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Abstract

In this project, we have defined a prediction model for the magnetic signature of the

M4, based on on-board measurements of the magnetic field and an accurate de-

scription of the geometry of the steel object. The prediction model consists of con-

secutively solving an inverse problem and the computation of a forward problem. The

forward problem was first derived and used as a starting point for the derivation of the

inverse problem.

To analyze the behavior of an inverse problem, theory of inverse modeling is dis-

cussed. The notion of a generalized inverse operator enables one to come up with

best-approximate solutions of the inverse problem. Furthermore, we showed that the

inverse problem involved in this project is, at a fundamental level, ill-posed, in the

sense of Hadamard’s definition of well-posedness. This shows that solving the inverse

problem is hard and that additional tools are required to produce good solutions. One

of those tools is regularization.

The Petrov-Galerkin method is used to reduce the inverse problem to a discrete lin-

ear inverse problem, by discretising the geometry of the M4 and applying suitable

quadrature rules. Several solving methods are considered to solve this discrete linear

inverse problem: direct solvers like the SVD as a way to construct the generalized

inverse, and the CGLS method as an iterative solver.

Besides the choice of a numerical solver, the use of regularization has been investi-

gated. We have looked at several standard regularization methods such as Truncated

SVD and the application of Tikhonov regularization. Also, the regularizing behavior of

the CGLS method is considered.

The performance of the proposed prediction model has been studied. It is shown

that the prediction model performs accurate with exact measurement data and noisy

measurement data. The effect of regularization by truncation has been demonstrated

and it shows that within certain limits the prediction model can be used to do reliable

predictions.

A measurement campaign is performed for real data to validate the prediction model.

For two different magnetic states and several background fields, we have measured

the magnetic field inside the mock-up, and the magnetic signature below the mock-

up using the array of sensors in the basement of the facility. The prediction model

is demonstrated for a specific measurement setup. It is shown that Tikhonov regu-

larization leads to a reasonable prediction of the magnetic field. However, there are
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more steps to make in enhancing the prediction model, so that the performance of

the model is also good in practice.

The campaign was a rich source of new insights in regard to the complexity of an

accurate prediction model. The inhomogeneity of the background field is not taken

into account in the proposed prediction model. Furthermore, we have seen that mag-

netic sensors are quite sensitive to their orientation. Small changes in the orientation

can lead to large variations in the measured values. Such deviations may result in

bad performances of the prediction model. Therefore, the prediction model should be

enhanced in such a way that it can deal with these issues. Lastly, we have observed

that the mobile sensor probably malfunction. Such details must be taken into account

in future research.

The performance of the prediction model in practice is demonstrated with a measure-

ment data set obtained during the measurement campaign.

-
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Nomenclature

Below one can find a list with acronyms and notations used in this thesis. The list is

ordered by first appearance in this thesis and per chapter.

Symbols used in Chapter 1

E Electromotive force

ΦB Magnetic flux

n Unit normal vector

B Magnetic induction field

H Magnetic field

µ0 Magnetic permeability in vacuum

M Magnetization of some object

∇ ·M Divergence of the magnetization [A/m2]

M4 Mock-up for Magnetic Monitoring Measurements

Symbols used in Chapter 2

D Electric flux intensity [C/m]

ρ Electric charge [C/m3]

B Magnetic induction field in tesla [T]

E Electric field intensity [V/m]

H Magnetic field intensity [A/m]

J Electric current density [A/m3]
∂
∂t Time-derivative

∇×H curl of H

µ0 Magnetic permeability in vacuum

Ω Steel object

ϕ Magnetic scalar potential

σ Magnetic surface charge

n normal vector w.r.t. Ω

t Thickness of Ω

∇(f) Gradient of f
∂
∂ν′ Normal derivative

E Set of triangular elements
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Symbols used in Chapter 2, continued

BE Set of boundary elements

P Set of vertices/grid points

|X| Number of elements in the set X

f, g, h Magnetic source functions

∂Ω Boundary of Ω

ϕi basis functions defined on elements in E

ϕi basis functions defined on elements in BE

ψi basis functions defined on R3 \ Ω

Symbols used in Chapter 3

‖ · ‖2 The L2-norm/Euclidean norm

∇2 The Laplacian, ∇2 := ∇ · ∇
F Forward operator

T Linear operator

N (T ) Kernel/null-space of the operator T

inf X infimum of the set X: largest lower bound of the set X

L(X ,Y) The vector space of all bounded linear operators from X to Y
D(T ) Domain of the operator T

R(T ) Range/image of the operator T

V
⊕
W Direct sum of the spaces V and W

R(T )⊥ Orthogonal complement of R(T )

f �X Restriction of the function f to X

T † Moore-Penrose generalized inverse of the operator T

R(T ) Topological closure of the space R(T )

T ∗ Adjoint operator of T

x† Best-approximated solution
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Symbols used in Chapter 4

e Noise vector

κ(A) Condition number of the matrix A

‖A‖2 Euclidean norm of the matrix A

σmin/σmax smallest/largest singular value

Kk(A,b) The k-th order Krylov subspace spanned by the matrix A and the vector b

CG Conjugate Gradient Method

CGLS Conjugate Gradient Method for Least Squares

Φ Functional that is used in the CGLS

rk Residual vector of the k-iterate

pk Search vectors

αk−1 Step size in the k-iterate of the CGLS

βk Step size in the new search direction pk

dk Discrepancy of iterate xk

Symbols used in Chapter 6

ε Absolute error between real and predicted signature

τ Relative error between real and predicted signature
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Preface

In the period September 2014 until February 2015 I did an internship at TNO on the

subject of modeling the magnetic signature of a steel plate. The magnetic signature

is defined as the magnetic induction field that is induced by magnetic sources in the

steel plate. Together with my supervisor Eugène Lepelaars we described a system

that predicted the magnetic signature by a finite number of measurements of the

signature. We called this the simplified magnetic signature monitoring. Solving an

(severely) ill-posed problem is involved in such a system.

This simplified magnetic signature monitoring system is a step towards what we want

to achieve on-board of a naval ship. A so-called magnetic signature monitoring system

should be able to compute the magnetic induction field based on on-board measure-

ments of the magnetic induction field. Also, the monitoring system should warn the

crew on board for critical situations and advice the crew what action should be taken.

Furthermore, a magnetic signature monitoring system should be able to reduce the

magnetic induction field effectively by coupling the monitoring system to a degaussing

system. A degaussing system is the placement of large coils inside the vessel. By

defining suitable currents in these coils the magnetic signature can be reduced. This

reduction makes the vessel more magnetic silence.

Of course, the step between a single steel plate and a large complex steel structure

such as a steel hull of a naval ship is rather a foolish heroic leap of faith. Therefore a

smaller step – constructing a system for some mock-up model – is a more reasonable

step to take.

During my internship I became more and more enthusiastic about this particular sub-

ject, that I decided to continue the work in the form of a graduation project. Together

with Eugne Lepelaars we took the next steps in the realization of such a magnetic

signature monitoring system.

We started by designing a mock-up model that represented, in a simplistic manner,

the specific shape and complex structure of a naval vessel. (It turned out that this

relatively small mock-up model already led us to new challenges which were not

visible in the internship.) This model was built in a 3D CAD modeling tool called

Rhino3d.

This mock-up model was then imported in a multiphysics simulation program called

COMSOL. Using this program we were able to simulate different scenario’s of magnetic

induction field surrounding the mock-up model in order to test the implementation in

-
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MATLAB.

We investigated in which way we can achieve the best approximations of the magnetic

signature. The goal of the simulations in COMSOL is to analyze and validate the inverse

model, and to understand the behavior of the model. Questions on the number of

sensors and placement of the sensors are important for future applications of the

model.

By financial support of DMO (Defensie Materieel Organisatie) the Marine bedrijf in

Den Helder was able to build real life version of the mock-up model for us. A mea-

surement campaign was then set up in order to support our research in the form of

real measurement data. This measurement campaign took place at the item range of

the WTD71 in Borgstedt, Germany.

-
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1 Introduction

1.1 Motivation

The Royal Netherlands Navy operates often in areas where the threat of naval mines

is high. Such fields of naval mines can be found near the coast of a country or in

shallow waters. The presence of mines influences the probability of mission success

and therefore any risk of detonation of a naval mine must be avoided .

One of the tasks of the Royal Netherlands Navy is the disarming of the naval mines

in the North sea and near the Dutch coast to secure shipping routes. At this moment,

there is an estimated number of 250.000 naval mines in the earths waters. This num-

ber shows the need of clearing these bombs. To succeed this task, two kinds of naval

vessels can be used. The so-called mine hunters are naval vessels that use special

drones to disarm naval mines without detonating them, while minesweepers are used

to disarm naval mines by detonating the naval mines. In both cases the vessels may

come in range of the mines.

At this moment the Royal Netherlands Navy has a total of six mine hunters and no

mine sweepers. In figure 1.1 one can find a picture of the mine hunter Zr. Ms. Vlaardin-

gen (M863). This mine hunter is approximately 51.5 meters long, 8.9 meters wide and

has the possibility to use mine clearance divers as well as the mine identification and

disposal system SPVDS, which is an unmanned underwater vehicle (UUV).

Figure 1.1: Zr. Ms. Vlaardingen (M863), source: https://www.defensie.nl/
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A modern influence mine uses all kinds of sensors to measure signals in order to

determine whether a vessel is near. If indeed a naval vessel is near, an influence

mine can decide to actuate. Some of these signals are the following:

• A magnetic field around a vessel that locally disturbs the earth magnetic field.

This disturbance is caused by the ferromagnetic material in the construction of the

vessel.

• An electric field is partially caused by on board equipment that work on electricity.

Also the movement of the vessel in a background field generates an electrical field.

The main cause however is the cathodic protection of the hull: using electricity to

avoid corrosion of the vessel’s hull. A current along the vessel’s hull induces also a

contribution to the magnetic field that surrounds the vessel.

In figure 1.2 several other signals are mentioned in a simple overview. Notice that

some of the signals are only of interest above sea level, while other signals play a

larger role below sea level.

Figure 1.2: An overview of signals that a naval vessel emits. Source: CSSM

1.1.1 The signature of a naval vessel

It is important to know how these signals propagate and to be able to minimize and

manipulate the signals as much as possible. These signals depend uniquely on the

naval vessel. Therefore we define the signature of a naval vessel as the complete

“picture” of the propagation of these signals in its environment. We speak of the mag-

netic signature when we consider the magnetic field of a specific naval vessel. The

reduction of these signals improves the probability of a mission success of a naval

vessel.

The Netherlands Organization for Applied Scientific Research (TNO) is doing re-

search in describing these signatures of a naval vessel. This research is done for

the Ministry of Defense. TNO focuses mainly on the underwater signatures such as
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the magnetic signature, electric signature and acoustic signatures and above water

ship signatures such as IR and RCS signatures.

In figure (1.3) one can find the Zr.Ms. Van Speijk (F828) multi-purpose frigate. The

Royal Netherlands Navy has the ambition to equip future naval vessels with a so-

called signature monitoring system. This system should visualize the signature of

different influences. To reduce the signatures of a vessel, the signature monitoring

system has to be coupled to some control system that minimizes the signals. Such

a system is then called a signature management system. During a mission the

signature management system should also warn and give advice if the threat level

becomes critical.

With a so-called degaussing system the magnetic field around the naval vessel can be

reduced. By placing large coils in a ship’s hull (in all three directions) the degaussing

system is able to generate a magnetic field. Such a magnetic field is then used to

reduce the magnetic induction field around a vessel. An extensive explanation of

these systems can be found in [15].

The ultimate task is to complete the creation of a closed-loop degaussing system.

This is essentially the connection between the signature monitoring system and the

degaussing system (and thus a crucial module in the signature management system).

By using the magnetic signature from the signature monitoring system the degauss-

ing system can operate optimally.

Figure 1.3: Multi-purpose frigate Zr.Ms. Van Speijk (F828). Source:

http://www.defensie.nl
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1.1.2 The magnetic signature

In this report we consider the magnetic signature of a naval vessel. The magnetic sig-

nature is distortion of the earth’s magnetic field due to the naval vessel. This distortion

can be sensed by a naval mine.

The magnetic signature of a vessel is mainly caused by the following four contribu-

tions:

(1) The interaction between the steel ship structure and the static earth’s magnetic

field;

(2) The use of cathodic protection to control the corrosion of the metal surface of a

navel vessel;

(3) Eddy currents in the vessel’s hull by the motion of the vessel in the earth magnetic

field;

(4) Stray fields generated by electrical equipment and cabling inside the vessel.

We limit ourselves to the first contribution, the interaction between the steel ship con-

struction and the earth’s magnetic field. The interaction of the earth background field

and the steel construction of a vessel is described by the Maxwell equations. The ship

structure is made out of welded steel plates. Because of the ferromagnetic behavior

of steel, the steel plates magnetize in the presence of the earth magnetic field. To-

gether with the permanent magnetization of the steel, this is a significant contribution

to the magnetic signature.

Steel has the following complex magnetic behavior:

• Hysteresis: the magnetic memory of steel constantly changes the properties of

the steel. The changes are due to a present background field. The way how the

steel magnetizes thus changes over time. This complex behavior can be expressed

by a so-called hysteresis curve that shows how the magnetization of the steel is in

relation to the background field.

• Magneto-Mechanical effects: The behavior and properties of steel change due

to mechanical stress. Examples of mechanical stress are bending/welding of steel

plates and damage to the vessel’s hull due to military weapons. For submarines

the different effect plays an important role. As the pressure on the submarine pres-

sure hull rises when a submarine is deep below sea level, the hysteresis curve

of the steel hull changes significantly. These effects are called the Villari effects.

Descriptions of these effects are quite complex.

• Inhomogeneous magnetization: Zooming in onto a steel plate leads to the visi-

bility of so-called magnetic domains. In each domain the magnetization is uniform,

but these magnetic domains vary in shape and cover the steel plate quite ran-

domly. Therefore the magnetization of a steel plate is inhomogeneous. When a

background field changes, the shape of these magnetic domains changes as well,

and therefore changing the magnetization of steel.
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The magnetisation cannot be measured directly. This makes the notion of a mag-

netisation hard to grasp. We see that it is complicated to model the magnetic field

surrounding a vessel when we want to take into account all these complex proper-

ties. In this project, however, we are not interested in the causes of the magnetisation,

only in the resulting magnetic field. We will use measurements of the magnetic field

and inverse modeling, to reconstruct the total magnetisation.
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1.2 The magnetic naval mine

The following is an excerpt of chapter 3 in [13]. A summary is given of the history of

the naval mine and the mechanics behind the magnetic naval mine. It will become

clear why there is a need of precise magnetic signature computations for future naval

vessels.

1.2.1 The very first naval mine

The naval mine was first invented by David Bushnell during the American Revolu-

tionary War in the eighteenth century. This primitive mine, if one could speak of a

“mine” at all, was in principle a tar covered beer keg filled with gunpowder. The tar

was necessary to make the keg waterproof. the wood lets the kegs float on water.

The detonation was based on a flintlock mechanism that hopefully got triggered when

the beer keg made contact with a ship’s hull. This type of mine is called a contact

mine. These contact mines were obviously unreliable as the trigger mechanism would

not always work properly. Furthermore, the gunpowder could get wet so that the mine

could not work at all. Yet it was a brilliant first step to the modern naval mines. An

illustration of such a typical beer keg mine can be found in figure 1.4.

Figure 1.4: Beer keg mines in the 18th century. [13]

After the American Revolutionary War, further development of contact mines led to

a reliable detonation mechanism based on pressure/touch. The flintlock mechanism

was replaced by the typical pins.

A pin was “made out of a soft lead that covered a glass vile filled with an electrolyte”.

When a pin contacted the ship’s hull, the glass would break and the electrolyte would

flow between two contacts so that a closed circuit was formed. This then led to the

detonation of the mine.
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The contact mines had a spherical shape, with the typical pins on top of the sphere,

and were held in place by an anchor below the water surface in such a way that

the mines were out of sight of the human eye, but in reach of the vessel’s hull. This

type of naval mine was used excessively in the first World War. They were moored

throughout the waters of Europe and the North sea. It appeared to be an effective

device to defend against submarines.

1.2.2 From contact mines to influence mines

After World War I, Germany started the development of mines that are actuated not

by contact, but rather by influence fields from ships, such as magnetic fields and

electric fields. Germany developed a bottom influence mine that lies on the sea floor

and explodes when it detect a ship’s magnetic field by its distortion of the background

field.

In figure 1.5, one can see the typical detonation mechanism. A dip-needle, which

is also used in a simple compass, reacts on the change from the background field

when a ship is nearby, and closes a circuit when the change was significant enough.

This simple idea is rather brilliant. Without any modern technology they were able to

build a sensor that was rather cheap and worked very well. These mines were used

extensively during World War II.

Figure 1.5: Schematic of a dip needle firing circuit in a magnetic bottom mine used in

World War II. [13]

The U.S. took a different approach in the development of a magnetic mine. Their

magnetic mine sensor was not based on a dip-needle but rather on Faraday’s law of

induction. Given a closed circuit C which encloses an open surface S, Faraday’s law

of induction is expressed by the following formula

E = −dΦB

dt
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where E is the electromotive force (EMF) and ΦB is the magnetic flux defined by

ΦB =

∫
S

n ·B dA

This law states that when there is a magnetic field surrounding the circuit that rapidly

changes over time, then there is a current in the circuit produced by this varying

magnetic field. The intensity of this current is related to the change in the magnetic

flux. Hence when a magnet moves through the circuit, a current runs inside the circuit.

This is the idea used in the magnetic mine sensor of the U.S. In the detonation circuit

there is a sensitive relay that is powered by another circuit. In this second circuit a

current is induced when a ship changes the background field. When the change of

the magnetic field is large enough, the sensitive relay closes the detonation circuit

which actuates the naval mine.

1.2.3 The modern influence mine

The modern naval mine does not only sense variations in the earth magnetic field,

but also the other influences as described before. By combining the measurements

of the magnetic and electric fields, acoustic and pressure waves, a smart algorithm in

such a naval mine determines whether a naval vessel is passing by and if actuation

of the mine will lead to maximum damage. As the power source on such a mine is

limited, the mine should be built in such a way that it minimizes the usage of energy.

Therefore, not all sensors are active at all time. A managing system controls the use

of sensors and switches between the various sensors available in the mine, which

makes the protection against such naval mines complicated. At one time the naval

mine mainly senses the magnetic field, while at some other instance the mine may

sense acoustic and pressure waves.

Figure 1.6: A multi-influence shallow water sea mine, designed to be effective against

landing crafts and small-mid tonnage vessels. source: http://www.aiad.it/
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1.3 Previous work

During the internship we have worked on the first steps of magnetic signature mon-

itoring. We investigated how one sets up the framework for the connection between

the magnetic sources in a single steel plate and the magnetic field that is induced

by it. Starting with assumptions for the vector fields considered, we are left with the

following set of equations that describes the connection between the magnetization

M of a plate P and the magnetic induction field B:
∇×H = 0

∇ ·B = 0

B = µ0(H + M)

Here, µ0 is the magnetic permeability in vacuum and H is the magnetic field. An

analytical solution to the forward problem is given by

B(r) = −µ0t

4π

x

P

r− r′

|r− r′|3
∇ ·M(r′)dr′, r /∈ P

Note that∇·M is the source of the field. The thickness of the plate is given by t. After

using an appropriate discretisation of plate P, the above integral can be approximated

using quadrature rules. The forward problem was then implemented in MATLAB.

A validation of the implementation was done. In the case of a uniform magnetization

of the single steel plate we compared the results of the simulation in MATLAB together

with analytical expressions.

Next, we considered the inverse problem for a single steel plate. The inverse problem

can be stated heuristically in the following manner: Given N measurements of some

magnetic induction field B which is induced by a magnetization of the steel plate P,

reconstruct the source f such that the following equation holds in each measurement

B(ri):

B(ri) = −µ0t

4π

x

P

ri − r′

|ri − r′|3
f(r′)dr′, for i = 1,2,. . . ,N

It appeared at the beginning of this graduation project that a few programming errors

and a few small errors in the derivation of the forward problem had been made. These

mathematical mistakes weren’t visible because of the simple geometry. The mistakes

have been corrected.

In the years 2000-2008 Chadebec et al. worked on the Inverse Magnetostatic Prob-

lem. They derived an inverse problem for the magnetization M of some steel object,

rather than the magnetic sources ∇ ·M as in the internship. Although they achieved

a lot of progress in their research, it seemed that it stagnated at some point.
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1.4 Research goals

The aim of this project is to create a prediction model for the magnetic signature

monitoring of a naval vessel, based on a mathematical-physical model. One part

of this model is the construction of the total magnetic signature of a naval vessel

from limited on-board measurements of the magnetic signature. In this thesis we

focus on the development of this model and we call this the prediction model. The

prediction model will be part of a larger numerical system that will be developed in

the near future. Therefore some of the research goals in this thesis are shared by

other projects within TNO.

To realize an actual magnetic signature monitoring system in a naval vessel, we

should keep in mind that a naval ship is a (very) complex ship where the placement of

sensors for the magnetic signature monitoring system should be optimal to achieve

our goals.

It is already a challenge to determine the best positioning of sensors inside a naval

vessel, keeping in mind all electrical machines on board of a vessel that create local

distortions of the magnetic field. Furthermore we would like to know which kind of

sensors are needed (in particular the required accuracy of the sensor) and how many

sensors are needed in order to have an adequate magnetic signature monitoring

system. Some of these questions are challenges for the near future, when actual

measurement campaigns on large ships will be conducted.

Specifically, we want to design a model that predicts the magnetic signature from

a limited number of on-board measurements of the magnetic field. Topics we will

consider are:

• Determine a correct formulation of this prediction model.

• Analyze the inverse problem and study regularization methods.

• Use simulated data to investigate whether the model can predict accurately.

• Analyse the influence of noise in the measurement data with respect to the solu-

tions of the inverse problem.

• Apply the prediction model to real on-board measurement data.

The required accuracy of the prediction model is classified. As a rule of thumb the

relative errors between the predicted magnetic signature and the real magnetic sig-

nature of a vessel should not exceed the 10%. We use this as a guideline in the

validation of the prediction model. Techniques from the field of regularization are in-

vestigated in order to enhance the prediction model.

To validate whether the prediction model works accurately in practice, a measure-

ment campaign is organized. A mock-up model called the M4 (which stands for the

“Mock-up for Magnetic Monitoring Measurements”) is built by the Marine Bedrijf in

-
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Den Helder and is transported to the item range “Grosse Eva” at the WTD71 in Borg-

stedt, Germany. A picture of the M4 is found in figure 5.2.

The Grosse Eva is a dry magnetic measurement facility that consists of two systems

of coils and a measurement setup made out of magnetic flux-gate sensors. The larger

coil system is used to simulate any background field on earth. For instance, it is

possible to simulate the earth’s magnetic field near the coast of Aruba. The second

smaller coil system is used to change the magnetic state of the M4. This is done by

placing the M4 in a very strong changing magnetic field. A much larger measurement

facility lies near the Grosse Eva and can be used to measure the magnetic signature

of large vessels, such as submarines. This facility is called the “earth Field Simulator”.

In figure 1.7 a picture of the earth Field Simulator can be found.

The measurement campaign took place in October 2015. For one measurement we

have processed the data. This data set is used as inpute for the prediction model.

Further processing of the data and validation will be done in the near future.

Figure 1.7: Earth Field Simulator. source: baainbw.de/WTD 71

1.5 Chapter outline

This report is structured as follows. In Chapter 2 we formulate our problem in terms

of a so-called Forward and Inverse problem. We show that the application of the

Galerkin-Petrov Method leads to a linear inverse problem. In Chapter 3 we give an

overview of inverse modeling. We discuss the elementary notion of inverse prob-

lems and describe what a generalized inverse is. Furthermore, we prove that our

inverse problem is ill-posed. In Chapter 4 we present an introduction to regularization

methods and the use of (iterative) solvers to approximate solutions (for linear sys-

tems). Several solvers are discussed. In particular we discuss the Conjugate Gradient
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Method for Least Squares (CGLS) as well. The regularizing properties of the CGLS

method are presented as well. In Chapter 5 we discuss the geometries that we use in

our simulations. In particular we discuss the mock-up model M4. A brief explanation

on the meshing of our mock-up is then given. In addition, the multiphysics program

COMSOL is introduced and we show how COMSOL computes magnetic fields. In Chap-

ter 6 we test our inverse model and investigate its behavior in detail. In Chapter 7

we discuss the measurement campaign and the observations that are done during

the campaign. Chapter 7 ends with the demonstration of the prediction model on real

measurement data. In Chapter 8 we discuss the results obtained in this project and

we discuss further research directions for the near future.

1.6 Software

Throughout this project we have used several software packages. The multiphysics

software COMSOL is used to create several meshes of the mock-up and to generate

data for validation of our prediction model. For the development of our mock-up model

we have used Rhino to build the CAD-model that is necessary as an input geometry

in COMSOL.

MATLAB has been used for the implementation of the forward problem, inverse prob-

lem and the prediction model. We used MATLAB to test several numerical solvers,

regularization methods and for the validations of our inverse model.

The MATLAB toolbox called Regularization Tools, created by Per Christian Hansen,

has been used for the investigation and implementation of regularization methods in

our model. In particular the algorithms cgls.m and csvd.m have been used exten-

sively in our research, as well as the implementations for Tikhonov regularization and

the L-curve plot.

-
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2 Model formulation

In this chapter we start with the formulation of two problems that are used in the

construction of our prediction model, namely the forward and inverse formulation.

The forward problem is derived from the Maxwell’s equations and the inverse problem

follows from the forward problem.

After the computation and approximation of solutions of the forward problem we use

these expressions as a start of the formulation of the inverse problem. Together with

the forward formulation we can define the prediction model.

2.1 Maxwell’s Equation

In the late 1800s the knowledge of electric and magnetic fields was summarized by

Maxwell’s equations:

∇ ·D = ρ Gauss’ law: electrical fields are produced by

electrical charges

∇ ·B = 0 Gauss’ law: there exist no magnetic

monopoles

∇×E = −∂B∂t Faraday’s law of induction: changing mag-

netic fields produce electric fields

∇×H = ∂D
∂t + J Ampère’s law: magnetic fields result from

currents and changing electric fields

In these equations E stands for the electric field intensity [V/m] and H stands for

the magnetic field intensity [A/m]. The quantities D and B stand for the electric and

magnetic flux densities respectively. The units of these quantities are [C/m2] and [T]

respectively. The magnetic flux density may also be called the magnetic induction

field. The electric charge density [coulomb/m3] is given by ρ and J stands for the

electric current density measured in [A/m2].

We see that in general the electric and magnetic fields are coupled by the above

equations. We therefore speak of the electromagnetic field. When we assume that

the fields are static, i.e., the fields do not change in time, then the four equations de-

couple into two sets of two equations that describe the electric field and the magnetic

field. Assuming that there are no currents present (J ≡ 0), the static magnetic field is

described by

∇ ·B = 0

∇×H = 0
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2.2 Forward Problem

In this section we derive and solve the forward problem. The forward problem is the

determination of the magnetic induction field B that is produced by some known mag-

netization M in a steel object Ω. In this thesis a steel object is made out of steel plates

of the same thickness t. Furthermore we assume that the thickness is relatively small

compared to the other dimensions of the steel, which implies that a magnetization of

a steel plate is uniform in t. Therefore we may assume that the steel plate consists of

two-dimensional surfaces and the thickness t of the steel plates is a constant value

in the formulation.

The set of PDE’s that describes that static magnetic field generated by some magne-

tization in an volume object Ω is given by the following system of equations:
∇×H = 0 (Ampère’s law)

∇ ·B = 0 (Gauss’ law)

B = µ0(H + M) (Constitutive law)

Here, µ0 is the magnetic permeability in vacuum: µ0 = 4π · 10−7T · m/A. Note that

a magnetization M only lives on the objects Ω. Because ∇ ×H = 0 it follows from

the Hodge decomposition theory that there is a magnetic scalar potential ϕ such that

H = −∇ϕ. From the above set of equations we can derive the following Poisson

equation:

∆ϕ = ∇ ·M

where ∆ is the so-called Laplace operator. We interpret∇·M as the magnetic source

of the B-field.

2.2.1 Solving Poission’s equation

Poisson’s equation can be solved analytically using the fundamental solution of Laplace’s

equation. A derivation of this fundamental solution for the Laplace equation in Rn

can be found in appendix B. Notice that Ω is a two-dimensional object with one-

dimensional boundary surfaces and thickness t. We obtain the following solution for

ϕ (see ”‘appendix B and appendix C for more explanation on this expression):

ϕ(r) =− t

4π

x

Ω

(∇′ ·M)(r′)

|r− r′|
dr′ +

t

4π

∫
∂Ω

n′(r′) ·M(r′)

|r− r′|
dr′

+
t

4π

x

Ω

∂

∂ν′

(
1

|r− r′|

)
n′(r′) ·M(r′)dr′ (2.1)

Here, the first two integrals in ϕ(r) are convolutions of the Green’s function

G(r) = − 1

4π

1

|r|

and the functions ∇ ·M on Ω and the flux n ·M on the boundary ∂Ω respectively.

The third integral is called a double layer potential. A derivation of this double layer

potential term in the potential expression can be found in appendix C.

-
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Knowing ϕ we can obtain the H-field via the Hodge-decomposition

H(r) = −∇ϕ(r)

There is also an analytical expression to be computed for H(r). Note that in the ex-

pression H(r) = −∇ϕ(r) the gradient is with respect to r. We can derive the following

expression:

H(r) = − t

4π

x

Ω

r− r′

|r− r′|3
∇ ·M(r′)dr′ +

t

4π

∫
∂Ω

r− r′

|r− r′|3
n′(r′) ·M(r′)dr′

+
1

4π

x

Ω

∂

∂ν′

(
r− r′

|r− r′|3

)
n′(r′) ·M(r′)dr′ (2.2)

Here, we have used that ∇
(

1

|r− r′|

)
= − r− r′

|r− r′|3
. For any point r /∈ Ω we have that

M ≡ 0 so the following relation

B = µ0H

can be used to give an analytical description of the B-field outside the object Ω,

namely

B(r) = −µ0t

4π

x

Ω

r− r′

|r− r′|3
∇ ·M(r′)dr′ +

µ0t

4π

∫
∂Ω

r− r′

|r− r′|3
n′(r′) ·M(r′)dr′

+
µ0t

4π

x

Ω

∂

∂ν′

(
r− r′

|r− r′|3

)
n′(r′) ·M(r′)dr′ (2.3)

where the first two integrals correspond to magnetic field components that are tan-

gential to the object Ω. We call the third integral the double layer component of the

magnetic field.

2.3 Approximation of forward problem solutions

In the previous section we have derived an analytical expression for the magnetic

induction field B that comes from some magnetization M of the object Ω. We now

approximate the magnetic induction field by means of quadrature rules. Let {T} be a

triangulation of Ω. Define the set of triangular elements by E, the set of line boundary

elements by BE and the set of vertices by P . This defines a partitioning of Ω by the

triple (P,E,BE). The analytical description of B on this partitioning becomes

B(r) = −µ0t

4π

|E|∑
i=1

x

ei

r− r′

|r− r′|3
∇ ·M(r′)dr′ +

µ0t

4π

|BE|∑
i=1

∫
bei

r− r′

|r− r′|3
n′(r′) ·M(r′)dr′

+
µ0t

4π

|E|∑
i=1

x

ei

∂

∂ν′

(
r− r′

|r− r′|3

)
n′(r′) ·M(r′)dr′ (2.4)

Notice that on each triangular element and boundary element, the normal vector n is

constant. Applying a symmetric quadrature rule on each internal element ei and a line

-
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quadrature rule on each boundary element be now leads to an approximation of B. In

appendix D more information about the quadrature rules involved in this computation

can be found.

An analytical expression for the magnetic induction field B given some uniform mag-

netization of a single steel plate can be found in appendix E. This expression is used

to validate if the forward is correctly implemented in MATLAB.

-
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2.4 Derivation of the inverse problem

In this section the linear inverse problem is derived. We want to note that in Chapter 3

we give a general overview of inverse theory. For now we give a heuristic idea behind

the inverse problem. From the forward problem description in the previous section we

know that, given some magnetization M of an object Ω, the induced magnetic field

can be computed via formula 2.3.

The integral equation that defines the inverse problem is given in the following formu-

lation: Given the function B : R3 \ Ω → R3, determine continuous source functions

f, g and h such that

B(r) = −µ0t

4π

x

Ω

r− r′

|r− r′|3
f(r′)dr′ +

µ0t

4π

∫
∂Ω

r− r′

|r− r′|3
g(r′)dr′

+
µ0t

4π

x

Ω

∂

∂ν′

(
r− r′

|r− r′|3

)
h(r′)dr′ := R(f)(r) + S(g)(r) + T (h)(r)

(2.5)

where R,S, T are the corresponding integral operators. The volume of object Ω is a

compact subset of R3. Here, f and h respresent the magnetic sources in Ω and g

is the magnetic source on the boundary ∂Ω. The vector function B is the magnetic

induction field, generated by these sources.

Therefore the task is, given measurements of the magnetic induction field B, to find

source functions f , g and h such that the generated field by these sources matches

the measurements as accurate as possible.

Unfortunately in the situation we just described, we normally do not have access to

a full description of the magnetic induction field B. However, we can measure the

magnetic induction field by means of magnetic field sensors. We can measure the

field by a finite number of measurements and the more measurement points available,

the more information about B may be known.

To be able to solve the inverse problem, we reduce it to a finite-dimensional one.

For instance this can be done by a so-called expansion method or by approximating

the integrals involved in the inverse formulation by appropriate quadrature rules. This

finite-dimensional formulation allows us to use magnetic field measurements as input

for the inverse problem.

2.4.1 Petrov-Galerkin Expansion Method

In [10, Ch. 3, p. 25-26] the so-called Petrov-Galerkin method is described for inverse

problems defined over intervals. This expansion method can be used (like finite ele-

ment methods) to derive a system of linear equations. Solutions of such systems are

then approximations of solutions of the inverse problem.

In this section we extend the Petrov-Garlerkin method mentioned in [10] to multiple

dimensions and apply this method to our inverse problem.

-
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2.4.1.1 Expansion of functions

Introduce a partitioning of Ω by the triple (P,E,BE). Here, P stands for the set of

grid points, E is the set of triangular elements and BE is the set of line boundary

elements. An example of such partitioning is given in Figure 2.1. The Petrov-Galerkin

method is based on expanding the functions involved in terms of predefined sets of

basis functions:

• The basis functions (ϕi)
N
i=1 are defined on the triangular elements E. These de-

scribe the magnetic sources inside Ω.

• The basis functions (ϕi)
M
i=1 are defined on the boundary elements BE. These

describe the magnetic flux at the boundaries ∂Ω.

• The basis functions (ψi)
K
i=1 defined on R3 \ Ω (outside the object Ω) are vector

functions. The basis functions ψi are used to formulate the measurements of the

magnetic field, outside the object Ω.

The value M is three times the number of triangular elements elements and N is two

times the number of boundary elements. The value of K is specified later on. The

basis functions should be chosen in such a way that they provide a good description

of the solutions that we seek.

Expand the functions B, f and g by using these basis functions:

f = fM + Ef , fM ∈ sp(ϕ1, ϕ2, . . . , ϕM )

g = gN + Eg, gN ∈ sp(ϕ1, ϕ2, . . . , ϕN )

h = hM + Eh, hM ∈ sp(ϕ1, ϕ2, . . . , ϕM )

B = BK + EB, BK ∈ sp(ψ1,ψ2, . . . ,ψK)

where Ef , Eg, Eh and EB are the errors in the expansions, and

fM =

M∑
j=1

pjϕj , gN =

N∑
j=1

pj+Mϕj , hM =

M∑
j=1

pj+(M+N)ϕj , BK =

K∑
i=1

bi �ψi,

In the above expansions of f, g, h and B the variables pj are unknown scalar co-

efficients. The vectors bi ∈ R3 are connected to the measurements (and therefore

known in the inverse formulation(!)). The operation bi � ψi stands for component-

wise multiplication.

Figure 2.1: An example of a partitioning of a rectangle in triangular and line boundary

elements. In this mesh we have 12 grid points, 11 triangular elements and 10 boundary

elements.

-
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The expansion

B = BK + EB, BK ∈ sp(ψ1,ψ2, . . . ,ψK)

should be read component-wise, i.e., each component of B is expanded individually:

(B)x = (BK)x + (EB)x, (BK)x ∈ sp((ψ1)x, (ψ2)x, . . . , (ψK)x)

(B)y = (BK)y + (EB)y, (BK)y ∈ sp((ψ1)y, (ψ2)y, . . . , (ψK)y)

(B)z = (BK)z + (EB)z, (BK)z ∈ sp((ψ1)z, (ψ2)z, . . . , (ψK)z)

Therefore the three expansions of (B)x, (B)y and (B)z leads to the known vector bi
in the expansion of B.

Using the integral operators R,S and T introduced in equation 2.5, define the vector

function ν : R2M+N → R3

ν =


(ν)x

(ν)y

(ν)z

 = R(fM )+S(gN )+T (hM ) =

M∑
j=1

pj(Rϕj)+

N∑
j=1

pj+M (Sϕj)+

M∑
j=1

pj+(M+N)(Tϕj)

Write the vector function ν as (in a similar way as we expanded the function B)

ν = νK + Eν , νK ∈ sp(ψ1,ψ2, · · · ,ψK)

The vector function ν represents the magnetic field that is produced by the source

functions fM , gN and hM . Note that in general ν is not identical to B, nor that ν lies

in the subspace sp(ψ1,ψ2, · · · ,ψK).

2.4.1.2 Orthogonality condition

Let BK and νK be the orthogonal projection onto subspace sp(ψ1,ψ2, · · · ,ψK).

Note that the orthogonal projection is done component-wise. Now both νK and BK

are uniquely determined as the subspace sp(ψ1,ψ2, · · · ,ψK) is closed. The Petrov-

Galerkin approach is to determine the unknown coefficients pj and such that

νK = BK

Using the expressions above we can rewrite this statement in the following form: find

unknowns pj and such that

ν −B = Eν − EB

Because Eν , EB ⊥ sp(ψ1,ψ2, · · · ,ψK), we have that ν − B ⊥ sp(ψ1,ψ2, · · · ,ψK)

component-wise. The Petrov- Galerkin condition can now be stated as follows: find

unknowns pi such that

〈ψi, (ν −B)〉 = 0, for i = 1, 2, · · · ,K (2.6)

where the “inner product” should be read component-wise, i.e.,
〈(ψi)x, (ν −B)x〉2 = 0

〈(ψi)y, (ν −B)y〉2 = 0

〈(ψi)z, (ν −B)z〉2 = 0

, for i = 1, 2, · · · ,K

-
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Here, the inner product 〈·, ·〉2is defined by

〈f, g〉2 =
y

R3\Ω

f(r)g(r)dr

For simplicity the following “inner product” between a function f : R3 \ Ω → R and

g : R3 \ Ω→ R3 is defined

〈f ,g〉 :=


〈(f)x, (g)x〉2
〈(f)y, (g)y〉2
〈(f)z, (g)z〉2

 =
y

R3\Ω

f(r)� g(r)dr

Returning to the orthogonality relations, for each ψi equation 2.6 can be expressed

as

〈ψi,ν −B〉 =

M∑
j=1

pj 〈ψi, Rϕj〉+
N∑
j=1

pj+M
〈
ψi, Sϕj

〉
+

M∑
j=1

pj+(M+N) 〈ψi, Tϕj〉 (2.7)

which leads to a system of linear equations

[Af |Ag|Ah]


pf

pg

ph

 = b or simply Ap = b (2.8)

where A is a 3K × (M + N + M) matrix, p is a (M + N + M) × 1 vector and b is a

3K × 1 vector. The matrix A is called the field matrix that contains the physics model

involved, and b is called the load vector. For i = 1, 2, . . . ,K equation 2.7 leads to

three rows in A and 3 entries in the vector b:

[3× 1] aij = 〈ψi, Rϕj〉 for j = 1, 2, · · · ,M
[3× 1] aij =

〈
ψi, Sϕj

〉
for j = M + 1, 2, · · · ,M +N

[3× 1] aij = 〈ψi, Tϕj〉 for j = (M +N) + 1, 2, · · · , 2M +N

[3× 1] bi = 〈ψi,B〉

To solve our specific integral equation we choose the following basis functions:

(I) (ϕi)
M
i=1 are linear functions on E [three basis functions per internal element e (tri-

angles)]

(II) (ϕi)
N
i=1 are linear functions on BE [two basis functions per boundary element be

(line elements)]

(III) (ψi)
K
i=1 are vector functions that consist of delta functions defined on R3 \ Ω:

ψi(r) =


δ(x− xi)
δ(y − yi)
δ(z − zi)

 := δ(r − ri) where ri = (xi, yi, zi)
T is the location of a

measurement.

-
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2.4.2 Construction of basis functions ψi

We take K measurements at different sensor positions of the magnetic. Each mea-

surement is associated with a basis function ψ, which is built out of delta functions.

For basis functions ψi we have:

bi = 〈ψi,B〉 =
y

R3\Ω

δ(r− ri)�B(r)dr = B(ri)

by the fundamental property of a Dirac-delta function. So by “collocation” of the mea-

surements of the magnetic field we can find the coefficients of the lead vector b.

The above coefficients aij can be computed by applying quadrature rules on each of

the integrals involved, as we did in the approximation of the solution of the forward

problem.

2.4.3 Construction of basis functions ϕi

It remains to construct the basis functions ϕi on the internal elements E and ϕi on the

boundary line elements BE. First we construct on each internal element in E three

linear basis functions. Let {v1,v2,v3} denote the set of vertices of the fixed internal

element e. The three linear basis functions ϕ1, ϕ2 and ϕ3 on E have to satisfy the

following conditions:

ϕi(vj) = δij , ϕi is linear on e, ϕi ≡ 0 outside e

Note that the basis functions ϕ are discontinuous in r = ri. In the derivation of these

basis functions we use the following functions which are basically the basis functions

on a standard triangle Tst in the plane R2. The triangle Tst has vertices (0, 0), (1, 0)

and (0, 1), see Figure 2.2. Consider the function that maps the stand triangle in R2

onto the internal element E

r(s, t) = v1 + (v2 − v1)s+ (v3 − v1)t

See also figure 2.2, where vj = (xj , yj , zj)
T .

x
y

z

s

t

r

(x1, y1, z1)
(x2, y2, z2)

(x3, y3, z3)

(0, 0) (1, 0)

(0, 1)

Figure 2.2: Triangle transformation

-
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Let u1, u2 and u3 denote the three linear basis functions on the standard triangle Tst.

This means that u1 is one in the vertex (0, 0) and zero in the other vertices, u2 is one

in the vertex (1, 0) and zero in the others, and u3 is one in the vertex u(0, 1) and zero

in the others. Each of the ui is of the form ui(r) = ai0 + ai1s + ai2t for i = 1, 2, 3. It is

now the task to determine the coefficients such that the above conditions holds for

i = 1, 2, 3. The ui(r) should be right in their own vertices:
1 0 0

1 1 0

1 0 1



a1

0 a1
1 a1

2

a2
0 a2

1 a2
2

a3
0 a3

1 a3
2

 =


1 0 0

0 1 0

0 0 1


The above system is non singular, hence for every internal element e we can compute

the coefficients exactly, leading to

u1(s, t) = 1− s− t, u2(s, t) = s, u3(s, t) = t, for (s, t) ∈ Tst

These functions can be used to define the basis functions ϕ1, ϕ2 and ϕ3 on the in-

ternal element E (By taking suitable compositions of u with the transformation r).

However, only the basis functions u1,2 and u3 on each triangular element E are re-

quired to compute the entries of the matrix A in equation 2.8. This becomes clear

when we approximate the entries of the matrix A in the next section.

2.4.4 Construction of basis functions ϕi

Suppose that BE denotes a boundary element with vertices v1 and v2. We look for

two linear basis functions ϕ1 and ϕ2 such that

ϕi(vj) = δij , ϕi is linear on be, ϕi ≡ 0 outside be

Similar to the steps we have taken in the previous subsection, we look at basis func-

tions defined on the interval [−1, 1]. Let r : [−1, 1]→ be given by

r =
1

2
(v1 + v2)− 1

2
ξ(v2 − v1), ξ ∈ [−1, 1]

See Figure 2.3. The corresponding basis functions u1 and u2 are given by:

u1(ξ) =
1

2
− 1

2
ξ, u2(ξ) =

1

2
+

1

2
ξ, for ξ ∈ [−1, 1]

which satisfies u1(−1) = 1, u1(1) = 0 and u2(−1) = 0, u2(1) = 1.

x
y

z

[ | ]

r

(x1, y1, z1)

(x2, y2, z2)

−1 1ξ

Figure 2.3: Boundary line element transformation.
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2.4.5 Approximation of the matrix entries aij

Now that the basis functions are defined, we derive approximations of the elements

of A in equation 2.8 that are related to the unknowns pi on an internal element E and

on a boundary element BE.

Consider basis function ψi and let j ≤ M be fixed. The linear basis function ϕj then

corresponds to some internal element ej . A part of the column aij (three entries) is

given by aij = 〈ψi, Rϕj〉 and using that the support of ϕj is lying in ej leads to the

following approximation: for j = 1, 2, . . . ,M

aij = 〈ψi, Rϕj〉

=
y

R3\Ω

[
δ(r− ri)�

x

Ω

r− r′

|r− r′|3
ϕj(r

′)dr′

]
dr

= −µ0t

4π

x

ej

ri − r′

|ri − r′|3
ϕj(r

′)dr′

= −µ0t · 2|ej |
4π

x

Tr

ri − r′(s, t)

|ri − r′(s, t)|3
uj(r

′(s, t))dr′

≈ −µ0t · |ej |
4π

ng∑
k=1

wk
ri − r′(sk, tk)

|ri − r(sk, tk)′|3
uj(r

′(sk, tk))

where uj is one the the three basis functions defined on the standard triangle in

R2 that corresponds to ϕj , and in the approximation step we applied a Symmetric

Triangular Quadrature rule, see appendix D.1. Here ng is the number of quadrature

points used for the triangle. Note how we use the basis functions u1, u2 and u3 defined

on the standard triangle in the approximation of the entries of aij .

In the same way we derive approximations of 3-parts of aij that correspond to the

boundary elements BE. For j = M + 1,M + 2, · · · ,M +N :

aij =
〈
ψi, Sϕj

〉
=

y

R3\Ω

[
δ(r− ri)�

x

∂Ω

r− r′

|r− r′|3
ϕj(r

′)dr′

]
dr

= −µ0t

4π

∫
bej

ri − r′

|ri − r′|3
ϕj(r

′)dr′

= −µ0t

4π

|bej |
2

∫ 1

−1

ri − r′(ξ)

|ri − r′(ξ)|3
uj(r

′(ξ))dξ

≈ −µ0t

4π

|bej |
2

ng∑
k=1

wk
ri − r′(ξk)

|ri − r(ξk)′|3
uj(r

′(ξk))

In the approximation step we applied a line quadrature rule, see appendix D.2.
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Lastly, the approximations of the 3 element-parts of aij are based on the derivations

of the forward problem in appendix C. For j = (M +N) + 1, · · · , 2M +N

aij = 〈ψi, Tϕj〉

=
y

R3\Ω

[
δ(r− ri)�

x

Ω

∂

∂ν′

(
r− r′

|r− r′|3

)
ϕj(r

′)dr′

]
dr

=
µ0t

4π

x

ej

∂

∂ν′

(
ri − r′

|ri − r′|3

)
ϕj(r

′)dr′

≈ −µ0t

4π
|ej |

(
ng∑
k=1

wk
1

|ri − r′(sk, tk)|3
uj(r

′(sk, tk))

)
nj

+
3µ0t

4π
|ej |

ng∑
k=1

wknj · (ri − r′(sk, tk))
ri − r′(sk, tk)

|ri − r′(sk, tk)|5
uj(r

′(sk, tk))
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2.4.6 Continuity of inverse solutions and number of unknowns

The above application of Petrov-Galerkin leads to a large system of linear equations,

depending on the choice of the meshing. For geometries such as large naval ships,

the systems become extremely large, which makes solving the system problematic.

The dimensions of the system can be reduced by demanding that the solutions f, g

and h are continuous on the complete geometry Ω. The physical interpretation of this

reduction arises from the behavior of the magnetic sources f, g and h. One can show

that the magnetic sources are continuous. For us that means that there are unknowns

pi of adjacent triangular and boundary elements that take the same value. This iden-

tification leads to a reduction of the number of unknowns. In figure 2.4 this idea is

illustrated. The same reduction holds for unknowns defined boundary elements and

for the unknowns pi that describe the function h on the internal elements.

For those unknowns pj that we identify as described above, we can add up the cor-

responding columns aij in equation 2.8. This leads to a reduction of the number of

unknowns (and therefore to a reduction of columns) and we obtain the adjusted linear

inverse formulation

A′p = b (2.9)

The linear system described in equation 2.9 has fewer columns and therefore it

is better determined. Furthermore, solutions of system 2.9 correspond to continu-

ous source functions fM , gN and hM on Ω. From a physical point of view magnetic

sources inside the steel satisfy a continuity condition and therefore we expect that the

solutions of equation 2.9 are more feasible for the prediction model.

p2p3

p1

e1 e2

p4

p5

p6
p2p3

p1

Figure 2.4: A part of a mesh in the internal geometry of the mock-up is shown. We

assume that the solution f in the inverse problem is continuous on the whole geometry.

Therefore we can conclude that p1 = p4 and p2 = p6 must hold. This leads to a

reduction of unknowns, because the function f is now fully described by 4 unknowns

(instead of 6 unknowns without the assumption on the continuity of f ).
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2.5 Prediction model

The forward model and inverse model formulations allow us to define a prediction

model for the magnetic signature of a ferromagnetic object. As the derivation of the

inverse model already indicates, this prediction model is based on a number of mea-

surements of the magnetic signature by sensors. The prediction model is summarized

in the following three steps:

1. Measure the magnetic signature of a ferromagnetic object using a finite number of

sensor positions;

2. Estimate the magnetic sources in the ferromagnetic object via the inverse model

formulation;

3. Use the magnetic sources to approximate the magnetic signature of the ferromag-

netic object (in other positions than just the measurement positions).

A flow chart of the prediction model is given in figure 2.5. In Chapter 6 we validate

the inverse problem and the prediction model. Observe that we are interested in the

results of the prediction model, however the behavior of the inverse problem solutions

plays a major role in the validity of the prediction model.

Measurements of

the Magnetic field

in sensorpositions

Magnetic sources

in Ω

Prediction of the

magnetic signature

in R3 \ Ω

inverse
problem

forward
problem

Figure 2.5: Simple flow chart of the prediction model.

2.6 Remarks

2.6.1 Non-uniqueness of the inverse problem

The prediction model consists of solving an inverse problem, based on on-board mea-

surements of the magnetic signature. In practice, we will use a finite number of sen-

sors, say around the 20 magnetic sensors. Therefore, our discrete inverse problem is

most likely under determined : the matrix A has more columns than rows. Of course,

this depends on the ratio between the number of measurements and the dimensions

of the partitioning of Ω.

One of the direct implications of an under-determined system is that the null space of

A is non-trivial and therefore the discrete inverse problem has infinite many solutions.

Of course, an under determined linear system can also have no solutions, take for

example  1 0 0

0 0 0

x =

 1

1


-



- TNO report - 27/116

we measure the magnetic signature at different positions, hence the rows of matrix A

are independent and therefore our discrete inverse problem is always consistent.

This means that we always encounter non-uniqueness of a solution of our inverse

problem. To resolve this issue, we can enforce extra constraints on the solution that

we seek. An example of such a constraint is given in example 3.3.1.

2.6.2 Different approach

In this chapter, we have derived the forward formulation of the magnetic field of some

steel object Ω, based on magnetization M. Next, based on the forward formulation,

an inverse formulation is derived. The Petrov-Galerkin method is used to reduce the

inverse formulation to a discrete linear inverse problem (based on a predefined mesh

of object Ω).

As explained in the introduction (section 1.3), Chadebec and his colleagues devel-

oped inverse formulations based on finding some magnetization M of the steel ob-

ject. In [26] they state that the magnetic field of some ferromagnetic material can be

calculated via

Hred = − 1

4π
grad

y

Ω

M · r− r′

‖r− r′‖3
dΩ′

where M is the magnetization of the ferromagnetic material Ω. The inverse problem

is finding the magnetization M via

M +
χr
4π

grad
y

Ω

M · r− r′

‖r− r′‖3
dΩ′ = χrH0

where H0 is some external background field and χr is the magnetic susceptibility.

We want to emphasize the different approach of our derivation of the inverse prob-

lem, compared to the approaches in [3, 26, 5]. While the above stated formulation

searches for the magnetization, we are actually not interested in the specific magne-

tization M of Ω itself. We only need some description of the magnetic sources f, g

and h, where f is (a discretised version of) ∇ ·M, h is one of ν ·M in Ω and g a

discretised version of n ·M on ∂Ω. By this choice we believe that we can achieve

better approximations of the magnetic sources. Furthermore, in our formulation we

always find magnetic sources that come from a physical magnetization, whereas the

formulation of Chadebec and his colleagues may produce magnetizations that are

not physical.

-
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3 Inverse Modeling Theory

3.1 Introduction

In this chapter we want to achieve two goals: we want to find a way to compute solu-

tions of our inverse problem and we want to know how we can investigate the behavior

of our inverse problem. We will explain what the ill-posedness of a inverse problem

means and prove that our inverse problem (formulated in the previous Chapter) is

ill-posed. To prove the ill-posedness we need some basic theory of inverse modeling.

We start this chapter with an introduction to the Forward operator. Many physical

problems can be formulated as a so-called forward problem. Forward problems find

the effect from causes. Given a forward problem, we can associate an inverse prob-

lem with it: determine the cause from effects. We illustrate the idea of a forward and

inverse problem with an example and show that solving inverse problems can be very

complex.

In section 3.3 we consider Hadamard’s definition of a well posed problem. Problems

that violate one of the criteria in this definition are called ill-posed. This implies that

a problem is hard to solve or does not have a unique solution. In general, inverse

problems are ill-posed.

Forward problems are often expressed in terms of an operator

T : X → Y

between Hilbert spaces. One way of solving the associated inverse problem is by the

use of the inverse operator of T but the solving becomes more complex if the inverse

operator does not exist. Even if the operator is not invertible itself, one can still define

some kind of inverse operator. This so-called generalized inverse of the operator T

will take an important role in solving general inverse problems. We will describe in

section 3.4 and 3.5 the construction of this generalized inverse and we will show how

it can be used to solve inverse problems.

In section 3.6 we end the chapter with proving the claim that our inverse problem is

ill-posed. In the proof we use all the techniques and theorems of this chapter.

-
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3.2 Introduction to the Forward

In the field of the mathematical modeling we often want to compute some effect which

is generated by some cause (figure 3.1). For example, when a violin is being played,

the vibrations of the snares produce sound waves that we can hear. Here, the vibra-

tions of the snares are the cause and the sound waves are the effect. The translation

of the touch of a violin player and the movement of the string that is produced can be

described well by the wave equation

∂2

∂t
u(x, t) = ν2

s

∂2

∂x2
u(x, t),

 u(0, t) = u(l, t) = 0

u(x, 0) = f(x)
for all 0 < x < l and t > 0

where νs is the speed of sound, l is the length of the string and u(x, t) is the sound-

wave. The wave equation model thus describes the connection between the cause

and its effect. Such a model is often called a forward model and the problem of com-

puting the waves that are created by knowing the initial conditions of the snares is

the so-called forward problem. In general physical, forward problems can be solved

numerically quite accurately.

Example 3.2.1 (Forward Heat Problem). Another example of a forward problem is the for-

ward heat equation which can be used to compute the temperature distribution u in a one-

dimensional steel rod Ω of length l for some given heat sources f . The connection between u

and the heat sources f is given by the following PDE:
∂
∂tu(x, t) = k ∂2

∂x2u(x, t) + f(x, t), (x, t) ∈ Ω× (0,∞)

u(0, t) = u(l, t) = 0

u(x, 0) = g(x)

where k is the thermal conductivity and f consists of heat sources in Ω. In this case the

temperature at the ends of the rod is kept at zero degrees.

The forward problem is to determine the temperature distribution u given the heat sources

f . This problem can be solved analytically because the boundary conditions of the PDE are

homogeneous. A separation of variables leads to an analytical description of u in terms of the

eigenfunctions of ∇2 and ∂
∂t . Because we have prescribed the function u at the boundaries

there exists a unique solution.

We can also ask ourselves whether it is possible to determine the initial temperature

distribution u(x, 0) when we know the distribution u(x, t′) at time t′. Such problems

focus on the determination of the cause given some known (measured) effect. It is

Cause Effect
forward
problem

Figure 3.1: Forward Problem

-
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precisely the opposite of a forward problem. Such problems are called inverse prob-

lems, see figure 3.2.

When considering inverse problems one wants to determine causes for some ob-

served effects or one wants to determine material properties that can not be observed

directly.

Definition 3.2.1 (Inverse problem). Consider the Fredholm integral equation of the first kind

g(s) =

∫
Ω

K(x, s)f(x)dx

where the (smooth) kernel K and the function g are known. The kernel represents the under-

lying (physical) model. The inverse problem consists of computing f given the function g and

kernel K.

Remark: Throughout this thesis we talk about a specific type of inverse prob-

lems, namely the task of approximating the sources that cause some measured

effect. Therefore, if we talk about an inverse problem, we are always referring to

such inverse problems.

Return to the inverse problem. For the one-dimensional unbounded case (where Ω =

R, f = 0 and k = 1) the final temperature distribution u(x, T ) at time T is related to

the initial temperature distribution u(x, 0) via [7]

1

2
√
πT

∫ ∞
−∞

u(s, 0) exp

(
− (x− s)2

4T

)
ds = u(x, T ) (3.1)

Such a problem can also be seen as an inverse problem, although in this case we

are not looking for the sources that have caused the final temperature distribution but

rather the initial temperature distribution.

The above equation is a so-called convolution equation with kernel

K(x, s) =
1

2
√
πT

exp

(
− (x− s)2

4T

)
One can show that solutions of the above convolution equation are smooth due to the

properties of the kernel k(x, s). This makes the inverse problem very hard to solve as

initial temperature distributions are not a priori smooth (if the initial temperature dis-

tribution u(s, 0) contains some discontinuities, then the smooth kernel resolves these

in the final temperature distribution). The local variations in the initial temperature

distribution cannot be well determined in an inverse problem.

Cause Effect
inverse

problem

Figure 3.2: Inverse Problem
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3.2.1 Smoothing properties of integral equations

The integral equation in its general form defined by

y(s) =

∫
Ω

K(x, s)f(x)dx

has so-called smoothing properties. In the heat equation example, the function u(x, T )

is in general much smoother compared to u(s, 0). This behavior makes it hard to find

the correct solutions of the inverse problem. The smoothing property of these integral

operators is formulated in the following lemma of Riemann-Lebesgue.

Riemann-Lebesgue Lemma. Let K be a square-integrable function on the closed interval

[a, b]2. Then

y1(s) =

∫ b

a

K(x, s) sin(λx)dx→ 0, (for λ→ ±∞)

y2(s) =

∫ b

a

K(x, s) cos(λx)dx→ 0, (for λ→ ±∞)

Proof. A proof of the Riemann-Lebesgue lemma can be found in [8].

We can interpret this lemma1 as follows. As the frequency λ increases, the ampli-

tudes of the functions y1 and y2 decrease. So higher frequencies are being damped

by the kernel K(s, t), hence functions y1 and y2 become smoother by applying this in-

tegral operator with kernel K to function f(t). Notice that the lemma is formulated for

square- integrable functions only on compact intervals of R2. However, this theorem

can be found in a more general setting.

If we consider the Riemann-Lebesgue lemma for inverse problems, the reverse hap-

pens: we observe that such a kernel K actually amplifies high frequencies and the

higher the frequency, the more the amplification. This leads to large variations in the

solution of the inverse problem. Furthermore, small perturbations in g1 and g2 can

lead to very large perturbations of the source f when the perturbation of g1 and g2

contains a high frequency component.

This smoothing property of the forward problem is a huge problem from a fundamental

point of view . It makes inverse problems significantly more complex and harder to

“solve”.

3.2.2 General formulation

Consider some linear operator T between Hilbert spaces X and Y given by

T : X → Y, x 7→ y := Tx

1. Observe that we can not apply this lemma to our Heat example. But by truncation of the indefinite

integral in equation 3.1 to some definite integral on some closed interval [a, b] we are able to apply the

Riemann-Lebesgue lemma.

-



- TNO report - 33/116

The forward problem can be formulated in the following simple operator equation

y = Tx

where x is called the source and T is the so-called forward operator. The operator

T : X → Y maps source functions x ∈ X onto functions y ∈ Y that are caused by

the sources x ∈ X . The idea behind solving inverse problems is that – given some

forward operator F that describes the forward problem – we want to take the “inverse

operator” of the forward operator. The expression

x = T−1y

can only make sense whenever F is invertible. But if the inverse operator does not

exist, we want to come up with a way to define some operator that approximates

the inverse operator. In the next section we introduce the notion of a pseudo-inverse

and show that this operator can be used to solve the inverse problem for a special

situation.

3.3 Hadamard’s well-posed problem

In 1902 Jacques Hadamard defined what properties a mathematical model of physi-

cal phenomena should have in order to represent the phenomena correctly. His notion

of a well-posed problem is defined as follows

Definition 3.3.1 (Hadamard). A problem is well-posed if the following three criteria holds:

1. (Existence) A solution exists of the problem, for all admissible data

2. (Uniqueness) The solution is unique, for all admissible data

3. (Continuity) The solution depends continuously on the data.

When a problem does not satisfy (at least) one of these conditions, the problem is

called ill-posed. Examples of well-posed forward problems are the forward heat equa-

tion and the Dirichlet problem for Laplace’s Equation, under suitable boundary and

initial conditions.

Inverse problems are often ill-posed. The inverse heat diffusion example is a typical

example of an ill-posed problem. Small changes in the final temperature distribution

u(x, T ) lead to large changes in the solution u(x, 0). We see that the third condition of

Hadamard’s well-posedness is violated. Also, different initial temperature distributions

can diffuse to the same final temperature u(x, T ), so the second criterion is also

violated.

Hadamard’s definition as stated above is not a precise mathematical definition. A

general inverse problem is of the form

y = Tx

-



34/116 - TNO report -

where T is a bounded linear operator between Hilbert spaces X and Y and y is

known. Then, the three criteria of Hadamard’s well-posed problem can be formulated

as: the operator T should be 1. onto (surjective), 2.one-to-one (injective) and the

inverse operator T should be continuous.

3.3.1 When a solution does not exist

Consider a bounded linear operator T ∈ L(X ,Y) and an element y ∈ Y. If the inverse

problem Tx = y does not have a solution, then by Hadamard’s definition of well-

posedness the inverse problem is called ill-posed.

Recall the definition of the adjoint operator. The adjoint operator T ∗ : Y → X is

defined as the bounded linear operator such that

〈Tx, y〉 = 〈x, T ∗y〉, for all x ∈ X and for all y ∈ Y

One way to resolve the lack of existence of solutions is to look for least-squares

solutions. This is done by solving the normal equations

T ∗Tx = T ∗y

where T ∗ is defined as the adjoint operator of T . In the next section we explain what

a least-squares solution of the equation Tx = y is.

3.3.2 When a problem is not one-to-one

If a bounded linear operator T is not one-to-one, then its kernel N (T ) is non-trivial,

i.e., if for y ∈ Y there exists some x ∈ X such that Tx = y then for every z ∈ N (T )

we have

T (x+ z) = Tx+ Tz = y + 0 = y

So the solution x is not unique and in particular any element in the set x + N (T ) is

a solution of the equation Tx = y. Whenever this problem occurs one can try to add

additional information to make the solution x unique.

To illustrate the violation of the second criterion of Hadamard’s well-posed problem,

we look at the following simple example.

Example 3.3.1. Consider the following linear equation

3x+ 5y = 2, x = (x, y) ∈ R2 (3.2)

Observe that the equation 3x + 5y = 0 has infinite many solutions, so the solution of 3.2 is

not unique. Therefore, the second criterion of Hadamard’s well-posed problem is violated and

the problem is ill-posed. The solutions of the system are given by

x =

 −1

1

+ α

 5

−3


-
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By adding additional information we can change the problem so it has a unique solution. We

can, for example, demand that the 2-norm of the solution is minimal. The adjusted problem is

given by

3x+ 5y = 2 subjected to min ‖x‖2, x = (x, y) ∈ R2 (3.3)

To solve the adjusted problem we consider the function

ϕ(α) := ‖x‖22 = 34α2 − 16α+ 2

We compute for which α the function ϕ(α) is minimal. It follows that α = 4
17 minimizes ϕ.

Hence

x =

 −1

1

+
4

17

 5

−3

 =
1

17

 3

5


is the solution of problem 3.3.

In the example we have seen that adding extra constraints can resolve the issue of

non-uniqueness of the solution. Recall that our discrete inverse problem has non-

unique solutions and therefore we need to add extra constraints to our inverse prob-

lem as well.

This so-called regularization of the inverse problem is a way to resolve the issue of

non-uniqueness of a problem.

3.3.3 When the solution of an inverse problem does not depend continuously

on the data

Violation of the third criterion of Hadamard’s definition creates serious numerical

problems. If we want to approximate a problem whose solution does not continuously

depend on the data, we have to expect that traditional numerical solvers becomes un-

stable. Small changes in the data lead to large variations in the computed solutions.

A remedy for this is the use of “regularization methods”. A regularization methods

tends to recover partial information from the given solution as stable as possible, at

the cost of accuracy. Therefore, when we apply regularization methods we have to

find a good balance between stability of the solutions and accuracy.

In chapter 4 we cover a more general overview on regularization methods and we will

see how regularization methods try to resolve the issue of discontinuity.

-
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3.4 Generalized inverse

In this section we define the generalized inverse of an operator T ∈ L(X ,Y) where

X ,Y are Hilbert spaces. We end by proving that the pseudo-inverse of a bounded

linear operator can be used to compute a least-square solution of minimal norm of

the operator equation Tx = y. The theory summarized in this section can be found in

[7], Chapter 2.

3.4.1 Least-squares and best-approximate solutions

First a definition.

Definition 3.4.1. Let T : X → Y be a bounded linear operator between Hilbert spaces X
and Y . Then

(i) x ∈ X is called a least-squares solution of Tx = y if

‖Tx− y‖ = inf{‖Tz − y‖ : z ∈ X}.

(ii) x ∈ X is called the best-approximate solution of Tx = y if

‖x‖ = inf{‖z‖ : z is a least-squares solution of Tx = y}.

The best-approximate solution is thus defined as the least-square solution with mini-

mal norm. Note that, when X is a Hilbert space, the set of all least-squares solutions

is closed, hence the best-approximation is unique. This is a standard result in Hilbert

theory.

Abstract as it may seem, this concept of best-approximated solution has an applied

side. The actual state of a physical system is usually that with the smallest energy. In

many cases, the energy is formulated by a certain norm and so “minimal energy” is

then equivalent to “minimal norm”, hence a best approximation problem.

3.4.2 Restriction of T

Recall that for an operator T : X → Y (not necessarily bounded) the null-space of

T is defined as N (T ) = {x ∈ X : Tx = 0} (which is a subset of X ). The range (or

image) of T is defined as R(T ) = {Tx : x ∈ X} (which is a subset of Y). For any

subspace Z ⊆ X , the restriction of T to Z is defined as

T �Z : Z → Y, T �Z (z) = T (z)

In the construction of the generalized inverse we need the following lemma.

Lemma 3.4.1. Let T ∈ L(X ,Y) be some bounded linear operator and let X ,Y be Hilbert

spaces. Then T̃ , the restriction of operator T , given by

T̃ := T �N (T )⊥ : N (T )⊥ → R(T )

is an invertible bounded linear operator.

-
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Proof. Given that T is a bounded linear operator it follows immediately that T̃ is also a

bounded linear operator. We claim that T̃ is invertible. Since the domain of T̃ is N (T )⊥ we

have thatN (T̃ ) = {0} by construction. Thus T̃ is injective. Furthermore sinceR(T̃ ) = R(T )

we have that T̃ is surjective. Hence T̃ is bijective and thus T̃ is invertible. Lastly as T̃−1 exists

it is also a linear2 operator.

By restricting the operator T its domain to N (T )⊥ and its co-domain to R(T ), the

restriction is invertible. So we have found a part of the operator T that we can use in

inverse problems to produce potential solutions. However, as we will see, the use of

the restriction comes at a cost. This will be explained in section 3.4.7.

3.4.3 Generalized Inverse

For any two subspaces U, V ⊆ X with U ∩V = {0} of some vector space X , its direct

sum U ⊕ V is defined as

w ∈ U ⊕ V if and only if (∃!u)(∃!v)(w = u+ v)

The generalized inverse (or the so-called Moore-Penrose generalized inverse) is for-

mulated as follows.

Definition 3.4.2 (generalized inverse). Let T ∈ L(X ,Y) be some bounded linear operator

between Hilbert spaces X and Y . The Moore-Penrose generalized inverse T † is defined as the

unique linear extension of T̃−1 to the domain D(T †):

D(T †) := R(T )⊕R(T )⊥

with T †y = T̃−1y if y ∈ R(T ) and T †y = 0 if y ∈ R⊥.

We have to check that the generalized inverse operator is well-defined. Due to the

construction of the kernel of T̃−1 and the linearity we have for any y ∈ D(T †) with the

unique representation

y = y1 + y2, y1 ∈ R(T ), y2 ∈ R(T )⊥

that the image T †y of y under T̃ is given by

T †y = T †y1 + T †y2 = T †y1 + 0 := T̃−1y1

So T † is well-defined as a linear operator from D(T †) to N (T )⊥.

The above definition of the generalized inverse tells us how to construct the general-

ized inverse. However, the discussed approach is rather cumbersome. In section 3.5

we discuss the construction of the generalized inverse by means of a singular value

decomposition of the operator T .

2. Use that T−1 ◦ T = Id for any invertible operator T and use the linearity of T to deduce the

linearity of T−1.

-
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3.4.4 Generalized inverse as a projection

Now that the generalized inverse operator has been introduced, we will work our way

to the theorem that states that the generalized inverse can be used to produce some

best-approximate solution of the equation

Tx = y

For any subspaceZ ⊆ X define the closure Z as the smallest closed set that contains

Z, or equivalently as the set of all limit points of all convergent sequences of points in

Z.

The following proposition shows properties of the generalized inverse as a projection.

We omit the proof.

Proposition 3.4.1. Let P and Q be the orthogonal projections ontoN (T ) andR(T ), respec-

tively. ThenR(T †) = N (T )⊥, and the four “Moore-Penrose equations” hold:

TT †T = T, (3.4)

T †TT † = T †, (3.5)

T †T = I − P, (3.6)

TT † = Q �D(T †) . (3.7)

(3.8)

Furthermore we have that (TT †)∗ = TT †, i.e., TT † is self-adjoint.

For clarification: we consider the operators P : X → N (T ) and Q : Y → R(T ) as

orthogonal projections onto the subspaces N (T ) and R(T ). Both the co-domains of

the operators P and Q are closed in the Hilbert spaces X and Y respectively. This

ensures us that both projectors are well-defined and that the projection Px for some

x ∈ X is unique (a standard result in the Hilbert spaces theory).

The self-adjointness of TT † is evident as it is an orthogonal projector on a Hilbert

space.

3.4.5 The generalized inverse yields the best-approximate solution

We prove the connection between the best-approximate least-squares solution and

the generalized inverse.

Theorem 3.4.3. Let T ∈ L(X ,Y) be a bounded linear operator between Hilbert spaces X
and Y . Let y ∈ D(T †). Then the operator equation Tx = y has a best-approximate solution,

which is given by

x† := T †y

-
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Proof. Let T ∈ L(X ,Y) be a bounded linear operator between Hilbert spaces X and Y and

let y ∈ D(T †). The proof consists of two parts. First we derive a concrete set of least-squares

solutions S. After that we show that the element of minimal norm z ∈ S in this set is in fact

the element z = T †y.

Define the set

S := {w ∈ X : Tw = Qy}

where Q is the orthogonal projector in proposition 3.4.1. Since

D(T †) = R(T )⊕R(T )⊥

we have that Qy ∈ R(T ), hence S is nonempty. We will show that S is the set of all least-

squares solutions of Tx = y.

Observe that the operator Q is also a metric operator3 on the Hilbert space Y , which implies

for all w ∈ S that

‖Tw − y‖ = ‖Qy − y‖ ≤ ‖Tz − y‖, for all z ∈ X

So we see that every element w ∈ S is a least-squares solution of the operator equation

Tx = y. Conversely let z be some least-squares solution of the equation Tx = y. Then using

that Q is a metric projector and the definition of a least-squares solution we have that

‖Qy − y‖ ≤ ‖Tz − y‖ = inf{‖u− y‖ : u ∈ R(T )} = ‖Qy − y‖

So we see that Tz is an element in R(T ) that is the closest to y. Using the uniqueness of the

orthogonal projection we conclude that Tz = Qy. Hence

S = {x ∈ X : x is a least-squares solution of Tx = y}

Let z be the element of minimal norm in S . This element can be found as the orthogonal

projection of x = 0 onto the closed linear manifold S, as the element z satisfies

‖z‖ = ‖z − 0‖ := inf
u∈S
‖u− 0‖ = inf

u∈S
‖u‖

Hence we can write S = z +N (T ).

We claim that z is orthogonal toN (T ). Assume that ‖z‖ is of minimal norm and that z is not

orthogonal to N (T ), so Pz 6= 0. Let P be the orthogonal projector onto the subspace N (T ),

see figure 3.3. Then z = Pz + (z − Pz). The element w = z − Pz then is smaller in norm,

contradicting the assumption that z is of minimal norm. Hence z ∈ N (T )⊥. Hence Pz = 0.

This yields

z = z − Pz = (I − P )z = T †Tz = T †Qy = T †TT †y = T †y

So the best-approximate least-squares solution is given by z = T †y.

3. A metric operator Q : Y → R(T ) maps elements y to the closest element z ∈ R(T ) in distance:

d(y, z) = inf{d(y, w) : w ∈ R(T )}. The distance function in a Hilbert space is given by d(x, y) =

‖x− y‖.

-
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N (T )

z

0

z − Pz
Pz

Figure 3.3: The vector z and its projection Pz onto N (T ).

Corollary 3.4.1. Let y ∈ D(T †). Then x ∈ X is a least-squares solution of Tx = y if and

only if the normal equation

T ∗Tx = T ∗y

holds.

Proof. Let y ∈ D(T †) and let T ∗ : Y → X denote the adjoint operator of T . Then x ∈ X is a

least-squares solution if and only if Tx − y ∈ R(T )⊥. The relationship4 between the image

of T and the kernel of the adjoint is given by

N (T ∗) = R(T )⊥

so that x is a least-squares solution if and only if Tx− y ∈ N (T ∗), i.e., T ∗(Tx− y) = 0 or

T ∗Tx = T ∗y.

It follows from this corollary that the best-approximate least-squares solution z = T †y

one of the solutions of T ∗Tx = T ∗y. Using the generalized inverse of T ∗T , the best

approximate solution of the normal equations is given by

z† = (T ∗T )†T ∗y

Hence by comparison the expressions of x† and z† we have

T † = (T ∗T )†T ∗

This result is used in the next section to derive an analytical expression for the gen-

eralized inverse of matrices.

3.4.6 The generalized inverse and ill-posedness

We end this section with a theorem that can be used when we want to prove that

an inverse problem is ill-posed. Before proving the theorem we recall the following

definition of a compact operator.

Definition 3.4.1 (Compact operator). Let T : X → Y be a linear operator between Banach

spaces X and Y . Then T is a compact operator if for any bounded sequence (xn)n in X we

have that (Txn)n has a convergent subsequence in Y .

4. T ∗x = 0 if and only if 〈T ∗x, t〉 = 0 for all t ∈ X . By definition this is equivalent to saying that

this holds if and only if 〈x, T t〉 = 0 for all t ∈ X and this is equivalent to saying that x ⊥ R(T ).

-
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Theorem 3.4.4. Let T : X → Y be a compact bounded operator such that R(T ) is infinite

dimensional. Then T † is a discontinuous operator.

Proof. Let X and R(T ) be infinite-dimensional spaces. As N (T )⊥ is mapped onto R(T ) by

the operator T̃ (the map T̃ is surjective), it is also infinite-dimensional. Hence, we can find a

sequence5 (xn)n with

xn ∈ N (T )⊥, ‖xn‖ = 1, and 〈xn, xk〉 = 0 for k 6= n

Using that the operator T is compact gives us that the sequence (yn)n := (Txn)n has a

convergent subsequence.

Now fix ε > 0. Then there is an N ∈ N such that for k, l ≥ N we have ‖yl − yk‖ < ε (as the

convergent subsequence of (yn)n is Cauchy). This implies

‖T †yk − T †yl‖2 = ‖xk − xl‖2

= ‖xk‖2 + ‖xl‖2 − 2〈xl, xk〉

= 2

As ε was arbitrary this implies that T † is unbounded. Thus T † is not continuous.

So when a compact operator T (that is involved in an inverse problem) satisfies the

above assumptions, then its generalized inverse is not continuous. By Hadamard’s

definition of a well-posed problem we conclude that the inverse problem is ill-posed.

3.4.7 Remark on using the generalized inverse as a best-approximate

solution

The concept of the generalized inverse gives us a way to compute best-approximate

solutions of the equation Tx = y whenever y ∈ D(T †). This inverse operator forces

uniqueness upon the solution that we seek, by forcing the solution to have minimal

norm amongst all possible least-squares solutions.

When y /∈ D(T †), one can prove that no solution exists for the operator equation Tx =

y; therefore, we have to be careful when we apply the generalized inverse operator

in our computations. However, when we consider discrete linear inverse problems

this problem does not occur. In general discrete linear inverse problems have infinite

many solutions.

5. The sequence can be found by applying the Gram-Schmidt procedure on a basis of the infinite-

dimensional Hilbert spaceN (T )⊥; such a basis has infinite size. The existence of such a basis is proven

by Zorn’s Lemma.

-
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3.5 Construction of the generalized inverse for finite-dimensional compact

operators

In this section we consider the construction of the generalized inverse of a compact

finite-dimensional operator, i.e. a matrix operator. The construction can be easily ex-

tended to infinite-dimensional compact operators. However, in this thesis we use the

Petrov-Galerkin method to reduce our inverse problem to a finite-dimensional inverse

problem, so we limit ourselves to the finite-dimensional operators.

Let A ∈ Rn×m be some real-valued n × m matrix. In [24] it is proven that for any

real-valued n×m matrix there exists a singular value decomposition of the form

A = UΣV T

where U and V are orthogonal matrices and Σ is a diagonal matrix containing the

non-zero singular values of A. Let un and vn denote the columns of the orthogonal

matrices U and V , let σn be the singular values of A defined by

Avn = σnun

then the triple (σn,un,vn) is called a singular system and using this system we obtain

Ax =

r∑
n=1

σn〈x,vn〉un, for any vector x ∈ Rm

where r = rank(A), so the matrix A has r nonzero singular values. For AT , the

adjoint6 of A, we can derive7 in a similar way a singular system. We have

ATy =

r∑
n=1

σn〈y,un〉vn, for any vector y ∈ Rn

Note that A† = (ATA)†AT (see previous section) and hence for x† = A†y we have

r∑
n=1

σ2
n〈x†,vn〉vn = ATAx† = (ATA)(ATA)†ATy = ATy =

r∑
n=1

σn〈y,vn〉un

We see by comparing the individual components that it holds that

〈x†,vn〉 =
1

σn
〈y,un〉

Therefore8 the best-approximate solution of Ax = y is given by (see theorem 3.4.3)

x† = A†y =

r∑
n=1

〈y,un〉
σn

vn (3.9)

6. For any m × n matrix A, the adjoint AT of A, is defined through 〈Ax,y〉 = 〈x, ATy〉 for all

x ∈ Rn and for all y ∈ Rm.
7. The prove is based on the fact that the eigenvalues of the matrices ATA and AAT are the same.

Using this property the singular value system follows directly by the same derivation.
8. Ax† =

∑r
n=1

〈y,un〉
σn

Avn =
∑r
n=1〈y,un〉un = y.

-
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The pseudo-inverse of A can be written compactly in the following form (note that

Σ† = Σ−1)

A† = (UΣV T )† = V Σ†UT

So the best-approximate solution of the system Ax = y can be computed relatively

easily when the singular value decomposition of A is known. However, for large sys-

tems the numerical computation of the singular value decomposition becomes unre-

liable. Therefore when one encounters large systems of equations one should avoid

the use of a singular value decomposition in their computations.

3.6 Ill-posed inverse problem

By Hadamard’s definition of a well-posed problem, an inverse problem is ill-posed if it

violates one of the three conditions. In this section we claim that our general inverse

problem (the non-discretized version) is ill-posed.

3.6.1 Finite-dimensional inverse problem

For our finite dimensional inverse problem (after discretisation) it is evident that it is ill-

posed. Suppose that we have a finite number of measurements such that the discrete

inverse problem is under determined. After discretisation of the integral equation we

are left with the consistent system of linear equations

Ap = b

as shown in the previous sections. Because A is an m × n matrix, where m � n, it

follows that the null-space of K is nontrivial. Let p be some solution of the system

Ap = b.Then the set of all solutions of the linear system is given by

p +N (A)

Hence there exist many source functions f, g and h that satisfy the finite-dimensional

inverse problem, irrespective of the number of measurements. Therefore uniqueness

is violated and thus the finite-dimensional problem is ill-posed.

However we claim that the inverse problem is also at a fundamental level ill-posed.

In the next subsection we prove that our inverse problem does not satisfies the third

condition of Hadamard’s definition of a well posed problem.

3.6.2 Proof of the claim

To show that the inverse problem we consider is ill-posed, we reduce our problem

to the following one-dimensional case. It is clear that the derivations in the one-

dimensional case can be generalised to the three-dimensional case.

-



44/116 - TNO report -

Define T : L2([−1, 1])→ L2(C) to be the bounded linear integral operator

(Tf)(x) =

∫ 1

−1

x− x′

|x− x′|3
f(x′)dx′

where C ⊂ R \ [−1, 1] is some compact subset. The boundedness of T follows from

theorem 2.13 in [18]. We start by showing that T is a compact operator.

We claim that the kernel of T is square integrable. Indeed, we have the following

estimate of the kernel K(x, x′):

‖K‖2 =

∫
C

∫
[−1,1]

|K(x, x′)|2d(x′, x)

=

∫
C

∫
[−1,1]

1

(x− x′)4
d(x′, x)

=
1

3

∫
C

1

(x− 1)3
− 1

(x+ 1)3
dx

≤ 1

3
µ(C) ·maxx∈C

(
1

(x− 1)3
− 1

(x+ 1)3

)
<∞

Here the volume of C is finite (as it is a compact subset) and the function

x 7→ 1

(x− 1)3
− 1

(x+ 1)3

is continuous on the compact set C, so it has a maximum. Hence we have that K ∈
L2(C × [−1, 1]). We conclude that the operator T is compact.

For given g ∈ L2(C) the inverse problem is to find a function f ∈ L2([−1, 1]) such

that Tf = g holds. We claim that the image of T is infinite-dimensional. To this end

assume that f ∈ L2([−1, 1]) and assume without loss of generality that C ⊂ (1,∞).

This means that

(Tf)(x) =

∫ 1

−1

x− x′

|x− x′|3
f(x′)dx′, x ∈ C

can be simplified to

(Tf)(x) =

∫ 1

−1

1

(x− x′)2
f(x′)dx′, x ∈ C

Let (xi)
∞
i=1 be the sequence in [−1, 1] defined by xi = (1/2)i and define εi = (1/2)i+2.

For each i define on the interval [−1, 1] the characteristic function

fi(x
′) = χ[xi−εi,xi+εi](x

′)

Clearly each fi belongs to L2([−1, 1]) and for i 6= j the support of the functions fi and

fj are disjoint. Furthermore we have

(Tfi)(x) =

∫ xi+εi

xi−εi

1

(xi − x′)2
dx′ =

1

x− (xi + εi)
− 1

x− (xi − εi)

-
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Observe now that all elements Tfi belong to L2(C) as

‖Tfi‖2 ≤ ‖K‖2

and that the poles of the functions Tfi are all mutually disjoint. This implies that the

functions (Tfi)i are linearly independent so

W = Span (Tfi : i ∈ N)

is an infinite dimensional subspace of L2(C). But each Tfi ∈ R(T ) thus R(T ) is

also infinite dimensional. Now by applying theorem 3.4.4 we conclude that the gen-

eralised inverse of T is a discontinuous operator. By Hadamard’s well-posed criteria,

we conclude that the inverse problem is ill-posed, as the third condition (continuity) is

violated.

-
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4 Regularization Methods and Numerical Solvers

We have seen in the previous chapter that our inverse problem is ill-posed, accord-

ing to Hadamard’s definition of well posedness. We proved that the pseudoinverse

is an unbounded operator, and therefore, the third criterion is violated (continuity).

Furthermore, by reducing the inverse problem to a discrete version we have seen

that the discrete inverse problem has infinite many solutions, which means that the

second criterion of Hadamard’s definition is also violated (uniqueness of the solu-

tion). We discussed a solution this by enforcing an extra constraint on the solution, to

make it unique. We postphoned solutions for the discontinuous behavior of solutions

on the data. In this chapter we will answer the question how we can deal with such

ill-posedness.

Considering the noise in measured data and the ill-posed behavior of inverse prob-

lems, solving an inverse problem is (very) complex. Ordinary application of the pseudo-

inverse to obtain a solution simply fails. Reducing an inverse problem to a finite-

dimensional problem (for instance using the Petrov-Galerkin Method in Chapter 2)

leads to solving a discrete inverse problem of the form

Ax = b (4.1)

Such discrete problems inherit the ill-posed properties of the inverse problems: the

condition number of the matrix A becomes very large. The matrix A is then called ill-

conditioned. Solving ill-conditioned problems is hard because solutions become very

sensitive to small perturbations in the right-hand side b. Therefore one has to add

additional information about the solution x in order to produce feasible solutions. This

is called regularization of the solution. Also, the high condition number may make the

use of direct solving methods useless. Hence we need to consider more advanced

solvers that can produce good solutions.

In this chapter we start with answering the question why we need regularization.

Then, we discuss several standard regularization methods that give us insight in the

fundamental ideas behind regularization. We give a brief explanation about the regu-

larization methods. A detailed overview of these methods can be found in [10].

In the second part of this chapter, we recall the basic ideas behind direct solvers

and the iterative methods. We discuss the so-called conjugate gradient least squares

method (abbreviated by CGLS), which is a small extension of the ordinary CG method

to the non-symmetrical case. This method can be used to solve our inverse problem.

-
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4.1 Why do we need regularization?

For this moment consider a linear system of the form

Ax = be + e

where A is some rectangular m×n matrix and e is some noisy term in the right-hand

side of the system. Let xe denote the exact solution of the system when there is no

noise (e = 0). Furthermore denote the condition number of a matrix A by κ(A), where

κ(A) is defined as

κ(A) := ‖A‖2‖A†‖2 =
σmax

σmin
,

i.e., the quotient of the largest and smallest singular value of A. Here, the Euclidean

norm of a matrix is defined by

‖A‖2 := sup
x6=0

‖Ax‖2
‖x‖2

and one can prove that there is an equivalent formula for the Euclidean norm given

by

‖A‖2 =
√
λmax(ATA) = σmax(A)

For ill-posed problems we expect that the corresponding linear problem Ax = b has

a large condition number in the order of 106 or more. The consequence of large

condition numbers is stated in the following classical result from perturbation theory.

Theorem 4.1.1. Suppose that A ∈ Rm×n is a rectangular matrix. Let b, e ∈ Rm be some

nonzero vectors and assume that Axe = b and Ax = b + e holds. Then

‖x− xe‖2
‖xe‖2

≤ κ(A)
‖e‖2
‖b‖2

Proof. We start with the observation that (given that A is a bounded operator)

‖b‖2 = ‖Axe‖2 ≤ ‖A‖2‖xe‖2

By rewriting this inequality we can obtain

1

‖xe‖2
≤ ‖A‖2

1

‖b‖2

Now notice that A(x − xe) = e, hence x − xe = A†e after applying the pseudo-inverse of

A. Taking norms on both sides leads to

‖x− xe‖2 = ‖A†e‖2 ≤ ‖A†‖2‖e‖2

as the pseudo-inverse of A is also bounded. Combining both inequalities leads to

‖x− xe‖2
‖xe‖2

≤ ‖A‖2‖A†‖2
‖e‖2
‖b‖2

= κ(A)
‖e‖2
‖b‖2

-
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The above result implies that ill-conditioned matrices A produce solutions that are

very sensitive to (small) perturbations e. We expect that in this case the solution x

may be far away from the exact solution xe. This behavior should be avoided for

accurate predictions of the solution. One way of reducing the sensitivity is to add

extra information to our inverse problem about the solution we seek. This way we

regularize the solution as we reduce the “solution space” of our problem, by adding

extra constraints.

Another way of regularizing the problem is to consider a better conditioned system

A′x = b (4.2)

that is “near” the original system in the sense that the solutions of (4.2) approximate

the solutions of the original system and such that the solution is less sensitive to

small perturbations. Such methods are called regularization methods. In fact, there

is a close relationship between A′ and the pseudo inverse A† of matrix A. Solutions

of system 4.2 are approximations of x† and the operator (A′)† approximates A†. A

theoretical approach of regularization methods can be found in [7].

4.2 Standard Regularization methods

We begin with discussing some standard regularization methods as described in the

introduction. The ideas behind these regularization methods can be used later on

to describe the regularizing effects of the CGLS method. As we will see, the CGLS

method is suitable for the application of regularization.

As always consider the following linear system of equations

Ax = b

where A is a rectangular m× n matrix and b is polluted by a noisy term

b = be + e

Denote by xe the exact solution of the system Ax = be and let (U,Σ, V ) be a singular

system for A, i.e., we can decompose A as

A = UΣV T

Let σ1 ≥ σ2 ≥ . . . ≥ σr > 0 denote the singular values of A, ui the left-singular vector

of A and vi the right-singular vectors of A. As described in the previous chapter, we

can solve the linear system using the pseudo-inverse of A to obtain the naive solution

x† := A†(be + e) =

r∑
i=1

〈be,ui〉
σi

vi +

r∑
i=1

〈e,ui〉
σi

vi (4.3)

-
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where r = rank(A) is the rank of A. Note that a solution of the system Ax = b drifts

away from the exact solution xe in the presence of some noisy term in b. This means

that if the matrix A is ill-conditioned we can see that in 4.3 the second summation

can become very large due to small singular values. So even if ‖e‖2 � ‖b‖2, we can

expect that the solution x† is far away from the exact solution xe.

The idea behind some standard regularization methods is to reduce the influence of

noise on the best-approximate solution x†. There are two method that are based on

this principle: the truncated SVD regularization and Tikhonov regularization.

4.3 Truncated SVD

For this moment we assume that ‖e‖2 � ‖b‖2 and consider expression 4.3. Further-

more we assume that matrix A has a large condition number, such that A has both

large and small singular values and that there is a clear distinction between them.

Now for large singular values σi we assume1 that

〈b,ui〉
σi

≈ 〈be,ui〉
σi

while for small singular values we assume that

〈b,ui〉
σi

≈ 〈e,ui〉
σi

Therefore it seems reasonable to only take in account the first few contributions to the

solution in 4.3 that contain the most information about the signal that we seek. We

simply chop off those SVD components that are dominated by the noise, which are

the SVD terms that correspond to small singular values. This leads to the so-called

truncated SVD (also abbreviated as the TSVD) solution xk as the solution obtained

by retaining the first k components of the naive solution 4.3:

xk =

k∑
i=1

〈b,ui〉
σi

vi, for some k ≤ r (4.4)

In this expression parameter k is called the truncation parameter and serves as a

so-called regularization parameter. The parameter should be chosen in such a way

that the noisy terms that are dominating in the naive solution are neglected. The

choice of the truncation parameter depends on the specific problem that is consid-

ered. In [10, Ch. 5.2 - 5.5] a few parameter choice methods are discussed such as

the discrepancy principle, the so-called Generalized Cross Validation (GCV) method

and the choice of the truncation parameter via a so-called NCP analysis (normalized

cumulative periodogram).

1. We assume that the exact data be satisfies the Picard Criterion, that is, the SVD components decay

faster than the singular values. This guarantees that a square-integrable inverse solution exists. See [10,

chapter 3] for a detailed explanation on the Picard Criterion. It follows from the Picard Criterion that the

two approximations of the SVD components holds.

-
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An alternative formulation of the TSVD can be given in terms of a “near” system of

equations of Ax = b. Let

A =

n∑
i=1

uiσiv
T
i

denote the SVD of A. For some k ≤ n we define the matrix

A′ := Ak =

k∑
i=1

uiσiv
T
i

The condition number of the matrix Ak is given by κ(Ak) = σ1

σk
and this is smaller

than κ(A), hence the matrix A′ is better conditioned and the system A′x = b is near

the orginal system. Since matrix Ak is rank deficient for k < n, there is not a unique

solution to the least-squares minimization problem

x = arg min ‖Akx− b‖22

Observe that for Akx = b the general solution2 has the form

x =

k∑
i=1

〈b,ui〉
σi

vi +

n∑
i=k+1

ξivi, for arbitrary ξi (4.5)

To define a unique solution, we have to add additional constraints to the least-squares

problem. A natural constraint we already named before is to seek a solution that has

a minimum 2-norm. The minimization problem then becomes

min
x
‖Akx− b‖2 subject to min ‖x‖2

Looking at the general solution 4.5 we see that the solution of the minimization prob-

lem is given in 4.4: simply take all ξi = 0, then the solution x has the smallest 2-norm.

Therefore we can conclude that the TSVD produces a regularized solution of minimal

norm.

4.4 Tikhonov Regularization

Another well known regularization method is the so-called Tikhonov Regularization.

Although its name suggests that the method is due to Tikhonov, many mathemati-

cians invented the method in the same period. But as Tikhonov’s work in connection

with this method was so important, his name was associated to this method.

Tikhonov regularization is, in some sense, based on the same observation as made in

the case of the TSVD. We observed that the noise in the SVD components belonging

to the smaller singular values are more dominant in 4.3 and that the SVD components

2. Note that x = A†kb is a solution of Akx = b. Write Ak =
∑n
i=1 uiσiv

T
i −

∑n
i=k+1 uiσiv

T
i

and note that the right-singular vectors vk+1,vk+2, . . . ,vn are elements of the null-space of the matrix

Ak.

-
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of the larger singular values contribute more to the solution. But the contributions of

the SVD components of the smaller singular values to the solution should not be fully

neglected, as they may contain important information about the solution. Therefore,

we want to add small adjustments to the smaller singular values while keeping the

larger singular values the same. Before we can observe this behavior of the Tikhonov

regularization method, we first define the Tikhonov regularization in a more general

setting.

When we solve a discrete inverse problems, we always encounter a system of equa-

tions of the form

Ax = b

which in general can have no solution. Instead consider the corresponding least-

squares minimization problem given by

x̃ = arg min
x
‖Ax− b‖22

where the term r(x) = ‖Ax − b‖22 is called the residual of x. The residual gives an

indication of how well the solution x fits the data in the system Ax = b.

4.4.1 General form

The Tikhonov Regularization problem takes the following general form

xλ = arg min
x
‖Ax− b‖22 + λ2‖Lx‖22 (4.6)

where L is some matrix that consists of a-priori information about the solution(s) of

the system of equations Ax = b. The regularization parameter λ has a positive value

that controls the weighting between the two terms ‖Ax− b‖22 and ‖Lx‖22.

• The first term, ‖Ax−b‖22 models how well the solution x fits the data in the presence

of some noisy vector b. If this term becomes too large, the solution x does not solve

the problem, and the vector x is useless. On the other hand, we do not need the

residual to be as small as possible. If the vector b contains noise, a very small

residual would imply that we also fit the noise in the data perfectly. This kind of

fitting should be avoided at all cost, as the solutions obtained then are only locally

applicable (the solution x would only satisfy data set b, and nothing can be said

about the solution in a more global setting).

• The second term ‖Lx‖22 measures the regularity of the solution. It measures how

well the solution x satisfies the a priori information described by L. We hope that

we can produce better solutions by adding such information to the problem.

A small value of λ implies that the Tikhonov solution xλ has a small residual (so the

solution xλ satisfies the data well) and that the a priori information in L is not satisfied

(because that term is already small), where a larger value of λ produces a solution

that satisfies the a priori information more. A good balance between these two terms

-
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is important to produce good solutions. Therefore, the problem in a Tikhonov regular-

ization reduces to finding the correct value for λ such that the solution xλ is the most

optimal one, given some good operator L.

4.4.2 L-curve method to find λ

Several techniques are known about finding the best value of λ. One way of finding the

optimal λ is via the so-called “L-curve” method. This method is based on an intuitive

view of regularization. One can prove that the residual norm

ρ(λ) = ‖Axλ − b‖22

is monotonically increasing in λ and that the norm of the Tikhonov solution

ξ(λ) = ‖Lxλ‖22

is monotonically decreasing in λ. This specific behavior of the residual norm and the

norm of the solution implies an “optimal” value λ that is known as the corner of the

graph

Γ(λ) =

(
1

2
log10 ρ(λ),

1

2
log10 ξ(λ)

)
One can prove that graph has a typical L-shape. The corner of this L-shaped graph

is then the point for which the corresponding λ is presumed to be as the optimal

value of the Tikhonov regularization method. In the corner there is an optimal balance

between minimizing the residual norm and minimizing the length of Lx. In figure 7.7

an example of an L-curve is shown.

In [10], section 4.7, and in [11] one can find a detailed explanation about this method

and other properties of the L-curve. We omit any further explanation of the L-curve

method in this report and refer to [10] and [11].

4.4.3 Writing the minimization in a different form

The Tikhonov problem formulation in 4.6 can be described as a least-squares prob-

lem in x. This is done by first noting that∥∥∥∥∥∥
 y

z

∥∥∥∥∥∥
2

2

=

 y

z

T  y

z

 = yTy + zT z = ‖y‖22 + ‖z‖22

Applying this result to 4.6 leads to the equivalent problem

min
x

∥∥∥∥∥∥
 A

λL

x−

 b

0

∥∥∥∥∥∥
2

2

(4.7)

which is a least-squares problem in x. Such a problem can be solved by first consid-

ering the corresponding normal equations given by A

λL

T  A

λL

x =

 A

λL

T  b

0


-
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and then use an appropriate solver to find a (least-squares) solution. For numerical

algorithms is it sometimes better to base the computation of Tikhonov solutions on

4.7 rather than on the normal equations. In the last part of this chapter, in section 4.7,

we consider the CGLS method that is able to solve minimization problems like 4.7.

4.4.4 Tikhonov when L = I

An example of the matrix L is when it equals the identity matrix L = I. The Tikhonov

problem takes the form

xλ = arg min
x
‖Ax− b‖22 + λ2‖x‖22

which means that we are looking for solutions such that the 2−norm of that solution

is minimal. The Tikhonov problem is then solved by finding a least-squares solution

of the equation

(ATA+ λ2I)x = ATb

which can be solved using the pseudo-inverse of ATA+ λ2I:

xλ = (ATA+ λ2I)†ATb

Let A = UΣV T be the singular value decomposition of A. Here, we use the compact

form of the SVD. This means that we can choose matrices U,Σ and V in such a way

that Σ is a diagonal matrix. Using that V V T = I we find that

xλ = (V Σ2V T + λ2V V T )†V ΣUTb

= V (Σ2 + λ2I)†V TV ΣUTb

= V (Σ2 + λ2I)†ΣUTb

= V (Σ2 + λ2I)−1ΣUTb

Here, we have used that for an invertible diagonal matrix the pseudo-inverse is equal

to the inverse matrix. The above expression for xλ can be expressed in terms of

singular values and singular vectors. We obtain the following neat expression for xλ:

xλ =

n∑
i=1

(
σ2
i

σ2
i + λ2

)
uTi b

σi
vi (4.8)

Observe how the regularization parameter λ influences the regularized solution xλ.

Define

ϕ
[λ]
i =

σ2
i

σ2
i + λ2

≈

 1 σi � λ
σ2
i

λ2 σi � λ

where ϕ
[λ]
i are the so-called filter factors (compare with equation 4.4). For singular

values that are much larger than λ, the corresponding filter factors are close to 1, so

the associated singular value components are not changed a lot, while for singular

-
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values much smaller than λ, the filter factors are proportional to σ2
i , so the corre-

sponding SVD components are damped.

Compared to the TSVD regularization method, Tikhonov regularization methods seem

to be more “fair” towards the SVD components than the TSVD. In the TSVD method

we simply cut off all the SVD components that correspond to the small singular val-

ues. But we see from the naive solution 4.3 that the SVD components that correspond

to the small singular values also contain information about the solution.

Therefore, the TSVD method tends to produce a solution that is oversmoothed. Look-

ing at the filter factors of the Tikhonov solution 4.8, we see that this oversmoothing

behavior is less present there because the contribution of SVD components to the

solution decreases more gradually. Only for very small σi the SVD component is re-

duced by the filter factor.

4.5 Numerical Solvers: direct methods

Throughout this section we consider methods of solving the linear system

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm (4.9)

Since the linear system is not necessarily square, it may happen that the system

has no, one or infinitely many solutions. A linear system is called underdetermined

if there are more unknowns than equations. A system is called formally determined

if the number of unknowns equals the number of equations and a system is called

overdetermined if the number of equations exceeds the number of unknowns.

In the case of a formally determined system, the system has exactly one solution

if matrix A is invertible. In the case of a singular matrix A, it can still occur that a

linear system is consistent, that is, the vector b ∈ col(A) is a linear combination of the

columns of A.

In the case of an underdetermined system we expect that at least n −m unknowns

cannot be determined (these n −m unknowns are then called free variables). To be

able to “solve” an underdetermined system, additional information is required to pick

the “best” solution from all possible solutions. One way of doing this is to search for

the minimum norm solution

xMN = arg min{‖x‖2 : Ax = b}

Note that we already have seen this approach in the alternative formulation of the

TSVD. In this formulation, picking the minimum-norm solution is a way of picking a

regularized solution by adding additional information about the solution.

When the system is overdetermined (m > n) we cannot expect that the system 4.9

has a solution. A least-squares solution of the system 4.9 can be found by minimizing

-
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the residual

xLS = arg min ‖Ax− b‖22

Depending on the specific problem (equation 4.9) considered, a numerical solver is

chosen to solve the problem. A direct solver uses a factorization of A to solve the

linear system 4.9 effectively. By a factorization of A, solving the system reduces to

solving smaller linear systems of equations. In most of the time, solving such smaller

linear systems is fast and easy. Drawbacks of direct solvers are:

• The matrix A needs to be explicitly available for factorization of A;

• Sufficient memory allocation for matrix A and its factors;

• Possible numerical instability of direct solvers.

Direct solvers as the LU-decomposition, QR-decomposition and the SVD-factorization

are direct solvers that can be used to compute solutions for small systems of equa-

tions.

4.5.1 QR-decomposition for least-squares problems

The QR-decomposition can be used to solve underdetermined and overdetermined

problems. For underdetermined problems 4.9 with rank(A) = m we first determine

the QR-factorization of AT = QR, where Q is an orthogonal n× n matrix and R is of

the form

R =

 R1

0


Here, matrix R1 is an upper triangular m × m matrix. The least-squares solution of

the system is formally given by

xQR = Q

 (RT1 )−1b

0


where (RT1 )−1b is the solution of the system RT1 z = b. This solution can for example

be found by applying a Gaussian elimination.

For overdetermined problems one first computes A = QR. The least-squares solu-

tion is then expressed by

xQR = R−1
1 (QT1 b)

where Q1 is an m × n matrix containing the first n columns of the m ×m orthogonal

matrix Q and n× n matrix R1 is given as above.

-
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4.6 Numerical Solvers: iterative methods

In this section we introduce the notion of Krylov-subspace iterative methods. We first

recall the notion of an iterative solver and work towards one specific Krylov-subspace

iterative solver: the conjugate gradient least squares method (CGLS). This method

can be used to compute least-squares solutions of an underdetermined or overde-

termined linear system. Furthermore, the method allows regularization. The method

is suggested to work well with Tikhonov regularization. After defining how the CGLS

method works, we will discuss regularization in the CGLS method to obtain more

feasible results.

Iterative solvers tend to solve the system by starting at some initial guess x0 and

produce a sequence of vectors (xk)∞k=0 such that each iterate xk is an improved ap-

proximation of the exact solution. For iterative methods the matrix A does not need to

be known explicitly, but one needs to be able to compute its product with an arbitrary

vector. This makes using iterative solvers attractive when matrix A is very large or

when A is not known explicitly.

In general we stop iterating when some stopping criterion has been satisfied or if a

maximum of iterations has been reached. A typical stopping criterion is constructed

by looking at the residual

rk = ‖Axk − b‖22

The iterative solver is then stopped when the residual is reduced sufficiently. Ba-

sic iterative methods such as the Jacobi Method or the Gauss-Seidel method are

based on splitting matrix A into simpler parts. A direct drawback of such basic itera-

tive methods is that the matrix A needs to be given explicitly in order to compute the

decompositions. Furthermore, basic iterative methods do not converge fast enough

for application. Faster iterative methods are therefore needed. A family of such solvers

are called the Krylov-subspace iterative methods.

4.6.1 Krylov-subspace iterative methods

The fundamentals of Krylov-subspace iterative methods are based on the so-called

Cayley-Hamilton theorem. The Cayley-Hamilton theorem states that every n× n ma-

trix A satisfies p(A) = 0, where

p(λ) := det(A− λIn)

is defined as the characteristic polynomial and 0 is the n×n zero matrix. As a simple

illustration consider the matrix

A =

 1 2

3 4


-
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The characteristic polynomial is given by

pA(λ) = det(A− λIn) = det

 1− λ 2

3 4− λ

 = λ2 − 5λ− 2

Now define p(X) = X2 − 5X − 2I2, then one can simply verify that p(A) = 0.

A direct result from the Cayley-Hamilton theorem is that for any invertible matrix A,

the matrix satisfies the following identity:

p(A) = An + cn−1A
n−1 + · · ·+ c1A+ (−1)n det(A)In = 0

This leads to the following expression for the inverse A−1:

A−1 =
(−1)n−1

detA
(An−1 + cn−1A

n−2 + · · ·+ c1In)

Thus, for any invertible matrix A, its inverse can be expressed into terms of powers

of A (where In = A0), or

A−1 ∈ span(I, A,A2, . . . , An−1)

Consider for now the system Ax = b where A is invertible. Due to the above ob-

servations, the Cayley-Hamilton theorem implies that the solution x∗ = A−1b can be

written as

x∗ = A−1b =
(−1)n−1

detA
(An−1 + cn−1A

n−2 + · · ·+ c1In)b

=
(−1)n−1

detA
(An−1b + cn−1A

n−2b + · · ·+ c1b)

which means that x∗ ∈ span(b, Ab, A2b, . . . , An−1b). This is the starting point for

Krylov-subspace iterative methods. We define the k-th Krylov subspace Kk(A,b) as-

sociated to A and b to be the subspace spanned by the product of the first k − 1

powers of A and b:

Kk(A,b) = span(b, Ab, . . . , Ak−1b)

Observe that x∗ ∈ Kn(A,b) and for natural numbers p ≤ q that Kp(A,b) ⊆ Kq(A,b).

Krylov-subspace iterative methods are iterative methods that seek the k-th approx-

imation of the solution in the Krylov subspace Kk(A,b) of order k. Because of the

nested behavior of the Krylov subspaces each iterate is a better approximation of the

solution.

One of the first Krylov-subspace methods is the so-called Conjugate Gradient Method

(CG method). Originally this method was formulated for symmetric positive definite

matrices, but later the method was extended to a larger class of matrices. A nice

feature of the CG method is that it only requires one matrix-vector product for each

iteration, and the memory allocation is independent of the number of iterations. This

makes the method a compact solver to implement. A detailed explanation on this

method can be found in [25, Ch. 6].
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4.7 CGLS method

If the matrix A is not symmetric positive definite, the Conjugate Gradient Method

cannot be applied. An alternative iterative method for non-square matrices is the so-

called Conjugate Gradient Method for Least Squares (CGLS). The method is basically

the application of the CG method to the normal equations

ATAx = ATb

without ever forming the product ATA. This is a very nice feature because forming

the product ATA can be a very expensive operation. We give an explanation of this

method.

In the CGLS method, the k-th CGLS iterate is a solution to the minimization problem

xk = arg min
x∈Kk(ATA,ATb)

‖Ax− b‖22 (4.10)

which we can interpret as the element xk in the Krylov subspace Kk(ATA,ATb) that

minimizes the residual r = ‖Ax − b‖22 or, equivalently, the vector such that Axk is

closest to b. Solving the minimization problem is equivalent to the minimization of the

functional

Φ(x) =
1

2
xTATAx− xTATb

Indeed, as ATA is positive-semidefinite, the surface defined by the quadratic form

Φ(x) is shaped like a paraboloid bowl, hence Φ(x) has a global minimum. Further-

more, the minimum of Φ(x) can be found by setting the gradient of Φ(x) to zero. This

leads to

∇Φ(x) = ATAx−ATb = 0

Hence, any solution of the equation ∇Φ(x) = 0 satisfies the normal equations and

thus leads to a solution of minimization problem 4.7.7.

4.7.1 Residual error

For the k-th iterate we define the residual error

rk = ATb−ATAxk

which can be interpreted as a measure for the goodness of fit of the k-th iterate to

the data. When the length of the vector rk is small, we expect that the iterate xk is a

good least-squares solution.

4.7.2 Sequential linear searches

The search for the minimizer is done by performing sequential linear searches along

the ATA-conjugate directions,

p0,p1, . . . ,pk−1,

-
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where ATA-conjugate means that the vectors pk satisfy the condition

pTj A
TApk = 0, j < k

or in terms of inner products, that the search directions are ATA-orthogonal to each

other:

〈pj ,pk〉ATA = 〈Apj , Apk〉 = 0, j < k

Hence the search directions p0,p1, . . . ,pk−1 form an orthogonal system in the Krylov

subspace Kk(ATA,ATb) with respect to the inner product 〈·, ·〉ATA.

The iterate xk is determined by updating the previous iterate xk−1 and using the

search direction pk−1 via the formula

xk = xk−1 + αk−1pk−1 (4.11)

where the coefficient αk−1 solves the minimization problem

αk−1 = arg min
α∈R

Φ(xk−1 + αpk−1)

Observe that the above minimization takes place along a one-dimensional hyper-

space (a straight line) in Kk(ATA,ATb), which makes it easy to solve the minimiza-

tion problem.

4.7.3 The value of stepsize αk−1

Next we show that the value of αk−1 is given by

αk−1 =
‖rk−1‖22
‖Apk−1‖22

The derivation of the value is done in three steps. We start by computing the minimum

of the function Φ(xk−1 + αpk−1). This result is formulated in the following lemma.

Lemma 4.7.1. The minimum value of the function α 7→ Φ(xk−1 + αpk−1) is taken at the

point

α =
pTk−1rk−1

pTk−1A
TApk−1

Proof. First we write out the expression Φ(xk−1 + αpk−1):

Φ(xk−1 + αpk−1) =
1

2
(xk−1 + αpk−1)TATA(xk−1 + αpk−1)− (xk−1 + αpk−1)TATb

Now compute
∂Φ

∂α
(xk−1 + αpk−1) with respect to the variable α. This leads to

∂Φ

∂α
(xk−1 + αpk−1) = pTk−1A

TA(xk−1 + αpk−1)− pTk−1A
Tb

Solving
∂Φ

∂α
= 0 for α gives us:

α =
pTk−1A

T (b−Axk−1)

pTk−1A
TApk−1

=
pTk−1rk−1

pTk−1A
TApk−1

-
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4.7.4 New search direction pk

The construction of the new search direction pk from the previous search direction

pk−1 is given by

pk = rk + βkpk−1 (4.12)

where βk is chosen such that pk is ATA-conjugate to the previous search directions.

Lastly define

dk = b−Axk (4.13)

as the discrepancy associated with xk. Note that the residual of the normal equations

and the discrepancy are related to each other via

rk = ATdk (4.14)

4.7.5 Simplification of the expression for α

We have found the value of α that minimizes the functional described above. However,

One can show further simplification of the expression for α. The next step is the

following observation about the orthogonality between the search directions and the

residual errors

Lemma 4.7.2. For all k ∈ N we have that

pk−1 ⊥ rk

Proof. We start with the observation that rk can be defined recursively:

rk = rk−1 − αk−1A
TApk−1

Using the expression found for α leads to

pTk−1rk = pTk−1rk−1 −
pTk−1rk−1

pTk−1A
TApTk−1

pTk−1A
TApTk−1

= pTk−1rk−1 − pTk−1rk−1

= 0

Hence pTk−1 and rk are orthogonal.

A direct result of this is the following lemma.

Lemma 4.7.3. For all k ∈ N we have

pTk rk = rTk rk

Proof. From the recursive definition of pk and the previous lemma it follows that

pTk rk = (rTk + βkpk−1)T rk = rTk rk + βpTk−1rk = rTk rk
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From the previous lemma it follows that the expression for α can be simplified to

αk−1 =
‖rk−1‖22
‖Apk‖22

4.7.6 The value of βk
We claim that the value of βk in equation 4.12 is given by

βk =
‖rk‖22
‖rk−1‖22

The derivation of this expression is analogously to the derivation of α. We need two

lemmas that we give without proof.

Lemma 4.7.4. For all k ∈ N we have pTkA
TApk = pTkA

TArk.

Lemma 4.7.5. For all k ∈ N we have rk ⊥ rk+1.

We now have enough tools to determine the value of βk.

Lemma 4.7.6. The value of βk is given by

βk =
‖rk‖22
‖rk−1‖22

Proof. From the recursive definition of pk+1 we find that

pTk−1A
TApk = pTk−1A

TArk + βkp
T
k−1A

TApk−1

The above should be equal to zero due to the definition of the search directions, hence

βk = − pk−1A
TArk

pTk−1A
TApk − 1

(4.15)

Observe that dk can be defined recursively by

dk = dk−1 − αk−1Apk−1

Hence this can be rewritten as

Apk−1 =
dk−1 − dk
αk−1

(4.16)

Using equations 4.14, 4.15 and 4.16 and lemma 4.7.5, the value βk can now we rewritten as:

βk = − pk−1A
TArk

pTk−1A
TApk−1

=
(dk − dk−1)TArk
pTk−1A

TApk−1

pTk−1A
TApk−1

‖rk−1‖2

=
(rk − rk−1)T rk
pTk−1A

TApk−1

pTk−1A
TApk−1

‖rk−1‖2

=
(rk − rk−1)T rk
‖rk−1‖2

=
‖rk‖2

‖rk−1‖2
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4.7.7 Properties of xk and dk

Recall that each iterate in the CGLS method solves the minization problem and that

Kk(ATA,b) ⊆ Kk+1(ATA,b). This implies that the discrepancies dk form a non-

increasing sequence

‖dk+1‖ ≤ ‖dk‖

as we minimize the functional in 4.7.7 over a “larger” space.

With some extra effort (using the orthogonality properties of the search directions),

the norms of the solutions form a non-decreasing sequence:

‖xk+1‖ ≥ ‖xk‖

A proof of this property is found in [12, Section 4].

4.7.8 The CGLS method algorithm

The CGLS method algorithm is summarized as follows. For simplicity we set the initial

guess x0 = 0. The algorithm does not contain a stopping criterion, though it is easy

to built in such a criterion in the algorithm.

Algorithm 1 The CGLS Algorithm: given the right hand side b and matrix A

Initialize:

x0 = 0;

d0 = b−Ax0;

r0 = ATd0;

p0 = r0;

y0 = Ap0;

for k = 1, 2, . . . until stopping criterion is satisfied

α =
‖rk−1‖22
‖yk−1‖22

;

xk = xk−1 + αpk−1;

dk = dk−1 − αyk−1;

rk = ATdk;

β =
‖rk‖22
‖rk−1‖22

;

pk = rk + βpk−1;

yk = Apk;

end
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4.8 Regularization properties of the CGLS method

Facing ill-posed linear inverse problems of the form

Ax = b + e

we know that the matrix A is ill-conditioned. This means that the condition number

of A is large. (In general, condition numbers of the order of 105 start becoming of

concern.) This is caused by the tiny singular values of matrix A.

When using iterative methods for solving such ill-conditioned linear systems, a semi-

convergence behavior can often be observed. Semi-convergence means that at first

the iterates tend to converge to some meaningful solution, but as the iterations pro-

ceed, they begin the diverge. The divergence can be explained by the noisy term in

the right-hand side of the linear system in combination with the singular values of A.

At some point in the iteration the noise becomes more and more amplified and the

iterates start to diverge from the (least-squares) solution of the system.

The amplification is due to the growing Krylov subspaces. In [10, Ch 6.3.3] Hansen

explains that when we use the CGLS method, after each iteration the Krylov sub-

spaces becomes larger as we are searching for a solution in more search directions.

For the first iterations the CGLS method aims at reducing the discrepancy

dk = b−Axk

in the singular direction associated with the larger singular values. On later iterations

the discrepancy is reduced in the singular directions that are associated with the

smaller singular values. The small singular values begin to spoil the iterates. Hence

we conclude that the CGLS method starts with focusing on the most significant com-

ponents of the SVD expression (the components that contain the most information

about the solution that we seek). In [2], Example 4.6, this behavior is also illustrated.

Therefore, we need to capture the solution in time, before the amplified noise takes

over. This can be done by truncating the iteration in time before the semi-convergence

behavior kicks in. By equipping the iterative method with a stopping rule effective at

filtering the amplified noise from the computed solution, we can make the problem

less sensitive to perturbations in the data. This process of regularizing by a stopping

rule is called regularization by truncated iteration. The idea behind regularization by

truncated iteration is similar to the truncated SVD expression. When we apply the

truncated SVD method, we also try to separate the noise from the solution by trun-

cating the SVD expression, taking only in account the most significant components.

More details on the regularizing effects of the CGLS method can be found in an article

by A. van der Sluis and H.A. van der Horst [23, Section 6].

When the iterative method stops too early, the solution becomes oversmoothed by the

iterative method, while the solution becomes undersmoothed if the iterative method
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does not stop in time. Recall that

‖dk+1‖ ≤ ‖dk‖, ‖xk+1‖ ≥ ‖xk‖

where dk is the discrepancy of the k-th iterate. A solution of the system

Ax = b

solved by the CGLS method should be a good fit of the data, while ‖x‖ should not be

large. The above observation suggests that there is an iterate k for which the balance

between a good fit of the data and the length of the solution vector is optimal. This

observation leads to the so-called L-curve for the CGLS method. An example of such

a typical L-curve that we encounter in our inverse problem is shown in figure 4.1. We

omit the explanation of this method and refer to [19]. As discussed in the L-curve

method for Tikhonov regularization, the optimal point on the L-curve of the CGLS

method is the corner with the largest curvature of the graph described by

Γ =
(
log10 ‖dk‖2, log10 ‖xk‖2)

)
, where k = 1, 2, . . .

We will use this criterion when solving our inverse problem with the CGLS method to

find the best approximation to the linear inverse problem.

We want to emphasize that this criterion is not a stopping criterion. In order to have

a clear view on the shape of the graph Γ, we need to do a large number of iterations

to construct Γ. Therefore, this approach does not really seem to be a time efficient

one, but we believe that the solutions found via the L-curve criterion lead to the best

approximations. This idea is tested in Chapter 6.

Figure 4.1: Typical L-curve that we encounter in our discrete inverse problem.
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5 Application/Test case

In this chapter we discuss the case (the mock-up) and the software programs that we

have used during the research project. As a geometry we look at a mock-up model

that serves as an input for the Inverse Model. In the first section, we give an outline on

the properties and dimensions of the mock-up and the simplifications we have done

in the corresponding CAD-model. Then, we discuss the meshing of the mock-up that

is done in COMSOL, which is a multiphysics Finite Element program that can be used

to the compute magnetic field surrounding the mock-up. In section 5.2, we give a

brief introduction to COMSOL and lastly we discuss the ideas behind the simulations

in COMSOL of magnetic fields.

5.1 Mock-up

In order to validate the mathematical physical model, we test the model on a small

scaled mock-up of a ship. The mock-up is approximately 5 meters long, 2 meters

wide and 1 meter high. The mock-up model is called the M4 which stands for the

“Mock-up for Magnetic Monitoring Measurements”. A CAD-model of this mock-up is

created in the modeling tool Rhinoceros Version 5.0. This 3-D modeling tool is

used by designers for the creation of very complex objects. From jewelry to complete

ships, the program is user friendly and can be used in combination with various other

programs. In figure 5.1 an example1 of a model created Rhinoceros is showed.

Figure 5.1: An example of a model created in Rhinoceros

1. http://www.rhino3d.com/gallery/

-



68/116 - TNO report -

A development of the mock-up can be found in appendix F. The model consists of

9 two-dimensional welded polygons that are welded to a plate that represents the

typical upside of a boat. By defining the positions of the corners of the mock-up the

polygons are easily defined in Rhino3d.

After the creation of the CAD-model in Rhino3d it is exported to COMSOL to do sim-

ulations of the magnetic signature of the M4.

5.1.1 Real version of the M4

A similar real mock-up is built by the Marinebedrijf in Den Helder to realize a mea-

surement campaign at the item range “Grosse Eva” in Borgstedt, Germany. In figure

5.2 a picture of the M4 is shown. The mock-up is coated to protect the steel against

corrosion.

Figure 5.2: The mock-up M4, located at TNO before it was transported to the mea-

surement facility “Grosse Eva”.

5.1.2 Simplifications in the CAD-model

A few simplifications in the CAD-model are made with respect to the real version of

the mock-up in order to reduce the complexity of the problem.

First we neglect the contributions of weldings to the magnetic properties of the mock-

up. As the real mock-up is built by welding several parts together, the weldings may

have effect on the magnetic properties of the ship’s steel construction. But as we are

only interested in some source distrubtion in the steel, we neglect these weldings.

There are some hoisting eyes welded to the mock-up for transport and furthermore

there is a small hole made in the back of the ship so that any water inside the mock-

up can be removed easily. These hoisting eyes and the small hole are not present in

the CAD-model.
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Finally, it appears that the real mock-up consists of steel plates that are slightly bent.

The stress on the steel due to the bending affects the hysteresis curve of the steel.

However, in the CAD-model we assume that the steel plates are flat plates, and there-

fore we accept a small error in the geometry of the M4.

5.1.3 Properties of the steel used

The steel plates used for the construction of the mock-up consist of standard ship

steel 52. This special kind of steel is used in the construction of naval ships, excluding

submarines, mine hunters and mine sweepers. The hull of mine hunters and mine

sweepers of the Royal Netherlands Navy are made of glass-reinforced polyester and

the superstructure of these ships are of aluminum. The reason for this is that most

influence mines are triggered by disturbances in the magnetic field and this type of

construction reduces such disturbances.

5.1.4 Meshing of the mock-up

The Petrov Galerkin Method (see section 2.4) is a Finite Element Method (FEM)

based on discretisation of an object Ω into internal and boundary elements. As ex-

plained earlier, this method is used to reduce the inverse problem to a finite-dimensional

linear inverse problem that can be solved by means of (iterative) solvers.

The multiphysics software program COMSOL contains a mesh-generating algorithm

that can define partitions of a given object. In our case, the CAD-model of M4 is

imported into COMSOL. The mesh-generating algorithm is used to mesh the M4. As

very fine partitions often lead to a severe under-determined linear system, we have

to choose the discretisation in such a way that we avoid many unknowns in the linear

problem, while keeping enough unknowns in order to approximate the solution well

enough. An example of a discretisation of the mock-up can be found in figure ??.

Figure 5.3: Example of the meshing of the mock-up.
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5.2 Introduction to COMSOL

The Multiphysics program COMSOL is a great software package that can simulate dif-

ferent physical phenomena at the same time. COMSOL enables the calculation of

multiple coupled physical phenomena including either interactions and interconnec-

tions. It gives engineers and designers more insight in the physics so they can design

better products. Fluid flows and heat flows can be considered simultaneously to see

how heat diverges in air, for example. The extensive GUI can be used to create great

plots and to export simulation results out of COMSOL.

A sophisticated mesh generator makes it possible to compute solutions of mathematical-

physical models by the so-called Finite Element Method. The mesh generator is able

to define a triangulation of an object in terms of mesh points, triangular internal el-

ements, line boundary elements and hexagonal volume elements. Furthermore, ad-

vanced numerical methods such as the Conjugate Gradient Method and Precondi-

tioning are implemented in order to create numerically stable solutions.

Note that, although these methods converge in most of the time, we should always be

careful with the solutions produced. Such solutions are not always the correct ones

and furthermore the mesh generator sometimes defines a mesh which is not feasible

at all. Too large or too tiny elements can lead to unstable solutions. If one suspects

this behavior, one should apply enhanced numerical methods and pre-conditioners

to achieve stable solutions. These options are built into COMSOL.

Figure 5.4: Example of the magnetic behavior of two magnets. In this picture,

COMSOL shows the computed magnetization inside each magnet and the magnetic

induction field that surrounds the magnets. source: http://www.comsol.com
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5.2.1 Computation of the (reduced) magnetic field and magnetic shielding

Recall for a moment the domain equations that describe the interaction between the

magnetization of an object Ω and its induced magnetic field (as discussed in Chapter

2.1). First of all, we assume that in a current-free space (so J = 0) the magnetic fields

H are curl-free:

∇×H = 0

This guarantees the existence of some potential Vm that generates the magnetic field

H = −∇Vm

Furthermore, due to Maxwell’s equations, a magnetic induction field is divergence-

free:

∇ ·B = 0

The constitutive relation between the magnetic flux density and the magnetic field

that leads to the coupled behavior of the fields B,H and the magnetization M of the

object Ω is given by

B = µ0(M + H)

With these relations an equation for Vm can be found and is given by

−∇ · (µ0∇Vm − µ0M) = 0

In COMSOL, we can choose to solve the above domain equations for the full field,

that is the sum of all fields that are present, or for the so-called reduced field, where

we solve the equations for a potential Vm that corresponds to the induced magnetic

induction field Bred by some magnetization of Ω. The potential Vm is computed in

some space of computation S. In COMSOL we choose this to be a large bounding box

that surrounds Ω. It is important to note that the boundary of the bounding box should

be far away from Ω. This becomes clear when we talk about the boundary conditions

that we have to add to the problem.

In our work we want to compute the reduced field that is induced by some present

background field Bb. This means that we are looking for some potential Vm that gen-

erates the reduced magnetic field Hred where

Hred = −∇Vm

In the simulations we assume that any permanent magnetization is absent, so we

only model the interaction between ferromagnetic material and a background field.

In order to make the solution of this PDE unique boundary conditions are required.

In COMSOL, the following boundary conditions are assumed. Firstly, the continuity

condition is implemented that guarantees the continuity of the normal component of

the magnetic flux density B. This is given by

n2 · (B1 −B2) = 0
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between two domains 1 and 2, where n2 is the normal vector on domain 2 that is

pointing outwards.

Given an magnetization M of the ferromagnetic object Ω, it is easy to compute the

magnetic field with COMSOL by a so-called finite-element package that is built into

COMSOL. The Galerkin weighted residual method is implemented in COMSOL and can

be used to transform the system of PDE (domain equations plus boundary conditions)

into a large system of linear equations. The idea behind this method is to expand the

potential on a meshed object:

Vm =

n∑
i=1

WiVi

where Wi are so-called predefined weight functions. See for an explanation on this

approach [3].

It is also possible in COMSOL to compute reduced magnetic fields that are induced

by some present background field. This can be done by solving the problem with a

finite-element method. Again, the system of PDE is transformed into a large system

of linear equations but due to the complexity of this linear system, all kinds of difficul-

ties such as numerical stability and the lack of memory in the solver are introduced.

Therefore extra assumptions are required to reduce the complexity of the problem.

A well known method implemented in COMSOL is the so-called magnetic shielding

condition.

Especially for geometries consisting of thin steel plates, the magnetic shielding method

is a way of adding extra boundary conditions to the problem in order to reduce the

three-dimensional object to a two-dimensional surface. This is based on the follow-

ing two assumptions. The first assumption is that the thickness of the steel plates is

very small and (for the sake of simplicity) the thickness is constant over the plate.

Furthermore, we assume that the magnetization is tangential to the plate, so that

everything “happens” along the surface of a plate. This means that when we decom-

pose the magnetization M into a tangential component M‖ (along the surface) and a

component M⊥ perpendicular to the surface, we have that M⊥ ≡ 0.

In [3] and [17] a derivation can be found of the magnetic shielding conditions. The

magnetic shielding conditions are given by

n · (B1 −B2) = −∇t · (µ0µrt∇tVm), over the surface ∂Ω

Here, µr is the relative magnetic permeability of the medium and t is the plate thick-

ness. The operator ∇t represents a tangential gradient along the surface. After ap-

plying the Galerkin weighted residual method these conditions transform into linear

equations.

It remains to define proper boundary conditions on the boundary ∂S of the computa-

tion space. These conditions are required in order to have a unique solution and to
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simplify calculations when applying the Galerkin weighted residual method. The first

boundary condition is given by the expression

−n ·Bred = 0, on ∂S

and means that the reduced magnetic induction field is insulated inside the compu-

tation space S. We immediately observe that this is a significant assumption of the

behavior of the magnetic induction field. In reality, the magnetic field is defined for

each point r ∈ R3 and the magnetic field is weaker as the distance between the ob-

ject and an observation point r becomes larger. An induced magnetic field is never

isolated in some region S. But for a large S, the error this condition makes becomes

smaller.

After adding the boundary conditions discussed to the mathematical model in COMSOL

a FEM can be applied to solve the problem for the potential Vm. By interpolations,

the potential Vm is approximated in the whole space S. This allows us to compute

the magnetic field via H = −∇Vm. By this method COMSOL computes the reduced

magnetic induction field, induced by the background field Bb present.
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6 Validation and analysis of the prediction model

As we have seen in Chapter 5, the multiphysics program COMSOL can be used to

calculate the magnetic signature of the M4 that is placed in some background field

Bb. Note that the magnetic signature, simulated in COMSOL, does not contain contri-

butions due to any permanent magnetization of the M4. The absence of permanent

magnetization may simplify the complexity of the signature of the M4 and therefore

makes it easier to predict the magnetic signature.

In this chapter we execute the so-called “Comsol, Inverse, Forward and Validation”

routine to investigate the validity of both the inverse formulation and the prediction

model. We abbreviate this by a CIFV routine. Using the simulations of the magnetic

signature in COMSOL, we investigate the validity of the prediction model.

This chapter is organized as follows. After an explanation of the CIFV process we

investigate performance and behavior of the prediction model by considering the fol-

lowing topics:

• SVD analysis: looking at the SVD decomposition of the linear inverse system,

what can we conclude about the behavior of the system?

• Solver: does the choice of a solver (that solves the inverse problem) affect the

performance of the prediction model?

• Double layer potential: in the inverse formulation the magnetic field is described

by three components. Can we neglect the last term in the formulation that de-

scribes the normal component of the magnetic field (“double layer component”)?

• Noise: The influence of noise in the measurement data on the solutions of the

inverse problem.
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6.1 Introduction to the CIFV process

A flow chart of a CIFV routine can be found in figure 6.1. We discuss the steps that

are taken in this routine.

In Rhinoceros we have created a CAD-file of the M4. We modeled the M4 as a

two-dimensional surface with one-dimensional boundaries. This allows us to use the

magnetic shielding conditions in COMSOL to simulate a magnetic signature of the M4,

given some background field. The model is processed and exported as a CAD-file

into COMSOL.

In COMSOL we simulate a static background field. We mesh the model using the mesh

generator and compute the induced magnetic field surrounding the mock-up. Observe

that for accurate simulations of the magnetic signature in COMSOL, we need a very

fine mesh. The computed reduced magnetic field serves as input for the prediction

model, as well as validation for the performance of the prediction model.

Each simulation in COMSOL gives rise to a magnetic signature of the mock-up. From

this simulation we can define two sets of data. The first data set is a set of values

of the magnetic signature at one meter below the M4 and the second set consists of

the values of the magnetic field “on-board” of the M4. The first set is used to inves-

tigate the validity of the inverse problem, while the values of the second set can be

interpreted as the measurements at predefined sensor positions. The second set is

therefore used as input for the inverse problem.

Next, the magnetic signature inside the M4 and one meter below the mock-up is com-

puted and exported as two data sets into MATLAB. The inverse problem is executed

and magnetic sources f, g and h are obtained. These magnetic sources are used to

predict the magnetic signature.

The predicted magnetic signature, at one meter below the mock-up, is then compared

to the magnetic signature from COMSOL.

6.1.1 Relative and absolute errors

The investigation of the inverse formulation is done by looking at the relative error

τ(r) =
‖Bpredicted(r)−Bcomsol(r)‖2

‖Bcomsol(r)‖2

between the magnetic signature predicted via solving the inverse problem and the

magnetic signature simulated in COMSOL. Furthermore we look at the absolute error

defined by

ε(r) = ‖Bpredicted(r)−Bcomsol(r)‖2

and the numbers εmax, τmin and τmax.

As explained in the introduction of this report, the relative error can be used as a tool

to investigate the validity of the model. We call a performance of the prediction model
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good if the relative error τ is small (which means that there is a good fit between the

predicted magnetic signature and the magnetic signature from COMSOL) and that the

absolute errors made by the prediction are low, so εmax should be low.

6.1.2 Meshing

In the validation of the prediction model we look at six different meshes of the mock-

up model, from coarse meshes to (very) fine meshes. As the dimension of the mesh

influences the number of unknowns in the inverse formulation, it is interesting to in-

vestigate in which way the meshing of the mock-up influences the performance of

the prediction model. In table 6.1 the dimensions of six meshes are shown, mesh I

corresponds to figure 5.3.

|P | |E| |BE| unknowns

M
es

he
s

I 527 943 269 1312

II 394 677 246 1023

III 364 617 243 960

IV 328 545 234 879

V 313 515 233 848

VI 2322 4404 710 5343

Table 6.1: Dimensions of the different meshes used in the CIFV routines. Here |P |

denotes the number of mesh points, |E| denotes the number of triangular elements

and |BE| denotes the number of boundary elements. The last column contains the

number of unknowns in the inverse problem; the length of vector p in equation 2.8 in

section 2.4.1.
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COMSOL MATLAB

RHINO
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Data set:
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Figure 6.1: Flow chart of the CIFV routine.
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6.2 Simulation: uniform background field along the ux-direction

Let Bb be the static uniform back ground field given by

Bb = 50 · 10−6ux [T] (6.1)

We compute the magnetic signature of the M4 in COMSOL. We construct a data set of

the magnetic signature that consists of 176 possible sensor positions on-board of the

M4 and construct a data set of the magnetic signature that consists of values at one

meter below the M4 in an array of reference points. The results (the two data sets)

are then exported as plain text files and are converted into matrices in MATLAB.

In Appendix A the results of these CIFV routines can be found. The results based on

176 measurements inside the M4 for four different methods and several meshes of

the M4. In the second table the results are of the use of Tikhonov regularization in

the SVD method. The regularization parameter is chosen with the “L-curve” principle.

Furthermore we investigated the stability of the usage of a QR decomposition. The

iterative CGLS method is applied to the system with a total of 528 iterations (the rank

of A). Due to bad results we have skipped some of the computations of the SVD and

QR method.

6.2.1 Results of CIFV routines

This section presents some results of the application of the prediction model to the

COMSOL input. We consider the magnetic signature of the M4 in a local background

field described in equation 6.1. Therefore, we expect that the induced magnetisation

of the M4 is orientated in the same direction.

A good performance of the prediction model is observed in the case that we mesh the

M4 by mesh IV and using the CGLS method to solve the inverse problem. Here, we

used the L-curve criterion as as stopping criterion for the CGLS method. The L-curve

in this particular case is found in figure 6.5. We see that the optimal solution is found

at k = 137.

The prediction of the magnetic signature is quite good in this case. We have that the

relative error τ at one meter below the M4 satisfies

0.004 ≤ τ ≤ 0.074

and that the absolute error of the predicted signature satisfies

4.5nT ≤ ε ≤ 117nT,

so the absolute error is maximal 117nT. The relative error and absolute errors at one

meter below the M4 are shown in figure 6.2. The predicted signature and COMSOL

signature are shown in figure 6.3. Observe that the shape of the intensity of the
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predicted magnetic signature is corresponding to the COMSOL magnetic signature,

which shows that the magnetic sources of the inverse problem are well distributed in

the M4.

In figure 6.4 and ??, the magnetic solutions f, g and h of the inverse problem show

that the M4 is acting like a bar magnet, with its magnetic poles at the stern and bow

of the M4. The inverse problem seems to approximate the correct magnetic sources,

although we only use 178 many measurements of the magnetic field inside the M4.

(a) Relative errors.

(b) Absolute errors.

Figure 6.2: The relative and absolute errors of the CGLS predicted signature.
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(a) Prediction magnetic signature.

(b) COMSOL magnetic signature.

Figure 6.3: The CGLS predicted and COMSOL magnetic signature.
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Figure 6.4: The magnetic sources f g and h in the M4, computed by the inverse

problem.
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Figure 6.5: The L-curve in loglog-scale corresponding to the system Ax = b in

the inverse problem described in section 6.2.1. Here, the optimal solution is found at

k = 137.

-



84/116 - TNO report -

6.3 Investigation of behavior of the prediction model

This section presents the analysis of our prediction model. In the introduction of this

chapter we described different topics we considered in this analysis, such as the use

of the solver in the inverse problem, the use of different meshes, neglecting the double

layer potential and the influence of noise on the performance of the prediction model.

These topics are covered in the next sections.

6.3.1 Direct solvers

The condition numbers involved in the inverse problem are all O(1017). As we already

established in Chapter 3, large condition numbers imply that the inverse problem is

ill-conditioned and therefore that direct solvers such as the SVD and QR method are

useless for our simulations.

To illustrate the accuracy of solutions of direct solvers, we consider the CIFV routine

where we use the SVD method as solver. We partition the M4 by means of Mesh II,

choose 176 measurements of the magnetic signature and execute the routine (see

also Table A.1). In this situation we have cond(A) = 2.2 · 1017. For the solution of the

inverse problem we have

r = ‖b−Ap‖2 = 9 · 10−18

and thus the solution fits the measured data, stored in b. In figure 6.6 we see the

source solutions computed by the SVD method and in figure 6.7 the corresponding

predicted magnetic signature at one meter below the M4 is shown. Although the in-

verse solution fits the data well, the magnetic signature that it induces does not make

any sense.

(a) Source function f (b) Source function g

(c) Source function h

Figure 6.6: Source solutions computed by the SVD method. The source functions

show large variations and many local extremes.
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Both figure 6.7 and Table A.1 indicate that the solutions found by the SVD method

are useless as the magnetic signature prediction does not coincide at all with the

real signature: the shape of the predicted signature is very odd and not physical. We

conclude that direct solvers (without any regularization) lead to useless solutions of

the inverse problem.

Figure 6.7: Predicted magnetic signature computed via the SVD method. The mag-

netic signature has a strange shape. This is caused mainly by the chaotic behavior of

the non-physical source functions determined from the inverse problem displayed in

figure 6.6.
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6.3.2 SVD analysis

In this section we consider the SVD decomposition of a linear inverse problem that

we encounter in the simulations. We look at one specific example, but the behavior is

similar for each system that we encounter. We have seen in Chapter 4 that singular

values describe the behavior of the inverse problem. The number of singular values

depends on the number of measurements taken as input in the inverse problem.

In particular, if we take n measurements of the magnetic field, then there is a total

of 3n singular values. In Appendix , some values of the singular values and their

corresponding SVD components are presented. Also the ratio between the singular

value and the associated SVD component is shown. The SVD decomposition is found

in the CIFV routine discussed in section 6.2.1.

The last 6 singular values are below the machine precision ε = 2.2 · 10−16, which

means that those values cannot be trusted. We may say that these are practically

zero. In Figure 6.9c the singular values are shown in a graph and in 6.9b the corre-

sponding SVD components are shown. Observe that both the singular values and the

corresponding SVD components decrease. However, from the ratios in Table A.2 we

observe that the singular values decreases much faster than the SVD components.

This means that the Picard Criterion (see section 4.3) is violated, as the SVD com-

ponents do not decrease faster than the singular values. Hence the naive solution

represents a solution that is not “nice”.

In this case, the smallest singular values are approximately 10−15 (when we neglect

the last singular values below the machine precision). Recall that the naive solution

is given by

x† := A†(be + e) =

r∑
i=1

〈be,ui〉
σi

vi +

r∑
i=1

〈e,ui〉
σi

vi, r := rank(A) (6.2)

Observe that in the presence of a noise term e, the naive solution drifts away from the

exact solution because the second summation becomes large, if singular values are

small. Thus, small perturbations in the right-hand side due to noise spoil the solution

and therefore regularization is really necessary.

Figure 6.8: Mesh IV, defined on the mock-up.
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(a) Singular values of the inverse problem.

(b) SVD components of the inverse problem.

(c) The quotients of SVD components and singular values.

Figure 6.9: The singular values and the SVD components of the inverse problem.
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6.3.3 CGLS and SVD+Tikh simulations

In Table A.1 the errors of the prediction for different solvers and meshings of the

mock-up M4 are shown. We see that for the CGLS method and SVD+Tikh method

the prediction model performs good. The performance of the prediction is already

illustrated in section 6.2.1.

The relative and absolute error plots in figure 6.2 show that the prediction model has

some difficulties to predict the shape of the signature at the stern and at the bow. Note

that the distribution of the relative errors and the absolute errors are a bit suspicious.

An explanation for the typical shape is that the signature that COMSOL simulates is an

approximation of the magnetic field, and contains rounding errors and approximation

errors caused by the FEM used.

6.3.4 Anomalies in the prediction model

Looking at the errors in the predictions of the magnetic signature, we observe that

there are some typical spots at the stern and bow of the mock-up where the relative

error is high. Two explanations of these local anomalies are the following.

We may argue that these anomalies are caused in the numerical approximation of

the real magnetic signature by COMSOL. Of course, COMSOL uses a Finite Element

Method to compute that magnetic signature of the M4 and although we have used

a very fine partition to compute the signature, we cannot avoid any numerical errors

in the computation. Furthermore, any human mistakes in simulating the magnetic

signature cannot be ruled out and we should emphasize that COMSOL describes the

physics in a different way.

Another explanation may be that the prediction model has difficulties at those points

where the gradient of the vector field1 ∇B is large. If we look at the locations of the

anomalies we see that the anomalies are indeed nearby large gradients of the vector

field. However if we look at a background field orient along the y-direction we observe

that the anomalies are still positioned at the stern of the mock-up. Therefore this

explanation tends to be false.

6.4 Double Layer Component in the Magnetic Field Formulation

For a thin magnetic shell Ω, the magnetic shielding condition, described in Section

5.2.1, is used to describe the induced magnetic field. In this description we assume

that, when the steel object has a very small thickness, the magnetization of Ω is tan-

gential and that any magnetization normal to the shell Ω can be neglected. This con-

dition is used in the simulation of the magnetic signature of the mock-up in COMSOL.

1. Suppose that v : Rm → Rn is a vector field. Write v =
∑n
i=1 vi(x1, . . . , xm)ei where

{e1, e2, e3} is an orthonormal basis for Rn. Then ∇B, the gradient of the vector field B, is defined

as the matrix (∂ivj)i,j=1,2,3 (the Jacobian of v).
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6.4.1 Changing the prediction model

In our forward problem formulation, the potential that solves Poissons problem is built

out of single layer potentials and a double layer potential. This potential leads to the

following description of the magnetic induction field outside the mock-up that was

given by (eq 2.3)

B(r) = −µ0t

4π

x

Ω

r− r′

|r− r′|3
∇ ·M(r′)dr′ +

µ0t

4π

∫
∂Ω

r− r′

|r− r′|3
n′(r′) ·M(r′)dr′

+
µ0t

4π

x

Ω

∂

∂ν′

(
r− r′

|r− r′|3

)
n′(r′) ·M(r′)dr′ (6.3)

where the third integral corresponds to the double layer potential. Now for our mock-

up it holds that the thickness of the steel is relatively small to the other dimensions of

the mock-up. Therefore we argue that the contribution of this double layer component

can be neglected in the prediction model. The magnetic field in the forward problem

is then described by

B(r) = −µ0t

4π

x

Ω

r− r′

|r− r′|3
∇ ·M(r′)dr′ +

µ0t

4π

∫
∂Ω

r− r′

|r− r′|3
n′(r′) ·M(r′)dr′

(6.4)

and the inverse problem is the task of finding magnetic sources f and g that fit the

measurements.

6.4.2 Results neglecting the double layer component

We investigate the performance of the prediction model in the absence of the double

layer component. In Table 6.2 the errors of the prediction can be found. Observe

that when we neglect the double layer component, the performance of the prediction

model increases significantly. In particular, for mesh V we see that the prediction is

more or less perfect, with an absolute error of maximal 34nT. In figure 7.9c the results

in this case are shown.

With double layer component Without double layer component

Mesh εmax [nT] τmin τmax εmax [nT] τmin τmax

So
lv

er
:C

G
L

S

I 208 0.004 0.097 106 0.018 0.055

II 176 0.012 0.103 74 0.001 0.042

III 152 0.009 0.093 65 0.002 0.042

IV 71 0.003 0.054 71 0.003 0.054

V 126 0.007 0.088 34 0.005 0.042

VI 150 0.007 0.087 158 0.021 0.081

Table 6.2: Simulation errors based on 176 measurements inside the M4. We compare

the simulation errors of the prediction with and without the double layer component.
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(a) Predicted magnetic signature.

(b) Absolute error of the predicted signature.

(c) Relative error of the predicted signature.

Figure 6.10: The relative errors and the absolute errors made by the prediction model,

when we neglect the double layer component.
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Although neglecting the double layer component leads to better predictions, we have

to be careful. The increase of performance can be explained by the mathematical

physical model of the static magnetic field inside COMSOL. As described in section

5.2.1, the computation of the magnetic field in COMSOL uses the magnetic shielding

boundary conditions to reduce the complexity of the problem. We argue that in this

model, the normal component of the magnetic field is neglected too and that this

causes the increase of performance that we have observed in this section.

It remains a question if the double layer component can be neglected in practice. An

experiment should clarify if this is the case.
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6.5 Noisy Measurements and the use of Regularization

In the previous sections we analyzed the prediction model’s performance. We have

seen the performance of the prediction model for different meshes and solvers, and

we saw that the CGLS method produced the best inverse solutions. However, in the

simulations we did not considered any noisy measurements (besides any numerical

rounding errors in COMSOL, but these are small). In this section we consider noisy

measurements and investigate to what extent the regularizing behavior of the CGLS

can deal with this noise.

6.5.1 Modeling of noise

Suppose that our discrete inverse problem is of the form

Ap = b + e

where we introduce a noise term δ in the vector b. We model the noisy δ as Gaussian

noise with mean zero. For each measurement vector x ∈ R3 at some sensor position

we have that

δ ∼ N (0, σ2I3)

with probability density

πδ(x) =
1

(2π)
3
2σ3

exp

(
− 1

2σ2
‖x‖2

)
The covariance matrix Σ = σ2I3 indicates that the entries δi of noise vector δ are

independent. Noise that is modeled in this manner is called white Gaussian noise.

For K sensor positions the noise vectors can be concatenated to a vector e, the

noise vector that appears in the discrete inverse problem.

When we measure the magnetic field inside the M4 using a magnetic flux-gate sen-

sor, experience learned that the measurement can deviate a couple of hundreds of

nanotesla. More specifically,

‖Bexact(r)−Bmeasured(r)‖2 ≤ 300nT, for each measurement r

Therefore, a reasonable value for σ is

3σ =
1

3

√
3 · 300 · 10−9T

so that 99% of the mass below the probability density lies within the interval [−3σ, 3σ].

This means that the noise in each measurement most likely varies between 0nT and

300nT . Hence, the model for the noise in each sensor position is given by

δ ∼ N (0, σ2I3), σ =
1

9

√
3 · 300 · 10−9 (6.5)

-



- TNO report - 93/116

6.5.2 A remark on independency in the modeling of noise

We must keep in mind that, in practice, a fluxgate magnetic sensor measures the

three components of the field by three small coils. These coils are placed inside the

sensor perpendicular to each other. Recall Faraday’s law of induction: a current inside

a coil generates a magnetic field. Therefore, at a small scale, the field in the three

coils are coupled. This is a reason to believe that the noise in a measurement is, at

some point, dependent. It is unclear at this moment what the influence of the coupled

behavior of the coils is on the noise. Therefore, for now we consider the modeling of

the noise as described above.

6.5.3 Numerical tests

In this section we restrict ourselves to a fixed prediction of the magnetic signature,

and investigate the effect of regularization by truncation (see section 4.8) when the

on-board measurements of the magnetic field are contaminated by noise.

We start by choosing the predicted magnetic signature described in section 6.2.1. By

Bsign we denote the predicted magnetic signature in this simulation. The prediction of

Bsign was done in any absence of noise (e = 0) in the measurements. Recall that the

absolute error of this predicted signature is

4.5nT ≤ ε ≤ 117nT

Next, we model a noise vector e ∈ R3K via the Gaussian noise model discribed in

6.5, where K is the number of sensorpositions and add this vector to the discrete

inverse problem.

The discrete inverse problem is then solved using the CGLS method in combination

with the L-curve criterion, and leads to a predicted signature based on noisy mea-

surements. This simulation is done a number of times and leads to a set of predictions

of the magnetic signature

{B1,B2, . . . ,BT }

where T is the number of simulations. For each simulation i ≤ T we compute the

relative error

τi(r) =
‖Bsign(r)−Bi(r)‖2
‖Bsign(r)‖2

and absolute error

εi(r) = ‖Bsign(r)−Bi(r)‖2

at one meter below the mock-up. We define the mean of the relative and absolute

errors

τ =
1

T

T∑
i=1

τi, ε =
1

T

T∑
i=1

εi

The mean of the relative and absolute errors are used to investigate the regularizing

behavior of the CGLS method (in combination with the L-curve criterion). By looking
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at the values of τ and ε we take away any rare spike that can occur when the noise

vectors e are generated.

The above procedure is executed for T = 20. The results of this simulation is shown

in figure 6.11. The absolute error plot shows that, although the predicted signatures

are done based on noisy measurements, the model produces an accurate prediction

of the magnetic signature. The maximal mean absolute error is around 82nT, which

means that in general the prediction model makes an additional error of 82nT when

we are using noisy measurements.

Adding up the values of the absolute error of Bsign (with respect to the COMSOL signa-

ture) and the mean absolute error we conclude that in general the prediction model

makes an estimated absolute error of around 200nT, which is around 10% of the in-

tensity field ‖Bsign‖2.

(a) Mean absolute error.

(b) Mean relative error.

Figure 6.11: Mean errors between Bsign and the CGLS predicted signatures with noisy

measurements.
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7 Measurement Campaign and application of

Prediction Model

A measurement campaign took place in Germany to support the validation of the

proposed prediction model. In this chapter we test the performance of the prediction

model based on the data of the measurement campaign.

In section 7.1 the measurement campaign is described. Some observations are made

during the campaign and we discuss these observations in section 7.2. The result-

ing measurements are shown in section ?? and in section ?? we demonstrate the

performance of the prediction model using real data.

7.1 Measurement Campaign

A measurement campaign took place in October 2015 at the measurement range

“Grosse Eva” at the Wehrtechnische Dienststelle 71 (WTD71) in Borgstedt, Germany.

The WTD71 uses the measurement facility to measure small magnetic objects such

as tanks, and to demagnetize them to certain norms if necessary. The small inhomo-

geneities in the background field are of less importance for WTD71, because they are

more interested in the relative magnetic disturbances of the object.

However, in our research we are interested in the absolute disturbances. This places

greater demands on the accuracy of the background field, sensor positions and the

measurements of the magnetic field. In particular, the prediction model uses sensor

positions for inverse modeling of the magnetic sources. For good performances of the

prediction model, the position of the sensor must be known accurately.

A mock-up model is built by the Marine Bedrijf in Den Helder, the Netherlands, and

is transported to the item range in order to be measured under several magnetic

conditions. The “Mock-up for Magnetic Monitoring Measurements”, simply called the

M4, is built out of steel plates that are 4 mm thick. The steel plates are typically used

in the construction of naval vessels. The M4 has dimensions of approximately 5 m

(length) x 2 m (width) x 1 m (height) and has a weight of approximately 1000 kg.

The goal was to collect data that serve as input for the development of the prediction

model for magnetic signature monitoring and to collect data that can be used to in-

vestigate the Hysteresis behavior of the steel used in the mock-up. The measurement

campaign was a great opportunity to get some experience in measurements and to

understand the complexity of the application of the prediction in practice.
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7.1.1 Campaign plan

We want to measure the magnetic induction field B surrounding the mock-up under

different magnetic states and background fields. The magnetic state (or Permstate)

is defined as the permanent part of the magnetization inside the steel of the mock-

up. For each magnetic state, we consider several background fields. The permanent

magnetic state can be changed by a strong magnetic background field.

7.1.1.1 Helmholtz coil

In the measurement facility “Grosse Eva”, two coil systems are built-in. The coil con-

figurations are based on the so-called Helmholtz Coil. However, the coils systems in

the facility are different. The specific details are classified.

A Helmholtz coil is a device for producing a region with a nearly uniform magnetic

field. A schematic drawing of a Helmholtz coil is found in figure 7.1. It consists of two

solenoids of radius R on the same axis, positioned at a distance R between the two

solenoids.

The computation of the exact magnetic field at any point surrounding the Helmholtz

coil is very complex. However, at the midpoint (at x = R/2) between the two electro-

magnets the field is computed easily using Biot-Savart law:

B(x = R/2) =

(
4

5

) 3
2 µ0nI

R

where µ0 is the permeability of vacuum, n is the number of turns in each coil, I is the

coil current (in amperes) and R is the coil radius (in meters). We see that the field is

proportional to the coil current and the number of windings. Therefore, in theory, any

uniform field can be generated by this coil configuration.

Figure 7.1: A schematic drawing of a Helmholtz coil. Near the x-axis the field, gener-

ated by the electromagnets, is uniform.
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7.1.1.2 Deperming

We start with de-perming the mock-up to a minimal permanent magnetization level.

The de-perm process is done by changing the background field in the facility in some

special manner, using a Helmholtz coil system inside the facility. The magnetic state

obtained serves as the initial magnetic state of the M4 and it ensures us that the

values of the magnetic field are within the range of the magnetic sensors used.

7.1.1.3 Permstate I

After the deperming, the magnetic field under five different background field condi-

tions is measured. The background field can be changed using the larger Helmholtz

coil system inside the measurement facility. In fact, the measurement facility consists

of several Helmholtz coil configurations. These can be used to change the back-

ground field inside the facility.

The different background fields are: (1) in absence of the background field (zero field),

(2, 3, 4) uniform background fields in the three directions x, y and z with a strength

of 50µT , and (5) again a measurement with no background field. The last measure-

ment is done to see wether the three uniform background fields changed any perma-

nent magnetization in the mock-up significantly. A possible change would indicate a

change in the permanent magnetization.

7.1.1.4 Remark on the positioning of the mobile sensor

For each field condition we want to measure the magnetic induction field B inside

the mock-up at several measurement points and we want to measure the magnetic

field below the mock-up at several depths. Around 150 manual measurements of the

magnetic field inside the M4 are planned.

To do accurate measurements inside the mock-up with a mobile sensor, a grid is

defined inside the mock-up, see figure 7.2. The local coordinates, defined by the grid,

can be transformed to the global coordinate system that is used in the prediction

model, by suitable coordinate transformations. The measurements inside the mock-

up are done manually. The mobile sensor is attached to a aluminium frame at a fixed

distance, so that each on-board measurement was done at a fixed distance to the

mock-up. We fixed the mobile sensor at a height of 20cm. So, in local coordinates,

the z-coordinate of each measurement is the same.

By moving the mock-up’s position with respect to the sensor array, we create a grid of

measurements of the magnetic field below the mock-up. This grid of measurements

will serve as input for the validation of the mathematical-physical model. It is of great

importance to know the location of the measurement positions accurately for the per-

formance of the current prediction model.
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7.1.1.5 A remark on measuring the magnetic signature

For each run, the magnetic signature is measured of the M4 for four different head-

ings: north, east south and west. The mock-up is moved from the south of the hall to

the north, along a rail. Below the rail an array of sensors are fixed at different heights,

for near field measurements and far field measurements. Near field we mean the

magnetic field between one meter and two meters below the mock-up, while the far

field is the magnetic field at two meters or more. Changing the heading of the mock-up

is done manually, by rotating the platform of the trolley where the mock-up is placed

on.

7.1.1.6 Hysteresis Modeling

For further studies it is important to know how the magnetization changes over time,

when we change the background field in the de-perm and perm process and when we

change the background field for our measurements. The data can be used to further

understand the hysteresis of steel, i.e. the magnetic history of steel. However, this

study is out of the scope of this project.

7.1.1.7 Change the permstate of the M4

After the five runs have been executed, we change the permanent magnetic states

using the strong Helmholtz coils. This procedure is called a perm-process. The Perm-

process is an time-intensive one. Note that for the new permstate, the magnetic sig-

nature of the M4 must be within the measuring range of sensors. Otherwise, the

measurements cannot be trusted.

Figure 7.2: A grid, painted on the inside of the mock-up, that is used to do accurate

on-board measurements.
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7.1.1.8 Permstate II

With the new perm state, we execute another set of measurements. Instead of con-

sidering the background fields in the first run, we looked at another set of background

fields: (1) zero field, (2) the local earth magnetic field at Bünsdorf, (3) a uniform back-

ground field in the z-direction and (4) a uniform background field in the x-direction.

The earth magnetic field at the facility in Bünsdorf is approximately

Bx = 17575nT, By = 690nT, Bz = 46500nT

These values are found using a numerical model of the “National Centers for Environ-

mental Information” [22]. Bünsdorf is at latitude 54.4◦ North and longitude 9.730542◦

East.

7.1.1.9 Schedule

In table 7.1 we give an overview of the plan for the measurement campaign. Observe

that by zero field, we mean that the Helmholtz coils generate a magnetic field that

cancels out the earth magnetic field.

-
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1. Deperm De-perm the mock-up to minimal permanent magnetization by

using the system of large coils.

2. Permstate I

(a) No background field / zero field

(b) Uniform background field in ux direction, intensity of 50µT

(c) Uniform background field in uy direction, intensity of 50µT

(d) Uniform background field in uz direction, intensity of 50µT

(e) No background field / zero field

Each item consists of 150 manual readings and a signature measurement using

the near field sensor array.

3. Perm The magnetic state of the mock-up is changed by a Perm proce-

dure.

4. Permstate II

(f) No background field / zero field

(g) Local background field at Bünsdorf

(h) Uniform background field in uz direction, intensity of 50µT

(i) Uniform background field in ux direction, intensity of 50µT

Each item consists of 150 manual readings and a signature measurement using

the near field sensor array.

Table 7.1: An overview of the measurement campaign plan. Items (a) – (i) indicate

the measurements done in the facility.
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7.2 Observations during the campaign

In this section we discuss three observations we made during the measurement cam-

paign in October 2015.

7.2.1 Inhomogeneity of the background field

We have observed that the magnetic field inside the facility is quite inhomogeneous.

When the coil systems were disabled, we used a mobile sensor to measure the mag-

netic field at five positions inside the facility (near the location where we measured

the M4). So only the local background field and possible stray fields were measured.

The values are given in table 7.2. The positions of the measurements are sketched in

figure 7.3. Here, we have marked the location of the M4 and the trolley by the dashed

lines. The mock-up was removed when we did the five measurements.

Bx (nT) By (nT) Bz (nT)

(1) 17418 2146 46555

(2) 17941 2665 46310

(3) 18148 2694 46136

(4) 17148 1887 46603

(5) 17426 860 46664

Table 7.2: Values of the background field, measured at different positions, as described

in figure 7.3.

(1) (4)

(3)(2)

(5)
North

East

South

West

⊗ Bx

By

Bz

orientation sensor

Figure 7.3: (left): Positions of measurements and direction of the local background

field at Bünsdorf. The origin of the global coordinate system is denoted by the red

dot. In gray: the trolley on which the mock-up is placed on. (right): The orientation

of the mobile sensor is sketched (right-hand side rule), so z is downwards.
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An explanation for the inhomogeneity of the magnetic field is that there are all kinds

of equipment and objects present in the hall. It is plausible that stray fields coming

from these objects are causing this inhomogeneity. In particular, when we did mea-

surements of the local earth field, the mock-up was placed at the end of the hall of

the facility (the hall is approximately 50 meters long). It is possible that the magnetic

field of the mock-up is sensed by the mobile sensor.

If we want to use the prediction model, we need to measure the magnetic field of the

mock-up. However, in practice, a mobile sensor measures the sum of all magnetic

contributions, say

Bmeasurement(r) = Bbackground(r) + BM4(r)

The inverse problem uses the data BM4(r) as input, so we need to find a way to

separate the two fields and retrieve the values BM4(r).

If the background field were uniform, the value of the background field could be used

to do a correction on the measured values. But we have seen that the background

field is not uniform. To resolve this issue, we propose that we can do a correction by

using the mean vector of the five measurements

B =
1

5

5∑
i=1

B(ri)

as shown in figure 7.3 (without the M4). By taking the mean of the five measurements,

we are confident that the correction is sufficient. Of course, if we want to do such a

correction, we have to know the background field in each measurement point. But in

practice this is not possible.

7.2.2 Manual measurements

The on-board measurements of each run are done manually, using the aluminum

frame and the attached mobile sensor. We kept the corner aluminium frame at some

lattice point of the white grid, shown in figure 7.2. The measurements of the mobile

sensor are shown on a display in the center of the hall inside the facility. We wrote

down the values of a single measurement in a spread sheet.

Doing a measurement in such a way is most likely inaccurate. We have to keep the

sensor at some fixed position manually. This is very hard without any construction, so

small variations in the position and the orientation of the sensor were clearly visible

on the screen. The variations in the values of the measurements are around 500nT.

Such variations can be problematic for the performance of the inverse problem. But

at this point, we do not have a good overview how these variations are distributed.

It is better to keep a sensor at some measurement point, hold it there for some time,

and use the mean of the measured values at that position as a measurement of the

field. In this way any noise in the measurement is minimized. Unfortunately, this was
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not possible in the facility. The data from the mobile sensor could not be exported

directly. For future measurements it is important to overcome this.

Apart from the variations in the measured values due to movement of the sensor, we

have seen that when the mobile sensor lies still, there was still some noise present

in the measured field. This is most likely due to the internal structure and noise in a

sensor, something that cannot be avoided. Luckily, regularization can deal with this

kind of noise.

7.2.2.1 Orientation of the sensor

A mobile sensor is used to measure the magnetic field inside the mock-up. We have

observed some odd behavior of this sensor.

We did the following experiment. We turned off the coil systems, so only the local

background field of Bünsdorf (and strayfields) are present. First, we orient the mobile

sensor as shown in figure 7.4. We wrote down the measured values of the local

background field, rotated the mobile sensor clockwise over 90◦ and measured again,

see figure 7.4. By rotating the sensor, the orientation of the sensor changes, and the

magnetic field is measured in a different way.

The values of the measurement in the two situations are given in table 7.3. What we

expected is that the field component By does not change if we go from situation I to

II, because the y-component is pointing in the same direction. Also, we expect that

the values of Bx and Bz are interchanged, with some extra minus signs. Remarkably,

this was not the case. The values of Bx and Bz are more or less consistent with the

orientation of the sensor. However, there is a difference of 1145 − (1955) = 3000nT

between the field components By. We do not know what causes this odd behavior.

Most probably it is caused by some internal malfunctioning of the sensor, for instance

by some magnetic material inside the sensor.

⊗Bz
By

Bx

I

⊗ Bx
By

Bz

II

rotate 90 degrees

Figure 7.4: Orientation of sensor (I) and the orientation of the rotated sensor (II).
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The observed behavior could be very problematic for our prediction model. Observe

that we moved the mobile sensor when we measured the field inside the mock-up.

We also changed its orientation now and then. The change of orientation therefore

influences the values of the measurement a lot. This may have consequences for the

performance of the prediction model.

Component I II

Bx (nT) 2595 49854

By (nT) −1955 1145

Bz (nT) −50029 2112

Table 7.3: Values of the field components in situation I and II.

7.3 Results

At the end of the measurement campaign we obtained a large data set of measure-

ments of magnetic signatures of the M4. To demonstrate the prediction model on real

measurement data, we present the results of the measurement in a specific case,

namely the measurements in the local background field at Bünsdorf. Recall that the

earth background field at Bünsdorf is given by Bx = 17575nT , By = 690nT and

Bz = 46500nT .

In figure 7.6 and figure 7.5 the magnetic signature of the M4 in the background field

at Bünsdorf is shown.

Figure 7.5: Intensity of the magnetic signature of the M4 at Bünsdorf.
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(a) Mean relative error.

(b) Mean relative error.

(c) Mean relative error.

Figure 7.6: Field components of the magnetic signature of the M4 at Bünsdorf.-
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7.3.1 Demonstration of the prediction model on the measurement data

We end this chapter with the demonstration of the prediction model, applied to the

measurements in the local background field at Bünsdorf. We partition the M4 by Mesh

I, and take 138 measurements of the magnetic field inside the mock-up.

The condition number of the matrix A in the discrete inverse problem is approxi-

mately cond(A) ∼ 105, which is relatively low. Due to noisy measurements inside the

mock-up (movement of the sensor and positioning errors), we use the SVD method in

combination with Tikhonov regularization (where L = I) to solve the inverse problem.

The source solutions are shown in figure ??. If we look at the source function g, we

see that the magnetic poles of the magnetisation of the M4 are at the top and bottom

of the mock-up. This indicates that the magnetic signature is shaped like a magnetic

dipole, pointing in the z-direction. This is what we expected to see, looking at the

measured magnetic signature at one meter below the mock-up, see figure 7.5.

The predicted magnetic signature components are shown in figure 7.9. If we compare

figure 7.9 with figure 7.6 we see that there is some agreement between the measured

signature and the predicted signature. In particular, we observe that the intensity

of both fields do not differ a lot. However the “location” of the predicted signature

and the magnetic signature does not agree. This can be explained because at the

measurement campaign we did not do an accurate measurement of the location of the

M4 with respect to the array of sensors. Therefore, there is a mismatch in locations.

Note that due some errors in the positioning of the mock-up with respect to the global

Figure 7.7: The L-curve that is used to choose the optimal regularization parameter in

Tikhonov regularization of the inverse problem.
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coordinate system, we cannot use the absolute error and relative error functions.

These functions would simply indicate that there is a complete mismatch between

the predicted signature and the real signature. This is however not true, as we have

observed.

Figure 7.8: The magnetic sources f g and h in the M4, computed by the inverse

problem.
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(a) Predicted signature component Bx.

(b) Predicted signature component By .

(c) Predicted signature component Bz .

Figure 7.9: Field components of the magnetic signature at Bünsdorf.
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8 Conclusion and Further Research

8.1 Results

In the introduction we defined five research goals:

• Determine a correct formulation of this prediction model.

• Analyze the inverse problem and study regularization methods.

• Use simulated data to investigate whether the model can predict accurately.

• Analyze the influence of noise in the measurement data with respect to the solu-

tions of the inverse problem.

• Apply the prediction model to real on-board measurement data.

In chapters 2-4 we have covered the first two research goals. We have determined

a formulation of a prediction model, under suitable assumptions. Furthermore, its

behavior and regularization methods have been studied. The correctness of the for-

mulation seems to be justified by numerical experiments. We are confident that the

proposed prediction model is able to predict the magnetic signature, based on on-

board measurements of the magnetic field.

8.1.1 Performance of the prediction model

In Chapter 7 we have investigated the performance and behavior of the prediction

model, based on simulations in COMSOL. We have seen that the prediction model per-

forms well with these simulations of a background field. For the uniform background

field Bb = 50 · 10−6uxT we have seen that the prediction model (in the absence of

noisy measurements) performs very good: the best performance was observed in the

numerical test where we neglected the double layer component in the forward and

inverse problem formulation. A maximum absolute error εmax of around 34nT and a

relative error in the range of [0.005, 0.042] was obtained. Relatively, this means that

the predicted signature is maximally 4 percent off. (In practice, a maximal percentage

of 10 percent is acceptable.) However, many on-board measurements (176 measure-

ments) are required to achieve these results.

8.1.2 Reducing the influence of noise in measurements on performance

We also investigated the effect of regularization when we used noisy measurements

in the prediction model. We defined a simple noise model and added this noise to the

on-board measurements of the signature. The noise vector e was modeled as White

Gaussian noise, where each of the entries ei were independently normally distributed.

As a reasonable value for σ we took the value

σ =
1

9

√
3 · 300 · 10−9T
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This variance is what we expect in practice. In the numerical tests we have seen that

regularization often leads to a good performance of the prediction model. When we

compare the predicted signatures without noisy measurement to those with noise,

we see that regularization reduces the influence of the ill-posedness of the problem

significantly.

Note that the proposed background fields were uniform. In practice, it may be the

case that a background field is not uniform, but has some strong local variations. It

remains a question whether the proposed prediction model performs well in such a

case. In practice, the field is reasonably uniform. However, the field is not static as the

ship moves in the earth’s magnetic field.

8.1.3 Demonstration of the prediction model on real measurement data

In Chapter 7 we have demonstrated the prediction model on real measurement data.

It was shown that the prediction of the magnetic signature is in some sense in agree-

ment with the measured magnetic signature. However, due to noisy measurements

in the M4 we argue that this is causing the mismatch between the predicted magnetic

signature and the measured magnetic signature. The prediction must be enhanced

in such a way that it can deal with such noisy measurements. This will be done in the

near future.
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8.2 Future research

At this point, we would like to present some new research directions and challenges

for the near future.

8.2.1 Bayesian interference and techniques from Bayesian statistics

In this report we solved the discrete inverse problem Ax = y + e deterministically, by

using an approximation of the best-approximate solution

x† = A†(y + e)

where e is some unknown noise vector. The solution is regularized using Tikhonov

regularization and we have seen that this choice lead to a good performance of the

prediction model, under the assumption that we knew how the noise was distributed.

However, in practice we do not have any access to such descriptions.

Another approach to solving the discrete inverse problem is to solve it in a stochas-

tic way. This can be done by formulating the discrete inverse problem in a so-called

Bayesian interference problem. In this Bayesian stastical framework, everything that

is unknown in a problem is considered as a random variable. In the discrete in-

verse problem Ax = y both x, y and noise vector e are considered unknown a-priori,

whereas A usually is known. The discrete inverse problem can be stochasticly ex-

tended to AX = Y + E where X, Y and E are random variables.

Solving the stochastic extension means that we look for a solution that is the most

probable, amongst all possible solutions. Suppose that we know the a-priori distribu-

tion of X and the distribution of E, where the probability density of E is given by π,

and that the random variables X and Y are independent. Then, using Bayes formula

π(x|y) =
π(y|x)πprior(x)

π(y)

we can derive the so-called a posteriori density of X

π(x|y) =
π(y|x)πprior(x)

π(y)
, y = yobserved

In the Bayesian statistical framework, the a posteriori solution X is the solution of the

inverse problem Ax = y. It can be shown that (under suitable conditions) the most

probable solution, also called the Maximum A Posteriori (MAP) estimator, given by

xMAP = arg maxπ(x|y)

corresponds with the least-squares solution of the system Ax = y + e.

Several techniques in the Bayesian statistic framework are known to improve the in-

verse solution by means of statistical preconditioners and prior-densities. This means

that we can improve the performance of the prediction model, if we are able to give

an accurate description of the solution x that we seek. For example, the physics that
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the solution (should) satisfy can be used in formulating an a-priori distribution of X.

Notice the similarity between these a-priori distributions and the notion of Tikhonov

regularization. In fact, one can show that, in this Bayesian statistical framework, these

two notions are the same.

Lastly, the notion of Bayesian learning sounds promising as an enhancement of the

prediction model. For an introduction to Bayesian statistics, we refer to [2].

8.2.2 Advanced regularization methods

As already noted, the notion of prior densities in the Bayesian framework is closely

related to Tikhonov regularization. In this project we look at Tikhonov regularization

to regularize solutions of the inverse problem. As we have shown in section 4.4, a

Tikhonov regularized solution solves the minimization problem

xλ = arg min{‖Ax− b‖22 + λ2‖x‖2}

where the parameter λ is chosen in such a way that there is a nice balance between

minimizing the residual r = ‖Ax − b‖2 and the norm of the vector ‖x‖2. We also

discussed that the general form of Tikhonov regularization is given by

xλ = arg min{‖Ax− b‖22 + λ2‖Lx‖2}

where L is a matrix that contains a-priori information about the inverse solutions. In

this project we took L = I, indicating that we try to limit the norm of the inverse

solutions that we seek. However, by using more advanced information about the so-

lutions, we may improve the performance of the prediction model. For instance, one

could impose a smoothnes conditions on the inverse solution. Imposing the existence

of a first order derivative can be described by the derivative operator

L1 =


−1 1

. . . . . .

−1 1


and a second order derivative is described by

L1 =


1 −2 1

. . . . . . . . .

1 −2 1


Besides smoothness conditions one could think of other properties that the inverse

solutions should satisfy. The absence of any magnetic monopoles, which is formu-

lated in Gauss’ law (∇ · B = 0) leads to the observation that, when we sum up all

magnetic sources, the net charge should vanish. For the magnetic source solutions

f, g and h this implies that
x

Ω

f(r′)dr +
x

Ω

h(r′)dr +

∫
∂Ω

g(r′)dr = 0
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Using a discretization of the object Ω leads to the following description for the un-

known vector p

Rp = 0

Other regularization methods could prove to be useful as well.

8.2.3 Inhomogeneity of the background field

In the application of the prediction model (and inverse model), we assumed that the

magnetic field in the sensor positions was available. In practice, a measurement con-

sists of the total field of all contributions to the magnetic field, i.e. the combination of

the earths background field, the magnetic field of a naval vessel and noise. The sep-

aration of the magnetic field and the other magnetic fields is impossible on a moving

vessel. Therefore, the prediction model should be adjusted in such a way that it takes

into account this observation.

For instance, the prediction model could be modified in such a way that it “knows” that

in each of the on-board measurements, there is some constant value Bconstant. This

constant value should then in turn be present in the predicted magnetic signature as

well. At this point it is unclear if this can be modeled into the PDE (see eq 2.1) directly.

8.2.4 Use of sensors in magnetic signature monitoring

As we have observed in the measurement campaign, the use of sensors as source for

input in the prediction model should be approached with caution. We have seen that

small angle changes in the orientation of the sensor have large effects in the actual

measurements. We observed that such deviations are in the order of a few 100nT .

On a naval vessel, the movement of a naval vessel induces such changes in the orien-

tation of on-board sensors and therefore these effects are critical for the performance

of the prediction model.

8.2.5 The magnetic field measured in closed spaces

In the inverse formulation, we use an on-board measurement of the magnetic signa-

ture to determine the magnetic sources in the steel. We use the distance between the

sensor position and the steel (involved in the geometry) to determine the influence of

the magnetization in that steel on the measured field in the sensor. If the distance is

large, the magnetic sources in the steel are small.

However, in closed spaces, it could be the case that a measurement by a magnetic

sensor cannot be used to predict the magnetic sources in all steel plates, but only in

some subset. Namely, those steel plates that enclose the space.

It is known that the magnetic field is captured in steel boxes. If this behavior is also

present in practice, we should adjust the prediction model. To each on-board mea-
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surement, a subset of the geometry should be associated that supports the magnetic

sources.

8.2.6 Reducing the number of measurements

In the present prediction model, we need a lot of measurements at sensor positions

to compute an accurate prediction of the magnetic signature. However, in practice,

we only have a very limited number of magnetic sensors at our disposal (say, around

twenty sensors) because magnetic sensors are expensive. To achieve a good predic-

tion of the magnetic signature, additional information about the magnetic signature

should be added to the prediction model to achieve a reduction of the number of

measurements.

8.2.7 Reducing the complexity of the geometry

The geometry of an actual naval vessel like a frigate is very complex. If we wish to

use the geometry in the prediction model, it is of the essence to investigate in what

way we can reduce the complexity of the geometry of the ship.

For instance, we can ask ourselves whether it is necessary to model all the steel

contributions in the vessel (like engines, and weaponry). Observe that a naval ship

also acts like a magnetic shield: it keeps the magnetic sources inside the vessel.

Therefore, one could argue that some of the magnetic sources inside are not visible

from the outside, and therefore a reduction of the complexity of the geometry can be

made.

8.2.8 Double layer component

In section 6.4 we discussed whether the double layer component in our prediction

model can be neglected. We compared our predictions with the COMSOL signatures

and we observed that the performance of the prediction model increases significantly

if we neglect the double layer component. However, we noticed that the formulation

of the static magnetic field in COMSOL also neglects a normal component of the field.

Therefore, based on COMSOL simulations, we cannot conclude whether this term can

be neglected or not.

An experiment should be invented to clarify if this is really the case. One could think

of taking a single steel plate with a small thickness (around 4mm) and see how the

magnetization varies in different background fields. In particular one should consider

a background field that is perpendicular to the steel plate and see how strong the in-

duced magnetic field is, compared to the induced magnetic field by some background

field that is oriented tangential to the place.
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A Tables

(See next page.)
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Mesh εmax [nT] τmin τmax

So
lv

er
:S

V
D

I 7408 0.170 5.407

II 8246 0.510 8.340

III - - -

IV - - -

V - - -

VI - - -

Mesh εmax [nT] τmin τmax

So
lv

er
:S

V
D

+T
ik

h. I 232 0.005 0.108

II 162 0.013 0.114

III 173 0.007 0.091

IV 88 0.004 0.082

V 124 0.007 0.088

VI 161 0.024 0.106

Mesh εmax [nT] τmin τmax

So
lv

er
:Q

R

I 7397 0.169 5.376

II 8159 0.540 8.290

III - - -

IV - - -

V - - -

VI - - -

Mesh εmax [nT] τmin τmax

So
lv

er
:C

G
L

S

I 208 0.004 0.097

II 176 0.012 0.103

III 152 0.009 0.093

IV 71 0.003 0.054

V 126 0.007 0.088

VI 150 0.007 0.087

Table A.1: Results based on 176 measurements inside the M4 for four different meth-

ods. The iterative method CGLS and the application of Tikhonov Regularization in

the SVD solver both lead to good predictions of the magnetic signature for this sensor

configuration.
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n σn 〈be,ui〉 〈be,ui〉/σi
1 1.05e-08 -9.65e-06 -9.18e+02

2 8.89e-09 -3.09e-05 -3.48e+03

3 8.44e-09 2.73e-06 3.23e+02

4 8.16e-09 -1.02e-06 -1.24e+02

5 7.45e-09 8.89e-07 1.19e+02

6 7.13e-09 2.31e-07 3.24e+01

7 6.85e-09 4.32e-06 6.30e+02

8 6.55e-09 2.72e-06 4.16e+02

9 6.40e-09 2.89e-06 4.52e+02

491 1.47e-13 -9.34e-09 -6.35e+04

492 1.44e-13 -4.12e-09 -2.85e+04

493 1.37e-13 1.32e-09 9.64e+03

494 1.26e-13 1.57e-08 1.25e+05

495 1.20e-13 3.56e-09 2.97e+04

496 1.13e-13 1.00e-08 8.86e+04

497 1.07e-13 -1.06e-08 -9.95e+04

498 1.00e-13 -4.62e-09 -4.61e+04

518 1.08e-14 -2.64e-09 -2.44e+05

519 1.04e-14 -2.12e-09 -2.03e+05

520 8.41e-15 -3.73e-09 -4.43e+05

521 5.65e-15 2.36e-09 4.19e+05

522 4.93e-15 -2.57e-09 -5.20e+05

523 6.29e-25 7.78e-21 1.24e+04

524 6.29e-25 5.93e-21 9.43e+03

525 6.29e-25 -3.28e-21 -5.22e+03

526 6.29e-25 2.12e-22 3.37e+02

527 6.29e-25 1.91e-21 3.03e+03

528 6.29e-25 1.28e-20 2.04e+04

Table A.2: Selection of the singular values and the corresponding SVD components

of the inverse problem. Mesh VI has been used and 176 measurements of the field to

set up the inverse problem. The first column shows the singular values, in decreasing

order. The second column are the corresponding SVD components.

-



Appendix A 4/-116 - TNO report -

-



- TNO report - Appendix B 1/-120

B Fundamental Solution of the Laplace Equation

B.1 Introduction

Consider the general Laplace’s equation in Rn given by

∆u = 0, x ∈ R3

where ∆ is defined as the Laplacian operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

Any function satisfying this equation is called harmonic. It is easy to see that many

functions satisfy this condition: every constant and linear function automatically satis-

fies this condition due to the vanishing character under taking the derivative twice.

In this appendix we derive the fundamental solution Φ that satisfies

∆Φ = δ0

The fundamental solution serves as a building block for the non-homogeneous ver-

sion of the Laplace’s equation called the Poisson’s equation

∆u = f, x ∈ R3

Here, f ∈ C2
c (R3) is a twice continuous differentiable function with compact support,

i.e., the set

{x ∈ Rn : f(x) 6= 0}

has compact closure. One can prove that, under the above assumptions, the solu-

tion of this partial differential equation is given by the convolution of the fundamental

solution Φ with f :

v(x) ≡
∫
Rn

Φ(x− y)f(y)dy

Given the symmetric behavior of the Laplace’s equation, we are looking for solutions

that exhibit this property. Therefore we are looking for a radial solution, i.e., a harmonic

function on R3 such that u(x) = v(|x|) (symmetric in |x|).

B.2 Computation of the fundamental solution

We start by transforming the PDE into an ODE in the following way. Observe that

whenever |x| 6= 0 then

uxi :=
∂u

∂xi
=

xi
|x|
v′(|x|)

-
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for each i = 1, 2, 3. Taking the second derivatives then leads to (for |x| 6= 0)

uxixi
=

1

|x|
v′(|x|)− x2

i

|x|3
v′(|x|) +

x2
i

|x|2
v′′(|x|)

Substitution of these expressions for uxixi
into the Laplace operator ∆ leads to the

following simple form:

∆u =
2

|x|
v′(|x|) + v′′(|x|)

Because we are looking for a radial function we set r = |x|. So a radial solution v

satisfies Laplace’s equation if and only if it satisfies the following ordinary differential

equation:
2

r
v′(r) + v′′(r) = 0

Solving leads to the following expression for v:

v(r) =
A

r
+B, so v(x) =

A

|x|
+B

where A and B are any real constants. The constant B is set to be zero, as the

potential vanishes at infinity. Now let BR(0) be the sphere of radius R centered at the

origin. Then

1 =
y

BR(0)

∆ v(x)dx =
x

∂BR(0)

∇ v(x) · dS = 4πR2 ∂v

∂r

∣∣∣∣
r=R

= −4πA

Taking A = 1
4π leads to the following fundamental solution for the Laplace equation in

three dimensions:

Φ(x) = − 1

4π

1

|x|

-
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C Double layer potential

In this appendix we discuss a classical result in the field of potential theory. For steel

object we assume that the magnetization is tangential to the surface of the object.

This assumptions works fine when solving the “forward problem” for steel thin shells,

i.e., given some background field Hb determine the reduced magnetic field caused by

the induced magnetization in S. This assumption can be found in many engineering

applications and is called magnetic shielding.

However, in reality a magnetization of a steel thin shell is not entirely tangential to the

shell even though the thickness of the shell is small; there exists some orthogonal

component M⊥ := M · n′ (where n′) is the normal vector to the surface S. This

component also induces a potential that is called a double layer potential.

From potential theory we can derive an expression that can describe these contribu-

tions in terms of a scalar magnetic source density distribution on the surface of the

thin shell. This is done in the first section of this appendix. Then, we apply a Sym-

metric Gaussian Quadrature rule to derive an expression of the magnetic induction

field caused by this double layer potential. We end with a physical interpretation of

the double layer potential.

C.1 Further derivation of the potential expression of the Poisson problem

As described in Chapter 4 the forward problem consists of solving Poisson’s problem

∆ϕ = ∇ ·M

where ∇·M can be interpret as the source of the potential ϕ. Let us consider for now

the Poisson problem for some single steel plate Ω with dimensions l, w and t (where

t is relatively small compared to the length and width of the plate) and let M be some

magnetization of Ω. We place the steel plate in such a way that the centroid of the

plate coincide with the origin of the (x, y, z)−system, where z is pointing upwards.

The analytical solution of this problem can be formulated in terms of a fundamental

solution ([16], page 176-177):

ϕ(r) =
−1

4π

y

Ω

1

|r− r′|
∇ ·M(r′)dr′︸ ︷︷ ︸

(1a)

+
1

4π

x

∂Ω

1

|r− r′|
n′ ·M(r′)dr′︸ ︷︷ ︸

(1b)

(1)

Here, the normal vector n′ is pointing outwards, (1a) is the potential caused by the

divergence of M in the interior of the plate that represents magnetic anomalies in the

-
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plate. The second term (1b) is the effective magnetic surface charge σM = n′ ·M
at the surface of the plate. This surface charge exists as the magnetization suddenly

vanishes outside the plate (note that the magnetization is zero outside the plate!).

Therefore, there is a discontinuity of the magnetization at the surface of the plate,

that creates σM.

We take a look at (1b). Define the sets (see figure C.1)

∂Ω1 =
{
v ∈ Ω : [v]z = ± t

2

}
= ∂Ω+

1 ∪ ∂Ω−1

∂Ω2 =
{
v ∈ Ω : [v]x = ± l

2
∨ [v]y = ±w

2

}
By splitting the boundary of the plate into the two regions ∂Ω1 and ∂Ω2 we write (1b)

as

(1b) :=
1

4π

x

∂Ω1

1

|r− r′|
n′ ·M(r′)dr′︸ ︷︷ ︸

(2a)

+
1

4π

x

∂Ω2

1

|r− r′|
n′ ·M(r′)dr′︸ ︷︷ ︸

(2b)

(2)

Let Ω′ be the two-dimensional projection of Ω onto the (x, y)-plane (a rectangular

domain in the (x, y)-plane of dimensions l and w as seen in figure C.2) with a one-

dimensional boundary ∂Ω′. We assume that the magnetization is uniform in t. Then

(2b) is simplified to

(2b) :=
t

4π

∫
∂Ω′

1

|r− r′|
n′ ·M(r′)dr′

On the boundary ∂Ω1 it holds that

(n′ ·M)(z′ = −t/2) = −(n′ ·M)(z′ = t/2)

(so the magnetic surface charge is equal up to a sign). Define Mz = n′ ·M on ∂Ω1.

Then

1

4π

x

∂Ω1

1

|r− r′|
n′ ·M(r′)dr′ =

1

4π

x

∂Ω+
1

Mz(x
′, y′)

|r− r′(z′ = t
2 )|

dr′ +
1

4π

x

∂Ω−1

−Mz(x
′, y′)

|r− r′(z′ = − t
2 )|

dr′

=
1

4π

x

Ω′

Mz(x
′, y′) ·

[
1

|r− r′(z′ = t
2 )|
− 1

|r− r′(z′ = − t
2 )|

]
dx′dy′

∂Ω−1

∂Ω+
1

z = − t
2 ∂Ω2

z = t
2

n′

Figure C.1: Boundaries ∂Ω1 and ∂Ω2 of the plate.
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Observe as t is small[
1

|r− r′(z′ = t
2 )|
− 1

|r− r′(z′ = − t
2 )|

]
≈ t ∂

∂ν′

(
1

|r− r′|

)
where

∂

∂ν′
:= n · ∇′

Bringing all the pieces together leads to the following expressions for the potential ϕ

ϕ(r) = − t

4π

x

Ω′

1

|r− r′|
(∇ ·M)(r′)dr′ +

t

4π

x

∂Ω′

1

|r− r′|
n′ ·M(r′)dr′

+
t

4π

x

Ω′

∂

∂ν′

(
1

|r− r′|

)
(n′ ·M)(r′)dr′

The potential consists of a term that represents the tangential component of the po-

tential (along Ω) and a perpendicular component to Ω. The perpendicular component

is called a double layer potential. We write for the tangential component

ϕ‖(r) =
t

4π

x

Ω′

1

|r− r′|
(∇ ·M)(r′)dr′ +

t

4π

x

∂Ω′

1

|r− r′|
n′ ·M(r′)dr′

and for the double layer potential we have

ϕ⊥(r) =
t

4π

x

Ω′

∂

∂ν′

(
1

|r− r′|

)
(n′ ·M)(r′)dr′

x

y

l
2− l

2

−w
2

w
2Ω′

Figure C.2: The projection of Ω onto the x, y-axis leads to a two-dimensional plate

with an one-dimensional boundary.

C.2 Approximation of the double layer expression for B⊥

In the previous section we obtained an expression for the double layer potential:

ϕ⊥(r) =
t

4π

x

Ω′

∂

∂ν′

(
1

|r− r′|

)
(n′ ·M)(r′)dr′

The magnetic induction field B⊥ that is induced by this potential is given by

B⊥(r) =
µ0t

4π

x

Ω′

∂

∂ν′

(
r− r′

|r− r′|3

)
σ(r′)dr′

-
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Here we have used the constitutive relation B = µ0H = µ0∇ϕ, which is true outside

the object Ω. Note that

∂

∂ν′
≡ n′ · ∇′ = nx′

∂

∂x′
+ ny′

∂

∂y′
+ nz′

∂

∂z′
, at some point r′ ∈ Ω′

where n′ = (nx′ , ny′ , nz′)
T is depending on r′. So the magnetic induction field B⊥

can be written as

B⊥(r) =
µ0t

4π

x

Ω′

[
nx′

∂

∂x′
+ ny′

∂

∂y′
+ nz′

∂

∂z′

](
r− r′

|r− r′|3

)
σ(r′)dr′

=
µ0t

4π

x

Ω′

nx′
∂

∂x′

(
r− r′

|r− r′|3

)
σ(r′)dr′ +

µ0t

4π

x

Ω′

ny′
∂

∂y′

(
r− r′

|r− r′|3

)
σ(r′)dr′

+
µ0t

4π

x

Ω′

nz′
∂

∂z′

(
r− r′

|r− r′|3

)
σ(r′)dr′

≡ B⊥x + B⊥y + B⊥z

For each of the component B⊥x ,B⊥y and B⊥z we derive an expression. First we start

by simplifying the expression for B⊥x . A direct computation shows that

∂

∂x′

(
r− r′

|r− r′|3

)
=

−1

|r− r′|3
e1 +

∂

∂x′

(
1

|r− r′|3

)
(r− r′)

=
−1

|r− r′|3
e1 + 3

x− x′

|r− r′|5
(r− r′)

Hence we can rewrite B⊥x as

B⊥x (r) =
µ0t

4π

x

Ω′

nx′
−1

|r− r′|3
e1σ(r′)dr′ +

3µ0t

4π

x

Ω′

nx′(x− x′)
r− r′

|r− r′|5
σ(r′)dr′

Similar, for B⊥y and B⊥z we have

B⊥y (r) =
µ0t

4π

x

Ω′

ny′
−1

|r− r′|3
e2σ(r′)dr′ +

3µ0t

4π

x

Ω′

ny′(y − y′)
r− r′

|r− r′|5
σ(r′)dr′

B⊥z (r) =
µ0t

4π

x

Ω′

nz′
−1

|r− r′|3
e3σ(r′)dr′ +

3µ0t

4π

x

Ω′

nz′(z − z′)
r− r′

|r− r′|5
σ(r′)dr′

The expression of the magnetic induction field B⊥ can now be simplified to the fol-

lowing form:

B⊥(r) = −µ0t

4π

x

Ω′

n(r′)

|r− r′|3
σ(r′)dr′ +

3µ0t

4π

x

Ω′

n(r′) · (r− r′)
r− r′

|r− r′|5
σ(r′)dr′

Now we mesh the surface Ω′ into triangular elements (ei)
T
i=1. On each triangular

element ei we have that n is a constant vector. So

B⊥(r) = −µ0t

4π

T∑
i=1

ni
x

ei

1

|r− r′|3
σ(r′)dr′ +

3µ0t

4π

T∑
i=1

x

ei

ni · (r− r′)
r− r′

|r− r′|5
σ(r′)dr′

On each of the integrals we can approximate the value of the integral by applying a

symmetrical quadrature rule for triangles. In general we have the following approxi-
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mation of the B⊥-field:

B⊥(r) ≈ −µ0t

4π

T∑
i=1

(
|ei|

ng∑
k=1

wk
1

|r− r′(sk, tk)|3
σ(r′(sk, tk))

)
ni

+
3µ0t

4π

T∑
i=1

|ei|
ng∑
k=1

wkni · (r− r′(sk, tk))
r− r′(sk, tk)

|r− r′(sk, tk)|5
σ(r′(sk, tk))

C.3 Interpretation of the double layer potential

Consider a single plate Ω with thickness t > 0. Such a steel plate has two parallel

surfaces S1 and S2. For given surface S1 the second surface S2 is described by

S2 = {y + tν(y) : y ∈ S1}

where ν(y) is the normal vector in the point y ∈ S1 that points towards the surface S2.

For now, we only consider these two surfaces as two disconnected objects and not

as part of the steel plate.

Suppose we have a magnetic charge distribution on the surface S1 in R3 such that

the magnetic charge distribution is given by
σ

t
. Furthermore, suppose that a mag-

netic charge distribution on the surface S2 is given by −σ
t

. See also figure C.3. The

magnetic field H⊥ at point r ∈ R3 generated by these magnetic charges (the jumps

in the magnetic charges give rise to such a potential) is given by H⊥ = −∇ϕ⊥, where

ϕ⊥ is the associated potential which is given by the following description:

ϕ⊥(r) = − 1

4π

x

S1

[
1

|r− (r′ + tν′(r′))|
− 1

|r− r′|

]
σ(r′)

t
dr′

For the limit t ↓ 0 we have that[
1

|r− (r′ + tν′(r′))|
− 1

|r− r′|

]
1

t
→ ∂

∂ν′

(
1

|r− r′|

)

So for thin plates the magnetic surface charge σ of some surface S induces some

magnetic field H⊥ which is generated by the potential ϕ⊥ given by

ϕ⊥(r) = − 1

4π

x

S

∂

∂ν′

(
1

|r− r′|

)
σ(r′)dr′

ρ1 =
σ

t

ρ2 = −σ
t

S1

S2

t

Figure C.3: Two parallel surface S1 and S2 with magnetic charge densities ρ1 and ρ2.
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D Quadrature Rules

In this appendix we define the quadrature rules that are used in the derivation of the

linear inverse problem. Furthermore the quadrature rules are used in the approxima-

tion of the analytical expression of the solution in the forward problem. The first two

sections consist of derivations of the quadrature rules for generic triangular elements

and line boundary elements. The third section consist of tables of specific quadrature

rules used in the implementation of the inverse and forward problem.

D.1 Quadrature rules for generic triangular elements

Let e be a triangular element in R3 with nodal points v1,v2 and v3. For further sym-

bolic manipulations we write vi = (xi, yi, zi)
T for i = 1, 2 and 3. We derive a quadra-

ture rule for the integral
x

e

f(r)dr

where f is any vector-valued function f : R3 → R3 defined on e. To derive such a

quadrature rule we will use the known symmetric Gaussian quadrature rules defined

on the reference triangle Tr in R2. (Here, the reference triangle Tr is the triangle in R2

with nodal points (0, 0), (1, 0) and (0, 1).) These rules can for example be found in [6].

See figure D.1.

x
y

z

s

t

r

(x1, y1, z1)
(x2, y2, z2)

(x3, y3, z3)

(0, 0) (1, 0)

(0, 1)

Tr

Figure D.1: Triangle transformation

We start by defining a suitable transformation that transforms the above surface inte-

gral into a surface integral over two dimensional triangular surface Tr. More specific,

let r : Tr → e be the transformation that sends point (s, t) ∈ R2 to point r ∈ R3:

r(s, t) =


x1 + (x2 − x1)s+ (x3 − x1)t

y1 + (y2 − y1)s+ (y3 − y1)t

z1 + (z2 − z1)s+ (z3 − z1)t

 = v1 + (v2 − v1)s+ (v3 − v1)t

-
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Observe that r is bijective and continuous differentiable. Using that

Xs =
∂r

∂s
= v2 − v1, Xt =

∂r

∂t
= v3 − v1

we can derive the following integral transformation:

x

e

f(r)dr =
x

Tr

f(r(s, t))|Xs ×Xt|d(s, t)

= 2|e|
x

Tr

f(r(s, t))d(s, t)

where |e| is the area of e and

|e| = 1

2
‖Xs ×Xt‖ =

1

2
‖(v2 − v1)× (v3 − v1)‖

Now using a symmetric n-point Gaussian quadrature rule on this reference triangle

Tr yields the following approximation of the surface integral:

x

e

f(r)dr = 2|e|
x

Tr

f(r(s, t))d(s, t)

≈ |e|
Ng∑
i=1

wif(r(si, ti))

D.1.1 Choice of quadrature rule

In tables D.1 and D.2 one can find the particular symmetrical quadrature rule applied

to the standard triangle that we have used in the implementation. This quadrature

rule can be found in [6]. To avoid issues with respect to accuracy of the quadrature

rule, we choose this slighty high-order quadrature rule. We choose the symmetrical

quadrature rule where Ng = 61 and p = 17, see [6, page 1142].

-
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D.2 Quadrature rule for line integrals over generic boundary elements

In a similar way we can define a quadrature rule for the line integral∫
be

f(r)dr

where be is a boundary line-element in R3 and f is any vector-valued function f :

R3 → R3 defined on be. To derive such a quadrature rule we will use the known

line quadrature rules which are defined on the interval [−1, 1], which we will call the

reference interval. First we define the affine transformation r : [−1, 1]→ be by

r(ξ) =


1
2 (x1 + x2) + ξ

2 (x2 − x1)

1
2 (y1 + y2) + ξ

2 (y2 − y1)

1
2 (z1 + z2) + ξ

2 (z2 − z1)

 =
1

2
(v1 + v2) +

ξ

2
(v2 − v1)

Observe that r(−1) = v1 and r(1) = v2. Using the fact that
∣∣∣drdξ

∣∣∣ = 1
2 |be| where |be| is

the length of the boundary element be, we have the following integral transformation

∫
be

f(r)dr =

∫ 1

−1

f(r(ξ))

∣∣∣∣drdξ

∣∣∣∣ dξ
=
|be|
2

∫ 1

−1

f(r(ξ))dξ

Applying an n-point line quadrature rule leads to the following approximation of the

integral ∫
be

f(r)dr =
|be|
2

∫ 1

−1

f(r(ξ))dξ

≈ |be|
2

n∑
i=1

wif(r(ξi))

In table D.3 one can find the particular weights wi and abscissa xi that are used in

the implementation in MATLAB. These linear quadrature rules can be found in most

of the literature about quadrature rules.

D.3 Tables of the quadrature rules

(see next page)
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wi si ti

0.033437199 0.333333333 0.333333333

0.005093415 0.005658919 0.497170541

0.005093415 0.497170541 0.005658919

0.005093415 0.497170541 0.497170541

0.014670865 0.035647355 0.482176323

0.014670865 0.482176323 0.035647355

0.014670865 0.482176323 0.482176323

0.024350878 0.099520062 0.450239969

0.024350878 0.450239969 0.099520062

0.024350878 0.450239969 0.450239969

0.031107551 0.199467521 0.400266239

0.031107551 0.400266239 0.199467521

0.031107551 0.400266239 0.400266239

0.031257111 0.495717464 0.252141268

0.031257111 0.252141268 0.495717464

0.031257111 0.252141268 0.252141268

0.024815654 0.675905991 0.162047005

0.024815654 0.162047005 0.675905991

0.024815654 0.162047005 0.162047005

0.014056073 0.848248235 0.075875883

0.014056073 0.075875883 0.848248235

0.014056073 0.075875883 0.075875883

0.003194676 0.968690546 0.015654727

0.003194676 0.015654727 0.968690546

0.003194676 0.015654727 0.015654727

Table D.1: Symmetrical Quadrature Rule for a triangle, part 1

-
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wi si ti

0.008119655 0.010186929 0.334319867

0.008119655 0.010186929 0.655493204

0.008119655 0.334319867 0.010186929

0.008119655 0.334319867 0.655493204

0.008119655 0.655493204 0.010186929

0.008119655 0.655493204 0.334319867

0.026805742 0.135440872 0.292221538

0.026805742 0.135440872 0.572337591

0.026805742 0.292221538 0.135440872

0.026805742 0.292221538 0.572337591

0.026805742 0.572337591 0.135440872

0.026805742 0.572337591 0.292221538

0.018459993 0.054423924 0.319574885

0.018459993 0.054423924 0.62600119

0.018459993 0.319574885 0.054423924

0.018459993 0.319574885 0.62600119

0.018459993 0.62600119 0.054423924

0.018459993 0.62600119 0.319574885

0.008476869 0.012868561 0.190704224

0.008476869 0.012868561 0.796427215

0.008476869 0.190704224 0.012868561

0.008476869 0.190704224 0.796427215

0.008476869 0.796427215 0.012868561

0.008476869 0.796427215 0.190704224

0.018292797 0.067165782 0.180483212

0.018292797 0.067165782 0.752351006

0.018292797 0.180483212 0.067165782

0.018292797 0.180483212 0.752351006

0.018292797 0.752351006 0.067165782

0.018292797 0.752351006 0.180483212

0.006665632 0.014663182 0.080711314

0.006665632 0.014663182 0.904625504

0.006665632 0.080711314 0.014663182

0.006665632 0.080711314 0.904625504

0.006665632 0.904625504 0.014663182

0.006665632 0.904625504 0.080711314

Table D.2: Symmetrical Quadrature Rule for a triangle, cont’d
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wi xi

0.0937684461602100 0.0000000000000000

0.0933564260655961 -0.0936310658547334

0.0933564260655961 0.0936310658547334

0.0921239866433168 -0.1864392988279916

0.0921239866433168 0.1864392988279916

0.0900819586606386 -0.2776090971524970

0.0900819586606386 0.2776090971524970

0.0872482876188443 -0.3663392577480734

0.0872482876188443 0.3663392577480734

0.0836478760670387 -0.4518500172724507

0.0836478760670387 0.4518500172724507

0.0793123647948867 -0.5333899047863476

0.0793123647948867 0.5333899047863476

0.0742798548439541 -0.6102423458363790

0.0742798548439541 0.6102423458363790

0.0685945728186567 -0.6817319599697428

0.0685945728186567 0.6817319599697428

0.0623064825303175 -0.7472304964495622

0.0623064825303175 0.7472304964495622

0.0554708466316636 -0.8061623562741665

0.0554708466316636 0.8061623562741665

0.0481477428187117 -0.8580096526765041

0.0481477428187117 0.8580096526765041

0.0404015413316696 -0.9023167677434336

0.0404015413316696 0.9023167677434336

0.0323003586323290 -0.9386943726111684

0.0323003586323290 0.9386943726111684

0.0239155481017495 -0.9668229096899927

0.0239155481017495 0.9668229096899927

0.0153217015129347 -0.9864557262306425

0.0153217015129347 0.9864557262306425

0.0066062278475874 -0.9974246942464552

0.0066062278475874 0.9974246942464552

Table D.3: The 33-point linear quadrature rule.
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E Expression of the magnetic field for uniform

magnetized steel plates

The validation of the implementation of the forward problem is problematic because

no closed form of the (total) magnetic induction field was known for any magnetiza-

tion to the author. To come up with some validation we derive a closed form of the

magnetic induction field, induced by a homogenous magnetization along the length of

the plate. A similar computation can be made for homogenous magnetization along

the width of the plate, so that for any uniform magnetization of the plate an closed

form expression can be derived. This is for our validation not necessary so we omit

that derivation.

A steel plate P of length L, width W and thickness T is placed in a x, y, z−coordinate

system such that the barycenter of P coincides with the origin. Assuming that T �
L, T � W we say that we consider a thin steel plate in the {z = 0} plane. Let the

surface of this thin steel plate be denoted by S. See figure E.1. The edges of the plate

are labeled with L1, L2, R1 and R2. Furthermore let

r1 =


− l

2

−w2
0

 , r2 =


− l

2

w
2

0

 , r3 =


l
2

−w2
0

 ,v4 =


l
2

w
2

0


Assume that the plate is magnetized and that the magnetization of the plate is uniform

in z so that we only have to describe the magnetization on S. Let the magnetization

on S be given by M = Mu in the plate P where

Mu = Mxux

is a uniform magnetization of the plate (here ux is an unit vector). The magnetic

induction field B is given by the following expression analytical expression (where

two terms of the expression of B vanishes due to the absence of ∇ ·M and n ·
M = 0 for normal vectors n defined on the surface S; there is no component of the

magnetization M in the z-direction.)

B(r) = −µ0T

4π

∮
∂S

r− r′

|r− r′|3
(−n) ·M(r′)dr′

We have derived that for a uniform magnetization the divergence of M vanishes in

the interior of the plate and n ·M is constant along the edges of the plate. In particular

-
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x

y

l
2− l

2

−w
2

w
2

L2L1

R1

R2

S

Figure E.1: A steel plate

we have that

n ·M = 0 on R1 ∪R2, n ·M = −Mx on L1, n ·M = Mx on L2

B(r) = −µ0T

4π

∫
δS

r− r′

|r− r′|3
(−n) ·M(r′)dr′

= −µ0T

4π

[∫
L1

r− r′

|r− r′|3
(−n) ·M(r′)dr′ +

∫
L2

r− r′

|r− r′|3
(−n) ·M(r′)dr′

+

∫
R1

r− r′

|r− r′|3
(−n) ·M(r′)dr′ +

∫
R2

r− r′

|r− r′|3
(−n) ·M(r′)dr′

]
= −µ0T

4π

[∫
L1

r− r′

|r− r′|3
(−n) ·M(r′)dr′ +

∫
L2

r− r′

|r− r′|3
(−n) ·M(r′)dr′

]
We will compute each of the integrals above by appropriate transforms discussed in

the previous section. On the edges L1 and L2 we use the following transformations

r′1(t) =


−L2
W
2 t

0

 , t ∈ [−1, 1] and r′2(t) =


L
2

W
2 t

0

 , t ∈ [−1, 1]

respectively. Applying these transformations leads to the following computation:

B(r) = −µ0TMx

4π

[∫
L1

r− r′

|r− r′|3
dr′ −

∫
L2

r− r′

|r− r′|3
dr′
]

= −µ0WTMx

8π

[∫ 1

−1

r− r′1(t)

|r− r′1(t)|3
dt−

∫ 1

−1

r− r′2(t)

|r− r′2(t)|3
dt

]

We will now consider each component of B(r) to derive further simplifications. Further

-
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derivation leads to:

Bx(r) = −µ0WTMx

8π

[∫ 1

−1

x+ L
2

|r− r′1(t)|3
dt−

∫ 1

−1

x− L
2

|r− r′2(t)|3
dt

]

= −µ0WTMx

8π

[
(x+

L

2
)

∫ 1

−1

1

|r− r′1(t)|3
dt− (x− L

2
)

∫ 1

−1

1

|r− r′2(t)|3
dt

]

The two integrals can be computed in a closed form. For now we denote them by

I1(r) =

∫ 1

−1

1

|r− r′1(t)|3
dt, I2(r) =

∫ 1

−1

1

|r− r′2(t)|3
dt

The expression for Bx turns into the simple form

Bx(r) = −µ0WTMx

8π

[(
x+

L

2

)
I1(r)−

(
x− L

2

)
I2(r)

]
Similar simplification can be made for the y and z component of the magnetic induc-

tion field B. This leads to

By(r) = −µ0WTMx

8π

[∫ 1

−1

y − W
2 t

|r− r′1(t)|3
dt−

∫ 1

−1

y − W
2 t

|r− r′2(t)|3
dt

]

= −µ0WTMx

8π
[I3(r)− I4(r)]

where I3(r) =

∫ 1

−1

y − W
2 t

|r− r′1(t)|3
dt, I4(r) =

∫ 1

−1

y − W
2 t

|r− r′2(t)|3
dt.

For the z-component of the magnetic induction field we have

Bz(r) = −µ0WTMx

8π

[∫ 1

−1

z

|r− r′1(t)|3
dt−

∫ 1

−1

z

|r− r′2(t)|3
dt

]
= −µ0WTMx

8π
[z (I1(r)− I2(r))]

It remains to compute the four integrals I1, . . . , I4. To this end we use the following

closed expressions:

∫
1√

a+ (b− ct)2
3 dt =

b− ct
ac
√
a+ (b− ct)2

+ C

∫
b− ct√

a+ (b− ct)2
3 dt =

1

c
√
a+ (b− ct)2

+ C
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Using appropriate substitutions of the values of a, b and c gives us a way to compute

the integrals I1, . . . , I4. After defining the functions

F1(r, t) =
1

(x+ L
2 )2 + z2

y − W
2 t√

(x+ L
2 )2 + (y + W

2 t)
2 + z2

F2(r, t) =
1

(x− L
2 )2 + z2

y − W
2 t√

((x− L
2 )2 + (y + W

2 t)
2 + z2

F3(r, t) =
1√

(x+ L
2 )2 + (y − W

2 t)
2 + z2

F4(r, t) =
1√

(x− L
2 )2 + (y − W

2 t)
2 + z2

and some refreshing computations we have the following closed form expressions for

the integrals I1, . . . , I4:

I1(r) =
2

W
(F1(r, 1)−F1(r,−1))

I2(r) =
2

W
(F2(r, 1)−F2(r,−1))

I3(r) =
2

W
(F3(r, 1)−F3(r,−1))

I4(r) =
2

W
(F4(r, 1)−F4(r,−1))

Using these expressions leads to the following closed form expressions of the x, y

and z component of the magnetic induction field

Bx(r) =
µ0TMx

4π

[(
x+

L

2

)(
F1(r, 1)−F1(r,−1)

)
−
(
x− L

2

)(
F2(r, 1)−F2(r,−1)

)]

By(r) =
µ0TMx

4π

[
F3(r, 1)−F3(r,−1)−

(
F4(r, 1)−F4(r,−1)

)]

Bz(r) =
µ0TMx

4π

[
z

(
F1(r, 1)−F1(r,−1)

)
− z

(
F2(r, 1)−F2(r,−1)

)]

-
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F Development of the M4

In the figure below the development of the M4 can be found. This development was

the first sketch in the creation of the M4 by the Marine Bedrijf. We see some measures

of the boat, namely, we can see that the boat is 5 meters long, 2 meters wide and

approximately 1 meter high.

Figure F.1: Development of the M4. c© Jan Sijs

-


