
Concurrency Testing of PBFT
How do different exploration strategies perform for detecting concurrency bugs in PBFT?

Martin Petrov

Supervisors: Burcu Kulahcioglu Ozkan, Ege Berkay Gulcan

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Martin Petrov
Final project course: CSE3000 Research Project
Thesis committee: Burcu Kulahcioglu Ozkan, Ege Berkay Gulcan, Johan Pouwelse

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Consensus algorithms, as well as distributed sys-
tems in general, are vulnerable to concurrency bugs
due to non-determinism. Such bugs are hard to de-
tect since it is necessary to test using a lot of differ-
ent scenarios and even then, there is no guarantee
to find one.
Controlled concurrency testing is a proposed solu-
tion to that problem. Its main strength is allowing
for more control over the order in which threads are
executed, using controlled scheduling [1].
In this paper, we utilize Coyote, a concurrency
testing framework, to test for concurrency bugs in
PBFT, the seminal consensus algorithm. Random
Walk, Delay-Bounding, Probabilistic Concurrency
Testing (PCT) and Q-Learning are the exploration
strategies we performed experiments with. The
goal is to find schedules that lead to concurrency
bugs. We test for 2 bugs that are seeded by us into
the algorithm.
A comparison of the results shows that fair explo-
ration strategies outperform their unfair variations.
Finally, we conclude that PCT and fair PCT are the
best-performing strategies for the benchmarks we
use.

1 Introduction
As our world becomes more and more reliant on distributed
systems and the internet, ensuring the reliability and secu-
rity of these systems is of increasing importance. Consensus
algorithms are one of the fundamental building blocks of to-
day’s distributed systems. They are being used for achieving
agreement between nodes and ensuring a consistent view of
the system state.

PBFT, short for Practical Byzantine-Fault Tolerance, is an
example of such algorithm. It is considered seminal for con-
sensus algorithms since previous works were either relying
on synchrony or were not efficient enough to be considered
practical [2]. The creation of the PBFT algorithm has inspired
further research into the field of Byzantine-Fault tolerance al-
gorithms and the development of improvements and different
variations of PBFT, such as Aardvark [3] and Zyzzyva [4].

Even though the algorithm provides benefits such as re-
silience against malicious attacks and high throughput, it is
prone to concurrency related issues, such as dealing with mul-
tiple requests at the same time, message orderings and oth-
ers. Therefore, concurrency testing is a critical component
for guaranteeing the correct operation and safety of an algo-
rithm. It consists of testing the algorithm on many different
concurrency scenarios to ensure proper execution in an asyn-
chronous setting. It is crucial to test for since concurrency
introduces non-determinism, which leads to harder detection
of bugs and dealing with them[5].

Being able to find a concurrency bug is considered hard,
but being able to reproduce it is even harder. The ability to
replay a bug reduces the complexity of debugging and taking
care of it. CCT, short for Controlled concurrency testing, is

the solution we inspect. It utilizes different exploration sched-
ulers and allows for better management of the exponential
space of possible orderings of thread executions. The explo-
ration strategies give control to the developers to create less
likely executions and thus test a specific schedule they sus-
pect of leading to a bug.

Conducting research on different concurrency testing
strategies is important since it will contribute to the develop-
ment of more robust and reliable consensus algorithms. The
strategies we are performing the experiments with are Ran-
dom Walk, Delay-Bounding, PCT and Q-Learning. The re-
search will also provide insights into the challenges and op-
portunities of testing distributed consensus algorithms, which
can aid the development of testing strategies in the future.

The main research question is the following:
How do different exploration strategies perform for de-

tecting concurrency bugs in PBFT?
The main question can be divided into the following sub-

questions:

1. Which exploration algorithm performs the best for de-
tecting concurrency bugs?

2. Which exploration algorithm performs the fastest detec-
tion of a concurrency bug?

3. How effective is the random scheduler in comparison to
the other techniques?

4. Does the number of iterations correlate to the amount of
bugs found when using QL?

5. How do fair exploration techniques compare to unfair
ones?

The rest of the paper is structured as follows: we go
through the required background knowledge in section 2.
Section 3 is about the methodology, containing detailed in-
formation of the steps taken to conduct the research. Then
we continue with the Experimental Setup in section 4, which
provides details about the hardware and the software used for
the experiments and the configurations of the strategies. Af-
ter that, section 5 refers to the results of the experiments and
provides an analysis of them. Section 6 focuses on the ethi-
cal aspects of conducting this paper. Finally, in section 7 we
provide conclusions of our research, a discussion about the
limitations, and detailed recommendations regarding possible
improvements and further research into the field.

2 Background
This section provides the relevant background knowledge
of the consensus algorithm and the exploration strategies,
needed to understand the methodology and the results of the
research. It also introduces the notation which is used in the
rest of the paper. Details of the algorithm which are not rele-
vant to the experiments and results of the paper are omitted.

2.1 Practical Byzantine Fault Tolerance
Figure 1 displays an overview of how PBFT works in the-
ory. The algorithm is designed to operate as a state machine,
which is replicated across different operating nodes [2]. The
replicated nodes are called replicas and are identified with



Figure 1: A normal case operation of PBFT

the integers between 0 and R, where R is the total amount
of replicas. The algorithm works with the so-called views,
which are configurations of replicas. Each view sets its own
primary node. The primary node is elected via the formula
p = v mod R, where p is the replica node and v is the view
number. It has the task of multicasting the client’s request to
the other replicas. If it is deemed faulty, the client can request
a view change which would lead to a change of the primary
node.

The algorithm starts with the client sending a request to
the primary node. When the request is received, the primary
node starts a three-phase protocol of multicasting the request
across all replicas. The phases are pre-prepare, prepare and
commit.

The pre-prepare phase consists of the primary sending a
pre-prepare message to all replicas. The message consists of
the client’s request message, a sequence number n, the digest
of the client request and the view number. The digest is an
output of a hashing function, but we will not focus on it since
it is not relevant for concurrency testing. The last three are
signed by the primary before being sent. When a backup re-
ceives a pre-prepare message, it accepts it if:

1. it is in the same view;

2. it has not previously accepted a pre-prepare message for
the same view and sequence number but with a different
digest;

3. the signatures in the request and the pre-prepare message
are correct;

4. and the sequence number is between h and H (h and H
are a lower and an upper bound, which are predefined)

If a replica accepts the pre-prepare message, it enters the
prepare phase. It does that by multicasting a prepare mes-
sage to all other backups and adding both messages to its
logs. The prepare message consists of the view number, the
sequence number and the digest from the pre-prepare mes-
sage. A replica accepts such message if:

1. it is in the same view as the one in the message;

2. the signatures are correct;

3. and the sequence number is between h and H

We define the prepared predicate to be true in the follow-
ing case: in the execution of a cluster of size 3f + 1, once a

node has in its logs a client’s request message, a pre-prepare
message in view v for it, and 2f prepare messages from dif-
ferent replicas, that match the pre-prepare message, the pre-
pared predicate for it is set to true. Once the predicate is true,
it can enter the commit phase. It does that by multicasting
a commit message to the other replicas. The message con-
sists of the sequence number, view number and the digest of
the client’s request message. The replicas accept the commit
messages using the same conditions as the prepare message
ones - correct signatures, view number and sequence number.

We define the committed-local predicate to be true in the
following case: When a node has received 2f + 1 commit
messages from distinct nodes that match the pre-prepare of
the client’s request message, that is, having the same view
number, sequence number, and digest, and has satisfied the
prepared predicate, the comitted-local for it is set to true.
Once it is set to true, it can start preparing for sending a reply
back to the client. That is done by executing the operation
requested by the client and including the result of it in a reply
message, together with its view number.

Once the client receives f +1 replies with valid signatures
and matching results from different replicas, it accepts the
result from the reply messages. The algorithm works on the
assumption that the maximum amount of faulty replicas is f .

2.2 Controlled Concurrency Testing and
Exploration Strategies

The idea behind controlled concurrency testing is to enable
test reproducibility and therefore provide more control over
the executions of tests. That is needed because concurrency
bugs often lead to flaky tests and it is important to track down
the rare schedules leading to them. Having the ability to re-
play them allows developers to have a better understanding of
the implementation and what is going wrong with it.

Controlled concurrency testing utilizes exploration strate-
gies to search through the exponentially many interleavings
of a program’s execution [5]. In this paper we are going to
utilize the following exploration strategies:

Random Walk
The random walk strategy is a scheduler that randomly de-
cides the next action to be performed from the set of all possi-
ble actions. It is usually used as a baseline for other strategies
[6].

QL
QL [7], short for Q-Learning, is an exploration strategy based
on reinforcement learning. It requires a fingerprint, which is
a unique hash of the program state, used to distinguish the
states. QL aims to learn a model that maximizes the unique
fingerprints in a test run [5], which leads to exploring more
program states and thus maximizing the coverage.

PCT
PCT is utilizing a priority-based exploration strategy. The
idea behind it is to assign a randomly-generated priority to
each process, which is used to decide on the next action at a
scheduling point. PCT has two parameters that can be con-
figured - d and n. The first parameter is the bug depth - the
number of times PCT lowers the priority of the operation with



the highest priority to the lowest possible. These scheduling
points are uniformly spread throughout the whole iteration.
The second parameter, n, is the amount of steps to be ex-
plored throughout an iteration [5]. We denote the algorithm
as PCT-X, where X is the value of the bug depth.

Delay-Bounding
Delay-Bounding [8] is an exploration strategy which utilizes
the idea of having delays in the execution of tasks. The non-
delayed tasks are performed until they are completed and only
then the delayed ones are scheduled. The delays, which have
an upper bound of d, can be seen as deviations from a deter-
ministic schedule. We denote the algorithm as DB-X, where
X is the value of the delay.

Fair and unfair exploration strategies
Madanlal Musuvathi and Shaz Qadeer introduce the concept
of fair and unfair schedules [9]. Unfair schedules are charac-
terized by starving threads of execution for an infinitely long
period of time. They are not realistic to occur nowadays but
can be really helpful when testing for concurrency bugs. Fair
schedules on the other hand do not produce such scenarios
and are therefore more close to a real-world scenario. That’s
why it is deemed important to explore the differences in test-
ing for concurrency with fair and unfair strategies. Out of the
aforementioned strategies, only PCT and DB incorporate fair
and unfair variations. We denote the fair version of PCT with
F-PCT and the fair version of DB with F-DB. The denota-
tions we use for the unfair variations are the normal ones -
PCT and DB.

3 Methodology
This section contains information about the methodology of
implementing PBFT and conducting controlled concurrency
testing on it. It gives insight on the decisions that have been
made on selecting the framework for testing and implemen-
tation, details regarding our version of the algorithm, and ex-
planations of the seeded bugs.

3.1 Framework Selection
The Coyote framework has been chosen as the primary tool
for implementing PBFT and conducting concurrency testing.
It provides a powerful in-memory and state machine pro-
gramming model which allows programming at a high level
of abstraction. It also provides a rich set of testing features,
including exploration strategies, test reproducibility, control
over specific explorations, such as deadlocks, atomic races,
etc., thus making it suitable for our purposes.

3.2 PBFT Implementation
We implement PBFT using the Coyote framework. The Actor
model of Coyote is used to represent the nodes in the network
and messages between them are exchanged via the sendEvent
function.

The implementation aims to capture the essential aspects
of the consensus algorithm while simplifying its complexity
for testing purposes. It includes the necessary components,
such as the replica nodes, message exchange protocols, and
the Byzantine fault tolerance mechanisms.

Hashing of the requests and digests is mocked by simple
function calls which basically return the input. Timestamps
are not used and the results of the ”operations” requested by
the client are also mocked.

3.3 Concurrency Bug Seeding
In order to test the performance of the different exploration
strategies, we seed concurrency bugs within our implemen-
tation of PBFT. These bugs are designed to simulate concur-
rency issues that can occur in distributed systems. We con-
sider the following bugs:

1. First benchmark
The first bug we implement reveals itself in the prepare
phase of the algorithm - since our implementation sup-
ports multiple client requests, we implement a dictionary
data structure that maps the digest of a client’s request to
a boolean, stating whether the replica satisfies the pre-
pared predicate. In our initial implementation, when a
replica receives a pre-prepare request, it adds the digest
of the replica as a key and sets the value to false. When a
replica receives a commit message, it checks whether the
predicate is true in the dictionary. The Heisenbug occurs
in the rare cases in which a node receives a commit mes-
sage by another replica before processing a pre-prepare
message for its digest. In these cases, the dictionary does
not contain the key and throws an exception when trying
to fetch the value of a non-existent key from it. The bug
can be easily avoided by just checking if the dictionary
contains such key beforehand. It is a good candidate for
a concurrency bug since it occurs in rare scenarios and
is therefore used as a part of a faulty implementation of
PBFT.

2. Second benchmark

Figure 2: Faulty case of PBFT with only f nodes needed for major-
ity when accepting a reply message

The second bug is related to a change in the number
of nodes needed for reaching a majority for consensus.
The bug could be seeded in a lot of places in the imple-
mentation - when checking the prepared predicate, the
committed-local predicate, and when the client is receiv-
ing reply messages. It was arbitrarily decided to seed the
bug in the reply phase. As stated in the background, the
client waits for f + 1 replies with valid signatures from
different replicas before accepting a result of a request.



We change the number needed for majority from f+1 to
f . This allows for concurrency bugs, which occur only
when the f faulty nodes are the first group of nodes with
the same signatures to send their replies to the client.
Figure 2 displays an example of the bug, with a client
and 4 nodes, the primary node being the only faulty one,
thus f = 1. Exchanged messages which are not impor-
tant for the execution are left in a gray color. We inspect
the case in which the primary node is the first to receive
2f + 1 commit messages and the first to send a reply
message to the client. Assuming that the result of the
performed operation is faulty, the client accepts it, since
it waits for f replies with the valid signatures, instead of
f + 1.

3.4 Exploration Strategies
The Coyote framework provides the four exploration strategy
mentioned in section 2 - RW, QL, PCT and DB. These explo-
ration strategies determine how Coyote explores the execu-
tion space of the PBFT implementation during testing. After
performing the experiments for the two bugs, their perfor-
mance is compared.

4 Experimental Setup
This section introduces the specifications of the machine used
to perform the experiments and gives detailed information
about the configurations used for the exploration strategies
when performing the tests.

4.1 Hardware and Software Specifications
The specifications of the hardware on which the experiments
are performed are of the utmost importance for the validity
and potential reproducibility of the results. The experiments
used for obtaining the results in this paper were run on a ma-
chine, containing a 6-core Intel i7-9750H processor and 16
gigabytes of RAM. The machine runs Windows 10 as an op-
erating system.

The implementation is built utilizing C#, version 7.0, and
Coyote, version 1.7.9. The actual implementation has been
made publicly available in a github repository1.

4.2 Performance Metrics and Experiments
In order to evaluate the exploration strategies the following
simple but effective metrics are used - the amount of bugs
found for a number of test iterations, and the minimal amount
of iterations needed to find a bug. Exploration strategies are
compared to each other and the one which leads to the biggest
amount of bugs found is considered the best.

All exploration strategies but QL run 100 iterations each,
since their exploration runs are independent of each other.
QL on the other hand is learning a model which maximizes
the unique fingerprints. Therefore, we decided to run exper-
iments with 100, 200, 500, 1000, and 2000 iterations in or-
der to gather data, used for observing whether bug detection
improves with increasing the iterations, answering the fourth
subquestion stated in section 1.

1https://github.com/MartinPetrov12/
Concurrency-Testing-Of-PBFT.git

The experiments are run with 5 actors - 1 client, 1 primary
and 3 replica nodes. We also run the experiments with 1 and
with 2 requests from the client. The sum of all messages ex-
changed between them comes to 32 for each request from the
client. Therefore, the values for the bug depth of PCT and the
delays of DB were kept under 32. We test the algorithms with
values 2, 5, 7 and 10, with 10 being the default value for PCT
and DB in the implementations of the exploration strategies
Coyote incorporates. The bounded strategies are run three to
four times with each parameter and the averages are taken for
them to reduce the chance of abnormal test runs.

5 Results and Analysis
In this section we present and analyse the results obtained
from the experiments with the seeded bugs and the differ-
ent exploration strategies. As a result, answers to the sub-
questions of the main research question are given.

5.1 QL Analysis

Table 1: Comparison of QL explorations with different amounts of
iterations. X axis - number of iterations, Y axis - bug. The value in
each cell represents the division of the amount of found bugs and the
number of iterations

100 200 500 1000 2000

Bug #1
1 request

0.018 0.0195 0.0185 0.0152 0.0204

Bug #1
2 requests

0.009 0.015 0.0134 0.0167 0.0196

Bug #2
1 request

0.343 0.312 0.305 0.289 0.303

Bug #2
2 requests

0.496 0.5135 0.475 0.474 0.507

QL is the only exploration algorithm out of the ones we
look into whose test runs are dependent of the number of it-
erations - as stated in section 2.2, it is a learning-based strat-
egy which aims for maximizing the unique fingerprints in a
program under test. That being said, one would think that
increasing the coverage in a test run would lead to finding
more bugs per iteration. In order to explore that, we define
the E/I ratio as the number of bugs divided by the number of
iterations (errors to iterations) for a test run.

The obtained results for the two benchmarks are conflict-
ing with eachother. A clear uptrend can be identified in both
versions of the first benchmark - with an increase of the iter-
ations there is also an increase in the E/I ratio. That however
is not the case for the second benchmark - the one request
version running 100 iterations is finding 10% more bugs on
average in comparison to the other QL explorations. The two
request version running with 200 iterations outperforms the
500 and 100 iteration runs with 7.5% and is slightly better
than the 2000 iteration run.

From our experience, it is observed that QL performs better
when it uses more iterations for bugs that are occurring rarely
but the same can not be concluded for more frequent bugs.

https://github.com/MartinPetrov12/Concurrency-Testing-Of-PBFT.git
https://github.com/MartinPetrov12/Concurrency-Testing-Of-PBFT.git


Table 2: PCT with various bug depths

PCT-D-2 PCT-D-5 PCT-D-7 PCT-D-10

Bug #1
1 request

6 8 8 8

Bug #1
2 requests

9 10 11 12

Bug #2
1 request

31 36 26 24

Bug #2
2 requests

43 47 47 46

Table 3: F-PCT with various bug depths

F-PCT-D-2 F-PCT-D-5 F-PCT-D-7 F-PCT-10

Bug #1
1 request

4 10 10 11

Bug #1
2 requests

7 11 12 12

Bug #2
1 request

38 24 28 28

Bug #2
2 requests

44 40 50 54

5.2 Fair and Unfair Strategies
The PCT exploration strategy does not perform as well when
it uses unfair scheduling as opposed to when it uses a fair one.
For every variation of the benchmarks the best-performing
fair exploration finds more bugs than the best-performing un-
fair one. When it comes to the delay parameter, PCT per-
forms the best with bug depth of 5, and F-PCT performs the
best with a bug depth of 10. Only for the one request variation
of the second benchmark, F-PCT performed the best with a
value of 2.

Table 4: DB with various delay values

DB-D-2 DB-D-5 DB-D-7 DB-D-10

Bug #1
1 request

2 4 5 1

Bug #1
2 requests

2 2 4 2

Bug #2
1 request

9 17 15 17

Bug #2
2 requests

38 43 43 48

Table 5: Fair-DB vs Fair-DB with specified delay

F-DB-2 F-DB-D-5 F-DB-D-7 F-DB-D-10

Bug #1
1 request

2 3 0 5

Bug #1
2 requests

2 4 1 3

Bug #2
1 request

8 12 20 21

Bug #2
2 requests

40 46 47 52

When experimenting with DB and F-DB we reach the same

conclusion as with PCT - the best-performing fair exploration
strategy outperforms the best-performing unfair one for each
bug and their variations. The best values for the delay param-
eter are in the range between 7 and 10.

Overall, we can conclude that fair exploration strategies
are more suitable for testing our benchmarks in comparison
to unfair ones.

5.3 Fastest Bug Detection

Table 6: Minimal amount of test iterations needed to find a bug

RW PCT F-PCT DB F-DB QL

Bug #1
1 request

11 4 4 82 5 56

Bug #1
2 requests

17 31 11 28 12 16

Bug #2
1 request

3 8 4 5 4 3

Bug #2
2 requests

2 2 3 5 6 7

When performing the experiment runs with the different
exploration strategies it is also kept track of the first iteration
in which a bug is found. For both variations of the first bench-
mark F-PCT has been the fastest. For the second benchmark
however the results are pretty close due to the fact that bugs
are found more frequently in it. That being said, F-PCT is the
third-best-performing exploration strategy out of all for both
variations, with PCT being tied for first for the 2 request vari-
ation. Since PCT is also tied for first with F-PCT in the first
benchmark, it can be concluded that a combination of run-
ning PCT and F-PCT would be the fastest to find a bug for
our benchmarks.

5.4 Best Performing Strategy

Table 7: Amount of found bugs after 100 iterations. Parameters
used: PCT - 5, F-PCT - 10, DB - 10, F-DB - 10

RW PCT F-PCT DB F-DB QL

Bug #1
1 request

1 8 11 1 5 2

Bug #1
2 requests

2 10 12 2 3 2

Bug #2
1 request

31 36 28 17 21 31

Bug #2
2 requests

44 47 54 48 52 49

When performing the final evaluation, the best-performing
variations of each algorithm were picked - PCT with a
bug depth parameter of 5, F-PCT with 10, and both delay-
bounding strategies with a delay of 10. Best-performing is
evaluated by the variation which is the first for finding the
most bugs among all other variations, for all bugs. The val-
ues for QL are equal to the average E/I for each bug from
table 1, multiplied by 100. We use the Random walk strategy
as a baseline for evaluating all other strategies.



Analysing the results for the first benchmark, it is observed
that most algorithms are barely better than the baseline. DB
and QL do not perform particularly well for it - for the 1 re-
quest version, DB has performed the same as RW and QL is
better by just one more found bug. Using the fair version of
DB is the third best strategy for it, however, PCT and F-PCT
are the clear best strategies for this benchmark. That can also
be seen in the 2 request version, where they have performed
at least three times better than the third-best strategy. In both
variations of the bug, F-PCT is better than PCT with at least
20% so it can be concluded that it is the best strategy for the
first bug.

From analysing the results of the second benchmark, we
observe that the random strategy is performing surprisingly
well - it is tied for the second best-performing strategy for the
1 request variation. DB and fair DB are worse than the base-
line level. F-PCT with a bug depth of 10 is not better than the
baseline. However, when run with a bug depth of 2, F-PCT
is the strategy with the most found bugs. For the 2 request
variation of the benchmark, all strategies are performing bet-
ter than the baseline, with F-PCT and F-DB being the only
strategies able to find more than 50 bugs in 100 iterations. It
can be concluded that F-PCT is the best strategy out of all for
our benchmarks.

5.5 Conclusion of the Analysis
From the performed experiments, it can be concluded that
PCT and F-PCT are performing the best from all strategies
for our benchmarks, both in terms of finding bugs and the it-
erations needed to detect a bug. Different bug depth values
are better for the different bugs though - bug depth of 2 for
the fair version of PCT is outperforming the other ones for
the 1 request variation on of the second benchmark, and a
bug depth of 10 performs best for the rest. With including
more bugs it would become harder to pick a single value for
the parameter. Also it is not guaranteed that PCT and F-PCT
are going to remain the best-performing strategies. Therefore
when testing for concurrency bugs in PBFT we recommend
focusing on building a portfolio of exploration strategies in-
stead of picking a single one.

6 Responsible Research
The most important aspect when it comes to responsible re-
search in this paper is the ability to reproduce the results. We
provide detailed information about the hardware and software
environment in section 4.1. By making the repository pub-
licly available we allow anyone who wishes to perform the
experiments themselves to do so.

We run the bounded strategies between three and four times
each for all parameters and took the average of the results to
attempt to reduce the randomness effect. However, we run
the tests with just 4 values for their parameters. Since we
do not focus on optimizing the parameters due to a lack of
time, it is possible that using different values could lead to
different results and conclusions. That is why we encourage
people willing to run the experiments to build a portfolio of
exploration strategies with various configurations and exper-
iment with it, instead of taking our conclusions and directly
applying them.

7 Conclusions and Future Work
This paper compared different exploration strategies for con-
currency testing on a version of the Practical Byzantine Fault
Tolerance algorithm. We found that for our seeded bugs, fair
exploration strategies performed better than unfair ones, and
that a combination of PCT and F-PCT would lead to the best
results, both in terms of number of bugs found and in terms
of iterations needed of finding a bug. The parameters of the
bounded algorithms proved to be important during testing and
we recommend building a portfolio of different exploration
strategies with different configurations when performing tests
on PBFT.

It is important to acknowledge the limitations of this study.
Our implementation of PBFT does not fully capture the com-
plexity of a real-world implementation - we have not per-
formed tests that include a view change in the sequence of
operations and we have not tested for more than one bug in
a single test run - the bugs were seeded separately from each
other. Also, the concurrency bugs we have tested for are not
enough to represent the entire range of potential bugs that can
arise in the implementation of the consensus algorithm.

Possible improvements would be:

1. Seeding more complex bugs and performing further re-
search on the differences between fair and unfair strate-
gies in terms of performance and possible use cases.
Adding more bugs would also provide more insight into
the question regarding the correlation between the num-
ber of iterations in a test and bugs found when using QL.

2. Incorporating delays in the form of sleeping a thread in
the implementation - that would improve the already cre-
ated bugs by simulating an asynchronous environment
while testing.

3. More experiments with more parameters for the
bounded strategies - that will increase the reliability of
the results and will possibly lead to finding more bugs.

References
[1] C. Wen, M. He, B. Wu, Z. Xu, and S. Qin, “Controlled

concurrency testing via periodical scheduling,” in Pro-
ceedings of the 44th International Conference on Soft-
ware Engineering, pp. 474–486, 2022.

[2] M. Castro, B. Liskov, et al., “Practical byzantine fault
tolerance,” in OsDI, vol. 99, pp. 173–186, 1999.

[3] A. Clement, E. Wong, L. Alvisi, M. Dahlin,
M. Marchetti, et al., “Making byzantine fault toler-
ant systems tolerate byzantine faults,” in Proceedings
of the 6th USENIX symposium on Networked systems
design and implementation, The USENIX Association,
2009.

[4] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,” in Pro-
ceedings of twenty-first ACM SIGOPS symposium on Op-
erating systems principles, pp. 45–58, 2007.

[5] P. Deligiannis, A. Senthilnathan, F. Nayyar, C. Lovett,
and A. Lal, “Industrial-strength controlled concurrency



testing for c# programs with coyote,” in Tools and Algo-
rithms for the Construction and Analysis of Systems: 29th
International Conference, TACAS 2023, Held as Part of
the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22–27,
2023, Proceedings, Part II, pp. 433–452, Springer, 2023.

[6] P. Thomson, A. F. Donaldson, and A. Betts, “Concur-
rency testing using controlled schedulers: An empiri-
cal study,” ACM Transactions on Parallel Computing
(TOPC), vol. 2, no. 4, pp. 1–37, 2016.

[7] S. Mukherjee, P. Deligiannis, A. Biswas, and A. Lal,
“Learning-based controlled concurrency testing.,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 230–1,
2020.

[8] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded
scheduling,” in Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on principles of program-
ming languages, pp. 411–422, 2011.

[9] M. Musuvathi, S. Qadeer, and M. Musuvathi, “Fair state-
less model checking,” in PLDI 08: Programming Lan-
guage Design and Implementation, Association for Com-
puting Machinery, Inc., June 2008.


	Introduction
	Background
	Practical Byzantine Fault Tolerance
	Controlled Concurrency Testing and Exploration Strategies
	Random Walk
	QL
	PCT
	Delay-Bounding
	Fair and unfair exploration strategies


	Methodology
	Framework Selection
	PBFT Implementation
	Concurrency Bug Seeding
	Exploration Strategies

	Experimental Setup
	Hardware and Software Specifications
	Performance Metrics and Experiments

	Results and Analysis
	QL Analysis
	Fair and Unfair Strategies
	Fastest Bug Detection
	Best Performing Strategy
	Conclusion of the Analysis

	Responsible Research
	Conclusions and Future Work



