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Abstract—Autonomous navigation for Unmanned Surface Ves-
sels (USVs) is essential for expanding their applications in
maritime environments, where situational awareness and collision
avoidance are critical. However, these environments present
unique challenges for multi-object tracking (MOT) such as a
wide diversity of vessel sizes, a high dynamic environment due to
waves and current, and low visibility. Although neural network-
based models could facilitate MOT in such scenarios, there is
a lack of publicly available datasets in Maritime environments.
Therefore, this work presents a probabilistic, point-based MOT
framework specifically designed for short-range tracking (≤ 100
m), utilizing weather-resilient sensors to ensure robust operation
in diverse conditions. The framework integrates LiDAR and
Automatic Identification System (AIS) data through a late fusion
approach, improving state estimation by combining the dynamic
tracking abilities of LiDAR with AIS’s vessel identification
capabilities. Key methods include an Interacting Multiple Model
(IMM) for adaptive maneuver handling and Joint Probabilistic
Data Association (JPDA) for data association. Validation in a
simulated environment highlights significant limitations, showing
that while the framework can manage basic tracking tasks, it
remains far from optimal for the full scope of nearshore and
coastal applications. This thesis underscores the need for further
research to meet the demands of maritime MOT, particularly in
handling the unique challenges posed by large vessels.
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I. INTRODUCTION

The maritime industry is undergoing significant advance-
ments, with a growing interest in autonomous applications. In
line with this progression, Unmanned Surface Vessels (USVs)
have emerged as a key technology in autonomous maritime ap-
plications, supporting various payload configurations to adapt
to the diverse requirements of marine surveying (bathymetric,
hydrographic), which demand specialized equipment for dif-
ferent environments, ranging from shallow coastal waterways
to the deep ocean [1]. Additionally, USVs offer significant
operational advantages over traditional methods by improving
safety, reducing costs, and enabling continuous, unmanned
operations for the structural inspection and maintenance of
maritime infrastructure [2]. This includes essential tasks at
wind farms, offshore oil and gas facilities, bridges, and ports,
where USVs can operate in hazardous or hard-to-reach areas,
potentially working in conjunction with Remotely Operated
Vehicles (ROVs) and Unmanned Aerial Vehicles (UAVs). To
maximize these benefits, USVs must navigate autonomously
while adhering to the International Regulations for Preventing
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Collisions at Sea (COLREGS) [3]. A key aspect of collision
avoidance is maintaining situational awareness, which involves
accurately mapping the static environment and tracking nearby
moving obstacles with the help of sensors, a process known
as Multi-Object Tracking (MOT) [4].

However, the maritime domain poses unique challenges
to MOT due to its harsh environment (wind, waves, rain),
impacting the perception capabilities of autonomous vessels.
For instance, camera systems are particularly vulnerable in
such conditions, despite advancements in computer vision,
making them less reliable for maritime applications. As such,
environmental perception at sea relies heavily on weather-
resistant sensors like marine radars and the Automatic Identi-
fication System (AIS). X-band radar, known for its long-range
detection capabilities, is commonly equipped on ships due to
its effectiveness in spotting obstacles even in adverse condi-
tions like rain and fog. AIS-equipped vessels broadcast their
position with GPS-level accuracy, along with identity, motion
information, and size. This heterogeneous sensor network is
frequently employed by large ships to create a comprehen-
sive maritime picture for enhanced situational awareness and
semi-autonomous navigation [5]. However, radar performance
declines in close-range detection (<250m), particularly for
smaller objects such as buoys, navigation marks, and small
boats, making it incompetent for MOT in nearshore environ-
ments [6]. Additionally, AIS has its own limitations due to
its low and inconsistent update rate, ranging between 1 and
20 seconds. AIS signals can also be subject to interference
from bandwidth sharing among vessels, leading to conflicting
or missing AIS identifiers [7]. Furthermore, not all vessels are
equipped with AIS, further reducing its reliability as a sole
tracking solution [8]. In recent years, LiDAR (Light Detection
and Ranging) technology has gained significant interest in
maritime surveillance due to its precision, high data density,
and its ability to operate independently of lighting conditions.
In open waters, most LiDAR signals are absorbed by the water
surface, resulting in point clouds that primarily capture above-
surface obstacles, which is advantageous as it eliminates the
need for ground removal. Additionally, the detection range
of commercial LiDAR systems effectively addresses the blind
spots left by marine radars, offering more reliable detection
and tracking of nearby objects. In parallel, trained neural
networks have become a popular tool for object detection and
tracking in LiDAR point clouds, particularly in the automo-
tive industry, where they have achieved consistent success.
However, similar methods have yet to be widely applied in
maritime environments, and publicly available labeled LiDAR
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point cloud datasets specific to maritime applications remain
unavailable for training deep learning models. As a result,
existing approaches in this field often rely on traditional
probabilistic frameworks. Segmenting 3D LiDAR point clouds
into objects of interest in such environments poses significant
challenges due to factors like noise, sparsity, and varying point
densities caused by the ego vessel’s motion. Additionally, the
irregular shapes of objects, sharp features, and absence of a
consistent statistical distribution further complicate segmenta-
tion efforts. In maritime scenarios, the diverse range of vessel
sizes exacerbates issues such as over-segmentation and under-
segmentation, making accurate detection and tracking even
more challenging [9].
This work addresses key challenges by utilizing AIS data to
enhance LiDAR-based Multi-Object Tracking (MOT), aiming
to mitigate issues such as self-occlusion, over-segmentation,
and dynamic segmentation. It also contributes to the develop-
ment of a framework designed for real-time deployment on
an Unmanned Surface Vehicle (USV). A LiDAR-AIS MOT
framework has thus been created with real-time processing
in mind. Additionally, a simulated dataset, featuring various
target vessels and maneuvers, has been developed to assess
the performance of the MOT framework. Lastly, a ROS 2 node
has been implemented to format both the results and ground
truth, enabling the use of the nuScenes SDK for evaluating
the framework with standard MOT metrics.

II. RELATED WORK

In the context of Multi-Object Tracking (MOT) for Un-
manned Surface Vessels (USVs) using LiDAR data, several
studies have proposed probabilistic point-based tracking-by-
detection frameworks, which typically involve three key steps:
data segmentation, data association, and Bayesian filter-based
state estimation. The tracked objects are first detected, often
through clustering algorithms like DBSCAN or Euclidean
clustering [9]. Shape and pose estimation in point-based meth-
ods is generally performed on obtain clusters using L-shape
fitting or ellipse fitting as done in [10], [11]. These fitting
methods are typically formulated as optimization problems,
where the objective is to minimize the sum of squared dis-
tances between the detected points and the proposed shape.
This optimization is commonly solved using a least square
fitting method proposed in [12]. While the size and shape
estimation is decoupled from the tracking of the kinematic
states in point-based approaches, extended object tracking
(EOT) simultaneously tracks the position and shape of ob-
stacles [13]. A master’s thesis applied this theory to estimate
vessel shapes using LiDAR data [14]. However, more recent
research suggests that, until all measurement sources can be
reliably modeled, point-based methods remain preferable [15].

Once detected, the tracks are updated by associating the
predicted states with corresponding LiDAR cluster detections
and then refining the predictions using those detections. In
[16], a Global Nearest Neighbor (GNN) method is utilized
to associate LiDAR detections with existing tracks, followed
by the use of an Extended Kalman Filter (EKF) based on
a Constant Velocity (CV) model for target tracking. Both

[17] and [11] introduce an association algorithm that uses
the Bhattacharyya distance, incorporating both position and
size information for determining similarity. They employ the
Iterative Closest Point (ICP) algorithm and a simple Kalman
Filter (KF) for tracking, respectively. Another well-known
tracking algorithm used for maritime settings is the Joint
Probabilistic Data Association used in [18]. It is frequently
highlighted in the literature as a potential solution for handling
high-density clutter, and thus it is well suited in maritime
environments where sea clutter can lead to high false alarm
rates. In fact, research has shown that JPDA can be extended
to explicitly model wake clutter within its framework, offering
promising results for maritime applications. The Multiple Hy-
pothesis Tracker (MHT), is also considered for LiDAR-based
tracking. However, MHT is known to be complex to implement
and computationally expensive, making it less suitable for
scenarios with a high number of false alarms or objects [19].
Random Finite Set (RFS)-based approaches, such as the Pois-
son Multi-Bernoulli Mixture (PMBM) filter, represent another
class of algorithms with significant potential [20]. PMBM has
been established among the state-of-the-art methods in target
tracking and recent research has explored the applicability of
PMBM filters in maritime environments, notably for point
target tracking [21]. This approach has been successfully
demonstrated in closed-loop collision avoidance experiments,
highlighting its feasibility for real-world applications. How-
ever, PMBM’s inherent complexity, coupled with the absence
of quantitative evidence on its inference times in real-time
scenarios, raises concerns about its practical suitability for
dynamic maritime tracking tasks, particularly in high-density
point cloud environments such as coastal settings. Despite the
various proposed frameworks, most existing studies presented
above focus solely on tracking small boats and do not address
the challenges of over-segmentation, which can arise when
tracking larger vessels.

In nearshore environments, differentiating static obstacles
from moving targets requires dynamic segmentation. Some
studies achieve this by projecting the LiDAR point cloud
onto a pre-existing map, where points that fall on static areas
are filtered out [18], [22]. However, maps are not always
available, and in such cases, simple velocity thresholding is
often employed [16]. However, shadow motion, occlusion,
jumping object frames, and noise can make velocity thresh-
olding insufficient for performing dynamic classification [23].
Beyond velocity thresholding, [11] incorporates static mapping
from unclustered points, with an inclusion check performed to
classify a track as static if it remains within a mapped static
region. Another study specifically focused on detecting and
tracking riverbanks using a deep learning-based method [24].

Most existing work involving AIS data has been done in
conjunction with marine radar [7]. In the literature, many
studies focus on track-level fusion between radar and AIS
measurements, also known as track-to-track fusion [25], [26].
In this approach, separate tracks are initiated and maintained
for each sensor and then combined later at the fusion step.
This method allows for more robust tracking by leveraging
both radar’s long-range detection and AIS’s precise positional
information. In contrast, AIS and LiDAR fusion has received
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less attention, with the few existing studies primarily focusing
on state estimation rather than addressing the complexities of
data association [27], [28]. When data association is tackled,
it is often in simplified scenarios where vessels are far apart,
minimizing the potential for ambiguity in matching tracks
from the two sensors [28], [29].

Building on insights from previous works, this study em-
phasizes the association of LiDAR and AIS data to mitigate
the issue of oversegmentation caused by large vessels, while
ensuring the LiDAR framework remains robust against vessel
maneuvers and dynamic segmentation. Although wake clutter
is a well-known challenge in maritime tracking, with methods
proposed in [30] and [31], addressing this issue falls outside
the scope of this work.

III. METHODOLOGY

A. Overview

The proposed framework consists of two main components:
the LiDAR track, which processes LiDAR data, and the
AIS track, which handles AIS data. These tracks follow a
distributed late fusion paradigm to estimate the state of AIS-
equipped vessels as shown in Fig.2. In the absence of AIS
measurements, the framework relies solely on the LiDAR
track, which follows a point-based tracking-by-detection ap-
proach. The detector component processes raw point cloud
data, while the tracker maintains and updates detected objects’
states. The framework is specifically designed to meet real-
time requirements, ensuring that all processes run efficiently
at or below the LiDAR update rate of 10 Hz for timely vessel
tracking and state estimation.

B. LiDAR Object Detection

At each LiDAR sweep, a statistical noise removal filter
is first applied to eliminate outlier points and reduce noise
within the raw point cloud data. Additionally, points that are
in close proximity to the ego vessel are removed using a
distance threshold to prevent the inclusion of self-detection
artifacts. To reduce the computational load, a voxel filter is
applied to downsample the point cloud while preserving spatial
coherence. Given that height information is unnecessary for
tasks such as collision avoidance, and LiDAR measurements
are sparse in the vertical direction, the point cloud is flattened
onto a 2D plane by setting the z-component to zero. Then, an
Euclidean cluster algorithm is applied to segment the point
cloud into clusters, representing potential objects (vessels,
buoys, river banks, etc). For each cluster, a 5-D detection
vector zLiDAR = [x, y, ϕ, l, w] is generated where x, y repre-
sents the cluster’s centroid in an earth-fixed frame. The object’s
shape l, w, and its orientation ϕ are estimated using Principal
Component Analysis (PCA) due to its computational efficiency
and robustness, particularly in handling irregular point cloud
distributions [32]. Unlike optimization-based methods, PCA
is not prone to non-convergence, especially when the point
cloud is unevenly distributed, making it challenging to fit a
rectangle or ellipse accurately. Moreover, since the vessel’s
bridge is often detected, the centroid estimation provided by
PCA remains sufficiently accurate for tracking purposes as

shown in Fig1. In the absence of existing tracks, the detection
vectors are used to initialize new ones.

Fig. 1: Flattened point cloud of 9m long pleasure boat with
Fitted ellipse and Centroid estimation using PCA.

C. LiDAR Multi-Object Tracking

Once the detection vectors are generated, the tracker com-
ponent is responsible for maintaining and updating the state of
these tracked objects over time, ensuring consistent and robust
multi-object tracking in dynamic environments. A traditional
probabilistic method relies mainly on data association and
tracking filters. Additionally, a tracking management module
serves to initialize, update, and delete tracks based on associ-
ation history.
In this work, each track is characterized by the following state
vector:

x = [px, py, v, ϕ, ϕ̇] (1)

where px and py represent the object’s center position, v
denotes its speed, and ϕ̇ represent the heading angle and rate
of turn, respectively.
The data association problem is performed with the JPDA
algorithm due to its ability to handle clutter and its potential
to model wake clutter noise into its framework as discussed
in Section II. The state filtering is performed using a non-
linear Kalman-based filter, specifically the Extended Kalman
Filter (EKF). Given the dynamic nature of vessel maneuvers,
the Interacting Multiple Model (IMM) framework is used
to switch between three motion models: Constant Velocity
(CV), Constant Turn Rate and constant Velocity (CTRV),
and Random Motion (RM). This allows the system to more
robustly track objects with changing maneuvers and improves
dynamic classification, especially in cases where static objects
might mistakenly appear to be moving due to shadow motion.
By incorporating motion model probabilities, the system re-
duces reliance on simple velocity thresholds. Tracks, where
the probability of Random Motion is the highest among the
three models, are more likely to represent static objects,
providing more accurate classification of such objects and
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improved robustness in LiDAR-based tracking. While similar
frameworks, such as JPDA-IMM-UKF, have been applied
in automotive [23], the JPDA-IMM-EKF has not yet been
explored for maritime scenarios, which is a key contribution
of this work.
To associate detections with existing tracks, a gating mech-
anism is applied to determine whether a detection is a valid
candidate for a specific track. A detection is associated with a
track q if it lies inside its elliptical validation gate G(q). The
validation gate of a track q is taken to be the same for all
motion models where the validation gate corresponding to the
motion model with the largest area is chosen:

G(q) = {yk = zk : [zk − ¯̂ziq, k]
TS−1

iq,k
[zk − ¯̂ziq,k] ≤ γG} (2)

where k is the time step, yk is an associated detection, zk is
a detection, S−1

iq,k
is the inverse of the innovation covariance

matrix at time step k with iq = argmaxi∈Mdet(Si
k) being

the index of the motion model in the model set and γG
is the gate threshold. Multiple detections can be associated
with a track if their Mahalanobis distance is smaller than a
gate threshold obtained from the inverse chi-square cumulative
distribution. Consequently, a validated set of associated detec-
tion is obtained for all models of a track q. Once detections
are validated, the JPDA algorithm manages the assignment
of multiple detections to a track by adjusting the Kalman
gain. The state estimate is thus updated based on a weighted
combination of the associated detections, allowing the system
to handle ambiguous associations and improve robustness in
cluttered environments. However, when a track is detected for
the first time, the state estimate is initialized by interpolating
between two time consecutive associated detections, selecting
the detection with the smallest Mahalanobis distance from the
validated set. This approach helps establish a well-initialized
state (correct heading and speed). From the third time step
onward, the update step is performed using the JPDA-IMM-
EKF.
The filter struggles to accurately update velocity and angular
velocity parameters, as LiDAR detections do not directly
provide this information. Additionally, the accuracy of yaw
estimation is affected by the degree of self-occlusion. To
address these limitations, a weighted average of the previous
five states is used to estimate velocity and angular velocity
while the yaw history is integrated with the detected yaw
into the detection vector. This approach ensures a more robust
estimation and reduces the likelihood of unstable state updates.

yawdetector = α× yawdetector + (1− α)× yawhistory (3)

Inspired by [23], the tracking management module is respon-
sible for handling track states and confidence levels based on
detection associations. A confidence score between 0 and 1,
which dynamically adjusts throughout the tracking process,
is also used as a weighting factor in the computation of
the Average Multi-Object Tracking Accuracy (AMOTA) and
Precision (AMOTP), contributing to the overall performance
evaluation of the system, as described in Section IV-B.

A track initially enters an Initialising state, where it must be
consistently assigned detections for four consecutive time steps
to transition to the Tracking state, with an increased confidence
score. Tracks that fail this step are marked as Invalid. In the
Tracking state, tracks continue to accumulate confidence when
detections are assigned, while unassigned tracks move to a

Drifting state, where their confidence decreases. If a track
remains unassigned for a predefined number of time steps
while drifting, it is invalidated. Invalid tracks are then removed
from the track buffer.

Additionally, track pruning is applied to address the creation
of duplicate tracks. The Euclidean distance between each pair
of tracks is compared against a feasible distance for vessels in
maritime environments. If the distance between two tracks is
less than a specified threshold for more than five consecutive
time steps, the newer track is deleted. This process mitigates
the JPDA filter’s tendency for coalescence, where neighboring
tracks may be incorrectly associated with the same detection.

Lastly, tracks with a covariance matrix determinant exceed-
ing a predefined threshold are considered unstable and are
deleted to prevent coalescence. A large determinant indicates
a broad uncertainty region, meaning the track’s covariance
matrix covers a large area, allowing many detections to be
mistakenly associated with a single track during the gating
step. By removing such tracks, the system avoids incorrect
associations and improves tracking accuracy.

D. LiDAR-AIS Fusion

In addition to LiDAR tracks, this work integrates AIS
data into the (MOT) framework by initializing tracks from
AIS measurements. Since the framework is designed for
near-range MOT, only AIS positions within a 150-meter
radius of the ego vessel are initialized as new tracks.
Each AIS message is composed of a following vector
zais = [x, y, CoG, θ, SoG, ID, length, width], where SoG
represents the speed over ground. For simplicity, the course
over ground (CoG) and the heading θ are assumed to be
identical in this work. Once both LiDAR and AIS tracks are
established, the key task is determining whether a LiDAR track
and an AIS track belong to the same vessel. By fusing the esti-
mated states from both sources, AIS data can improve LiDAR-
based state and shape estimation, while LiDAR can reduce
the uncertainty in AIS tracks due to its higher update rate.
To enable this distributed fusion, AIS tracks are synchronized
with LiDAR timestamps, and their positions are adjusted based
on the timestamp difference and reported velocity for proper
alignment. Inspired by [28], AIS track states are updated
directly based on their respective IDs using incoming AIS
measurements, and an Extended Kalman Filter (EKF) with
a Constant Velocity (CV) motion model is applied to these
tracks. The final estimate is done through a weighted average
of the respective estimates where the weights are derived from
the Kalman gains, as shown in the following equations and
illustrated in Fig.16.

WAIS = KLiDAR,k+1 (KAIS,k+1 +KLiDAR,k+1)
−1

, (4)

WLiDAR = KAIS,k+1 (KAIS,k+1 +KLiDAR,k+1)
−1

, (5)

xk+1 = WAIS xAIS,k+1 +WLiDAR xLiDAR,k+1 (6)

Since the LiDAR track uses an Interacting Multiple Model
(IMM) framework, the corresponding Kalman gain is com-
puted as a weighted sum of the gains from the different motion
models as follows
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Fig. 2: Proposed MOT LiDAR-AIS Fusion Framework

KLiDAR = Kcv µcv +Kctrv µctrv +Krm µrm (7)

The equations above apply only when AIS and LiDAR
measurements are assumed to originate from the same object.
Therefore, this work focuses on effectively associating LiDAR
tracks with their corresponding AIS tracks to ensure accurate
fusion. To achieve this, an association method have been
developed and is detailed below

LiDAR-AIS Association Method: The association scheme
is inspired by [27], where each non-static track is categorized
as either a LiDAR, AIS, or Mix track. A Mix track incor-
porates both LiDAR and AIS data. For a track to transition
into a Mix track, the fusion scheme addresses the assumption
that, in the presence of large vessels, an Euclidean distance
threshold may not be sufficient to fuse a LiDAR track with
an AIS track. In this case, the size parameters provided by
the AIS measurements are considered. Specifically, it checks
whether the updated centroid of a LiDAR track falls within
the ellipse defined by the length and width of the AIS track.
The closest LiDAR track to the AIS centroid within this shape
is fused with the AIS track to form a Mix track. The closest
LiDAR track is then copied to the LiDAR component of the
Mix track, before being deleted. Any remaining LiDAR tracks
that also fall within the shape have their confidence score set to
zero, ensuring they are not included in the evaluation process.
The confidence score can be restored to its previous value if
the LiDAR track ends up outside the AIS-defined shape.

At each time step, the LiDAR and AIS components of a
Mix track are processed separately, and the final state estimate
is computed as a weighted average of the two, as shown in
Eq.6 when both components have associated detections. Until
the next AIS update is received, the system updates only
the LiDAR component, making the final estimate equivalent
to the LiDAR state. If no detections are available for either
component, the AIS prediction serves as the final estimate. For
shape estimation, only the AIS data is used, as it is considered
more accurate than the LiDAR detection. Lastly, if the LiDAR
component of a Mix track becomes invalid due to consecutive
unassociated frames, the track reverts to an AIS track, and the
LiDAR data is no longer considered until a new fusion occurs,
at which point the track transitions back to a Mix track.
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IV. EXPERIMENTS

A. Experiment details

Fig. 3: Dynamic segmentation test with a hopper (grey) as
target vessel, USV (white), buoy, river bank, and building; top:
CoppeliaSim simulation, bottom: point cloud visualization

The proposed scheme was validated through a series of
experiments conducted in the CoppeliaSim simulator. A cus-
tom LiDAR plugin within CoppeliaSim was used to simulate
LiDAR data, with the LiDAR sensor mounted on the USV.
The simulation environment is integrated with ROS2, which
is used to publish sensor data, including LiDAR measurements
and ground truth (GT) data, ensuring a realistic testing envi-
ronment. To achieve fast inference time, the tracking node was
implemented in C++.

The experiments involved four target vessels of different
sizes, ranging from a 9m leisure boat to a 90m tanker,
navigating around a stationary USV. Each vessel was tested
across four main test types to evaluate tracking performance:

1) Range Test: The target vessel sails in a straight line
perpendicular to the USV’s long axis, with distances
parametrized from 10m to 70m, testing the tracking
accuracy over varying ranges.

2) Self-Occlusion Test: The vessel approaches or moves di-
rectly away from the USV along its longitudinal axis, as-
sessing tracking performance under self-occlusion con-
ditions.

3) Proximity Test: Two identical vessels sail parallel to each
other and away from the USV along its longitudinal axis,
with distances between them varied from 2m to 15m.
This test evaluates the system’s ability to distinguish
closely spaced objects.

4) Maneuver Test: The vessel performs a 90-degree turn in
front of the USV, challenging the framework’s robust-
ness in handling sharp directional changes.

Additionally, a separate Dynamic Segmentation Test was
conducted to assess the framework’s ability to differentiate be-
tween moving vessels and static structures. This test includes
two scenarios:

1) Static Obstacle Scenario: Involves static obstacles only,
including a floating cuboid, a 60-meter wall, and a buoy.

2) Coastal Scenario: Simulates a realistic coastal environ-
ment, featuring a moving vessel navigating near two
buoys, a riverbank, and a building. This scenario as-
sesses the framework’s capability to distinguish between
dynamic and static objects and evaluates its real-time
performance under high point density conditions.

Each scenario excluding the static obstacle scenario was
tested with and without AIS broadcasting. The AIS-LiDAR
fusion system was evaluated in scenarios with AIS, while the
LiDAR-only MOT framework was assessed without AIS. For
each test, the target vessels travel 80 meters. The LiDAR-only
MOT framework was initially tested with the 9-meter long
vessel, traveling at three different speeds: 5, 10, and 15 knots.

Following this, the AIS-LiDAR fusion system was evaluated
across all four vessels, but only at a speed of 10 knots, with
AIS broadcasting enabled. To simulate real-world conditions,
AIS messages were broadcast at random intervals between 1
and 10 seconds, with Gaussian noise added to the position
and size. Additionally, the static ego vessel was subjected to
sinusoidal rolling and pitching motions to simulate movement
on water, further challenging the robustness of the tracking
system.

Finally, a test set including two complex scenarios was
designed. In the first scenario, all vessels were present simul-
taneously, leading to occlusion and varying numbers of vessels
within the LiDAR’s field of view. In the second scenario, a
crossing maneuver between two vessels was performed in the
presence of static obstacles such as a riverbank and buoys.
More details on the experimental setup and parameters can be
found in Appendix VII.

B. Experiment metrics

The performance of the proposed frameworks is primarily
evaluated using two key metrics: Average Multi-Object Track-
ing Accuracy (AMOTA) and Average Multi-Object Tracking
Precision (AMOTP). These metrics were initially developed
for the nuScenes dataset and have become standard for eval-
uating multi-object tracking. AMOTA provides a summary of
MOTA performance across various thresholds:

AMOTA =
1

n − 1

∑
r∈ 1

n−1
, 2
n−1

,...,1

MOTAR

MOTAR = max(0, 1 −
FPr + FNr + IDSr + (1 − r) × TP

r × TP
) (8)

where TP, FP, FN and IDS denote the true positive, false
positive, false negative, and identity switch respectively. Tradi-
tionally, a match between ground truth (GT) and predictions is
determined using Euclidean distance between their centroids.
However, given the large size of the target vessels in this
context, a distance threshold may not be optimal. Instead, a
true positive (TP) is determined by an Intersection over Union
(IoU) threshold of 0.3 between the GT and the prediction.
Accordingly, AMOTP is defined as:

AMOTP =
1

n − 1

∑
r∈ 1

n−1
, 2
n−1

,...,1

∑
i,t IoUi,t∑

t TPt

(9)
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Both AMOTA and AMOTP take into account the confidence
level of each detection.

Furthermore, for each true positive, the estimated length,
width, and heading are compared against the ground truth.
An average error is calculated across the entire scenario and
recorded as the average length, width, and heading error.
Lastly, the average inference time per scene is calculated to
measure the real-time capability of the frameworks. Details on
how these performance metrics are calculated after running the
MOT framework on the recorded scenarios can be found in
VII.

C. Run Time Parameters

For the JPDA-IMM-EKF framework used in this work,
parameter values were adapted from an automotive tracking
implementation to suit the unique dynamics and requirements
of maritime vessel tracking. Notably, adjustments were made
to manage the fusion of AIS and LiDAR data, with an
emphasis on accounting for AIS’s higher assumed precision.
This is reflected in the noise matrices for each sensor: AIS
measurements are assigned lower noise values than LiDAR
to reflect their increased reliability. Regarding IMM, distinct
process noise values for CV, CTRV and RM models are
configured to better handle diverse vessel behaviors. Notably,
the random motion model is assigned a higher noise level to
accommodate unpredictable movements. An exhaustive list of
parameters, covering all covariance, noise, clustering kernel
size, and gating thresholds, can be found in Table XII.

V. RESULTS

A. Experiments Results

The framework was evaluated across various scenarios with
and without AIS broadcasting. Figure 4 presents the average
AMOTA and AMOTP score for all scenes relative to vessel
size, comparing results for both AIS-enabled and non-AIS
setups. Additionally, Table III provides a detailed breakdown
of MOT metrics for all vessels with AIS broadcasting enabled.
Notably, the AMOTA scores for the 9m and 16m vessels are
0.69 ±0.37 and 0.75 ±0.34, respectively, indicating better
tracking accuracy for smaller vessels. However, AMOTA and
AMOTP drop significantly for larger vessels (50m and 90m)
due to a large number of false positives rising to 90% and 81%,
respectively. Additionally, the number of identity switches and
track fragmentations increases with vessel size, complicating
consistent tracking. For smaller vessels, the non-AIS setup
performs better, as the AIS noise negatively impacts the
tracking precision. Regarding the inference time, it increases
gradually with the size of the target vessel; however, the
framework remains within real-time requirements for simpler
scenarios involving only moving vessels.

As a qualitative result, Figures 17 and 18 illustrate the
effects of LiDAR-AIS fusion in a close proximity scenario
involving two 9m vessels positioned 10m apart. Initially, the
framework tracks both vessels separately using LiDAR data,
assigning them IDs 0 and 1. Upon receiving AIS measure-
ments, the system fuses these with LiDAR tracks, deleting the
LiDAR-only tracks and creating Mix tracks. As the vessels

move further away, tracking accuracy decreases due to a
reduced point density, which introduces heading inaccuracies
that may cause the estimated state to drift from the ground
truth. Additionally it shows that the tracking management
system also dynamically creates, deletes, and merges tracks as
necessary, adapting to the scene. For instance, tracks 11 and 13
are generated, but some earlier tracks are removed or merged
before their confidence score gets high enough to be plotted.
This adaptability helps to reduce the number of unnecessary
tracks, thereby lowering the number of false positives.

Fig. 4: Average AMOTA (no hatching) AMOTP (hatching)
versus Vessel Length with AIS (blue) and without AIS (red).

B. Ablation Study

An ablation study was conducted to evaluate the proposed
framework against variations without the IMM component
and with a Nearest Neighbor data association approach in-
stead of JPDA. This comparison aimed to assess the LiDAR
framework’s effectiveness across different test types and its
capability to distinguish between static and moving obstacles
through the IMM implementation. The three LiDAR frame-
work variants were tested on all scenarios using the 9m target
vessel without AIS broadcasting. Table III shows the average
metric across all scenes excluding dynamic segmentation tests
for the different LiDAR framework. Overall the 3 framework
performs more or less similarly with amota of 0.64 ±0.29
for NN, 0.73 ±0.31 with JPDA and 0.69 ±0.29 for IMM-
JPDA. This is expected as the tracking are relatively simple
and no clutter are present in the scenes. However, the slight
decrease in performance for the NN framework may stem from
its greedy data association step, which results in a higher
number of false positives. This highlights the advantage of
JPDA’s probabilistic approach even without clutter, which
provides more robust tracking when multiple detections of the
same vessel appear, effectively reducing the likelihood of false
positives. Table IV presents the tracking performance metrics
per test type, highlighting the variability in accuracy across
different scenarios. As expected, occlusion and maneuver tests
exhibit the lowest performance metrics, with AMOTA values
of 0.63 ±0.31 and 0.55 ±0.35, respectively. This decline is due
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Vessel Size AMOTA AMOTP Recall TP(%) FP(%) FN(%) IDS Frag LE WE IT(ms)
9m 0.69 ± 0.37 0.42 ± 0.12 0.87 72.60 20.88 26.93 1.0 2.0 0.48 0.59 4.47

16m 0.75 ± 0.34 0.48 ± 0.19 0.89 82.48 19.57 17.09 1.0 2.0 0.89 0.67 6.82
50m 0.18 ± 0.27 0.188 ± 0.10 0.48 40.18 90.02 59.61 10.0 6.66 0.80 0.69 14.35
90m 0.05 ± 0.10 0.15 ± 0.01 0.14 24.30 81.01 75.51 10.0 8.22 25.75 25.48 17.85

TABLE I: MOT Metrics per Target Vessel Size with AIS

Vessel Size AMOTA AMOTP Recall TP(%) FP(%) FN(%) IDS Frag LE WE IT(ms)
9m 0.68 ± 0.27 0.42 ± 0.12 0.74 69.39 13.36 30.32 1.0 1.0 0.41 0.22 3.26
16m 0.87 ± 0.08 0.45 ± 0.08 0.96 93.48 7.79 6.25 1.0 1.0 1.58 0.43 4.50
50m 0.02 ± 0.06 0.06 ± 0.06 0.20 18.58 145.34 80.93 3.0 3.28 42.31 42.07 10.83
90m 0.0 ± 0.0 0.05 ± 0.07 0.14 16.27 197.64 82.85 3.0 6.20 60.98 58.65 15.18

TABLE II: MOT Metrics per Target Vessel Size without AIS

to the inherent challenges in these scenarios—occlusion re-
duces visibility, while sharp maneuvers create sudden changes
in vessel dynamics, both of which strain the tracking frame-
work’s ability to maintain consistent associations.

The range yields comparatively better results. In particu-
lar, the range tests achieve an AMOTA of 0.853, benefiting
from stable visibility and consistent trajectories that facilitate
tracking. Close proximity tests, while more challenging than
range tests due to closely spaced objects, still manage an
AMOTA of 0.63 ±0.31, demonstrating the framework’s ability
to handle scenes with multiple nearby targets. For a detailed
look at the tracking performance across these scenarios, Fig.
19a and Fig. 19b illustrate the AMOTA scores for each LiDAR
framework as a function of distance in the range tests and
proximity between target vessels in the close proximity tests,
respectively. For the range tests, the AMOTA scores remain
around 0.8 up to a distance of 50m from the USV but decrease
below 0.7 for the IMM-JPDA and JPDA frameworks and
below 0.5 for the NN framework at distances beyond 50m.
In the close proximity tests, performance is below 0.2 for
all three frameworks when the vessels are only 2m apart but
increases above 0.7 as the separation reaches 5m. Certain tests
in both scenarios show high variability in results, indicated
by larger standard deviations. This variability arises when the
initial state estimation, based on interpolation between the
first two frames, results in an estimated velocity opposite to
the vessel’s actual direction of travel. This issue is attributed
to the USV’s rolling and pitching motions, which alter the
spatial distribution of LiDAR points and thus affect centroid
estimation. Consequently, when velocity is estimated from
consecutive centroids, the centroid in the current frame may
appear behind the previous frame, giving the false impression
that the vessel is moving in the opposite direction. This initial
misalignment impacts both velocity and angle estimation,
reducing overall tracking accuracy.

Table V presents the results of dynamic segmentation tests
for tracking static obstacles in both scenarios described in
Section IV. In the static obstacle scenario, the IMM-JPDA
framework does not demonstrate improved performance, de-
spite the expectation that the random motion probability would
assist in segmenting dynamic obstacles amid random motion
probability. Furthermore, the 60m-long wall alternates between

being classified as static and dynamic due to substantial
shadow motion. This effect is illustrated in Fig.20, where
obstacles classified as static are marked in black. The wall
can be observed transitioning between blue (dynamic) and
black (static), highlighting the impact of shadow motion on the
classification consistency. Additionally, all three frameworks
exhibit a significant delay in recognizing static obstacles,
as evidenced by a false negative rate exceeding 72%. The
coastal scenario involves a moving vessel along a 150m-
long riverbank. In this case, the river bank’s size makes
it challenging to successfully match with the ground truth,
leading to an excess of false negative and ultimately resulting
in poor tracking performance of the static obstacles. Similarly
to the static scenario, the size of the river bank and the
moving buoys prevent to constantly classify the river bank and
moving buoys as static as shown in Fig. 21. Lastly, the average
inference time increases significantly in this scenario, reaching
approximately 98 ms for all three frameworks. This substantial
increase is attributed to the large number of initialized tracks
caused by the extensive riverbank.

C. Test Set

The framework was evaluated on a test set consisting of
two complex scenes, as detailed in IV. The overall metrics
for both dynamic and static obstacles in each scene are
summarized in Table VI. The challenges observed in previous
results are evident here as well. Specifically, the presence of
large vessels and riverbanks generates a significant number
of false positives, resulting in poor tracking performance for
static obstacles. Additionally, the combination of large vessels,
occlusions, and sharp maneuvers performed by other vessels in
Scene 2 creates an exceedingly challenging scenario, leading
to predictably poor tracking performance.

VI. DISCUSSION

The results highlight key challenges and areas for im-
provement in the multi-object tracking framework, particularly
linked to limitations in the detection component.

The experiments revealed a high rate of false positives for
large vessels (50m and above), primarily due to the use of
Euclidean clustering with a 3m kernel size. This clustering
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LiDAR Framework AMOTA AMOTP Recall TP(%) FP(%) FN(%) IDS FRAG LE WE IT(ms)
NN-EKF 0.64 ± 0.29 0.39 ± 0.13 0.70 62.54 31.36 36.69 1.0 5.0 0.31 0.18 4.26

JPDA-EKF 0.73 ± 0.31 0.44 ± 0.13 0.83 68.39 15.54 31.26 1.0 2.0 0.39 0.19 3.59
IMM-JPDA-EKF 0.69 ± 0.29 0.43 ± 0.13 0.81 65.06 15.15 34.45 1.0 1.5 0.37 0.22 4.46

TABLE III: LiDAR Frameworks

Test Type AMOTA AMOTP Recall TP(%) FP(%) FN(%) IDS FRAG LE WE IT(ms)
range tests 0.85 ± 0.18 0.48 ± 0.08 0.90 80.28 3.86 19.49 0.0 0.0 0.18 0.21 4.04

maneuver tests 0.55 ± 0.35 0.34 ± 0.16 0.71 41.04 115.29 58.08 2.0 3.0 0.37 0.31 4.45
occlusion tests 0.63 ± 0.31 0.47 ± 0.13 0.83 66.20 9.77 33.19 1.0 1.0 1.85 0.24 3.27

close proximity tests 0.63 ± 0.31 0.40 ± 0.13 0.70 63.01 31.88 36.50 2.0 5.5 0.79 0.16 4.78

TABLE IV: Tracking Score of a 9m Long Vessel per Test Type

Dynamic Segmentation Tests Lidar Framework AMOTA AMOTP TP(%) FP(%) FN(%) IT(ms)

Static Obstacles Scenario
NN-EKF 0.16 0.33 27.20 5.55 72.80 51.76

JPDA-EKF 0.16 0.33 27.03 5.69 72.97 51.53
IMM-JPDA-EKF 0.17 0.33 27.91 4.88 72.08 52.82

Coastal Scenario
NN-EKF 0.08 0.50 1.03 0.54 98.64 97.52

JPDA-EKF 0.08 0.52 1.06 0.53 98.36 98.53
IMM-JPDA-EKF 0.11 0.59 10.0 2.94 89.96 97.56

TABLE V: Tracking Score of Dynamic Segmentation Test

Test Set Classes AMOTA AMOTP Recall GT TP(%) FP(%) FN(%) IDS Frag LE WE IT(ms)

Scene 1 Vessels 0.77 0.41 0.82 228 82.02 3.51 17.54 1.0 1.0 0.34 0.51 94.74
Static Obstacles 0.0 0.0 0.0 114 0.0 458.77 100 NaN NaN NaN NaN 94.74

Scene 2 Vessels 0.02 0.13 0.121 312 12.26 0.32 87.82 0.0 1.0 1.0 0.18 54.97
Static Obstacles 0.0 0.0 0.0 156 0.0 0.0 100 NaN NaN NaN NaN 54.97

TABLE VI: Tracking Score of Test Set

configuration generates excessive detections, leading to fre-
quent track initializations. Despite the implementation of track
management modules, the large size of vessels causes tracks
to be too far apart for effective merging, complicating pruning
and track management as shown in Fig.22. Similar issues arise
with long static obstacles, such as riverbanks, where cluster-
ing inaccuracies persist. While AIS-LiDAR fusion marginally
reduces false positives for larger vessels, the improvement
is constrained by AIS’s low update rate. For instance, in a
30-second scene, AIS data updates every 10 seconds, which
is insufficient to significantly enhance tracking performance
despite improved size estimation. Furthermore, the proposed
fusion scheme associates the nearest LiDAR track within the
AIS-defined shape to form a Mix track. Between AIS updates,
the Mix track is solely updated by the LiDAR component,
which often fails to represent the full extent of large vessels,
resulting in reduced tracking accuracy. Adaptive clustering
could address these issues by dynamically adjusting the kernel
size based on AIS information, allowing clustering to match
the expected number of vessels. This approach could enhance
detection reliability, particularly for large vessels.

A critical challenge lies in incorrect initial state estimation,
exacerbated by the rolling and pitching motions of the ego
vessel. These movements distort the LiDAR point distribution,
leading to errors in velocity and heading estimation during
extrapolation between the first two detections. Once initialized,
the IMM’s Random Motion model and safeguard mechanisms
can allow these erroneous tracks to persist, maintaining as-
sociations with detections despite incorrect motion dynamics

and orientation. This results in tracks that continue to exist
with unrealistic heading or velocity. A potential solution is to
implement a MHT algorithm, which could maintain multiple
hypotheses in the initial frames to improve the likelihood
of correct heading and speed estimation. MHT could also
dynamically adjust clustering parameters near known tracks,
further mitigating clustering issues.

Tracking accuracy decreases as objects move further from
the LiDAR sensor. To address this, the weighted fusion
algorithm should consider object distance and orientation,
assigning greater weight to AIS data for objects that are
farther or poorly oriented relative to the USV. Additionally,
incorporating perspective correction techniques, as described
in [23], could improve tracking consistency during sharp
maneuvers and occlusions.

Although motion compensation was applied, wave-induced
rolling and pitching of the USV caused significant shadow
motion. Mechanically stabilizing the LiDAR on a platform to
maintain parallel alignment with the water surface could help
maintain a stable point distribution across frames. This would
facilitate more accurate IMM probability assessments, aiding
in the classification of static and dynamic obstacles.

PCA is shown to be suboptimal for rectangular-shaped
obstacles, such as those found among static objects. Incor-
porating an adaptive shape estimator that selects between L-
shape fitting and PCA, as proposed in [10], could enhance
accuracy. Additionally, the shape information obtained through
this approach could serve as another cue for dynamically
classifying obstacles. For instance, obstacles with rectangular



MASTER THESIS 10

shapes are more likely to be static, providing valuable context
for distinguishing between dynamic and static objects in the
environment.

Practical challenges, such as issues with ROS 2 message
handling, hindered the ability to automate sequential testing,
requiring constant supervision for each test run. This sig-
nificantly limited the opportunity to fine-tune parameters, as
fine-tuning typically benefits from running a large number
of scenarios to gather sufficient data for optimization. Ad-
ditionally, the simulation environment did not simulate the
effects of water on target vessels. For instance, the heading
and course over ground were assumed to align, whereas real-
world scenarios often see discrepancies caused by currents
and wind. Waves further complicate tracking by introducing
frame jumps and increasing shadow motion. Wake clutter, a
significant challenge in maritime tracking was not addressed
in this work due to the limited realism of the simulation
environment. Moreover, the absence of noise in the simulated
LiDAR point cloud data hindered the ability to demonstrate
the advantages of JPDA over NN effectively. The coalescence
problem, inherent to JPDA, was also not explored due to
the lack of noise and the limited number of vessels in each
scenario. Lastly, the stationary USV used in all experiments
restricted the assessment of tracking performance under dy-
namic conditions.

Another point of discussion regards the precision metric
used in this study. While AMOTP is typically expressed as an
Euclidean error metric, this work opted to use IoU due to the
challenges posed by large vessels, which often experience sig-
nificant self-occlusion. Under such conditions, matching pre-
dictions with ground truth using Euclidean distance becomes
unreliable. However, in retrospect, it might still be valuable
to express AMOTP using Euclidean distance as it provides
a more direct measure of localization error. The matching
between predictions and ground truth could still rely on IoU,
given its robustness to self-occlusion, while the Euclidean
distance metric would better illustrate localization precision.
Furthermore, as highlighted in [21], velocity and heading
errors should also be included as evaluation metrics, as they
hold greater significance for collision avoidance tasks. This
aligns with the observation that collision avoidance systems
primarily rely on predicted future positions, which are heavily
influenced by accurate velocity and course estimates, rather
than the current position. An inaccurate course estimate can
therefore have a larger detrimental impact than an inaccurate
position estimate, emphasizing the importance of these metrics
in evaluating tracking performance.

VII. CONCLUSION

This work introduced a MOT framework for USVs that
utilizes a late fusion of LiDAR and AIS data. The framework
leverages probabilistic approaches such as the IMM-JPDA
to manage dynamic vessel behaviors and potentially ensure
robust data association in the presence of clutter. Alongside
the framework, a set of experiments was designed and con-
ducted using simulated scenarios to evaluate its performance.
However, the experimental results revealed several limitations

and areas for improvement. One key challenge lies in de-
tecting large vessels and elongated static obstacles, such as
riverbanks, which result in excessive false positives due to
clustering inaccuracies. The fusion process also demonstrated
shortcomings with large vessels, as it solely relies on the
nearest LiDAR track within the AIS-defined shape to estimate
the final state in the absence of AIS updates. However, this
nearest track can still be far from the AIS centroid, causing
the estimated LiDAR heading and position to deviate signif-
icantly from the true state of the target, leading to reduced
precision. Additionally, the framework showed sensitivity to
initial state estimation errors caused by the rolling and pitching
motions of the USV. These movements distort the LiDAR
point distribution, leading to inaccuracies in velocity and
heading initialization. Future work should prioritize improving
the detection component of the framework by implementing
adaptive clustering strategies, enhancing track initialization,
and developing more robust association mechanisms for AIS-
LiDAR fusion. Additionally, incorporating a more realistic
simulation of water dynamics—accounting for waves, wake
clutter, and the effects of currents—along with introducing
noise into simulated LiDAR data, is essential for meaning-
ful validation of maritime tracking. Lastly, integrating the
framework into a closed-loop collision avoidance system and
combining it with occupancy grid mapping would represent a
significant step toward practical deployment on real USVs.
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APPENDIX

Simulation
The simulated scenarios were developed using CoppeliaSim

to evaluate the framework across a variety of conditions and
vessel types. Movement control and data publishing within the
simulation were handled using Lua scripts, with ROS2 serving
as the middleware for communication. The paths followed by
the vessels were generated through the CoppeliaSim API in
Lua. A LiDAR plugin was integrated into the simulation, and
AIS messages were generated using the CoppeliaSim API to
retrieve the ground truth (GT) position. To simulate motion
on water, the static USV is subject to sinusoidal rolling and
pitching motions with magnitudes of 1/800sin(t) radians and
1/300sin(3t) radians, respectively.

Fig. 5: USV with LiDAR mounted on top used in the simu-
lation.

Four target vessels of varying sizes with distinct shapes were
used in the simulation.

Fig. 6: Target vessels used in the experiments, from left to
right (length x width): pleasure boat (9m x 3.2m), mooring
boat (16m x 5.6m), hopper (50m x 10.5m), tanker (90m x
15.2m)

Four different type of tests were conducted to assess the
tracking performance of moving vessels, focusing on aspects
such as range, close proximity, occlusion, and maneuvering.
Each test scenario was conducted at three different speeds—5,
10, and 15 knots. Additionally, dynamic segmentation tests
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were performed separately to evaluate the framework’s ability
to distinguish between dynamic and static objects in the
environment. All scenarios were captured as ROS bag files
for further analysis. The following table, Tab.XIII, shows
the number of LiDAR sweeps for all speeds and vessels,
categorized by test type, with AIS broadcasting enabled.

Range test: The range test is designed to evaluate the
framework’s performance based on the distance between the
target vessels and the USV. In this test, the target vessels sail in
a straight line perpendicular to the USV. The distances range
from 10m to 70m, with increments of 20m. An example is
provided Fig.19a.

Fig. 7: Range test with a 9m long leisure boat as target vessel.
In this example, the vessel’s path is 10m away from the USV.

Self occlusion test: The self-occlusion test evaluates the
framework’s ability to track vessels when their orientation
relative to the USV hinders accurate length estimation. In this
test, the vessel moves directly toward or away from the USV
along its longitudinal axis, as shown in Fig.8. As a result, only
the vessel’s width is detectable by the LiDAR.

Fig. 8: Self occlusion test where a 9m long leisure boat is
sailing away from the USV.

Maneuver test: The maneuver test assesses the tracker’s
performance during a 90 degrees turning maneuver executed
by a target vessel, as illustrated in 9.

Fig. 9: Maneuver test with a 9m long leisure boat is performing
a 90 degrees turn in front of the USV.

Proximity test: The proximity test involves two identical
vessels sailing parallel to each other at a defined distance.
This test evaluates the tracker’s ability to handle closely
spaced objects and identifies the distance at which it begins to
misassociate targets due to proximity. An example featuring
two tankers is shown in Fig.10.

Fig. 10: 2 90m long tankers at 10m from each other are sailing
away from the USV in this close proximity test.

Dynamic segmentation test: The dynamic segmentation
tests are divided into two distinct scenarios. The first scenario
includes only static obstacles, featuring a floating cuboid, a
60-meter wall, and a buoy. The second scenario simulates a
realistic coastal environment with a vessel navigating among
two buoys, a riverbank, and a building, as shown in ??. This
test is designed to evaluate the framework’s capability to
differentiate between moving vessels and static infrastructure,
as well as to assess its real-time performance given the high
density of points generated in this complex setting.

Fig. 11: Static Obstacles Only Scenario.
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Fig. 12: Coastal Scenario where a 50m long hopper is sailing
in the straight line. A building on a river bank is located on
the right of the USV. 2 buoys are positioned behind the USV.

Test set: The test set consists of two scenarios. The first is
characterized by two vessels performing a crossing maneuver
near the USV and 130m long river bank.

Fig. 13: A crossing scenario between 2 vessels in front of the
USV. A 130m long river bank is present behind the USV but
can not be seen in the image.

Fig. 14: A time-varying number of vessels within the LiDAR’s
field of view. 2 buoys and a wall serve as static obstacles.

The final scenario is a more complex scenario featuring a
varying number of vessels within the LiDAR’s field of view,
along with buoys and a static wall, as depicted in 14.

Test type Lidar Sweeps

range tests 10300
occlusion tests 3985
maneuver tests 4669
proximity tests 10437

dynamic segmentation tests 2048

TABLE VII: Number of LiDAR sweeps per test type.

Moving Vessel Test GT

range tests 2668
occlusion tests 1645
maneuver tests 1262
proximity tests 5926

total 11501

TABLE VIII: Number of GT for LiDAR-only Tests.

Dynamic Segmentation Test GT

Static Obstacles Scenario 498
Coastal Scenario 1844

TABLE IX: Number of GT for LiDAR-only Tests.

Moving Vessel Test GT

range tests 1162
occlusion tests 668
maneuver tests 578
proximity tests 2724

total 5172

TABLE X: Number of GT per vessel for LiDAR-AIS Fusion
Tests.

Test Set LiDAR Sweeps

Scene 1 123
Scnene 2 86

TABLE XI: Number of LiDAR sweeps per scene in the test
set.

Motion Models
CV model:

xt+1

yt+1

vt+1

θt+1

θ̇t+1

 =


xt +∆t · vt · cos(θt)
yt +∆t · vt · sin(θt)

vt
θt
0

 (10)

CTRV model:
xt+1

yt+1

vt+1

θt+1

θ̇t+1

 =


xt − vt · sin(θ)

θ̇
+ vt · sin(∆t·θ̇+θ)

θ̇

yt + vt · cos(θ)

θ̇
− vt · cos(∆t·θ̇+θ)

θ̇
vt

θt + θ̇t ·∆t

θ̇t

 (11)

RM model: 
xt+1

yt+1

vt+1

θt+1

θ̇t+1

 =


xt

yt
0
θt
0

 (12)

JPDA-IMM-EKF
The following set of equations describe the mathematical

equation used in the JPDA-IMM-EKF. A thorough explanation
of the equations are given in [33].

xk+1 = fj(xk, uk) + wj,k

zk = hj(xk, uk) + vj,k

Π =

p11 · · · pr1
...

. . .
...

p1r · · · prr


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Π =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9


x̂∗
j,k−1 =

r∑
i=1

µ(i|j),k−1x̂i,k−1

P̂ ∗
j,k−1 =

r∑
i=1

µ(i|j),k−1[
Pi,k−1 + (x̂j,k−1 − x̂∗

j,k−1)(x̂j,k−1 − x̂∗
j,k−1)

T
]

µ(i|j),k−1 =
Pijµi,k−1∑r
i=1 µ̂i,k−1

βcl
jq =

∑
Θ

P {Θ|zk} ŵjq [Θ] ,

j = 1, · · · , N and q = 1, · · · , T

P {Θ|zk} =
1

c

N∏
j=1

gjqPD

T∏
q=1

(1− PD)δq
N∏
j=1

βϕj

z̃i,q,k =

N∑
j=1

βj,q z̃i,j,q,k

xi,q,(k|k) = xi,q,(k|k−1) +Ki,q,kz̃i,q,k

Pi,q,(k|k) = Pi,q,(k|k−1) −

 N∑
j=1

βj,q

Ki,q,kSi,q,kK
T
i,q,k

+ Ki,q,k

 N∑
j=1

βj,q z̃i,j,q,k z̃
T
i,j,q,k − z̃i,q,k ˜i, q, k

T

K
T
i,q,k

µq,k =
µ̄q,kλj,k∑T
i=1 µ̄i,kλi,k

x̂q,k =
∑
i

xi,q,kµi,q,k alea iacta est

Pq,k =
∑
i

[
Pi,q,k +

(
x̂q,k − xi,q,k

) (
x̂q,k − xi,q,k

)T ]
µi,q,k

The noise covariance matrices for Lidar and AIS data
represent the uncertainty in their respective measurements,
with smaller values indicating higher confidence. For Lidar,
it is assumed that equal uncertainty across x, y, and yaw
dimensions, based on values from an open-source repository
[34]. AIS data is considered more trustworthy, where the noise
is set to 0.1. The final element, corresponding to the yaw rate,
is set to 100 to reflect the absence of yaw rate measurements in
AIS data; a placeholder value of 0 is used in the measurement
vector, with the high variance indicating low confidence.

R lidar =

0.25 0 0
0 0.25 0
0 0 0.25



R ais =


0.01 0 0 0 0
0 0.01 0 0 0
0 0 0 0 0.01
0 0 0 0 100


The process noise column vectors forming the process

noise matrix for the state vector were inspired by a open
source repository [34] and follow a general template used
across motion models, where the corresponding parameters are
replaced with specific values for different models; the template
provided here is for the CTRV model.

q1 =


var ctrv · var ctrv · dt4 · cos2(yaw) · ctrv var a
var ctrv2 · dt4 · cos(yaw) · sin(yaw) · ctrv var a

var ctrv · dt3 · cos(yaw) · ctrv var a
0
0



q2 =


var ctrv2 · dt4 · cos(yaw) · sin(yaw) · ctrv var a

var ctrv2 · dt4 · sin2(yaw) · ctrv var a
var ctrv · dt3 · sin(yaw) · ctrv var a

0
0



q3 =


var ctrv · dt3 · cos(yaw) · ctrv var a
var ctrv · dt3 · sin(yaw) · ctrv var a

dt2 · ctrv var a
0
0



q4 =


0
0
0

var ctrv2 · dt4 · ctrv var yawdd
var ctrv · dt3 · ctrv var yawdd



q5 =


0
0
0

var ctrv · dt3 · ctrv var yawdd
dt2 · ctrv var yawdd


Performance Metrics Retrieval

The performance metrics are obtained using the nuScenes
SDK [35], which provides a set of scripts to compute MOT
metrics. These metrics are generated by reading a relational
database containing predictions, annotations, and metadata.
Each entry in the database as shown in Fig.15 is uniquely
identified by a token and stored in a corresponding JSON file
with relevant details. A dedicated ROS2 node was developed to
subscribe to ground truth annotations and tracking predictions,
automatically generating the required JSON files. As a result,
for each rosbag run, a set of JSON files is created and updated
after every callback.

The various nodes are managed by a Python script, which
launches the appropriate files and plays the predefined rosbags.
The number of rosbags to be tested can be specified in
advance, with their paths listed in a text file. This file is then
read by the Python script to initiate the different ROS2 nodes.
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Fig. 15: Illustration of the relational database that must be created in order to run the nuscenes SDK [35].
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Parameter Value Parameter Value
gating threshold 9.22 detection probability 0.9
gate probability 0.8 vel change threshold 6.0
yawd change threshold 0.5 decay 0.8
velocity threshold 0.1 mode prob rm threshold 0.35
max ais distance 130.0 cov explosion threshold 1000.0
amplifier 1.0 centerbox size 1.0
leafsize 1.0 max distance 60.0
cluster tolerance 2.0 shape dilatation 3.0
var cv lidar 0.5 var ctrv lidar 0.5
var rm lidar 0.5 std a cv lidar 1.5
std a ctrv lidar 1.5 std a rm lidar 3.0
std yawdd cv lidar 1.5 std yawdd ctrv lidar 1.5
std yawdd rm lidar 3.0 std x lidar 0.5
std y lidar 0.5 std yaw lidar 0.15
var cv ais 0.5 std a cv ais 1.5
std yawdd cv ais 1.5 std x ais 0.1
std y ais 0.1 std v ais 0.1
std yaw ais 0.1 std yawd ais 10.0

TABLE XII: Parameter Values for the IMM-JPDA-EKF Framework

Between each rosbag run, services are called to reset the TF
buffer, data structures such as the track buffer, and callback
inference time arrays.

To accommodate the maritime scenarios and specific metric
requirements, the nuScenes SDK was modified accordingly.
These adjustments included the addition of length and width
average error calculations, the implementation of an IoU-based
function to determine true positives (TP), and the introduction
of a new category, namely ”vessel.”

When run, the tracking script outputs a set of metrics
giving a thorough picture of the performance of the tracking
framework over a scene. The following table lists the obtained
metrics after running the metric code.
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Fig. 16: Distributed Late Fusion Principle

Fig. 17: Tracking Estimation along with Ground truth using LiDAR-AIS fusion framework for a close proximity test with 2
identical 9m long target vessels.
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Metrics Description

AMOTA The overall tracking accuracy across multiple recall thresholds, combining false positives, false negatives, and identity switches.
AMOTP The average localization precision of correctly matched objects, using Intersection over Union (IoU) across multiple recall thresholds.
Recall The proportion of true positive out of all the ground truth objects in the scene

MOTAR A metric that adjusts MOTA by taking into account the recall
MOTA The tracking accuracy by considering false positives, false negatives, and identity switches
MOTP The misalignement between the annotated and the predicted tracks
FAF The average number of false alarms per frame
MT The number of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span
ML The number of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span
FP The total number of false positives
FN The total number of false negatives
IDS The total number of identity switches
Frag The total number of times a trajectory is fragmented
TID Average track initialization duration in number of frames
LGD Average longest gap duration in number of frames
LE The average error in length estimation for all true positives
WE The average error in width estimation for all true positives
IT The inference time per frame average over the entire scene

TABLE XIII: nuscenes Metrics Description
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Fig. 18: Rviz visualization of a close proximity test with 2 identical 9m long target vessels. Red points are the raw Pointcloud.
Each track is represented by an ellipse (shape), arrow (heading) and its ID. The USV is centered on the grid. 9 digits ID are
ID provided by AIS messages.



MASTER THESIS 20

(a)

(b)

Fig. 19: (a) AMOTA across Range Tests; (b) AMOTA across Close Proximity Tests
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Fig. 20: Rviz visualization of Dynamic Segmentation (Static scenario) test. Red points are the raw Pointcloud. Each track is
represented by an Ellipse (shape), arrow (heading) and its ID. Tracks classified as static are displayed in black. The USV is
centered on the grid.

Fig. 21: Rviz visualization of Dynamic Segmentation (Coastal scenario) test. Red points are the raw Pointcloud. Each track is
represented by an Ellipse (shape), arrow (heading) and its ID. Tracks classified as static are displayed in black. The USV is
centered on the grid.
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Fig. 22: Rviz visualization of Range Test with a 90m long target vessel. Red points are the raw Pointcloud. Each track is
represented by an ellipse (shape), arrow (heading) and its ID. The USV is centered on the grid.


