ion concentration ce and electric potential ϕe, while the homogenized solid phase is
only associated with the electric potential ϕs. The lithium concentration cs is modeled in a
representative active material particle at the pore-scale (Fig. 1.5). The lithium ion di�usion
and migration as well as the current �ow in the electrolyte phase are described by those
derived from the concentrated solution theory [13, 14]. The lithium di�usion in the solid
particle and the electric potential variation on the homogenized solid phase are governed by
Fick’s �rst law and Ohm’s law, respectively. The interfacial �ux between the solid particles
and electrolyte, governed by the kinetics equations, is used to bridge macro- and micro-
scales. Regarding e�ective transport properties, porosity alone is used to characterize the
microstructure and correct bulk transport properties. Based on particle representation of
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Anode Separator Cathode

ϕe, ce
ϕs, j

ϕe, ce ϕe, ce
ϕs, j

j = j(ϕe, ce, ϕs, cs,s) cs,s = cs,s(j)

j cs,s
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r

Fig. 1.5. Schematic representation of the P2D model and the �ow of quantities between macro- and micro-scales. At
the macroscale (cell level), there are four variables: ce and ϕe are the lithium ion concentration and electric potential
associated with the electrolyte phase, ϕs denotes the electric potential of the solid phase, and j is the interfacial �ux
between the active material particle and electrolyte. The interfacial �ux j depends on the above mentioned three
macroscale variables and also the surface lithium concentration cs,s in the active material particle, which is in turn a
function of j through the microscale di�usion problem in the particle.

microstructure, numerous modeling works have been developed to extend the P2D model
for example in terms of the electrochemical–mechanical interaction [15–17].

The P2D model is in essence a multiscale approach, but the microscale consideration
is restricted to the simple case of a spherical particle. Besides the particle microstructure
representation, more complicated random microstructures were considered in other stud-
ies [18, 19] so that more accurate e�ective transport properties and interfacial �ux can
be obtained from the microscale simulation. Du et al. [18] applied the volume averaging
method [20, 21] to the microscale electrochemical governing equations and derived the
macroscale homogenized equations with closure terms that are solved on microscale rep-
resentative elementary volumes. From the numerical simulation data of representative
elementary volumes, a �tted e�ective transport coe�cient was used to replace Bruggeman’s
approximation, and a surrogate model was built to give the interfacial �ux as a function of
macroscale �eld variables. Lee et al. [19] adapted the variational multiscale enrichment to
Li-ion battery systems for improved battery performance predictions. Unlike conventional
homogenization approaches, this method decomposes the scales without assuming scale
separation and is capable of considering the transient phenomenon at the microscale.

With increasing computational power, it gradually becomes feasible to solve physics-
based di�erential equations over the problem domain with fully-resolved microstructure,
i.e., direct numerical simulation [22–24]. Since this strategy does not di�erentiate length
scales, we will refer to it as the single-scale approach, in contrast to those multiscale models.
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Such kind of approaches avoid the errors introduced by the homogenization process in the
multiscale approaches, at the expense of higher computational cost especially when the
domain spans length scales of a few orders of magnitude.

1.4 Proposed numerical approaches

For �ber-based battery electrodes, a particle representation as in the P2D model is apparently
infeasible. Compared to a particle, a �ber has two extra dimensions of length and orientation
on top of the radius. Thus using a single �ber to simplify the microstructure is also not
representative. Regarding the single-scale simulation, the �bers make the simulation of
physics-based di�erential equations extremely di�cult in terms of discretizing the geometry
of the embedded �bers and the associated matrix. Also, the cost of solving a large system of
linearized equations further discourages the single-scale approach. A possible strategy is to
adopt a multiscale approach as in those by Du et al. [18] and Lee et al. [19], if simulating the
electrochemical processes by solving physics-based equations is desired.

Di�erent from these existing multiscale models, we propose to develop a FE2 framework
that features well-de�ned microscale problems and information exchanges between macro-
and micro-scales in Chapters 3 and 4. This study is however preceded by an e�cient
preliminary estimation of electrode capacity based on the �ber arrangement. Details about
these two approaches are as follows.

1.4.1 Fiber-arrangement-based estimation

We �rst use an e�cient numerical approach for characterizing �ber-based battery electrodes,
including estimating the percolation threshold, electronic conductivity, and utilization of
the active material. Speci�cally, we use Monte Carlo method [25] to randomly distribute
�bers and generate numerical samples of representative volume elements (RVEs). The
connection between �bers is detected for the purposes of determining the percolation
threshold, calculating the electronic conductivity with further employment of the resistor
network model [26, 27], and identifying optimal conductive material �ber content for the
maximum capacity.

The above-described method does not need to solve physics-based di�erential equations
and thus the computational cost is relatively low. This preliminary investigation could serve
as a reference for results by solving physics-based governing equations for example using
the following FE2 multiscale method.
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1.4.2 FE2 method

The FE2 method has been developed and used in a wide range from mechanical problems [28–
31] to transport problems [32–34] with the aim of addressing heterogeneous materials span-
ning several orders of magnitude. The method consists of solving the governing equations at
the macro- and micro-scales. The macroscale constitutive relations are numerically obtained
from the microscale problem that is de�ned at each integration point of the macroscale mesh.
Because of the well-de�ned boundary conditions based on the downscaled macroscale quan-
tities, the microscale problem can well mimic the real material responses at the microscale.

The theoretical extension of the FE2 method to battery systems has been investigated
by Salvadori et al. [35, 36] who de�ned a complex multiscale scheme involving multiple
physics phenomena at di�erent time- and length-scales. At variance with their approach, we
address the problem in a simper manner. First, we consider transient di�usion problem over
a two-phase medium and separately predict the �eld variable within each phase. Second, we
consider the electrochemical processes occurring in the electrolyte without interaction with
the active material that is simply assumed as ion-transport-blocking obstacles.

The FE2 simulation can provide accurate results up to the extent of direct numerical
simulations that fully resolve the microstructure. As the microscale simulation resolves an
RVE with random morphology, the FE2 method is actually a general approach for batteries
with a generic microstructure.

1.5 Scope and outline

This thesis attempts to develop modeling frameworks for evaluating electrode properties
and solving multi-physics problems in batteries. In accordance with the approaches outlined
above, we �rst report the numerical study of electrochemical property estimation of �ber-
based battery electrodes in Chapter 2. Next we present the work related to the FE2 multiscale
method in Chapters 3 and 4. In summary, we restrict our focus to three major parts:

. numerical approaches allowing for the estimation of the percolation threshold, e�ective
electronic conductivity, and capacity from the �ber arrangement of �ber-based battery
electrodes (Chapter 2);

. a FE2 framework to solve the two-equation model of transient di�usion in two-phase
media (Chapter 3);

. a FE2 framework to simulate the ionic transport processes in porous battery separa-
tors (Chapter 4).
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2
Active material utilization and
capacity of fiber-based ba�ery
electrodes

Abstract
Electrospun nano�bers have recently been considered for the production of battery

electrodes. To give insights on how this electrode architecture perform and to suggest
e�ective design solutions, we propose a computational model to evaluate percolation
threshold, e�ective conductivity, and capacity of �ber-based electrodes. We employ
electrodes composed of conductive and active material nano�bers dispersed in an elec-
trolyte matrix. Percolation threshold, identi�ed as the minimum content of conductive
�bers to form an electronically-conductive network, is determined by Monte Carlo
methods, while e�ective conductivity is calculated by an equivalent resistor network
model. Capacity evaluation is based on the identi�cation of active material �bers that
are accessible to electrons (i.e., those connected with the electronically-conductive
network). When a constraint is applied to the total �ber content, an optimal active-
conductive material ratio is determined that allows to maximize the active material
utilization and the electrode capacity. Furthermore, we study �ber orientation e�ects
on these electrochemical quantities. We �nd that �ber orientation has a strong impact
on the percolation threshold and this re�ects on the active material utilization. For a
given total (active and conductive) �ber content, the more the �ber orientation deviates
from the ideal isotropic distribution, the lower the utilization of active material �bers.
This is of special interest for practical applications where geometrical constraints on
�ber orientation arise, as in the case of electrospun �bers deposited on a substrate.

keywords: �ber-based composite electrode, percolation threshold, resistor network
model, optimal active-conductive material ratio, �ber orientation e�ect

Parts of this chapter have been published in Zhuo et al. [1].
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2.1 Introduction

Electrospun nano�bers improve the electrochemical performance of a battery cell when
used in electrodes [2–4] due to increased surface-to-volume ratio, shorter transport paths,
and enhanced intercalation kinetics [5, 6] compared to the traditional conductive material
particle morphology. Numerical simulations of the electrochemical processes taking place
in traditional battery electrodes at the microstructural level require the solution of sets of
coupled di�erential equations and are computationally demanding [7]. In addition to this,
the microstructural analysis of �ber-based electrodes requires the discretization of each
�ber, increasing the computational burden to such an extent that the solution of the problem
becomes too expensive to be tackled for practical purposes. Here we propose a numerical
approach that allows the estimation of e�ective conductivity and capacity from the �ber
arrangement.

For improved battery performance, a new avenue has been opened up: changing the
electrode material morphology from particle to nano�ber. Metallic [8] or carbonaceous [9–12]
�bers are employed to enhance the electronic conductivity of battery electrodes. Experimental
studies show that conductive material �bers (“conductive �bers” will be used for conciseness
hereafter) help achieve electrode percolation using less conductive material [8, 10] and
improve the electrolyte ionic conductivity by creating preferential paths for ionic transport
along their surfaces [10]. The production of �bers for battery applications is not limited
to conductive materials. Thanks to electrospinning, a wide range of anode [2, 13, 14] and
cathode [2, 15] active materials can nowadays be prepared in �ber form and used in battery
cells [16, 17]. The reduced dimensions of nano�bers ensure shorter di�usion paths and higher
surface-to-volume ratio relative to the traditional morphology, leading to improved capacity,
higher charge/discharge rate capabilities, and extended cycle life of the electrodes [15, 18–
20]. The combination of active and conductive materials in �ber form was proposed by
Liu et al. [21] for structural battery applications. This novel design, although not fully realized
in their experiments, has provided a new direction for the development of multi-functional
�ber-based electrodes and some of its features will be investigated in Section 2.3.

The essential components of traditional lithium-ion battery electrodes are active material
particles, conductive material additives, and electrolyte. Active material particles act as
lithium sources/reservoirs and their amount determines the maximum electrode capacity.
Conductive material additives provide pathways for electron transport between current
collectors and active material particles, while the electrolyte is where ionic transport takes
place. The lithium ions and electrons should meet at the active material-electrolyte interface
to allow lithium insertion into the active material [22]. Due to the limiting supply of electrons
and ions, the active material is often not fully utilized [22, 23], as suggested by the fact
that the experimentally measured e�ective capacity is usually smaller than the theoretical
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capacity [15, 24]. The conductive material (usually carbon black powder) is required to form
a conductive network [25] throughout the electrode, i.e., a minimum amount of conductive
material (related to the percolation threshold) is required in electrode design. However, a
relative excess of conductive material decreases the capacity with limited improvement on
the rate capabilities as reported in Ref. [26].

In traditional electrodes [23], the overall performance depends on the synergy among all
their components. By way of example, one of the factors in�uencing electrode performance
is the weight/volume ratio between active and conductive materials—experimental evidence
indicates that this ratio impacts on the capacity of particle-based electrodes [26]. It is
reasonable to expect qualitative analogies between particle-based and �ber-based electrodes.
Indications regarding the quantitative contributions of the various components in a �ber-
based electrode architecture are however not yet available, thus hindering the investigation of
innovative electrode designs that could for instance allow the full utilization of the available
active material.

Two types of models are usually considered to simulate electrochemical processes in
particle-based electrodes. The �rst type regards the porous electrode as a homogenized
macroscopic domain and makes use of a simpli�ed representation of the microstructure
for the evaluation of local �elds (one such model is the pseudo two-dimensional model
developed by Newman [27]); the second type simulates electrochemical processes by directly
resolving the particle/pore microstructure [7]. Newman’s model is computationally e�cient
but cannot be directly applied to �ber-based electrodes if investigations concerning the e�ect
of �ber arrangement are targeted. Full scale simulations are also not suitable for �ber-based
electrodes because parametric studies would require a signi�cant computational e�ort due to
the discretization of each �ber. These models are therefore deemed unsuited for �ber-based
electrode architectures, and a simpler yet e�ective computational approach, discussed in Sec-
tion 2.2, is preferred. This approach allows us to e�ectively explore a wide range of electrode
con�gurations in terms of �ber content and distribution at a relatively low computational
cost. Instead of simulating electrochemical processes through the solution of the governing
equations, we rely on the identi�cation of electronically-conductive �ber networks and active
material �bers (“active �bers” will be used for conciseness hereafter) accessible to electrons
to estimate electrode properties such as percolation threshold, electronic conductivity, and
volumetric/gravimetric electrode capacity.

The percolation threshold of the composite electrode is evaluated by the two Monte
Carlo methods described in Section 2.2.1. A comparison of their results in Section 2.3.1
leads to a new explanation regarding the value chosen as the percolation threshold. The
analysis is then extended considering �ber orientation e�ects in a three-dimensional set-
ting in Section 2.3.4. Next, the e�ective conductivity is determined through an equivalent
resistor network model (Section 2.2.2) and discussed in Section 2.3.2 for a three-dimensional
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isotropic distribution. We also investigate the �ber orientation e�ect on the e�ective elec-
tronic conductivity in a three-dimensional setting (Section 2.3.4). This allows us to extend
the two-dimensional results reported by Jagota and Tansu [28] and to realistically mimic the
layer-by-layer �ber arrangement typical of electrospun �bers (which is only possible in a
three-dimensional setting). Finally, with the goal to determine the optimal active-conductive
material ratio, we assume in Section 2.2.3 that the electrode capacity is contributed by the
e�ective active �bers that are connected to the percolated conductive �ber network. This
leads to the results in Section 2.3.3 where we identify the active-conductive material ratio
that maximizes the capacity at a given total �ber content. Our predictions in Section 2.3.3
show a good qualitative agreement with the optimal ratio experimentally identi�ed by
Guzmán et al. [26] for particle-based electrodes. This result con�rms that �ber-based elec-
trodes can be used in place of traditional electrodes as also shown by the electrode design
application discussed in Section 2.3.3.

2.2 Computational model and methods

The �ber-based electrode under investigation is composed of conductive �bers and active
�bers dispersed in either a solid polymer electrolyte (as in the conceptual design by Liu
et al. [21]) or a liquid electrolyte [15]. The electrolyte is however neglected in our model
because it is considered as a medium that holds �bers in place but does not contribute to the
electronic conductivity and capacity. The e�ective electronic conductivity of the composite
electrode is assumed to be exclusively contributed by the conductive �ber network since
the electronic conductivity of active materials [29] is several orders of magnitude smaller
than that of conductive materials [4, 30, 31]. The �bers are idealized as spherocylinders of
length l and diameter d as shown in Fig. 2.1, with aspect ratio l/d .

Jayaraman et al. [17] have experimentally detected interconnected nano�bers in elec-
trospun �ber mats for electrode applications. To the best of our knowledge, a reliable
quanti�cation of the number and spatial con�guration of such �bers and those that are not
interconnected can only be obtained by means of dedicated experimental investigations
as it is very much dependent on the manufacturing conditions. These di�culties make a
thorough investigation of generic electrospun �ber mats not viable. Moreover, the generation
of interconnected �ber ensembles is characterized by a computational burden signi�cantly
lower compared to that of non-interconnected �ber ensembles, and it allows to explore a
wider range of �ber arrangements. Accordingly, we employ the soft-core assumption [32, 33]
to generate interconnected �ber con�gurations.

We generate a unit cubic simulation box with faces parallel to the coordinate planes to
represent the microstructural volume of the composite electrode. Each �ber is speci�ed by



2.2. Computational model and methods 17

𝑦

𝑧

𝑥

𝑂

𝑃

𝜑

𝜃

𝑙

𝑙

𝑑

𝑑
Fig. 2.1. For a �ber of length l and diameter d , a spherical coordinate system is attached to its middle point O
and its end point P is uniquely determined by two orientation angles θ and φ . The �ber is represented as a
three-dimensional spherocylinder with the red line as the axial line.

its middle point and two orientation angles as shown in Fig. 2.1. Fiber middle points O are
assumed to be uniformly distributed in the simulation box, and their coordinates are three
independent random numbers from the standard uniform distribution. The two orientation
angles are the polar angle θ with respect to the x axis and the azimuthal angle φ with respect
to the y axis. We choose the azimuthal angle φ from a uniform distribution over the interval
[0, 360°]. As for the polar angle θ , we have considered two cases: θ from 0 to the limit angle
θm (case I), and θ from θm to 90° (case II). In both cases, the limit values are included, and
θm takes on a value between 0 and 90°. The angle θm in case I indicates the degree of �ber
alignment along the x direction [34]: when θm = 90°, the �bers are isotropically distributed
in three dimensions (scenario A); as θm goes to 0, the �bers are completely aligned along the
x direction (scenario B). In case II, the angle θm is related to the degree of �ber alignment
on planes perpendicular to the x direction: when θm = 0, the three-dimensional isotropic
state (scenario A) is recovered; when θm = 90°, the �bers are isotropically distributed over
planes parallel to the yoz plane (scenario C).

The isotropic �ber distribution (scenario A) will serve as reference in Section 2.3.4
to study the e�ect of �ber orientation when compared to the other distributions. Fibers
aligned along one direction (scenario B) are known to maximize material properties in that
direction (for example, the electronic conductivity in two- [28] and three- [34] dimensional
settings). This �ber distribution can be obtained by electrospinning [35, 36]. The planar
�ber distribution (scenario C) corresponds to the case of electrospun �bers deposited on a
substrate with a layer-like �ber arrangement in the thickness direction [35]. Layer-by-layer
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Fig. 2.2. Fiber end point distribution for scenario A (a), case I (b) and case II (c). The blue surface area represents the
region where the �ber end points can be dispersed.

𝐿

Fig. 2.3. Virtual model of a �ber-based composite electrode with conductive (blue) and active (red) �bers.

stacked �bers have been fabricated to serve as battery electrodes [12, 13, 35–37].
For the three-dimensional isotropic �ber distribution (scenario A), the values of the polar

angle θ are chosen such that the �ber end points P (Fig. 2.1) uniformly cover the surface of a
sphere as shown in Fig. 2.2a [32, 38]. Likewise, for the �ber distributions in cases I and II,
the polar angles θ are generated in such a way that every di�erential area on the restricted
sphere surface, i.e., the blue area in Fig. 2.2b (case I) and c (case II), has the same probability
of being a �ber end point. Speci�c details on the generation of the angle θ are in 2.A.

We insert conductive and active �bers into the simulation box by means of the random
sequential adsorption algorithm (RSA) [39]. Because of the soft-core assumption, the �bers
can overlap, and their position is independent of the position of previously-generated �bers.
Fibers intersecting the box boundaries are dealt with using the periodicity assumption.
Figure 2.3 shows a realization of an isotropic �ber distribution (scenario A) using two species
of �bers.

A �ber-based electrode consists of active �bers, conductive �bers, and the electrolyte
�lling the volume surrounding the �bers. The three components occupy volumes Va, Vc and
Ve, respectively, and these quantities are related through the relation

Va +Vc +Ve ' V , (2.1)

with V the volume of the entire electrode. Equation (2.1) is an approximation that does
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not account for the volume shared by interconnected �bers (remember that the soft-core
assumption holds). Since the interconnected volume is negligible compared to the total �ber
volume [32], the error introduced is ignored in the following derivations. Dividing Eq. (2.1)
by the electrode volume V , we obtain the relation

ϕa + ϕc + ϕe = 1 (2.2)

between the volume fraction of each component where

ϕa =
Va
V
, ϕc =

Vc
V
, and ϕe =

Ve
V

represent the volume fraction of active �bers, conductive �bers, and electrolyte, respectively.
The relation between volume fraction ϕ and �ber number N is approximated as

ϕ =
Nπld2

4L3 , (2.3)

where L is the box edge length (Fig. 2.3).
In the following, we �rst present methods to evaluate percolation threshold (Section 2.2.1)

and electronic conductivity (Section 2.2.2). In the simulations, only the conductive �bers are
considered. Conventional Monte Carlo methods and an equivalent resistor network model
are used to calculate percolation threshold and conductivity, respectively. In Section 2.2.3, the
two species of �bers are taken into account to evaluate the electrode capacity. We introduce
the e�ective ratio and detail the approach to calculate it, which requires identi�cation of
percolation threshold in the �rst step.

2.2.1 Monte Carlo methods

Fiber-like inclusions are widely employed to enhance thermal [40, 41], electronic [42–44],
and ionic conductivity [45] of solid polymers. In the �ber-based electrodes considered
in this study, the conductive �bers serve to enhance the electronic conductivity. We use
conventional Monte Carlo methods to determine the minimum amount of conductive �bers
(i.e., percolation threshold) for electronic conductivity of the electrode.

The e�ective electronic conductivity of a �ber-based composite depends on its �ber
content. When the �ber content is low, the response of the hosting matrix prevails and the
composite behaves like an insulator; when the �ber content is su�ciently high, the composite
behaves as an electronic conductor. The �ber content at which the insulator-conductor
transition occurs is known as percolation threshold or critical �ber volume fraction [42, 46, 47].
This corresponds to the �rst formation of an interconnected �ber network along a speci�c
direction as manifested by the sharp change of e�ective properties (the electronic conductivity
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Fig. 2.4. Schematic of conductivity increase at percolation threshold ϕcr.

in our case) highlighted in Fig. 2.4. Since no interconnected network forms when the �ber
content is below the percolation threshold, any evaluation of e�ective conductivity and
capacity is subordinate to the identi�cation of such a transition value. The methods employed
to determine the percolation threshold are described in this section.

We assume electrons only travel across connected �bers and ignore electron hopping,
also known as tunneling e�ect [48, 49], between geometrically-separated �bers. Fibers i
and j are connected if they satisfy the condition

h ≤ di + dj

2 , (2.4)

where dα represent the diameter of �ber α (= i, j), and h is the shortest distance between
the axial line segments. A robust algorithm to calculate the shortest distance between two
line segments can be found in Ref. [50]. To determine if an interconnected �ber network
exists, the �bers in the box that satisfy condition (2.4) are grouped into the same cluster. If a
cluster extending between two opposite faces of the simulation box exists, the box is de�ned
as being percolated along the direction perpendicular to those faces. The �ber cluster is then
identi�ed as the percolated �ber network.

A widely-used method (called method A in the following) to calculate the percolation
threshold works by computing the percolation probability, namely the likelihood of getting
percolated, for di�erent �ber contents. Consider a simulation box containing N �bers. We
evaluate percolation of the box by grouping the �bers into clusters. Two integer indexes
in the range [1, N ] are attached to each �ber: the �rst (i) identi�es the �ber, the second (j)
identi�es the cluster it belongs to. The same value (j = i) is assigned to the two indexes
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when a box is generated. Then, �ber i is checked against �ber j (with j from i + 1 to N ). If
these two �bers satisfy the connection criterion (2.4), the smaller cluster index from �ber i
and j is assigned to all the �bers detected as connected with either �ber i or j. At the end
of this procedure, we check if two �bers with the same cluster index are identi�ed at two
opposite faces of the box. If so, at least one connected �ber network across the box exists
and we thus consider the box percolated.

We then create mA simulation boxes with the same �ber number N but di�erent �ber
con�gurations. For each box we evaluate its percolation using the algorithm previously
described. The count of successfully percolated boxes is denoted asn, and thus the percolation
probability is calculated as n/mA. The more the trialsmA, the closer the probability n/mA to
the theoretical probability, according to the law of large numbers. The number of trialsmA is
identi�ed when increasing mA does not change the percolation probability n/mA (details are
provided in Section 2.3.1).

By changing the �ber number N and repeating the procedure, we can establish a relation
between percolation probability and the �ber number N . The choice of the �ber number N is
a trial-and-error procedure that aims to the production of a set of dense data points spanning
the percolation probability range [0, 1]. The �ber number corresponding to a percolation
probability of 0.5 is chosen as the percolation threshold [51–54], and the reason behind this
choice is discussed in Section 2.3.1.

Method A is computationally expensive. A cheaper method (called method B) is described
next [43]. We insert the conductive �bers one at a time and, after each insertion, check
whether the box percolates as follows. Each newly added �ber i is checked against all
previously inserted �bers. If a connected �ber cluster is identi�ed, we stop and de�ne the
number of the �bers added until this point as the critical �ber number Ncr at percolation.
The same procedure is repeated mB times and the percolation threshold is taken as the mean
value of themB critical �ber numbers. The number of samplesmB is chosen so that negligible
changes in the average critical �ber number are observed with further increase ofmB (details
are provided in Section 2.3.1). Note that each new simulation is independent and starts with
an empty simulation box. Method A and B are compared in Section 2.3.1 to discuss their
equivalence.

2.2.2 Resistor network model

The e�ective conductivity of the composite depends on many factors such as the �ber
content, �ber distribution, �ber resistance, and the connection conditions between �bers. The
resistivity of the box is determined by means of the traditional resistor network model [28, 55],
and conductivity is determined as its reciprocal.

For a given percolated simulation box with N conductive �bers, its resistance along a
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(a)

𝑅f

𝑅c
(b)

Fig. 2.5. A connected �ber network (a) is converted to an equivalent resistor network (b). We use Rf to represent
resistance of �ber segments and Rc for contact resistance of two connected �bers.

coordinate axis direction is calculated by applying an electric potential di�erence between
the two opposite box faces perpendicular to that direction and measuring the current �owing
through the box along it. To this end, the simulation box is considered as a resistor network
with each resistor representing either a �ber resistance or a contact resistance between two
�bers. The resistance of a �ber segment is proportional to its length via

Rf = ϱ
l

S
, (2.5)

where ϱ is the resistivity of the conductive �bers, and l and S are the �ber segment length and
cross-sectional area, respectively. Each contact resistance Rc is given a constant value [33, 56].

The equivalent resistor network is constructed from the connected �ber cluster, as
illustrated in Fig. 2.5. The procedure starts by generating junction nodes from the percolated
�ber cluster (for each pair of connected �bers in the cluster, the two closest points on the
respective axial line segments are converted to two nodes). A contact resistor element is
then added between these two nodes, and each node is recorded on its host �ber. For each
�ber in the percolated cluster, the segment between any two adjacent nodes is transformed
into a �ber resistor element. We do not take into account all other �bers not connected with
the percolated cluster. Finally, any intersection between a �ber in the cluster and the two
opposite faces of interest on the simulation box is also converted into a junction node on
the �ber. For the remaining surfaces, there is no current �owing through them and their
intersection points with the �bers are ignored.

For a typical contact resistor or �ber resistor element e , de�ned from node a to b, the
current I e �owing through it is proportional to the nodal potential di�erence U e

a − U e
b

according to Ohm’s law:

I e =
U e
a −U e

b

Re
, (2.6)
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where Re is the resistance of the resistor element and e represents an arbitrary resistor
element in the whole resistor network. If the current �owing out of the �rst (respectively
second) node is denoted as I ea (respectively I eb ), the elemental matrix form of Ohm’s law is
expressed as [

I ea
I eb

]
=

1
Re

[
1 −1
−1 1

] [
U e
a

U e
b

]
(2.7)

or, in index form,
I ei = Ke

i jU
e
j (2.8)

where i and j takes on the value of either a or b. Now we use a global node numbering
system (from 1 to n) to denote all the n nodes in the resistor network. Assembling Eq. (2.7)
over all resistor elements yields the system of equations

KU = I, (2.9)

where U = [U1,U2, ...,Un]T stands for the nodal electric potential, I = [I1, I2, ..., In]T is the
current �owing out of each node, and the global coe�cient matrix K is expressed as

K =
Ne∑
e=1

Ke
i j , (2.10)

where Ne is the number of resistor elements and the sum is to be understood as the assembly
operator.

Kirchho�’s current law states that the sum of the currents �owing into a node is equal
to the sum of the currents �owing out of that node. In our simulations, we do not apply
current to the nodes (the right-hand side of Eq. (2.9) is therefore equal to zero). However, a
potential di�erence ∆U is applied between nodes on two opposite boundary surfaces. By
solving the system of linear equations (2.9), we obtain the electric potential on each node,
and the current �owing through each element can be calculated according to Eq. (2.6). The
total electrical current Ie� passing through the resistor network is determined by summing
up the currents in the resistors directly connected to either of the opposite boundaries. The
e�ective resistance Re� of the simulation box (resistor network) is calculated by

Re� =
∆U

Ie�
, (2.11)

and hence the e�ective resistivity
ϱe� = Re�

A

L
, (2.12)

whereA is the cross-sectional area of the box, and L is the length of the box side. The e�ective
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conductivity of the simulation box

σe� =
1
ϱe�
=

Ie�L

∆UA
(2.13)

is de�ned as the reciprocal of the e�ective resistivity.
Finally, note that we generate nc con�gurations and use the average of nc conductivities

as the conductivity of the simulation box containing N conductive �bers. The con�guration
number nc is determined when the average and deviation of nc conductivities tend to stabilize
as nc increases.

2.2.3 E�ective ratio of active material

This section evaluates the active material utilization and electrode capacity. The active
material is the source (or reservoir) of lithium and basically determines the capacity of the
electrode. The active material is usually not fully exploited [22, 23] as indicated by the fact
that the exerimentally-determined e�ective gravimetric capacity qe� is typically smaller than
the theoretical gravimetric capacity qth of the active material. For example, for a �brous
lithium cobalt oxide (LiCoO2)-based cathode, the experimetally-determined gravimetric
capacity ranges from 114 to 128mAh g−1 at 0.1 C-rate [15], while the theoretical (reversible)
gravimetric capacity of LiCoO2 is approximately 140mAh g−1 [57]. Values between 89
and 137 mAh g−1 have also been reported in Ref. [24] for electrospun LiCoO2 wires tested at
0.37 C-rate. These experimental results are a�ected by factors such as ionic di�usion in the
electrolyte, lithium di�usion in the active material, electronic conductivity, and number of
charge/discharge cycles. Here we focus on a single limiting factor: the active material access
to electrons.

Recall that lithium insertion/extraction at the battery electrodes occurs through reactions
that can be generalized as [58]

a A + n e− � b B , (2.14a)

c C − n e− � d D , (2.14b)

where a molecules of A take upn electrons e− to formb molecules of B at one electrode (2.14a)
and similarly at the other (2.14b). Equations (2.14a) and (2.14b) express the reduction and
oxidation reaction, respectively, and they indicate that electrons are needed for the reaction
to occur.

We de�ne the active �bers as being e�ective in contributing to the capacity if they are
connected to the percolated conductive �ber network. The connection criterion between
an active �ber and a conductive �ber is the same as the one between conductive �bers in
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Eq. (2.4). The total electrode e�ective capacity

C = qth ρa V
e�
a (2.15)

is expressed as a function of the volumeV e�
a of e�ective active material, the mass density ρa of

active material, and the theoretical gravimetric capacity qth (mAh g−1) of the active material.
The e�ective gravimetric capacity

qe� =
C

ρaVa
= qth

V e�
a
Va

(2.16)

is usually expressed in terms of unit mass of the electrode active material [58] with Va the
volume of total active material. We can then introduce the e�ective ratio

r =
qe�
qth
=
V e�
a
Va

(2.17)

which ranges from 0 to 1 by de�nition.
Here we do not model the entire �ber-based electrode; instead, we study a cubic simulation

box. In the box, all active �bers have the same size. The e�ective ratio can therefore be
simpli�ed as

r =
N e�

a
Na
, (2.18)

where N e�
a is the number of e�ective active �bers connected to the conductive �ber network

and Na is the total number of active �bers.
Due to the soft-core assumption, existing �bers have no in�uence on the placement of a

new �ber. Each active �ber has therefore the same probability of getting connected with
the percolated conductive �ber network, if formed. Consequently, the e�ective ratio does
not depend on the content of active �bers: it solely depends on the conductive �bers. The
procedure to calculate the e�ective ratio for a given conductive �ber content is described
next and more details are provided in 2.B.

We �rst generate a simulation box with N conductive �bers and Na active �bers. The
number of active �bers connected to the percolated conductive �ber network is counted as
N e�

a , and the e�ective ratio is calculated according to Eq. (2.18). In the case of no percolated
conductive �ber network, the e�ective ratio is set to be 0. The e�ective ratio associated
with this speci�c conductive �ber con�guration has a de�nite value that corresponds to
the theoretical probability; as more active �bers are included, the e�ective ratio calculated
gets closer to this value, and, when converged, the corresponding number of active �bers is
indicated by Na. The e�ective ratio calculated in this fashion is valid for a single con�guration
with N conductive �bers.



26 2. Active material utilization and capacity of �ber-based electrodes

We then generate nc simulation boxes with the same number of conductive �bers but
di�erent spatial con�gurations and calculate their corresponding e�ective ratios. Finally,
the average e�ective ratio of nc di�erent realizations is taken as the e�ective ratio for N
conductive �bers. When no percolated conductive �ber network exists, a null e�ective ratio
is considered towards the calculation of the average e�ective ratio. The box number nc

is identi�ed when the average and deviation of nc e�ective ratios tend to stabilize as nc

increases. By changing the number of conductive �bers, we repeat the procedure described
above to correlate the e�ective ratio to the number N of conductive �bers.

2.3 Results and discussions

Carbon nano�bers with high electronic conductivity can be synthesized with diameter in the
100–200 nm range, length in the 5–20 µm range, and aspect ratio in the 10–500 range [10, 59].
Electrospun LiCoO2 �bers can be produced with an average diameter of 80–100 nm [18]. In
our simulation, active and conductive �bers have diameter d = 100 nm and length l = 2.4 µm.
These values, consistent with those of the �bers produced by Showa Denko [59], have been
chosen to obtain �bers with aspect ratio l/d = 24, which is the value reported in Ref. [43].
A simulation box size with edge length L = 10 µm, which is about �ve times (cf. 4–6 times
used in Ref. [60]) larger than the �ber length, has been employed; the box size choice is
also discussed in Section 2.3.1. For convenience, the edge length of the simulation box is
set to one unit; the �bers are therefore scaled with respect to the box size: �ber length is
l = 0.24 units and diameter d = 0.01 units. For the sake of conciseness, we omit “unit” when
referring to these quantities in the following. Box size and �ber diameter will not change in
the following apart from the discussion on aspect ratio e�ects.

In this section, we �rst evaluate the percolation threshold (Section 2.3.1) using two
approaches and compare the results to reveal the connection between them. Although the
electronic conductivity of isotropic �ber distributions has been extensively studied in the
past [32, 42, 47], we show simulation results in Section 2.3.2 as the basis for the study of �ber
orientation e�ects in Section 2.3.4. The electrode capacity is studied and results are reported
in Section 2.3.3. In the �rst three sections, �bers are distributed isotropically. The results are
used as a reference to study the e�ect of �ber orientation on percolation threshold, e�ective
conductivity, and the e�ective ratio in Section 2.3.4.

2.3.1 Percolation threshold

Here we present results obtained with the two methods described in Section 2.2.1. The
percolation probabilities obtained with method A for increasing numbers N of conductive
�bers are indicated by the red circles in Fig. 2.6b. Each symbol represents the result of
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Fig. 2.6. Comparison of results between method A and B. Sub�gure (a) shows histogram and �t (to normal
distribution) probability density function of the 1000 critical �ber numbers Ncr from method B. Sub�gure (b) shows
the percolation probability at di�erent conductive �ber numbers N from method A, the empirical cumulative
probability F (N ) by Eq. (2.19), and the �t cumulative distribution function of the 1000 critical �ber numbers Ncr
from method B.

mA = 1000 conductive �ber con�gurations (with mA = 2000 the di�erence is negligible).
Method B is then employed and we identifymB = 1000 critical �ber numbers Ncr. We then
plot the histogram of the 1000 samples as shown in Fig. 2.6a and calculate the corresponding
empirical cumulative distribution function

F (N ) = count of Ncr ≤ N

mB
, (2.19)

wheremB is the total count of Ncr (blue line in Fig. 2.6b). By de�nition, F (N ) can be interpreted
as the probability of Ncr < N . As suggested by the histogram and F (N ), the critical �ber
number Ncr is likely to follow a normal distribution; hence, we �t the 1000 critical �ber
numbers to a normal distribution (mean value of 1542 and standard deviation of 152 obtained
for this speci�c case). The �t probability density function and the cumulative distribution
function (CDF) are plotted in Fig. 2.6a and 2.6b, respectively. The perfect agreement between
empirical and �t cumulative distributions con�rms that �tting to the normal distribution is
accurate (withmB = 2000 the di�erence in average and deviation is negligible).

Figure 2.6b shows that the percolation probability plot (red circles, method A) agrees
perfectly with the empirical cumulative distribution function (blue line, method B). This is
because they are equivalent from the statistical point of view. The cumulative probability
of Ncr ≤ N has exactly the same meaning as the percolation probability for N �bers: for
mB critical �ber numbers Ncr, trials of Ncr ≤ N in method B can be counted as successful
percolation samples at the given �ber number N in method A, while trials of Ncr > N can
be viewed as samples not being percolated. The total number of trialsmB is intepreted as the
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sample numbermA.
The average value N av

cr of critical �ber numbers in method B is used as the percolation
threshold in Refs. [32, 43]. This choice is reasonable since the statistical average is representa-
tive and easy to calculate. Method A is used in Refs. [51–54, 61], where the �ber number with
0.5 percolation probability was taken as the percolation threshold, but di�erent arguments
are provided by the authors to support their choices. For example, Chen et al. [51] show that
this value leads to the best agreement with experiments, while Schilling et al. [52] refer to a
previous study about percolation transition in �uids where it was shown that there exists
a common crossing point between curves obtained for di�erent box sizes at a percolation
probability just below 0.5 [62]. Nevertheless, from the comparison with method B, we now
provide statistical insights into the 0.5 percolation probability. As can be seen from the
probability density function and the cumulative distribution function in Fig. 2.6, the average
N av

cr corresponds to the cumulative probability of 0.5 in method B, namely the percolation
probability of 0.5 in method A (see equivalence in previous paragraph). In other words, if we
randomly insert N av

cr conductive �bers in the simulation box, the percolation probability is
0.5. The equivalence provides a new understanding behind the choice of the �ber number
with 0.5 percolation probability as the percolation threshold for method A: it corresponds to
the statistical average.

In Fig. 2.6, the sample numbermB in method B is the same as the numbermA of runs to
get a single red circle point in method A, and calculating all the data points in method A is a
trial-and-error process. In terms of the computational burden, method B is advantageous
and is hence employed in this study. Nevertheless, the application of method B is restricted
to the RSA algorithm and is not applicable to other approaches (e.g., Metropolis Monte Carlo
algorithm [63]). Method A is therefore more versatile and can be used irrespective of the
�ber generation method.

The percolation threshold in terms of volume fraction (i.e., the average critical �ber
volume fraction) can be expressed as

ϕav
cr =

N av
cr πld

2

4L3 (2.20)

according to Eq. (2.3). From now on we shall omit the superscript “av” in the notation of the
average percolation threshold.

The cumulative probability curve in Fig. 2.6b shows a gradual transition from 0 to 1, due
to the �nite size of the simulation box. The width of the transition zone is characterized
by the deviation of variable Ncr according to statistics. Fig. 2.7 shows the transition zone
becomes steeper and steeper as the box size increases, i.e., the deviation of Ncr decreases
and the distribution of Ncr concentrates more and more on its mean value—the percolation
threshold. In the limit of an in�nite box, the transition curve tends to a step function.
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Fig. 2.7. Empirical cumulative distribution function F at di�erent box sizes L as a function of the conductive �ber
volume fraction ϕc. The �ber size is kept �xed (length l = 0.24, diameter d = 0.01).

Figure 2.7 also shows that the average of Ncr (corresponding to F (N ) = 0.5) decreases
with the box size. According to the classic percolation theory [46, 64], the percolation
threshold ϕcr of a �nite-size box depends on the box size and follows the power law

(ϕcr − ϕ∞cr ) ∝ L−c , (2.21)

where ϕ∞cr is the percolation threshold of an in�nite system and c is a positive constant. In
the main plot of Fig. 2.8, the percolation threshold ϕcr is shown for di�erent edge lengths. It
is found that c = 1.59 results in the best straight line �t of ϕcr against L−c as shown in the
inset plot, indicating the convergence of the percolation threshold to the asymptotic value
of an in�nite system. The power law relation can be used to extrapolate the asymptotic
percolation threshold ϕ∞cr . In this case, the linear �t (inset diagram) gives ϕ∞cr = 0.0274, which
is about 5% lower than the maximum value of 0.0291 for the smallest box (L = 1.0).

To validate our simulation results, the percolation threshold is shown as a function of
the aspect ratio of the conductive �bers in Fig. 2.9. The percolation thresholds (blue circles)
are calculated from the average critical �ber number via Eq. (2.20) and the aspect ratio is
changed by varying the diameter of the conductive �bers while keeping the box edge length
equal to 1 and �ber length equal to 0.24. The plot marked with triangles are the critical
volume fractions obtained from the simulation of three-dimensional systems with randomly
oriented soft-core sticks in Ref. [32]; the remaining plots with squares and diamonds are
experimental and simulated results for isotropic silver nanowire-polystyrene composites in
Ref. [65]. It can been seen that our simulation results agree well with these results and the
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Fig. 2.8. Percolation threshold ϕcr (average critical �ber volume fraction) versus the simulation box size L. The
power law �t of ϕcr against the box size gives the critical �ber volume fraction of an in�nite box ϕ∞cr .

results can be �t using the power law

ϕcr = c0

(
l

d

)−c1
(2.22)

with c0 = 0.6621 and c1 = 1. The exponent c1 = 1 indicates an inversely proportional relation
between ϕcr and the aspect ratio l/d . This inverse relation is also theoretically derived in
Ref. [32] and the author obtained a constant c0 = 0.6

Our simulation results in Fig. 2.9 are obtained with L = 1.0. Given the good agreement
with published data, the relative error introduced by the �nite box size (5% in Fig. 2.8) is
acceptable. We have therefore used a unit size simulation box in the following simulations.

The percolation threshold discussed in this section is measured along one direction (x
direction), but we have also checked the other two directions and found that there basically
is no di�erence between them for the isotropic �ber distribution case. This can also be seen
in Fig. 2.18: the percolation threshold calculated along x and y directions coincide in the
isotropic state when θm = 90° in case I and θm = 0° in case II. Same arguments hold for
conductivity and e�ective ratio.

2.3.2 E�ective conductivity

Next we show the e�ective conductivity determined by the resistor network model at di�erent
conductive �ber volume fractions; the results here are obtained under the isotropic distribu-
tion and, together with Fig. 2.19, provide a reference for conductivities when constraints on
�ber orientation apply. For convenience, we assume that the contact resistance Rc between



2.3. Results and discussions 31

0 60 1200

0.1

0.2

𝑙/𝑑

𝜙 cr

this study sim. results in [65]
exp. data in [65] sim. results in [32]

101 102

10−2

10−1

1

−1

𝑙/𝑑
𝜙 cr

Fig. 2.9. The main plot shows the percolation threshold ϕcr versus the aspect ratio l/d and a good agreement
between our simulation results and results from references. The inset diagram presents the percolation threshold
against the aspect ratio in logarithmic scale and a linear �t of the data points suggesting a power law dependence
of the percolation threshold on the e�ect ratio.

any two connected �bers is a constant value (this has been suggested in Refs. [33, 56]). The
�ber segment resistance Rf is proportional to the length of the segment (2.5). We perform
our simulations with ϱ/S = 1 Ω/unit and choose Rc = 1.5 kΩ so that the contact resis-
tance Rc is much higher than the �ber resistance Rf (this assumption is in agreement with
Refs. [28, 33, 56]). The e�ective conductivity calculated via Eq. (2.13) is then normalized
using the contact resistance:

σN = σe� Rc. (2.23)

A potential di�erence of ∆U = 1V is applied between nodes on the left- and right-hand
surfaces (both surfaces are perpendicular to the x direction in Fig. 2.1). Figure 2.10 shows
the electric potential maps for di�erent �ber distributions. The electric potential increases
linearly from the left- to the right-hand side surface, suggesting a well dispersed �ber network.

Figure 2.11 shows the conductivity at di�erent conductive �ber volume fractions. For
each volume fraction value, the simulation is repeated 100 times and the average conductivity
is used (no signi�cant di�erences are observed in the average value with more simulation
runs). It is shown that the conductivity increases exponentially with the volume fraction.
The inset diagram is a log-log plot of the normalized conductivity σN as a function of the
volume fraction of conductive �bers reduced by the percolation threshold. The data points
can be �t by a straight line, excluding the �rst two points, thus suggesting a power law
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Fig. 2.10. Electric potential distribution of the equivalent resistor network for (a) scenario A (isotropic �ber
distribution), (b) scenario B (�bers aligned along the x direction), and (c) scenario C (�bers perpendicular to the x
direction) as described in Section 2.2. The potential of all nodes on the left surface is set to zero, while an electric
potential equal to 1 V is applied to all nodes on the right surface.
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Fig. 2.11. The main plot shows the normalized conductivity σN = σe�Rc against conductive �ber volume fraction
ϕc. In the inset plot, the relation between σN and ϕc − ϕcr is shown in logarithmic scale and the linear �t indicates
a power law dependence of σN on ϕc − ϕcr (ϕcr is the percolation threshold).

dependence of the conductivity on the di�erence between the volume fraction ϕc and the
percolation threshold ϕcr of the type

σN = σ0(ϕc − ϕcr)α , (2.24)

where σ0 = 4343.91 and α = 1.87 for this example. Equation (2.24) is a generally accepted
form of dependency of the conductivity on the volume fraction of conductive �bers, and the
exponent 1.87 agrees well with values (around 2) reported in the literature [32, 42, 47].
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Fig. 2.12. (a) The main plot shows the e�ective ratio r versus the conductive �ber volume fraction ϕc and the
percolation threshold. The inset graph presents data relating 1 − r to ϕc, and the linear �t indicates a power law
relation between r and ϕc. Conductive and active �bers have the same size and their aspect ratios l/d are 24. Marks
A, B, and C refer to the conductive �ber volume fractions in Fig. 2.20. (b) The main plot shows the e�ective ratio r
at two more aspect ratios (12 and 48). The inset diagram also presents the data in a logarithmic scale and the linear
�ts suggest a power law dependence of the e�ective ratio on the conductive �ber volume fraction at di�erent aspect
ratios.

2.3.3 E�ective active material and capacity

The percolation threshold and conductivity evaluation discussed in the previous sections
only involved conductive �bers. In this section, the active �bers and their interaction with
the conductive �bers will be studied for electrode capacity evaluation. To this end, we �rst
start with results related to the utilization of the active material (e�ective ratio of active
�bers).

E�ective ratio of active fibers

Figure 2.12a shows the e�ective ratio and the percolation probability curves as function
of the conductive �ber volume fraction. The percolation probability curve is steeper than
the e�ective ratio curve and divides the diagram into two regions: below the percolation
threshold (on the left-hand side of the percolation probability curve) the e�ective ratio is
zero because of the absence of a percolated conductive �ber network; above the percolation
threshold, the e�ective ratio increases sharply with the conductive �ber volume fraction.
Here the e�ective ratio is computed as the average value of nc = 100 di�erent conductive
�ber con�gurations, and for each con�guration more than Na = 10000 active �bers are used.

Figure 2.9 shows that the percolation threshold depends on the aspect ratio. Likewise,
the aspect ratio a�ects the e�ective ratio in Fig. 2.12b. Here the aspect ratio l/d is changed
by varying the �ber diameter d while keeping the �ber length l unchanged (active and
conductive �bers have the same size). The higher the aspect ratio, the lower the conductive
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�ber volume fraction around which the sharp increase of e�ective ratio occurs. This is
consistent with higher aspect ratio �bers resulting into a smaller percolation threshold.

The e�ective ratio is in�uenced by the relative size of active and conductive �bers
(Fig. 2.13). This is demonstrated by 1) changing the lengths of all active �bers (la = 2 lc and
la = 0.5 lc) while keeping their diameters �xed, and 2) by changing the diameters of all active
�bers (da = 1.5dc and da = 0.5dc) while keeping their lengths �xed, where the subscripts a
and c indicate active an conductive �bers, respectively. The four cases are compared with the
reference case in which the active and conductive �bers have the same length and diameter.
It is found that the larger (either in length and diameter) the active �ber, the higher the
e�ective ratio. In other words, for an assigned conductive �ber volume fraction, bigger active
�bers should be preferred to increase the e�ective ratio and, consequently, the electrode
capacity.

These predictions contrast with the usually observed electrode performance enhance-
ment associated with dimension reduction of active materials [66]. The reason is that the
appropriateness of our conclusions is subordinate to the validity of the soft-core assumption
and to the suitability of the criteria used to discern if the active �bers are e�ective or not (the
active �ber-conductive �ber network connection is described in Section 2.2.3). In particular,
our predictions are suitable for electrodes composed by nano�bers and undergoing quasi-
static charge/discharge processes. Under these conditions the solid-state di�usion in the
active �bers is not a rate-limiting factor, and the �ber dimensions can be increased as long as
concentration gradients inside the �bers remain negligible. The lithium insertion/extraction
into/from the active �bers is thus guaranteed if they are accessible to electrons.

In general, electronic and ionic pathways must form continuous interconnections between
all the regions of the battery, so that electrons and ions can reach the same place in the
active electrode material at the same moment [22]. The description of transport processes
in active material and electrolyte is required to determine if such pathways exist, and it is
crucial to evaluate the e�ective capacity when processes occur at �nite rates. To the best
of our knowledge, however, numerical tools that allow to perform simulations of porous
electrodes made up by large �ber ensembles are currently unavailable. For this reason, we
use the simpli�ed approach described in Section 2.2.3 and draw conclusions that are suitable
for quasi-static and low-rate loading conditions.

When the active and conductive �bers have the same size, the inset curves in Fig. 2.12
suggest the power law relationship

r = 1 − aϕbc (2.25)

between e�ective ratio r and conductive �ber volume fraction ϕc (only valid when ϕc > ϕcr).
The average relative error, considering all data points, is around 1% for all the three aspect
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have di�erent sizes. The length (diameter) of active �bers and conductive �bers are denoted by la (da) and lc (dc),
respectively.

ratios. When active and conductive �bers have di�erent lengths or diameters (Fig. 2.13), the
power law relation fails to �t the e�ective ratio curve with an average relative error larger
than 10%. The error mainly originates from the wide discrepancy between the �t values
and simulated results at conductive �ber volume fractions slightly above the percolation
threshold.

Volumetric and gravimetric capacities

In electrode design, a certain volume fraction should always be dedicated to the electrolyte
ϕe (see relation (2.2)). When solid polymer electrolytes (SPEs) are used, they provide con-
ductive paths for lithium ions and structural support. Since SPEs are usually characterized
by poor ionic conductivity [67], high volume fractions of �bers might not be an optimal
design choice as the paths for ions moving in the electrolyte become entangled and the
distance for ions to cover becomes longer, thus reducing the performance of the battery. If
the electrolyte is liquid, a polymer binder might be needed to ensure the structural integrity
of the electrode [23, 26]; both liquid electrolyte and polymer binder however limit the volume
available for active and conductive materials. In view of these considerations, we evaluate
the capacity of the electrode with a �xed electrolyte volume fraction ϕe. This constraint
leads to a �xed total volume fraction of the two �ber species,

ϕt = ϕa + ϕc = 1 − ϕe (2.26)

which takes a value between 0 and 1.
The expression of the e�ective capacity in Eq. (2.16) takes into account only the mass
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of the active material, neglecting battery components such as polymer binders, electronic
conductivity enhancers, and electrolyte [68]. Nevertheless, these inactive materials contribute
to the overall electrode performance in terms of mass, volume, and overall electrochemical
response [23, 26]. For this reason, it seems appropriate to divide the total electrode e�ective
capacity (Eq. (2.15)) by the volume or mass of the entire electrode to de�ne e�ective volumetric
capacity

qe�
vol =

C

V
= qth ρa ϕ

e�
a = qth ρa (ϕt − ϕc) r (2.27)

and e�ective gravimetric capacity

qe�
gra =

C

ρaVa + ρcVc + ρeVe
=

qth ρa (ϕt − ϕc) r
ρe + (ρa − ρe) ϕt − (ρa − ρc) ϕc

, (2.28)

where ρaVa + ρcVc + ρeVe is the total electrode mass (i.e., the sum of mass density multiplied
by the volumes of active material, conductive material, and electrolyte), and

ϕe�
a =

V e�
a
V
=
Va
V

r = ϕa r = (ϕt − ϕc) r (2.29)

is the volume fraction of the e�ective active material, obtained considering the de�nition of
its volume from (2.17).

De�nitions (2.27) and (2.28) show that, for a speci�c set of material properties and a given
total �ber contentϕt, the volumetric and gravimetric capacities depend on the conductive �ber
volume fraction ϕc and on the e�ective ratio r ; since r is actually a function of ϕc (Fig. 2.12a),
the conductive �ber volume fraction ϕc is the only design variable, and these capacities
depends on it in a nonlinear fashion. To illustrate the actual dependency, we consider two
electrode designs that di�er for the choice of the active material (LiCoO2 and lithium iron
phosphate (LiFePO4)). The properties of LiCoO2 [15, 24, 69] and LiFePO4 [70, 71], together
with those of vapor grown carbon �bers (VGCFs) forming the conductive network and the
solid polymer electrolyte embedding both families of �bers are listed in Table 2.1.

Figure 2.14 shows the volumetric and gravimetric capacities for the two active materials
at two total �ber volume fractions. Since qth ρa is larger for LiCoO2 than for LiFePO4 (see
Table 2.1), the volumetric capacity qe�

vol for LiCoO2 is always larger than that for LiFePO4. The
scenario is however di�erent for the gravimetric capacity qe�

gra: at ϕt = 0.188, qe�
gra is higher

for LiCoO2 than for LiFePO4, while the opposite happens at a higher �ber content ϕt = 0.471.
These observations indicate that electrode design optimization depends not only on the
targeted capacity (qe�

vol or qe�
gra) but also on the combination of geometrical features and

material parameters of both active and inactive components.
The maximum capacity that the composite electrode can achieve is identi�ed by the peak

point of the capacity plot in Fig. 2.14, and the conductive �ber volume fraction related to
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Fig. 2.14. Volumetric capacity qe�
vol (Eq. (2.27)) and gravimetric capacity qe�

gra (Eq. (2.28)) versus conductive �ber
volume fraction ϕc at total �ber volume fraction ϕt = 0.188 (a) and 0.471 (b). The optimal conductive �ber volume
fraction ϕp corresponds to the maximum capacity. The e�ective ratio r is from Fig. 2.12a at aspect ratio 24. Solid
lines denote LiCoO2, while dashed lines are LiFePO4. Material parameters of active materials, conductive materials,
and solid polymer electrolyte can be found in Table 2.1.

it is de�ned as the optimal conductive �ber volume fraction ϕp. This quantity is another
critical parameter to consider in electrode design, in addition to the percolation threshold ϕcr.
Figure 2.14 shows that while ϕp di�ers for di�erent total �ber contents ϕt, it is almost the
same at a given ϕt for qe�

vol and qe�
gra (the position of the peak di�ers by 0.6% at most in terms

of the capacity) and is independent of the active material considered.
We now study how ϕp changes with the total �ber content ϕt. Here we focus on cases in

which lengths and diameters of active �bers are equal to those of the conductive �bers and
consider three aspect ratios (l/d = 12, 24, 48). At each aspect ratio, the e�ective ratio r is
approximated by Eq. (2.25) with the parameters obtained by �tting the corresponding curve
in Fig. 2.12b. Finally, we determine ϕp by equating to zero the derivative of expression (2.27)
with respect to ϕc (details can be found in 2.C). Using this method, we can plot ϕp as a
function of the total �ber volume fraction (varied in the interval [0.1, 0.9]) as shown in
Fig. 2.15a. The corresponding capacities qe�

vol and qe�
gra are then calculated from Eqs. (2.27)

and (2.28) for LiCoO2 (Fig. 2.15b). As ϕt increases, the optimal conductive �ber volume
fraction ϕp grows and the increase is more drastic at a lower aspect ratio: ϕp ranges between
0.07 and 0.14 for l/d = 12, between 0.05 and 0.09 for l/d = 24, and between 0.03 and 0.05 for
l/d = 48. The percolation thresholds ϕcr are also shown here in the same color as ϕp. The
higher the aspect ratio, the lower ϕcr and the lower ϕp. The volumetric capacity increases
with ϕt in an approximately linear fashion, while the gravimetric capacity rises sharply at
small values of ϕt and then grows gently with ϕt. We can also see that at a higher aspect
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ratio, the capacities qe�
vol and qe�

gra are larger. Section 2.3.3 completes the discussion of these
results.

Comparison with particle-based electrodes

Here we provide a qualitative comparison between our numerical predictions of �ber-based
electrodes and experimental studies of particle-based electrodes. Guzmán et al. [26] experi-
mentally investigated the role of active-conductive material weight ratio on the performance
(e.g., capacity at di�erent charge/discharge rates and mechanical integrity) of particle-based
electrodes. LiFePO4 and carbon Super P were used as active and conductive material, re-
spectively. The authors considered active-conductive material weight ratios in the range
between 74/26 and 94/6, and they observed that the electrode performance was maximized
with the 86/14 ratio. We assume the active material LiFePO4 in �ber form and use VGCFs
that better �t in our computational model. To perform a qualitative comparison between our
predictions and the results by Guzmán et al. [26], we employ the active-conductive weight
ratio de�ned as

Ma
Mc
=

Va ρa
Vc ρc

=
(ϕt − ϕp) ρa

ϕp ρc
, (2.30)

where ϕp is the optimal conductive �ber volume fraction for a given total �ber content ϕt as
described in Section 2.3.3, and ρa and ρc are the densities of the active material LiFePO4 and
conductive VGCFs, respectively.

Figure 2.16 shows the active-conductive material weight ratio corresponding to the op-
timal conductive �ber volume fraction in Fig. 2.15a as a function of the total �ber content
at three �ber aspect ratios (length and diameter are the same for all �bers). The active-
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Table 2.1. Material parameters.

Component Material Symbol Quantity Reference Value

active �bers LiCoO2 qLiCoO2 gravimetric capacitya [57] 140.0mAh/g

ρLiCoO2 density [72] 5.0 g/cm3

LiFePO4 qLiFePO4 gravimetric capacity [73] 169.0mAh/g

ρLiFePO4 density [73] 3.6 g/cm3

conductive �bers VGCF ρVGCF density [59, 74] 2.0 g/cm3

electrolyte 1 M salt, SPE ρSPE density [75] 1.2 g/cm3

a This value refers to the reversible capacity only.

conductive weight ratio monotonically increases with ϕt and, for increasingly higher aspect
ratios, the curves shift upwards and their slopes become steeper. Since the optimal con-
ductive �ber volume fraction depends less and less on the total �ber content when the
aspect ratio increases—Fig. 2.15a shows that the total variation of ϕp with ϕt reduces by
a factor of three when the aspect ratio changes from 12 to 48—more active �bers can be
introduced in the system. This follows from the progressive reduction of the percolation
threshold with increasingly high aspect ratio, also showed in Fig. 2.15a. We observe that
the active-conductive material weight ratio basically falls in the range of values explored
by Guzmán et al. [26] (for particle-based electrodes) when the aspect ratio is equal to 12
and 24, providing a qualitative validation for our results. In addition, the total �ber content
corresponding to the intersect between each curve and the optimal active-conductive weight
ratio (86/14 according to Guzmán et al. [26]) progressively shifts from 0.15 to 0.55 when
the aspect ratio changes from 48 to 12. Roughly speaking, since reduced active-conductive
weight ratios are found for reduced aspect ratios, our results suggest that the more the
geometry of �bers approaches that of particles, the smaller the optimal active-conductive
weight ratio becomes. This is in agreement with common design practice of LiFePO4-carbon
Super P particle-based electrodes, as they are usually assembled with active-conductive
material weight ratio ranging between 80/20 and 86/14 [26].

Practical application

We now show how the tools just described can be used to design �ber-based electrodes.
To this end, we refer to the guidelines provided by the European Commission for batteries
devoted to automotive applications [76]. The target is a battery cell with a volumetric energy
density Ev = 750Wh/L and a gravimetric energy density Eg = 350Wh/kg. Estimates of the
volumetric and gravimetric energy densities can be obtained by multiplying qe�

vol and qe�
gra

(Fig. 2.15b) by the average electrode potential. With the purpose to provide an illustrative



40 2. Active material utilization and capacity of �ber-based electrodes

0.550.290.15 0.90

74/26

86/14

94/6

30

𝜙t

𝑉 a
𝜌 a
/𝑉 c

𝜌 c

𝑙/𝑑 = 12
𝑙/𝑑 = 24
𝑙/𝑑 = 48
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example, we focus on a cell consisting of a LiCoO2 �ber-based electrode and a lithium metal
counter electrode. We consider an average potential of 3.8 V according to the data reported by
Nitta et al. [57]. For simplicity, our evaluation is limited to the contribution of the �ber-based
electrode (the contributions of the counter electrode and the separator on the overall cell
volume, weight, and capacity should be considered in real applications). Figure 2.17 shows
that in the worst case (l/d = 12) the targeted volumetric and gravimetric energy densities
are obtained with ϕt equal to 0.43 and 0.54, respectively, and thus the higher �ber content
allows to satisfy both criteria. The volume fraction that has to be dedicated to the conductive
�bers (ϕp) is then determined from Fig. 2.15a and equals 0.11 and 0.12, respectively. The
volume fraction occupied by the active �bers in the two con�gurations is determined from
Eq. (2.26) (0.31 and 0.42, respectively). Figure 2.17 shows that when the aspect ratio increases,
the �ber content needed to meet the targets reduces. Speci�cally, ϕt shifts to 0.34 and 0.40
for the volumetric and gravimetric energy density, respectively, when l/d = 48.

2.3.4 E�ect of fiber orientation

This section studies the e�ect of �ber orientation on percolation threshold, e�ective conduc-
tivity, and e�ective ratio. We consider the two �ber distribution cases described in Section 2.2
and report results in the x and y directions. Results in the z direction are the same as those
in the y direction because of the uniformly distributed azimuthal angle φ over the interval
[0, 360°] (this is also veri�ed by results not reported here).
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On percolation threshold

Figure 2.18 shows the percolation threshold (average of mB = 1000 samples) versus the limit
angle θm for �ber distribution cases I and II. In both cases, the percolation threshold is smaller
along the �ber alignment direction (x direction in case I, y direction in case II) than along
directions perpendicular to it, irrespective of θm.

Figure 2.18a shows that the percolation thresholds in case I along the x and y directions
decrease monotonically with θm and eventually converge to the same value, marked by the
cross, for the isotropic distribution (θm = 90°). For small θm values, the conductive �bers are
basically aligned along the x direction and parallel to each other. Under these circumstances,
a connected �ber network is unlikely to form along either the x ory direction. The maximum
percolation threshold along the x direction at θm = 0 is three times larger than the isotropic
value (0.029), while the maximum percolation threshold along the y direction at θm = 5° is
roughly nine times larger than the isotropic value. Although the percolation threshold along
the x direction shows a minimum at θm = 70°, its value is only 4% lower than the isotropic
value. It is therefore safe to conclude that the percolation threshold along the x direction
plateaus for θm > 45°, without signi�cant loss of accuracy.

In case II (Figure 2.18b), the percolation thresholds along the x and y directions start
from the isotropic value and increase with θm. When θm = 90° (scenario C), all �bers are
perpendicular to the x direction and isotropically distributed on planes parallel to the yoz
plane. This situation prevents the conductive �bers to form a connected network and thus
leads to a percolation threshold increase: the percolation threshold at θm = 85° in the x
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Fig. 2.10, respectively.
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direction is about two and half times larger than the isotropic value, while a 30% increase,
compared to the isotropic value, is observed along the y direction.

We conclude that the percolation threshold is minimized at the isotropic �ber distribution.
However, the percolation threshold change in case I is more pronounced than that in case II
along both the x and y directions. In particular, when �bers are progressively constrained
on planes perpendicular to the x direction (case II, Fig. 2.18b), the percolation threshold
increase along the x direction is limited compared to the increase along the x direction
when �bers are progressively aligned along the x direction (case I, Fig. 2.18a). A twofold and
threefold increase is observed with respect to the isotropic value in the two cases, respectively.
Furthermore, the percolation threshold increase along the x direction in case II is pronounced
from θm > 40° onwards (Fig. 2.18b). This is relevant to �ber-based electrodes produced by
electrospinning. As �bers are deposited on a substrate that can be identi�ed with the yoz
plane, our results suggest that it is bene�cial to introduce some degree of randomness along
the out-of-plane direction (x direction) for percolation in that direction.

In Fig. 2.18, the percolation thresholds along the x and y directions coincide when θm

approaches 90° and 0° in case I and case II, respectively. This con�rms that �bers are
distributed uniformly and isotropically in the simulation box in these two limit cases, and
that they are representative of the isotropic �ber distribution. As the isotropic values
highlighted in Figs. 2.18a and b coincide, the isotropic distributions (scenario A) in case I and
case II are (in average) equivalent. The same arguments hold for e�ective conductivity and
e�ective ratio.

On e�ective conductivity

Figure 2.19 shows the e�ective conductivity against θm for case I and case II at three con-
ductive �ber volume fractions (0.0754, 0.1131, and 0.1508). Here the conductivity is the
normalized conductivity σN (Eq. (2.23)) divided by σiso, i.e., σN of the three-dimensional
isotropic �ber distribution for each conductive �ber volume fraction.

In Fig. 2.19a, the conductivities along the x and y directions approach zero at small θm

values (highly aligned �bers). This is because the percolation thresholds at small θm val-
ues (Fig. 2.18a) are higher than the conductive �ber content. As θm increases, the conductivity
along the x direction increases and shows the existence of a maximum. This indicates that a
certain degree of alignment improves the conductivity along the alignment direction (this
is for instance bene�cial to applications that only require unidirectional conduction). A
higher degree of alignment seems to be preferable at higher conductive �ber content: the
higher the �ber volume fraction, the smaller the limit angle θm to attain the maximum
conductivity (θm shifts from 55◦ to 45° as the �ber volume fraction increases from 0.0754 to
0.1508). Moreover, the conductivity enhancement that can be achieved by aligning �bers
along a speci�c direction is more appreciable at a higher �ber volume fraction, as suggested



44 2. Active material utilization and capacity of �ber-based electrodes

0∘ 30∘ 60∘ 90∘0

1

1.55
1.7

x

y

z

θm

(a)

𝜃m

𝜎 N
/𝜎 i

so

𝜙c = 0.0754 𝜙c = 0.1131 𝜙c = 0.1508

0∘ 30∘ 60∘ 90∘0

1
1.3

1.7 solid line: 𝑥 direction
dashed line: 𝑦 direction

x

y

z

θm

(b)

𝜃m
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by the larger normalized conductivity (σN/σiso increases from 1.55 to 1.70 when the �ber
volume fraction increases from 0.0754 to 0.1508). The peak value has also been observed in
a two-dimensional setting [28, 77], and our results generalize that observation to a three-
dimensional setting. The conductivity along the y direction increases monotonically with θm,
and the variation patterns basically coincide for the three volume fractions. As θm increases
to 90°, the conductivities along the x and y directions converge to the isotropic value.

For the second �ber distribution case (Fig. 2.19b), the conductivities along the x and y
directions equal the isotropic value at θm = 0. The conductivity along the y direction
mirrors the trend of the conductivity along the x direction for case I in Fig. 2.19a: the
conductivity improvement, compared to the isotropic value with the same conductive �ber
content, is larger at a higher �ber volume fraction. For each conductive �ber volume
fraction, the peak conductivity (σN/σiso = 1.3 at most) is smaller than the peak value in
case I, suggesting that the �ber alignment e�ect is more pronounced when �bers are aligned
along a speci�c direction (the x direction in case I) than �bers aligned along a random
direction on a plane (the y direction is representative of any random direction on yoz plane
in case II). However, the conductivity along the x direction decreases monotonically with θm,
regardless of the �ber volume fraction. Since the electronic conduction in the electrode
thickness direction (the x direction in case II) is crucial to battery rate performance [57],
these observations suggest that the weaker the constraint on �ber orientation in electrospun
�ber-based electrodes, the better the electrode performance.
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conductive �ber volume fractions ϕc for case I (a) and case II (b). For each conductive �ber volume fraction, the
e�ective ratio for the three-dimensional isotropic distribution is calculated to be the same in the x and y directions,
and the isotropic values in (a) and (b) are the same.

On the e�ective ratio

Fig. 2.20 shows the in�uence of �ber orientation on the e�ective ratio for three speci�c
conductive �ber volume fractions—0.0377, 0.0754, and 0.1508, denoted by A, B, and C,
respectively, in Fig. 2.12a. For non-isotropic �ber distributions, the e�ective ratio along
the x direction is calculated by counting the active �bers connected with the percolated
conductive �ber networks along the x direction, while the e�ective ratio along they direction
is de�ned as the fraction of the active �bers connected to percolated �ber networks along
the y direction. Note that both �bers follow the same distribution in terms of �ber middle
points and orientations.

In case I (Fig. 2.20a), the e�ective ratio increases from zero to the isotropic value at
θm = 90°; this holds true for both the x and y directions at each conductive �ber volume
fraction. However, the transition starts at a larger θm value for the y direction, irrespective
of the conductive �ber volume fraction. Since the percolation threshold along the x direction
is always smaller than that along the y direction (Fig. 2.18a), the percolated �ber network
will �rst form along the x direction as θm increases (percolation threshold decreases). The
percolated cluster along the x direction is usually di�erent from the one along the y direction
and involves more �bers; this results in a higher e�ective ratio along the x direction. Above
a certain value of the limit angle θm, the two percolated �ber clusters along the x and y
directions merge into a bigger one, as indicated by the coincidence of e�ective ratios along
the x and y directions. As a higher conductive �ber volume fraction meets the percolation
threshold at a lower θm value (Fig. 2.18a), the transition of the e�ective ratio, either in the x
or y directions, occurs at a smaller θm value; moreover, the transition of the e�ective ratio is
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also sharper and the coincidence between the e�ective ratios in the x and y directions occurs
earlier.

The arguments just exposed apply also to case II in Fig. 2.20b, with a few peculiarities. First,
the plots in Fig. 2.20b appears mirrored compared to Fig. 2.20a, with r maximum at θm = 0°
(isotropic value). Second, two of the three speci�c conductive �ber volume fractions are
above the percolation threshold curves in Fig. 2.18b; for this reason also the trends of the
corresponding e�ective ratios versus θm di�er. Figure 2.18b shows that the conductive �ber
volume fractions 0.0754 and 0.1508 are larger than the percolation threshold irrespective
of θm (Fig. 2.18b), while the volume fraction 0.0377 exceeds the percolation threshold only
for a limited interval of θm (above θm = 55° in the x direction, and above θm = 85° in
the y direction). It follows that the e�ective ratios shown in Fig. 2.20b for ϕc = 0.0754
and ϕc = 0.1508 are basically constant and equal to the isotropic value along both x and y
directions (apart from a 10% reduction for ϕc = 0.0754 starting from θm = 50°), while a
transition from the isotropic value (θm = 0°) towards a value that approaches zero (θm = 90°)
is clearly visible for ϕc = 0.0377 (analogous to those observed in Fig. 2.20a).

Since the fraction of e�ective active �bers is subordinate to the presence of a percolated
conductive �ber network, the impact of �ber orientation on the percolation threshold re�ects
on the e�ective ratio. The isotropic �ber distribution minimizes the percolation threshold and
maximizes the e�ective ratio. At a given conductive �ber content, the larger the deviation
from an isotropic distribution, the larger the reduction of the e�ective ratio. However,
Figure 2.20 shows that the impact of �ber orientation reduces as the conductive �ber content
increases. This means that the conductive �ber volume fraction that guarantees full utilization
of the active material (r = 1, Fig. 2.12a) also makes the active material utilization insensible to
�ber orientation constraints, thus providing an extremely useful information for �ber-based
electrode design.

2.4 Conclusions

We have proposed a three-dimensional computational tool to estimate key e�ective proper-
ties (electronic percolation threshold, electronic conductivity, and capacity) of �ber-based
electrodes. It is demonstrated that the percolation probability curve is equivalent to the cu-
mulative distribution curve of the critical conductive �ber number (Fig. 2.6). The equivalence
o�ers a statistically-rooted explanation that justi�es the selection of the conductive �ber
volume fraction with 0.5 percolation probability as the percolation threshold. Furthermore,
we show that volumetric and gravimetric capacities (Fig. 2.14) are maximized at a speci�c
(optimal) active-conductive material ratio. The corresponding optimal conductive �ber con-
tent is higher than the percolation threshold (Fig. 2.15); however, an excess of conductive
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material lowers the capacities, in agreement with experimental studies performed on particle-
based electrodes [26]. Since the electronic conductivity increases monotonically with the
conductive �ber content (Fig. 2.11), we conclude that the trade-o� between energy and power
requirements, that is known to characterize particle-based electrode design, emerges also
from our analysis on �ber-based electrodes.

Our results show that constraints on �ber orientation impact the e�ective properties.
The isotropic �ber distribution leads to the lowest percolation threshold (Fig. 2.18) and
to the highest active material utilization (e�ective ratio, Fig. 2.20) for a given conductive
�ber content. Nevertheless, this does not apply to the electronic conductivity: the highest
conductivity can be achieved in the direction along which �bers are aligned to a certain
degree (the x direction in Fig. 2.19a, the y or z direction in Figs. 2.19b). We conclude that
restrictions on �ber orientation must be considered for the design optimization of electrodes
according to capacity (active material utilization) and power (electronic conductivity) re-
quirements. Fiber orientation therefore represents an additional (compared to particle-based
electrodes) degree of freedom in electrode design that can be exploited to strike a balance
between electrode capacity and power density. In addition, the isotropic �ber distribution
is signi�cantly advantageous to active material utilization only when the conductive �ber
content is small, while a limited e�ect on the active material utilization is observed at higher
conductive �ber contents (Fig. 2.20). This suggests that when constraints on �ber orientation
apply, the active materials utilization changes more drastically with the conductive �ber
content. An interesting design question thus arises for applications where �ber orientation
is constrained: can we still identify an optimal active-conductive �ber ratio to maximize
the capacity when the total �ber content is �xed (similar to Fig. 2.14 for isotropic �ber
distribution)?

These observations are of interest for electrospun �ber-based electrodes [3], where
�bers are deposited on a substrate, and structural batteries [21], where preferential �ber
orientations can be desirable to attain speci�c mechanical performance.
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2.A Random fiber generation

(1) For a three-dimensional isotropic �ber distribution (scenario A), the polar angle θ is taken
as

θ = cos−1(1 − rand) (2.31)

where rand represents a uniformly distributed random number in the interval [0, 1] (rand
has the same meaning in the following).
(2) For a general �ber distribution in case I, we determine the polar angle θ by solving

1 − cosθ = (1 − cosθm) rand, (2.32)

where θm is between 0 and 90°. When θm = 90°, Eq. (2.32) turns into (2.31).
(3) For a general �ber distribution in case II, the equation to solve for θ is

1 − cosθ = 1 − cosθm + cosθm rand, (2.33)

where θm is between 0 and 90°. When θm = 0, Eq. (2.33) turns into (2.31).

2.B E�ective ratio determination

We claim that the e�ective ratio is independent of the active �ber content and only depends
on the conductive �ber content. This is a consequence of the soft-core assumption: since
�bers can overlap, the position of each �ber in the simulation box is independent from that
of any other �ber. We verify this claim by means of the procedure reported below.

1. We generate a conductive �ber con�guration with N �bers.

2. We generate na con�gurations by augmenting the conductive �ber con�guration in
step 1 with Na active �bers.

3. The e�ective ratio for each of the na con�gurations is determined via Eq. (2.18); r
indicates the average value of the na e�ective ratios.

4. We repeat steps 2–3 100 times changing the number Na of active �bers. We �nd
that, when na is large enough (1000 in our simulations), the average e�ective ratio
values r are the same at di�erent values of Na. Therefore, for a �xed conductive �ber
con�guration, the e�ective ratio does not depend on the number Na of active �bers.

5. We generate 100 con�gurations with N conductive �bers and repeat steps 2–4. For all
the con�gurations the e�ective ratio does not depend on the speci�c number of active
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�bers.

6. We further repeat all the previous steps for di�erent numbers N of conductive �bers
and obtained the same results.

As an alternative to the above procedure, for each conductive �ber con�guration we
suggest to use Na ≥ 10000 and na = 1 as done in Section 2.2.3.

2.C Peak capacity determination

As stated in Section 2.3.3, the optimal conductive �ber volume fractions ϕp for the volumetric
and gravimetric capacities are almost the same. Here we just detail how to calculate ϕp for
the volumetric capacity. When the e�ective ratio r in Eq. (2.27) is approximated by the power
law �t (2.25) (this approximation is best suited when conductive and active �bers have the
same size) we obtain that

qe�
vol = qth ρa (ϕt − ϕc) (1 − aϕbc ). (2.34)

Taking the derivative of both sides with respect to ϕc gives

dqe�
vol

dϕc
= qth ρa

[
a(b + 1)ϕbc − abϕtϕ

b−1
c − 1

]
. (2.35)

The optimal conductive �ber volume fraction ϕp can be obtained by solving

dqe�
vol

dϕc
= 0. (2.36)
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3
FE2 multiscale framework for
the two-equation model of
transient heat conduction in
two-phase media

Abstract
In the study of transient heat conduction in heterogeneous two-phase media, the

local thermal non-equilibrium condition calls for the use of a two-equation model to
appropriately describe di�erent temperatures in the two phases. We propose for the
two-equation model a FE2 multiscale framework that is capable of addressing nonlinear
conduction problems. The FE2 framework consists of volume-averaged macroscale
equations, well-de�ned microscale problems, and the information exchange between
the two scales. Compared to a traditional FE2 method for the one-equation model,
the proposed FE2 framework introduces an additional source term at the macroscale
that is upscaled from the microscale interfacial heat transfer. At variance with the
tangent matrices (i.e., e�ective conductivity) of the heat �ux, the tangent matrices of
the interfacial heat transfer depend on the microscopic length scale. The proposed FE2

framework is validated against full-scale simulations, and several numerical examples
are employed to demonstrate its potential.

keywords: FE2 method, computational homogenization, two-equation model, transient
heat conduction, interfacial heat transfer
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3.1 Introduction

The need for a two-equation model to describe the transient heat conduction process in a
two-phase medium has long been recognized, especially when the local equilibrium condition
breaks down [1–8]. Although computationally e�cient, the conventional volume averaging
method [1, 9–11] is often limited to linear problems due to the complexity in solving the
closure problems for e�ective transport properties and the interfacial heat transfer coe�cient.
Here we propose a FE2 multiscale framework for the two-equation model of transient heat
conduction in a two-phase medium that allows for nonlinear transport problems.

Transient transport phenomena in heterogeneous materials have been traditionally
addressed with the one-equation model, in which only one macroscale variable is de�ned on
a homogenized volume originally consisting of multiple phases (for simplicity, we restrict
the study to a two-phase medium). The one-equation model is suited to the local equilibrium
assumption—averaged temperatures of the two phases are close or even the same—that
usually holds when their transport properties are su�ciently close and the microscopic
length scale is adequately small for fast heat transfer. However, when these conditions do
not hold and there is net heat transfer from one phase to the other, the local equilibrium
will break down. One such case is when there is a signi�cant heat generation in any of
the two phases (as discussed in Section 3.5.1, Kuwahara et al. [3], and Kaviany [12]) or,
analogously, a kinetic reaction source in the bio�lm phase in porous media in environmental
engineering applications [5, 6]. Another scenario leading to equilibrium breakdown is when
there is a great disparity of conductivity between the two phases (as discussed in Section 3.5.1
and Mahmoudi and Karimi [13]). A more general description is required for the separate
treatment of average values in the two phases and the explicit description of the interfacial
heat transfer [1, 3, 7, 8, 14, 15]. This general strategy is termed the two-equation model,
named after the work by Quintard et al. [1, 2].

The two-equation model is also required when the two phases are characterized by
di�erent physics. By way of example, in lithium-ion battery cells [16, 17], electrodes consist
of active materials, electrolyte, and conductive materials. During the (dis)charging process,
lithium ions di�use and migrate in the electrolyte, while lithium di�uses in the active
material. The quantities of concern in the two phases, the concentration of lithium ions
in the electrolyte and concentration of lithium in the active material, di�er in the physical
meaning, and their values are generally not equal [16, 17]. They are connected through the
consistence of mass �ux between the two phases ensured by chemical reactions occurring
on the interface, described for example by the Butler-Volmer equation [16].

Traditionally, the two-equation model is solved analytically. Homogenized di�usion
equations are �rst derived at the macroscale via the volume averaging method [11, 18]. The
so-called closure problems are then de�ned on the averaging volume at the microscale and
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solved for the e�ective transport coe�cients and interfacial heat transfer coe�cient needed
in the homogenized equations [1, 9, 19]. Despite of computational e�ciency, this method is
restricted to linear conduction problems and impaired by accuracy concerns due to many
simpli�cation assumptions.

Instead of analytically solving homogenized equations, an accurate and straightforward
method is to perform a single-scale numerical simulation (also called direct numerical simula-
tion in some �elds). A single-scale simulation resolves the microscale geometry and therefore
is quite accurate; the price for accuracy is the computational cost that could be as high as
rendering the simulation infeasible especially when the problem domain spans spatial scales
of several orders of magnitude. To avoid the signi�cant simulation cost attached to a fully
resolved domain and retain the same level of accuracy, a multiscale computational technique,
called the FE2 method, has been developed and successfully employed in applications ranging
from mechanical equilibrium problems [20–26] to transport problems [27–29].

Existing works [27–31] using the FE2 method are however applied to the one-equation
model as they consider one homogenized variable de�ned on the representative volume
element (RVE) and use the e�ective material properties (sti�ness, conductivity) of the whole
RVE that may consist of multiple phases. These frameworks cannot o�er separate information
for each phase (refer to Section 3.3.5), as needed in applications requiring a two-equation
model. To this end, this study proposes a FE2 two-scale framework (Section 3.3) as well as its
implementation (Section 3.4) for the two-equation model setting.

3.2 Single-scale description

The composite under consideration consists of two phases—the matrix (β phase) and the
inclusion (σ phase)—as shown in Fig. 3.1a. The two phases possess di�erent transport
properties. Physical quantities associated with β phase and σ phase are distinguished by
the subscripts β and σ, respectively. Transient heat conduction in the two-phase medium is
governed by

cβ
∂uβ

∂t
+ ∇ · hβ = rβ in Vβ × [0, tend] and (3.1a)

cσ
∂uσ

∂t
+ ∇ · hσ = rσ in Vσ × [0, tend], (3.1b)

where c , u, h, and r represent, respectively, volumetric heat capacity, temperature, heat
�ux, and the given volumetric heat source. The heat �ux is described by Fourier’s law and
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Vβ

Vσ

(a)

Vβ

Vσ

Γβex

ΓσβΓβσ

Γσex

(b)

Fig. 3.1. (a) A two-phase medium consisting of the blue matrix (β phase occupying Vβ) and gray inclusions (σ phase
occupying Vσ) possessing di�erent transport properties. (b) Microscopic representative volume element (RVE).
The RVE boundary Γex is divided into two parts, each associated with a phase, such that Γex = Γβex ∪ Γσex with
Γβex ∩ Γσex = �. The interface between the two phases is represented by two coinciding boundaries Γβσ and Γσβ
belonging to the β and σ phases, respectively.

expressed as

hβ = −kβ

(
uβ

)∇uβ, (3.2a)

hσ = −kσ(uσ)∇uσ, (3.2b)

where the thermal conductivity for each phase is generally temperature dependent.
Across the interface between the two phases, we consider the temperature continuity

condition (i.e., uβ = uσ). These two governing equations can be readily solved by a standard
�nite element program. Speci�cally, each phase will be discretized and a common node will
be used at the interface. This solution strategy is referred to as the single-scale approach,
and it will be used as a reference for the proposed multiscale approach.

3.3 Multiscale framework

This section outlines the FE2 two-scale computational framework where the governing
equations at the two scales and the corresponding information-passing procedures are
described. In the remainder of the paper, we use lower case letters to represent microscale
quantities while upper case letters refer to macroscale quantities. For example, the microscale
temperature is denoted by u, while U represents the macroscale temperature.

3.3.1 Macroscale problem

The macroscale governing equations are derived by volume-averaging the single-scale
formulation presented in the previous section over a representative volume element. With
reference to the RVE (Fig. 3.1b), applying the volume average operator (3.76) to Eq. (3.1a)
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yields

cβ
∂
〈
uβ

〉
∂t

+
〈∇ · hβ

〉
=

〈
rβ
〉

in Vβ × [0, tend]. (3.3)

The volume-averaged temperature
〈
uβ

〉
is expressed in terms of the intrinsic average uβ

which is de�ned as the macroscale temperature Uβ:〈
uβ

〉
= ϵβuβ = ϵβUβ, (3.4)

where ϵβ is the volume fraction of the β phase. The volume-averaged �ux divergence is split
into two surface integrals (Fig. 3.1b):〈∇ · hβ

〉
=

1
V

∫
Vβ

∇ · hβ dV =
1
V

∫
Γβex

hβ · nβex dA +
1
V

∫
Γβσ

hβ · nβσ dA , (3.5)

where Γβex and Γβσ represent the RVE boundary contributed by the β phase and the interface
with the σ phase, respectively, nβex is the outward-pointing unit vector normal to Γβex , and
nβσ is the unit vector normal to Γβσ pointing from the β phase to the σ phase. The volume-
averaged heat source in the right-hand side of Eq. (3.3) is de�ned as the macroscale heat
source

Rβ =
〈
rβ
〉
, (3.6)

where the volumetric heat source rβ is a given quantity.
Substituting Eqs. (3.4) to (3.6) into Eq. (3.3) yields

cβϵβ
∂Uβ

∂t
+

1
V

∫
Γβex

hβ · nβex dA = Rβ − 1
V

∫
Γβσ

hβ · nβσ dA . (3.7)

The heat out�ow through the RVE boundary Γβex can be regarded as the divergence of the
heat �ux at a macroscale point:

1
V

∫
Γβex

hβ · nβex dA = ∇ · Hβ, (3.8)

and the heat transfer from the β phase to the σ phase can be de�ned as the heat sink, or
negative heat source, at a macroscale point:

1
V

∫
Γβσ

hβ · nβσ dA = −Qβ. (3.9)
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homogenized domain

Uβ, Uσ

∇Uβ, Uβ

∇Uσ , Uσ

Hβ, Qβ, Hσ , Qσ

Sβ, Tβ, Sσ , Tσ

Ω

(a) RVE

uσ

uβ

Vσ
Vβ

Γmb

Γmb Γsb

Γsb

(b)

Fig. 3.2. Homogenized domain at the macroscale, RVE at the microscale, and information exchange between
macro- and micro-scales. Macroscale temperatures Uβ and Uσ , and their gradients ∇Uβ and ∇Uσ are downscaled as
boundary conditions for the microscale RVE problem. The homogenized �uxes Hβ and Hσ (Eq. (3.30)), volumetric
interfacial heat transfer Qβ (Eq. (3.9)) and Qσ (Eq. (3.13)), and their dependencies Sβ, Sσ , Tβ, and Tσ (Eq. (3.31)) on
the macroscale quantities X (Eq. (3.14)) are then transferred back to the macroscale problem. Panel (b) shows also
the boundaries used for the enforcement of periodic boundary conditions in the FE analysis of the RVE: left and
bottom edges are denoted as the master boundaries Γmb, while the right and upper edges are considered as the slave
boundaries Γsb.

Macroscale equation (3.7) can thus be expressed as

cβϵβ
∂Uβ

∂t
+ ∇ · Hβ = Rβ +Qβ in Ω × [0, tend], (3.10a)

where Ω denotes the homogenized domain shared by both phases at the macroscale as shown
in Fig. 3.2a. Likewise, we can derive the macroscale equation for the σ phase as

cσϵσ
∂Uσ

∂t
+ ∇ · Hσ = Rσ +Qσ in Ω × [0, tend], (3.10b)

where the macroscale temperature

Uσ = uσ =
〈uσ〉
ϵσ

(3.11)

represents the intrinsic average of the temperature of the σ phase, the macroscale heat source

Rσ = 〈rσ〉 (3.12)

is the volume average of the given heat source rσ, and the additional macroscale heat source

Qσ = − 1
V

∫
Γσβ

hσ · nσβ dA (3.13)

is caused by the interfacial heat transfer.
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The macroscale heat �uxes (Hβ and Hσ) and the macroscale heat sources (Qβ and Qσ)
due to interfacial heat transfer in the macroscale governing equation (3.10) are obtained
through the microscale computation. As schematically shown in Fig. 3.2, the macroscale
solution Uβ and Uσ and their gradients at an integration point are downscaled to de�ne the
microscale problem; the macroscale heat �uxes and sources as well as their tangents are then
computed from the microscale solution and upscaled. Moreover, in the microscale simulation
the temperature continuity condition (uβ = uσ) is enforced across the interface, and thus the
�ux continuity naturally holds: Qβ +Qσ = 0.

3.3.2 Downscaling

The boundary conditions enforced at the microscale level are obtained by downscaling
macroscale quantities at each integration point of the macroscale mesh: temperature Uβ

and Uσ, and their gradients ∇Uβ and ∇Uσ, respectively. For conciseness, these quantities are
stored in a column vector as

X =
[ (∇Uβ

)T
Uβ (∇Uσ)T Uσ

]T
. (3.14)

3.3.3 Microscale problem

The microscale problem is de�ned on an RVE (Fig. 3.2b) associated with a macroscale
integration point. At variance with the single-scale description (3.1), the governing equations
at the microscale neglect the time evolution terms and consider the steady-state thermal
equilibrium [27, 30], in view of the relatively small RVE size. The governing equations are
thus expressed as

∇ · hβ = bβ in Vβ and (3.15a)

∇ · hσ = bσ in Vσ, (3.15b)

where the constitutive relations for heat �uxes hβ and hσ are the same as in Eq. (3.2). The
two source terms bβ and bσ are di�erent from the given source terms rβ and rσ in the single-
scale equation (3.1). The prescribed heat sources (rβ and rσ) are included in the macroscale
governing equation (3.10) in an average sense—Rβ in Eq. (3.6) and Rσ in Eq. (3.12)—and will
be indirectly re�ected at the microscale through the enforcement of consistent temperatures
across the two scales as expressed by Eq. (3.23). The two terms bβ and bσ actually re�ect
unknown heat sources caused by enforcing the constraint (3.23), acting as constraint forces
and regardless of the given heat sources rβ and rσ.

Next, the microscale boundary conditions are derived from the macroscale quantities
X (Eq. (3.14)). By convention in the FE2 analysis, the microscale temperature pro�les uβ(x)
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and uσ(x), with x as the position vector, can be decomposed into a spatially linear �eld (�rst
two terms) and a �uctuation �led (the last term):

uβ = Uβ + ∇Uβ · (x − xra) + ũβ, (3.16a)

uσ = Uσ + ∇Uσ · (x − xrb) + ũσ, (3.16b)

where xra and xrb are reference points.
In the FE2 analyses of mechanical problems [23, 32], it is a common practice to assume

that the macroscale deformation gradient at a point is equal to the volume average of
the microscale counterpart over the whole RVE de�ned on that point. This assumption,
connecting the macro- and micro-scales, is known as the averaging theorem [33]. Likewise,
in the FE2 analysis of heat conduction [27], the macroscale temperature gradient is usually
assumed to be equal to the volume average of the microscale temperature gradient. The
transfer of temperature gradient for the one-equation model [27] is as straightforward as
the strain transfer. However, it requires special consideration in the two-equation model
since there are two macroscale temperature gradients—∇Uβ and ∇Uσ. Here we propose the
following relations as an equivalent for the assumption described above:

1
V

∫
Γex

uβnex dA = ∇Uβ, (3.17a)

1
V

∫
Γex

uσnex dA = ∇Uσ, (3.17b)

where nex is the outward-pointing normal vector to the RVE boundary Γex and the surface
integral is over the whole RVE boundary Γex = Γβex ∪ Γσex (Fig. 3.1b). The surface integral is
equivalent to the previously mentioned volume integral via the divergence theorem but is
preferred especially when holes/voids exist in the RVE [24, 34, 35]. Here, the σ phase regions
act as holes for the β phase, and vice versa.

Substituting Eq. (3.16a) into Eq. (3.17a) results in

1
V

∫
Γex

uβnex dA = ∇Uβ +
1
V

∫
Γex

ũβnex dA . (3.18)

In the derivation, nex should be evaluated at every point on the whole RVE boundary
including the portion for the σ phase (Γσex ) although uβ is only de�ned in the β phase. This
procedure is necessary because the σ phase is the complementary voids of the β phase in the
RVE. To the void phase σ we can attach �ctitious uβ values and null conductivity, analogous
to null sti�ness in mechanical problems [24, 35]. Comparison of Eq. (3.18) with Eq. (3.17a)
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yields ∫
Γex

ũβnex dΓ = 0, (3.19a)

Similarly, for the σ phase we arrive at∫
Γex

ũσnex dΓ = 0. (3.19b)

Constraints (3.19) are enforced by means of periodic boundary conditions [23, 24, 36].
For the two-phase composition of the RVE boundary, we assume the nomenclature reported
in Fig. 3.2b to identify master and slave portions of the boundary. The periodic boundary
conditions are therefore stated as

ũβ(xmb) = ũβ(xsb), (3.20a)

ũσ(xmb) = ũσ(xsb), (3.20b)

where xmb represents an arbitrary point on the master boundary Γmb and its counterpart on
the slave boundary Γsb is denoted as xsb. Substituting Eq. (3.20) into Eq. (3.16) leads to

uβ(xmb) − uβ(xsb) − ∇Uβ · (xmb − xsb) = 0, (3.21a)

uσ(xmb) − uσ(xsb) − ∇Uσ · (xmb − xsb) = 0. (3.21b)

The temperature continuity condition at the two-phase interface is also enforced and
expressed as [

uβ

]
Γβσ
− [

uσ

]
Γσβ
= 0. (3.22)

Moreover, from the de�nition of the macroscale temperatures in Eqs. (3.4) and (3.11), we
have two additional constraints:

uβ −Uβ = 0, (3.23a)

uσ −Uσ = 0. (3.23b)

These two extra requirements are necessary for the solution of the microscale problem as they
1) allow to objectively determine unique microscale solutions for each phase (the reference
points in Eq. (3.16) are not determined), and 2) enforce the consistency of the stored heat in
each phase between the macro- and micro-scales. This last aspect is fundamental: enforcing
the heat consistency constraint indirectly applies the heat source to the microscale governing
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equation (3.15), which is only explicitly implemented in the macroscale equation (3.10).

3.3.4 Upscaling

To close the information exchange loop, the homogenized �uxes Hβ and Hσ and their tan-
gent matrices are calculated from the microscale solution and upscaled to the macroscale
computation (Fig. 3.2). The homogenized �uxes are calculated as the volume averages of the
corresponding microscale heat �uxes:

Hβ =
1
V

∫
Vβ

hβ dV , (3.24a)

Hσ =
1
V

∫
Vβ

hσ dV . (3.24b)

For the sake of numerical implementation, the volume integrals are often transformed into
surface integrals. The right-hand side of Eq. (3.24a) is reformulated as

1
V

∫
Vβ

hβ dV =
1
V

∫
Vβ

[∇ · (x hβ

) − x∇ · hβ

]
dV

=
1
V

∫
Γβex

x hβ · nβex dA +
(
1
V

∫
Γβσ

x hβ · nβσ dA − 1
V

∫
Vβ

xbβ dV
)
, (3.25)

where the divergence theorem and the microscale governing equation (3.15a) are used in the
derivation. The last two terms in the bracket of Eq. (3.25) approximate to each other and can
be neglected. The demonstration is as follows. Applying volume integral to Eq. (3.15a) yields

1
V

∫
Vβ

(∇ · hβ − bβ

)
dV = 0 = 1

V

∫
Γβex

hβ · nβex dA +
1
V

∫
Γβσ

hβ · nβσ dA − 1
V

∫
Vβ

bβ dV . (3.26)

The �rst term in the right-hand side of Eq. (3.26) actually vanishes. According to the periodic
boundary condition (3.21a), we evaluate hβ · nβex at the master boundary to be the opposite
of that at the corresponding slave boundary. This is called the anti-periodic normal �ux
boundary condition [27] and its enforcement through Lagrange multipliers is detailed in
Section 3.4.2. Therefore, the last two terms in Eq. (3.26) should cancel out each other.
Multiplying them by a position vector gives

1
V

∫
Γβσ

xc hβ · nβσ dA =
1
V

∫
Vβ

xc bβ dV , (3.27)

where xc denotes the geometry center of the RVE. The unknown heat source bβ due to the
constraint (3.23a) is uniform in the RVE domain because a single Lagrange multiplier is used
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to impose the constraint (3.23a). Therefore, the right-hand term in Eq. (3.27) is equal to the
last term in Eq. (3.25)

1
V

∫
Vβ

xc bβ dV =
1
V

∫
Vβ

xbβ dV . (3.28)

In view of Eqs. (3.27) and (3.28), the subtraction in the bracket of Eq. (3.25) is calculated as

1
V

∫
Γβσ

x hβ · nβσ dA − 1
V

∫
Vβ

xbβ dV =
1
V

∫
Γβσ

(x − xc) hβ · nβσ dA . (3.29)

Due to the relatively small RVE size, the right-hand term in Eq. (3.29) can be assumed to be
null and thus ignored, which has also been numerically validated in our simulations. The
above derivations also apply to the σ phase, and hence the macroscale heat �uxes in Eq. (3.24)
can be expressed in terms of surface integrals as

Hβ =
1
V

∫
Γβex

x hβ · nβex dA , (3.30a)

Hσ =
1
V

∫
Γσex

x hσ · nσex dA . (3.30b)

The volumetric interfacial heat transfer Qβ and Qσ are calculated according to Eqs. (3.9)
and (3.13). Moreover, the dependencies

Sβ =
δHβ

δX
, Tβ =

δQβ

δX
, (3.31a)

Sσ =
δHσ

δX
, Tσ =

δQσ

δX
(3.31b)

of these quantities with respect to the macroscale quantities X (Eq. (3.14)) are also passed
back to the macroscale.

3.3.5 Comparison with one-equation model

The obvious similarity between the structures of the one- and two-equation models calls for
a simple comparison. Adding Eqs. (3.10a) and (3.10b) together results in

c
∂U

∂t
+ ∇ · H = Rβ + Rσ, (3.32)

where the volumetric heat capacity

c = cβϵβ + cσϵσ (3.33)
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represents the volume-averaged heat capacity, the homogenized temperature is the total
thermal energy over the volume-averaged heat capacity

U =
cβϵβUβ + cσϵσUσ

c
, (3.34)

and the macroscale heat �ux H is equal to

H = Hβ + Hσ . (3.35)

Comparing the preceding equations with those in the one-equation model in Özdemir et al. [27],
it can be seen that the volume-averaged heat capacity c and the macroscale heat �ux H (sub-
stituting Eq. (3.24) into Eq. (3.35)) have the same meanings as de�ned in Özdemir et al. [27].
The macroscale temperature in Özdemir et al. [27] is not de�ned with an explicit meaning,
but from this comparison we know it has exactly the same meaning asU in Eq. (3.34), i.e., the
total thermal energy over the volume-averaged heat capacity, and not the volume-averaged
temperature

U = ϵβUβ + ϵσUσ . (3.36)

However, if the heat capacities of the two phases are the same (cβ = cσ), the macroscale tem-
perature (Eq. (3.34)) of the one-equation model reduces to the volume-averaged temperature.

Because of the equivalence, the one-equation model can be considered as a special case
of the two-equation model.

3.4 Implementation of the multiscale framework

This section provides the numerical implementation of the FE2 framework: the �nite element
implementation of the macroscale and microscale problems and the numerical procedures
for the calculation of the upscaled quantities. All vectors are column vectors by default.
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3.4.1 Finite element method for macroscale problem

According to standard �nite element procedures [37], the weak form of the macroscale
governing equation (3.10) is expressed as∫

Ω
cβϵβ
∂Uβ

∂t
δUβ dV −

∫
Ω
∇ δUβ · Hβ dV −

∫
Ω

(
Qβ + Rβ

)
δUβ dV +

∫
∂Ω

H β δUβ dΓ = 0,

(3.37a)∫
Ω
cσϵσ
∂Uσ

∂t
δUσ dV −

∫
Ω
∇ δUσ · Hσ dV −

∫
Ω
(Qσ + Rσ)δUσ dV +

∫
∂Ω

H σ δUσ dΓ = 0,

(3.37b)

where δUβ and δUσ are variations of �eld variables, H β and H σ are prescribed heat �uxes
at the macroscale boundaries ∂Ω, and Rβ and Rσ are calculated from given microscale heat
sources via Eqs. (3.6) and (3.12).

The macroscale heat �uxes Hβ and Hσ and the heat sources Qβ and Qσ due to interfacial
heat transfer at an integration point are calculated from the microscale problem solution and
generally depend on temperatures Uβ and Uσ. Because of the coupling of the two governing
equations, they are solved simultaneously; therefore, each node in the spatial discretization
has two degrees of freedom, one for Uβ and the other for Uσ.

A standard �nite element approximation is used to discretize the �eld variables. The
temperature �elds Uβ(x) and Uσ(x) at an arbitrary point x are approximated by interpolating
between nodal values in such a way

Uβ(x) = N(x)Uβ and Uσ(x) = N(x)Uσ, (3.38)

where

N =
[
N1(x) N2(x) · · · Nnm (x)

]
(3.39)

collects the shape functions associated with the nm nodes of the discretized macroscale
domain, and vectors Uβ and Uσ contain nodal unknowns. Similarly, the variations of the �eld
variables are expressed as

δUβ (x) = N(x) δUβ and δUσ (x) = N(x) δUσ . (3.40)

Substituting Eqs. (3.38) and (3.40) into the weak form (3.37), the weak statement in matrix
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notation is rewritten as

Fβ =

∫
Ω
cβϵβNTN

∆Uβ

∆t
dV −

∫
Ω

BTHβ dV −
∫
Ω

(
Qβ + Rβ

)
NT dV +

∫
∂Ω

H βNT dΓ = 0, (3.41a)

Fσ =

∫
Ω
cσϵσNTN

∆Uσ

∆t
dV −

∫
Ω

BTHσ dV −
∫
Ω
(Qσ + Rσ)NT dV +

∫
∂Ω

H σNT dΓ = 0, (3.41b)

where the matrix

B = ∇N =


∂N1
∂x1

∂N2
∂x1

· · · ∂Nnm

∂x1

∂N1
∂x2

∂N2
∂x2

· · · ∂Nnm

∂x2

 (3.42)

contains derivatives of the shape functions, and the backward Euler method is used for
the discretization of the time derivative terms in Eq. (3.37). In Eq. (3.41), the temperature
increments ∆Uβ and ∆Uσ are evaluated between the current time step and the last converged
time step, and ∆t denotes the time step size; the macroscale �uxes Hβ and Hσ and the heat
sources Qβ and Qσ are approximated by the values of the current time step.

We now collect the two sets of discrete equations in Eq. (3.41) and the two �eld variables
in the following arrays

F =

[
Fβ

Fσ

]
and U =

[
Uβ

Uσ

]
, (3.43)

respectively. The Newton-Raphson iteration procedure is then employed to solve the system
of discrete equations

F (Un) = 0

at the current time step n (t = tn). The system of linearized equations at iteration step k is
expressed as

K
(
Uk+1
n − Uk

n

)
+ F

(
Uk
n

)
= 0, (3.44)

where the global tangent matrix K is evaluated at iteration step k as

K =
[
∂F
∂Un

]
k
=

[
Kββ Kβσ

Kσβ Kσσ

]
k

. (3.45)

To compute the residual vector F in Eq. (3.41), the macroscale �uxes Hβ and Hσ at each
integration point are directly upscaled from the microscale problem solution and their
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formulations are presented in Section 3.4.3 via Eq. (3.60); likewise, the macroscale heat
sources Qβ and Qσ are obtained through Eq. (3.62). The tangent matrix K is calculated from
the upscaled tangent matrices Sβ, Sσ, Tβ, and Tσ, as demonstrated below. The four components
of K in Eq. (3.45) can be expressed as

Kββ =
∂Fβ

∂Uβ

=

∫
Ω

cβϵβ

∆t
NTN dV −

∫
Ω

BT ∂Hβ

∂Uβ

dV −
∫
Ω

NT ∂Qβ

∂Uβ

dV , (3.46a)

Kβσ =
∂Fβ

∂Uσ

= −
∫
Ω

BT ∂Hβ

∂Uσ

dV −
∫
Ω

NT ∂Qβ

∂Uσ

dV , (3.46b)

Kσβ =
∂Fσ

∂Uβ

= −
∫
Ω

BT ∂Hσ

∂Uβ

dV −
∫
Ω

NT ∂Qσ

∂Uβ

dV , (3.46c)

Kσσ =
∂Fσ

∂Uσ

=

∫
Ω

cσϵσ
∆t

NTN dV −
∫
Ω

BT ∂Hσ

∂Uσ

dV −
∫
Ω

NT ∂Qσ

∂Uσ

dV . (3.46d)

We express X in matrix form as

X =


BUβ

NUβ

BUσ

NUσ


(3.47)

and thus de�ne

Φβ =
∂X
∂Uβ

=


B
N
0
0


and Φσ =

∂X
∂Uσ

=


0
0
B
N


. (3.48)

The tangent matrices for macroscale �uxes in Eq. (3.46) can therefore be computed as

∂Hβ

∂Uβ

= SβΦβ,
∂Hβ

∂Uσ

= SβΦσ,

∂Hσ

∂Uβ

= SσΦβ,
∂Hσ

∂Uσ

= SσΦσ,

(3.49)

where matrices Sβ and Sσ will be further derived in Section 3.4.3 and given in Eq. (3.71). The
tangent matrices for macroscale sources in Eq. (3.46) can be computed as

∂Qβ

∂Uβ

= TβΦβ,
∂Qβ

∂Uσ

= TβΦσ,

∂Qσ

∂Uβ

= TσΦβ,
∂Qσ

∂Uσ

= TσΦσ,

(3.50)
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where matrices Tβ and Tσ will also be derived in Section 3.4.3 via Eq. (3.72).

3.4.2 Finite element method for microscale problem

The weak form of the microscale governing equation (3.15) is

−
∫
Vβ

∇ δuβ ·
(−kβ∇uβ

)
dV +

∫
Γβex∪ Γβσ

δuβ hβ · nβ dΓ −
∫
Vβ

δuβ bβ dV = 0, (3.51a)

−
∫
Vσ

∇ δuσ · (−kσ∇uσ) dV +
∫
Γσex∪ Γσβ

δuσ hσ · nσ dΓ −
∫
Vσ

δuσ bσ dV = 0. (3.51b)

The boundary terms on Γβex ∪ Γβσ and Γσex ∪ Γσβ do not represent any prescribed Neumann
boundary conditions but re�ect unknown �uxes caused by the constraints of periodic bound-
ary conditions (3.21) and temperature continuity condition (3.22) at the interface. The heat
source terms containing bβ and bσ are also not given but caused by the constraint of consistent
temperatures across the macro- and micro-scales (3.23). All these constraints are enforced
through the Lagrange multiplier method, and correspondingly we denote the heat �uxes
due to the periodic boundary conditions (3.21) by λβ,p and λσ,p, the heat �uxes due to the
temperature continuity condition (3.22) by λβσ and λσβ (λσβ = −λβσ), and the heat sources
due to the consistent temperature constraint (3.23) by λβ,b and λσ,b. The weak form (3.51) is
thus reformulated as∫

Vβ

∇ δuβ ·
(
kβ∇uβ

)
dV +

∫
Γβex

δuβ λβ,p dΓ +
∫
Γβσ

δuβ λβσ dΓ −
∫
Vβ

δuβ λβ,b dV = 0, (3.52a)∫
Vσ

∇ δuσ · (kσ∇uσ) dV +
∫
Γσex

δuσ λσ,p dΓ +
∫
Γσβ

δuσ λσβ dΓ −
∫
Vσ

δuσ λσ,b dV = 0. (3.52b)

The weak form (3.52) is further supplemented with the variational forms for the enforcement
of the periodic boundary conditions (3.21) and temperature continuity condition (3.22):∫

Γβex∪ Γσex∪ Γβσ
δλAdΓ = 0, (3.53)

where A represents the left-hand formulations of periodic boundary conditions (3.21) and
temperature continuity condition (3.22).

Inserting the discrete expressions of the �eld variables and their gradients into the weak
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form (3.52) gives the discretized system of governing equations∫
Vβ

BTkβBuβ dV +
∫
Γβex

NTλβ,p dΓ +
∫
Γβσ

NTλβσ dΓ −
∫
Vβ

NTλβ,b dV = 0, (3.54a)∫
Vσ

BTkσBuσ dV +
∫
Γσex

NTλσ,p dΓ −
∫
Γσβ

NTλβσ dΓ −
∫
Vσ

NTλσ,b dV = 0. (3.54b)

Conductivities kβ and kσ are in general temperature dependent, and their derivatives need
therefore to be considered in the calculation of the tangent matrices. The equations in
Eq. (3.54) are solved in their own domains where each node has one degree of freedom, and
the discretization at the interface between the two phases is conforming.

The discrete version of the constraints of the periodic boundary conditions (3.21) and
temperature continuity condition (3.22) is obtained from Eq. (3.53) by means of the point
collocation method [38] and expressed in Eqs. (3.79) to (3.81). The constraint (3.23) is directly
discretized by inserting discrete expressions of the �eld variables and expressed in Eq. (3.82).
These boundary conditions and constraints, listed in Eqs. (3.79) to (3.82), are expressed in
matrix form as

Au + CX = 0, (3.55)

where u collects all the nodal unknowns as concatenation of vectors uβ and uσ

u =
[
uβ uσ

]T
, (3.56)

and A and C are constant coe�cient matrices that can be readily obtained after sorting
Eqs. (3.79) to (3.82) consistently with u.

The Lagrange multipliers λβ,p, λσ,p, and λβσ representing heat �uxes on the boundaries
and interface are discretized in the process of deriving Eqs. (3.79) to (3.81) and stacked
together with the two scalar Lagrange multipliers λβ,b and λσ,b in the vector form as λ. The
vector of Lagrange multipliers is then associated with the nodal unknowns u in Eq. (3.56):

w = [u λ]T.

The system of nonlinear equations Eq. (3.54) augmented by Eq. (3.55) is solved by the
Newton-Raphson iteration scheme. To this end, we assemble the �rst terms in Eq. (3.54a)
and Eq. (3.54b) as

f =

[∫
Vβ

BTkβBuβ dV∫
Vσ

BTkσBuσ dV

]
. (3.57)
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At iteration step k , the increment of the solution ∆wk+1 can be computed from[
K AT

A 0

] [
∆u
∆λ

]
+

[
f + ATλ

Au + CX

]
= 0, (3.58)

where we have omitted the iteration index for clarity, and the tangent matrix

K =
∂f
∂u
. (3.59)

3.4.3 Upscaling of macroscale quantities

This section details the calculation of the homogenized �uxes (Hβ and Hσ), the macroscale heat
sources (Qβ andQσ), and the tangent matrices (Sβ, Sσ, Tβ, and Tσ) based on the microscale �nite
element solution. By comparison of Eqs. (3.54) and (3.58), the Lagrange multipliers λ that
pertain to the periodic boundary conditions and temperature continuity condition represent
the integrals of heat �uxes over the area of in�uence of each node at the boundary/interface.
According to Eq. (3.30), the macroscale �uxes can be calculated through Lagrange multipliers
as:

Hβ =
1
V

∫
Γβex

(
xm NT

)
λβ,p dA =

1
V

xm

∫
Γβex

NTλβ,p dA =
1
V

xm ATλβ,p, (3.60a)

Hσ =
1
V

∫
Γσex

(
xm NT

)
λσ,p dA =

1
V

xm

∫
Γσex

NT λσ,p dA =
1
V

xm ATλσ,p, (3.60b)

where matrix

xm =

[
x (1)1 x (2)1 · · · x (nm)

1
x (1)2 x (2)2 · · · x (nm)

2

]
(3.61)

lists the coordinates of all the nm nodes of the microscale mesh, λβ,p and λσ,p refer to
the components of λ that are associated with the periodic boundary conditions (Eqs. (3.79)
and (3.80)) imposed on Γβex and on Γσex , respectively. With an abuse of notation, the coe�cient
matrix AT in Eq. (3.55) needs to be recast here to accommodate λβ,p and λσ,p.

The macroscale heat sources due to interfacial heat transfer are computed according to
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Eqs. (3.9) and (3.13) as

Qβ = − 1
V

∫
Γβσ

λβσ dA = − 1
V

Γβσ∑
ATλβσ, (3.62a)

Qσ = − 1
V

∫
Γσβ

λσβ dA = − 1
V

Γσβ∑
ATλβσ, (3.62b)

where λβσ denotes components of λ related to the temperature continuity condition (3.81)
imposed on nodes on Γβσ and Γσβ (λσβ not discretized). Also, the coe�cient matrix AT in
Eq. (3.55) is shrunk to accommodate λβσ but is di�erent in Eqs. (3.62a) and (3.62b) because of
di�erent nodes on Γβσ and Γσβ. The coe�cient matrices in Eqs. (3.62a) and (3.62b) however
ensures thatQβ +Qσ = 0. In Eqs. (3.60) and (3.62), all the Lagrange multipliers take the values
at the converged state of the microscale iteration.

The tangent matrices are derived as follows. At a converged state, the increment ∆w in
Eq. (3.58) is zero, and hence the residual vector

f̂ =

[
f + ATλ

Au + CX

]
= 0. (3.63)

We then apply a small variation δX to the macroscale quantities X and compute the corre-
sponding change in the microscale solution. Note that Eq. (3.63) should always hold to get
the converged microscale solution. Therefore, we have

δ f̂ = 0 =

[
K AT

A 0

] [
δu
δλ

]
+

[
0
C

]
δX . (3.64)

Rearranging Eq. (3.64), we obtain[
K AT

A 0

] [
δu
δλ

]
= −

[
0
C

]
δX . (3.65)

To solve Eq. (3.65), we rewrite it as

K̂δw = ĈδX (3.66)

and thus the variation δw is expressed as

δw = K̂−1ĈδX , (3.67)

where K̂−1 must be evaluated at the converged state of the microscale iteration. The solution
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δλ is extracted from δw by means of the gather matrix δ:

δλ = δδw . (3.68)

According to Eqs. (3.67) and (3.68), the variations of the homogenized �uxes (3.60) can
be formulated as

δHβ =
1
V

xm AT δλβ,p =
1
V

xm ATδβ,p K̂−1ĈδX , (3.69a)

δHσ =
1
V

xm AT δλσ,p =
1
V

xm ATδσ,p K̂−1ĈδX , (3.69b)

where δβ,p and δσ,p are the gather matrices used to retrieve λβ,p and λσ,p, respectively,
from λ. The variations of the macroscale heat sources (3.62) due to interfacial heat transfer
are calculated as

δQβ = − 1
V

Γβσ∑
AT δλβσ = − 1

V

Γβσ∑
ATδβσ K̂−1ĈδX , (3.70a)

δQσ = − 1
V

Γσβ∑
AT δλβσ = − 1

V

Γσβ∑
ATδβσ K̂−1ĈδX , (3.70b)

where δβσ is the gather matrix used to retrieve λβσ from λ. The tangent matrices for the
macroscale heat �uxes are calculated as

Sβ =
δHβ

δX
=

1
V

xm ATδβ,p K̂−1Ĉ, (3.71a)

Sσ =
δHσ

δX
=

1
V

xm ATδσ,p K̂−1Ĉ, (3.71b)

and the tangent matrices for the macroscale heat sources due to interfacial heat transfer are
expressed as

Tβ =
δQβ

δX
= − 1

V

Γβσ∑
ATδβσ K̂−1Ĉ, (3.72a)

Tσ =
δQσ

δX
= − 1

V

Γσβ∑
ATδβσ K̂−1Ĉ. (3.72b)

3.5 Results and discussion

We �rst present some numerical examples for the purpose of validation in Section 3.5.1 where
the FE2 simulation results are compared with the results of the single-scale simulation (ref-
erence solutions). The numerical examples are tailored to show noticeable temperature
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Table 3.1. Parameters of the FE2 multiscale and single-scale simulations for Fig. 3.4.

quantity symbol unit phase β phase σ

FE2 macro
volume fraction ϵ - 0.67 0.33
volumetric heat capacity c J/(m3 K) 3.51 × 106 3.51 × 106
volume-averaged heat sourcea R W/m3 0.0 2.99 × 107

micro conductivity k W/(mK) 1.0 4.0 × 102

Single-scale
volumetric heat capacity c J/(m3 K) 3.51 × 106 3.51 × 106
volumetric heat source r W/m3 0.0 9.0 × 107
conductivity k W/(mK) 1.0 4.0 × 102

a This quantity is calculated according to Eq. (3.6) or (3.12).

di�erence between the two phases and thus to demonstrate the capability of the FE2 frame-
work in solving the two-equation model. The �rst example (Section 3.5.1) focuses on the
interfacial heat transfer between the two phases, which cannot be captured by the one-
equation model [27, 31], and ignores the spatial di�usion at the macroscale by having a
uniform macroscale temperature �eld. The macroscale spatial heat �uxes are then considered
in the second example (Section 3.5.1) that considers both the linear and nonlinear conduction
and in the third example (Section 3.5.1) that features a signi�cant conductivity di�erence.
Finally, the microscale RVE simulation results are discussed in Section 3.5.2 to o�er some
insights into the interfacial heat transfer coe�cient and the microscopic length scale e�ects.

3.5.1 Comparison with single-scale simulations

Interfacial heat transfer

Consider the insulated two-phase slab problem studied by Ramos et al. [31] using a one-
equation model. As shown in Fig. 3.3, the two-phase slab consists of a regular array of 140×70
unit cells, with each unit cell consisting of an inclusion (σ phase) embedded in a matrix (β
phase). Both phases are isotropic and have constant but di�erent conductivities whose values
are listed in Table 3.1 together with other simulation parameters. The insulated boundary
condition h = 0 for t ∈ (0, tend] is imposed at the boundary, and the initial conditionu0 = 0 ◦C
is enforced in the whole domain. The simulation time is tend = 30 s.

The insulated boundary condition generates a homogeneous temperature �eld at the
macroscale. We can therefore safely use a single square bilinear quadrilateral element with
edge length of 0.1m as the macroscale mesh (Fig. 3.3c). At each integration point of the
macroscale element, we take one unit cell as the corresponding RVE. For the single-scale
simulation we employ a single unit cell due to the expected homogeneity of the solution
�elds. From the single-scale simulation, the intrinsic average of the temperatures of the
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h = 0

1m

0.5m

𝑥
𝑦

(a) (b)

𝑙β = 1/140m

σ β

𝑑

0.1m 1/140m
(c)

macro micro

1/140msingle-scale(d)

Fig. 3.3. An insulated two-phase slab (a) with width 1m and height 0.5m. The slab consists of a regular arrangement
of unit cells (140 × 70); each unit cell (b) with edge length lβ = 1/140m consists of two phases (β and σ). The
diameter of the inclusion (σ phase) is d = 0.65 lβ. The initial temperature is 0 ◦C everywhere and heat is generated
in the σ phase; all the parameters are listed in Table 3.1. Panel (c) shows the computational mesh for the FE2 method:
a square bilinear quadrilateral element is used for the macroscale mesh and 2436 linear triangular elements for the
RVE mesh. The single-scale discretization of a unit cell in panel (d) is the same as that of the RVE.

β and σ phases over the unit cell are de�ned as uβ and uσ, according to Eq. (3.77), and serve
as references for the two macroscale solutionsUβ andUσ, respectively. Moreover, the average
temperature u of the whole unit cell, de�ned as

u = ϵβuβ + ϵσuσ, (3.73)

is compared to the solution of the one-equation model in Eq. (3.32), which is independently
obtained from the FE2 method and not calculated as the weighted average of Uβ and Uσ by
Eq. (3.36).

The FE2 simulation results are compared with results from the single-scale simulation in
Fig. 3.4. The macroscale temperature �elds Uβ and Uσ, de�ned in Eqs. (3.4) and (3.11), agree
with the average temperatures uβ and uσ predicted by the single-scale simulation (Fig. 3.4a),
respectively. The macroscale temperature U obtained with the one-equation model agrees
with the average temperature u of the whole unit cell obtained with the single-scale simu-
lation. As u is the weighted average of uβ and uσ (Eq. (3.73)), it is inferred that U matches
with the weighted average of Uβ and Uσ: Eq. (3.36) holds. This agreement numerically vali-
dates the relation between the two models: the one-equation model is a special case of the
two-equation model, as shown in Section 3.3.5.
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Fig. 3.4. Comparison between the FE2 simulation results and the results of the single-scale simulations. (a) Tem-
perature increases with time due to the heat generation in the inclusion. The macroscale temperatures Uβ and Uσ

are obtained from the two-equation model with the FE2 framework, while U is from the one-equation model. The
average temperatures uβ and uσ are intrinsic averages over the β and σ phases of the unit cell, respectively, and u
refers to the average over the whole unit cell as de�ned in Eq. (3.73). (b) Volumetric interfacial heat transfer Qβ

normalized by the given volume-averaged heat source Rσ (Table 3.1).

Fig. 3.4b shows the temporal evolution of the interfacial heat transfer Qβ (Eq. (3.9))
normalized by the given heat source Rσ (Eq. (3.12)): it increases sharply in the beginning and
then quickly stabilizes. In this example, the heat is generated in the σ phase and partially
�ows into the β phase, increasing the temperatures of both phases simultaneously. The
normalized interfacial heat transfer measures the fraction of the heat generation Rσ that goes
to the matrix (the β phase). In the plateau stage, the normalized heat transfer converges to
the volume fraction of the β phase, suggesting that the distribution of the heat generation
between the two phases reaches an equilibrium and is determined by the volume fraction.
Again, the agreement between the FE2 simulation results and results of the single-scale
simulation validates the computational framework for the two-equation model.

Actually, the temperature di�erence between the two phases, as shown above, is also of
interest to Ramos et al. [31] and shown in Fig. 12 of their paper. However, since they used
the one-equation model, the temperature di�erence at the macroscale was not presented;
instead, they reported the temperatures of a “hot” point in the σ phase and a “cold” point in
the β phase of an RVE.

The temperature pro�le in an RVE (Fig. 3.5a) by our FE2 simulation also resembles the
temperature pro�le in the unit cell (Fig. 3.5b) obtained with the single-scale simulation. The
temperature variation in each phase can be reproduced in our two-equation model thanks to
the transfer of the two macroscale temperatures to the microscale RVE (Eq. (3.23)) and the
microscale boundary conditions. The one-equation model will however yield a uniform RVE
temperature �eld as shown in Fig. 13a of Ramos et al. [31] unless the microscale transient
e�ect is taken into account (Fig. 13b of Ramos et al. [31]).



80 3. FE2 multiscale framework for two-equation model

(a) (b)
120

160

200

𝑢 (∘C)

Fig. 3.5. Temperature pro�le at t = 20 s in (a) an RVE from the microscale FE simulation and (b) in the unit cell
from the single-scale simulation.

Nonlinear heat conduction

This example considers the same two-phase medium as in Fig. 3.3a and b but with di�erent
boundary conditions in order to allow for heat conduction at the macroscale, as shown in
Fig. 3.6a. Neumann boundary conditions are enforced at the horizontal edges, while Dirichlet
boundary conditions are imposed at the vertical edges:

h|y=0 = 0, h|y=0.5 m = 0 and

u |x=0 = 0 ◦C, u |x=1 m = 300 ◦C for t ∈ (0, tend] ,

where tend = 288 s. The initial condition u0 = 0 ◦C is enforced in the whole domain. As these
boundary conditions ensure a uniform macroscale temperature �eld along they direction, we
only consider one row of 40 bilinear quadrilateral elements for the macroscale mesh (Fig. 3.6b).
For the RVE we use one unit cell, the same as in Fig. 3.3c. Considering the insulated top and
bottom boundaries, we also simulate one layer of unit cells for the single-scale simulation
(i.e., 140 side-by-side unit cells as shown in Fig. 3.6c). Each unit cell has the same mesh as
the RVE.

To have distinct temperatures di�erence between the two phases, a heat source in the
σ phase is also contained to maintain the local thermal non-equilibrium condition [3, 12]. This
scenario is analogous to the real transport problem with reaction sources in the bio�lm phase
in chemical engineering applications [5, 6] where a local mass non-equilibrium condition
arises. As the FE2 method is advantageous in addressing general constitutive relations,
here we not only simulate the linear conduction problem with constant conductivities
but also nonlinear conduction problem with temperature-dependent conductivities. The
corresponding parameters are listed in Table 3.2.

As shown in Fig. 3.7, the FE2 simulation results can capture the temperature distribution
and evolution in the two phases and agree well with the results of the single-scale simulation
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Fig. 3.6. (a) The same two-phase slab as in Fig. 3.3, but with di�erent boundary conditions. In this case the slab is
insulated at the upper and lower edges and constant temperatures are applied at the left- and right-hand edges.
The initial temperature is 0 ◦C everywhere. (b) For the FE2 simulation, the macroscale mesh consists of 40 bilinear
quadrilateral elements and the mesh is denser at the two sides; the microscale RVE mesh is the same as the RVE
mesh in Fig. 3.3. (c) The single-scale simulation is performed on a mesh consisting of a layer of 140 side-by-side
unit cells, each discretized as the RVE.

Table 3.2. Parameters of the FE2 multiscale and single-scale simulations for Fig. 3.7.

quantity symbol unit phase β phase σ

FE2 macro
volume fraction ϵ - 0.67 0.33
volumetric heat capacity c J/(m3 K) 1.76 × 107 1.76 × 107
volume-averaged heat source R W/m3 0.0 2.99 × 107

micro conductivitya k W/(mK) 400 + k0T 1 + k1T

Single-scale
volumetric heat capacity c J/(m3 K) 1.76 × 107 1.76 × 107
volumetric heat source r W/m3 0.0 9.0 × 107
conductivitya k W/(mK) 400 + k0T 1 + k1T

a Coe�cients k0 = k1 = 0 for the linear conduction case while k0 = 4 and k1 = 0.01 for the nonlinear conduction
case; T is the value of temperature measured in degrees Celsius and ranges from 0 to 400.
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for both the linear and nonlinear conduction cases. In Fig. 3.7a and c for the linear conduction
case, the temperature of the slab continuously increases because of the heat generated in the
σ phase but remains constant at the left- and right-hand boundaries as speci�ed. Two typical
time instants are selected to show the evolution of the temperature pro�le. At 72 s, the
temperature increase due to the heat generation is uniform in the middle (from 0.1 to 0.9m)
of the slab; close to the two vertical edges of the slab, high temperature gradients develop due
to the boundary condition of �xed temperatures. At 144 s, a temperature peak is observed
near the right-hand vertical edge because the heat accumulated from the heat source cannot
be �uxed out timely. In the FE2 simulation, the boundary conditions of �xed temperatures at
the two vertical edges (Fig. 3.6a) are only applied to the β phase at the macroscale; for the
σ phase, the leftmost and rightmost boundaries are also insulated and its temperature Uσ

is determined by the interaction with the β phase as well as the internal heat generation.
This setting enables the FE2 method to capture the phenomenon that the temperatures of
the σ phase at the two vertical edges are higher than those of the β phase.

The arguments exposed above also apply to the case of nonlinear conduction as shown
in Fig. 3.7b and d, with minor di�erences. According to Table 3.2, the conductivities in the
nonlinear case are always higher than those in the linear case, and thus the temperature
di�erences between the two phases are smaller and the temperature gradients near the
two vertical edges are lower (Fig. 3.7a vs b and Fig. 3.7c vs d). At each time instant, the
weighted averages of Uβ and Uσ according to Eq. (3.36) in the middle of the slab however
remain unchanged for the linear and nonlinear cases because they are determined by the
heat generation and can be manually calculated and checked.

Significant conductivity di�erence

We further consider another scenario that does not include a heat source but features
a signi�cant di�erence in the conductivity between the two phases, also resulting in a
temperature di�erence. The same problem setting as in Fig. 3.6 is used here but a di�erent
set of parameters is taken and listed in Table 3.3. This situation is representative of the
heat transfer into a composite material composed of a highly conductive matrix but poorly
conductive inclusions. A certain amount of time is necessary before both phases attain the
same temperature [15].

Fig. 3.8 shows the simulation results of the FE2 method and the single-scale approach. The
�xed temperature at the right-hand side is higher than the initial null temperature of the whole
slab, leading to heat in�ux at the right-hand side as time passes. Since the matrix (β phase)
is much more conductive than the inclusion (σ phase), the matrix’s temperature is always
higher than the temperature of the inclusion, to the extent that an evident temperature
di�erence is observed. At two time instants, the FE2 simulation results agree with those by
the single-scale simulation, validating the FE2 multiscale framework for the two-equation
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Fig. 3.7. Comparison between the FE2 and single-scale simulation results. Panels (a) and (c) show the results for
the linear conduction case and panels (c) and (d) for the nonlinear conduction case. Quantities Uβ and Uσ refer to
the macroscale solutions (FE2 method), while uβ and uσ indicate the intrinsic averages of the temperature in each
phase (single-scale approach).

Table 3.3. Parameters of the FE2 multiscale and single-scale simulations for Fig. 3.8.

quantity symbol unit phase β phase σ

FE2 macro
volume fraction ϵ - 0.67 0.33
volumetric heat capacity c J/(m3 K) 1.76 × 107 1.76 × 107
volume-averaged heat source R W/m3 0.0 0.0

micro conductivity k W/(mK) 4.0 × 103 1.0 × 10−1

Single-scale
volumetric heat capacity c J/(m3 K) 1.76 × 107 1.76 × 107
volumetric heat source r W/m3 0.0 0.0
conductivity k W/(mK) 4.0 × 103 1.0 × 10−1
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Fig. 3.8. Comparison between the FE2 and single-scale simulation results for the conduction problem characterized
by a signi�cant conductivity di�erence in the two phases. QuantitiesUβ andUσ refer to the macroscale solutions (FE2

method), while uβ and uσ indicate the intrinsic averages of the temperature in each phase (single-scale approach).

model.

3.5.2 Insights from microscale RVE simulations

In the previous simulations of linear conduction problems, we observe that in the tangent
vector Tβ (Eq. (3.72)), the third component that shows dependence of the interfacial heat �ow
on Uβ is always the additive inverse of the sixth component that shows dependence on Uσ:
T(3)β + T(6)β = 0. This relation is also observed, as expected, in Tσ. The other components are
relatively negligible, implying almost no temperature gradient dependence of the interfacial
heat �ow. Moreover, the components of Tβ themselves are independent of the macroscale
temperatures Uβ and Uσ. These observations suggest that the volumetric interfacial heat
�ow Qβ as de�ned in Eq. (3.9) linearly depends on the temperature di�erence between the
two phases according to the relationship

Qβ = Th
(
Uσ −Uβ

)
, (3.74)

where Th is usually referred to as the interfacial heat transfer coe�cient [1, 3, 4]. The linear
dependence in Eq. (3.74) can also be deduced from the results reported in Fig. 3.4: the ratio
between Qβ and Uβ −Uσ yields, at each time step, the same coe�cient Th values. Although
the linear relation (3.74) has been widely used in the homogenized transport equations in the
two-equation model [1, 4, 9], the estimation of the heat transfer coe�cient value is however
still challenging [8] either in experimental measurements [4] or by analytical approaches [1].
Our numerical results suggest that the heat transfer coe�cient is indeed constant for a
linear two-phase system. The microscale RVE simulation thus numerically validates the
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widely-used linear relation and, more importantly, o�ers a convenient way to calculate the
heat transfer coe�cient.

The relation T(3)β + T(6)β = 0 observed in the linear examples however breaks down in the
nonlinear conduction case and the linear relation (3.74) does not hold. The heat transfer coef-
�cient de�ned in the linear case actually depends on the speci�c conductivities of both phases.
In nonlinear conduction problems, the temperature dependent conductivity naturally leads
to temperature dependent coe�cients T(3)β and T(6)β . Compared to the numerical approach
by Quintard and Whitaker [1], the proposed FE2 framework has the intrinsic advantage of
addressing nonlinear conduction problems because the interfacial heat transfer as well as its
dependence on macroscale �eld variables are numerically calculated from the microscale
problem, avoiding the postulation of relation (3.74) and the wide range of values reported
for the heat transfer coe�cient [8].

In conventional FE2 frameworks for the one-equation model, the e�ective conductivity of
the whole RVE is generally not a�ected by the microscopic length scale, given that material
properties of each phase are �xed. An analogous situation arises in computational solid
mechanics: the homogenized sti�ness (deformation gradient dependence of the homogenized
stress) does not depend on the unit cell size. This microscopic length scale independence
is also true for the tangent matrices (Sβ and Sσ) characterizing the temperature gradient
dependence of the homogenized �ux, provided that volume fraction and conductivity of each
phase are �xed. However, this conclusion does not apply to the coe�cientTh of the interfacial
heat transfer. Figure 3.9a shows that the coe�cientTh depends on the edge length of the unit
cell luc that characterizes the microscopic length scale. As luc increases, the coe�cient Th

decreases in a non-linear fashion which can be described with good approximation by the
quadratic expression

Thl
2
β

kβ

=
a(

luc/lβ
)2 (3.75)

between Th and luc. The quadratic relation was also reported in Table 1 of Quintard and
Whitaker [1]. Our simulation results can be �t by Eq. (3.75) with the same coe�cient
(a = 25.8) reported by Quintard and Whitaker [1] if the same parameters (volume fraction
and conductivity of each phase) are used in our simulations. These results further indicate that
our numerical framework can properly account for linear conduction e�ects in a two-phase
medium.

Fig. 3.9b shows the e�ect of the microscopic length scale on the evolution of the interfacial
heat transfer in the �rst example of Section 3.5.1. The smaller the unit cell, the faster the
interfacial heat transfer increases with time in the transient stage and the earlier it begins
to level o�. The microscopic length scale however does not a�ect the magnitude of the
normalized interfacial heat transfer in the plateau stage, which is determined by the volume
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Fig. 3.9. E�ect of unit cell size: (a) interfacial heat transfer coe�cient Th decreases quadratically with the unit cell
edge length luc; (b) increase of the interfacial heat transfer with time at three di�erent unit cell sizes. The values
of lβ, kβ, and Rσ can be found in the �rst example of Section 3.5.1.

fraction. Since a smaller unit cell corresponds to a greater value of the coe�cientTh (Eq. (3.75)),
the temperature di�erence will be smaller according to Eq. (3.74), in view of the same
interfacial heat transfer in the plateau stage. Eventually, with increasingly smaller unit
cells, the temperature di�erence will be as small as to the extent that the local equilibrium
assumption holds [19]. The microscale FE simulation can thus provide quantitative guidelines
for the determination of the microscopic length scale at which the one-equation model can
be used with con�dence (i.e., by accepting a controllable error) in place of the two-equation
model.

The unit cell size is not to be confused with the RVE size. The unit cell size characterizes
the microscopic length scale and thus is determined by the material, while the RVE is
associated with the FE2 method and its size is determined so that the RVE is as large as to
be representative but also as small as to satisfy the rule of scale separation. The di�erence
between a larger unit cell and a larger RVE can be seen in Figs. 3.9a and 3.10. Unlike unit cells,
larger RVEs however do not a�ect the results for the two-phase medium used in this study:
as shown in Fig. 3.10, the interfacial heat transfer coe�cient Th remains unchanged with the
RVE size lrve. Our numerical results also indicate that the tangent matrices Sβ and Sσ of the
homogenized �ux (e�ective conductivities) do not change with the RVE size. Therefore, a
single unit cell can be safely used as the RVE in our studies.

3.6 Concluding remarks

For transient heat conduction in a two-phase medium, this study presents a FE2 two-scale
framework that can properly address the development of di�erent temperature �elds in each
phase thanks to the use of a two-equation model. The approach has been demonstrated in
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RVE sizes lrve.

simple academic problems with the intention of showing its potential in addressing general
problems.

The macroscale equations are pragmatically derived from the single-scale governing
equations by means of the volume-averaging method. The approach does not explicitly
require the de�nition of constitutive relations or the employment of other conditions (such
as the interfacial heat transfer condition (3.74)) at the macroscale. The macroscale heat �uxes
and interfacial heat transfer, as well as their dependence on macroscale �eld variables, are nu-
merically calculated from the microscale problem de�ned on an RVE. The microscale problem
enables the use of general constitutive relations (e.g., temperature dependent conductivity)
leading to the solution of general nonlinear transport problems with temperature-dependent
heat transfer coe�cients.

The two-equation model treats the two phases separately at both scales and, at variance
with numerical approaches making use of the one-equation model, explicitly considers the
interfacial heat transfer, thus being suited to address general local thermal non-equilibrium
conditions. The heat transfer coe�cient, expressing the macroscale temperature dependence
of the interfacial heat transfer in the linear case, is found to depend on the microscopic
length scale, which is a unique and new feature of the proposed FE2 method.



88 3. FE2 multiscale framework for two-equation model

3.A Volume average operator

With reference to a quantity xα (a scalar or vector) in the α phase, we de�ne the volume
average operator with respect to the whole RVE as

〈xα 〉 = 1
V

∫
Vα

xα dV (3.76)

and the intrinsic volume average [9] over the α phase as

xα =
1
Vα

∫
Vα

xα dV , (3.77)

where V denotes the total volume of the two-phase medium, and Vα is the volume of the
α phase. The variable α represents either β or σ. If the volume fraction of the α phase is
de�ned as

ϵα =
Vα
V
,

the following relation between the two volume averages holds:

〈xα 〉 = ϵαxα . (3.78)

3.B Microscale problem boundary conditions

1. Periodic boundary conditions

As shown in Fig. 3.1b, we group the external boundaries into the master boundary (mb)
and slave boundary (sb). The enforcement of the periodic boundary conditions requires
a one-to-one correspondence between master and slave boundaries of each phase in
terms of mesh nodes. The constraint in Eq. (3.21) is then applied to each pair of nodes,
one node on the master boundary and the other on the slave boundary, excluding the
four corner nodes. The total number of node pairs is denoted by Npb. For each pair of
nodes, we assign a Lagrange multiplier λl to the constraint between them, with the
Lagrange constraint equation expressed as

ulα

���
mb
− ulα

���
sb
− ∇Uα ·

(
xlmb − xlsb

)
= 0, (3.79)

where l ranges from 1 to Npb, and α refers to either β or σ depending on the phase to
which the node pair l belongs.
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For the four corner nodes, the three Lagrange constraint equations are

u(2)α − u(1)α − ∇Uα ·
(
x(2) − x(1)

)
= 0,

u(3)α − u(1)α − ∇Uα ·
(
x(3) − x(1)

)
= 0,

u(4)α − u(1)α − ∇Uα ·
(
x(4) − x(1)

)
= 0,

(3.80)

where α takes the phase (either β or σ) containing the corner nodes.

2. Interfacial boundary conditions

If there are Nif pairs of interface nodes, there exist Nif Lagrange constraint equations

ulβ − ulσ = 0, (3.81)

where l ranges from 1 to Nif, ulβ denotes the nodal temperature at the interface Γβσ,
and ulσ is the temperature of the corresponding node on Γσβ.

3. Conservation of the stored heat between the macro- and micro-scales

This condition is expressed by means of two Lagrange constraint equations from
Eq. (3.23): ∫

Vβ

N dV uβ −VβUβ = 0,∫
Vσ

N dV uσ −VσUσ = 0.
(3.82)

In total, the number of Lagrange multipliers is

Nλ = Npb + Nif + 5, (3.83)

i.e., the sum of Lagrange multipliers from Eqs. (3.79) to (3.82).
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4
FE2 multiscale modeling of
transport processes in porous
ba�ery separators

Abstract
Existing battery modeling works have limitations in addressing concentration-dependent

transport properties and characterizing anisotropic microstructures. We propose a
simple yet adequate FE2 multiscale framework that addresses these limitations. The
microscale simulation can comprehensively characterize an anisotropic microstructure
using a tensor description for the e�ective transport properties. From the microscale
solution, the homogenized �uxes and their dependence on the downscaled macroscale
variables are upscaled and thus replace the macroscale constitutive relations which are
otherwise assumed in the literature. The FE2 framework is validated by comparison to
the single-scale approach.

keywords: multiscale battery modeling, FE2, computational homogenization, ionic trans-
port, concentration-dependent transport property, e�ective di�usivity tensor
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4.1 Introduction

Many electrochemical models for predicting battery performance are based upon assump-
tions that are functional to their e�cient numerical solution. A common assumption is
that transport properties are constant when calculating the e�ective transport coe�cients.
Moreover, the e�ective transport properties are usually represented by a scalar or, at best,
by a tensor with null o�-diagonal entries. The implication of this choice is that the role of
the microstructure is not fully re�ected by the e�ective transport properties. This paper
discusses these aspects by means of a FE2 multiscale framework endowed with nonlinear
physics-based models at the microscale (pore-scale) and well-de�ned information exchange
between the micro- and macro-scale (cell level).

The popular DFN model [1], also referred to as the pseudo two-dimensional (P2D)
model, describes porous battery components as homogenized macroscopic continua using
averaged mass and charge transport equations. Microstructure e�ect are however taken into
account in an indirect manner through the use of e�ective transport properties de�ned by
means of a Bruggeman expression as summarized in 4.C. Such a simpli�ed microstructure
representation, although computationally e�cient, can lead to prediction discrepancies in
battery responses [2]. The lack of microstructure morphology consideration also hinders
battery performance improvements through microstructure manipulation.

To consider the microstructure, a straightforward method is to conduct single-scale
simulations (or called direct numerical simulations) [3, 4] that fully resolve the microstructure
and thus yield accurate predictions. However, the discretization of the microstructure would
require a signi�cant computational e�ort, especially when the pore/particle size can be
two to three orders of magnitude smaller than the typical size of a battery cell [5]. The
direct microstructure-resolved models are therefore deemed unsuitable in terms of being
computationally economic.

A compromise between computational cost and microstructure examination can be
reached by the multiscale models [2, 6] that extend the DFN model in addressing the mi-
crostructure. The multiscale models shared similar mathematic structure in the macroscale
governing equations to the DFN model (4.C) but simulated the complicated microstructure for
more accurate description of the e�ective transport properties and volume-averaged reaction
current densities. The macroscale governing equations are derived from their microscale
counterparts by the volume averaging method [7], and the averaging process results in the
so-called “closure terms” that need special treatment to obtain for example the e�ective
transport properties.

Some problems however arise with the multiscale models. First, the derivation of the
homogenized equations relies on simpli�cation assumptions that cannot be rigorously
proven [7–9]. Speci�cally, the volume-averaged �uxes are empirically modeled based on
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e�ective transport properties [2, 9], and this is because their expressions cannot be directly
obtained through the �rst theorem of the volume averaging method [9], even for constant
bulk transport properties (i.e., linear di�usion). Second, the microscale simulations for the clo-
sure terms used constant bulk transport properties and thus the calculated e�ective transport
properties only re�ect the microstructure geometry e�ect. The omission of the concentration
dependence leads to the question of whether we can safely use the same concentration
dependence function for the e�ective transport properties at the macroscale (Section 4.5.1).
Finally, the microscale simulations are restricted to isotropic microstructures and thus have
limitations in characterizing anisotropic microstructures (Section 4.5.1). Anisotropic mi-
crostructures generally lead to transport properties in the tensor format and the o�-diagonal
terms are not necessarily null [10]. An non-zero o�-diagonal terms will cause the macroscale
responses in the direction perpendicular to the �eld variable gradient. Most of the microstruc-
ture studies in the literature however simply ignore the anisotropy problem. More details
and discussion about the nonlinear transport properties and anisotropic microstructures can
be found in Section 4.5.1.

Instead of using assumptions for the macroscale physics and solving closure terms, we
adopt a FE2-based computational homogenization scheme and present a two-scale framework
with simple information exchange between the macro- and micro-scale problems. The
FE2 method has been developed and successfully employed in applications ranging from
mechanical equilibrium problems [11–13] to transport problems [14] and multi-physics
problems [15–18]. The theoretical framework of a computational homogenization approach
for battery applications has been recently developed by Salvadori et al. [5, 19]. The model
accounted for the multi-physics nature of processes taking place in battery cells, including
di�usion, migration, intercalation, and mechanics.

In this paper, we focus on developing a simple FE2 framework for ionic transport through
porous battery cell separators. In the separator only two constituents coexist: a liquid
electrolyte �lling the pores of an inert and electrochemically inactive membrane (e.g., poly-
ole�n [20]). The absence of active materials results in signi�cant modeling simpli�cations,
as no lithium exchange occurs between the constituents. This allows us to capture the most
fundamental phenomena and check the applicability of the FE2 method in the battery setting.

4.2 Single-scale description

We model ionic transport processes in the electrolyte of battery separators (Fig. 4.1a) by
means of conservation laws and the concentrated solution theory [1]. Although readily
available in the literature [1, 21], the governing equations are presented next since they
serve as the starting point for the derivation of the volume-averaged macroscale equations
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in Section 4.3.1; furthermore, their �nite element method (FEM) solution is employed as
reference solution for the FE2 simulation results in Section 4.5.2.

The ionic transport in the electrolyte is governed by the mass conservation of lithium
ions and the electric charge balance that are expressed, respectively, as

∂ce

∂t
+ ∇ · qe = 0 and (4.1a)

∇ · ie = 0 in Vβ × [0, tend] , (4.1b)

with the lithium ion �ux
qe = −De ∇ce +

te

F
ie, (4.2a)

the current density
ie = −κe ∇ϕe + κD ∇ ln ce, (4.2b)

and the coe�cient
κD =

2RTκe

F

(
1 + ∂ ln fe

∂ ln ce

)
(1 − te). (4.2c)

The coupled set of di�erential equations (4.1) is solved in terms of the lithium ion concentra-
tion ce and the electric potential ϕe. In the above equations, the subscript “e” refers to the
electrolyte (β phase), De andκe denote the bulk di�usivity and ionic conductivity, respectively,
te is the transference number, and fe is the mean activity coe�cient. Finally, F , R, and T

represent the Faraday constant, the gas constant, and the absolute temperature, respectively.

4.3 Multiscale framework

The multiscale method employed in this study is summarized in this section where the
governing equations at the two scales and the corresponding information-passing procedures
are reported. In the remainder of the paper, quantities at the microscale and macroscale are
identi�ed by subscripts “m” and “M”, respectively.

4.3.1 Macroscale model

The macroscale governing equations are derived by volume-averaging the single-scale
formulations presented in the previous section over a representative volume element (RVE).
With reference to the RVE in Fig. 4.1b, the application of the average operator (4.A) to Eq. (4.1)
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Anode Separator Cathode

(a)

(b)

Vβ

Vσ

Γβex

Γβσ

Γσex

Fig. 4.1. Two-dimensional schematics of the problem domains. (a) Schematic of a battery cell with porous anode,
separator, and cathode. The porous electrode and separator domains are �lled with the electrolyte occupying
domain Vβ. (b) Microscopic representative volume element (RVE) of battery separator, consisting of blue-shaded
electrolyte domain Vβ and gray-shaded ion-transport blocking phase domains Vσ . The blocking phases represent
the separator membrane. The RVE boundary Γex is divided into two parts, each associated with a phase, such that
Γex = Γβex ∪ Γσex with Γβex ∩ Γσex = �.
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yields

ϵβ
∂ 〈ce〉β
∂t

+ 〈∇ · qe〉 = 0 and (4.3a)

〈∇ · ie〉 = 0 in Vβ × [0, tend] , (4.3b)

where ϵβ is the electrolyte volume fraction (i.e., RVE porosity), and 〈ce〉β represents the
intrinsic volume average of the concentration, with the boundary of domain Vβ de�ned as
Γβex ∪ Γβσ with Γβex ∩ Γβσ = �. By making use of the divergence theorem, the divergence terms
in Eq. (4.3) are expanded as

〈∇ · qe〉 = 1
V

∫
Γβex

qe · nβex dA +
1
V

∫
Γβσ

qe · nβσ dA , (4.4a)

〈∇ · ie〉 = 1
V

∫
Γβex

ie · nβex dA +
1
V

∫
Γβσ

ie · nβσ dA , (4.4b)

where nβex is the outward-pointing unit vector normal to the β phase boundary Γβex , and nβσ

is the unit vector normal to Γβσ, pointing to σ phase from β. Note that the volume average
in the left-hand side is over the β phase as the ionic species and its �ux only exist in the
electrolyte.

At the macroscale, the separator and electrodes are viewed as homogeneous media and
the microscale RVE is considered as a macroscale point [22]. The volume average of the
out�uxes through the RVE boundary Γex can therefore be thought of as obtained from the
divergence of macroscale �uxes as

∇ · qm =
1
V

∫
Γex

qe · nex dA , (4.5a)

∇ · im = 1
V

∫
Γex

ie · nex dA . (4.5b)

Since there is no �ux in the σ phase and through its boundary Γσex , we only need to consider
the �ux through the boundary occupied by β phase and thus only Γβex survive in the right-
hand side of Eq. (4.5). We can therefore express the �rst terms in the right-hand sides of
Eqs. (4.4a) and (4.4b) as

1
V

∫
Γβex

qe · nβex dA = ∇ · qm, (4.6a)

1
V

∫
Γβex

ie · nβex dA = ∇ · im. (4.6b)

The second terms in the right-hand sides of Eqs. (4.4a) and (4.4b) represent the �ux
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homogenized domain

φm, cm

∇φm, φm

∇cm, cm

im, qm
Ki, Kq

Ω

(a) RVE

φm, cm

Vβ

Γmb

Γmb Γsb

Γsb

(b)

Fig. 4.2. Homogenized domain at the macroscale, RVE at the microscale, and information exchange between
macro- and micro-scales. The macroscale potential (ϕm) and its gradient (∇ϕm), and the concentration (cm) and its
gradient (∇cm) at a point of the macroscale domain Ω (integration point in the context of FEM) are transferred to
the microscale to de�ne the boundary conditions, while the averaged �uxes (im, qm) and their dependence (Ki, Kq)
on the downscaled quantities are transferred back after the microscale quantities (ϕm and cm) are solved. Panel (b)
shows also the boundaries used for the enforcement of periodic boundary conditions in the FE analysis of the RVE:
left and bottom edges Γmb are denoted as the master boundaries, while the right and upper edges Γsb are considered
as the slave boundaries.

between the two phases. Here we restrict our scope to the ionic transport through the battery
separator where there is no mutual interfacial �ux between the electrolyte (β phase) and the
porous membrane (σ phase). Consequently, by further considering Eqs. (4.4) and (4.6), we
reformulate Eq. (4.3) as

ϵβ
∂cm
∂t
+ ∇ · qm = 0 and (4.7a)

∇ · im = 0 in Ω × [0, tend] , (4.7b)

where cm = 〈ce〉β represents the intrinsic concentration in the electrolyte. Equation (4.7)
expresses the macroscale governing equations over the homogenized domain Ω (Fig. 4.2a). It
is remarked that cm and ϕm (not explicitly present in Eq. (4.7b)) are the two �eld variables to
solve for, and that the macroscale constitutive relations for qm and im are not known yet and
will be numerically obtained through the information exchange between the two scales. As
schematically depicted in Fig. 4.2, the macroscale solution cm and ϕm and their gradients at
an integration point are downscaled to de�ne the microscale problem; the macroscale �uxes
and their tangents are then computed from the microscale solution and upscaled.

4.3.2 Downscaling

The boundary conditions enforced at the microscale level are obtained by downscaling
macroscale quantities at each integration point of the macroscale mesh: concentration cm,
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potential ϕm, and their gradients ∇cm and ∇ϕm, respectively. For conciseness, these quantities
are stacked in the column vector

X =
[
(∇cm)T cm (∇ϕm)T ϕm

]T
. (4.8)

4.3.3 Microscale model

The microscale problem is de�ned on a RVE (Fig. 4.2b) associated to a macroscale integration
point. The governing equations at the microscale are in principle the same as those used in
the single-scale description (Eq. (4.1)), except for the assumption regarding the steady-state
approximation due to the small RVE size (leading to the neglected time variation of the
concentration �eld) and the use of subscript “m” instead of subscript “e” for the microscale
quantities.

The microscale governing equations are expressed as

∇ · qm = ∇ · (−De ∇cm) = 0 and (4.9a)

∇ · im = ∇ · (−κe ∇ϕm + κD ∇ ln cm) = 0 in Vβ. (4.9b)

Equation (4.9a) is obtained by substituting Eq. (4.2a) into the steady state equivalent of Eq. (4.1a),
taking into account that the current density is divergence free (Eq. (4.1b)) and the transference
number te is taken as a constant.

Next, we derive the microscale boundary conditions from the macroscale quantities X
in Eq. (4.8). Without loss of generality, the microscale �elds can be decomposed into linear
contributions consistent with macroscale quantities (cm, ϕm, and their gradients) and the
�uctuation �elds c̃m and ϕ̃m as

cm = cm + ∇cm · (x − xr) + c̃m, (4.10a)

ϕm = ϕm + ∇ϕm · (x − xr) + ϕ̃m, (4.10b)

where x represents the spatial coordinate at the microscale and xr denotes the coordinates of
a reference point in the RVE domain.

To design the boundary conditions of the microscale problem, we assume that the
volume average of the gradients of microscale variables over the whole RVE is equal to the
corresponding macroscale gradients in analogy with the kinematical averaging relation used
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in solid mechanics to establish the macro-to-micro coupling:

1
V

∫
V
∇cm dV = ∇cm, (4.11a)

1
V

∫
V
∇ϕm dV = ∇ϕm, (4.11b)

where V = Vβ ∪Vσ with Vβ ∩Vσ = �. Note that by analogy with the problem of a RVE with
holes under mechanical loading [23], the domain of the σ phase needs to be included because
the RVE is considered as a macroscale point as a whole. Substituting Eq. (4.10a) into the
left-hand side of Eq. (4.11a) yields

1
V

∫
V
∇cm dV = ∇cm + 1

V

∫
V
∇c̃m dV . (4.12)

According to the divergence theorem, the second term in the right-hand side of Eq. (4.12)
can be reformulated as

1
V

∫
V
∇c̃m dV =

1
V

∫
Γex

c̃m nex dA , (4.13)

where Γex is the RVE boundary (Fig. 4.1b). Comparing Eq. (4.12) with Eq. (4.11a) and consid-
ering Eq. (4.13) lead to ∫

Γex

c̃m nex dΓ = 0 and (4.14a)∫
Γex

ϕ̃m nex dΓ = 0, (4.14b)

where the relation for ϕm has been obtained by analogy.
To satisfy Eq. (4.14), we employ periodic boundary conditions [12]:[

c̃m

]
Γmb
=

[
c̃m

]
Γsb
,

[
ϕ̃m

]
Γmb
=

[
ϕ̃m

]
Γsb
, (4.15)

where Γmb and Γsb refer to the master and slave boundaries, respectively, as shown in Fig. 4.2b.
By substituting Eq. (4.15) into Eq. (4.10), we have

cm(xmb) − cm(xsb) − ∇cm · (xmb − xsb) = 0, (4.16a)

ϕm(xmb) − ϕm(xsb) − ∇ϕm · (xmb − xsb) = 0, (4.16b)

where xmb and xsb represent an arbitrary point on the master boundary and its counterpart
on the slave boundary, respectively. In the FE simulations, only β phase is accounted for in
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the computational domain; hence, the periodic boundary conditions are implemented merely
on the boundary Γβex of β phase.

To uniquely solve the microscale problem, we impose another condition, that is, the
intrinsic volume averages of microscale variables (c and ϕ) are equal to the macroscale
quantities:

〈cm〉β = cm, 〈ϕm〉β = ϕm. (4.17)

These relations express conservation of the lithium ion mass and electric potential between
macro- and micro-scales.

4.3.4 Upscaling

In this section we describe how the homogenized quantities, based on the microscale solution
and needed in the macroscale computation (Fig. 4.2), are upscaled. In the continuum mechan-
ics context it is customary to derive the micro-to-macro transition by enforcing either the
energy [24] (Hill-Mandel condition) or entropy [25] consistency across scales. An extended
version of the Hill-Mandel condition tailored for battery cell modeling was proposed by
Salvadori et al. [5, 19], who equated “the microscopic volume average of the virtual power
on the RVE and the point wise one at the macroscale” [19]. An alternative strategy is used
here, we enforce

1
V

∫
V
∇cm · qm dV = ∇cm · qm, (4.18a)

1
V

∫
V
∇ϕm · im dV = ∇ϕm · im. (4.18b)

This approach presents similarities with the works of Keip, Steinmann, and Schröder [15–17]
and Lee and Sundararaghavan [18]. The former focuses on the electromechanical coupling in
piezoelectric and electro-active materials at multiple scales, and the authors independently
considered the mechanical and electrical contributions in the scale transitions. The latter
makes use of restriction (4.18a) to identify the micro-to-macro scale transitions for the mass
�ux in the context of di�usion-reaction-induced degradation of composites. Numerical
evidence indicates that the micro-to-macro scale transitions obtained from Eq. (4.18) (given
in Eq. (4.21)) are sound for the class of problems considered in this study: in Section 4.5.2 we
show that the results of our FE2 framework are in agreement with those obtained with a
single-scale analysis framework.

Macroscale �uxes are obtained by following the procedure described below. By making
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use of Eq. (4.9) and the divergence theorem, the left-hand side of Eq. (4.18a) is expressed as

1
V

∫
V
∇cm · qm dV =

1
V

∫
V
∇ · (cm qm) dV = 1

V

∫
Γex

cm qm · nex dA . (4.19)

From the periodic boundary conditions (4.15) we evaluate qm · nex at the master boundary to
be the opposite of that at the corresponding slave boundary. This is called the anti-periodic
normal �ux boundary conditions [26] and can also be seen from the Lagrange multiplier
used in the microscale FE implementation of periodic boundary conditions (4.B). Substituting
Eq. (4.10a) into Eq. (4.19) and considering the periodic boundary conditions and anti-periodic
normal �ux boundary conditions, we obtain

1
V

∫
Γex

cm qm · nex dA = ∇cm · 1
V

∫
Γex

x qm · nex dA . (4.20)

Finally, comparing Eqs. (4.18a) and (4.20) yields the macroscale lithium ion mass �ux

qm =
1
V

∫
Γex

x qm · nex dA . (4.21a)

An analogous procedure leads to the de�nition of the macroscale current density

im =
1
V

∫
Γex

x im · nex dA . (4.21b)

Finally, the macroscale consistent tangent matrices are de�ned by

Kq =
δqm

δX
and Ki =

δ im
δX
. (4.22)

4.4 Implementation of multiscale framework

In this section we formulate the numerical framework to solve the macroscale and microscale
problems using the �nite element method. All vectors are assumed to be column vectors.
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4.4.1 The macroscale problem

Following standard �nite element procedures, we �rst express the variational form of the
macroscale governing equations (4.7) as∫

Ω
δcm ϵβ

∂cm
∂t

dV −
∫
Ω
∇ δcm · qm dV +

∫
∂Ω
δcm qm dΓ = 0, (4.23a)

−
∫
Ω
∇ δϕm · im dV +

∫
∂Ω
δϕm im dΓ = 0, (4.23b)

where δcm and δϕm are admissible variations of the two �eld variables, and the terms qm

and im are prescribed lithium ion mass �ux and current density at the macroscale domain
boundary ∂Ω.

A standard �nite element approximation is adopted for the spatial discretization of the
problem. In Eq. (4.23), the macroscale �uxes qm and im are obtained from the microscale
computations and they depend on the downscaled macroscale quantities X that include
both cm and ϕm. Given the coupled nature of the problem, the two macroscale equations are
solved simultaneously. Each node in the spatial discretization is therefore equipped with two
degrees of freedom: one representing the concentration cm and the other the potential ϕm.

The continuous lithium ion mass concentration �eld cm(x) and electric potential �eldϕm(x)
are discretized into nodal values collected in the vectors cm and ϕm, respectively. The two
�eld variables at an arbitrary point x are approximated by means of the interpolations

cm(x) = N(x) cm and ϕm(x) = N(x)ϕm, (4.24)

where

N =
[
N1(x) N2(x) · · · Nnm (x)

]
(4.25)

collects the shape functions of all the nm nodes of the discretized macroscale domain. The
variations of the �eld variables are then expressed as

δcm (x) = N(x)δcm and δϕm (x) = N(x)δϕm . (4.26)

Substituting Eqs. (4.24) and (4.26) into Eq. (4.23), we rewrite the weak statement in matrix
notation as

Fc =

∫
Ω
ϵβNTN

∆cm

∆t
dV −

∫
Ω

BTqm dV +
∫
∂Ω

qmNT dΓ = 0, (4.27a)

Fϕ = −
∫
Ω

BTim dV +
∫
∂Ω

imNT dΓ = 0, (4.27b)
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where

B = ∇N =


∂N1
∂x

∂N2
∂x

· · · ∂Nnm

∂x

∂N1
∂y

∂N2
∂y

· · · ∂Nnm

∂y

 (4.28)

denotes the gradient matrix of shape functions. The backward Euler method is used for the
approximation of the time derivative term: the concentration increment ∆cm in Eq. (4.27)
is de�ned as the di�erence between the most updated (current time increment, previous
iteration) and the last converged (previous time increment) solutions obtained with an
incremental-iterative procedure, and ∆t quanti�es the time increment size. The macroscale
�uxes qm and im in Eq. (4.27) are referred to the current time increment and previous iteration.
They are directly upscaled from the microscale problem solution at each integration point as
elaborated in Section 4.4.3.

The two sets of discrete equations (4.27a) and (4.27b) and the two �eld variables are
collected in

F =

[
Fc

Fϕ

]
and U =

[
cm

ϕm

]
,

respectively. The system of discrete equations

F (Un) = 0

at time t = tn (time step n) is solved by the Newton-Raphson iterative scheme. At iteration
step k , the system of linearized equations reads

K
(
Uk+1
n − Uk

n

)
+ F

(
Uk
n

)
= 0, (4.29)

with the global tangent sti�ness matrix

K =
[
∂F
∂Un

]
k
=

[
Kcc Kcϕ

Kϕc Kϕϕ

]
k

. (4.30)
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The four components of the global tangent sti�ness matrix K are de�ned by

Kcc =
∂Fc
∂cm
=

∫
Ω

ϵβ

∆t
NTN dV −

∫
Ω

BT ∂qm

∂cm
dV , (4.31a)

Kcϕ =
∂Fc
∂ϕm
= −

∫
Ω

BT ∂qm

∂ϕm
dV , (4.31b)

Kϕc =
∂Fϕ

∂cm
= −

∫
Ω

BT ∂im
∂cm
, (4.31c)

Kϕϕ =
∂Fϕ

∂ϕm
= −

∫
Ω

BT ∂im
∂ϕm

dV . (4.31d)

Recasting the vector X de�ned in Eq. (4.8) in its discrete form as

X =


Bcm

Ncm

Bϕm

Nϕm


(4.32)

and de�ning

Sc =
∂X
∂cm
=


B
N
0
0


and Sϕ =

∂X
∂ϕm
=


0
0
B
N


(4.33)

yield the quantities
∂qm

∂cm
= KqSc,

∂qm

∂ϕm
= KqSϕ,

∂im
∂cm
= KiSc,

∂im
∂ϕm
= KiSϕ.

(4.34)

4.4.2 The microscale problem

The variational form of the microscale governing equations (4.9) is expressed as∫
Vβ

∇ δcm · (De ∇cm) dV +
∫
Γβex

δcm
(
qm · nβex

)
dΓ +

∫
Γβσ

δcm
(
qm · nβσ

)
dΓ = 0, (4.35a)∫

Vβ

∇ δϕm ·
(
κe ∇ϕm − κD

1
cm
∇cm

)
dV +

∫
Γβex

δϕm
(
im · nβex

)
dΓ +

∫
Γβσ

δϕm
(
im · nβσ

)
dΓ = 0,

(4.35b)
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in terms of the two scalar problem �elds cm andϕm. Since there is no �ux through the interface
between β and σ phases, the boundary terms on the interior boundary Γβσ are zero and can
be removed. The remaining boundary terms on the exterior boundary Γβex do not represent
any prescribed Neumann boundary conditions but re�ect unknown �uxes caused by the
periodic boundary condition constraints (4.16). The periodic boundary condition constraints
are enforced using the Lagrange multiplier method and correspondingly the �ux on the
boundary Γβex is denoted as λ. Thus, the variational form is simpli�ed to∫

Vβ

∇ δcm · (De ∇cm) dV +
∫
Γβex

δcm λc dΓ = 0, (4.36a)∫
Vβ

∇ δϕm ·
(
κe ∇ϕm − κD

1
cm
∇cm

)
dV +

∫
Γβex

δϕm λϕ dΓ = 0. (4.36b)

The variational form is completed by the de�nition of appropriate statements expressing the
enforcement of periodic boundary conditions:∫

Γβex

δλAdΓ = 0, (4.37)

where A represents the left-hand expressions of Eq. (4.16).
The discretized system of governing equations at the microscale is obtained by replacing

the discrete expression of the problem �elds and their gradients in Eq. (4.36):∫
Vβ

BTDeBcm dV +
∫
Γβex

NTλc dΓ = 0, (4.38a)∫
Vβ

BT
(
κeBϕm − κD

1
Ncm

Bcm

)
dV +

∫
Γβex

NTλϕ dΓ = 0, (4.38b)

where the di�usivity De and the conductivity κe (and hence κD) are, in general, concentration-
dependent quantities.

The discrete version of the periodic boundary condition constraints is obtained from
Eq. (4.37) by means of the point collocation method [27] and expressed in 4.B via Eqs. (4.59)
and (4.60). The constraint (4.17) is also discretized and expressed in Eq. (4.61). All the
constraint equations are then collected and expressed in matrix form as[

Ac 0
0 Aϕ

] [
cm

ϕm

]
+

[
Cc

Cϕ

]
X = 0, (4.39)

where Ac, Aϕ, Cc, and Cϕ are constant coe�cient matrices whose expressions are omitted
for brevity. The Lagrange multipliers responsible for the enforcement of these constraints
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are also discretized and stacked together with the vectors of nodal unknowns in the vector

u =
[
cm ϕm λc λϕ

]T
.

The system of nonlinear equations (4.38) augmented by constraint equations (4.39) is solved
by means of the Newton-Raphson iteration scheme. The increment ∆uk+1 is computed at
iteration k from 

Kcc Kcϕ AT
c 0

Kϕc Kϕϕ 0 AT
ϕ

Ac 0 0 0
0 Aϕ 0 0



∆cm

∆ϕm

∆λc

∆λϕ


+


fc + AT

c λc

fϕ + AT
ϕ
λϕ

Accm + CcX
Aϕϕm + CϕX


= 0, (4.40)

where we have omitted the iteration index for clarity, fc and fϕ denote the �rst terms in the
left-hand sides of (4.38a) and (4.38b), respectively, and the tangent matrices are de�ned as

Kcc =
∂fc
∂cm
, Kcϕ =

∂fc
∂ϕm

= 0, Kϕϕ =
∂fϕ
∂ϕm
, Kϕc =

∂fϕ
∂cm
. (4.41)

4.4.3 Upscaling of macroscale quantities

This section details the numerical evaluation of homogenized �uxes (qm and im) and tangent
matrices (Kq and Ki) based on the microscale solution. In analogy with problems in mechanics,
where Lagrange multipliers multiplied by the constraint coe�cients represent the equivalent
constraint forces, the Lagrange multipliers λc and λϕ, associated with the periodic boundary
conditions in Eqs. (4.59) and (4.60), are related to the integrals of the lithium ion mass �ux
and current density, respectively, over the area of in�uence of each node at the external
boundary. Accordingly, the homogenized �uxes are computed with reference to Eq. (4.21) as

qm =
1
V

∫
Γβex

xm NT λc dA =
1
V

xm

∫
Γβex

NTλc dA =
1
V

xmAT
c λc, (4.42a)

im =
1
V

∫
Γβex

xm NT λϕ dA =
1
V

xm

∫
Γβex

NT λϕ dA =
1
V

xmAT
ϕλϕ, (4.42b)

where

xm =

[
x (1) x (2) · · · x (nm)

y(1) y(2) · · · y(nm)

]
(4.43)

lists the coordinates of all the nm nodes.
The tangent matrices are obtained as follows. At the converged state, the increment in
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Eq. (4.40) is zero, and hence

f =


fc + AT

c λc

fϕ + AT
ϕ
λϕ

Accm + CcX
Aϕϕm + CϕX


= 0. (4.44)

We apply a small variation δX to the macroscale quantities X and compute the corresponding
change in the microscale solution from


Kcc 0 AT

c 0
Kϕc Kϕϕ 0 AT

ϕ

Ac 0 0 0
0 Aϕ 0 0



δcm

δϕm

δλc

δλϕ


= −


0
0

Cc

Cϕ


δX , (4.45)

assuming that Eq. (4.44) always holds at a converged state. By rewriting Eq. (4.45) as

K̂δu = ĈδX , (4.46)

the variations δλc and δλϕ are extracted from the converged microscale solution δu by
means of gather matrices δc and δϕ:

δλc = δc δu , (4.47a)

δλϕ = δϕ δu . (4.47b)

The variations of the homogenized �uxes in Eq. (4.42) are therefore expressed as

δqm =
1
V

xm AT
c δλc =

1
V

xm AT
c δcK̂−1ĈδX , (4.48a)

δ im =
1
V

xm AT
ϕ δλϕ =

1
V

xm AT
ϕδϕK̂−1ĈδX , (4.48b)

leading to the calculation of the tangent matrices

Kq =
δqm

δX
=

1
V

xm AT
c δcK̂−1Ĉ, (4.49a)

Ki =
δ im
δX
=

1
V

xm AT
ϕδϕK̂−1Ĉ. (4.49b)
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In a two-dimensional setting these matrices read as

Kq =

[
D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

]
(4.50a)

and

Ki =

[
κ11 κ12 κ13 κ14 κ15 κ16

κ21 κ22 κ23 κ24 κ25 κ26

]
. (4.50b)

The consistent tangent matrices Kq and Ki express the dependence of macroscale �uxes on
the macroscale �eld variables and their gradients. In particular, component D11 represents
the di�usivity in the x direction while D22 the di�usivity in the y direction; component κ14
represents the ionic conductivity in the x direction and κ25 the conductivity in they direction.
As discussed in the next section, the other components allow to characterize properties
of anisotropic microstructures. For example, component D12, suggesting the dependence
of the component in the �rst direction of qm on the component in the second direction of
∇cm, indicates the o�-diagonal term in the e�ective di�usivity tensor for an anisotropic
microstructure and is referred to as the rotatory di�usivity [10].

4.5 Results and discussion

As discussed in Section 4.3.1, the FE2 framework does not require an explicit de�nition of
e�ective transport properties since they are numerically obtained from the analysis at the
RVE level. This aspect is discussed in the �rst application (Section 4.5.1) where the microscale
component of the FE2 framework is assessed. Microscale (RVE) results are compared with
those obtained with the DFN model [1] for the extraction of the e�ective transport properties.
The multiscale simulation for separators made of nanoporous materials [22] are discussed
in Section 4.5.2. The FE2 simulation results are compared with results of the single-scale
simulation for the purpose of validation, and with predictions of the DFN model for illustra-
tion of the anisotropic microstructure e�ect. Exploiting the �ndings of the �rst application,
a simpli�ed alternative strategy to the concurrent computation for microstructure with
non-evolving geometry is illustrated in Section 4.5.3. Finally, Section 4.5.4 demonstrates an
application of the FE2 framework with a time-evolving microstructure. Table 4.1 lists the
notation used for the �eld variables in the DFN model and the FE2 framework.
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Table 4.1. Field variables and their physical meanings. At the macroscale, quantities de�ned in the DFN model
and their counterparts in the FE2 method are equivalent, and they are comparable to the volume averages by the
single-scale approach.

Approach symbol physical meaning scale

DFN
ϕn homogenized electric potential

macroscale
cn homogenized concentration

FE2

ϕm electric potential at the macroscale
cm concentration at the macroscale

ϕm electric potential at the microscale

microscale
cm concentration at the microscale

Single-scale
ϕe electric potential at the pore-scale
ce concentration at the pore-scale

4.5.1 E�ective transport properties

The e�ective transport properties (di�usivity and ionic conductivity) are obtained from
the consistent tangent matrices Kq (4.50a) and Ki (4.50b) stemming from the microscale
problem. In the DFN model, the e�ective transport properties (4.65) are de�ned as the
bulk properties multiplied by a factor that only takes into account the porosity. Two major
concerns emerge with this approach. First, the relationship linking bulk and macroscale
properties through porosity is postulated [22]. In the case of concentration-dependent
bulk properties (De(ce) and κe(ce)) [28], Eq. (4.65) implies the dependence of the e�ective
properties (De� andκe�) on the homogenized concentration cn (since they are used in Eq. (4.62))
instead of ce at the pore-scale. This discrepancy stems from the phenomenological postulation
of the governing equations (4.62) in the DFN model [1] and the macroscale constitutive
equations (4.65) [2, 6]. The question then arises as to how well relation (4.65) estimates
the actual dependence of the e�ective properties on the homogenized concentration cn.
Second, porosity alone does not account for microstructure morphology and its e�ect on the
macroscopic response. Microstructures with identical porosity may yield di�erent e�ective
transport coe�cients and thus di�erent transport properties depending on actual geometry
and transport direction (see for example Fig. 4.4 and Lagadec et al. [20]). It is therefore
necessary to simulate the microstructure not only to provide accurate predictions, but also
to further the understanding of how a porous microstructure a�ects the e�ective transport
properties [29, 30].

Several works have addressed the second concern by means of numerical simulations on
microscopic volume elements that are either numerically generated or reconstructed from



114 4. FE2 multiscale modeling of transport processes

real battery microstructures. Cooper et al. [31] suggested to describe local heterogeneities
in the microstructure using a vectorial tortuosity. The multiscale model in Du et al. [6] fo-
cused on the e�ect of the microstructure geometry on the exponent α and reported its value
based on a large number of numerically-generated microstructure samples. Furthermore,
image-based simulations of battery electrode [31, 32] and separator [20, 33, 34] microstruc-
tures reported di�erent e�ective transport coe�cients in both through-plane and in-plane
directions (i.e., the direction of transport between electrodes and those directions orthogonal
to it [20], respectively). In the numerical frameworks used for instance in Refs. [6, 31, 35] for
determining the e�ective transport coe�cient δ , the authors applied boundary conditions to
a pair of opposite boundaries and insulated the other boundaries. These boundary conditions
resulted in the transport property in one speci�c direction, obtaining for example D11 or D22

at a time, implicitly assuming the absence of coupling terms. While this treatment can be
considered adequate for a geometrically isotropic microstructure whose e�ective transport
coe�cient can be characterized by a scalar parameter, its application to a geometrically
anisotropic microstructure is inadequate.

In general, a tensorial description should be used to describe the e�ective di�usivity [10,
36–38] in the case of an anisotropic microstructure (and in such cases, o�-diagonal terms
are not necessarily zero [10]). The calculation of the e�ective transport coe�cient δ only
along orthogonal directions [20, 31–34, 36, 39] implicitly assumes that the main direction
of transport between the electrodes is a principal direction and the o�-diagonal terms are
therefore null or, at best, negligible. This incorrect assumption and the tensorial nature of
the transport properties are discussed in Section 4.5.1 while a study on the contribution of
the o�-diagonal terms on the overall separator response is presented in Section 4.5.2.

The previously mentioned two concerns regarding the concentration dependence and
anisotropic microstructure e�ect can be addressed by our microscale simulations. To compre-
hensively characterize an anisotropic microstructure, the boundary conditions are modi�ed
as in Section 4.3.3 to enable the simultaneous calculation of transport properties in the princi-
pal directions (e.g., both D11 and D22 in a two-dimensional space) as well as the o�-diagonal
terms. The actual evaluation of these quantities is performed by means of the evaluation
of the consistent tangent matrices in Section 4.4.3 based on the microscale solution. The
proposed treatment allows the computation of transport properties in all the orthogonal di-
rections as well as the o�-diagonal terms in a coherent framework and within one microscale
simulation. These quantities represent the nonlinear dependence of macroscale �uxes on the
macroscale �eld variables. The nonlinear constitutive relation is therefore upscaled from
the micro- to macro-scale, removing all the inconsistencies related to the use of simpli�ed
e�ective transport properties (4.65).

Unless otherwise stated, the microscale boundary conditions for the determination of
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Table 4.2. Modeling parameters. Note that concentration ce is expressed in mol/L.

Parameter symbol value unit ref.

di�usivity De 5.34 × 10−10 e−0.65ce m2/s [2]
ionic conductivity κe 0.0911 + 1.9101ce − 1.052c2e + 0.1554c3e S/m [2]
transference number te 0.4 [40]
thermodynamic factor 1 + ∂ ln fe

∂ ln ce
1 [1]

Faraday constant F 96 485 C/mol
gas constant R 8.31 J/(Kmol)
absolute temperature T 298.15 K

the e�ective transport properties are de�ned by the downscaled macroscale quantities

X =
[
11.2 × 106 mol/m4 0mol/m4 1000mol/m3 600mV/m 0mV/m 1mV

]T
.

(4.51)

Further, all the results involving a RVE have been obtained considering RVEs with 16 particles,
corresponding to a RVE size that ensures converged transport properties (refer to the study
in 4.E for the case of elliptical particles).

Concentration-dependent transport properties

This section attempts to answer the previously raised question of how accurate Eq. (4.65)
represents the actual dependence of the e�ective di�usivity De� and ionic conductivity κe�

on the homogenized concentration cn. We consider a liquid electrolyte consisting of LiPF6

dissolved in EC:DMC (a mixture of ethylene carbonate and dimethyl carbonate). Bulk trans-
port properties, listed in Table 4.2, are chosen according to Refs. [1, 2, 40]. In the microscale
FE computation, we calculate the e�ective transport properties at varying macroscale con-
centration values cm. The chosen RVE includes 16 randomly-distributed circular particles
(blocking phase) with the e�ective transport coe�cient δ = 0.31 in the x and y directions,
corresponding to the value shown in Fig. 4.9. It is remarked that δ = 0.31 is calculated
using constant di�usivity and ionic conductivity at a porosity value of 0.5 and is thus only
determined by the microstructure geometry.

Figure 4.3 shows the e�ective transport properties as function of the macroscale con-
centration (i.e., cn in the DFN model and cm in the proposed FE2 approach). The e�ective
transport properties De� and κe� denoted by dashed lines are calculated via Eq. (4.65) with
α = 1.5 (hence ϵαβ = 0.35) with bulk transport properties described as a function of concen-
tration in Table 4.2. This implies that the concentration dependence does not change from the
microscale to the macroscale and only a scaling factor is considered to re�ect the microstruc-
ture geometry e�ect. The solid lines represent the e�ective transport properties (4.68) that
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Fig. 4.3. E�ective di�usivity De� (a) and ionic conductivity κe� (b) normalized by the bulk values at ce =
1.0mol/L (i.e., Dref and κref, respectively) versus the macroscale concentration c (cn in the DFN model or cm
in the FE2). The dashed lines are calculated via Eq. (4.65) with α = 1.5, the solid lines represent the bulk properties
multiplied by 0.31 (Fig. 4.9), while circles are calculated D11 and κ14 in Eq. (4.50) at each macroscale input cm. The
RVE porosity here is ϵ = 0.5. The bulk properties can be found in Table 4.2.

are equal to bulk properties multiplied by the e�ective transport coe�cient δ = 0.31 (Fig. 4.9).
The simulated e�ective transport properties denoted by circles are the component D11 in
Eq. (4.50a) and κ14 in Eq. (4.50b) at discrete macroscale concentrations cm. Note that these
e�ective properties are normalized by the bulk properties at concentration ce = 1.0mol/L,
denoted as Dref and κref.

The microscale FE simulation results agree well with the concentration-dependent bulk
properties multiplied by the e�ective transport coe�cient δ = 0.31. This agreement addresses
the �rst concern and validates the incorporation of microstructure e�ect by directly scaling
the concentration-dependent bulk properties by a microstructure-related factor. However,
the di�erence between simulated results and those obtained using Eq. (4.65) with Bruggeman
exponent α = 1.5 is evident: predictions by Eq. (4.65) overestimate the e�ective proper-
ties. For the e�ective di�usivity, the di�erence is larger at smaller concentrations, while
for the e�ective ionic conductivity, the di�erence is largest around 1.2mol/L, where the
maximum ionic conductivity is achieved. The overestimated e�ective properties may lead to
an overestimation of the battery performance.

Anisotropic e�ective transport properties

This section highlights the capability of the FE2 method in characterizing anisotropic mi-
crostructures in terms of the e�ective di�usivity or ionic conductivity tensor. As shown
by Eq. (4.50), the tangent matrices of macroscale �uxes with respect to the macroscale �eld
variables are general: both mass �ux qm and current density im include the dependence
on concentration, potential, and their gradients. In particular, the macroscale di�usivity
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tensor [10]

De� =

[
D11 D12

D21 D22

]
(4.52)

extracted from Kq includes not only the transport properties in the x andy directions but also
the o�-diagonal components (D12 and D21). The simultaneous presence of all the components
in the e�ective di�usivity tensor enables the microscale FE framework to e�ciently and
comprehensively study the e�ects of an anisotropic microstructure. Anisotropy likewise
applies to the e�ective ionic conductivity tensor κ e�, which will not be discussed for brevity.

The degree of isotropy of the e�ective transport properties (at the macroscale) is deter-
mined by the RVE microstructure (at the microscale). Speci�cally, the transport properties de-
pend on the morphology of the ion-transport blocking phase (e.g., separator membranes [29]).
For insights into the microstructure e�ect, we consider RVEs �lled with randomly distributed
elliptical particles surrounded by the electrolyte. In these RVEs, the position of an ellipse
is random but the orientation is �xed at θ ; the orientation θ is then changed from 0° to 90°
to calculate the corresponding e�ective di�usivity tensor. Here we consider two di�erent
shapes represented by two aspect ratio values a/b of the semi-major to the semi-minor
axes (Fig. 4.4). As the porosity can largely a�ect the transport properties (Fig. 4.9), it is
held constant at 0.5 in this orientation/shape e�ect study. For each orientation we gener-
ate 100 RVE con�gurations for both aspect ratios taking isotropic and constant (i.e., not
concentration-dependent) microscale bulk properties De and κe. We also name the tensor
containing the e�ective transport coe�cients δi j

δ =
De�

De
=

[
δ11 δ12

δ21 δ22

]
, (4.53)

the ‘tensor of the e�ective transport coe�cients’.
As shown in Fig. 4.4a for a/b = 1.5, the e�ective transport coe�cient δ11 in the x direction

is maximized at θ = 0°, that is, when the major axis of the ellipse is aligned along the x

direction. As the major axis is progressively aligned with the y direction (θ increases), δ11
keeps decreasing and reaches the minimum at θ = 90°. Due to the symmetry of the two
directions, the e�ective transport coe�cient δ22 in the y direction is a mirror of δ11 with
respect to 45°, at which they coincide. We observe that in each simulation the values of the
o�-diagonal components δ12 and δ21 coincide, consistent with theoretical predictions for
(uncoupled) di�usion phenomena in anisotropic media [10]. The o�-diagonal components
reach the peak value at θ = 45°, thus showing a symmetry with respect to θ = 45°; they re�ect
the e�ect of concentration gradient in the y direction on the mass �ux in the x direction and
vice versa, due to the anisotropic microstructure.
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Fig. 4.4. E�ective transport coe�cients δi j in Eq. (4.53) versus the orientation θ of the ellipses at aspect ratio a/b =
1.5 (a) and 3.0 (b). The subscripts 1 and 2 are associated with the x and y directions, respectively. The diagonal
components δ11 and δ22 are the transport coe�cients in the x and y directions, respectively, while the o�-diagonal
components δ12 and δ21 re�ect the in�uence of concentration gradient in the y direction on the mass �ux in the x
direction and vice versa. In the simulation the bulk properties (De and κe) are isotropic and constant. The porosity
is held constant at 0.5, that is, the total area of ellipses is �xed. Panels (c) and (d) show the Mohr’s circles related to
the results in panels (a) and (b), respectively.
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The variation of the three components δ11, δ22, and δ12 with θ follows the transformation
equations derived from coordinate rotation [10]. The transformation equations are similar
to the well-known stress transformation equations, and thus we make use of the Mohr’s
circle [41], typically used in solid mechanics, to interpret our numerical results. A similar
approach has been recently taken in Yang and Qin [42]. The Mohr’s circle is plotted for δ
and the data points (the average values in panel (a)) at di�erent θ values are aligned along
the circle. Here the center point is located on the horizontal axis at the mean value of δ11
and δ22, which is basically constant irrespective of the θ value; the diameter of Mohr’s circle
is calculated as the di�erence of δ11 and δ22 when θ = 0° or 90°. The constant mean value
suggests that the transport property enhancement in one direction occurs at the expense of
the property in the perpendicular direction.

The arguments just exposed also apply to the results at a higher aspect ratio (a/b = 3.0
in Fig. 4.4b), although with a di�erence. The variation of the e�ective transport coe�cients
is wider than that at a/b = 1.5, suggesting a stronger anisotropic e�ect; accordingly, the
radius of the Mohr’s circle is larger. The mean value of δ11 and δ22 (0.29) is also constant and
quite close to that at a/b = 1.5 (0.30) and to the average (0.31) of δ calculated from RVEs
with randomly-distributed circular particles (a/b = 1.0) at the same porosity (Fig. 4.9). The
maximum di�erence (0.02) is of the same order of magnitude as the standard deviation of
the reported δ values.

In Fig. 4.4, we �x the coordinate system but rotate the elliptical particles for the sake
of computational convenience. This strategy is equivalent to �xing the microstructure but
rotating the coordinate system. Actually, for an arbitrary �xed microstructure, by rotating
the coordinate system, the e�ective di�usivity tensor measured can also be represented
by Mohr’s circle as described above. From Fig. 4.4b to a, it can be seen that the lower the
aspect ratio a/b (less anisotropic), the smaller the radius of Mohr’s circle. The circle will
shrink to a single point when a = b (isotropic microstructure). Therefore, the radius of the
constructed Mohr’s circle can serve to characterize the degree of microstructural anisotropy.
Two conclusions follow. First, the anisotropy degree can be evaluated as the di�erence
between the maximum and minimum principal transport properties along the principal
directions (i.e., with null o�-diagonal components) [42]. However, the di�erence between
the maximum and minimum transport properties along arbitrary orthogonal directions,
proposed by Cooper et al. [31] as a measure of the anisotropy, is actually not representative
of the anisotropy degree. Second, since the transport direction between electrodes is in
general not the principal, the o�-diagonal components of the e�ective di�usivity tensor
cannot be disregarded a priori. We show in Sections 4.5.2 and 4.5.3 that the o�-diagonal
components can have a signi�cant impact on the macroscale separator response.

Thanks to the the simpli�ed representation of the separator microstructure adopted
(with ellipses-shaped inclusion to represent the blocking phase), we compare our simulation
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results with those reported by Ebner et al. [32], who studied the e�ect of particle shape and
orientation on the tortuosity of (three-dimensional) battery electrode microstructure. We
�rst introduce the concept of tortuosity τ that quanti�es the resistance to di�usion caused
by the convolution of the pore network [31]. The tortuosity τ is calculated from porosity ϵ
(held at 0.5) and the simulated e�ective transport coe�cient δ through the relation τ = ϵ/δ .
Ebner et al. [32] reported the tortuosity around 1.46 for NMC electrodes consisting of
spherical active particles. In LCO electrodes, the active particles are elongated along an
in-plane direction and the tortuosity in the through-plane direction increases to 1.77. As the
particles are further shaped into platelets in the graphite electrodes, the tortuosity in the
through-plane direction grows up to 3.76. By converting δ into τ , we obtain a tortuosity equal
to 1.61 for a RVE �lled with random circular particles (Fig. 4.9). As the aspect ratio increases
from 1.5 to 3, the tortuosity in Fig. 4.4 along the direction corresponding to the through-plane
direction increases from 1.9 to 2.9. Note that in a real battery microstructure a particle’s
major axis is basically aligned with the current collector plane and is thus perpendicular to
the through-plane direction [32]. The through-plane direction can be identi�ed with the x
direction at θ = 90° in Fig. 4.4. The agreement in the trend of tortuosity change validates
the simple representation of real microstructures by two-dimensional RVEs with ellipses
and the anisotropic e�ect quanti�ed by the proposed numerical approach. Our numerical
simulation results con�rm the qualitative design guidelines proposed in Ebner et al. [32] and
can provide quantitative guidelines to manipulate the microstructure for better performance.

Since the results in Fig. 4.4 are obtained with bulk transport properties that are isotropic (de-
scribed by a scalar) and constant (concentration independent), the o�-diagonal terms in the
e�ective di�usivity tensor stems from the microstructure anisotropy, which largely depends
on the interplay between particle shape and orientation. The e�ect of the o�-diagonal terms
on macroscopic responses is further illustrated in Section 4.5.2.

4.5.2 Comparison with single-scale simulation results and DFN model pre-
diction

The previous discussion on e�ective transport properties pertains to microscale simulations
and is in general valid for any porous microstructure, including that of electrodes and
separators. In this section we employ the multiscale approach to characterize ionic transport
in the separator with an anisotropic microstructure. As a validation of the FE2 framework,
the multiscale simulation results are compared with those obtained from a single-scale
simulation. This example highlights the relevance of the o�-diagonal terms to the proper
evaluation of the macroscopic response, and the ability of the FE2 method to properly account
for all terms of the e�ective transport property tensor. The predictions of the DFN model,
which uses scalar e�ective transport properties, are also discussed.
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Fig. 4.5. Panel (a) illustrates the problem setting. The RVE porosity is 0.5, and the electrolyte properties are listed in
Table 4.2. Panel (b) shows the computational mesh for the FE2 method: 10 × 4 four-node quadrilateral elements
are used for the macroscale mesh and 204 three-node triangular elements for the RVE mesh. The single-scale
discretization in panel (c) consists of 100 × 40 unit cells, with each unit cell discretized as the RVE.

We simulate a porous separator consisting of a regular array of unit cells. Each unit cell
contains an elliptical ion-transport blocking phase surrounded by the electrolyte as shown
in Fig. 4.5a. Figure 4.5b shows the discretization of the multiscale problem domains at both
scales. At an integration point of the macroscale mesh, we attach the microscale RVE, which
is equal to a unit cell. For the single-scale simulation, we consider 100×40 unit cells as shown
in Fig. 4.5c. Numerical studies (not reported here) con�rm that the results obtained with
each approach can be considered converged. Here we consider the concentration-dependent
transport properties listed in Table 4.2.

In accordance with the galvanostatic charge process, a constant current density Iapp and a
constant lithium ion mass �ux are enforced. In addition, the electric potential at the leftmost
boundary x = 0 is set to zero as the reference value. Boundary and initial conditions are
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expressed as

im · n|x=lsep = −Iapp, ϕm |x=0 = 0, (4.54a)

qm · n|x=lsep = −
Iapp

F
, qm · n|x=0 =

Iapp

F
for t ∈ [0, tend], (4.54b)

and

cm = c0 at t = 0 in Ω, (4.54c)

respectively. We apply a current density Iapp = 300A/m2, equivalent to a 10 C charge rate
for commercial graphite-NMC battery cells [20, 43]. The initial concentration c0 in the whole
separator domain Ω is speci�ed at 1000mol/m3. The simulation ends at tend = 4 s when
steady-state responses are observed. The above boundary and initial conditions for the
multiscale problem also hold for the single-scale problem.

The results are reported in Fig. 4.6. Panels (a) and (c) show the steady-state ionic concen-
tration and electric potential distribution, respectively, along three horizontal lines (bottom:
y = 0 µm, middle: y = 5 µm, and top:y = 10 µm), while panels (b) and (d) show the concentra-
tion and potential pro�les, respectively, along three vertical lines (leftmost: x = 0 µm, middle:
y = 12.5 µm, and rightmost: y = 25 µm). The circles represent the macroscale solution cm

and ϕm from the FE2 method; the solid lines denote the single-scale simulation results, i.e.,
the intrinsic volume averages 〈c〉β and 〈ϕ〉β of each unit cell (4.A). Initially, the concentration
is uniform in the x and y directions; as the current �ows, concentration gradient starts to
develop, resulting in lower concentration at the leftmost edge and higher concentration at
the rightmost boundary. Despite the insulated top and bottom boundaries, �eld variable
gradients develop in the y direction to counterbalance the contribution by the o�-diagonal
terms (e.g., D12 and D21) reported in Fig. 4.4.

Besides the steady-state pro�les, we show the concentration evolution at the middle
point of the left-hand boundary (A) and that of the right-hand boundary (B) in panel (e).
Panel (f) reports the temporal evolution of the potential drop from point B to A and provides
an indication of the ohmic loss attributable to the separator. The �gure shows that the
multiscale simulation results adequately match the single-scale simulation results, validating
the multiscale framework (and the scale transitions described in Sections 4.3.3 and 4.3.4).
In this example, we speci�cally choose the inclination θ = 45° for the particles in order to
maximize the o�-diagonal values (in analogy with the results reported in Fig. 4.4), causing
evident concentration and potential gradients in the y direction. The variation in the y
direction is captured by the FE2 method and the single-scale approach, but is not seen in the
results pertaining to the DFN model, as denoted by the dashed lines in any of the panels.
The di�erence is due to the scalar e�ective transport property parameter adopted in the DFN
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Fig. 4.6. Comparison between FE2 calculation and single-scale simulations. Panels (a) and (c) show concentration c
and potentialϕ , respectively, along the x direction aty = 0, 5, and 10 µm in the steady state (t = 4 s); correspondingly,
panels (b) and (d) show concentration c and potential ϕ along the y direction at x = 0, 12.5, and 25 µm. Here c
and ϕ refer to cm and ϕm for the FE2 method, cn and ϕn for the DFN model (Table 4.1), and the intrinsic volume
averages 〈c 〉β and 〈ϕ 〉β for the single-scale simulations. Panel (e) shows the temporal evolution of the concentration
at point A and B, which are located at the center of the leftmost (x = 0 µm) and rightmost (x = 25 µm) boundaries
of the separator, respectively. Panel (f) shows the temporal evolution of the potential drop ∆ϕ from point B to A
across the separator, i.e., the potential at point B, in view of a null potential �xed at the leftmost boundary.
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model. This scalar parameter is equivalent to a transport property tensor with equal diagonal
terms D11 = D22 and null o�-diagonal terms D12 = D21 = 0, i.e., the identity tensor multiplied
by D11. Furthermore, the value of D11 is determined through Eq. (4.65) with α = 1.5, which
was shown to overestimate the e�ective transport properties (Fig. 4.3). This overestimation
further ampli�es the di�erence with the results of the multiscale and single-scale simulations
in Fig. 4.6, which is up to 33% in terms of the potential drop across the separator (panels (c),
(d), and (f)). The roles of the o�-diagonal terms are further investigated in the following
section.

4.5.3 A simplified alternative strategy to the FE2 method

According to the discussion in Section 4.5.1 related to Fig. 4.3, the e�ective transport properties
obtained from the concentration-dependent bulk transport properties multiplied by the
e�ective transport coe�cient δ are as accurate as the results obtained with the microscale FE
simulation. For anisotropic microstructures, geometry anisotropy alone will cause anisotropic
e�ective transport properties described in the tensor format (Fig. 4.4), even in the case of
isotropic bulk transport properties. The observation in Fig. 4.3, related to an isotropic
microstructure, begs the question: Considering an anisotropic microstructure, would it be
possible to use the e�ective transport property tensors (De� and κ e�), obtained as the product
of bulk transport properties (De� and κe�) and the tensor of the e�ective transport coe�cients
δ , in macroscale simulations, i.e., using the DFN model (4.62) in place of concurrent FE2

simulations? This simpli�ed alternative strategy has been used in computational solid
mechanics (see, e.g., [44]) to reduce simulation costs and is in general applicable when
material properties are independent of the �eld variables, leading to a clear identi�cation of
the e�ects of the microstructure geometry. In this section, we will verify if this simpli�ed
alternative strategy is applicable to anisotropic microstructures and concentration-dependent
bulk transport properties. The problem setting is that of Section 4.5.2.

Figure 4.7 shows the comparison between the results by the simpli�ed alternative strategy
and those by the concurrent FE2 method. The results by these two approaches agree well
with each other, suggesting that an independent microscale computation of RVE can be
conducted a priori and then used for the macroscale simulation. The agreement also suggests
that the e�ective transport properties (De� = De(cm)δ and κ e� = κe(cm)δ) are in agreement
with the e�ective transport properties directly obtained from the microscale FE simulations,
analogous to the results reported in Fig. 4.3. Therefore, for a quick evaluation of the battery
performance, we can simply assume an non-evolving microstructure and adopt the proposed
simpli�ed alternative strategy. For non-evolving microstructures, the concurrent FE2 has
no advantage over the simpli�ed strategy, even if in the case of anisotropic microstructures.
The key to the macroscale prediction is the proper characterization of the microscale RVE.
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Fig. 4.7. Comparison of the results obtained with the simpli�ed alternative strategy and the concurrent FE2 method.
The problem setting is reported in Fig. 4.5a. The results of the concurrent FE2 and DFN model are those shown
in Fig. 4.6a and b. The simpli�ed alternative strategy results are obtained by solving Eq. (4.62) with the e�ective
transport properties equal to the bulk properties multiplied by the tensor of the e�ective transport coe�cients,
which is calculated from the microscale FE simulation of the RVE in Fig. 4.5a.

We remark that this simpli�ed alternative strategy di�ers from the multiscale models in
the literature [2, 6] in terms of the tensorial description of the e�ective transport coe�cients.
The microscale simulations of these models do not consider the o�-diagonal terms and
only evaluate the diagonal terms (i.e., the transport properties in two/three orthogonal
directions [31, 33]). Such a procedure is acceptable for anisotropic microstructures only if the
considered directions coincide with the principal directions of the transport processes. The
comparison between the FE2 simulation results and the DFN model predictions in Fig. 4.7
shows that if the o�-diagonal terms are ignored, an erroneous evaluation of the cell response
follows despite the dominant mono-dimensional nature of the battery cell processes.

4.5.4 An example with time-evolving microstructure

The example in the previous sections 4.5.2 and 4.5.3 assumes that the microstructure does
not evolve during a (dis)charge cycle. However, a (dis)charge process is always accompanied
with expansion/contraction of the electrodes, leading to dynamic microstructure changes of
the separator. In addition to the electrochemistry-induced deformation, external mechanical
loading may also cause extra deformations [20, 45].

When the separator membrane deforms, the microstructure deformation results in con-
current porosity ϵ and tortuosity τ changes [20]. The concurrent changes of porosity and
tortuosity cause reduced e�ective transport coe�cients δ = ϵ/τ of the separator mem-
brane [20], in�uencing the battery cell performance. Lagadec et al. [20] showed that when
the separator membrane is subject to a signi�cant deformation level (up to 40%), the e�ective
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transport coe�cient reduces by 96% in the through-plane direction of the separator layer,
thus making the separator the limiting component of the cell operation at a modest C-rate
of 0.75 C.

A multiscale simulation approach with concurrent macro- and micro-scale simulations
could be employed to capture the e�ect of the evolving microstructure. As the porosity e�ect
has been already discussed, for simplicity we only consider the microstructure morphology
evolution (aspect ratio change) and hold the porosity constant at 0.5. The problem setting
is that of Section 4.5.2, except for the microstructure (the RVE contains 16 ellipses with
changing aspect ratios a/b (Fig. 4.8a and b)). During the whole simulation process, we use
�ve RVEs containing elliptical particles with aspect ratio a/b ranging from 3 to 1.4 with an
increment step equal to 0.4 and �ve corresponding RVEs with reversed aspect ratios, as well
as a RVE containing circular (a/b = 1) particles (Fig. 4.8, red boxes). For each aspect ratio
value, we generate 50 RVE samples and calculate the average transport properties; we then
select a RVE with transport properties that are close to the average values.

We consider two deformation histories with coincident initial and �nal microstructure
con�gurations, but di�erent time-evolving patterns. Figure 4.8a shows pattern I: each RVE
con�guration is active for two consecutive time steps, except for that with a/b = 1 which is
active for only one time step. Pattern II is shown in Fig. 4.8b: the aspect ratio a/b evolves
from 3 to 1/3 in the �rst 11 time steps and then stays at a/b = 1/3 in the last 10 time steps.
The total simulation time (4 s) is taken shorter than that of a charging cycle under 10 C for
the sake of computational cost.

The microstructure evolution in Figs. 4.8a and b is obtained by keeping the semi-major
axes of the ellipses always aligned with the x direction when a/b > 1 or the y direction when
a/b < 1. According to Fig. 4.4, these two directions are the principal directions and hence
the o�-diagonal components (δ12 and δ21) are null. Due to the insulated top and bottom
boundaries and the absence of the o�-diagonal components, concentration and potential
will be uniform in the y direction, with the maximum and minimal values at the right-
hand and left-hand edges, respectively. The temporal evolution of the maximum/minimum
concentration and potential drop across the separator are of interest and plotted in Figs. 4.8c
and d. The DFN model results (same as in Fig. 4.6e) are presented here as a reference: the
maximum/minimum concentration and potential drop show a transient stage followed by
a steady-state con�guration. This behavior is due to the �xed porosity and hence the non-
evolving transport properties with time. However, for pattern I, the maximum concentration
keeps increasing, the minimum concentration keeps decreasing, and the potential drop keeps
increasing. These trends are attributed to the evolving shape of the blocking phase and the
consequent decreasing di�usivity in the x direction, in spite of the constant porosity. In the
case of pattern II, the change of the concentration and potential drop is more drastic in the
beginning and then tends to stabilize, in accordance with the quick microstructure evolution
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Fig. 4.8. FE2 simulation of a separator with time-evolving microstructure. The 4 s simulation time is discretized
into 21 time steps. The microstructure evolves with time following two di�erent patterns (I in panel (a) and II
in (b)) at constant porosity equal to 0.5. Panel (c) shows the temporal evolution of the maximum and minimum
concentrations computed by the FE2 method under pattern I and II and by the DFN model that only considers
porosity. Panel (d) shows the potential drop across the separator. Here c and ϕ refer to cm and ϕm in the FE2 method
and cn and ϕn in the DFN model.
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in the �rst 11 time steps, followed by a stabilized microstructure. A noticeable di�erence
between the two deformation patterns lies in the energy loss due to the potential drop in
Fig. 4.8b. The energy dissipated during the simulated process is proportional to the integral
of the potential drop (∆ϕ) with respect to time: pattern II dissipates 58.6% more energy than
pattern I.

The morphology change alone leads to di�erent macroscopic responses depending on
the deformation histories (pattern I and II). If a porosity change is superimposed onto the
morphology change, we envisage an even stronger modi�cation of the macroscopic responses,
indicating the need to monitor the microstructure evolution and the consequent transport
property changes at adequately close time instants. The on-the-�y transport property
simulations based on imaged microstructures was also encouraged by Legadec et al. [20] for
improved understanding of local e�ects in energy storage applications. However, they also
recognized that the deformation of the separator is elastic (no residual deformation upon
loading removal) under low applied loadings, rendering it a challenge to image the separator
microstructure at di�erent stages of the deformation process.

4.6 Conclusions

The major di�erence between the proposed FE2 framework and existing multiscale mod-
els [2, 6] lies in the microscale problem setting and simulation. The downscaled macroscale
quantities enable the microscale FE simulation to return the e�ective transport property as a
function of the macroscale �eld variables, especially when the bulk transport properties are
concentration dependent. Figure 4.3 shows that the simulated e�ective transport properties
are in perfect agreement with the bulk properties multiplied by a microstructure-related
coe�cient (i.e., the e�ective transport coe�cient in Eq. (4.66)). This agreement suggests that
the dependence of the e�ective transport properties on the homogenized concentration can
take the same form as the concentration dependence of the bulk properties at the pore-scale
and thus validates the common practice (Eq. (4.68)) employed in many models [1, 2, 6].

Anisotropy of microstructures causes anisotropic e�ective transport properties even
when the bulk transport properties are isotropic (Fig. 4.4). The e�ective transport properties
can be described by a scalar parameter only for an isotropic microstructure, while for an
anisotropic microstructure, a tensor representation with generally non-zero o�-diagonal
terms is necessary [10]. The tensor description is extremely necessary and useful when the
principal directions of the electrode microstructure can not be determined in advance. Unlike
existing microstructure characterization studies [6, 31, 32, 35], our microscale simulation
naturally characterizes any microstructure in a tensor format and calculates all terms of
the e�ective transport property tensor. Because of such comprehensive microstructure
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characterization, the microstructure e�ect can be quanti�ed by the FE2 framework and thus be
exploited for better macroscale performance. Even if transport processes are predominantly
unidirectional at the battery cell level (along the through-plane direction), transport processes
are actually multi-directional in the microstructure of porous battery components. The FE2

framework thus provides a valuable design tool for both porous battery separators and
electrodes.

As the microscale computation is embedded in the macroscale simulation, the FE2 frame-
work is especially relevant in situations where the microstructure morphology evolves in
time and space (Section 4.5.4). For non-evolving microstructures, the insights from the
concentration-dependence and anisotropy studies demonstrate that a microscale simulation
can be conducted a priori and the simpli�ed alternative strategy (Section 4.5.3) used for cost
reduction in place of the FE2 method.
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4.A Volume average operators

The volume average and intrinsic volume average operators are de�ned with reference to
the electrolyte phase β. This phase occupies volume Vβ in the RVE volume V . The volume
average of quantity x in the electrolyte phase is de�ned as

〈x〉 = 1
V

∫
Vβ

x dV , (4.55)

and its intrinsic volume average as

〈x〉β =
1
Vβ

∫
Vβ

x dV . (4.56)

The volume fraction of the electrolyte phase β is de�ned as

ϵβ =
Vβ

V
. (4.57)

By comparing (4.55) and (4.56) it follows that

〈x〉 = ϵβ 〈x〉β . (4.58)

4.B Discrete constraint equations for the microscale prob-
lem

The relations below are valid for a two-dimensional microscale problem.

1. Periodic boundary conditions
As shown in Fig. 4.2b, the boundary of the RVE is partitioned into master bound-
ary (mb) and slave boundary (sb). Periodic boundary conditions require a one-to-one
correspondence between the nodes on the master boundary and those on the slave
boundary of the electrolyte phase. The constraints in Eq. (4.16) are therefore applied
to each pair of nodes: one node on the master boundary and the other on the slave
boundary, excluding the four corner nodes for which an extra condition is de�ned
next.

The total number of node pairs is denoted by Npb. For a node pair l , we assign two
Lagrange multipliers to the constraints—λlc for cm and λl

ϕ
for ϕm—and the constraint
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equations are then expressed as

clm

���
mb
− clm

���
sb
− ∇cm ·

(
xlmb − xlsb

)
= 0, (4.59a)

ϕlm

���
mb
− ϕlm

���
sb
− ∇ϕm ·

(
xlmb − xlsb

)
= 0. (4.59b)

For the four corner nodes, we have 2 × 3 Lagrange constraint equations:

u(2)m − u(1)m − ∇um ·
(
x(2) − x(1)

)
= 0, (4.60a)

u(3)m − u(1)m − ∇um ·
(
x(3) − x(1)

)
= 0, (4.60b)

u(4)m − u(1)m − ∇um ·
(
x(4) − x(1)

)
= 0, (4.60c)

where u takes either c or ϕ, and superscripts 1 − 4 represent the four corner nodes.

2. Conservation of concentration and potential between the macro- and micro-scales
We have two more Lagrange constraint equations corresponding to Eq. (4.17):

1
Vβ

∫
Vβ

N dV cm − cm = 0, (4.61a)

1
Vβ

∫
Vβ

N dV ϕm − ϕm = 0. (4.61b)

4.C Doyle-Fuller-Newman model

We outline the widely-used DFN model [1]. Here only the equations related to ionic transport
in the electrolyte are presented; for the complete DFN model, readers are referred to Refs. [46,
47]. The governing equations are formulated as

ϵβ
∂cn

∂t
+ ∇ · (−De� ∇cn) = 0, (4.62a)

∇ · (−κe� ∇ϕn + κD,e� ∇ ln cn) = 0, (4.62b)

where ϵβ is the porosity (volume fraction of the electrolyte phase β), and cn and ϕn represent
the homogenized concentration and electric potential in the homogenized domain for the
electrolyte, respectively (subscript “n” refers to Newman). The e�ective di�usivity De�

and ionic conductivity κe� for porous media are taken as their bulk counterparts De and κe

corrected by porosity ϵβ and tortuosity τ [22, 31, 48]:

De� = De
ϵβ

τ
, κe� = κe

ϵβ

τ
. (4.63)
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A relation similar to Eq. (4.2c) holds between the e�ective parameters κD,e� and κe�. We
remark that in Eq. (4.62), the e�ective transport properties (De� and κe�) are scalar parameters
especially for isotropic microstructures and will be replaced by the general tensor format
when used for anisotropic microstructures (Fig. 4.7).

In Eq. (4.63), the tortuosity is described by the relation

τ = ϵ1−αβ , (4.64)

which is commonly referred to as the Bruggeman relation in the literature [30]. Brugge-
man [49] derived expressions for spherical or cylindrical transport obstructing phases for
which the parameter α takes the value 1.5 or 2, respectively. The value 1.5 is traditionally used
in the DFN model although its validity is obviously restricted to the case of non-overlapping
spherical particles [50, 51]. Inserting Eq. (4.64) into Eq. (4.63) gives

De� = Deϵ
α
β , κe� = κeϵ

α
β . (4.65)

In Eq. (4.65) the bulk properties can be constant or concentration dependent.
The e�ective transport coe�cient is de�ned as

δ =
De�

De
=
κe�

κe
. (4.66)

Note that the notion of an e�ective transport coe�cient is in principle valid when De and κe

are constant. Substituting Eq. (4.66) into Eq. (4.63), we can relate tortuosity and e�ective
transport coe�cient as follows:

τ =
ϵβ

δ
. (4.67)

In numerical simulations, we can directly calculate the e�ective transport coe�cient and
then indirectly obtain the tortuosity from Eq. (4.67). In the literature [2, 6], the e�ective
transport coe�cient δ , numerically estimated under constant bulk properties, is used to
approximate the e�ective transport properties in the case of concentration-dependent bulk
properties:

De�(cn) = De(ce)δ , κe�(cn) = κe(ce)δ . (4.68)

To ease the comparison with our numerical results, e�ective transport coe�cient and
porosity are related by means of Eqs. (4.65) and (4.66):

δ = ϵαβ . (4.69)
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Fig. 4.9. E�ective transport coe�cient δ = De�/De versus porosity ϵβ (i.e., electrolyte volume fraction) for an
isotropic microstructure with circular particles. The coe�cients δ in the x and y directions are calculated by
D11/De and D22/De, respectively, and Bruggeman relation refers to Eq. (4.69). The exponent α = 1.5 is customarily
used in the DFN model [1]. The �gure also indicates the value of the e�ective transport coe�cient at porosity 0.5.

4.D Validation of the microscale approach

For the purpose of validation, Fig. 4.9 compares the e�ective transport coe�cient δ = De�/De

obtained with the proposed method to the values obtained from Bruggeman relation (4.69)
as a function of porosity. In the RVE microscale simulations, the bulk transport properties De

and κe take constant values, and the RVE contains randomly-distributed circular particles
(blocking phase).

In the RVE samples, the number of particles is �xed at 16, which is large enough to obtain
converged transport properties, and their radii are held �xed at 0.5 µm; accordingly, the
RVE size changes with the porosity. The e�ective transport coe�cient δ in the x direction
is calculated as D11/De (or κ14/κe), and that in the y direction as D22/De (or κ25/κe), with
the coe�cients Dii (or κi j ) de�ned in Eq. (4.50). For each porosity value, we generate a
number of RVE samples (10 samples for porosity values 0.2 − 0.4, 50 samples for 0.5 and
0.6, and 100 samples for 0.7 − 0.9) and report the average and deviation of the simulated
δ values. The average δ values in the x andy directions are very close to each other due to the
isotropy of the RVE microstructure; the di�erence caused by the microstructural randomness
is negligible, as indicated by the small standard deviation error bars at each data point.

The numerical results are described very well by the Bruggeman relation (4.69) with
α = 1.681, which is coincidentally equal to the value reported by Du et al. [6] obtained
from the curve �tting of data obtained from 2462 realizations of randomly packed ellipsoidal
particles in a three-dimensional volume. For completeness, we also report Bruggeman
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Fig. 4.10. RVE size convergence study: e�ective transport coe�cients δ = De�/De in the x and y directions vary
with the number N of particles inside the RVE. The coe�cient δ in the x and y directions are calculated by D11/De
and D22/De, respectively. All the particles are aligned with the x direction with the semi-major axis a = 0.15 µm
and semi-minor axis b = 0.1 µm. The number of RVE samples is 50 for N = 1 − 16 and 30 for N = 25 and 36.

relation with α = 1.5, a value used in the DFN model [1] that is strictly valid for spherical
particles only [50]. The comparison with the numerical results indicates that the Bruggeman
relation with α = 1.5 overpredicts the e�ective di�usivity.

4.E RVE size convergence study

In the FE2 method, a crucial step pertaining to the microscale FE simulation is the selection
of an appropriate RVE size. Here we calculate the e�ective transport properties employing
RVEs of di�erent sizes to verify their expected convergence to unique numerical values. The
porosity is �xed at 0.5, and the size of the elliptical particles is speci�ed by the semi-major
axis a = 0.15 µm and the semi-minor axis b = 0.1 µm. The particles are randomly distributed
but the major axes are aligned along the x direction. We increase the size of the RVE and
with that the number of particles in the RVE from 1 to 36. Figure 4.10 shows convergence
of the e�ective transport coe�cients δ = De�/De to 0.35 and 0.26 in the x and y directions,
respectively, starting from RVEs with N = 9 particles. The values of the e�ective transport
coe�cients are di�erent due to the anisotropic microstructure and correspond to those at
θ = 0° in Fig. 4.4a. The randomly distributed elliptical particles are generated by the random
sequential adsorption algorithm 1. The 16 particle RVE, with size 1.2 µm, is large enough to
ensure converged transport properties.

1Python script available on Github: https://github.com/mzzhuo/randEllipses.

https://github.com/mzzhuo/randEllipses
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5
Concluding remarks and
future perspectives

5.1 Concluding remarks

The increasing energy demand of electric devices has been driving the development of
more robust rechargeable batteries, and a promising avenue is to modify the electrode
material morphology from particle to �ber. This thesis aims to provide numerical tools for
evaluating electrochemical performance of Li-ion batteries, especially those composed of
�ber-based electrodes. In particular, two di�erent types of approaches are exploited: one is a
preliminary but e�cient method based on �ber arrangement and �ber-contact detection; the
other is based on the solution of physics-based governing equations using a FE2 multi-scale
framework.

Chapter 2 The �ber-arrangement-based approach can e�ciently explore microstructure
con�gurations and thus quickly evaluate electrode properties such as percolation threshold,
electronic conductivity, and active material utilization. The new �nding regarding the
equivalence between two popular approaches improves the state-of-the-art understanding
of the methods for percolation threshold identi�cation in the literature. The extra degree
of �ber orientation impacts on the electrode properties but does not change some common
features of battery electrodes such as the optimal active-conductive material ratio and the
trade-o� between energy and power. The discoveries by the numerical simulations shed
light on how �ber arrangement a�ects the overall properties and thus can provide guidelines
for future experimental studies of �ber-based electrodes.

Chapter 4 The FE2 framework o�ers a more capable alternative to a commonly used
approach (Pseudo-2D model) in addressing realistic microstructures. The well-de�ned mi-
croscale problem setting di�ers from the existing homogenization approaches in terms
of characterizing the microstructure using e�ective transport property tensors. The o�-
diagonal terms of the transport property tensor are indispensable especially for anisotropic
microstructures and the understanding of its importance has been advanced by the microscale
simulations. The comprehensive microstructure characterization can o�er guidelines for
optimal microstructure design to attain desired transport properties. Moreover, the well-
de�ned information exchange between the two scales enables the FE2 method to allow for
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general constitutive relations such as concentration-dependent transport properties.
Chapter 3 The proposed FE2 framework for the two-equation model extends the con-

ventional framework for the one-equation model by explicitly modeling the interfacial �ux
and is especially suitable for the battery problem with at least two di�erent phases—the
active material and electrolyte. The new feature lies in the separate treatment of the two
phases in terms of the volume-averaged macroscale equations, information exchange be-
tween the macro- and micro-scales, and boundary conditions of the microscale problem.
The microscopic length scale usually has no impact on e�ective transport properties but
a�ects the tangent matrix of the interfacial �ux (e.g., heat transfer coe�cient in linear heat
conduction problems). The FE2 framework o�ers a robust numerical tool for evaluating
separate temperature/concentration �elds for heterogeneous two-phase media.

5.2 Future perspectives

The endeavor in this thesis to explore battery electrochemical performance is the starting
point of more comprehensive studies. The following topics and directions are suggested for
more understanding and insights.

First, the FE2 framework presented in Chapter 4 for ionic transport in electrolyte can be
extended by incorporating the framework in Chapter 3 to model the interfacial �ux between
the active material and electrolyte so that a full battery cell can be simulated using the FE2

method. The interfacial �ux including the lithium ion �ux and current �ux can be described
by Butler–Volmer equation, but di�erent ideas arise as to how to impose the interfacial �ux
for the microscale simulation. In Gupta et al. [1], “�ux based on the Butler-Volmer reaction
current was enforced such that the net �ux between the two phases was zero”, while in
Du et al. [2], “the solid-liquid interface is modeled as an insulated wall”. In principle, the
interfacial �ux is an unknown as a function of microscale �eld variables and should be
imposed as the boundary conditions for each domain of the active material and electrolyte.
Thus, the interfacial �ux is calculated in the way being coupled with the microscale �eld
variables and is generally non-zero. The microscale FE simulation should be conducted with
various settings of the interfacial boundary conditions.

Second, the mechanical deformation and potential damage/fracture of the active material
can be further incorporated into the current FE2 framework for the electrochemical processes.
The charging and discharging processes in batteries are accompanied with intercalation
and deintercalation of lithium into and out of the active material. The consequent volume
change of an active particle/�ber is however constrained by surrounding particles/�bers,
thus leading to stress development in the active material. The developed stress will in
turn a�ect the electrochemical processes by for example changing the e�ective transport
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properties, and thus it is essential to simultaneously model and simulate electrochemical-
mechanically coupled phenomena, especially for electrode materials undergoing large volume
changes such as silicon. The repeated charging-discharging processes result in cyclic loading-
unloading and can result in damage and fatigue of the active materials. Modeling the
mechanical deformation and the damage accumulation at the particle scale and its e�ect on
the continuum-scale capacity loss is urgent for the design of batteries with long cycle life.

Third, a three-dimensional RVE with both the matrix and inclusion domain path-connected
should be exploited. For the RVEs studied in Chapter 4, the matrix domain is path-connected,
while the “isolated” inclusions are disconnected domain because they are non-overlapping
in the two-dimensional setting. The path disconnection in the inclusions (active materials)
causes disruption to the transport of lithium and electrons in the active materials, resulting
into null e�ective transport properties at the macroscale. The problem can be avoided in
a three-dimensional RVE. As the FE2 framework is general regardless of problem dimen-
sion, it will be interesting to see how the e�ective transport properties and interfacial �ux
behave for a three-dimensional RVE where both phases are path-connected. This will also
be re�ected in the FE2 modeling of a full battery cell described above: in a real battery
electrode microstructure, the pore-�lling electrolyte and active/conductive solid materials
are path-connected.

Last, well-de�ned microscale FE simulations can generate training data for a neural
network model that can replace the concurrent microscale simulation at each Gauss point in
the FE2 computing process.
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Summary

Conventional battery models (e.g., Pseudo-2D model) were developed especially for particle-
based battery electrodes and have limitations in addressing the newly-emerging �ber-based
ones. This thesis proposes numerical tools for e�cient property evaluation of �ber-based
electrodes and for multiscale simulation of battery electrochemical behavior.

An e�cient computational model is �rst developed to evaluate percolation threshold,
e�ective electronic conductivity, and capacity of �ber-based electrodes. The electrode is
composed of conductive and active �bers mixed in an electrolyte matrix. This model rests with
generation of randomly-distributed �bers by Monte Carlo method. The connection between
conductive �bers is used to determine percolation threshold and electronic conductivity, while
the connection between conductive and active �bers de�nes the active material utilization and
capacity. An optimal active-conductive material ratio is identi�ed to maximize the electrode
capacity, and the study of �ber orientation e�ect reveals that the isotropic distribution leads
to the highest utilization of active �bers.

For more accurate estimation, a FE2 multiscale framework is further proposed to solve
physics-based governing equations. The �rst part extends the conventional FE2 method
suited to a one-equation model to transient di�usion in a two-phase medium described by
a two-equation model. The new features include the macroscale equations derived by the
volume-averaging method and separate treatment of the two phases in terms of information
exchange between macro- and micro-scales and boundary conditions of the microscale
problem. The di�erentiation of the two phases results in additional macroscale source
terms upscaled from the microscale interfacial �ux. Unlike e�ective material properties, the
tangents of the interfacial �ux depend on the microscopic length scale.

The second part of the FE2 framework addresses the ionic transport in the pore-�lling
electrolyte of separators, ignoring the interfacial �ux between the electrolyte and the active
material. The FE2 method features a macroscale constitutive relation numerically obtained,
rather than assumed as in Pseudo-2D model and many of the existing models, from microscale
simulation results. This unique feature enables the FE2 method to allow for nonlinear
(concentration-dependent) transport properties at the microscale and re�ect them at the
macroscale without postulation. The well-de�ned microscale problem setting results in
e�ective transport properties expressed in a tensor format that is indispensable for an
anisotropic microstructure.
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Samenva�ing

Conventionele batterijmodellen (bijv. Pseudo-2D-model) zijn speciaal ontwikkeld voor op
deeltjes gebaseerde batterij-elektroden en hebben beperkingen bij het aanpakken van de
nieuw opkomende vezelgebaseerde modellen. Dit proefschrift stelt numerieke tools voor voor
e�ciënte evaluatie van eigenschappen van vezelgebaseerde elektroden en voor multischalen
simulatie van het elektrochemisch gedrag van batterijen.

Een e�ciënt rekenmodel wordt eerst ontwikkeld om de percolatiedrempel, de e�ectieve
elektronische geleidbaarheid en de capaciteit van vezelgebaseerde elektroden te evalueren. De
elektrode is samengesteld uit geleidende en actieve vezels gemengd in een elektrolytmatrix.
Dit model berust op het genereren van willekeurig verdeelde vezels volgens de Monte Carlo-
methode. De verbinding tussen geleidende vezels wordt gebruikt om de percolatiedrempel en
elektronische geleidbaarheid te bepalen, terwijl de verbinding tussen geleidende en actieve
vezels het gebruik en de capaciteit van actief materiaal bepaalt. Een optimale verhouding
actief-geleidend materiaal wordt geïdenti�ceerd om de elektrodecapaciteit te maximaliseren,
en de studie van het vezeloriëntatie-e�ect onthult dat de isotrope verdeling leidt tot het
hoogste gebruik van actieve vezels.

Voor een nauwkeurigere schatting wordt verder een FE2 multischaalraamwerk voorge-
steld om op fysica gebaseerde regeringsvergelijkingen op te lossen. Het eerste deel breidt
de conventionele FE2-methode die geschikt is voor een model met één vergelijking uit naar
transiënte di�usie in een tweefasig medium beschreven door een model met twee verge-
lijkingen. De nieuwe kenmerken zijn onder meer de macroschaalvergelijkingen afgeleid
door de volumemiddelingsmethode en de afzonderlijke behandeling van de twee fasen in
termen van informatie-uitwisseling tussen macro- en microschaal en randvoorwaarden van
het microschaalprobleem. De di�erentiatie van de twee fasen resulteert in aanvullende
macroschaal brontermen opgeschaald van de microschaal grensvlak �ux. In tegenstelling tot
e�ectieve materiaaleigenschappen, zijn de raaklijnen van de grensvlak�ux afhankelijk van
de microscopische lengteschaal.

Het tweede deel van het FE2-raamwerk behandelt het ionentransport in de poriënvul-
lende elektrolyt van separatoren, waarbij de grensvlak�ux tussen de elektrolyt en het actieve
materiaal wordt genegeerd. De FE2-methode biedt een constitutieve relatie op macroschaal
die numeriek is verkregen, in plaats van aangenomen zoals in het pseudo-2D-model en veel
van de bestaande modellen, uit simulatieresultaten op microschaal. Deze unieke eigenschap
stelt de FE2-methode in staat om niet-lineaire (concentratie-afhankelijke) transporteigen-
schappen op microschaal mogelijk te maken en deze op macroschaal te re�ecteren zonder
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postulatie. De goed gede�nieerde probleemstelling op microschaal resulteert in e�ectieve
transporteigenschappen uitgedrukt in een tensorformaat dat onmisbaar is voor een aniso-
trope microstructuur.
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