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Boera,b, Ad J.H.M. Reniersb
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Abstract

Measured trends and variability in shoreline position are used by coastal man-

agers, scientists and engineers to understand and monitor coastal systems. This

paper presents a new and generic method for automated shoreline detection from

the largely unexplored collection of publicly available satellite imagery. The po-

sition of the obtained Satellite Derived Shoreline (SDS) is tested for accuracy for

143 images against high resolution in-situ data along a coastal stretch near the

Sand Motor, a well-documented mega-scale nourishment along the Dutch coast.

In this assessment, we quantify the effects of potential inaccuracy drivers such

as the presence of clouds and wave-induced foam. The overall aim of this study

is to verify whether the SDS is suitable to study structural coastline trends for

coastal engineering practice.

In the ideal case of a cloud free satellite image without the presence of waves,

with limited morphological changes between the time of image acquisition and

the date of the in-situ measurement, the accuracy of the SDS is with subpixel

precision (smaller than 10 - 30 m, depending on the satellite mission) and de-

pends on intertidal beach slope and image pixel resolution. For the highest

resolution images we find an average offset of 1 m between the SDS position

and the in-situ shoreline in the considered domain. The accuracy deteriorates
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in the presence of clouds and/or waves on the image, satellite sensor corrections

and georeferencing errors. The case study showed that especially the presence

of clouds can lead to a considerable seaward offset of the SDS of multiple pixels

(e.g. order 200 m). Wave-induced foam results in seaward offsets in the order

of 40 m.

These effects can largely be overcome by creating composite images, which

results in a continuous dataset with subpixel precision (10 - 30 m, depending

on the satellite mission). This implies that structural trends can be detected

for coastlines that have changed with at least the pixel resolution within the

considered timespan.

Given the accuracy of composite images along the Sand Motor in combina-

tion with the worldwide availability of public satellite imagery covering the last

decades, this technique can potentially be applied at other locations with large

(structural) coastline trends.

Keywords: Automated shoreline detection, Satellite imagery, Google Earth

Engine, NASA, ESA, Positional accuracy, Coastline trends, Coastal

management, Dutch coast, Sand Motor

2017 MSC: 00-01, 99-00

1. Introduction1

The position and evolution of the shoreline along a coastal stretch is impor-2

tant to coastal managers, communities, scientists and engineers. Information3

obtained from trends and variability in the shoreline position, reveals informa-4

tion on beach variations and is used in coastal zone monitoring, policy making5

and the design of human interventions. Traditionally, the location of the shore-6

line is derived from aerial photography or video imagery (such as for instance7

used in Pianca et al. (2015)) or from in-situ measurements of the beach topogra-8

phy, such as used by Ruggiero et al. (2005), de Schipper et al. (2016) and Turner9

et al. (2016). According to the two main categories of shoreline definitions by10

Boak & Turner (2005), the shoreline from aerial photography or video imagery11
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is based on a line that is visible to the human eye and the shoreline from in-situ12

measurements is based on a common datum or beach volume.13

Whereas the collection of traditional shoreline datasets is often expensive14

and constrained in time and/or space, publicly available satellite imagery pro-15

vides information on shorelines worldwide for the past 33 years. Potentially this16

data source is a valuable addition to traditional shoreline datasets, especially17

at locations where limited measurements are available. Until recently, obtain-18

ing shorelines from satellite imagery used to be laborious, which limited the19

use of this dataset to its full spatial and temporal extent. Moreover, a com-20

prehensive study on the accuracy of satellite derived shorelines in relation to21

obtaining structural coastline trends is not yet available, which hampers the use22

in practice.23

Recently Google launched the Earth Engine platform (GEE) that overcomes24

the traditional limitations in the usage of satellite imagery. Having both a25

petabyte satellite image collection and parallel computation facilities combined26

on the server side of the platform reduces image processing time to only several27

minutes per image (Gorelick et al., 2017). This increase in processing perfor-28

mance makes it possible to use the full collection of satellite images and allows29

for the opportunity to perform state-of-the-art image processing techniques such30

as image compositing (Hansen et al., 2013).31

Image processing techniques are available to automatically derive a so called32

Satellite Derived Shoreline (SDS) position from satellite imagery (Garćıa-Rubio33

et al., 2015). The quality of this position may be prone to disturbances such as34

cloud cover, foam caused by surf and atmospheric interactions. The positional35

accuracy of a SDS position may therefore deteriorate by these disturbances,36

which may hamper retrieving coastline trends. Understanding and quantifying37

the positional accuracy of SDS positions is essential, and is assessed in for in-38

stance Bayram et al. (2008), Kuleli et al. (2011), Pardo-Pascual et al. (2012),39

Garćıa-Rubio et al. (2015), Almonacid-Caballer et al. (2016) and Liu et al.40

(2017). However, these studies are often limited by the amount of images used,41

the quality of the in-situ data or the limited range of changes in coastline lo-42
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cations along the coastal stretch. A comprehensive study on the accuracy of43

SDS positions and coastline trends using a large amount of satellite images is44

lacking.45

To investigate the application range of SDS, we quantify the positional accu-46

racy of an automatically derived SDS for an unprecedented 143 publicly avail-47

able satellite images. Furthermore, we quantify the offsets in the SDS caused48

by clouds and waves. We do this by comparing the SDS position to in-situ data49

for the Sand Motor mega-nourishment. This case study is selected because of50

its dynamic behavior, which shows significant coastline changes over time and51

the availability of unique high resolution in-situ measurements to be able to52

validate the obtained shoreline position and trend.53

2. Study site and data availability54

The study site is the coastal stretch directly near the Sand Motor nour-55

ishment, comprising about 4.5 km of coastline length (Figure 1). This coastal56

stretch has an erosive character, which resulted in an extensive nourishment57

program to maintain a stable coastline. In 2011, a pilot mega-scale nourish-58

ment called the Sand Motor was put into place in front of the city of Kijkduin,59

which provides the adjacent coast with sediments for the coming 20 years (Stive60

et al., 2013).61

An average tidal range of 1.7 m and a mean significant wave height of 1.362

m (Wijnberg, 2002) are observed along the Sand Motor. After 18 months, a63

landward shift of 150 m was observed near the tip of the sand motor, accom-64

panied with an alongshore spreading of about 4 km (de Schipper et al., 2016).65

Focusing of wave energy is observed near the tip of the peninsula, leading to a66

local steepening of the beach profile. After the first storm season, a tidal lagoon67

developed with a tidal channel extending in the northern direction that shifts68

course over time.69

High resolution and frequently measured in-situ data on the dynamic devel-70

opment of the topography and hydrodynamics is amply available for the Sand71
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Motor. Validating the position along such a dynamic study site against high72

resolution in-situ data provides new insight into the applicability of the SDS73

detection method to study equally or less dynamic coastal areas. The Sand74

Motor case is studied for the period 2011-08-01 (just after completion of the75

nourishment) to 2016-07-01.76

Figure 1: Overview of the Dutch Delfland coastal cell bordered by Hoek van Holland (left)

and Scheveningen (right). The Sand Motor study site is indicated in red. Depths at the -8

m, -5 m and +2 m NAP iso-contours are indicated in grey. The underlying satellite image

(SPOT mission) was acquired on 18-05-2014. The water level measurement stations of Hoek

van Holland and Scheveningen are indicated by means of a red dot. A nearshore point at the

-10 m NAP depth contour, on which nearshore wave data are available, is indicated in yellow.

The SDS position is compared to concurrent in-situ measurements of the77

shoreline, obtained from topographic surveys and water level measurements.78

The topographic survey of the Sand Motor has been conducted on a monthly79

basis for the first year after completion and on a bi-monthly basis until present,80

resulting in a total of 36 topographic surveys. The topography of the Sand81

Motor study site is measured along transects spaced alongshore by 30 - 60 m82

(de Schipper et al., 2016). All available Landsat 5 (Thematic Mapper, TM),83

Landsat 8 (Operational Land Imager, OLI), Landsat 7 (Enhanced Thematic84

Mapper, ETM+) and Sentinel 2 images for the Sand Motor study site are listed85

in Table 1. The Landsat 7 Scan Line Corrector (SLC) failed in May 2003,86

resulting in large data distortions of the image (Wijedasa et al., 2012). Since87

the analysis period is after the SLC failure, the Landsat 7 images are left out88

of the analysis.89

Water level measurements that include both tide and surges are obtained90
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Satellite mission Sensor Number of images Pixel resolution [m] Temporal extent

Sentinel 2 (A) 40 10 x 10 > 2015-07

Landsat 8 OLI 99 30 x 30 > 2013-04

Landsat 7 ETM+ 112 30 x 30 > 2011-08

Landsat 5 TM 4 30 x 30 1984-01 - 2011-10

Table 1: Overview of the amount of satellite images per satellite mission available for the

Sand Motor study area in the period of 2011-08-01 to 2016-07-01.

from the measurement stations at Hoek van Holland and the port of Schevenin-91

gen. These stations are located adjacent to the coast by about 10 km south and92

7 km north with respect to the tip of the peninsula. Offshore wave data (wave93

height, period and direction) are obtained from the IJmuiden (located 56 km94

offshore) and Europlatform (located 62 km offshore) measurement stations. A95

nearshore significant wave height is found using a Simulating WAves Nearshore96

(SWAN) model (Booij et al., 1999), which transforms wave characteristics from97

the offshore measurement stations to the tip of the Sand Motor peninsula at98

the - 10 m NAP depth contour (Figure 1). Offshore wave records that are di-99

rected between 30 and 200 degrees North (indicating offshore directed waves)100

are not considered by the model and result in an absence of nearshore wave101

characteristics at the - 10 m NAP depth contour.102

3. Methodology103

The methodology to study the SDS positional accuracy and application in104

coastline monitoring practice can be subdivided into five steps: 1) automatic105

and unsupervised detection of the SDS position and calculation of its position106

relative to in-situ data; 2) definition of a benchmark case, in which all drivers107

that can cause inaccuracies are absent; 3) quantification of the drivers of inac-108

curacy in relation to the positional accuracy, 4) effect of an image composite109

processing technique on the mitigation of these drivers and 5) comparison be-110

tween the long term coastline trend based on the SDS and in-situ shoreline111
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data.112

3.1. Calculating the SDS positional accuracy113

Image processing114

The individual satellite images are processed into SDS vectors in an unsu-115

pervised, automated way on the GEE servers. The approach used by Kuleli116

et al. (2011) is adopted and adjusted for this routine (Figure 2).117

Figure 2: Satellite image processing steps in order to obtain a SDS position from an optical

satellite image. The steps indicated in grey are end-user products provided by GEE. The

steps indicated in green are performed per satellite image by the routine used in this study.

Firstly, the pixel values recorded by the satellite sensors for a particular opti-118

cal satellite image are transformed to spectral radiance values using calibration119

coefficients made available by the satellite operator in the metadata. Secondly,120

the pixel radiance values are transformed to Top-Of-Atmosphere (TOA) re-121

flectance values. The satellite image is orthorectified, resulting in a L1T TOA122

satellite image. These steps are preprocessed and made available as image prod-123

ucts by the GEE.124

Per pixel the Normalized Difference Water Index (NDWI) (Mcfeeters, 1996)125

value is calculated according to:126

NDWI =
λNIR − λGreen

λNIR + λGreen
(1)

in which λNIR [nm] indicates the TOA reflectance value in the Near Infra-127

Red (NIR) band (band B4 in case of Landsat 5, band B5 in case of Landsat 8 and128

band B8 in case of Sentinel 2) and λGreen [nm] indicates the TOA reflectance129

value of the green band (bands B2, B3 and B3).130

Calculating the NDWI value per pixel results in a greyscale image with131

NDWI values ranging from -1 to 1. This greyscale image is classified into a132
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binary water-land image using the unsupervised greyscale classification method133

proposed in Otsu (1979). This method finds the optimal threshold value based134

on the statistical properties of the NDWI histogram. An example of such a135

NDWI histogram and the optimal threshold for a particular satellite image is136

displayed in Figure 3. In this example, a threshold value of -0.16 is found to137

separate the NDWI values into two distinct regions in the most optimal manner.138

All NDWI values smaller than this threshold value are classified as water and139

all NDWI values larger than this value are classified as land.140

Figure 3: NDWI greyscale image (left), NDWI histogram (middle) and resulting binary image

(right) for a Sentinel 2 image acquired on 12-03-2015 10:33:27 (GMT). An optimal threshold

value of -0.16 classifies the NDWI values into water (blue) and land (green) pixels.

To cluster all pixels identified as water into a coherent water mask, a region141

growing algorithm is applied (Kamdi & Krishna, 2011). This algorithm starts at142

a random pixel identified as water and searches for neighboring pixels with the143

same classification. The outer edge of the obtained water mask is defined as the144

location of the SDS. This vector follows a saw tooth pattern since it is defined at145

the image pixel edges. The SDS coordinates are smoothed using a 1D Gaussian146

smoothing operation to obtain a gradual shoreline. The region growing method147

results in several SDS vectors since also lakes and small channels are detected148

as the SDS. In this analysis, only the most seaward SDS position is analyzed149

per satellite image. An example of the resulting SDS for a Sentinel 2 image is150

displayed in Figure 4.151
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Figure 4: Satellite image acquired by the Sentinel 2 satellite acquired on 12-03-2015 10:33:27

(GMT) for the Sand Motor study site. The derived SDS is plotted in black.

The satellite images available on the GEE are georeferenced with respect152

to the first available image in the satellite mission. This allows for the study153

of changes, but since this first image is not necessarily positioned accurately154

with respect to the earth’s surface, deviations are expected in case the position155

of the satellite image is compared to in-situ data. Manual georeferencing is156

therefore applied per satellite mission by means of six ground control points on157

a georeferenced aerial photo. Both horizontal translations and a rotation are158

applied based on the manual identification of these control points on a single159

cloud free satellite image per mission.160

In-situ (survey) shoreline161

The survey shoreline provides information on the actual waterline that was162

present during image acquisition and is reconstructed from in-situ topographic163

measurements. The reconstruction of the waterline is based on determining the164

intersection between the elevation of the Sand Motor’s bed level with the water165

level elevation. The recorded Sand Motor elevations (as described in Section 2)166

are linearly interpolated on a rectangular grid with grid points spaced by 10 m167

(along shore) and 1 m (cross-shore) to obtain a continuous beach topography.168

The local water level near the Sand Motor is obtained using the water levels169

provided by the measurement stations of Hoek van Holland and Scheveningen.170

The water levels recorded during satellite image acquisition at both locations171
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are linearly interpolated to the location of the Sand Motor. The iso-contour172

elevation that matches the water level is obtained using the Marching Squares173

Interpolation algorithm (MSI) (Mantz et al., 2008)). The survey shoreline is174

smoothed using a 1D Gaussian smoothing with the same properties as applied175

on the SDS. Figure 5 displays the interpolated topography and the resulting176

survey shoreline that matches the image acquisition date of the example Sentinel177

2 image.178

A nearshore significant wave height per image is found using the simulated179

nearshore wave climate at the tip of the Sand Motor peninsula at the - 10 m180

NAP depth contour (Figure 1), which is assumed representative for the wave181

climate in the study domain. This wave height in combination with a peak182

over threshold routine, is used to identify storm events. A storm wave height183

threshold value of 2.8 m, that coincides with a 99% exceedence probability,184

results in a total of 22 storm events in the studied period. Per satellite image185

a representative survey is found by means of nearest neighbor selection in time.186

In the case a storm event is identified based on the nearshore significant wave187

height in the period between the satellite image and the survey, the closest188

survey before the storm event is chosen. Because the survey measurement is189

conducted on a bi-monthly basis, the maximum number of days between a190

satellite image and the concurrent survey is 40 days.191

Offset calculation192

The buffer overlay method (Goodchild & Hunter, 1996) provides a robust193

routine to calculate the horizontal distance between two vectors. Since we as-194

sess both a continuous, curved SDS and survey shoreline, this method provides195

detailed and accurate information on the spatial offset. The method starts by196

defining a buffer with a certain width around the survey shoreline. The length197

of this buffer polygon intersected with the SDS is calculated. By increasing the198

buffer width, an increasing portion of the SDS position becomes enclosed by199

the buffer. The offset between the survey shoreline and the SDS is defined as200

the buffer that encloses 95% of the SDS (Figure 6). The method distinguishes201
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Figure 5: Interpolated topographic elevations and reconstructed survey shoreline for the 16-

07-2015 Sentinel 2 satellite image. The measurement campaign to obtain the topography was

conducted between 15-07-2016 and 17-07-2016. The transect system is indicated in grey and

the JarKus transects are indicated in red. Every 10th transect origin is indicated with a grey

dot. Elevations are with respect to NAP, the national datum, which is about MSL.

between a landward and seaward offset, of which the largest value is stored.202

System of transects203

The study site is subdivided into smaller areas by means of a system of204

cross shore transects to obtain information on the spatial distribution of the205

offset. The buffer overlay offset calculation is performed for the area in between206

two transects. Along the Dutch coast, an official system of transects spaced207

alongshore by approximately 200 m is defined for the yearly coastal measurement208

campaign (JarKus, Jaarlijkse Kustlijnmeting) (Minneboo, 1995). Based on the209

orientation of these transects, a local system of transects is defined with an210

alongshore spacing of 40 m and a cross shore length of 2 km, resulting in a total211

of 113 transects for the study site (Figure 5). The alongshore spacing is in the212

range of the Landsat image pixel resolution and the acquisition of the survey213

topography.214
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Figure 6: Buffer overlay offset routine to calculate the offset between the survey shoreline

(blue) and the SDS (grey) using a buffer polygon (dashed line). The offset between the survey

shoreline and the SDS is defined as the buffer that encloses 95% of the SDS.

3.2. Benchmark accuracy215

The benchmark accuracy provides information on the best possible accu-216

racy for the satellite sensors, the in-situ data and the applied offset calculation217

methodology. It is defined as the offset between the SDS of a cloud free im-218

age with calm wave conditions (e.g. a nearshore Hm0 < 0.5 m) and a survey219

shoreline measured close to the time instance of the satellite image (e.g. within220

10 days). This prevents surges and wave-induced foam from causing deviations221

in the linearly interpolated water level and morphological changes from devia-222

tions in the topography that was present during satellite image acquisition. The223

identified benchmark cases per satellite mission are listed in Table 2.224

Table 2: Identified benchmark case characteristics per satellite mission. The Sentinel 2 im-

agery is provided by the European Space Agency (ESA). The Landsat imagery is provided by

the National Aeronautics and Space Administration (NASA). Note that although the Land-

sat 5 benchmark has a 40% detected cloud cover near the shoreline, these are all thin, high

altitude clouds that do not influence the shoreline position.

Mission Image Survey Cloud Cover Wave height Water level (surge)

Sentinel 2 2015-07-16 10:50:24 (15-17)-07-2015 0 % 0.47 m -0.48 m (0.2 m)

Landsat 8 2015-03-19 10:39:36 (11-13)-03-2015 3 % 1 m -0.53 m (0.16 m)

Landsat 5 2011-09-25 10:22:10 (03-05)-09-2011 40 % 0.18 m 0.12 m (0 m)
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3.3. Drivers of inaccuracy225

Often the benchmark accuracy cannot be obtained due to the presence of226

drivers of inaccuracy. 6 drivers are identified that cause the SDS position to de-227

viate from the actual shoreline and hence increase the quantified offset. Drivers228

related to the environmental conditions on the image are: 1) cloud cover, 2)229

waves (surface roughness and foam) and 3) soil moisture and grain size (D50).230

Drivers related to the satellite instrument are: 1) sensor corrections, 2) georef-231

erencing and 3) image pixel resolution.232

Optical satellite images are not able to acquire information of the earth233

under clouds, and hence contain no realistic information on the position of the234

SDS. Clouds have NDWI values in the range of land, resulting in a seaward235

offset of the SDS in case a cloud is present near the shoreline. Since foam236

caused by breaking waves has identical NDWI values as land, this also results237

in a seaward offset of the SDS beyond the breaker line in case foam is present238

close to the shoreline. Wet soils in combination with fine grains, as can be found239

in inter tidal zones along the Delfland coast, have NDWI values close to either240

land or water, making the unsupervised threshold based on the entire image241

less accurate. This can cause a landward offset in case wet intertidal zones are242

present (for instance during falling tide conditions).243

Instrument related inaccuracies are caused by sensor corrections required to244

transform the observed sensor radiance to TOA reflectance values and to align245

the pixel locations. Errors caused in these procedures can be identified based on246

visual inspection. Georeferencing of the image is necessary since the projection247

of a 3D surface on a 2D image results in incorrectly aligned pixel locations. This248

is mitigated by means of orthorectification, in which the Global Land Survey249

Digital Elevation Model (GLS-DEM) (USGS, 2008) is used. However, since250

the used dataset on the EE server comprises a global dataset with a spatial251

resolution of 90 m and acquisition in 2005, local deviations are likely to be252

present. Georeferencing remains necessary when comparing satellite positions253

to in-situ data, and is performed in this study by means of ground control254

points. The image pixel resolution averages all reflectance values within a pixel255
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to a single value. This means that the pixel resolution determines the level of256

detail present on the image, and hence contributes to the found offset value.257

The effect of the drivers of inaccuracy on the offset values is quantified.258

Cloud cover is investigated by comparing the offsets of SDS positions obtained259

from images with a local cloud cover ≤ 5% to images with a local cloud cover260

> 5%. The effect of wave height is investigated by comparing SDS positions261

from cloud free images with calm wave conditions with a nearshore Hm0 ≤ 0.5m262

to cloud free images with a nearshore Hm0 > 0.5m. The effect of georeferencing263

is quantified using the satellite images processed by the GEE and shorelines264

obtained after applying the local georeferencing procedure. Sensor corrections265

are assessed by means of visual inspection. The effect of pixel resolution is266

quantified by comparison of Landsat (30 m pixel resolution) and Sentinel 2267

images (10 m pixel resolution).268

To detect clouds near the shoreline, the Fmask algorithm (Zhu et al., 2015)269

is used. This algorithm provides per pixel information on the presence of clouds270

for the Landsat 5, 7 and 8 images. A buffer polygon extending 400 m along a271

transect and 40 m alongshore is defined around the center of a transect. Within272

this buffer, the amount of pixels indicated as cloudy is used to obtain a cloud273

cover percentage per transect. Since information from the Fmask algorithm is274

absent in GEE in case of the Sentinel 2 images, pixels are set to cloudy values275

based on visual inspection and cloud cover values provided by the metadata.276

Information on the nearshore significant wave height obtained from the SWAN277

model output is used to identify calm and mild wave conditions. Because data278

on soil moisture and grain size are absent for the study site, these drivers are279

left out of the analysis.280

3.4. Image composite technique281

To reduce the satellite related drivers of inaccuracy such as cloud cover,282

waves, soil moisture and sensor corrections, Donchyts et al. (2016) used an im-283

age composite processing technique. This technique uses a sequence of satellite284

images to obtain a single composite image. Each pixel in the composite image is285
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obtained from the 15th percentile value of the TOA green and NIR reflectance286

values of the concurrent pixels within a sequence of individual images. This ap-287

proach is based on the idea that clouds cause high reflection values and choosing288

the 15th percentile value results in clear pixels (Figure 7).289

The downside of the image composite technique is that multiple images over290

time are aggregated. Therefore, information on shoreline variability within the291

time sequence is lost to some extent. In order to find an optimal balance between292

the positional accuracy and the temporal variability, composite images using a293

moving average time sequence window of 90, 180, 360 and 720 days are used. To294

quantify the positional accuracy of the image composites, a composite survey295

shoreline is obtained by calculating an average topographic survey and water296

level from the time instances of the individual images within the time window.297

Figure 7: Principle of the image composite technique based on the distribution of all TOA

reflectance values within the image composite time window per pixel. The 15th percentile

value is used throughout this study to obtain a composite image. Adjusted from: Donchyts

et al. (2016)

3.5. Coastline trends298

In order to monitor coastal evolutions characterized by a time series of SDS299

positions, the SDS vector is projected along the system of transects. This way300

the distance between the transect origin (as defined in Section 3.1) and the inter-301
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section point of the SDS with a transect is obtained. This distance is proposed302

to serve as a coastal indicator and changes in this distance over time reveal303

information on the dynamics at the shoreline. This is in line with the analy-304

sis used in the sectional calculation application on coastal monitoring (Thieler305

et al., 2009). To quantify trends, a fit through the data is made by means of306

Ordinary Least Squares (OLS) of the linear equation:307

y(t) = at+ b (2)

in which y(t) [m] is the distance between the transect origin and the SDS308

intersection at time instance t, a [m/y] is an indicator for the structural rate of309

change and b [m] is the distance between the transect origin and the first SDS.310

a may be identified as an indicator for structural erosion or accretion and is311

quantitatively compared to the structural trend obtained in the same manner312

from the MSL (0 m NAP) contour retrieved from the topographic surveys.313

4. Results314

4.1. Benchmark accuracy315

The calculated offset values for the benchmark case per satellite mission are316

displayed in Figure 8. An average offset of 1.3 m, 8.5 m and 1 m is found for317

the Sentinel 2, Landsat 8 and Landsat 5 benchmarks. This indicates subpixel318

precision and the absence of large offset values in case of Sentinel 2 and Landsat319

5. The Landsat 8 benchmark has an average offset of about 1/3 of the pixel320

size, indicating a larger offset. The standard deviations of 5.1 m, 13.2 m and321

13.9 m all indicate offset variations within a pixel and relate to half the image322

pixel resolution.323

The inter tidal beach slope (Figure 8) ranges from 1:24 m to 1:200 m, in-324

dicating large alongshore variabilities. Similarities in the alongshore pattern of325

the inter tidal beach slope and the offset value can be observed, in which steep326

slopes are accompanied by small offset values and mild slopes are accompanied327

by larger offset values. This is clearly present in both the Sentinel 2 and Landsat328
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8 benchmark cases. This relation is less pronounced in case of Landsat 5, which329

might be due to the very rapid initial morphologic evolution in combination330

with the longer time difference between the topographic survey and satellite331

image acquisition (21 days).332

Figure 8: The top panel indicates the MSL elevation contour of the survey conducted on 03-

08-2011. Offset result per transect for the Sentinel 2 (second panel), Landsat 8 (third panel)

and Landsat 5 (bottom panel) benchmark cases. The image pixel resolution is indicated in

green, the inter tidal beach slope per transect is plotted in grey.

The Landsat 5 benchmark case shows an average offset over all transects of 1333

m with a standard deviation of 13.9 m. These values are obtained after removal334

of 5 evident outliers near transects 21 and 75 (Figure 9). The topography335
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near transect 21 has a complex geometry, resulting in a survey shoreline that336

is not correctly extracted by means of the MSI method. Besides, this location337

of the Sand Motor had a different topography than present during satellite338

image acquisition, indicating that morphological changes contributing to the339

offset have occurred in the 21 days between conducting the survey and satellite340

image acquisition. This results in a large offset value of 64 m. The situation341

near transect 75 indicates that the survey shoreline does not include the tidal342

lagoon, whilst this is the case for the SDS. This is due to the survey shoreline343

extraction method, where only a single, most seaward intersection per transect344

is obtained.345

Figure 9: Zoom-in on the Landsat 5 benchmark case with the topography, the SDS (green)

and the survey shoreline (blue). The left panel indicates the location near transect 21, the

right panel indicates the location near transect 75. Please note that the scales of both panels

are different.

4.2. Drivers of inaccuracy346

All 143 satellite images are analyzed to quantify the drivers of inaccuracy347

related to the satellite environmental conditions. On the GEE platform, the348

analysis of all 143 images requires a total processing time of about 24 hours.349

Based on the 113 transects defined for the study area, this results in a total of350
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16,159 offset values (Figure 10). In this analysis, images with evident sensor351

errors (apart from Landsat 7 that is already omitted from the analysis) are352

neglected.353

The first row indicates the offset values for all transects. When filtering the354

transects on local cloud cover (with a cloud free image defined based on a local355

cloud cover of ≤ 5%), the average offset (µ) reduces from 56.5 m to 21.9 m, which356

is below the pixel resolution of the Landsat missions. Besides, the standard de-357

viation (σ) decreases, indicating a more constant offset. When the transects358

are filtered on both cloud cover and significant wave height (where calm wave359

conditions are defined based on a nearshore Hm0 ≤ 0.5m), the average and stan-360

dard deviation reduce to 8.9 m and 17 m, respectively. The histogram remains361

positively skewed, indicating that more often the SDS is located seaward of362

the survey shoreline. This is in line with findings in for instance Pardo-Pascual363

et al. (2012). In case the transects are subdivided based on satellite mission, the364

same pattern in offset reduction occurs when filtered on environmental condi-365

tions (Figure 10). This indicates that the environmental sources of cloud cover366

and wave height cause the same effects on the offset values, despite the sensor.367

All missions combined reveal a positive skewed histogram, indicating a seaward368

bias of the SDS.369

Cloud cover affects the detectability of the SDS position. 24 % of the tran-370

sects that are marked as cloudy have a non-calculated offset value, meaning371

that an SDS position was absent. These values are not included in the offset372

distributions of Figure 10.373

Sensor errors are identified manually. In case of seven Sentinel 2 images,374

a data gap covering about half the image domain was present. The locations375

of these gaps are identified as the location of the SDS by the region growing376

algorithm, and hence result in large offset values. In case of three Landsat 5377

images, scattered sunlight reflections were present in all bands at some locations.378

Since these reflections are calculated as positive NDWI values, seaward offsets379

of the SDS are found.380

The image pixel resolution hardly affects the average offset when comparing381
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Figure 10: Overview of the offset calculation between all SDS positions and their concurrent

survey shorelines. The first row contains the offset values for all satellite missions, the other

rows contain the offset values per satellite mission. The second column indicates the result

after filtering transects on local cloud cover, the third column indicates filtering on cloud cover

and nearshore wave height. Please note the different x-axis limits per filter, which are the

same for all missions.

Sentinel 2 to Landsat 8. In both cases an average offset of 9.5 and 10.5 m is382

found. The standard deviation reduces from 16 m in case of Landsat 8 to 12 m383

in case of Sentinel 2, indicating that the distribution of offset values relates to384

the image pixel resolution.385
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The effect of shifting the benchmark SDS positions as a result of the geo-386

referencing procedure with respect to the standard georeferencing as applied on387

the GEE platform results in an offset reduction in case of Sentinel 2 and Landsat388

5 (Figure 11). Because the translation shifts the SDS both alongshore and cross389

shore, the shape of the histogram also changes. In case of Landsat 8 the offset390

value increases after georeferencing. This indicates that the applied translation391

based on six control points is not sufficient to correctly align Landsat 8 and392

local deformations might be present.393

Figure 11: Overview of the offset calculation related to georeferencing before (GEE) and after

georeferencing (GEOR.) for Sentinel 2 (first panel), Landsat 8 (second panel) and Landsat 5

(third panel).

4.3. Image composites394

The effect of the moving average image composite technique with time win-395

dows of 90, 180, 360 and 720 days on the offset values is shown in Figure 12.396

Compared to the unfiltered individual images (top left panel of Figure 10) the397

average offset reduces from 56.5 m in case of individual images to 14.9 m in case398

of a 90 days image composite window. The tendency towards lower average off-399

set values continues for larger windows. The offset standard deviation reduces400

from 36 m in case of a 90 days window to 18 m in case of a 720 days window.401

This indicates that the offset is on a subpixel level (e.g. 10 - 30 m, depending on402

the satellite mission) for all considered images in case of a longer averaging time403

window. This implies that the image composite technique has an accuracy in404
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the order of one pixel, which makes the method suitable for the study of struc-405

tural, yearly trends as long as these trends are larger than the pixel resolution.406

A drawback of aggregating multiple satellite images into yearly composites is407

that it reduces the detection of smaller scale variability, making longer windows408

less suitable for the detection of intra-annual trends. A seaward offset remains409

present in the offset values, indicating that the actual shoreline is positioned410

more landward than the SDS.411

Figure 12: Overview of the offset values for all transects per image composite window of 90,

180, 360 and 720 days.

4.4. Coastline trends412

In order to assess the suitability of the technique to identify structural trends413

in the shoreline position, the trends obtained from the SDS are compared to414
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trends obtained from shorelines at MSL obtained from the topographic surveys.415

For this analysis the Landsat 8 and Sentinel 2 images are used. Landsat 5 is416

not considered since this would introduce a large gap of SDS positions in the417

period after the stop of Landsat 5 and the launch of Landsat 8, which hampers418

the OLS fit. The 360 days moving average time window provides offset values419

within a pixel and therefore still contains annual information. The subsequent420

SDS positions obtained from a 360 days moving average time window and MSL421

contour elevations obtained from the topographic surveys are projected along422

the system of transects. A monotonous eroding trend is visible for both data423

sources when using the thus obtained distance with respect to the transect424

origin for transect 54 (Figure 13). When OLS is applied for the period starting425

at 01-04-2013, which is after the start of Landsat 8, a landward (erosive) rate426

of change of 52.0 m/y is found in case of the survey MSL contour and 54.2 m/y427

in case of the SDS. This indicates that the same trends can be extracted from428

both data sources, and that a rate of change deviation of 2.2 m/y is found.429

Figure 13: Timeseries of SDS positions the MSL contour lines obtained from the survey

projected along transect 54. An OLS fit is made based on the information between 01-04-

2013 and 01-07-2016.

Performing OLS and recording the rate of change value for all transects430

results in a spatial overview of erosion and accretion (Figure 14). All fits are431

based on the SDS period between 01-04-2013 and 01-07-2016. A landward trend432

is observed from transect 16 up to transect 80. Shoreline rates of change ranging433

between -57.0 m/y and 60.0 m/y are found along this study site. The maximum434

landward directed shoreline rate of change of -57.0 m/y is observed at the tip of435
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the peninsula, indicating erosive behavior. Adjacent to the Sand Motor, seaward436

trends are visible, indicating that the adjacent coast is accreting.437

In 110 of the 113 transects the direction of the trend is equal, indicating that438

landward and seaward trends are observed in both data sources even though439

the rate of change value shows deviations. Comparing the rate of change values440

obtained from the SDS and survey MSL contour shows an average difference of441

6.1 m/y. This is predominantly caused by the positions located around transect442

5 and at the tidal channel mouth near transect 90. Near transect 5 a strong443

periodic behavior is present, resulting in a less distinct rate of change based444

on OLS and hence a higher importance towards the exact timing of the survey445

topography in relation to the satellite imagery. When these transects are left446

out of the analysis, an average rate of change difference of 5.3 m/y is found. At447

first sight this difference may seem large, but, given the considered timespan of448

5 years, this rate of change corresponds to a total deviation of 26.5 m. This449

deviation is within the pixel resolution, in line with findings in Section 4.3. A450

minimum deviation of 2.2 m/y is found at transect 54, where a monotonous451

shoreline change is present and the OLS fit performs well.452

Figure 14: Alongshore rate of shoreline change (a) based on the SDS position (green) and

the survey MSL contour (blue). The black line indicates the difference between aSDS and

aSurvey . The MSL contour line from the survey conducted on 03-08-2011 is plotted in grey

as a reference.
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5. Discussion453

The survey shoreline is used in this study as the ground truth position to454

validate the positional accuracy of the SDS. Since the survey shoreline is re-455

constructed using measured elevations and the interpolated water level, inac-456

curacies in this representation of the shoreline contribute to the found offset457

value. These effects are reduced by using high resolution and frequent in-situ458

data. The water level is interpolated from the nearest measurement stations,459

which measure both the tidal elevation and local surge. However, local devia-460

tions in the water level are not accounted for and contribute to the found offset.461

These depressions can be due to for instance wave set-up and run-up or tidal462

dispersion (Radermacher et al., 2017), of which the large scale eddy may lead463

to local water level depressions. The survey that was conducted closest to the464

satellite image is used, taking into account the timing of storm events. The465

survey topography is interpolated to a rectangular grid that is finer than the466

satellite image pixel resolution. This ensures that the survey shoreline provides467

an accurate resemblance of the actual waterline. Since an alluvial, dynamic468

sandy beach is studied, morphological changes can be substantial, indicating469

the relevance of frequent survey campaigns in this accuracy assessment. To470

demonstrate the sensitivity of the offset on the local water level, we reconstruct471

the survey shoreline at the MSL (0 m NAP) contour rather than at the actual472

water level measured at the measurement stations. When this survey shoreline473

is compared to the SDS of the Sentinel 2 benchmark case, an average offset of474

24 m with a standard deviation of 16 m is found, indicating offsets of multiple475

pixels.476

The panchromatic band 8 of the Landsat 8 and Landsat 7 mission allows for477

the method of pansharping. This method uses both the high spectral resolution478

of the optical bands and the high spatial resolution of the panchromatic band479

to obtain multispectral information with a pixel resolution of 15 x 15 m. In480

this study the original Landsat 8 images are considered. To study the effect481

of pansharping on the offset of the Landsat 8 images, all SDS position from482
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cloud free Landsat 8 satellite images are compared to their concurrent SDS483

positions obtained after pansharping. The average offset over all selected tran-484

sects increases from 20 m to 41 m, which indicates that pansharping increases485

the offset to more than a pixel. This is counterintuitive since pansharping was486

introduced to increase the pixel resolution and hence to reduce the offset values.487

Figure 15 shows the obtained shorelines for both the original and pansharped488

benchmark Landsat 8 image. As can be observed, pansharping adds additional489

NDWI information to the pixel values. A non-coherent portion of information490

is added near the shoreline, resulting in small portions of land detected as water491

and vice versa. This non coherent portion results in additional offsets when492

compared to the survey shoreline. This might have to do with the effect of493

pansharping on the NIR band and the absence of multispectral contrast near a494

sand-water transition.495

Figure 15: Effect of pansharping on the obtained SDS position. Top left shows the greyscale

NDWI image and the obtained smoothed SDS position in blue on the Landsat 8 benchmark

image. The right panel indicates the situation after pansharping.

The increasing moving average time window reduces the offset values (Figure496

12). The survey shoreline that is used to compare the SDS position is based on497

the average water level and topography of all underlying satellite image time498

instances. However, some of these satellite images are cloudy, and therefore have499

TOA reflectance values above the 15th percentile value, hence they do not cause500
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changes in the binary image. This indicates that the survey shoreline might501

be constructed based on an average water level that does not match the actual502

water level of the composite satellite image, which introduces an additional503

offset. Figure 16 shows the difference between the water level observed at the504

time instances of the underlying cloud free images within a time window and the505

water level observed on all underlying images (on which the composite survey506

shoreline is based in this study). These results indicate that in case a large507

water level difference is present, the offset is larger compared to small water508

level differences for a specific image composite. The difference between both509

water levels decreases with an increasing time window. A longer time window510

results in more cloud free underlying satellite images. Since a semi-diurnal tidal511

signal with a spring-neap tidal cycle is present along the Holland coast, more512

tidal constituents become included in the SDS when more cloud free images513

are included. The difference between the average water level of all underlying514

cloud free images and all underlying images therefore reduces, and the additional515

offset introduced by selecting a different water level for constructing the survey516

shoreline becomes less pronounced. To correctly average out tidal variations in517

the SDS position, and to end up with a representation of the SDS at the MSL518

contour, the time averaging window should be related to the cloud cover near519

the shoreline, the number of tidal constituents, the timescale of morphological520

changes and the intertidal beach slope. The intertidal beach slope measured near521

the first transect is rather mild with an inclination of 1:106 m. The effect of522

tidal averaging is less pronounced for transects with steeper slopes, for instance523

along transect 73 with an inter tidal beach slope 1:24 m.524

As accuracy seems to be especially limited by the image pixel resolution, a525

tendency towards higher spatial resolutions, such as the recently launched Sen-526

tinel 2 mission or new commercial missions such as the Triplesat with a spatial527

resolution of 3.2 m indicates a wider application range of satellite imagery in528

the near future. Besides, better sensor specifications are introduced with the529

launch of new missions, such as the recently launched geostationary GOES-530

16 mission with a temporal resolution of 15 minutes or the Landsat 8 mission531
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Figure 16: Effect of the image composite moving average time windows on the difference

between the water level observed on the underlying cloud free images (WLCloudcover≤5%)

and on all underlying images (WLall) within a time window in relation to the offset value.

All values are based on the values found at the first transect. The Landsat pixel resolution is

indicated in green.

with additional multispectral information. The applicability of the accuracy532

estimation method described in this study will change with these increasing533

satellite performances. The reconstruction of the survey shoreline based on a534

bi-monthly topographic survey that is acquired within 3 days might hamper535

the offset calculation since for instance local water level deviations or individual536

wave run-up and run-down becomes more pronounced in the SDS for higher537

pixel resolutions. This requires even more accurate information on the instan-538

taneous shoreline present during image acquisition. Other methods such as for539
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instance high frequency Argus imagery (Holman & Stanley, 2007) might replace540

the current method to validate the positional accuracy in case the positional ac-541

curacy of new satellite sensors is validated.542

Multiple missions of, amongst others, NASA and ESA are currently opera-543

tional, including missions with active sensors radar sensors such as the Terrasar-544

X satellite (Vandebroek et al., 2017). Since combing these missions results in545

more cloud free images near the shoreline, this allows for the opportunity to546

study coastal evolutions on intra-annual time scales. This also relates to a547

decreasing moving average time window to obtain cloud free image composites.548

6. Conclusions549

This paper presents an automated method to extract shorelines from satellite550

imagery. The accuracy of this method is assessed for the Sand Motor mega-scale551

nourishment by comparing the Satellite Derived Shorelines (SDS) to topographic552

surveys. The obtained SDS performs well compared to in-situ measurements of553

the shoreline. The average accuracy of the SDS for the ideal case of cloud and554

wave free images for the Sand Motor is 1 m, which is well within the pixel555

resolution. The accuracy depends on intertidal beach slope and the image pixel556

resolution.557

We have shown that the accuracy decreases in the presence of clouds, waves,558

sensor corrections and georeferencing errors. This study shows that the most559

important driver of inaccuracy is cloud cover, which hampers the detection of560

a SDS and cause large seaward deviations in the order of 200 m, followed by561

the presence of waves, which cause deviations of about 40 m. A seaward bias of562

the SDS is always present because all drivers of inaccuracy introduce a seaward563

shift. Surprisingly the pansharping method, which is intended to increase the564

image pixel resolution, and hence is expected to increase the accuracy, reduces565

the accuracy with about a pixel at a sandy shoreline. This indicates that the566

pansharping technique is not considered suitable for coastal areas.567

The found drivers of inaccuracy hamper the application of the SDS in coastal568
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engineering practice because they introduce offsets which makes it impossible to569

accurately derive trends. Nevertheless, inaccuracies can be overcome by using570

a moving average image composite window. Although this technique implies a571

reduction in temporal resolution, it increases the spatial accuracy to subpixel572

precision (e.g. smaller than 10 - 30 m, depending on the satellite mission),573

which becomes similar to the benchmark accuracy. This implies that the image574

composite technique is capable of detecting coastline changes which are at least575

larger than the pixel resolution.576

Given the accuracy of composite images along the Sand Motor in combi-577

nation with the worldwide availability of public satellite imagery over the past578

decades and the computational facilities of the Google Earth Engine platform,579

potentially allows for the application to other coastal areas in the world with580

large, structural coastline trends as long as the changes are at least in the or-581

der of a pixel. Technological progress indicates that the spatial, temporal and582

spectral resolution of satellite imagery will further increase in the coming years,583

allowing for potentially even higher accuracies on smaller timescales in the fu-584

ture.585
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