<]
TUDelft

Delft University of Technology

Model-order reduced full-wavefield migration using proper orthogonal decomposition

Hoogerbrugge, L.; Khalid, M. H.; Van Dongen, K. W.A_; Verschuur, D. J.

DOI
10.1093/gji/ggaf356

Publication date
2025

Document Version
Final published version

Published in
Geophysical Journal International

Citation (APA)

Hoogerbrugge, L., Khalid, M. H., Van Dongen, K. W. A_, & Verschuur, D. J. (2025). Model-order reduced
full-wavefield migration using proper orthogonal decomposition. Geophysical Journal International, 243(2),
Article ggaf356. https://doi.org/10.1093/gji/ggaf356

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1093/gji/ggaf356
https://doi.org/10.1093/gji/ggaf356

Geophysical Journal International

Geophys. J. Int. (2025) 243, 1-10
Advance Access publication 2025 September 11
Research Paper

https://doi.org/10.1093/gji/ggaf356

Model-order reduced full-wavefield migration using proper
orthogonal decomposition

L. Hoogerbrugge “,! M.H. Khalid,> K.W.A. van Dongen' and D.J. Verschuur?

! Department of Imaging Physics, Delft University of Technology, 2628 CD Delft, Netherlands. E-mail: hoogerbrugge.l.a@gmail.com
2 Department of Applied Mathematics, University of Twente, 7522 NB Enschede, Netherlands
3 Department of Applied Geophysics & Petrophysics, Delft University of Technology, 2628 CD Delft, Netherlands

Accepted 2025 September 1. Received 2025 June 20; in original form 2024 December 22

SUMMARY

As seismic migration is increasingly applied to more and more complex media, more so-
phisticated imaging techniques are required to generate accurate images of the subsurface.
Currently, the best results for imaging are achieved by least-squares migration methods, such
as least-squares reverse time migration and full-wavefield migration (FWM). These methods
iteratively update the image to minimize the misfit between the forward modelled wavefield
and the recorded data at the surface. However, a key challenge for these techniques is the
speed of convergence. To accelerate the speed of convergence, pre-conditioning is commonly
applied. The most common pre-conditioner is the reciprocal of the Hessian operator. However,
this operator is computationally expensive to calculate, making it difficult to apply directly. In
this paper, we present a novel, alternative, pre-conditioner for FWM. This pre-conditioner is
based on applying Galerkin projections to a linear system, which projects the system onto a set
of known basis vectors. To find an appropriate set of basis vectors for this approach we apply
proper orthogonal decomposition (POD) to a set of partial solutions of the linear system. The
resulting method gives an approximation to the pseudo-inverse based on these basis vectors.
To test this technique, which we name model-order reduced FWM (MOR-FWM), we apply
it to the synthetic Marmousi model as well as to field data from the Voring basin in Norway.
For these examples, we show that MOR-FWM yields an improved data-misfit compared to
the standard FWM approach. In addition, we show that the result for the field data case can be
improved by normalizing the partial solutions before applying POD.

Key words: Inverse theory; Numerical modelling; Numerical solutions..

1 INTRODUCTION

Seismic migration is an important tool for subsurface characteriza-
tion, which is of vital importance in many different areas. Examples
include the study of the Earth’s geological structures, the location
of subsurface resources and the characterization of potential sites
for off-shore wind farms (Brune et al. 2022), to name a few.

While many different approaches for seismic migration exist
(Bee Bednar 2005), the general approach commonly consists of
three steps. First, the source wavefield at the surface is propagated
forward into the medium through a numerical forward modelling
scheme, where an estimate of the, generally unknown, speed-of-
sound model is used to ensure accurate propagation. Secondly, using
a similar approach, the measured data at the subsurface is propa-
gated backwards in time into the medium. Finally, the forward and
backward propagated wavefields are correlated using an imaging
condition, leading to an estimate of the reflectivity model of the
subsurface.

To improve upon the standard migration approach, Least-Squares
Migration (LSM) methods have been introduced (Schuster 1993;
Nemeth ef al. 1999). LSM methods aim to minimize the misfit
between the recorded data and forward modelled wavefield at the
surface by iteratively updating the reflectivity model of the subsur-
face. While these methods come with an increase in computational
costs due to their iterative nature, the resolution of the final re-
flectivity image can be drastically improved, as LSM techniques
can suppress artifacts due to irregular acquisition geometries, band-
limited source functions and geometric spreading, among others
(Huang et al. 2014).

The current gold standard of LSM is Least-Squares Reverse-Time
Migration (LS-RTM; Dai & Schuster 2010). LS-RTM techniques
generally use two-way, finite-difference modelling to model the
forward- and back-propagated wavefields within the subsurface,
after which an imaging condition is applied to update the reflectivity
model. Using this approach, accurate images of the subsurface can
be recovered, even at large offsets. However, these techniques are
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generally expensive computationally, and often struggle in areas
with strong multiple-scattering events.

An alternative approach is given by full-wavefield migration
(FWM) (Berkhout 2014b; Davydenko & Verschuur 2017), which
models the wavefield using one-way convolutional operators in the
space-frequency domain. Due to its use of one-way propagators,
FWM exhibits a reduced computational cost compared to full, two-
way modelling (Mulder & Plessix 2004), at the expense of less accu-
rate propagation at large angles and an inability to accurately model
diving waves. Additionally, by using iterative Neumann modelling,
FWM incorporates multiple scattering effects in the imaging algo-
rithm, making it well-suited in areas with strong mulitple-scattering
events.

A key challenge for all LSM techniques is the speed of conver-
gence of the iterative method. In most cases, some form of gradient
descent is used to iteratively update the reflectivity model. However,
standard gradient descent algorithms typically suffer from slow con-
vergence (Pratt er al. 1998). To accelerate their convergence, pre-
conditioning can be applied. The most common pre-conditioner
used in the context of LSM is the reciprocal of the Hessian oper-
ator (Pratt et al. 1998). As this operator is computationally expen-
sive to calculate, approximations of the Hessian are commonly ap-
plied to reduce the computational complexity (Beydoun & Mendes
1989; Abolhassani & Verschuur 2024). In recent years, alterna-
tive approaches for constructing pre-conditioners have also been
introduced, based on finding approximations of the pseudo-inverse
operator (Hou & Symes 2015; Chauris & Cocher 2017).

In this paper, we extend FWM with a novel pre-conditioner,
based on approximating the normal equations using proper orthog-
onal decomposition (POD; Moore 1981; Sirovich 1987; Berkooz
et al. 1993; Kunisch & Volkwein 2001). POD is a model-order
reduction technique which extracts the dominant modes of partial
solutions of a large-scale problem, such as LSM, to create a smaller,
easier to solve problem. Model-order reduction techniques have a
rich history (Rozza et al. 2008; Quarteroni et al. 2016), and have
been successfully applied to both seismic imaging and inversion
problems (Mamonov et al. 2015; Borcea et al. 2023), as well as
problems in seismology (Hawkins et al. 2023). Model-order reduc-
tion techniques have also been used to generate pre-conditioners for
related problems (Borcea ef al. 2014). However, up to now these
methods have not been applied to FWM, which we present in this
paper.

To explore this new method, which we name model-order reduced
FWM (MOR-FWM), we first give a general description of the FWM
method. Next, we discuss the POD method and illustrate how this
can be used as a pre-conditioner for FWM. Note that this approach
can easily be extended to other least-squares migration techniques,
which makes the method of broader interest. The pre-conditioned
FWM algorithm is then tested on both the synthetic Marmousi
model as well as on a field data set from the Voring basin. Finally, we
end with a discussion of these results as well as our final conclusions.

2 THEORY

This section is split into two parts. In the first section, we give a con-
cise overview of the full-wavefield modelling (FWMod) and FWM
methods. Interested readers are encouraged to examine earlier work
for a more comprehensive description of these methods (Berkhout
2014a, b; Staal 2015; Davydenko & Verschuur 2017). In the second
section, we describe the MOR-FWM method, which uses Galerkin
projections and POD to create a pre-conditioner.

Algorithm 1: Full Wavefield Modelling (FWMod)

Result: p. (z,) and py, (z,) for all z,

Input: o (zo)

Set p, (z,) = 0 forall z,;

fork=1.:K do

Set pf (20) = 0 (z0);

forn=0:N.—1do

qIJ{r (Zn) =R" (Zn) Pi_i (Zn) + T+ (Zn) pkJr (Zn);
pl_: (Zn+1) = W(Zn+1» z,) ql-f— (z0);

end

Setp; (zn.) = 0;

forn=N,:-1:2do

qI: (Zn) =RY (Zn)P;j (Zn) + T (Zn)pI: (Zn);
P; (Zn—l) = W(Zn—lv Zn)q; (Zn);

end

end

2.1 Full-wavefield modelling and migration

We begin by examining a 2-D version of the forward modelling
algorithm FWMod. FWMod is based on splitting the full, acoustic,
wavefield into up- and down-going wavefields. Following Berkhout
(2014a) and Davydenko & Verschuur (2017), we give the relation-
ship between the up- and down-going wavefields at an interface
located at z = z, for angular frequency w, hence

q+ (z2) = R" (z)p~ (Zn)+T+ (Zn)p+ (za) s (D

q () =R )P () +T (z)p (), 2

where q* (z,), q” (z,), p* (z,) and p~ (z,) are complex vectors of
length N,, with N, the number of gridpoints in the lateral (x) di-
rection, with (q/p)* (z,,)|l. = (¢/p)* (x;, z,). The symbols ¢ and p
denote waves travelling away from and towards the interface, respec-
tively, while the superscripts * and ~ denote down- and up-going
wavefields, respectively. The matrices RY (z,,), R" (z,,), T* (z,,) and
T~ (z,) are real and of size N, x N,, where RY(z,) and R" (z,)
are the reflectivity operators for waves striking the interface from
above and below, respectively, while Tt (z,) and T~ (z,,) are the
transmission operators for waves striking the interface from above
and below, respectively. In a similar way, we give the relationship
between wavefields at different depth levels, viz.

P @) =Wz, 2) Q" (22) 3

p (Zn—l) = W(Zn—lvzn)q_ (Zn)a (4)
where the propagation operators W (z,.1, z,) and W (z,_1, z,,) are
complex matrices of size N, x N, describing the propagation be-
tween neighbouring depth levels. By recursively applying eqs (1)—
(4) we can model the wavefield at every depth level. This process
is described in algorithm 1. Note the introduction of the vector
0 (zp) and scalar K in algorithm 1, where o (z() is a complex vector
of length N, which describes the source wavefield at the surface
zp, while K denotes the number of round-trips modelled. For each
round-trip, the order of (internal) multiples modelled increases by
one.

The procedure described in algorithm 1 can also be represented
by the following forward modelling equations

n—1

PiCE) =W (2,200 () + Y W (@0 z) R @) Dy ().

m=0

®)

G20z 1890y 9| uo Jasn Yod N1 Aq 891 528/95€4ebb/z/cz/a11e/(6/Wwod dno olwapede//:sdjy Wwoly papeojumoq



Nz

Pr )= D W (G za)RY(2) P} G, (6)

m=n+1

where, following Staal (2015), we have introduced the generalized
propagation operators

m+1

W+ (va Zm) = |: 1_[ W(Zi-%—lv Zi)T+ (Zf)i| W(Zm+17 Zm) s (7)
i=n—1
m—1

W_ (va Zm) = |: 1_[ W(Zi—l ) Z[)T_ (Zi)i| W(Zm—lv Zm) . (8)
i=n+1

We start examining the FWM inversion method using eqs (5)—(8).
Consider a small perturbation R (z,) to the background reflectivity
operator Ry (z,), viz. RY (z,) = Ry (z,) + R (z,). Using continuity
of the wavefields at an interface, we find R" = —RY, T* =1+ RY
and T~ = I + R", which gives

R (z,) =Ry (z,) £ R (z,), 9)

T*(z,) = Ty (za) £ R (z,). (10)
We now substitute egs (9) and (10) into eqs (5) and (6) and model

the background wavefields p(f . bropagating in the unperturbed, het-
erogeneous medium described by ROU/ n (z,) and W (z,,+1, z,,), hence

n—1

Pos (zn) = Wy (2022000 (20) + Y Wy (2. z0) RY (z) Py 41 ().

m=0
(11)
Nz
Pos @)=Y Wy G za) R () Pis (Zn)- (12)
m=n+1

Next, we model the additional wavefields p;© arising from the per-
turbations R (z,). Ignoring second-order scattering due to these per-
turbations, we find

n—1

B @)= Wy G za) R(za) (5 (20) = Posey @), (13)

m=1
N

B = 3 Wy G za) [RY o) B o)+ R () (B ) — P ) -

m=n+1

(14)

Note the use of the subscript ( to denote wavefields and operators
in the unperturbed background medium, and the use of the caret
symbol " to denote wavefields and operators due to the perturbation
R (z,).

‘We now assume the reflectivity operator to be angle-independent,
which is a reasonable approximation at small angles. With this

assumption, Ry (z,) and R(z,) are diagonal matrices. Assuming
Poi_1 (Zx) = Py (24), the upgoing wavefield at the surface is then
given by

N
A A S A .
B z0) = 2 (Wo Gov 20+ Wy (20, 2)) ) © (B4 o) = Py ).

m=0
(15)
where o represents the Hadamard product, and we have in‘Eroduced
I (z,), areal vector of length N, with elements ¥ (z,,)|; = R(z,,) i
and
N:
Wo 0.z = Y Wy (0. 2) RS @) Wy (2. 2). (16)

m=n+1

Model-order reduced FWM 3

As the Hadamard product is commutative, we can write

&

B o) = D (Wo o, 20) + Wy o, 2)) (P4 ) — Py (2a) F 2,

. W)

where P(Jf « (z2,) = diag (p:f « (Zm )). As eq. (17) is linear with respect
to f(z,,), it can be written as

Py (z0) = Ay o T, (18)
where A, , is a complex matrix of size N, x N, N, constructed
by horizontally tiling the matrices <W0U +W, ) (Pg. —Pyy), and
t is a real vector of length N, N,, constructed by vertically tiling
the vectors t(z,,). Up until now, we have examined the wavefield
at a single frequency o due to a single source, with corresponding

source wavefield o (z), as represented by A,, , in eq. (18). The full
wavefield for all sources and frequencies can be written as

pr (w1,01,20)

p;full (z0) — p(;.kfull (z0) = A} & :
pic (@, 0, . 20)
Ay o
- : , (19)
-

which is constructed by vertically tiling the vectors p, (zo) and
matrices A,, , of eq. (18).

To perform FWM, we first set p,:‘f“” (z9) = d, with d a complex
vector of length N, N, N, containing the recorded wavefield at the
surface for all N, sources and all N, frequencies. We now wish to
solve eq. (19) for the reflectivity vector . The most straightforward
approach to obtain f is by solving the normal equations, hence

P= (ATA) AT (d - py ). (20)
where the superscript ! represents the conjugate transpose. How-
ever, this is impractical, as A is of size N, N, N, x N, N, in 2-D.
This makes it prohibitively expensive computationally to calculate
the matrix inverse. Instead, we define a cost function J, with

1 _ A
J = 5 E H(d(a’i"’j)_po.k ((1),',0']',20)) —Awiﬂjr ?
ij

. @D

where ||. . .|| is the Euclidean norm of the vector. We now perform
gradient descent to find . As eq. (19) is linear in ¥, the gradient of
the cost function J is given by

aJ
Sr= D ke (A%, e (or. o)), (22)
nJ
where
e (wi, 0_,') =d (6057 Gj) — Pos (O)i, g, Zo) — Ay o b (23)
We now use this gradient to update the reflectivity
aJ
Y=l ta—, 24
0 ot (24)

where the (real-valued) scalar « is given by

Re[(A%)"e]
0= ——-—. (25)
A%l
Setting ry = r", we can now repeat this process for multiple iter-
ations to gradually minimize the cost function J. The full FWM
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process is summarized in algorithm 2. Note that eqs (22) and (25)
can be calculated using a depth-recursive approach similar to the one
shown in algorithm 1. This significantly reduces the computational
cost of algorithm 2.

Algorithm 2: Conventional Full Wavefield Migration (FWM)

Result: Reflectivity model rV
Input: Measured data d

Setr” =0;
fork=1:K do
Setry =r1";

Calculate par « (z,) and Pox (z,) for all z, using algorithm 1;
- T Re (Al e (o, a.,));

Calculate @ = Re[ (A%) ek]/HA
Update reflectivity rV = ry + 22

Calculate 3% =

s

end

2.2 Model-order reduced full-wavefield migration using
proper orthogonal decomposition

In this section, we examine an alternative approach to solve eq. (19),
based on Galerkin projections and POD. We begin by describing the
method of Galerkin projections for a linear system. Assume that the
final solution ¥ can be written as a linear combination of N, known
basis vectors I, ; where N, < N, N, that is,

t~) ot =R (26)

where R, is a real matrix of size N, N, x N,, with columns t,;,and
¢ is a vector of the coefficients ¢;. Eq. (19) can then be rewritten as

AR.c=d—p;;" (o). (27)

Left-multiplying both sides of eq. (27) by (AIA{,)H and taking the
inverse gives

~ ([Re(AR)T"[Re(AR) T\ [Re(AR)T"
“\|Im(AR,) | [Im(AR,) Im (AR,)
Re (d . pa,kfull (z0)
im (d - pg;" o)

where we have separated the real and imaginary parts to ensure
that the coefficient vector ¢ is real. After using eq. (28) to find the
coefficients ¢;, the perturbation ¥ can be computed using eq. (26).

Note the similarity of eq. (28) to eq. (20). Both equations rep-
resent solving the normal equations of eq. (19). However, eq. (20)
requires taking the inverse of a matrix of size N, N, x N, N, while
eq. (28) reduces the size of this matrix to N, x N,. Therefore, in
situations where one can find a small set of basis vectors ,; that
describe the full solution # such that N, < N, N., the method of
Galerkin projections can dramatically reduce the cost of calculat-
ing the inverse. This method can be applied generally to any linear
system, given that one can find an appropriate set of basis vectors
r

Also note the similarity of this approach to conjugate gradient
methods, where the basis vectors T,.; are chosen as a set of conju-
gate directions (Hestenes & Stiefel 1952). To find these conjugate

(28)

directions, an iterative scheme is applied in general. The downside
of this approach is that the wavefield perturbations AT, ; cannot be
calculated in parallel, as the basis vector f.; depends on the pre-
vious wavefield perturbations Af,; for j < i. By using POD we
can construct a set of basis vectors t.; a priori, which allows AF, ;
to be calculated in parallel, reducing the computational cost of the
method.

To find an appropriate set of basis vectors £, ; to form R, we apply
POD. Hence, we will construct t,; from a set of partial solutions
s; for j =1,..., Ny, such that N, < N; < N,N.. These partial
solutions may be solutions for a part of the domain, solutions to re-
lated problems, or low-fidelity solutions acquired by applying a less
expensive approach. To construct R, from these partial solutions s I
we begin by constructing the so-called solution matrix S, which is a
real matrix of size N, N. x N, with columns s;. Next, we take the
Singular Value Decomposition (SVD) of S such that USVT = 8.
The basis vectors f,; are then given by the columns u; of the matrix
U. The number of basis vectors required depends on the decay of
the singular values X|;;. The faster the decay of the singular values,
the fewer basis vectors F,.; are required to span the same domain
as the domain spanned by the vectors s;. Note that we assume that
the full solution f falls within the span of s;, as this is required for
the resulting vectors ,; of the POD process to be appropriate basis
vectors for T.

To apply POD to FWM, we must therefore first construct an
appropriate solution matrix S. Recalling the conventional FWM
approach described in Section 2.1, we find that a natural choice for
the partial solution vectors s; is provided by the components of the
gradient 95 97 that is,

S = [Re (Aglmek(wl,al)) ... Re (A(I;)IvafT,Vgek ((,()N(U,O'NU)) ] .

29

With this choice, the partial solution vectors s; represent the contri-
bution to the gradient for a single frequency w and a single source o,
which can be calculated efficiently for each iteration using algorithm
2. The linear combination R, ¢ can therefore be seen as a weighted
version of the steepest descent gradient 27 55 allowing certain fre-
quencies or sources to be given more weight in the construction of
the update direction.

Next, we calculate the SVD of the solution matrix S and construct
the low-rank solution matrix R, from the left singular vectors u; as
follows:

R =[%d ... 0] (30)

with Ny, the maximum rank we choose to take into account, which
can be chosen manually or by using an error criterion Ineq. (30) we
have explicitly included the conventional gradlent and we have
applied a Gram—Schmidt procedure to the vectors u, to form the
vectors 1, which are orthogonal to the conventional gradient. This
guarantees that the original gradient always falls in the span of f, ;, as
this may not be guaranteed if only a small number of singular vectors
u; are used. In this way, we can guarantee that the reflectivity update
produced by MOR-FWM for the linearized problem can never be
worse than the update produced by the conventional method.

Using R,, we now apply eq. (28) to calculate the coefficient
vector ¢. Finally, knowing R, and ¢, we use eq. (26) to retrieve
the reflectivity update, viz. ¥ = R, c. This process is summarized in
algorithm 3.
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Algorithm 3: Model-Order Reduced Full Wavefield Migration
(MOR-FWM)

Result: Reflectivity model r".

Input: Measured data d

Setr” =0;
fork=1:K do
Setry =r";

Calculate pgf « (z») and py ; (z,,) for all z, using algorithm 1;

Calculate solution matrix S using eq.~(??);

Calculate SVD of S = UZVT = §;

Construct low-rank partial solutions t,; = @;;

Calculate wavefield perturbations AR, using a modified
version of algorithm 1;

Solve reduced system AR,¢ = d — Po. ‘kﬁ‘” (zo) using

eq.~(??);

Update reflectivity r” = ry + R,c

end

3 NUMERICAL RESULTS

In this section, we examine the results obtained with the MOR-FWM
method for a synthetic and a field data example. We compare these
results with the reconstructions obtained using the conventional
FWM method to illustrate the advantages and disadvantages of the
approach introduced in this paper.

3.1 Synthetic example: Marmousi model

We begin with the synthetic example, where we have applied the
method on a part of the Marmousi model as an initial test. Note
that we have not used the full Marmousi model in order to reduce
the overall computational cost of the example. Also, due to the use
of one-way operators and angle-independent reflection operators,
adding larger offsets will generally not lead to improved results in
this example.

Data was generated using a time-domain finite-difference scheme
(Thorbecke & Draganov 2011) using a source wavefield with a
Ricker wavelet signature. For the imaging, a smoothed version of
the true velocity model was used as the background velocity model.
The parameters used in the modelling and inversion scheme are
given in Table 1. The imaging results are shown in Fig. 1.

Examining Fig. 1, we see that both the conventional FWM method
as well as the MOR-FWM method outlined in Section 2.2 have pro-
duced a reasonable reconstruction of the reflectivity image corre-
sponding to the underlying velocity and density models. However,
while the differences between the results of the two methods are
modest, in certain areas the MOR-FWM result shows improved
consistency and better resolution compared to the conventional
method.

Comparing Figs 1(g) and (h), for example, we see that the MOR-
FWM method has done a better job of reconstructing the two layers
right above the strong reflector in the middle of the figure (bot-
tom three arrows). We also see that the layers in Fig. 1(h) are a
bit sharper (top two arrows). Figs 1(j) and (k) show a similar be-
haviour. The two layers at the top of the image are better resolved
in Fig. 1(k) compared to Fig. 1(j) (top three arrows), and the layers
are slightly sharper throughout the MOR-FWM figure (bottom two
arrows).

This conclusion is further supported by Fig. 1(c), where we have
plotted the cost function J as a function of the iteration number
k. From this figure, we see that the MOR-FWM method yields a
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reduced data residual compared to the conventional FWM method,
lending further support for the MOR-FWM method.

3.2 Field data example: Voring basin

Next, we examine the field data example, where we have tested the
method on a marine field data set from the Vering basin in Norway,
using a velocity model generated by Joint-Migration Inversion (see
Berkhout 2014c¢; Staal 2015, for more details). The parameters used
for this data set are shown in Table 2 and the results in Fig. 2.

Comparing Figs 2(a) and (b), as well as examining 2(d), we
see that the difference between the two methods is significantly
smaller than in Section 3. This can also be seen from the cost
functional J, shown in Fig. 4(d), we see similar behaviour. Both
the conventional FWM method as well as the MOR-FWM method
yield very similar values after five iterations. However, we note
that the MOR-FWM method outperforms the conventional FWM
method when fewer iterations are used. This effect is discussed in
more detail in Section 4.2.

4 DISCUSSION

Based on the results shown in Figs 1 and 2, we observe that the
MOR-FWM method generates slightly better reconstructions com-
pared to the conventional FWM method. More distinct layers are
recovered and the layers are sharper to the eye when the MOR-
FWM method is used. This is consistent with the interpretation of
the method as a pre-conditioner to the conventional approach. In
this section, we compare the computational cost of both methods as
well as exploring methods to improve the results further.

4.1 Computational costs

We begin by comparing the computational costs of algorithm 2,
which describes the conventional FWM method, and algorithm 3,
which describes the MOR-FWM method.

Both algorithms begin by calculating the forward modelled wave-
fields pofk (z») and p; (z,) in the background medium, followed
by calculating Re (Agﬂ e (w, a)) for all frequencies w and source
wavefields o (zo), which is either used to calculate the gradient of
the cost functional J (conventional FWM, eq. 22), or construct the
solution matrix S (MOR-FWM, eq. 29). Next, in the MOR-FWM
algorithm, the SVD of the solution matrix S is calculated to find the
basis vectors f,; = #1;. Assuming that the maximum rank Ny taken
into account is much smaller than the number of partial solutions
s;, this step has a negligible computational cost.

The real difference between the two methods lies in the next step,
the calculation of the wavefield perturbations A% (algorithm 2,
step 6) and AR, (algorithm 3, step 8). In the MOR-FWM method,
the wavefield perturbations for each basis vector f,; must be cal-
culated, while in the conventional FWM method only the wavefield
perturbation due to the gradient i—{ is required. Therefore, this step
is more expensive computationally by a factor of Ny for the MOR-
FWM method, where Ny is the number of basis vectors taken into
account. As the other steps are either identical or have negligible
computational costs, this step fully determines the difference in
computational cost between the two methods.

To reduce the computational cost of this step, a number of ap-
proaches may be used. First, one can reduce the number basis vec-
tors Ny used. This will reduce the computational cost, but may
lead to smaller improvements to the reconstruction. Alternatively,
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Table 1. Parameters Marmousi model.

Lateral grid spacing Ax 10 m
Number of lateral gridpoints Ny 431
Peak frequency fpk 17 Hz
Maximum frequency fmax 40 Hz
Number of sources N, 44
Size of full system Ny N, 2.10°
Number of iterations K 8

Vertical grid spacing Az Sm
Number of vertical gridpoints N 500
Minimum frequency fmin 2 Hz
Number of frequencies N, 157
Source spacing Ao 100 m
Number of singular vectors Nx 50

Velocity model, Marmousi

(@,

Density model, Marmousi

Cost function J

—_
o
-~

2500 1 =
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__ 500 g~ B ——MORFWM
£ 1000 - 200 20
£ 3000 g
& 1500 4 ]
a] . 1500 S g4

2000 5000 i -0

_ { e 3
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Figure 1. FWM and MOR-FWM results for the synthetic Marmousi example. Panels (a) and (b) show the velocity and density model, respectively, of the
part of the Marmousi model under consideration. Panel (c) shows the data residual J, which has been normalized with respect to the residual for py ; = 0.
Panels (d)—(f) show the conventional FWM and MOR-FWM image after eight iterations, respectively, as well as the difference between the two images.
Panels (g)—(i) show a zoom-in of the FWM image, the MOR-FWM image and their difference at the location of the top box, respectively, while panels (j)—(1)
show zoom-ins of the bottom box. Arrows indicate regions of interest within the figures.

Table 2. Parameters Voring data.

Lateral grid spacing Ax 25m
Number of lateral gridpoints Ny 399
Minimum frequency fmin 2 Hz
Number of frequencies N, 293
Source spacing Ao 450 m
Size of full system Ny N, 4.10°

Vertical grid spacing Az Sm
Number of vertical gridpoints N, 1001
Maximum frequency frqx 60 Hz
Number of sources N, 23
Number of iterations K 5
Number of singular vectors Nx 50

other choices for the basis vectors may be explored. For exam-
ple, alternative choices for the partial solutions s; may lead to a
more rapid decay of the singular values of the solution matrix S, in
which case fewer basis vectors are required to yield a high-quality
pre-conditioner. Finally, if the basis vectors f,; can be estimated a

priori, the construction of the solution matrix S and its SVD can
be omitted, and the calculation of AR, can be performed offline, as
it does not depend on the measured data d. Such a situation may
arise in monitoring applications, for example, where high-quality
estimates of the reflectivity may already exist.
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Figure 2. FWM and MOR-FWM results for the Vering field data example. Panel (c) shows the velocity model used for migration. Panels (a), (b) and (d) show
the conventional FWM and MOR-FWM image after five iterations, respectively, as well as the difference between the two images. Note that the difference
figures have been plotted with half the clip value of the FWM and MOR-FWM images.
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Figure 3. FWM and MOR-FWM results for the Vering field data example after one iteration. Panels (a), (b) and (d) show the conventional FWM and
MOR-FWM image after one iteration, respectively, as well as the difference between the two images. Panel (c¢) shows the velocity model used for migration.
Note that the box plotted in the figures indicates the region displayed in Fig. 4.

4.2 Results after one iteration MOR-FWM method requires fewer iterations to produce a sharp
image compared to the conventional method. Comparing Figs 4(a)
and (b), for example, we see that the MOR-FWM method displays
an improved resolution at the edges of the model at the first iteration
(left-most arrow). Also, we see an improved recovery of the strong

Next, we compare the performance of the conventional FWM and
the MOR-FWM methods after a single iteration, the results of
which are shown in Figs 3 and 4. From this figure, we see that the
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Figure 4. Zoom-in of the FWM and MOR-FWM results for the Vering field data example after one iteration. Panels (a)—(c) show the conventional FWM and
MOR-FWM image after one iteration, respectively, as well as the difference between the two images. Arrows indicate regions of interest within the figures.
Panel (a) shows the velocity model used for migration. Panel (d) shows the data residual J, which has been normalized with respect to the residual for py ; = 0.
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Figure 5. FWM and MOR-FWM results for the Vering field data example. Panels (a), (b) and d) show the normalized FWM and the normalized MOR-FWM
image after five iterations, respectively, as well as the difference between the two images. Panel (c) shows the conventional FWM image for comparison. The

box indicates the main region of interest in these figures.

reflectors in the zoomed-in image (top-left arrow). Finally, we see
an improved continuity of the weaker reflectors deeper in the image
(right and bottom arrows).

This result suggests that, using the MOR-FWM method, one
may require fewer iterations to retrieve a sharp image. This is fur-
ther supported by the cost function J, shown in Fig. 4(d), which

shows that the MOR-FWM method achieves a smaller data misfit
even at the first iteration. This is especially relevant when FWM is
applied in the context of One-way Reflection Waveform Inversion
(Abolhassani & Verschuur 2023), also known as Joint Migration In-
version (Berkhout 2014c), where the (background) speed-of-sound
model is also updated. In this context it is important to generate
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an accurate reflectivity model using only a few iterations, as the
reflectivity model must be updated each time the speed-of-sound
model is adjusted.

4.3 Normalization

Finally, we examine a potential alternative choice for the par-
tial solutions s;. Recall that the partial solutions s; are given by
Re (Afmek (w, a)) for a given frequency @ and source wavefield
0 (zo) (eq. 29). While this is a natural choice, a downside of this
approach is that it is sensitive to the source signature. This means
that in cases where certain frequencies or sources have larger am-
plitudes than others, the corresponding partial solutions will also
exhibit larger amplitudes. When taking the SVD of the solution ma-
trix S, the basis vectors u; will then be weighted towards the partial
solutions with the largest amplitudes, meaning that not all sources
and frequencies are treated equally in the construction of the basis
vectors.

To circumvent this shortcoming, one can choose to normalize
each partial solution s;. This can be done in conventional FWM,
where all contributions are simply summed together, or in MOR-
FWM, where the normalized partial solutions are used in the SVD.
Using this approach, we retrieve the results shown in Fig. 5. Looking
at this figure, we see that the imprint of the source signature has
been removed, removing a number of spurious reflectors. Due to
this effect, we see an improved image in the target zone below the
overburden, indicated by the box.

We also note a more pronounced difference between the two
methods. Comparing Figs 5(a) and (b), we see that the reflectors in
the target zone exhibit a greater continuity when normalized MOR-
FWM is applied compared to normalized FWM. This observation
is supported by the cost function J, shown in Fig. 4(d), which shows
an improved data misfit for normalized MOR-FWM. These results
underline the sensitivity of the MOR-FWM method to the choice of
basis vectors, as a well-chosen set of basis vectors can significantly
improve the results.

5 CONCLUSION

In this paper, we introduce a novel pre-conditioner for full-wavefield
migration, using proper orthogonal decomposition to find a reduced
basis. We show that this reduced basis can be used to construct a
pre-conditioner using Galerkin projections. We tested the resulting
algorithm on the synthetic Marmousi model and a field data set
from the Vering basin, where we achieve improved results in both
cases compared to the conventional FWM algorithm. We discuss the
challenge of the computational cost of the method, which depends
linearly on the number of basis vectors used, and present some
ideas to further improve the results and/or reduce the computational
costs. Based on the flexibility of the method, as well as the results
we present in this paper, we conclude that the MOR-FWM method
is a useful addition to the existing work on migration in general and
FWM in particular.
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