
 
 

Delft University of Technology

Robust multivariate detection and estimation with fault frequency content information

Dong, Jingwei; Pan, Kaikai; Pequito, Sérgio; Mohajerin Esfahani, Peyman

DOI
10.1016/j.automatica.2024.112049
Publication date
2025
Document Version
Final published version
Published in
Automatica

Citation (APA)
Dong, J., Pan, K., Pequito, S., & Mohajerin Esfahani, P. (2025). Robust multivariate detection and
estimation with fault frequency content information. Automatica, 173, Article 112049.
https://doi.org/10.1016/j.automatica.2024.112049

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.automatica.2024.112049
https://doi.org/10.1016/j.automatica.2024.112049


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Automatica 173 (2025) 112049

d
a
n

6

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Robustmultivariate detection and estimationwith fault frequency
content information✩

Jingwei Dong a, Kaikai Pan b,∗, Sérgio Pequito c, Peyman Mohajerin Esfahani a
a Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
b College of Electrical Engineering, Zhejiang University, Hangzhou, China
c Department of Electrical and Computer Engineering, University of Lisbon, Lisbon, Portugal

a r t i c l e i n f o

Article history:
Received 7 October 2023
Received in revised form29 September 2024
Accepted 31 October 2024
Available online xxxx
Communicated by A Chiuso

Keywords:
Fault detection
Robust estimation
Optimization
Probabilistic safety assessment
Frequency content

a b s t r a c t

This paper studies the problem of fault detection and estimation (FDE) for linear time-invariant (LTI)
systems with a particular focus on frequency content information of faults, possibly as multiple disjoint
continuum ranges, and under both disturbances and stochastic noise. To ensure the worst-case fault
sensitivity in the considered frequency ranges and mitigate the effects of disturbances and noise, an
optimization framework incorporating a mixed H_/H2 performance index is developed to compute
the optimal detection filter. Moreover, a thresholding rule is proposed to guarantee both the false
alarm rate (FAR) and the fault detection rate (FDR). Next, shifting attention to fault estimation in
specific frequency ranges, an exact reformulation of the optimal estimation filter design using the
restricted H∞ performance index is derived, which is inherently non-convex. However, focusing on
finite frequency samples and fixed poles, a lower bound is established via a highly tractable quadratic
programming (QP) problem. This lower bound together with an alternating optimization (AO) approach
to the original estimation problem leads to a suboptimality gap for the overall estimation filter design.
The effectiveness of the proposed approaches is validated through applications of a non-minimum
phase hydraulic turbine system and a multi-area power system.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
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1. Introduction

Fault diagnosis has been the focus of research in the past
ecades due to its critical importance in ensuring the safety
nd reliability of various engineering systems, such as power
etworks, vehicle dynamics, and aircraft systems (Gao, Cecati, &

Ding, 2015; Hwang, Kim, Kim, & Seah, 2009). Timely and accurate
FDE of faults while a system is still operating in a controllable
condition, can help prevent further damage and reduce losses.
However, FDE performance is inevitably affected in practice by
model uncertainties, disturbances, and stochastic noise, which
can result in false alarms, missing detection, and large estimation
errors. Hence, it is essential to consider these interferences when
designing FDE methods.

✩ This work is partially supported by the ERC (European Research Council)
grant TRUST-949796, CSC (China Scholarship Council) with funding number
201806120015, the National Natural Science Foundation of China under Grant
2201501 and Grant 52161135201. The material in this paper was not presented

at any conference. This paper was recommended for publication in revised form
by Associate Editor Davide Martino Raimondo under the direction of Editor
Alessandro Chiuso.
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In recent years, there also has been growing recognition of
the need to address faults in specific frequency ranges. This
stems from the fact that many practical faults (or cyber-attack
ignals Pan, Palensky, & Mohajerin Esfahani, 2019) exhibit distinct
frequency characteristics, e.g., incipient faults in low-frequency
ranges and actuator stuck faults with zero frequency (Wang &
Yang, 2008). Existing FDE methods developed for the entire fre-
quency range can cause conservatism when dealing with these
faults. Motivated by the above issues, this study focuses on the
FDE problem in specific frequency ranges, considering both dis-
turbances and stochastic noise.

1.1. Literature review

Fault detection: A number of model-based fault detection
methods have been developed for dynamical systems with distur-
bances and noise. The basic idea is to design residual generators
using observer-based or parity-space approaches (Gao, Cecati,
et al., 2015). The outputs of residual generators (called residu-
als), that are used to indicate the occurrence of faults, should
be sensitive to faults and robust to disturbances and noise, si-
ultaneously. To this end, performance indices, such as H∞

nd H2 norms are employed to measure the robustness against
isturbances and noise. The H_ index, representing the worst-
ase fault sensitivity, is incorporated into the design of residual
data mining, AI training, and similar technologies.
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generators. For instance, the authors in Hou and Patton (1996)
first proposed the H_/H∞ observer. Another residual genera-
tion method (Nyberg & Frisk, 2006) developed in the framework
f differential–algebraic equations (DAE) has attracted attention
hese years. This method can find residual generators of the
ossibly lowest order compared to conventional observer-based
r parity-space approaches. Moreover, it offers much design free-
om due to the ability to characterize all possible residual gen-
rators for systems represented by DAE. As a result, different
ault detection methods have been developed in the DAE frame-
ork, such as accounting for nonlinear terms (Mohajerin Esfahani
 Lygeros, 2015) and modeling uncertainties (Pan, Palensky, &
ohajerin Esfahani, 2021).
Note that the above methods all consider the entire frequency

ange, where conservatism exists and the H_ index will be zero
or strictly proper systems. The authors in Liu, Wang, and Yang
(2005) addressed this issue by introducing a weighting func-
ion to enhance the H_ index in a specific frequency range, and
urther provided the existing condition of a non-zero H_ index.
owever, finding an appropriate weighting function is complex.
n contrast, the generalized Kalman–Yakubovich–Popov (GKYP)
emma in Iwasaki and Hara (2005) provides a way to directly
onstrain the H_ index in a frequency range. Based on the GKYP
emma, the authors in Wang and Yang (2008) employed the
_/H∞ index to design a Luenberger observer for fault detection
f LTI systems with enhanced fault sensitivity in a specific fre-
uency range. Furthermore, the integration of H_/H∞ index and
he GKYP lemma has been incorporated into the design of fault
etection approaches for linear parameter-varying descriptor sys-
ems (Wang, Shi, & Lim, 2017) and nonlinear systems (Li, Wang,
Ahn, & Shen, 2020). Considering that the ℓ∞ norm representing
he peak value of a signal is more suitable for residual evaluation
ompared to the H∞ norm, the authors in Tang, Wang, and
hen (2020) chose the H_/ℓ∞ index to design the fault detection

observer for linear descriptor systems. For a more comprehensive
nalysis of different indices used in fault detection problems, such
s H_/H∞, H∞/H∞, and H2/H∞, see Liu and Zhou (2007).
In addition, the H_ index has been investigated in the time

domain as well, where fault sensitivity in a finite or infinite time
horizon is maximized, see for example Han, Long, and Xu (2022),
Khan, Abid, and Ding (2014). It is worth mentioning that the
aforementioned methods using the H∞ and ℓ∞ norms typically
consider disturbances or noise with bounded energy or peak
values, which results in conservative diagnosis results. Moreover,
the deterministic bounds are generally difficult to obtain in prac-
tical scenarios (Boem, Riverso, Ferrari-Trecate, & Parisini, 2018).
Therefore, exploiting the stochastic nature of these signals can
be a promising alternative. Moreover, to our knowledge, little
attention has been paid to designing residual generators for fault
detection within specific frequency ranges, accounting for both
disturbances and stochastic noise.

Fault estimation: Accurate fault estimation that provides the
size and shape of faults is a fundamental task in the fault diagno-
sis area. Many model-based fault estimation methods are based
on observers (Gao, Liu, & Chen, 2015; Ghanipoor, Murguia, Mo-
ajerin Esfahani, & van de Wouw, 2023), which generally require

fault signals to be finitely differentiable. Different from observer-
based methods, fault estimation filters do not require estimates of
system states and assumptions regarding the derivatives of fault
signals, such as the system-inversion-based fault estimation filter
developed in Wan, Keviczky, and Verhaegen (2017). However,
he existence of a stable system-inversion-based estimation filter
cannot be ensured when there are unstable zeros (i.e., in non-
minimum phase systems). Another approach to designing fault
stimation filters is directly minimizing the difference between
2

the transfer function of the fault subsystem and the identity ma-
rix in the H∞ optimization framework, as presented in Niemann
and Stoustrup (2000). Once again, the above estimation methods
re for the entire frequency range.
The existing methods for fault estimation in the frequency

domain are primarily built on observer-based methods and the
GKYP lemma. The authors in Wei and Verhaegen (2010) designed
a fault estimation observer for LTI systems, where the H∞ norm
defined in a specific frequency range was employed to miti-
gate the effects of disturbances and faults on estimation errors.
The result was then extended and applied to Takagi–Sugeno
fuzzy systems (Zhang, Jiang, Shi, & Xu, 2014) and descriptor
systems (Wang, Shi, & Lim, 2019). However, the design of fault
stimation filters considering fault frequency content informa-
ion has received considerably less attention. To the best of our
nowledge, only Ding (2008) and Stefanovski and Juričić (2019)

investigated this problem. In particular, the authors in Ding (2008,
heorem 14.6) incorporated a weighting function into the H∞

ptimization framework to improve fault estimation performance
n a specific frequency range. However, as mentioned before,
he selection process of a proper weighting function is complex.
he recent result (Stefanovski & Juričić, 2019) designed the fault

estimation filter represented by a rational matrix with constant
inertia in the frequency region to attenuate disturbances, but it
only considered fault estimation in the steady-state. Therefore,
developing a tractable design method for fault estimation filters
in the frequency domain capable of dealing with disturbances,
stochastic noise, and a broader class of faults is meaningful.

1.2. Main contributions

In view of the existing results mentioned above, this study
pioneers the design of FDE filters by exploiting fault frequency
content information in the DAE framework. Compared to the
existing results focusing on FDE in the frequency domain, the
proposed design framework offers the following key features: (i)
it can deal with disturbances and stochastic noise and does not
require assumptions on the derivatives of fault signals, thus appli-
cable to a larger class of fault diagnosis problems; (ii) it produces
FDE filters of the possibly lowest order compared to observer-
based methods; (iii) it offers design flexibility by allowing for
residuals of arbitrary dimensions and enabling the simultaneous
design of both the numerator and denominator of FDE filters,
while other fault diagnosis methods developed within the DAE
framework typically design one-dimensional residuals with fixed
denominators (Mohajerin Esfahani & Lygeros, 2015; Pan et al.,
2021); (iv) the design of FDE filters, which considers fault fre-
quency content spanning multiple disjoint continuum ranges, is
formulated into a unified optimization framework using the GKYP
lemma. This approach significantly simplifies the design process
f FDE filters in the frequency domain. Note that the derived op-
imization problems for filter design are inherently non-convex,
or which an efficient approach is developed to approximate a
uboptimal solution along with explicit performance bounds. The
ontributions of this paper are summarized as follows:

• Optimal detection with fault frequency content: The de-
sign of the fault detection filter, utilizing H_/H2 index in
the DAE framework, is formulated as a finite optimiza-
tion problem (Theorem 3.1). This enables the derived filter
to handle disturbances and stochastic noise while enhanc-
ing fault sensitivity across the set of disjoint continuum
frequency ranges.

• Thresholding with false alarm rate and fault detection
rate guarantees: A thresholding rule that provides guar-
antees on FAR and FDR (Theorem 3.6) is developed, which
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improves the current literature (e.g., Boem et al., 2018;
Dong, Kolarijani, & Mohajerin Esfahani, 2023) by extending
the setting to multivariate residuals and ensuring FAR and
FDR simultaneously.

• Optimal estimation with fault frequency content: Shift-
ing attention from detection to estimation, the H_ index
is replaced with the ‘‘restricted’’ H∞ norm in specific fre-
quency ranges. The fault estimation filter design is then
reformulated in the DAE framework as a finite optimization
problem (Theorem 4.1). In contrast to the existing estima-
tion results that focus on faults represented by either step
signals (Van der Ploeg, Alirezaei, Van De Wouw, & Moha-
jerin Esfahani, 2022) or polynomials (Ghanipoor et al., 2023),
this study considers a larger class of faults with frequency
content containing multiple disjoint continuum ranges.

• Convex approximation with suboptimality gap: By relax-
ing frequency ranges to finitely many samples, the estima-
tion problem is lower bounded by a QP problem
(Theorem 4.2), whose solution can be approximated by a
closed-form formula (Corollary 4.3). Combining this with
an AO approach to the original estimation problem yields
a suboptimality gap for the overall design with given fixed
filter poles (Proposition 4.4).

The rest of the paper is organized as follows. The problem
ormulation is introduced in Section 2. Section 3 presents design
ethods for the fault detection filter and the thresholding rule. In

Section 4, design methods for the fault estimation filter and the
erivation of the suboptimality gap are developed. To improve
he flow of the paper and its accessibility, some technical proofs
re relegated to Section 5. The proposed approaches are applied

to a non-minimum phase system and a multi-area power system
in Section 6 to demonstrate their effectiveness. Finally, Section 7
concludes the paper with future directions.

Notation. Sets N, R (R+), and Rn denote non-negative inte-
gers, (positive) reals, and the space of n dimensional real-valued
vectors, respectively. The set of symmetric and Hermitian matri-
ces are denoted by S and H, respectively. The identity matrix
with an appropriate dimension is denoted by I . For a vector
v = [v1, . . . , vn]

⊤, the ∞-norm and 2-norm of v are ∥v∥∞ =

maxi∈{1,...,n} |vi| and ∥v∥2 =

√∑n
i=1 v2

i , respectively. For a matrix
, the 2-norm and Frobenius norm are denoted by ∥A∥2 and ∥A∥F ,
espectively. For a random variable χ , the probability law and its
xpectation are denoted by Pr[χ ] and E[χ ], respectively. Given a
iscrete-time signal u = {u(k)}k∈N and a transfer function T, the
otation T[u] denotes the output in response to u. The ℓ2-norm
f u is ∥u∥2

ℓ2
=
∑

∞

k=0 u
⊤(k)u(k). With a slight abuse of notation, ∗

s used to denote the off-diagonal elements in symmetric (or Her-
itian) matrices to avoid clutter, and A∗ to denote the complex
onjugate transpose of the matrix A. The transpose of A is denoted
by A⊤. A positive definite (semi-definite) matrix is denoted by
A ≻ 0(⪰ 0).

2. Model description and problem statement

Consider the following discrete-time LTI system{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bωω(k) + Bf f (k)
y(k) = Cx(k) + Du(k) + Dωω(k) + Df f (k),

(2.1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , d(k) ∈ Rnd , and y(k) ∈ Rny are
the state, control input, disturbance, and measurement output,
respectively. The signal ω(k) ∈ Rnω denotes the independent and
identically distributed (i.i.d.) white noise with zero mean. The
ignal f (k) ∈ Rnf denotes the fault. System matrices in (2.1) are
ll known with appropriate dimensions. Throughout this study,
ur filter design is restricted to a subclass of fault signals with
he following frequency content.
 A

3

Assumption 2.1 (Fault Frequency Content). The fault signal fre-
uency content, also referred to as the signal spectrum, is the union

of the disjoint intervals Θ̄ := ∪m∈{1,...,nθ }Θm where Θm ⊂ [−π , π ]

nd Θm1 ∩ Θm2 = ∅ for all m1 ̸ = m2. In other words, the fault
ignal can be fully characterized in the frequency domain via f (t) =

Θ̄
F (ejθ ) ejθ t dθ where F (ejθ ) is the Discrete-Time Fourier Transform.

his class of fault signals is denoted by F(Θ̄).

The objective of this work is to design filters that can detect
and estimate faults with frequency content Θ̄ through the control
input u and the measurement y. To this end, we consider filters in
the DAE framework and introduce the time-shift operator q, i.e.,
x(k+1) = qx(k). Then, the state-space model (2.1) is transformed
into the DAE format

H(q)
[
x
d

]
+ L

[
y
u

]
+ W [ω] + G[f ] +

[
x0
0

]
= 0, (2.2)

where x(0) = x0 is the unknown initial condition, the polynomial
matrices H(q), L, W and G are given by

H(q) = H1q + H0 =

[
−qI + A Bd

C 0

]
, H0 =

[
A Bd
C 0

]
,

H1 =

[
−I 0
0 0

]
, L =

[
0 B
−I D

]
, W =

[
Bω

Dω

]
, and G =

[
Bf
Df

]
.

Given the DAE format of the system, the filter is defined as

r = F(q)L
[
y
u

]
, F(q) :=

N (q)
a(q)

, (2.3)

where r ∈ Rnr is the residual, N (q) =
∑dN

i=0 Niq
i is a polynomial

atrix with coefficients Ni ∈ Rnr×(nx+ny) and degree dN . The
enominator is a(q) =

∑da
i=0 aiq

i
+qda+1, where ai ∈ R and da+1 is

the degree of a(q) with da ≥ dN to ensure that the filter is strictly
roper. Note that the parameters of F(q), i.e., Ni and ai, are the
ilter variables to be determined.

By multiplying (2.2) from the left side by F(q), r becomes

r = F(q)L
[
y
u

]
(2.4)

= −F(q)H(q)[X] − F(q)W [ω] − F(q)G[f ] − F(q)
[
x0
0

]
,

where X = [x⊤ d⊤
]
⊤. The second line of (2.4) indicates the

input–output relations from X, ω, and f to r , based on which one
an design F(q) such that desired mapping relations are satisfied
or different diagnosis purposes. Subsequently, for the sake of
xposition, these mapping relations are denoted as

TXr (q) = −F(q)H(q), Tωr (q) = −F(q)W , Tfr (q) = −F(q)G.

Assumption 2.2 (Initial Condition Dependency). The contribution of
the initial condition, i.e., the last term in (2.4), vanishes exponentially
fast under appropriate stability conditions.

Assumption 2.2 is commonly adopted in fault detection lit-
erature (Shang, Ding, & Ye, 2021; Wan, Keviczky, Verhaegen, &
Gustafsson, 2016). Next, the two problems studied in this work
are presented, including (i) fault detection (Section 2.1), and (ii)
fault estimation (Section 2.2).

2.1. Problem 1: Fault detection

In order to formally introduce the fault detection problem,
the H2 norm and H_ index of a transfer function, e.g., y =

T(q)[u], T(q) = C(qI − A)−1B, are introduced as follows.

Definition 2.3 (H2 Norm Scherer, Gahinet, & Chilali, 1997). Assume
is stable. The H norm of T(q) is defined as
2
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∥T(q)∥2
H2

=
1
2π

∫ π

−π

Trace
(
T

∗(ejθ )T(ejθ )
)
dθ ,

and corresponds to the asymptotic variance of the output when the
system is driven by the white noise with zero mean.

Definition 2.4 (H_ Index Liu et al., 2005). The H_ index of T(q) in
 single continuum frequency range Θ is defined as

∥T(q)∥H_(Θ) = inf
θ∈Θ,u̸ =0

T(ejθ )u
ℓ2

∥u∥ℓ2

,

which can also be rewritten as ∥T(q)∥H_(Θ) = infθ∈Θ σ
(
T(ejθ )

)
with σ (·) denoting the minimum singular value.

Let us look into the second line of (2.4). For the fault detection
roblem, the residual r is expected to be insensitive to d, robust
o ω, and sensitive to f in F(Θ̄). First, to decouple d from r , it
eeds to guarantee that

TXr (q) = −F(q)H(q) = 0. (2.5a)

Second, an upper bound η1 ∈ R+ is set on the H2 norm of Tωr (q),
o suppress the contribution of ω to r , as

∥Tωr (q)∥2
H2

= ∥ − F(q)W∥
2
H2

≤ η1, (2.5b)

which also ensures the stability of the filter based on the classical
esult of H2 norm. Finally, the H_ index of Tfr (q) in Θ̄ is enforced
o be larger than some positive value η2 ∈ R+ to guarantee the
orst-case fault sensitivity, i.e.,

∥Tfr (q)∥2
H_(Θm) = ∥ − F(q)G∥

2
H_(Θm) ≥ η2, ∀Θm ⊂ Θ̄. (2.5c)

In view of the desired mapping conditions (2.5), the design of
he fault detection filter is formulated as the following optimiza-
ion problem.

Problem 1a (Fault Detection Filter Design). Consider the system (2.1)
the filter to be designed in (2.3), and the expression of the resid-
al (2.4). Given a scalar α ∈ [0, 1], find F(q) via the minimization
rogram:

min
η1,η2∈R+, F(q)

{α η1 − (1 − α)η2 : (2.5a), (2.5b), (2.5c)}.

The following assumption is introduced to guarantee the fea-
ibility of Problem 1a.

Assumption 2.5 (Feasibility Condition). The pair (A, C) is observ-
able. For q = ϕ ejθ with |ϕ| > 1 and θ ∈ Θ̄ , the following rank
ondition holds

nx+ny ≥ Rank
([

−qI + A Bd Bf
C 0 Df

])
= nx+Rank

([
Bd
0

])
+nf .

Denote the transfer functions from d to y and f to y by
Tdy(q) = C(qI − A)−1Bd and Tfy(q) = C(qI − A)−1Bf + Df ,
respectively. It readily follows

ny ≥ Rank[Tdy(q) Tfy(q)] = Rank
([

Bd
0

])
+ nf ,

if Assumption 2.5 holds (Ding, 2008, Theorem 6.2). Therefore,
Assumption 2.5 ensures simultaneously the following: (i) the
disturbance d can be decoupled, and (ii) the fault f satisfies input
observability condition in Θ̄ , which also indicates that there are
no unstable invariant zeros in Θ̄ . The second term is necessary
or a nonzero H_ index (Liu et al., 2005, Lemma 5). Note that
he fault frequency content information is incorporated into the
nalysis, which is derived from the classical result on the input
4

observability condition in Hou and Patton (1998, Theorem 3)
and Ding (2008, Corollary 14.1).

Additionally, a solution to Problem 1a ensures that the residual
can be written as

r = Tωr (q)[ω] + Tfr (q)[f ],

where no dependency on X is present because it is decoupled. In
ractice, r will oscillate around zero as a response to the noise ω
n the absence of f . In contrast, the residual will ideally be away
rom zero when a fault happens.

Subsequently, let us take the average 2-norm of r over a time
nterval T ∈ N as the evaluation function, i.e.,

J(r) =
1
T

k1+T∑
k=k1

∥r(k)∥2, (2.6)

where k1 ∈ N. Given a threshold Jth ∈ R+, the following fault
detection logic is introduced:{

J(r) ≤ Jth ⇒ no fault alarm,

J(r) > Jth ⇒ fault alarm.

Note that false alarms and missing detection of faults are in-
vitable due to the random nature of noise. To tackle these issues,
 threshold Jth that can provide guarantees on FAR and FDR is
onsidered in the following problem.

Problem 1b (Thresholding with Guarantees On FAR and FDR). Given
he fault detection filter constructed from Problem 1a, an acceptable
AR ε1 ∈ (0, 1], and a set of fault signals of interest Ωf := {f :

∥f (k)∥2 ≥ f , f ∈ R+, f ∈ F(Θ̄)}, determine the threshold Jth such
hat:

FAR: Pr
{
J(r) > Jth

⏐⏐f = 0
}

≤ ε1, (2.7a)

FDR: Pr
{
J(r) > Jth

⏐⏐f ∈ Ωf
}

≥ ε2, (2.7b)

where ε2 is the lower bound on FDR to be computed.

Remark 2.6 (Difficulty in FDR Computation). There are fewer results
n the literature on FDR computation because different elements of
ultivariate fault signals may cancel out each other’s contributions

o the residual (Pan et al., 2019). As a result, there is no guarantee on
FDR. By assuming that a set of faults is detectable, authors in Ding
(2008, Section 12.1) proposed a computation method of FDR in the
norm-based framework. In this work, the H_(Θ) index is employed
o ensure fault sensitivity, which paves the path for FDR computation
n a stochastic way.

2.2. Problem 2: Fault estimation

In certain scenarios, it becomes essential not just to identify
he occurrence of faults, but also to estimate them precisely.
or instance, incorporating fault estimates into fault-tolerant
ontrollers is a common practice to counteract the effects of
faults (Gao, 2015). Here, to ensure that the residual follows fault
signals within F(Θ̄), a stable F(q) in (2.3) is determined such that
the subsequent relation holds
∥Tfr (q)f − f ∥2

ℓ2

∥f ∥2
ℓ2

≤ η3, ∀ f ∈ F(Θ̄), f ̸ = 0, (2.8)

where η3 ∈ R+ is an upper bound. The estimation condition (2.8)
is consistent with the format of the restricted H∞ norm in a
specific frequency range.

Definition 2.7 (Restricted H∞ Norm Gao & Li, 2011). The restricted
H∞ norm of a transfer function T(q) in a single continuum frequency
range Θ is defined as
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∥T(q)∥H∞(Θ) = sup
θ∈Θ,u̸ =0

T(ejθ )u
ℓ2

∥u∥ℓ2

,

which can also be rewritten as ∥T(q)∥H∞(Θ) = supθ∈Θ σ
(
T(ejθ )

)
with σ (·) denoting the maximum singular value.

As a result, based on Definition 2.7, the condition (2.8) can be
quivalently written asTfr (q) − I

2
H∞(Θm) ≤ η3, ∀Θm ⊂ Θ̄. (2.9)

As shown in (2.9), the transfer function Tfr (q) is designed to ap-
proximate the identity matrix I over Θ̄ , so that r can be viewed as
an estimate of f if Tfr (q) is sufficiently close to I . This is different
from the system-inversion-based estimation approaches (Dong &
Verhaegen, 2011; Wan et al., 2017) which require Tfr (ejθ ) ≡ I
(known as the perfect estimation condition). The perfect estima-
tion condition is demanding and generally impossible to achieve
because it contains infinite equality constraints, especially when
there are disturbances, noise, or unstable zeros.

With the condition (2.9), our second problem is to design
he fault estimation filter through the following optimization
roblem, where conditions (2.5a) and (2.5b) are maintained to
ddress d and ω, respectively.

Problem 2 (Fault Estimation Filter Design). Consider the system (2.1)
he filter to be designed in (2.3), and the expression of the resid-
al (2.4). Given a scalar β ∈ [0, 1], find F(q) via the minimization
rogram:

min
η1,η3∈R+, F(q)

{β η1 + (1 − β)η3 : (2.5a), (2.5b), (2.9)}.

Remark 2.8 (Differences Between Problems 1a and 2). The condi-
ion (2.9) for fault estimation is more stringent compared to the
condition (2.5c) used for fault detection. In particular, it suffices
o let the minimum singular value of Tfr (q) be positive for fault
etection, whereas Tfr (q) needs to be as close to I as possible to
btain satisfactory estimation performance. Additionally, filters that
atisfy condition (2.9) with a sufficiently small H∞(Θ) norm can
rovide a positive H_(Θ) index, but the opposite is not true.

3. Fault detection: Optimal design and thresholding

This section presents design methods for the fault detection
ilter and the thresholding rule that provides guarantees on FAR
and FDR. To improve the clarity of presentation, some proofs are
relegated to Section 5.

3.1. Fault detection filter design

Let us start by considering F(q) to be designed in (2.3). In F(q),
he degrees dN , da, the residual dimension nr , and coefficients
f N (q) and a(q) are all design parameters. For simplicity, let nr
nd dN be fixed, and set dN = da throughout the subsequent
nalysis. To compute the H2 norm and H_(Θ) index, the mapping
elations Tωr (q) = −F(q)W and Tfr (q) = −F(q)G are represented
n the observable canonical forms denoted by (Ar ,Bωr , Cr ) and
Ar ,Bfr , Cr ), respectively. Let Ni,j denote the jth row of Ni for i ∈

0, 1, . . . , dN} and j ∈ {1, . . . , nr}. Then, the matricesAr , Bωr , Bfr ,
nd Cr are given by

Ar = diag(Ar , . . . , Ar  
nr

), Cr = diag(Cr , . . . , Cr  
nr

), (3.1a)

ωr = −[B⊤

ωr,1, . . . , B
⊤

ωr,nr ]
⊤, Bfr = −[B⊤

fr,1, . . . , B
⊤

fr,nr ]
⊤, (3.1b)

where the subblock matrices are defined as
5

Ar =

⎡⎢⎢⎢⎣
0 . . . 0 −a0
1 . . . 0 −a1
...

. . .
...

...

0 . . . 1 −adN

⎤⎥⎥⎥⎦ , Bωr,j =

⎡⎢⎢⎢⎣
N0,j
N1,j
...

NdN ,j

⎤⎥⎥⎥⎦W , Bfr,j =

⎡⎢⎢⎢⎣
N0,j
N1,j
...

NdN ,j

⎤⎥⎥⎥⎦G,

r =
[
0 . . . 0 1

]
.

Here, the dimension of the filter state is nxr = nr (dN + 1). The
ollowing notations are also introduced for filter design

N̄ = [N0 N1 . . . NdN ] and H̄ =

⎡⎢⎣H0 H1 . . . 0
...

. . .
. . .

...

0 . . . H0 H1

⎤⎥⎦ . (3.1c)

Note that the parameters ai and Ni to be determined are re-
formulated into Ar , Bωr , Bfr , and N̄ . An advantage of such a
transformation is that all the design parameters are decoupled
from each other. This allows us to exactly formulate the design
of the fault detection filter into a bilinear optimization problem
as stated in the following theorem.

Theorem 3.1 (Optimal Detection: Exact Finite Reformulation). Con-
ider the system (2.1), the structure of the filter (2.3), and the
tate-space realizations (Ar ,Bωr , Cr ) and (Ar ,Bfr , Cr ). Given the
egree dN , da = dN , the dimension of the residual nr , a scalar
∈ [0, 1], a sufficiently small ϑ ∈ R+, and the fault frequency

ontent information Θ̄ , the minimization program in Problem 1a can
e equivalently stated as follows

min α η1 − (1 − α)η2

s.t. η1, η2 ∈ R+, ai ∈ R, Ni ∈ Rnr×(nx+ny), i ∈ {0, 1, . . . , dN},

P1 ∈ Snxr , Q1 ∈ Snr , Ar , Bωr , Bfr , N̄ , H̄ in (3.1),

P2m, Q2m ∈ Hnxr , Vm ∈ Rnxr ×(2nxr +nf ), m ∈ {1, . . . , nθ },

N̄ H̄ = 0, (3.2a)[P1 ArP1 Bωr
∗ P1 0
∗ ∗ I

]
⪰ ϑ I,

[
Q1 CrP1
∗ P1

]
⪰ ϑ I,

Trace(Q1) ≤ η1 − ϑ , (3.2b)[
−P2m δmQ2m 0

∗ Ξm 0
∗ ∗ η2I

]
+

⎡⎣−I
A⊤

r
B⊤

fr

⎤⎦ Vm (3.2c)

+ V⊤

m

[
−I Ar Bfr

]
⪯ −ϑ I,Q2m ⪰ ϑ I, m ∈ {1, . . . , nθ },

where for each frequency range Θm = {θf : θ1m ≤ θf ≤ θ2m}, the
variables δm = ejθcm and Ξm = P2m − 2 cos(θdm )Q2m − C⊤

r Cr with
θcm = (θ1m + θ2m )/2 and θdm = (θ2m − θ1m )/2.

Proof. The proof is relegated to Section 5.1. □

Theorem 3.1 builds on the celebrated GKYP lemma, which pro-
vides three reformulations depending on the desired frequency
regimes (low, middle, and high-frequency; see also Lemma 5.1
in the proof section). It is worth noting that the assertion of
Theorem 3.1 leverages the middle-frequency part of this lemma,
as it covers all the cases required in this study.

In addition, note that the optimization problem (3.2) is non-
linear because of the bilinear terms ArP1 in (3.2b), and A⊤

r Vm,
B⊤

fr Vm and their transpose in (3.2c). To tackle this issue, the AO
method is employed, which divides the decision variables in the
bilinear terms into two sets and then optimizes over the two sets
of variables alternatively. One way of division is
Gk
1 :=

{
ηk
1, η

k
2,N

k
i , a

k
i , i ∈ {0, 1, . . . , dN}

}
and

Gk
2 :=

{
Pk
1 ,Q

k
1 , ηk

1, η
k
2, P

k
2m,Q k

2m, V k
m,m ∈ {1, . . . , nθ }

}
,

(3.3)

where k ∈ N serves as the iteration indicator.
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Algorithm 1 Solution to the optimization problem (3.2)

Step 1. Initialization of Filter Parameters

(a) Set dN , nr , fault frequency ranges Θ̄ , the iteration
indicator k = 0, and select a stable denominator a0(q)

(b) Compute N 0(q) via (3.2a) with ∥N̄∥∞ ≥ 1
(c) Compute η0

1 and η0
2 via (3.2b) and (3.2c), respectively

Step 2. Optimization of Filter Parameters
(a) Select α ∈ [0, 1], a sufficiently small ϑ > 0
(b) While |(α ηk+1

1 − (1−α)ηk+1
2 )− (α ηk

1 − (1−α)ηk
2)| > ϑ , do

(i) With ak(q) and N k(q), compute Pk
1 and V k

m by solving
(3.2) over Gk

2
(ii) With Pk

1 and V k
m, compute ak+1(q) and N k+1(q) by

solving (3.2) over Gk
1

(iii) Set k = k + 1

(c) Return final results a⋆(q) and N ⋆(q)

Fig. 1. Geometric illustration of the multi-dimensional residual.

The initial values for the optimization process are derived as
ollows. Initially, a stable denominator, denoted by a0(q) with co-
efficients a0i , is chosen. Next, the coefficients of N 0(q), i.e., N0

i , are
determined by solving equation (3.2a) subject to the constraint
∥N̄∥∞ ≥ 1 to avoid the trivial solution. Subsequently, the initial
values of η0

1 and η0
2 are found via (3.2b) and (3.2c), respectively.

ith these preparations completed, the AO process can be ini-
tiated to solve the filter. The whole procedure is summarized in
Algorithm 1.

Remark 3.2 (The Auxiliary Matrix Vm). When using the GKYP lemma
o deal with condition (2.5c), an auxiliary matrix Vm is introduced
to obtain the matrix inequalities in (3.2c). Different from previous
esults where Vm is predefined (Han et al., 2022; Tang et al., 2020;
Wang & Yang, 2008), it is treated as a decision variable here. This
s motivated by the potentially large number of parameters that
eed determination in Vm for systems of large scale or dimension.
mproper selection of Vm can result in poor H_(Θ) indices or even
ender constraints infeasible. Moreover, using relaxation techniques,
.g., Chang and Yang (2013, Lemma 1), to transform (3.2c) into
inear matrix inequalities easily leads to infeasible problems because
ultiple constraints restrict the feasible solution set. Therefore, the
ilinear terms are retained and addressed using AO approach.

Remark 3.3 (Residuals with Arbitrary Dimensions). The proposed
design approach enables the fault detection filter to have residu-
als of arbitrary dimensions. Compared to results (Mohajerin Esfa-
ani & Lygeros, 2015; Pan et al., 2019, 2021) which only generate
ne-dimensional residuals, our approach improves two deficiencies:

(i) Consider a two-dimensional residual depicted in Fig. 1 as
an example. The filters in Mohajerin Esfahani and Lygeros
6

(2015), Pan et al. (2019, 2021) cannot detect faults that lie
on the same hyperplane as the disturbance, i.e., d ↦ → r =

0. By considering the two-dimensional residual, faults that
can bypass detection only exist at the intersection of two
hyperplanes. This means that our approach reduces the size
of the set containing undetectable faults;

(ii) As indicated in Pan et al. (2019), different elements of faults
may cancel out each other’s contributions to the one-dimens-
ional residual. Our approach circumvents this issue by ensur-
ing fault sensitivity with a positive H_(Θ) index.

3.2. Thresholding rule

With the fault detection filter constructed by solving the opti-
mization problem (3.2) and the residual evaluation function J(r)
defined in (2.6), the next is to determine the threshold Jth which
rovides probabilistic guarantees on FAR and FDR as outlined
n Problem 1b. To proceed, let us first introduce the following
emma and assumption to be used hereafter.

Lemma 3.4 (Sub-Gaussian Concentration Vershynin, 2018, Proposi-
tion 2.5.2). Let ω ∈ Rnω be subject to a sub-Gaussian distribution
with mean E[ω] and parameter λω ∈ R+, i.e.,

E
[
eφ ν⊤(ω−E[ω])

]
≤ eλ2ωφ2/2, ∀φ ∈ R and ν ∈ Rnω ,

where ∥ν∥2 = 1. Then, the following inequality holds

Pr[∥ω − E[ω]∥∞ ≤ ϵ] ≥ 1 − 2nω e
−

ϵ2

2λ2ω , ∀ϵ ∈ R+. (3.4)

Assumption 3.5 (Sub-Gaussian Noise). The measurement noise ω
follows the i.i.d. sub-Gaussian distribution with zero mean and a
time-invariant parameter λω ∈ R+.

The class of sub-Gaussian distributions is board, containing
Gaussian, Bernoulli, and all bounded distributions. Also, the tails
f sub-Gaussian distributions decrease exponentially fast from
3.4), which is expected in many applications. Given an acceptable
FAR, the following theorem provides the determination method
of the threshold Jth and FDR.

Theorem 3.6 (Thresholding with Probabilistic Performance Certifi-
cates). Suppose Assumption 3.5 holds. Consider the system (2.1), the
evaluation function J(r) in (2.6), the fault detection filter obtained by
olving (3.2) with the derived values η⋆

1 and η⋆
2, and faults of interest

f ∈ Ωf . Given an acceptable FAR ε1 ∈ (0, 1], the probabilistic
performance (2.7a) in Problem 1b is achieved if the threshold Jth is
et as

Jth = λω

√
2nrη

⋆
1 ln (2T nr/ε1), (3.5)

and, when f > Jth
√
nr/η

⋆
2, FDR in (2.7b) satisfies

Pr
{
J(r) > Jth

⏐⏐f ∈ Ωf
}

≥ max

⎧⎪⎨⎪⎩0, 1 − 2T nr e
−

(
f
√

η⋆
2/nr−Jth

)2
2η⋆

1λ2ω

⎫⎪⎬⎪⎭ .

(3.6)

Proof. The proof is relegated to Section 5.1. □

From the concentration property of sub-Gaussian distribu-
tions, the threshold Jth in (3.5) depends logarithmically on FAR,
.e.,

√
ln(1/ε1). This improves the state-of-the-art results (e.g.,

Boem et al., 2018 and Ding, 2008, Section 10.2.1), which rely
on Chebyshev’s inequality and result in thresholds that scale
olynomially with

√
1/ε1. The threshold (3.5) also extends our

previous work (Dong et al., 2023, Theorem 3.8) where the one-
dimensional residual is considered. In addition, a lower bound for
f is derived to ensure that FDR can be achieved in (3.6).
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4. Fault estimation: Optimal design and suboptimality gap

This section presents design methods for the fault estima-
tion filter and the derivation process of a suboptimality gap
for the original estimation problem. To improve the clarity of
presentation, some proofs are relegated to Section 5.

4.1. Fault estimation filter design

The formulation of the fault estimation filter is provided in
(2.3). Based on the desired mapping relations outlined in Prob-
lem 2, the design of the filter is formulated into a bilinear opti-
mization problem in the following theorem.

Theorem 4.1 (Optimal Estimation: Exact Finite Reformulation). Con-
ider the system (2.1), the structure of the filter (2.3), and the
state-space realizations (Ar ,Bωr , Cr ) and (Ar ,Bfr , Cr ). Given the
filter order dN , da = dN , the dimension of residual nr = nf , a scalar
β ∈ [0, 1], a sufficiently small ϑ ∈ R+, and the fault frequency
content information Θ̄ , the minimization program in Problem 2 can
be equivalently stated as follows

min β η1 + (1 − β)η3

s.t. η1, η3 ∈ R+, ai ∈ R, Ni ∈ Rnr×(nx+ny), i ∈ {0, 1, . . . , dN},

P1 ∈ Snxr ,Q1 ∈ Snr ,Ar , Bωr , Bfr , N̄ , H̄ in (3.1),

P2m, Q2m ∈ Hnxr , Vm ∈ Rnxr ×(2nxr +nf ),m ∈ {1, . . . , nθ },

(3.2a), (3.2b),⎡⎣−P2m δmQ2m 0
∗ Ξ̄m −C⊤

r
∗ ∗ I − η3I

⎤⎦+

⎡⎣−I
A⊤

r
B⊤

fr

⎤⎦ Vm (4.1)

+ V⊤

m

[
−I Ar Bfr

]
⪯ −ϑ I, Q2m ⪰ ϑ I, m ∈ {1, . . . , nθ },

where for each frequency range Θm = {θf : θ1m ≤ θf ≤ θ2m},
he variables δm = ejθcm , Ξ̄m = P2m − 2 cos(θdm )Q2m + C⊤

r Cr with
θcm = (θ1m + θ2m )/2 and θdm = (θ2m − θ1m )/2.

Proof. It is proved in Theorem 3.1 that (3.2a) and (3.2b) are
quivalent to conditions (2.5a) and (2.5b), respectively. To demon-

strate the equivalence between constraints (4.1) and conditions
2.9), the state-space realization of Tfr (q)−I is derived as (Ar ,Bfr ,

r , −I). By setting the matrix Π = diag(I, −η3I) and using
Ar ,Bfr , Cr , −I) in Lemma 5.1, the equivalence between (2.9)
and (4.1) is established. The proof procedure of the equivalence
s similar to that of (3.2c) in the proof of Theorem 3.1. This
ompletes the proof. □

The optimization problem in Theorem 4.1 can be solved using
lgorithm 1 as well. However, the key to achieving satisfac-

tory estimation results is to ensure that ∥Tfr (q) − I∥H∞(Θm) is
sufficiently small. This usually requires several iteration steps
ith Algorithm 1 and results in heavy computational loads when
ealing with large-scale systems.

4.2. Convex approximation with suboptimality gap

To reduce the computational complexity, the estimation con-
ition (2.9) is relaxed by letting Tfr (q) approximate the identity

matrix at κ ∈ N selected finite frequency points θi ∈ Θ̄ instead
f considering all frequencies, i.e.,Tfr (ejθi ) − I

2
2 ≤ η̄3, ∀i ∈ {1, . . . , κ}, (4.2)

where η̄3 ∈ R+. The relaxed version of Problem 2 is derived as
follows.
7

Problem 2r (Fault Estimation with Finite Frequency Content). Con-
sider the system (2.1), the filter to be designed in (2.3), and the
expression of the residual (2.4). Given a scalar β ∈ [0, 1], find F(q)
via the minimization program:

min
η1,η̄3∈R+,F(q)

{β η1 + (1 − β)η̄3 : (2.5a), (2.5b), (4.2)} .

Before presenting the solution to Problem 2r, let us make some
larifications on F(q). For simplicity, roots of a(q) are fixed and
elected inside the unit disk and the order is set as da = dN , so
hat the fault estimation filter is stable and strictly proper. The
oefficient matrices Ni for i ∈ {0, 1, . . . , dN} are parameters to be
etermined. For clarity, by using the multiplication rule of poly-
omial matrices (Mohajerin Esfahani & Lygeros, 2015, Lemma

4.2), the transfer functions Tfr (q) and Tωr (q) outlined in (2.4) are
written as

Tfr (q) = −
N (q)G
a(q)

= N̄ΨG(q), Tωr (q) = −
N (q)W
a(q)

= N̄ΨW (q),

(4.3)

where ΨG(q) = −a−1(q)diag(G, . . . ,G)[I, qI, . . . , qdN I]⊤ and ΨW (q)
= −a−1(q)diag(W , . . . ,W )[I, qI, . . . , qdN I]⊤. Subsequently, the
esign method of the fault estimation filter with relaxed condi-
ions depicted in Problem 2r is provided in the following theorem.

Theorem 4.2 (Optimal Estimation: Finite Relaxation QP). Consider
he system (2.1), the structure of the filter (2.3), and the reformula-
tions of Tfr (q) and Tωr (q) in (4.3). Given the order dN , the dimension
r = nf , the stable denominator a(q) with da = dN , κ frequency
oints θi ∈ Θ̄ , and the weight β ∈ [0, 1], the optimization problem
n Problem 2r can be reformulated as the following QP problem:

min β η1 + (1 − β)η̄3

s.t. N̄ , H̄ in (3.1c), η1, η̄3 ∈ R+,

N̄ H̄ = 0, (4.4a)

Trace
[
N̄ΦN̄⊤

]
≤ η1, (4.4b)[N̄ Ri − I −N̄ Ii

N̄ Ii N̄ Ri − I

]2
2

≤ η̄3, ∀i ∈ {1, . . . , κ}, (4.4c)

where Ri = Real
(
ΨG(ejθi )

)
and Ii = Imag

(
ΨG(ejθi )

)
are the real

and imaginary parts of ΨG(ejθi ), respectively, and Φ =
1
2π

∫ π

−π

ΨW (ejθ )Ψ ∗

W (ejθ )dθ .

Proof. The proof is relegated to Section 5.2. □

Compared to (4.1), the design of the fault estimation filter pre-
sented in Problem 2r stands out for its integration of more lenient
conditions, as expounded in reference (4.4). Notably, this design
exhibits computational tractability, owing to its formulation as
a QP problem. In addition, an approximate analytical solution
to (4.4) is given as follows.

Corollary 4.3 (Approximate Analytical Solution). Consider the QP
problem in (4.1) with the 2 norm replaced by the Frobenius norm.
n approximate analytical solution to (4.4) is:

N̄ ⋆
App =

[ 4(1−β)
κ

∑κ

i=1 R
⊤

i 0
]
×[

2βΦ +
4(1−β)

κ

∑κ

i=1

(
RiR⊤

i + IiI⊤

i

)
H̄

H̄⊤ 0

]† [
I
0

]
, (4.5)

where (·)† denotes the pseudo-inverse.

Proof. The proof is relegated to Section 5.2. □
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It is worth mentioning that, for a filter with given poles (fixed
enominator a(q)), a suboptimality gap for the original estima-
ion problem stated in Problem 2 can be obtained by solving
he optimization problems in Theorems 4.1 and 4.2. This result
is presented in Proposition 4.4. To enhance readability, let us
enote the optimal value of the objective function in Problem 2

as J ⋆ with a given denominator a(q). Furthermore, Let η⋆
1,AO and

⋆
3,AO denote the results obtained by solving the optimization
roblem (4.1) using the AO approach. Use η⋆

1,RR and η̄⋆
3,RR to

enote the optimal values obtained by solving the optimization
roblem (4.4). Subsequently, the suboptimality gap for Problem 2

is presented in the next proposition.

Proposition 4.4 (Suboptimality Gap with Fixed Poles). Given a
stable denominator a(q), the optimal value of the objective function
in Problem 2 is bounded by

β η⋆
1,RR + (1 − β)η̄⋆

3,RR ≤ J ⋆
≤ β η⋆

1,AO + (1 − β)η⋆
3,AO. (4.6)

Proof. The proof is relegated to Section 5.2. □

In contrast to the immediate acquisition of the lower bound
rom the optimization problem’s resolution in reference (4.4),
he upper bound derived through the AO approach generally
emands multiple iterative phases. This iterative nature can lead
o substantial computational burdens unless the initial value
s judiciously selected. Fortunately, a remedy lies in employing
he solution from the more lenient design problem described
n Theorem 4.2 as the starting point. This initial solution pro-
ides a solid foundation for refining the upper bound outlined
n reference (4.1) through the utilization of the AO approach in
olving the optimization problem. The entire process is succinctly
ncapsulated in Algorithm 2.

Algorithm 2 Computing the suboptimality gap in (4.6).

Step 1. Initialization
(a) Select dN , nr = nf , and a stable denominator a(q)
(b) Select κ frequency points uniformly from the frequency

range Θ̄ and the weight β

Step 2. Derivation of the lower bound
(a) Compute the matrix Ri, Ii, and Φ for i ∈ {1, . . . , κ}

(b) Find the numerator N ⋆
RR(q) and the bounds η⋆

1,RR and η̄⋆
3,RR

by solving (4.1)
(c) Output the lower bound: β η⋆

1,RR + (1 − β)η̄⋆
3,RR

Step 3. Derivation of the upper bound
(a) Set N ⋆

RR(q) as the initial condition and fix a(q) for (4.1)
(b) Optimize the numerator by solving (4.1) with the AO

approach, and obtain η⋆
1,AO and η⋆

3,AO
(c) Output the upper bound: β η⋆

1,AO + (1 − β)η⋆
3,AO

This section is closed with the following remarks on the pro-
posed design approaches to fault estimation filters.

Remark 4.5 (Trade-off Analysis). There is a trade-off between de-
oupling the unknown signals X (consisting of the unknown state x
and disturbance d), suppressing the noise ω, and estimating the fault
f in (4.1) and (4.4). First, the feasible solutions to (4.1) and (4.4) lie
n the left null space of H̄, which restricts the choice of N̄ . Second,
increasing β improves the noise suppression capability of the filter.
However, it reduces the estimation performance and vice versa. The
trade-offs can, therefore, be used as a guide for selecting appropriate

weights.

8

Remark 4.6 (Selection of Decision Variable Sets). When using the
AO approach to solve the bilinear optimization problems stated
in Theorems 3.1 and 4.1, it is essential to partition the decision
variables in the bilinear terms into two sets, namely Gk

1 and Gk
2 . It

is observed that, for different optimization problems, the choice of
decision variable sets greatly influences the convergence speed of
the AO approach. In particular, when solving the optimization prob-
lem (4.1), if the decision variable sets are selected without overlap,
i.e., {ηk

1, η
k
2,N

k
i , a

k
i , i ∈ {0, 1, . . . , dN}} and {Pk

1 ,Q
k
1 , Pk

2m,Q k
2m, V k

m,
m ∈ {1, . . . , nθ }}, it leads to a more efficient solution compared to
the way in (3.3).

Remark 4.7 (Fault Estimation for Non-Minimum Phase Systems).
For non-minimum phase systems, it is reported that the optimal
distance between Tfr and I in the H∞ framework is 1 (Ding, 2008,
Theorem 14.5), i.e., minN̄ ∥Tfr (q) − I∥H∞

= 1, which indicates
that a satisfactory fault estimation over the whole frequency range
is not achievable. Our methods proposed in Theorems 4.1 and 4.2
can improve the estimation performance by limiting the frequency
ranges. This assertion will be substantiated by supporting evidence
from simulation results.

Remark 4.8 (Non-Decoupled Disturbances with Frequency Content
nformation). For disturbances that cannot be completely decoupled,
and supposing that the knowledge of disturbance frequency content
is available, the restricted H∞(Θ) norm can be employed to limit
their impact on residuals. It is observed from off-line exhaustive
simulations that expanding the frequency range of disturbances does
not significantly affect fault sensitivity, while the ability to suppress
disturbances degrades.

Remark 4.9 (Conservatism Analysis). The conservatism of the fault
stimation filter design method is summarized as follows:

(i) To reduce computational complexity, a selective approach is
adopted for the design of fault estimation filters in (4.4),
where constraints are only imposed on a subset of frequency
points in Θ̄ . As a result, the estimation performance at the
other frequency points in Θ̄ may not be guaranteed. However,
as demonstrated by simulation results, the degradation of
estimation performance at those points is minor.

(ii) For simplicity, the denominator of the transfer function a(q)
is fixed in the optimization problem (4.4), which restricts the
design freedom. However, including the simultaneous design
of both a(q) and N (q) would result in a much more complex
optimization problem, which might not be computationally
tractable.

5. Technical proofs of main results

5.1. Proofs of results in fault detection

The following two lemmas are for the proof of Theorem 3.1.

Lemma 5.1 (GKYP Lemma Iwasaki & Hara, 2005). Consider a
transfer function defined as T(q) = C(qI − A)−1B + D. Given
a symmetric matrix Π and a frequency range Θ , the following
statements are equivalent:

(i) The inequality holds in the frequency range θ ∈ Θ[
T(ejθ )

I

]∗

Π

[
T(ejθ )

I

]
≺ 0.

(ii) There exist Hermitian matrices P and Q with appropriate
dimensions and Q ≻ 0 such that[
A B

]⊤

Λ

[
A B

]
+

[
C D

]⊤

Π

[
C D

]
≺ 0,
I 0 I 0 0 I 0 I
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where the following hold: a. For the low frequency range Θ =

{θ : 0 ≤ θ ≤ θl}, the matrix Λ =

[
−P Q
Q P − 2 cos(θl)Q

]
;

b. For the middle frequency range Θ = {θ : θ1 ≤ θ ≤

θ2}, the matrix Λ =

[
−P ejθc Q

e−jθc Q P − 2 cos(θd)Q

]
, where

θc = (θ1 + θ2)/2 and θd = (θ2 − θ1)/2; c. For the high
frequency range Θ = {θ : θh ≤ θ ≤ π}, the matrix

Λ =

[
−P −Q
−Q P + 2 cos(θh)Q

]
.

Lemma 5.2 (Finsler’s Lemma Boyd, El Ghaoui, Feron, & Balakrish-
nan, 1994). For matrices V and Y with appropriate dimensions, the
wo statements are equivalent:

(i) Y⊥V
(
Y⊥
)⊤

≺ 0, where Y⊥ denote the matrix satisfying
Y⊥Y = 0;

(ii) There exists a matrix U such that V + Y U + U⊤Y⊤
≺ 0.

Proof of Theorem 3.1. First, according to the multiplication
ule of polynomial matrices (Mohajerin Esfahani & Lygeros, 2015,
emma 4.2), the constraint (3.2a) implies N (q)H(q) = 0, which
eans that X is completely decoupled from r . Thus, (2.5a) is
atisfied.
Second, from the expression of r in (2.4), the transfer function

from ω to r is −a−1(q)N (q)W when (3.2a) is satisfied, and its
tate-space realization is denoted as (Ar ,Bωr , Cr ). According to
he classical result on H2 norm (De Oliveira, Geromel, & Bernus-
ou, 2002, Lemma 1), the equivalence between (2.5b) and (3.2b)
can be obtained directly.

In the last part of the proof, the equivalence between (3.2c)
and the mapping relation (2.5c) for a single frequency range Θm
s established. According to Lemma 5.2, the first matrix inequality
n (3.2c) is equivalent to[[

A⊤
r

B⊤

fr

]
I
][ −P2m δmQ2m 0

∗ Ξm 0
∗ ∗ η2I

][[
Ar Bfr

]
I

]
⪯ −ϑ I,

where δm = ejθcm and Ξm = P2m − 2 cos(θdm )Q2m − C⊤
r Cr . The

bove inequality can be expanded into[
Ξm 0
0 η2I

]
−

[
A⊤

r
B⊤

fr

]
P2m

[
Ar Bfr

]
+

[
A⊤

r
B⊤

fr

] [
ejθcm Q2m 0

]
+

[
e−jθcm Q2m

0

] [
Ar Bfr

]
=

[
Ξm − A⊤

r P2mAr + ejθcm A⊤
r Q2m + e−jθcm Q2mAr

∗

−A⊤
r P2mBfr + e−jθcm Q2mBfr
−B⊤

fr P2mBfr + η2I

]
=

[
Ar Bfr
I 0

]⊤ [
−P2m ejθcm Q2m

∗ P2m − 2 cos(θdm )Q2m

] [
Ar Bfr
I 0

]
+

[
Cr 0
0 I

]⊤ [
−I 0
0 η2I

] [
Cr 0
0 I

]
⪯ −ϑ I. (5.1)

Recall that the transfer function from f to r , denoted by Tfr (q), has
 state-space realization given by (Ar ,Bfr , Cr ). According to the

middle-frequency case in Lemma 5.1, the last equation of (5.1) is
quivalent to[
Tfr (ejθ )

I

]∗ [
−I 0
0 η2I

] [
Tfr (ejθ )

I

]
⪯ −ϑ I.

Thus, it holds that ∥Tfr (ejθ )∥2
H_(Θm) ≥ η2 for θ ∈ Θm, m ∈

{1, . . . , nθ }. This completes the proof. □
9

The following lemma is introduced to prove Theorem 3.6.

Lemma 5.3 (Linear Transformation of Sub-Gaussian Signals Dong
et al. (2023, Lemma 4.3)). Let Tωr be the transfer function from ω

to r. If ω follows the i.i.d. sub-Gaussian distribution with zero mean
and parameter λω , the signal r is also sub-Gaussian with zero mean
and the respective parameter λr = ∥Tωr∥H2λω .

Proof of Theorem 3.6. Let us first show that the given FAR ε1 is
guaranteed in the absence of faults if Jth is determined by (3.5).
From the expression of the residual (2.4), r = Tωr (q)[ω] since X is
ecoupled and f = 0. According to Lemma 5.3, r is sub-Gaussian

and its parameter λr satisfies

λr = ∥Tωr (q)∥H2λω ≤
√

η⋆
1λω, (5.2)

where (5.2) holds by invoking Theorem 3.1. Then, we have

Pr[J(r) > Jth|f = 0] = Pr

⎡⎣ 1
T

k1+T∑
k=k1

∥r(k)∥2 > Jth

⏐⏐⏐⏐f = 0

⎤⎦
(a)
≤ Pr

⎡⎣k1+T∑
k=k1

√
nr∥r(k)∥∞ > T Jth

⏐⏐⏐⏐f = 0

⎤⎦
(b)
≤

k1+T∑
k=k1

Pr
[
∥r(k)∥∞ >

Jth
√
nr

⏐⏐⏐⏐f = 0
]

(c)
≤ 2T nr e

−
(Jth/

√
nr )2

2λ2r
(d)
≤ 2T nr e

−
J2th

2nr η⋆
1λ2ω .

The inequality (a) holds as a result of the equivalence between
vector norms, i.e., ∥r(k)∥2 ≤

√
nr∥r(k)∥∞. The inequality (b) holds

ue to the fact that Pr[v1 + v2 > v3] ≤ Pr[v1 > v3/2] + Pr[v2 >

3/2] where v1, v2, v3 ∈ R+. The inequality (c) is derived from
the concentration inequality in Lemma 3.4. And the inequality
d) is obtained according to (5.2). Substituting (3.5) into the last
inequality yields Pr[J(r) > Jth|f = 0] ≤ ε1. This completes the
first part of the proof.

The second step is to demonstrate that (3.6) holds for f ∈ Ωf .
Consider the residual r = Tfr [f ] +Tωr [ω] in the presence of faults,
whose expectation is E[r] = Tfr [f ]. Note that r − E[r] = Tωr [ω]

is sub-Gaussian with the parameter
√

η⋆
1λω as indicated above.

Thus, for a positive scalar ϵ ∈ R+, it holds that

Pr

⎧⎨⎩
k1+T∑
k=k1

∥r(k) − E[r(k)]∥∞ > T ϵ

⏐⏐⏐⏐f ∈ Ωf

⎫⎬⎭ ≤ 2T nr e
−

ϵ2

2η⋆
1λ2ω ,

Since
∑k1+T

k=k1
(∥E[r(k)]∥∞ − ∥r(k)∥∞) ≤

∑k1+T
k=k1

∥r(k)− E[r(k)]∥∞,
e have

Pr

⎧⎨⎩
k1+T∑
k=k1

(∥E[r(k)]∥∞ − ∥r(k)∥∞) ≤ T ϵ

⏐⏐⏐⏐f ∈ Ωf

⎫⎬⎭ ≥ 1−2T nr e
−

ϵ2

2η⋆
1λ2ω .

By letting T ϵ =
∑k1+T

k=k1
∥E[r(k)]∥∞ − T Jth > 0, we obtain

Pr

⎧⎨⎩
k1+T∑
k=k1

∥r(k)∥∞ ≥ T Jth

⏐⏐⏐⏐f ∈ Ωf

⎫⎬⎭ ≥ 1 − 2T nr e
−

ϵ2

2η⋆
1λ2ω . (5.3)

Additionally, the following inequalities hold
k1+T∑
k=k1

∥E[r(k)]∥∞ ≥
1

√
nr

k1+T∑
k=k1

∥E[r(k)]∥2

=
1

√
nr

k1+T∑ Tfr [f (k)]

2 ≥

√
η⋆
2

√
nr

T f ,

k=k1
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where the first inequality is derived from the equivalence be-
ween vector norms and the second inequality follows from the
esult in Theorem 3.1, i.e., ∥Tfr∥

2
H_(Θm) ≥ η⋆

2, and ∥f (k)∥2 ≥ f for
∈ Ωf . To make sure that ϵ is positive, let

ϵ =
1
T

k1+T∑
k=k1

∥E[r(k)]∥∞ − Jth > f
√

η⋆
2/nr − Jth > 0.

Thus, the lower bound of f should satisfy f > Jth
√
nr/η

⋆
2. Finally,

from inequalities (5.3), we obtain

Pr
{
J(r) > Jth

⏐⏐f ∈ Ωf
}

= Pr

⎧⎨⎩ 1
T

k1+T∑
k=k1

∥r(k)∥2 > Jth

⏐⏐⏐⏐f ∈ Ωf

⎫⎬⎭
≥ Pr

⎧⎨⎩ 1
T

k1+T∑
k=k1

∥r(k)∥∞ > Jth
⏐⏐f ∈ Ωf

⎫⎬⎭
≥ 1 − 2T nr e

−
ϵ2

2η⋆
1λ2ω

≥ 1 − 2T nr e
−

(
f
√

η⋆
2/nr−Jth

)2
2η⋆

1λ2ω .

This completes the proof. □

5.2. Proofs of results in fault estimation

To prove Theorem 4.2, the covariance matrix of the output of
n LTI system driven by white noise is computed through the
ollowing lemma.

Lemma 5.4 (Covariance of the Residual). Consider the expression of
he residual in (2.4) with the unknown signal X decoupled. The noise
ω is assumed to be i.i.d. white noise and the fault f is considered to
e deterministic. The covariance matrix of r is given by

E
[
(r(k) − E[r(k)])(r(k) − E[r(k)])∗

]
=

1
2π

∫ π

−π

Tωr (ejθ )E
[
ω(k)ω∗(k)

]
T

∗

ωr (e
jθ )dθ .

Proof. Let hωr (k) be the impulse response of Tωr (q). The covari-
nce function of r(k) denoted by Vr (τ ) for τ ∈ N can be written
s

Vr (τ ) = E
[
(r(k + τ ) − E[r(k + τ )])(r(k) − E[r(k)])∗

]
= E

[(
∞∑

m=0

hωr (m)ω(k + τ − m)

) (
∞∑
l=0

hωr (l)ω(k − l)

)∗]

=

∞∑
m=0

∞∑
l=0

hωr (m)E
[
ω(k + τ − m)ω∗(k − l)

]
h∗

ωr (l)

=

∞∑
m=0

∞∑
l=0

hωr (m)Vω(τ − m + l)h∗

ωr (l),

where Vω(τ −m+ l) is the covariance function of ω. By applying
the Z-transform on Vr (τ ), the spectrum of r(k) denoted by Γr (q)
is derived as

Γr (q) =

∞∑
k=−∞

Vr (k)q−k

=

∞∑
k=−∞

∞∑
m=0

∞∑
l=0

hωr (m)Vω(k − m + l)h∗

ωr (l)q
−(k−m+l)q−mql

=

∞∑
hωr (m)q−m

∞∑
Vω(k − m + l)q−(k−m+l)

∞∑
h∗

ωr (l)q
l

m=0 k=−∞ l=0

10
= Tωr (q)Γω(q)T∗

ωr (q
−∗),

where Γω(q) is the spectrum of ω. When τ = 0, since ω is an
ncorrelated sequence, we have

Vr (0) = E
[
(r(k) − E[r(k)])(r(k) − E[r(k)])∗

]
=

∞∑
m=0

∞∑
l=0

hωr (m)E
[
ω(k − m)ω∗(k − l)

]
h∗

ωr (l)

=

∞∑
m=0

hωr (m)E
[
ω(k)ω∗(k)

]
h∗

ωr (m)

=
1

2π j

∫ π

−π

Γr (q)q−1dq

=
1

2π j

∫ π

−π

Tωr (q)E
[
ω(k)ω∗(k)

]
T

∗

ωr (q)q
−1dq,

where the inverse Z-transform and the fact that q−∗
= q on the

nit circle are used in the last two equations. Also, due to the
erivative dq/dθ = j ejθ , it holds that

E
[
(r(k) − E[r(k)])(r(k) − E[r(k)])∗

]
1
2π

∫ π

−π

Tωr (ejθ )E
[
ω(k)ω∗(k)

]
T

∗

ωr (e
jθ )dθ .

This completes the proof. □

Proof of Theorem 4.2. First, it is demonstrated in Theorem 3.1
that (4.4a) is equivalent to condition (2.5a). Second, to show
that (4.4b) implies the satisfaction of (2.5b), let us recall that r =

fr (q)[f ] + Tωr (q)[ω], where Tωr (q) = N̄ΨW (q) and f is assumed
o be deterministic. According to Lemma 5.4, the covariance of r
satisfies

E
[
(r(k) − E[r(k)])(r(k) − E[r(k)])∗

]
1
2π

∫ π

−π

Tωr (ejθ )E[ω(k)ω∗(k)]T∗

ωr (e
jθ )dθ

⪯
λ2

ω

2π

∫ π

−π

Tωr (ejθ )T∗

ωr (e
jθ )dθ

N̄
λ2

ω

2π

∫ π

−π

ΨW (ejθ )Ψ ∗

W (ejθ )dθN̄⊤
= λ2

ωN̄ΦN̄⊤, (5.4)

where the inequality holds due to its demonstration through
Taylor series expansion and comparison of terms of the same
power for φ (defined in Lemma 3.4). It can be shown that for
sub-Gaussian random variables, E[ω(k)ω∗(k)] ⪯ λ2

ωI . As a result,
ondition (2.5b) which is introduced to suppress the effect of the
noise on r can be achieved by bounding the trace of N̄ΦN̄⊤. This
also coincides with the H2 norm.

The last part of the proof shows that the relaxed condi-
tion (4.2) can be realized through (4.4c). Note that the singular
values of a complex matrix MC = MR + jMI are equal to those of

the augmented matrix
[
MR −MI
MI MR

]
derived from MC . Therefore,

constraining the 2-norm of the augmented matrix in (4.4c), which
is constructed using the real and imaginary parts of Tfr (ejθi ) − I ,
i.e., N̄ Ri−I and N̄ Ii, is equivalent to constraining

Tfr (ejθi ) − I
2
2.

This completes the proof. □

Proof of Corollary 4.3. The Lagrange function of (4.4) is

L(N̄ , γ ) = βTrace
[
N̄ΦN̄⊤

]
+

(dN+2)(nx+nd)∑
i=1

γ ⊤

i N̄ H̄i

+
1 − β

κ

κ∑[N̄ Ri − I −N̄ Ii
N̄ Ii N̄ Ri − I

]2,

i=1 F
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where γ = [γ1 . . . γ(dN+2)(nx+nd)] with γi ∈ Rnf is the Lagrange
multiplier. H̄i is the ith column of H̄ . According to the definition
of Frobenius norm[N̄ Ri − I −N̄ Ii

N̄ Ii N̄ Ri − I

]2
F

=2Trace
[
(N̄ Ri − I)(N̄ Ri − I)⊤ + N̄ IiI⊤

i N̄⊤
]
.

Taking the partial derivative of L(N̄ , γ ) yields
∂L(N̄ , γ )

∂N̄
= 2βN̄Φ +

4(1 − β)
κ

κ∑
i=1

(
N̄ RiR⊤

i − R⊤

i + N̄ IiI⊤

i

)
+

(dN+2)(nx+nd)∑
i=1

γiH̄⊤

i .

Then, setting the partial derivative to zero and considering the
equality constraint (4.4a) leads to[

N̄ γ
] [2βΦ +

4(1−β)
κ

∑κ

i=1

(
RiR⊤

i + IiI⊤

i

)
H̄

H̄⊤ 0

]
[ 4(1−β)

κ

∑κ

i=1 R
⊤

i 0
]
.

Solving this equation provides the analytical solution. This com-
pletes the proof. □

Proof of Proposition 4.4. Let us first show that the upper bound
olds. Since the optimization problem (4.1) is an exact reformu-
ation of Problem 2, applying the AO approach to solve (4.1) leads
o the convergence of the objective function value to the optimal
alue J ⋆ of Problem 2. Thus, the derived objective function value,
.e., β η⋆

1,AO + (1 − β)η⋆
3,AO, is an upper bound on J ⋆.

In the second part of the proof, the satisfaction of the lower
ound is proved by contradiction. Suppose that

min
N (q)

max
θi

∥Tfr (ejθi ) − I∥2
2 ≥ min

N (q)
∥Tfr (ejθ ) − I∥2

H∞(Θm), ∀Θm ∈ Θ̄.

Let N ⋆(q) and N ⋆
RR(q) denote the optimal solutions to minN (q)

Tfr (ejθ )−I∥2
H∞(Θ̄) and minN (q) maxθi ∥Tfr (ejθi )−I∥2

2, respectively.
ecall the definition of the restricted H∞ norm. For all sampling
requency points θi, it holds that

max
θi

∥Tfr (ejθi ,N ⋆
RR(q)) − I∥2

2 ≥ sup
θ∈Θ̄

∥Tfr (ejθ ,N ⋆(q)) − I∥2
2

≥ ∥Tfr (ejθi ,N ⋆(q)) − I∥2
2,

which contradicts the fact that N ⋆
RR(q) is the optimal solution to

inN (q) maxθi ∥Tfr (ejθi ) − I∥2
2. Thus, we have

min
N (q)

max
θi

∥Tfr (ejθi ) − I∥2
2 ≤ min

N (q)
∥Tfr (ejθ ) − I∥2

H∞(Θ̄).

Additionally, the constraints (2.5a) and (2.5b) on noise suppres-
ion and disturbance decoupling are identical in both Problem 2
and Problem 2r. As a result, the optimal objective value of Prob-
em 2r, obtained by solving (4.4), serves as a lower bound for J ⋆.
his completes the proof. □

6. Simulation results

The effectiveness of the proposed FDE methods is validated
n a non-minimum phase hydraulic turbine system and on a
ulti-area power system.

6.1. A hydraulic turbine system

Note that non-minimum phase systems are prevalent in a
wide range of practical applications, such as aerospace engineer-
ing, power systems, etc. The ubiquity of non-minimum phase
systems in the real-world underscores the critical importance
11
Fig. 2. Fault and its estimates.

of developing fault diagnosis methods for them. However, the
inherent characteristics of non-minimum phase systems, partic-
ularly their unstable inverse response behavior, pose significant
challenges in fault estimation, as discussed in Remark 4.7. To
address this issue, we develop fault estimation filter design tech-
niques that focus on specific frequency bands of interest, offering
significant advantages in estimation performance compared to
xisting results. To verify the performance, a hydraulic turbine

system from Wang and Su (2015) is considered as follows

y =
−0.183s + 1.4

0.2136s3 + 2.445s2 + 5.911s + 0.45
(u + fu),

where u and y are the turbine valve and the turbine speed,
espectively. The fault on the turbine valve is denoted as fu. The
ystem has an unstable zero at 7.65. To facilitate diagnosis filter
esign, the transfer function of the hydraulic turbine system is
ransformed into the state-space representation and discretized
ith the sampling period 0.1s. In addition, though modeling
rrors exist caused by discretization, their effects are negligible

when the sampling interval is sufficiently small.
In this part, methods developed in Theorem 4.1 (ER, ex-

ct reformulation) and Theorem 4.2 (RR, relaxed reformulation)
are used to estimate the fault signal in the absence of distur-
bances and noise. In the simulation, the proposed estimation
methods are compared with the UIO (unknown input observer)
method (Gao, 2015), the LS (least square) method (Wan et al.,
2016), and the IUIE (inversion-based unknown input estimation)
method (Wan et al., 2017). Both the UIO, LS, and IUIE methods are
proven to be asymptotically unbiased estimation methods under
certain conditions.

The frequency range of interest is Θ = [0, 0.2] and the
fault signal is f (k) = 0.05 sin(0.1k) + 0.06 sin(0.15k) sampled
from the corresponding continuous-time signal with the sam-
pling time 0.1s here. First, a stable denominator is selected as
a(q) = (q − 0.1)5 and 6 frequency points are chosen when using
he RR method in Theorem 4.2 to design the fault estimation
filter. By solving the optimization problem (4.4), the numerator
N ⋆

RR(q) and the optimal value η̄⋆
3,RR = 0.0534 are obtained. Then,

the denominator a(q) is fixed and N ⋆
RR(q) is used as the initial

condition to design the fault estimation filter when using the ER
method in Theorem 4.1 and Algorithm 1. The obtained value of
the objective function is η⋆

3,AO = 0.0.0764 after 5 iteration steps.
According to (4.6), the suboptimality gap is 0.0534 ≤ J ⋆

≤

0.0764.
Fig. 2 presents the fault signal and its estimates obtained by

different methods, while errors of fault estimates are illustrated
n Fig. 3. As illustrated in Fig. 2, both the IUIE and LS methods
iverge, while the UIO methods produce high estimation errors.

In comparison with the above methods, the proposed ER and
RR methods offer better estimation performance. In Fig. 4, it is
further demonstrated that increasing the degree of the RR filter
can reduce the estimation error.
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Fig. 3. Estimation errors of different methods.

Fig. 4. Errors of fault estimates with different degrees.

6.2. A multi-area power system

6.2.1. System description
Consider a multi-area power system described in Pan et al.

(2019). Suppose each area of the power system can be rep-
esented by a model with equivalent governors, turbines, and
enerators. Then, in area i for i ∈ {1, 2, 3}, the dynamics of
requency ∆wi can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆ẇi =
w0

2hiSBi
(∆pmi − ∆ptiei − ∆pdi −

1
Dli

∆wi),

∆pmi =
∑Geni

g=1 ∆pmig , ∆ptiei =
∑

j∈Nbri
∆ptieij ,

∆ṗmig = −
1

Tchig
(∆pmig +

1
Si
∆wi − ρig∆pagci ),

∆ṗtieij = 2πPTij (∆wi − ∆wj),
ACEi = ζi∆wi + ∆ptiei ,
∆ṗagci = −KIiACEi,

(6.1)

where hi represents the equivalent inertia constant, w0 denotes
he nominal frequency, SBi is the power base, ∆pmi denotes the
otal generated power, ∆ptiei denotes the total tie-line power
xchanges from area i, ∆pdi denotes the deviation caused by
he load, and 1/Dli∆wi is the deviation caused by the frequency
ependency of the load. Let Geni and Nbri be the number of
enerators and the set of areas that connect to area i, respec-
ively. The term ∆pmig denotes the power generated by the gth
enerator, ∆ptieij is the power exchanges between area i and j,
nd PTij is the maximum transfer power on the line, which is
ssumed to be constant. It holds that ∆ptieij = −∆ptieji . For the
ynamics of ∆pmig , Tchig is the governor–turbine’s time constant,
nd Si is the drop coefficient. The term ∆pagci is the automatic
eneration control (AGC) signal and ρig is the participating factor,
.e.,
∑Geni

g=1 ρig = 1. The area control error signal is denoted by ACEi
nd ζi is the frequency bias factor. The AGC signal ∆pagci in the
ast line of (6.1) is in integration of ACEi with the integral gain KIi .
The parameters are provided in Table 1.

Here, the following fault scenarios are considered:

(i) faults on the tie line between areas that cause deviation in
frequency, i.e., ∆ṗtieij = 2πPTij (∆wi − ∆wj + ftieij );

(ii) faults on the AGC part of area i, i.e., ∆ṗagci = −KIi (ACEi +
f );
agci n

12
Table 1
Parameters of the multi-area power system.
Name Values Name Values

w0 60 Hz Dl1 0.0064 Hz/MW
h1 4.41 MW/MVA Dl2 0.0045 Hz/MW
h2 4.15 MW/MVA Dl3 0.0056 Hz/MW
h3 3.46 MW/MVA Gen1 2
SB1 1500 MVA Gen2 3
SB2 2100 MVA Gen3 2
SB3 1700 MVA ζ1 500.0064 Hz/MW
S1 0.002 MW/Hz ζ2 700.0045 Hz/MW
S2 0.0014 MW/Hz ζ3 566.6723 Hz/MW
S3 0.0018 MW/Hz KIi 0.65
ρ1i , ρ3i 1/2 ρ2i 1/3
PT12 2100 MW PT13 2100 MW
PT23 2100 MW Tchig 1.4950

(iii) faults on the sensors of area i, i.e., yi(t) = Cixi(t) + Df ,ifyi .

Based on the dynamics (6.1) and the descriptions of faults, the
state-space model of area i in the presence of faults becomes⎧⎨⎩

ẋi(t) = Aiixi(t) + Bd,i∆pdi (t) + Bω ,iωi(t) +
∑

j∈Nbri
Aijxj(t)

+ Bf ,ifi(t)
yi(t) = Cixi(t) + Dω ,iωi(t) + Df ,ifyi (t),

where the state xi =
[
∆ptiei ∆wi {∆pmig }1:Geni ∆pagci

]⊤, fi =

[{ftieij}j∈Nbri
fagci ]

⊤ is the process fault signal. Signal ω denotes
oise in the system. The matrices Aii, Bd,i, Aij, Bf ,i,Df ,i can be
btained based on the dynamics (6.1) and the vulnerable parts of

area i. The output matrix Ci is a tall or square matrix with the full
column rank, i.g., Ci = I . The matrices Bω ,i and Dω ,i indicate which
signal is affected by the noise. Stacking the state of each area, i.e.,
x = [x⊤

1 , x⊤

2 , x⊤

3 ]
⊤, and discretizing the system with sampling

period 0.1s results in the discrete-time state-space model for the
whole three-area power system in the form of (2.1). The system
matrices are given by

A =

[A11 A12 A13
A21 A22 A23
A31 A32 A33

]
, Bd = diag(Bd,1, Bd,2, Bd,3), B = D = 0,

Bf = diag(Bf ,1, Bf ,2, Bf ,3), Bω = diag(Bω ,1, Bω ,2, Bω ,3),
Dω = diag(Dω ,1,Dω ,2,Dω ,3), Df = diag(Df ,1,Df ,2,Df ,3).

Here, we consider faults in the tie-line of area 1, the AGC part
of area 2, and the measurement of area 1. The corresponding
faulty matrices are

Bf ,1 = [2πPT12 0 0 0 0]⊤, Bf ,2 = [0 0 0 0 0 − KI2 ]
⊤,

Df ,1 = [0 1 0 0 0]⊤, and Bf ,3 = Df ,2 = Df ,3 = 0.

The unknown loads are ∆pd1 (k) = ∆pd2 (k) = ∆pd3 (k) = 1 + v(k)
with v(k) denoting the uncertain signal. The signal ω is white
oise with zero mean and variance 0.01. The matrices Bω = 0

and Dω = [1 . . . 1]⊤.

6.2.2. Fault detection results
Suppose that the frequency content of fault signals is Θ̄ =

0, 0.3] in the fault detection problem. Let us consider process
faults first, i.e., ftie12 and fagc2 , which are zero before k = 50 and
then become

ftie12 (k) = 0.05 sin(0.2k) + 0.06 sin(0.3k), k ≥ 50 and
fagc2 (k) = 0.08 sin(0.15k) + 0.03 sin(0.25k), k ≥ 50.

The process of the fault detection task is summarized as:
Step 1. Set the residual dimension and filter degree to nr =

 and dN = 2. Note that the dimension of the filter states is
(d +1) = 9, which is smaller than that of the system n = 16.
r N x
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Fig. 5. Detection results for fagc2 and ftie12 .

Fig. 6. Detection results for fy1 .

Step 2. Solve the filter coefficients by using the optimization
roblem in Theorem 3.1 with the AO approach in Algorithm 1,
here the weight α = 0.5.
Step 3. Compute the threshold Jth for fault detection based on

Theorem 3.6, which is Jth = 0.0153 with the acceptable FAR
1 = 0.001 and time interval T = 10.
Step 4. Compare the value of the evaluation function J(r) to Jth

o render the diagnosis decision.
The fault detection filter developed in the DAE framework

s compared with the Luenberger observer designed using fault
frequency content information (LO(Θ)) (Wang & Yang, 2008) and
he UIO approach designed for the entire frequency range (Gao,
2015). Since the residual dimensions generated by LO(Θ) and UIO
ethods are nr = ny = 16, while nr = 3 in our approach, J(r) and

th are normalized for comparison.
Fig. 5 presents the detection results for ftie12 and fagc2 . One can

ee that the values of J(r(k))/nr remain below the threshold when
≤ 50 and exceed the threshold immediately after faults happen
t k = 50. Thus, all three approaches successfully detect the
rocess faults, wherein our proposed method has the best fault
ensitivity. Moreover, the threshold derived using (3.5) is found to
e less conservative than the threshold derived using Chebyshev’s
nequality, i.e., λω

√
T nrη

⋆
1/ϵ1 = 0.2010.

The process of sensor fault detection is the same as above. The
following fault signal is employed to test the detection ability of
different methods for sensor faults:

fy1 (k) =

{
0.005 ∗ (k − 50), 80 ≥ K > 50,
0.15 + 0.02 sin(0.15k), k ≥ 80.

Fig. 6 shows the detection results for fy1 . It can be seen that the
UIO approach fails to detect the occurrence of the sensor fault
as the amplitude of the fault signal is quite small. Nonetheless,
he LO(Θ) method and our proposed method considering the
ault frequency information successfully detect the fault. In ad-
ition, our method exhibits superior sensitivity to sensor faults
ompared to the LO(Θ) method.

6.2.3. Fault estimation results
In the fault estimation part, suppose that the fault frequency

content consists of two disjoint ranges, i.e., Θ = [0, 0.3] and
1

13
Fig. 7. Estimates of ftie12 without ω.

Fig. 8. Estimates of fagc2 without ω.

Θ2 = [0.6, 0.9]. The AGC fault signal fagc2 and the sensor fault
ignal fy1 remain unchanged with frequencies in Θ1. The tie-line
ault ftie12 is replaced with

ftie12 (k) = 0.05 sin(0.8k) + 0.06 sin(0.65k), k ≥ 50,

whose frequency is in Θ2. The process of the fault estimation task
is as follows:

Step 1. Set the residual dimension and filter degree to nr =

f = 3 and dN = 4.
Step 2. Solve two fault estimation filters using the ER method

in Theorem 4.1 and the RR method in Theorem 4.2, respectively.
In the ER method, the AO approach is employed to solve (4.1).
When using the RR method, select a stable denominator a(q) and
some frequency points in [0, 0.3] and [0.6, 0.9] before solving the
optimization problem (4.4).

Step 3. Feeding the control input u and the measurement y into
he fault estimation filters yields estimates of fault signals.

To validate the performance of the proposed ER and RR meth-
ds, they are compared with the UIO, LS, and IUIE methods in the

two cases of no noise and considering noise. First, the weight is
et to β = 0 in the optimization problems (4.1) and (4.4) in the
noise-free case. The estimation results are presented in Figs. 7–
10. Specifically, Figs. 7–9 show the estimates of the tie-line fault
ftie12 , the AGC fault fagc2 , and the sensor fault fy1 by different meth-
ds. Since the UIO, LS, and IUIE methods both obtain unbiased
stimation results with a one-step delay, estimation errors of the
hree methods are the same as shown in Fig. 10. In contrast,
the proposed ER and RR methods produce smaller estimation
errors than the other three methods. Note that though the errors
re large at the initial estimation phase, they decrease quickly.

Furthermore, Fig. 11 shows the effect of the sampling number of
frequency points in the RR method along with the suboptimality
gap. For simplicity, a single frequency range [0, 0.5] is considered.
The number of frequency points increases from 2 to 25, where
the new frequency point is added to the previous ones during
the process. As a result, the lower bound increases monotoni-
cally because more constraints are included in (4.4) when adding
frequency points.

In the case of considering noise, the weight is set to β = 0.1.
Since the effect of noise is ignored in the design of the UIO, LS, and
IUIE methods, much smaller noise is considered for these three
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Fig. 9. Estimates of fy1 without ω.

Fig. 10. Estimation errors without ω.

Fig. 11. Suboptimality gap with increasing sampling points.

Fig. 12. Estimates of ftie12 with ω.

Fig. 13. Estimates of fagc2 with ω.

methods. Figs. 12–14 depict the estimates of the fault signals in
the presence of noise by different methods. One can see from
14
Fig. 14. Estimates of fy1 with ω.

Fig. 15. Estimation errors with ω.

Fig. 13 that the estimates of the AGC fault signal obtained by
the UIO, LS, and IUIE methods are corrupted by noise seriously.
In contrast, thanks to the noise suppression and design in the
specific frequency ranges, the ER and RR methods achieve smaller
estimation errors than the other three methods under the effects
of noise as illustrated in Fig. 15.

7. Conclusions

This paper studies the design methods of FDE filters in the fre-
quency domain for LTI systems with disturbances and stochastic
noise. Based on an integration of residual generation and norm
pproaches, the optimal design of FDE filters is formulated into
 unified optimization framework. In future work, a potential
esearch direction is to extend the results to nonlinear systems.
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