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S U M M A R Y 

As seismic migration is increasingly applied to more and more complex media, more so- 
phisticated imaging techniques are required to generate accurate images of the subsurface. 
Currently, the best results for imaging are achieved by least-squares migration methods, such 

as least-squares reverse time migration and full-wavefield migration (FWM). These methods 
iteratively update the image to minimize the misfit between the forward modelled wavefield 

and the recorded data at the surface. However, a key challenge for these techniques is the 
speed of convergence. To accelerate the speed of convergence, pre-conditioning is commonly 

applied. The most common pre-conditioner is the reciprocal of the Hessian operator. However, 
this operator is computationally expensive to calculate, making it difficult to apply directly. In 

this paper, we present a novel, alternative, pre-conditioner for FWM. This pre-conditioner is 
based on applying Galerkin projections to a linear system, which projects the system onto a set 
of known basis vectors. To find an appropriate set of basis vectors for this approach we apply 

proper orthogonal decomposition (POD) to a set of partial solutions of the linear system. The 
resulting method gives an approximation to the pseudo-inverse based on these basis vectors. 
To test this technique, which we name model-order reduced FWM (MOR-FWM), we apply 

it to the synthetic Marmousi model as well as to field data from the Vøring basin in Norway. 
For these examples, we show that MOR-FWM yields an improved data-misfit compared to 

the standard FWM approach. In addition, we show that the result for the field data case can be 
improved by normalizing the partial solutions before applying POD. 

Key words: Inverse theory; Numerical modelling; Numerical solutions.. 
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 I N T RO D U C T I O N  

eismic migration is an important tool for subsurface characteriza-
ion, which is of vital importance in many different areas. Examples
nclude the study of the Earth’s geological structures, the location
f subsurface resources and the characterization of potential sites
or off-shore wind farms (Brune et al. 2022 ), to name a few. 

While many different approaches for seismic migration exist
Bee Bednar 2005 ), the general approach commonly consists of
hree steps. First, the source wavefield at the surface is propagated
orward into the medium through a numerical forward modelling
cheme, where an estimate of the, generally unknown, speed-of-
ound model is used to ensure accurate propagation. Secondly, using
 similar approach, the measured data at the subsurface is propa-
ated backwards in time into the medium. Finally, the forward and
ackward propagated wavefields are correlated using an imaging
ondition, leading to an estimate of the reflectivity model of the

ubsurface. b  

C© The Author(s) 2025. Published by Oxford University Press on behalf of the Phys
distributed under the terms of the Creative Commons Attribution License (https://c
unrestricted reuse, distribution, and reproduction in any medium, provided the orig
To improve upon the standard migration approach, Least-Squares
igration (LSM) methods have been introduced (Schuster 1993 ;
emeth et al. 1999 ). LSM methods aim to minimize the misfit
etween the recorded data and forward modelled wavefield at the
urface by iteratively updating the reflectivity model of the subsur-
ace. While these methods come with an increase in computational
osts due to their iterative nature, the resolution of the final re-
ectivity image can be drastically improved, as LSM techniques
an suppress artifacts due to irregular acquisition geometries, band-
imited source functions and geometric spreading, among others
Huang et al. 2014 ). 

The current gold standard of LSM is Least-Squares Reverse-Time
igration (LS-RTM; Dai & Schuster 2010 ). LS-RTM techniques

enerally use two-way, finite-difference modelling to model the
orward- and back-propagated wavefields within the subsurface,
fter which an imaging condition is applied to update the reflectivity
odel. Using this approach, accurate images of the subsurface can

e recovered, even at large offsets. However, these techniques are
ical Society of Japan. This is an Open Access article
reativecommons.org/licenses/by/4.0/), which permits
inal work is properly cited. 1
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Algorithm 1: Full Wavefield Modelling (FWMod) 

Result: p+ 
K ( zn ) and p−

K ( zn ) for all zn 

Input: σ ( z0 ) 
Set p−

0 ( zn ) = 0 for all zn ; 
for k = 1 : K do 

Set p+ 
k ( z0 ) = σ ( z0 ) ; 

for n = 0 : Nz − 1 do 
q+ 

k ( zn ) = R∩ ( zn ) p
−
k−1 ( zn ) + T+ ( zn ) p

+ 
k ( zn ) ; 

p+ 
k ( zn + 1 ) = W ( zn + 1 , zn ) q

+ 
k ( zn ) ; 

end 

Set p−
k 

(
zNz 

) = 0 ; 
for n = Nz : -1 : 2 do 

q−
k ( zn ) = R∪ ( zn ) p

+ 
k ( zn ) + T− ( zn ) p

−
k ( zn ) ; 

p−
k ( zn −1 ) = W ( zn −1 , zn ) q

−
k ( zn ) ; 

end 

end 

) 
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generally expensive computationally, and often struggle in areas 
with strong multiple-scattering events. 

An alternative approach is given by full-wavefield migration 
(FWM) (Berkhout 2014b ; Davydenko & Verschuur 2017 ), which 
models the wavefield using one-way convolutional operators in the 
space-frequency domain. Due to its use of one-way propagators, 
FWM exhibits a reduced computational cost compared to full, two- 
way modelling (Mulder & Plessix 2004 ), at the expense of less accu- 
rate propagation at large angles and an inability to accurately model 
diving waves. Additionally, by using iterative Neumann modelling, 
FWM incorporates multiple scattering effects in the imaging algo- 
rithm, making it well-suited in areas with strong mulitple-scattering 
events. 

A key challenge for all LSM techniques is the speed of conver- 
gence of the iterative method. In most cases, some form of gradient 
descent is used to iteratively update the reflectivity model. However, 
standard gradient descent algorithms typically suffer from slow con- 
vergence (Pratt et al. 1998 ). To accelerate their convergence, pre- 
conditioning can be applied. The most common pre-conditioner 
used in the context of LSM is the reciprocal of the Hessian oper- 
ator (Pratt et al. 1998 ). As this operator is computationally expen- 
sive to calculate, approximations of the Hessian are commonly ap- 
plied to reduce the computational complexity (Beydoun & Mendes 
1989 ; Abolhassani & Verschuur 2024 ). In recent years, alterna- 
tive approaches for constructing pre-conditioners have also been 
introduced, based on finding approximations of the pseudo-inverse 
operator (Hou & Symes 2015 ; Chauris & Cocher 2017 ). 

In this paper, we extend FWM with a novel pre-conditioner, 
based on approximating the normal equations using proper orthog- 
onal decomposition (POD; Moore 1981 ; Sirovich 1987 ; Berkooz 
et al. 1993 ; Kunisch & Volkwein 2001 ). POD is a model-order 
reduction technique which extracts the dominant modes of partial 
solutions of a large-scale problem, such as LSM, to create a smaller, 
easier to solve problem. Model-order reduction techniques have a 
rich history (Rozza et al. 2008 ; Quarteroni et al. 2016 ), and have 
been successfully applied to both seismic imaging and inversion 
problems (Mamonov et al. 2015 ; Borcea et al. 2023 ), as well as 
problems in seismology (Hawkins et al. 2023 ). Model-order reduc- 
tion techniques have also been used to generate pre-conditioners for 
related problems (Borcea et al. 2014 ). However, up to now these 
methods have not been applied to FWM, which we present in this 
paper. 

To explore this new method, which we name model-order reduced 
FWM (MOR-FWM), we first give a general description of the FWM 

method. Next, we discuss the POD method and illustrate how this 
can be used as a pre-conditioner for FWM. Note that this approach 
can easily be extended to other least-squares migration techniques, 
which makes the method of broader interest. The pre-conditioned 
FWM algorithm is then tested on both the synthetic Marmousi 
model as well as on a field data set from the Vøring basin. Finally, we 
end with a discussion of these results as well as our final conclusions. 

2  T H E O RY  

This section is split into two parts. In the first section, we give a con- 
cise overview of the full-wavefield modelling (FWMod) and FWM 

methods. Interested readers are encouraged to examine earlier work 
for a more comprehensive description of these methods (Berkhout 
2014a , b ; Staal 2015 ; Davydenko & Verschuur 2017 ). In the second 
section, we describe the MOR-FWM method, which uses Galerkin 
projections and POD to create a pre-conditioner. 
2.1 Full-wavefield modelling and migration 

We begin by examining a 2-D version of the forward modelling 
algorithm FWMod. FWMod is based on splitting the full, acoustic, 
wavefield into up- and down-going wavefields. Following Berkhout 
( 2014a ) and Davydenko & Verschuur ( 2017 ), we give the relation- 
ship between the up- and down-going wavefields at an interface 
located at z = zn for angular frequency ω, hence 

q 

+ ( zn ) = R∩ ( zn ) p
− ( zn ) + T+ ( zn ) p

+ ( zn ) , (1) 

q− ( zn ) = R∪ ( zn ) p
+ ( zn ) + T− ( zn ) p

− ( zn ) , (2) 

where q+ ( zn ) , q− ( zn ) , p+ ( zn ) and p− ( zn ) are complex vectors of 
length Nx , with Nx the number of gridpoints in the lateral ( x) di- 
rection, with ( q / p 

) ± ( zn ) 
∣∣
i 
= ( q/p ) ± ( xi , zn ) . The symbols q and p

denote waves travelling away from and towards the interface, respec- 
tively, while the superscripts + and − denote down- and up-going 
wavefields, respectively. The matrices R∪ ( zn ) , R∩ ( zn ) , T+ ( zn ) and 
T− ( zn ) are real and of size Nx × Nx , where R∪ ( zn ) and R∩ ( zn ) 
are the reflectivity operators for waves striking the interface from 

above and below, respectively, while T+ ( zn ) and T− ( zn ) are the 
transmission operators for waves striking the interface from above 
and below, respectively. In a similar way, we give the relationship 
between wavefields at different depth levels, viz. 

p+ ( zn + 1 ) = W ( zn + 1 , zn ) q
+ ( zn ) , (3) 

p− ( zn −1 ) = W ( zn −1 , zn ) q
− ( zn ) , (4) 

where the propagation operators W ( zn + 1 , zn ) and W ( zn −1 , zn ) are 
complex matrices of size Nx × Nx describing the propagation be- 
tween neighbouring depth levels. By recursively applying eqs ( 1 )–
( 4 ) we can model the wavefield at every depth level. This process 
is described in algorithm 1. Note the introduction of the vector 
σ ( z0 ) and scalar K in algorithm 1, where σ ( z0 ) is a complex vector 
of length Nx which describes the source wavefield at the surface 
z0 , while K denotes the number of round-trips modelled. For each 
round-trip, the order of (internal) multiples modelled increases by 
one. 

The procedure described in algorithm 1 can also be represented 
by the following forward modelling equations 

p+ 
k ( zn ) = W 

+ 
( zn , z0 ) σ ( z0 ) +

n −1 ∑ 

m = 0 
W 

+ 
( zn , zm 

) R∩ ( zm 

) p−
k−1 ( zm 

) , 

(5
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−
k ( zn ) =

Nz ∑ 

m = n + 1 
W 

−
( zn , zm 

) R∪ ( zm 

) p+ 
k ( zm 

) , (6) 

here, following Staal ( 2015 ), we have introduced the generalized
ropagation operators 

 

+ 
( zn , zm 

) =
[ 

m + 1 ∏ 

i= n −1 

W ( zi+ 1 , zi ) T
+ ( zi ) 

] 

W ( zm + 1 , zm 

) , (7) 

 

−
( zn , zm 

) =
[ 

m −1 ∏ 

i= n + 1 
W ( zi−1 , zi ) T

− ( zi ) 

] 

W ( zm −1 , zm 

) . (8) 

We start examining the FWM inversion method using eqs ( 5 )–( 8 ).
onsider a small perturbation ˆ R 

( zn ) to the background reflectivity
perator R∪ 

0 ( zn ) , viz. R∪ ( zn ) = R∪ 
0 ( zn ) + ˆ R 

( zn ) . Using continuity
f the wavefields at an interface, we find R∩ = −R∪ , T+ = I + R∪ 

nd T− = I + R∩ , which gives 

∪ / ∩ ( zn ) = R∪ / ∩ 
0 ( zn ) ± ˆ R 

( zn ) , (9) 

± ( zn ) = T±
0 ( zn ) ± ˆ R 

( zn ) . (10) 

e now substitute eqs ( 9 ) and ( 10 ) into eqs ( 5 ) and ( 6 ) and model
he background wavefields p±

0 ,k propagating in the unperturbed, het-

rogeneous medium described by R∪ / ∩ 
0 ( zn ) and W ( zn ±1 , zn ) , hence

+ 
0 ,k ( zn ) = W 

+ 
0 ( zn , z0 ) σ ( z0 ) +

n −1 ∑ 

m = 0 
W 

+ 
0 ( zn , zm 

) R∩ 
0 ( zm 

) p−
0 ,k−1 ( zm 

) , 

(11) 

−
0 ,k ( zn ) =

Nz ∑ 

m = n + 1 
W 

−
0 ( zn , zm 

) R∪ 
0 ( zm 

) p+ 
0 ,k ( zm 

) . (12) 

ext, we model the additional wavefields ˆ p±
k arising from the per-

urbations ˆ R 

( zn ) . Ignoring second-order scattering due to these per-
urbations, we find 

ˆ + k ( zn ) =
n −1 ∑ 

m = 1 
W 

+ 
0 ( zn , zm 

) ˆ R 

( zm 

) 
(
p+ 

0 ,k ( zm 

) − p−
0 ,k−1 ( zm 

) 
)
, (13) 

ˆ −k ( zn ) =
Nz ∑ 

m = n + 1 
W 

−
0 ( zn , zm ) 

[
R∪ 

0 ( zm ) ̂  p+ 
i ( zm ) + ˆ R 

( zm ) 
(
p+ 

0 ,k ( zm ) − p−
0 ,k ( zm ) 

)]
.

(14)

ote the use of the subscript 0 to denote wavefields and operators
n the unperturbed background medium, and the use of the caret
ymbol ̂  to denote wavefields and operators due to the perturbation
ˆ 
 

( zn ) . 
We now assume the reflectivity operator to be angle-independent,

hich is a reasonable approximation at small angles. With this
ssumption, R∪ 

0 ( zn ) and ˆ R 

( zn ) are diagonal matrices. Assuming
−
0 ,k−1 ( zn ) ≈ p−

0 ,k ( zn ) , the upgoing wavefield at the surface is then
iven by 

ˆ −k ( z0 ) =
Nz ∑ 

m = 0 

(
W 

∪ 
0 ( z0 , zm ) + W 

−
0 ( z0 , zm ) 

)
ˆ r ( zm ) ◦

(
p+ 

0 ,k ( zm ) − p−
0 ,k ( zm ) 

)
, 

(15) 

here ◦ represents the Hadamard product, and we have introduced
ˆ 
 

( zm 

) , a real vector of length Nx with elements ˆ r ( zm 

) | i = ˆ R 

( zm 

) 
∣∣
i i 

,
nd 

 

∪ 
0 ( z0 , zn ) =

Nz ∑ 

m = n + 1 
W 

−
0 ( z0 , zm 

) R∪ 
0 ( zm 

) W 

+ 
0 ( zm 

, zn ) . (16) 
s the Hadamard product is commutative, we can write 

ˆ −k ( z0 ) =
Nz ∑ 

m = 0 

(
W 

∪ 
0 ( z0 , zm ) + W 

−
0 ( z0 , zm ) 

) (
P+ 

0 ,k ( zm ) − P−
0 ,k ( zm ) 

)
ˆ r ( zm ) , 

(17) 

here P±
0 ,k ( zm 

) = diag 
(
p±

0 ,k ( zm 

) 
)
. As eq. ( 17 ) is linear with respect

o ̂  r ( zm 

) , it can be written as 

ˆ −k ( z0 ) = Aω,σ ˆ r , (18) 

here Aω,σ is a complex matrix of size Nx × Nx Nz , constructed

y horizontally tiling the matrices 
(

W 

∪ 
0 + W 

−
0 

) (
P+ 

0 ,k − P−
0 ,k 

)
, and

ˆ 
 is a real vector of length Nx Nz , constructed by vertically tiling
he vectors ˆ r ( zm 

) . Up until now, we have examined the wavefield
t a single frequency ω due to a single source, with corresponding
ource wavefield σ ( z0 ) , as represented by Aω,σ in eq. ( 18 ). The full
avefield for all sources and frequencies can be written as 

−,full 
k ( z0 ) − p−,full 

0 ,k ( z0 ) = Aˆ r ⇔

⎡ 

⎢ ⎣ 

ˆ p−
k ( ω1 , σ 1 , z0 ) 

. . . 
ˆ p−

k 

(
ωNω 

, σ Nσ
, z0 

)
⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

Aω1 ,σ1 

. . . 
AωNω ,σNσ

⎤ 

⎥ ⎦ ̂

 r , (19) 

hich is constructed by vertically tiling the vectors ˆ p−
k ( z0 ) and

atrices Aω,σ of eq. ( 18 ). 
To perform FWM, we first set p−,full 

k ( z0 ) = d , with d a complex
ector of length Nx Nσ Nω containing the recorded wavefield at the
urface for all Nσ sources and all Nω frequencies. We now wish to
olve eq. ( 19 ) for the reflectivity vector ̂  r . The most straightforward
pproach to obtain ̂  r is by solving the normal equations, hence 

ˆ 
 = (

AH A 

)−1 
AH 

(
d − p−,full 

0 ,k ( z0 ) 
)

, (20) 

here the superscript H represents the conjugate transpose. How-
ver, this is impractical, as A is of size Nx Nσ Nω × Nx Nz in 2-D.
his makes it prohibitively expensive computationally to calculate

he matrix inverse. Instead, we define a cost function J , with 

J = 1 

2 

∑ 

i, j 

∥∥(
d

(
ωi , σ j 

) − p−
0 ,k 

(
ωi , σ j , z0 

)) − Aωi ,σ j ̂  r 
∥∥2 

, (21) 

here ‖ . . . ‖ is the Euclidean norm of the vector. We now perform
radient descent to find ̂  r . As eq. ( 19 ) is linear in ̂  r , the gradient of
he cost function J is given by 

∂ J 

∂ ˆ r 
= −

∑ 

i, j 

Re 
(

AH 

ωi ,σ j 
ek 

(
ωi , σ j 

))
, (22) 

here 

k 

(
ωi , σ j 

) = d
(
ωi , σ j 

) − p−
0 ,k 

(
ωi , σ j , z0 

) − Aωi ,σ j ̂  r . (23) 

e now use this gradient to update the reflectivity 

∪ = r∪ 
0 + α

∂ J 

∂ ˆ r 
, (24) 

here the (real-valued) scalar α is given by 

=
Re 

[ (
A ∂ J 

∂ ˆ r 

)H 

ek 

] 
∥∥A ∂ J 

∂ ˆ r 

∥∥2 
. (25) 

etting r∪ 
0 = r∪ , we can now repeat this process for multiple iter-

tions to gradually minimize the cost function J . The full FWM
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process is summarized in algorithm 2. Note that eqs ( 22 ) and ( 25 ) 
can be calculated using a depth-recursive approach similar to the one 
shown in algorithm 1. This significantly reduces the computational 
cost of algorithm 2. 

Algorithm 2: Conventional Full Wavefield Migration (FWM) 

Result: Reflectivity model r∪ . 
Input: Measured data d 

Set r∪ = 0 ; 
for k = 1 : K do 

Set r∪ 
0 = r∪ ; 

Calculate p+ 
0 ,k ( zn ) and p−

0 ,k ( zn ) for all zn using algorithm 1 ; 

Calculate ∂ J 
∂ ˆ r = −∑ 

i, j 
Re 

(
AH 

ωi ,σ j 
ek 

(
ωi , σ j 

))
; 

Calculate α = Re 
[ (

A ∂ J 
∂ ˆ r 

)H 

ek 

] / ∥∥A ∂ J 
∂ ˆ r 

∥∥2 
; 

Update reflectivity r∪ = r∪ 
0 + α ∂ J 

∂ ˆ r 

end 

2.2 Model-order reduced full-wavefield migration using 
proper orthogonal decomposition 

In this section, we examine an alternative approach to solve eq. ( 19 ), 
based on Galerkin projections and POD. We begin by describing the 
method of Galerkin projections for a linear system. Assume that the 
final solution ̂  r can be written as a linear combination of Nr known 
basis vectors ̂  rr,i where Nr 	 Nx Nz , that is, 

ˆ r ≈
∑ 

i 

ci ̂  rr,i = ˆ Rr c , (26) 

where ˆ Rr is a real matrix of size Nx Nz × Nr , with columns ̂  rr,i , and 
c is a vector of the coefficients ci . Eq. ( 19 ) can then be rewritten as 

A ˆ Rr c = d − p−,full 
0 ,k ( z0 ) . (27) 

Left-multiplying both sides of eq. ( 27 ) by 
(
A ˆ R r 

)H 

and taking the 
inverse gives 

c = 

( [
Re 

(
A ˆ Rr 

)
Im 

(
A ˆ Rr 

) ]H 

[
Re 

(
A ˆ Rr 

)
Im 

(
A ˆ Rr 

) ]) −1 [
Re 

(
A ˆ Rr 

)
Im 

(
A ˆ Rr 

) ]H 

⎡ 

⎣ 

Re 
(

d − p−,full 
0 ,k ( z0 ) 

)
Im 

(
d − p−,full 

0 ,k ( z0 ) 
)

⎤ 

⎦ , (28) 

where we have separated the real and imaginary parts to ensure 
that the coefficient vector c is real. After using eq. ( 28 ) to find the 
coefficients ci , the perturbation ̂  r can be computed using eq. ( 26 ). 

Note the similarity of eq. ( 28 ) to eq. ( 20 ). Both equations rep- 
resent solving the normal equations of eq. ( 19 ). However, eq. ( 20 ) 
requires taking the inverse of a matrix of size Nx Nz × Nx Nz , while 
eq. ( 28 ) reduces the size of this matrix to Nr × Nr . Therefore, in 
situations where one can find a small set of basis vectors ˆ rr,i that 
describe the full solution ˆ r such that Nr 	 Nx Nz , the method of 
Galerkin projections can dramatically reduce the cost of calculat- 
ing the inverse. This method can be applied generally to any linear 
system, given that one can find an appropriate set of basis vectors 
ˆ rr,i . 

Also note the similarity of this approach to conjugate gradient 
methods, where the basis vectors ˆ rr,i are chosen as a set of conju- 
gate directions (Hestenes & Stiefel 1952 ). To find these conjugate 
directions, an iterative scheme is applied in general. The downside 
of this approach is that the wavefield perturbations Aˆ rr,i cannot be 
calculated in parallel, as the basis vector ˆ rr,i depends on the pre- 
vious wavefield perturbations Aˆ rr, j for j < i . By using POD we 
can construct a set of basis vectors ˆ rr,i a priori , which allows Aˆ rr,i 

to be calculated in parallel, reducing the computational cost of the 
method. 

To find an appropriate set of basis vectors ̂  rr,i to form 

ˆ Rr we apply 
POD. Hence, we will construct ˆ rr,i from a set of partial solutions 
s j for j = 1 , . . . , Ns , such that Nr 	 Ns 	 Nx Nz . These partial 
solutions may be solutions for a part of the domain, solutions to re- 
lated problems, or low-fidelity solutions acquired by applying a less 
expensive approach. To construct ˆ Rr from these partial solutions s j , 
we begin by constructing the so-called solution matrix S , which is a 
real matrix of size Nx Nz × Ns , with columns s j . Next, we take the 
Singular Value Decomposition (SVD) of S such that U �VT = S . 
The basis vectors ̂  rr,i are then given by the columns ui of the matrix 
U . The number of basis vectors required depends on the decay of 
the singular values �| i i . The faster the decay of the singular values, 
the fewer basis vectors ˆ rr,i are required to span the same domain 
as the domain spanned by the vectors s j . Note that we assume that 
the full solution ˆ r falls within the span of s j , as this is required for 
the resulting vectors ̂  rr,i of the POD process to be appropriate basis 
vectors for ̂  r . 

To apply POD to FWM, we must therefore first construct an 
appropriate solution matrix S . Recalling the conventional FWM 

approach described in Section 2.1 , we find that a natural choice for 
the partial solution vectors s j is provided by the components of the 
gradient ∂ J 

∂ ˆ r , that is, 

S =
[ 

Re 
(
AH 

ω1 ,σ1 
ek ( ω1 , σ 1 ) 

)
. . . Re 

(
AH 

ωNω ,σNσ
ek 

(
ωNω 

, σ Nσ

)) ] 
. 

(29) 

With this choice, the partial solution vectors s j represent the contri- 
bution to the gradient for a single frequency ω and a single source σ , 
which can be calculated efficiently for each iteration using algorithm 

2. The linear combination ˆ Rr c can therefore be seen as a weighted 
version of the steepest descent g radient ∂ J 

∂ ˆ r , allowing cer tain fre- 
quencies or sources to be given more weight in the construction of 
the update direction. 

Next, we calculate the SVD of the solution matrix S and construct 
the low-rank solution matrix ˆ Rr from the left singular vectors ui as 
follows: 

ˆ Rr =
[

∂ J 
∂ ˆ r ˜ u1 . . . ˜ uN� 

]
, (30) 

with N� the maximum rank we choose to take into account, which 
can be chosen manually or by using an error criterion. In eq. ( 30 ) we 
have explicitly included the conventional gradient ∂ J 

∂ ˆ r and we have 
applied a Gram–Schmidt procedure to the vectors ui to form the 
vectors ˜ u , which are orthogonal to the conventional gradient. This 
guarantees that the original gradient always falls in the span of ̂  rr,i , as 
this may not be guaranteed if only a small number of singular vectors 
ui are used. In this way, we can guarantee that the reflectivity update 
produced by MOR-FWM for the linearized problem can never be 
worse than the update produced by the conventional method. 

Using ˆ Rr , we now apply eq. ( 28 ) to calculate the coefficient 
vector c . Finally, knowing ˆ Rr and c , we use eq. ( 26 ) to retrieve 
the reflectivity update, viz. ̂  r = ˆ Rr c . This process is summarized in 
algorithm 3. 
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Algorithm 3: Model-Order Reduced Full Wavefield Migration 
(MOR-FWM) 

Result: Reflectivity model r∪ . 
Input: Measured data d 

Set r∪ = 0 ; 
for k = 1 : K do 

Set r∪ 
0 = r∪ ; 

Calculate p+ 
0 ,k ( zn ) and p−

0 ,k ( zn ) for all zn using algorithm 1 ; 
Calculate solution matrix S using eq. ∼(?? ) ; 
Calculate SVD of S ⇒ U � VT = S ; 
Construct low-rank partial solutions ˆ rr,i = ˜ ui ; 

Calculate wavefield perturbations A ˆ Rr using a modified 
version of algorithm 1 ; 

Solve reduced system A ˆ Rr c = d − p−,full 
0 ,k ( z0 ) using 

eq. ∼(?? ) ; 
Update reflectivity r∪ = r∪ 

0 + ˆ Rr c 
end 
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 N U M E R I C A L  R E S U LT S  

n this section, we examine the results obtained with the MOR-FWM
ethod for a synthetic and a field data example. We compare these

esults with the reconstructions obtained using the conventional
WM method to illustrate the advantages and disadvantages of the
pproach introduced in this paper. 

.1 Synthetic example: Marmousi model 

e begin with the synthetic example, where we have applied the
ethod on a part of the Marmousi model as an initial test. Note

hat we have not used the full Marmousi model in order to reduce
he overall computational cost of the example. Also, due to the use
f one-way operators and angle-independent reflection operators,
dding larger offsets will generally not lead to improved results in
his example. 

Data was generated using a time-domain finite-difference scheme
Thorbecke & Draganov 2011 ) using a source wavefield with a
icker wavelet signature. For the imaging, a smoothed version of

he true velocity model was used as the background velocity model.
he parameters used in the modelling and inversion scheme are
iven in Table 1 . The imaging results are shown in Fig. 1 . 

Examining Fig. 1 , we see that both the conventional FWM method
s well as the MOR-FWM method outlined in Section 2.2 have pro-
uced a reasonable reconstruction of the reflectivity image corre-
ponding to the underlying velocity and density models. However,
hile the differences between the results of the two methods are
odest, in certain areas the MOR-FWM result shows improved

onsistency and better resolution compared to the conventional
ethod. 
Comparing Figs 1 (g) and (h), for example, we see that the MOR-

WM method has done a better job of reconstructing the two layers
ight above the strong reflector in the middle of the figure (bot-
om three arrows). We also see that the layers in Fig. 1 (h) are a
it sharper (top two arrows). Figs 1 (j) and (k) show a similar be-
aviour. The two layers at the top of the image are better resolved
n Fig. 1 (k) compared to Fig. 1 (j) (top three arrows), and the layers
re slightly sharper throughout the MOR-FWM figure (bottom two
rrows). 

This conclusion is further supported by Fig. 1 (c), where we have
lotted the cost function J as a function of the iteration number
. From this figure, we see that the MOR-FWM method yields a
educed data residual compared to the conventional FWM method,
ending further support for the MOR-FWM method. 

.2 Field data example: Vøring basin 

ext, we examine the field data example, where we have tested the
ethod on a marine field data set from the Vøring basin in Norway,

sing a velocity model generated by Joint-Migration Inversion (see
erkhout 2014c ; Staal 2015 , for more details). The parameters used

or this data set are shown in Table 2 and the results in Fig. 2 . 
Comparing Figs 2 (a) and (b), as well as examining 2 (d), we

ee that the difference between the two methods is significantly
maller than in Section 3 . This can also be seen from the cost
unctional J , shown in Fig. 4 (d), we see similar behaviour. Both
he conventional FWM method as well as the MOR-FWM method
ield very similar values after five iterations. However, we note
hat the MOR-FWM method outperforms the conventional FWM

ethod when fewer iterations are used. This effect is discussed in
ore detail in Section 4.2 . 

 D I S C U S S I O N  

ased on the results shown in Figs 1 and 2 , we observe that the
OR-FWM method generates slightly better reconstructions com-

ared to the conventional FWM method. More distinct layers are
ecovered and the layers are sharper to the eye when the MOR-
WM method is used. This is consistent with the interpretation of

he method as a pre-conditioner to the conventional approach. In
his section, we compare the computational cost of both methods as
ell as exploring methods to improve the results further. 

.1 Computational costs 

e begin by comparing the computational costs of algorithm 2,
hich describes the conventional FWM method, and algorithm 3,
hich describes the MOR-FWM method. 
Both algorithms begin by calculating the forward modelled wave-

elds p+ 
0 ,k ( zn ) and p−

0 ,k ( zn ) in the background medium, followed
y calculating Re 

(
AH 

ω,σ ek ( ω, σ ) 
)

for all frequencies ω and source
avefields σ ( z0 ) , which is either used to calculate the gradient of

he cost functional J (conventional FWM, eq. 22 ), or construct the
olution matrix S (MOR-FWM, eq. 29 ). Next, in the MOR-FWM
lgorithm, the SVD of the solution matrix S is calculated to find the
asis vectors ̂  rr,i = ˜ ui . Assuming that the maximum rank N� taken
nto account is much smaller than the number of partial solutions

j , this step has a negligible computational cost. 
The real difference between the two methods lies in the next step,

he calculation of the wavefield perturbations A ∂ J 
∂ ˆ r (algorithm 2,

tep 6) and A ˆ Rr (algorithm 3, step 8). In the MOR-FWM method,
he wavefield perturbations for each basis vector ˆ rr,i must be cal-
ulated, while in the conventional FWM method only the wavefield
erturbation due to the gradient ∂ J 

∂ ˆ r is required. Therefore, this step
s more expensive computationally by a factor of N� for the MOR-
WM method, where N� is the number of basis vectors taken into
ccount. As the other steps are either identical or have negligible
omputational costs, this step fully determines the difference in
omputational cost between the two methods. 

To reduce the computational cost of this step, a number of ap-
roaches may be used. First, one can reduce the number basis vec-
ors N� used. This will reduce the computational cost, but may
ead to smaller improvements to the reconstr uction. Alter natively,
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Table 1. Parameters Marmousi model. 

Lateral grid spacing �x 10 m Ver tical g rid spacing �z 5 m 

Number of lateral gridpoints Nx 431 Number of vertical gridpoints Nz 500 
Peak frequency fpk 17 Hz Minimum frequency fmin 2 Hz 
Maximum frequency fmax 40 Hz Number of frequencies Nω 157 
Number of sources Nσ 44 Source spacing �σ 100 m 

Size of full system Nx Nz 2 · 105 Number of singular vectors N� 50 
Number of iterations K 8 

Figure 1. FWM and MOR-FWM results for the synthetic Marmousi example. Panels (a) and (b) show the velocity and density model, respectively, of the 
part of the Marmousi model under consideration. Panel (c) shows the data residual J , which has been normalized with respect to the residual for p−

0 , 1 = 0 . 
Panels (d)–(f) show the conventional FWM and MOR-FWM image after eight iterations, respectively, as well as the difference between the two images. 
Panels (g)–(i) show a zoom-in of the FWM image, the MOR-FWM image and their difference at the location of the top box, respectively, while panels (j)–(l) 
show zoom-ins of the bottom box. Arrows indicate regions of interest within the figures. 

Table 2. Parameters Voring data. 

Lateral grid spacing �x 25 m Ver tical g rid spacing �z 5 m 

Number of lateral gridpoints Nx 399 Number of vertical gridpoints Nz 1001 
Minimum frequency fmin 2 Hz Maximum frequency fmax 60 Hz 
Number of frequencies Nω 293 Number of sources Nσ 23 
Source spacing �σ 450 m Number of iterations K 5 
Size of full system Nx Nz 4 · 105 Number of singular vectors N� 50 
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other choices for the basis vectors may be explored. For exam- 
ple, alternative choices for the partial solutions s j may lead to a 
more rapid decay of the singular values of the solution matrix S , in 
which case fewer basis vectors are required to yield a high-quality 
pre-conditioner. Finally, if the basis vectors ˆ rr,i can be estimated a 
priori, the construction of the solution matrix S and its SVD can 
be omitted, and the calculation of A ˆ Rr can be performed offline, as 
it does not depend on the measured data d . Such a situation may 
arise in monitoring applications, for example, where high-quality 
estimates of the reflectivity may already exist. 

art/ggaf356_f1.eps
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Figure 2. FWM and MOR-FWM results for the Vøring field data example. Panel (c) shows the velocity model used for migration. Panels (a), (b) and (d) show 

the conventional FWM and MOR-FWM image after five iterations, respectively, as well as the difference between the two images. Note that the difference 
figures have been plotted with half the clip value of the FWM and MOR-FWM images. 

Figure 3. FWM and MOR-FWM results for the Vøring field data example after one iteration. Panels (a), (b) and (d) show the conventional FWM and 
MOR-FWM image after one iteration, respectively, as well as the difference between the two images. Panel (c) shows the velocity model used for migration. 
Note that the box plotted in the figures indicates the region displayed in Fig. 4 . 
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.2 Results after one iteration 

ext, we compare the performance of the conventional FWM and
he MOR-FWM methods after a single iteration, the results of
hich are shown in Figs 3 and 4 . From this figure, we see that the
(  
OR-FWM method requires fewer iterations to produce a sharp
mage compared to the conventional method. Comparing Figs 4 (a)
nd (b), for example, we see that the MOR-FWM method displays
n improved resolution at the edges of the model at the first iteration
left-most arrow). Also, we see an improved recovery of the strong

art/ggaf356_f2.eps
art/ggaf356_f3.eps
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Figure 4. Zoom-in of the FWM and MOR-FWM results for the Vøring field data example after one iteration. Panels (a)–(c) show the conventional FWM and 
MOR-FWM image after one iteration, respectively, as well as the difference between the two images. Arrows indicate regions of interest within the figures. 
Panel (a) shows the velocity model used for migration. Panel (d) shows the data residual J , which has been normalized with respect to the residual for p−

0 , 1 = 0 . 

Figure 5. FWM and MOR-FWM results for the Vøring field data example. Panels (a), (b) and d) show the normalized FWM and the normalized MOR-FWM 

image after five iterations, respectively, as well as the difference between the two images. Panel (c) shows the conventional FWM image for comparison. The 
box indicates the main region of interest in these figures. 
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reflectors in the zoomed-in image (top-left arrow). Finally, we see 
an improved continuity of the weaker reflectors deeper in the image 
(right and bottom arrows). 

This result suggests that, using the MOR-FWM method, one 
may require fewer iterations to retrieve a sharp image. This is fur- 
ther supported by the cost function J , shown in Fig. 4 (d), which 
shows that the MOR-FWM method achieves a smaller data misfit 
even at the first iteration. This is especially relevant when FWM is 
applied in the context of One-way Reflection Waveform Inversion 
(Abolhassani & Verschuur 2023 ), also known as Joint Migration In- 
version (Berkhout 2014c ), where the (background) speed-of-sound 
model is also updated. In this context it is important to generate 

art/ggaf356_f4.eps
art/ggaf356_f5.eps
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n accurate reflectivity model using only a few iterations, as the
eflectivity model must be updated each time the speed-of-sound
odel is adjusted. 

.3 Normalization 

inally, we examine a potential alternative choice for the par-
ial solutions s j . Recall that the partial solutions s j are given by
e 
(
AH 

ω,σ ek ( ω, σ ) 
)

for a given frequency ω and source wavefield
( z0 ) (eq. 29 ). While this is a natural choice, a downside of this

pproach is that it is sensitive to the source signature. This means
hat in cases where certain frequencies or sources have larger am-
litudes than others, the corresponding partial solutions will also
xhibit larger amplitudes. When taking the SVD of the solution ma-
rix S , the basis vectors ui will then be weighted towards the partial
olutions with the largest amplitudes, meaning that not all sources
nd frequencies are treated equally in the construction of the basis
ectors. 

To circumvent this shortcoming, one can choose to normalize
ach partial solution s j . This can be done in conventional FWM,
here all contributions are simply summed together, or in MOR-
WM, where the normalized partial solutions are used in the SVD.
sing this approach, we retrieve the results shown in Fig. 5 . Looking

t this figure, we see that the imprint of the source signature has
een removed, removing a number of spurious reflectors. Due to
his effect, we see an improved image in the target zone below the
verburden, indicated by the box. 

We also note a more pronounced difference between the two
ethods. Comparing Figs 5 (a) and (b), we see that the reflectors in

he target zone exhibit a greater continuity when normalized MOR-
WM is applied compared to normalized FWM. This observation

s supported by the cost function J , shown in Fig. 4 (d), which shows
n improved data misfit for normalized MOR-FWM. These results
nderline the sensitivity of the MOR-FWM method to the choice of
asis vectors, as a well-chosen set of basis vectors can significantly
mprove the results. 

 C O N C LU S I O N  

n this paper, we introduce a novel pre-conditioner for full-wavefield
igration, using proper orthogonal decomposition to find a reduced

asis. We show that this reduced basis can be used to construct a
re-conditioner using Galerkin projections. We tested the resulting
lgorithm on the synthetic Marmousi model and a field data set
rom the Vøring basin, where we achieve improved results in both
ases compared to the conventional FWM algorithm. We discuss the
hallenge of the computational cost of the method, which depends
inearly on the number of basis vectors used, and present some
deas to further improve the results and/or reduce the computational
osts. Based on the flexibility of the method, as well as the results
e present in this paper, we conclude that the MOR-FWM method

s a useful addition to the existing work on migration in general and
WM in particular. 
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