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PREDICTION OF A HYDROLOGICAL MODEL’S UNCERTAINTY BY 
A COMMITTEE OF MACHINE LEARNING-MODELS  

 

NAGENDRA KAYASTHA (1), DIMITRI SOLOMATINE (1, 2), DURGA LAL SHRESTHA (3), 

(1): UNESCO-IHE Institute for Water Education, 26211AX, Delft, Netherlands 

(2): Water Resources Section, Delft University of Technology, Netherlands 

(3): CSIRO Land and Water, Highett, Australia 

 

In the MLUE method (reported in Shrestha et al. [1, 2]) we run a hydrological model M for 

multiple realizations of parameters vectors (Monte Carlo simulations), and use this data to build 

a machine learning model V to predict uncertainty (quantiles) of the model M output. In this 

paper, for model V, we employ three machine learning techniques, namely, artificial neural 

networks, model tree, locally weighted regression which leads to several models results. We 

propose to use the simple averaging method (SA) and the weighted model averaging method 

(WMA) to form a committee of these models. These approaches are applied to estimate 

uncertainty of streamflows simulation in Bagmati catchment in Nepal. Tests on the different 

data sets show that WMA performs a bit better than SA.  

 

Keywords: uncertainty analysis, hydrological model, machine learning, MLUE, model averaging.  

 

INTRODUCTION  

The concept of multi-model averaging is applied to combine machine learning models for 

uncertainty prediction of hydrological models built by the MLUE method (Shrestha et al., 

2009). The basic idea of combining different predictive uncertainty models is to use the 

available information efficiently and to construct an averaged predictive uncertainty model with 

the right balance between model flexibility and overfitting. 

Multi-model averaging is receiving attention in the hydrological modelling explicitly to 

derive predictive model output. The motivation behind multi-model averaging is to extract as 

much information as possible from existing competing models to produce a better output. 

Analysis of results from group of competing models is much more complex than any single 

model. Each model having its own predictive capabilities and limitations therefore it is difficult 

to compare. However, combination of competing models allows the strength of each individual 

model merging in optimal way so that it can obtain best prediction. Combining models require 

weights which averages the model outputs taking advantages of each individual model.  

Uncertainty analysis of hydrological models mostly focuses on sampling based method 

where ensemble of deterministic model outputs generate to characterizes and quantifying the 

uncertainty. Machine learning techniques have been used to encapsulate results of MC 

simulations by building a predictive uncertainty models. The machine learning based 

uncertainty prediction approach is very useful for estimation of hydrological models' 



uncertainty in particular hydro-metrological situation in real-time application. In this approach, 

the hydrological model realizations from Monte Carlo simulations are used to build different 

machine learning uncertainty models to predict uncertainty (quantiles of pdf) of the a 

deterministic output from hydrological model. Uncertainty models are trained using antecedent 

precipitation and streamflows as inputs. The trained models are then employed to predict the 

model output uncertainty that is specific for the new input data.  

This approach can be used results of any sampling scheme to build a machine learning 

model and able to predict uncertainty of a hydrological model outputs. The trained model called 

a predictive uncertainty model (V) that maps the input data to the prediction interval of the 

model output that is generated by sampling schemes. The details of methodology can be found 

in Shestha et al. [1, 2]. 

In this study, we present results of hydrological model outputs uncertainties predicted from 

number of machine learning models. Three machine learning models, namely artificial neural 

networks, model tree, locally weighted regression (ANN, MT, LWR) with six different model 

inputs structure are tested to predict uncertainty of streamflows simulation from a conceptual 

hydrological model HBV for Bagmati catchment in Nepal. The problem here is that several 

input datasets used to train model V (resulting in several models, total 18 models) and these are 

difficult to compare. We propose to form a committee of all predictive uncertainty models using 

averaging schemes to generate the single (final) output. Two schemes simple averaging (SA) 

and weighted model averaging (WMA, e. g., Ajami et al. [3] Shamseldin et al. [4]) methods are 

used in this study. 

 

Uncertainty prediction models and their averaging 

Model V encapsulating the functional relationship between the inputs and the prediction interval 

PI taken as following form: 

k
uk
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(1) 

where PI
k
 is the prediction interval computed from MC data; Xu is input for uncertainty 

prediction models PI
k
 is the prediction interval estimated by machine learning techniques; k  { 

L, U }; L-lower and U-upper;  is the residual error in estimating the prediction intervals. 

 

WMA is technique to combine multiple models for better prediction among various 

competing models. The main idea of WMA is that the ensemble outputs generated by various 

models combined based on their performance. The WMA for combining multiple models of 

prediction intervals expressed as: 

 

1

N
k k
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n

PI w V  (2) 

where n is individual uncertainty prediction model (n= 1..N), N is the number of models 

under consideration, k is L-lower and U-upper, wn  is WMA weight better performing 

predictions receive higher weights than the worse performing ones. All weights are positive and 

should add up to 1. In SA method, the multiple models of prediction intervals obtained through 

simply arithmetic mean of considered models that is each of the models is weighted equally.  

 

 

 



Results and discussion 

Based on the average mutual information and correlation analysis several structures of input 

data sets considered for the machine learning models. Various combinations of the three 

effective rainfall values (REt−0 , REt−1 and REt−2,) and past values of the observed discharges 

(Qt−1 and Qt−1.) are considered as inputs. Table 1 presents six possible combinations of input 

structure used for the each machine learning model. It produces all in total 18 uncertainty 

prediction models. 

 

Table.1. Input data structures of machine learning models to reproduce MCS uncertainty results 

of the HBV model 

 

Models Input combination for uncertainty prediction 

models (Xu) 

V01 REt−0, Qt−1 

V02 REt−0, Qt−1, Qt−2 

V03 REt−0, REt−1, Qt−1, Qt−2 

V04 REt−0, REt−1, Qt−1, Qt−1 

V05 REt−0, REt−1, REt−2,  Qt−1, Qt−2 

V06 REt−0, REt−1,  REt−2,  Qt−1, Qt−1 

 

WMA is applied for combining 18 individual predictive uncertainty models based on six 

different input structures with three machine learning models (ANN, MT and LWR) for 

calibration and validation periods which are tested in Bagmati catchment. These results are 

presented in Table 2. The outputs generated by various models are combined using WMA. Each 

predictive model (e,.g, for lower PI) receives a weights which are calculated based on CoC 

(Coefficient of correlation). The averaging models are evaluated based on the prediction 

interval coverage probability (PICP) (should be close to the prescribed degree of confidence) 

and the mean prediction interval (MPI) (If there is no uncertainty, then MPI is zero). 
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The result of WMA model shows that PICP is better if compared to MT and LWR models 

but the ANN model is between the best and the worst. The best of all models is ANN V05 that 

has CoC value of 0.89 and 0.87 in for calibration and verification respectively in lower PI and 

value of 0.96 and 0.95 respectively in upper PI, and the value of PICP is 74.43% in calibration 

and 78.77% in verification, which are highest among the all models. ANN V01 model received 

lower performance of CoC and PICP among all models in calibration and verification, however 

MPI is narrow (considered better than other models)..The WMA produced PICP 64.35 and 

69.74 % in calibration and validation period respectively. However, it produced wider MPI 

among all models except ANN V05.  

  



 
Figure 1. Hydrograph of 90% prediction bounds in verification period, the black dot indicates 

observed discharges and the dark grey shaded area denotes the prediction uncertainty that 

results from MCS. Black, blue and purple lines denote the prediction uncertainty estimated by 

WAM, SA and ANN-V01 respectively. 

 

 

Table 2. Performances of the models predicting the 5 and 95% quantiles (Lower and higher PI 

respectively) in verification. 

ML 
techniques Models 

CoC RMSE 

PICP  
 

MPI  
 

Lower PI 
 

Upper PI 
 

Lower PI 
 

Upper PI 
 

ANN V01 0.71 0.86 60.25 88.05 56.84 118.73 

 

V02 0.71 0.86 60.79 92.09 75.52 142.80 

 
V03 0.81 0.94 51.46 61.59 66.24 124.03 

 

V04 0.81 0.94 49.96 60.81 68.91 125.79 

 

V05 0.87 0.95 43.34 67.53 78.77 160.48 

 

V06 0.82 0.93 49.54 66.28 73.32 136.94 

MT V01 0.72 0.90 59.14 76.92 64.04 118.95 

 
V02 0.73 0.90 58.68 76.81 66.24 119.14 

 

V03 0.77 0.95 54.93 53.14 59.40 120.42 

 
V04 0.76 0.95 55.66 53.27 60.09 119.67 

 

V05 0.81 0.95 50.25 52.14 59.05 120.59 

 

V06 0.80 0.95 51.18 52.21 59.51 119.89 

LWR V01 0.71 0.89 59.80 78.42 61.37 120.19 

 

V02 0.74 0.90 57.12 73.83 58.82 118.65 

 
V03 0.86 0.96 44.56 50.37 59.16 121.73 

 

V04 0.86 0.96 44.42 51.09 57.89 121.01 

 

V05 0.87 0.96 43.33 49.62 59.74 123.05 

 

V06 0.86 0.96 44.10 49.85 59.28 122.33 

SA 0.79 0.93 52.14 64.11 63.57 125.24 

WMA 0.86 0.94 45.79 47.84 69.74 136.20 

 

 



Conclusion 

We are building predictive uncertainty models V to encapsulate the relationship between the 

hydrometeorological variables and the quartiles of the model output probability distribution 

(forming the prediction interval). MC sampling for uncertainty estimations are done off-line 

only to generate the data to train the model V, while the trained V models are employed to 

estimate the uncertainty in real time application without running the any sampling based 

simulations any more. 

It is not straightforward to compare the results of many predictive uncertainty models. 

WMA overcomes the problem by conditioning, not on single best model but on the entire group 

of models. We show one of the ideas of model averaging which can be employed to combine 

several predictive uncertainty models. WMA for combining different predictive uncertainty 

models leads to increase in accuracy. It is observed that the percentage of the observation 

discharge data falling within the prediction bounds is highest for WMA. The verification results 

show that both averaging methods in general improve the predictive performance, but WMA is 

a bit better than SA.  
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