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Guided Bayesian Optimization: Data-Efficient
Controller Tuning With Digital Twin

Mahdi Nobar , Jürg Keller, Senior Member, IEEE, Alisa Rupenyan, Member, IEEE,
Mohammad Khosravi , and John Lygeros , Fellow, IEEE

Abstract— This article presents the guided Bayesian optimiza-
tion (BO) algorithm as an efficient data-driven method for
iteratively tuning closed-loop controller parameters using a digi-
tal twin of the system. The digital twin is built using closed-loop
data acquired during standard BO iterations, and activated when
the uncertainty in the Gaussian Process model of the optimization
objective on the real system is high. We define a controller tuning
framework independent of the controller or the plant structure.
Our proposed methodology is model-free, making it suitable for
nonlinear and unmodelled plants with measurement noise. The
objective function consists of performance metrics modeled by
Gaussian processes. We utilize the available information in the
closed-loop system to progressively maintain a digital twin that
guides the optimizer, improving the data efficiency of our method.
Switching the digital twin on and off is triggered by our data-
driven criteria related to the digital twin’s uncertainty estimations
in the BO tuning framework. Effectively, it replaces much of
the exploration of the real system with exploration performed
on the digital twin. We analyze the properties of our method
in simulation and demonstrate its performance on two real
closed-loop systems with different plant and controller structures.
The experimental results show that our method requires fewer
experiments on the physical plant than Bayesian optimization to
find the optimal controller parameters.

Note to Practitioners—Industrial applications typically are
difficult to model due to disturbances. Bayesian optimization is a
data-efficient iterative tuning method for a black box system
in which the performance can only be measured given the
control parameters. Iterative measurements involve operational
costs. We propose a guided Bayesian optimization method that
uses all information flow in a system to define a simplified
digital twin of the system using out-of-the-box methods. It is
continuously updated with data from the system. We use the
digital twin instead of the real system to perform experiments
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and to find optimal controller parameters while we monitor the
uncertainty of the resulting predictions. When the uncertainty
exceeds a tolerance threshold, the real system is measured, and
the digital twin is updated. This results in fewer experiments
on the real system only when needed. We then demonstrate the
improved data efficiency of the guided Bayesian optimization
on real-time linear and rotary motor hardware. These common
industrial plants need to be controlled rigorously in a closed-loop
system. Our method requires 57% and 46% fewer experiments
on the hardware than Bayesian optimization to tune the control
parameters of the linear and rotary motor systems. Our generic
approach is not limited to the controller parameters but also can
optimize the parameters of a manufacturing process.

Index Terms— Learning control systems, iterative methods,
database systems, control systems, optimization methods.

I. INTRODUCTION

MECHATRONIC systems require periodic retuning to
deal with the uncertainties caused by the system’s

operation. The controller parameters are typically conservative
in handling the unknown and time-varying characteristics
of the industrial systems. Auto-tuning methods for adjust-
ing the controller parameters replace the awkward manual
controller tuning [1], [2]. Classical model-based controllers
derive a model for the system by identification or first-
principle methods. The symmetric optimum tuning methods
use a performance metric such as phase margin or the
closed-loop system’s bandwidth to tune the controller [3],
[4]. Global optimization algorithms typically require a precise
plant model or many trials. For example, given a performance-
based objective function in a fixed boundary, particle swarm
optimization [5] determines appropriate controller gains [6].
The genetic algorithm used to tune PID controller parameters
dealing with complex cost functions where the gradient-based
methods struggle [7], [8].

One can directly incorporate available plant data in the
control parameter tuning and the control algorithm which
can relieve the modeling task of complicated systems.
Convolution-based data-driven method [9] simulates the feed-
back system without building any model of it that accounts
for the controller nonlinearities. This method can control rotary
actuators by accurately estimating the control input and system
response [10], but it holds a strong assumption that the plant
is a linear time-invariant system. Reachable zone-based pure
data-driven controller design uses only noisy input-output
data of a trajectory of the system [11] independent from the
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system’s model for controller tuning. Nevertheless, such direct
methods are usually less data-efficient than their model-based
counterparts, especially when the controller needs to learn
about complex real systems with limited data [12].

Integrating the measurements with simulation behaviors
allows the data-driven controller to adapt effectively to the
real world [13]. Learning from measurement can improve
the tracking accuracy of an inverse compensator for a fiber-
based piezoelectric actuator [14]. Furthermore, the iterative
learning controller combines the process measurements with
the optimization framework to provide robustness in the pres-
ence of repetitive disturbances and plant-model mismatch [15],
[16], [17]. A digital twin (DT) is a virtual replica of a real-
world system that continuously updates with measurements
from its physical counterpart. DT enables online monitoring
and optimization of complex manufacturing processes. For
example, [18] explains how a liquid-level control system can
be monitored by a DT that encompasses virtual twins of all
subsystems. These components are then synchronized with
the physical counterpart through a proper bridge between
the subsystems such that one can extend the application to
control the real process variables [19], [20]. However, there is
a gap between the “twinning” property of DTs in industrial
systems which limits the DT accuracy. To mitigate the system-
twin gap in the controller tuning, [21] incorporates a generic
learning algorithm into the DT that enables active braking
control of a race car. Reference [22] challenges the sample
efficiency of the learning-based algorithms in comparison
with the local gradient-based black-box optimization methods.
Reference [23] uses the model-based policy iteration to ensure
regional optimality by locally approximating the system’s
behavior.

Industrial closed-loop systems are required to satisfy high
precision and performance standards. The controllers in such
systems typically contain a set of parameters. One can also
measure the performance as a cost function containing pre-
defined metrics based on the system response to a specific
signal. Model predictive control (MPC) relies on a model
of a system to tune controller parameters that optimize a
cost function. For instance, to train MPC parameters on
a complex system, [24] defines multiple models to predict
a nonlinear system’s output using several sampling times.
However, a reliable plant model rarely exists, and identifying a
potentially nonlinear industrial system in a closed loop is often
not feasible without adequate system excitation. To control a
hard-to-model industrial process, [25] uses the process input
and output data to train a controller with a Kalman filter, reduc-
ing the measurement noise effect. Reference [26] tunes such
control parameters purely by data acquired while the system
operates with repetitive tasks. However, the high operation cost
of such industrial systems demands data-efficient controller
tuning approaches.

Bayesian optimization (BO) is a data-driven technique
that iteratively tunes the controller parameters in a limited
number of experiments using a surrogate model of the cost
function [27]. In complex industrial applications, conducting
each of the iterative experiments can involve time-consuming
measurements [28]. To increase the BO controller tuning

Fig. 1. Efficient data-driven controller tuning scheme based on performance
assessment.

efficiency, one can integrate all available process information
into the optimizer [29]. For instance, [30] uses coarse physical
knowledge about the Plasma Spray Process to encapsulate a
linear dependence between the process inputs in the prior mean
distribution. In [31] the process information is incorporated in
BO to save experimental time in a tedious additive manu-
facturing application. Furthermore, [32] uses BO to tune the
parameters of a goal-oriented model predictive controller that
sets the reference input to another cascaded control system
to reduce the energy consumption of a thermal management
system. This way, the predictive controller’s state-space model
serves as prior knowledge for BO, ruling out the search space
that contradicts the plant’s physics. In previous examples,
BO is guided by prior information about the process.

This work proposes Guided Bayesian Optimization (Guided
BO) method that incorporates available closed-loop system
information into the optimization. Our data-efficient method
reduces the required real system operation to tune the
industrial feedback controller parameters iteratively. In our
approach, automated controller tuning seeks a global optimum
of a cost function that estimates the desired closed-loop system
behavior. We use the available data without additional system
operation to create a DT. We only take measurements on the
real system when the BO surrogate model has sufficiently low
uncertainty. Otherwise, we use our DT to estimate the system
performance and guide the optimizer. This way, we tune the
controller parameters with fewer experiments on the real sys-
tem, reducing the operating cost. We demonstrate the enhanced
performance of the guided BO algorithm in simulation and two
real industrial feedback control systems.

Section II introduces the data-driven model-free controller
tuning problem. Then, in Section III, we review the BO
method and present our guided BO algorithm. Section IV
provides preliminary information about the system and con-
troller structure, the performance metrics, and the overall
cost function used for the numerical studies in V. Finally,
we demonstrate our guided BO method on two experimental
setups in VI.

II. DATA-DRIVEN CONTROLLER TUNING PROBLEM

We consider a feedback control system with possibly a
nonlinear plant. Fig. 1 visualizes the components of our
controller tuning problem. We have no assumption on the
parametric controller structure. Let θ ∈ 2 be the controller
parameter vector inside a feasible set 2 ⊆ Rnθ . We assume
the feasible set 2 is known (see IV-B and VI-B). For the
convergence properties of the closed-loop system, we choose
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the set 2 such that the step response of the system is bounded
in a fixed period.

Given the controller parameter vector θ , we denote the
cost function Ĵ (θ), where Ĵ : 2 → R is a scalar metric
reflecting the closed-loop performance. There is no assumption
on the convexity of the cost function. So Ĵ (θ) may have
multiple local minima. We want to simultaneously optimize
multiple performance metrics denoted by fi : 2→ R for i =
1, . . . , nf and nf > 1. These metrics are measured based on the
tracking error signal e, the difference between the reference
and output signal. While one approach would be to optimize
all the metrics separately determining the Pareto frontier [33],
we adopt the classical weighted aggregation method to convert
our multi-objective problem to a single-objective problem [34].
So the overall performance cost function Ĵ (θ) is defined as

Ĵ (θ) := wTf(θ) =

nf∑
i=1

wi fi (θ), (1)

where f(θ) := [ f1(θ), . . . , fnf(θ)] and w := [w1, . . . , wnf ].
Since the data collecting process contains uncertainty,
we assume that J (θ) := Ĵ (θ) + ϵ where J (θ) is the value
of Ĵ (θ) computed from the noisy data and ϵ ∼ N (0, σ 2

ϵ )

is the measurement noise realization drawn from a normal
distribution with zero mean and variance of σ 2

ϵ . The weights
vector w adjusts our metrics’ priority and scale such that each
metric properly contributes to the overall performance.

For practical reasons, we assume that system identification
is not feasible to obtain a realistic plant model. For instance,
data acquisition from an industrial plant is typically expensive
due to operational time and costs. Consequently, we cannot
calculate the cost function Ĵ (θ) analytically. So we suppose a
black-box oracle for our closed loop system that provides the
cost value Ĵ given the controller parameter vector θ . Now our
data-driven controller tuning problem is to obtain the optimum
controller parameter vector θ∗ by solving

θ∗ := argmin
θϵ2

Ĵ (θ). (2)

The objective function Ĵ (θ) is available as expensive to
evaluate the black box oracle on the real plant.

III. GUIDED BAYESIAN OPTIMIZATION

The BO-based methods introduced in the literature ineffi-
ciently compress the data of each experiment to a single overall
performance value. For example, [35], [36], [37] maps only
the output tracking error signal of the closed-loop system to a
cost function, ignoring explicitly utilizing all the other internal
signals. However, intermediary data, such as control signals
and output measurements, might be available and usually not
explicitly exploited. In this Section, we propose our novel
guided BO method shown in Fig. 2. Our method utilizes the
information flow in the closed-loop system to define a DT,
improving the optimization and reducing operational costs.

A. Bayesian Optimization-Based Controller Tuning

Bayesian inference is a statistical inference method
that uses Bayes’ theorem to update the probability of a

Fig. 2. Guided BO schematic representation. The digital twin of the
closed-loop system is built using available data without additional operations
on the real system.

hypothesis as more data becomes available [27]. BO can
optimize complex “black-box” objective functions using
sparse observations [38], [39]. However, the computational
disadvantage of the Bayesian inference approach is that
it typically solves an intractable integration problem [40].
Gaussian Process (GP) regression trains a stochastic model
of data that provides predictive uncertainty and a tractable
surrogate model for Bayesian inference.

To build a prior distribution of the mean and covariance
functions, BO requires an initial collection of control parame-
ters 2init :=

{
θ j ∈ 2 | j = 1, 2, . . . , N0

}
, where N0 ≥ 1 is the

number of parameters. We use the Latin hypercube introduced
by [41] as a space-filling sampling method to build 2init.
So, each dimension of the feasible set 2 is divided into
equally probable intervals where random control parameters
are drawn. This method selects the control parameters of the
initial training data set independently and uniformly in each
dimension of the feasible set.

The BO algorithm maintains a pool of parameters and their
corresponding performance values as a training data set

D :=
{(

θ j , J (θ j )
)
| θ j ∈ 2 ; j = 1, . . . , n; n ≥ N0

}
, (3)

in which we assume it initially contains N0 data points.
Then, at every BO iteration, we estimate the cost function
using Gaussian Process (GP) regression denoted by Ĵ based
on D. More precisely, let GP(µ, k) be the prior Gaussian
process function with the prior mean and kernel functions
µ : 2 → R and k : 2 × 2 → R≥0. Consider parameter
vectors Xn := [θ1, . . . , θn]

T and performance values yn :=

[J (θ1), . . . , J (θn)]
T, we write

∀θ ∈ 2 : Ĵ (θ) ∼ N (µn(θ), vn(θ)), (4)

with mean and variance

µn(θ) := µ(θ)+ kn(θ)T(Kn + σ 2
ϵ I)−1(yn − µ(Xn)), (5)

vn(θ) := k(θ, θ)− kn(θ)T(Kn + σ 2
ϵ I)−1kn(θ), (6)

where Kn is defined as [k(θξ1 , θξ2)]
∣∣n
ξ1,ξ2=1 ∈ Rn×n , σϵ is

the standard deviation of the additive noise to the predic-
tive performance uncertainty, I is the identity matrix, vector
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µ(Xn) = [µ(θ1), . . . , µ(θn)]
T
∈ Rn , and the vector kn(θ) ∈ Rn

is equal to [k(θ, θ1), . . . , k(θ, θn)]
T.

The kernel function determines the relationship between
neighboring points modeled by the GP. Here, we utilize
a Matérn kernel 5/2 that has demonstrated exemplary per-
formance on noisy differentiable functions [40]. We use a
constant zero prior mean function without loss of generality.
We use available observations to optimize the prior mean and
kernel by log marginal likelihood maximization.

To select query parameter vector θn+1, we use an auxiliary
acquisition function to ensure a trade-off between exploring
regions with high uncertainty and exploiting regions with a
higher probability of finding the optimum gains. We choose
Expected Improvement (EI) [42] acquisition function with a
closed-form formulation because it improves the optimization
accuracy with a limited number of observations [30], [43],
[44]. Let aEI,n be the expected improvement acquisition func-
tion corresponding to the n−th iteration, defined as

aEI,n(θ) := vn(θ)
1
2
(
zn(θ)8(zn(θ))+ ϕ(zn(θ))

)
, (7)

with zn(θ) := (µn(θ) − J+n )vn(θ)−
1
2 where µn(θ) and vn(θ)

are the predictive mean and variance of the GP model, J+n
is the best-observed performance among the n experiments in
training data set D, 8(·) is standard normal cumulative dis-
tribution function, and ϕ(·) is the standard normal probability
density function.

To optimize the acquisition function for the next parameter
θn+1, we exhaustively grid search with a fixed number of data
within the feasible set 2:

θn+1 := argmax
θϵ2

aEI,n(θ). (8)

Accordingly, we denote the next query point θ+ := θn+1,
measure the next performance value J (θ+), and update the
BO training data set as

D = D ∪
{(

θ+, J (θ+)
)}

. (9)

The computed sequence of θ1, θ2, θ3, . . . by this iterative
optimization converges to the proper solution of (1) [45], [46].

The computational complexity of BO controller tuning at
iteration m is heavily influenced by inversion of the covariance
matrix Kn in (6) and is approximated by O(m.n3) where n is
the size of training data set D.

B. Digital Twin

In the BO-based controller tuning method, we already
acquire informative data in each experiment so one could
constantly learn a digital counterpart of the closed loop system.
Starting from an initial training data set with size N0, we build
the digital-twin data set D̃ at experiment n as

D̃ :=
n⋃

j=1

ñ⋃
i=1

{
(ui, j , yi, j )

}
, (10)

where ñ is the sampling length per each experiment, u and y
are the real plant input and output, respectively. For simplicity,
we assume all the experiments have the same length ñ.

We estimate an approximate model of the real plant called
DT plant denoted by G̃ based on D̃. Assume G̃ is a lin-
ear time-invariant transfer function estimated by the refined
instrumental variable method [47]. This DT plant model is
computationally cheap and does not require fast processing.
So our DT is the same closed-loop system but with a DT
plant instead of the real plant.

The DT plant must have sufficient fidelity (see
Section V-A). The fidelity of the DT plant model is
estimated by Root Mean Square Error (RMSE)

eRMSE :=

[
1

n × ñ

n∑
k=1

ñ∑
j=1

(y j − ỹ j )
2
k

] 1
2

, (11)

where ỹ is the output predicted by the DT plant.

C. Guided Bayesian Optimization

Algorithm 1 summarizes our guided BO method. At each
BO iteration using the physical plant G and given the query
control parameters θ+, we collect the control signal u and the
plant output y to build DT data set D̃ and identify a DT plant
model G̃. The DT plant is updated each time the performance
of the closed-loop control system with the physical plant is
measured. Based on the GP model uncertainty, the guided BO
algorithm gains more information from the updated DT. More
specifically, we activate the DT when two conditions

2
√

vn(θ+) > η1, (12a)
eRMSE < η2, (12b)

are satisfied where η1 ≥ 0 is the DT activation threshold, vn

is the variance of the BO’s posterior GP model calculated at
the next query parameter vector θ+, eRMSE is RMSE defined
in (11), and η2 is the RMSE threshold and is chosen based
on the noise standard deviation as η2 := 3σϵ . We estimate
σ 2

ϵ by measuring the performance metrics in five experiments
with identical controller gains in the feasible set. When the
DT is activated, we use the DT instead of the actual system
to estimate the cost value denoted by ˜̂J at θ̃ := θ+. We add
a Gaussian noise with zero mean and σ 2

ϵ variance to the esti-
mated performance to obtain J̃ := ˜̂J+ϵ where ϵ ∼ N (0, σ 2

ϵ ).
This estimated performance J̃ is then added to the BO
training data set in Line 11 of Algorithm 1. In Section V-C,
we numerically study the DT activation threshold η1.

We continuously monitor the DT quality to maintain opti-
mum controller parameters when the real plant changes. Each
time we measure the performance on the real system J ,
we compare it with its estimated value by DT denoted by J̃ .
Suppose that the system behavior has considerably changed.
In that case, we discard all previous data from the DT dataset.
More specifically, if the normalized difference between the
measured and estimated costs is considerable, i.e.,

|J − J̃ |
J

> δ̃, (13)

where δ̃ is DT re-initialization threshold, then we reinitialize
DT dataset with the recent measurements as in Line 24 of
Algorithm 24. If the system significantly changes, a new safe
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Algorithm 1 Guided BO Controller Tuning Algorithm
1: Input: Set feasible set 2, initial control parameters 2init,

weight vector w, DT sampling length ñ, DT activation
parameters η1 and η2, DT re-initialization parameter δ̃,
maximum experiments nmax, DT stopping threshold and
consecutive iteration parameters η3 and ñEI

2: Initialize D and D̃ using G to measure u, y, and
J (θ),∀θ ∈ 2init

3: while nmax experiments on G is not reached do
4: Optimize GP(µ, k) prior mean and kernel hyperpa-

rameters by minimizing negative log marginal likelihood
5: Estimate cost Ĵ as in (4)
6: Derive next query point θ+ solving (8)
7: if DT activation criteria in (12) is met then
8: Update DT plant model G̃
9: while DT stopping criterion in (14) is not met do

10: Use G̃ to estimate cost ˜̂J at θ̃ = θ+

11: Update BO training data: D← D ∪
{
(θ̃ , J̃ )

}
12: Optimize GP(µ, k) prior hyperparameters
13: Estimate cost Ĵ as in (4)
14: Derive next query point θ+ solving (8)
15: end while
16: Set θ+ = θm ∈ D s.t. ∀θ ∈ D : J (θm) < J (θ)

17: Remove all DT data (θ̃ , J̃ ) from D in 3
18: end if
19: Use G to measure performance J at θ = θ+

20: Update BO training data: D← D ∪ {(θ, J )}

21: Use G̃ to estimate cost ˜̂J at θ̃ = θ+

22: Update DT data: D̃← D̃ ∪
{⋃ñ

i=1(ui , yi )
}

23: if DT re-initialization criterion in (13) is met then
24: Remove previous DT data: D̃←

{⋃ñ
i=1(ui , yi )

}
25: end if
26: end while

boundary for the optimization parameters must be determined,
as demonstrated in [48], [49], for example.

An appropriate stopping criterion for the optimization pro-
cess is necessary for the practical implementation of the
algorithm. We terminate the BO after a fixed number of
iterations on the real system denoted by nmax. When using DT,
we need a stopping condition that ensures prompt termination
of the optimization. We use the stopping criterion that depends
on the maximal expected improvement over previous iterations
and the current expected improvement proposed in [35]. Once
we have activated the DT plant to predict the closed-loop
response, we stop the BO iterations on DT when the maximum
number of iterations on the DT is reached or depending on the
ratio between the last expected improvement and the maximal
expected improvement realized so far. This way, we avoid
unnecessary iterations using the DT plant where we anticipate
no further improvement. Notably, we stop BO on DT when
for ñEI consecutive iterations on DT we meet one of the
conditions

2aEI,i (θ) ≤ η3 max
i−ñE I≤ j≤i−1

aEI,j(θ), (14a)

i > nmax, (14b)

where i is the number of BO iterations on DT after last time
DT is activated, aEI,i (θ) = aEI(θ

+) and η3 > 0 is a predefined
threshold to stop BO iteration on DT as in [50]. If the expected
improvement does not significantly improve compared with
the improvements in the last ñE I iterations, then (14a) halts
the optimization with DT.

As soon as we stop using DT, we update the query
parameter vector θ+ with the optimum observed parameter
vector in the BO training data set D as defined in line 16 of
Algorithm 1. Then, we remove all the DT data (θ̃ , J̃ ) from
D. We eventually proceed with the actual system to measure
the overall performance at θ+.

The training data set size n changes when we remove the DT
data from D (see line 17 of Algorithm 1). Furthermore, at each
iteration m on the real plant (where 0 ≤ m ≤ nmax), the DT can
be activated and i number of BO iterations can be performed
on the DT where i ≤ nmax. So the computational complexity
of the guided BO algorithm is bounded and dominated by a
polynomial that depends on i , m, and n.

IV. SYSTEM MODELLING

Our guided BO is independent of the plant or paramet-
ric controller structure. In this Section, we first specify the
controller and the plant structure to numerically evaluate the
guided BO algorithm in Section V. Then, we explain our
chosen performance metrics used to assess the system’s overall
performance in (1).

We have a DC rotary motor with speed encoders equipped
with a current converter and a cascaded speed controller.
As the two controllers operate on different time scales, we only
consider the speed controller and aim to optimize its propor-
tional and integral gains. The DC motor with its encoder and
the current converter is denoted by G.

A. System Structure and Identification

For the numerical studies in Section V, the real plant G is an
identified model of the DC motor system around an operation
point as a linear time-invariant (LTI) system. We have a speed
encoder with LabVIEW-based real-time interface [51]. The
nominal encoder speed v is the number of pulses counted with
sampling time t = 2 ms. We consider low and high reference
encoder nominal speed inputs equal to v = 1600 and v =
2000, respectively. Our encoder can count geometrically N =
2048 pulses per revolution. So the angular speed in radian per
second can be calculated by ω = 2π.v

N .t .
We measure the plant response to a given sinusoidal signal

with various frequencies, a fixed amplitude, and a single DC
value of �̄ = 5522.40 rad/s. Considering several excitation
frequencies, the excitation signal has a fixed amplitude of
613.60 rad/s. We measure the system output with a high
sampling rate of 0.5 ms and draw the bode diagram of the
system response, which allows us to fit a second-order LTI
transfer function visually. We repeat each measurement two
times to alleviate the measurement noise. For A/D conversion,
we sample 128 points evenly distributed in every period, intro-
ducing a constant phase shift in our bode diagram. So, because
we have 12 different frequencies for the sinusoidal excitation
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TABLE I
IDENTIFICATION PARAMETERS OF THE LINEAR TIME-INVARIANT PLANT

MODEL AROUND A SPECIFIED OPERATING POINT

signal, the sampling rate varies (see Table I). Consequently,
an input time delay of 2 ms abstracts the time shift introduced
by A/D conversion. We address this delay by shifting the phase
in the bode diagram to a fixed offset corresponding to the
delay. Finally, G is written as G(s) := L

s2+τ1s+τ2
e−sl , where

Table I summarizes its identified parameters.

B. Controller Structure and Nominal Tuning

A PI speed controller

C(s) := Kp(1+ Ki
1
s
), (15)

with Kp and Ki gains is defined. For the controller parameter
vector θ := [Kp, Ki], we define a feasible set

2 :=
{
[Kp, Ki]

∣∣∣ Kp ∈ [Kpmin
, Kpmax

],

Ki ∈ [Kimin , Kimax ]

}
. (16)

We set the boundaries Kpmin
, Kpmax

, Kimin , Kimax equal to
0.11, 1.10, 0.87, 2.08, respectively, defining a rectangle around
stable nominal controller parameters where the overshoot is
bounded.

Classical tuning methods for the controller in (15) involve
numerical or graphical approaches using the Bode dia-
gram [52]. We design a nominal controller based on the real
closed-loop system’s phase margin and gain margin (PGM)
[53]. We analytically calculate the controller gains given
PGM specifications with the simple approximations introduced
by [54] as follows

ωp :=
Am8m +

1
2πAm(Am − 1)

(A2
m − 1)l

, (17)

Kp :=
ωpτ

AmL
, (18)

Ki := 2ωp −
4ω2

pl

π
+

1
τ

, (19)

where ωp is the approximated phase crossover frequency.
We choose two value pairs for phase and gain margins to
estimate nominal controllers that assure the under-damped
behavior of the closed loop system. Table II lists the resulting
nominal controller gains and their PGM.

C. Performance Metrics

Following [50], we define four performance indicators
namely percentage overshoot (ζ ), settling time (Ts), rise time
(Tr) and the integral of time-weighted absolute error (eITAE).

TABLE II
SPECIFICATIONS OF NOMINAL CONTROLLERS

Fig. 3. Details of the performance metrics used to define the overall cost
function.

1) Percentage Overshoot: If y(t) is the step response of
a continuous-time system, the percentage overshoot at each
transition from low initial state r1 to the high final reference
input r2 is defined such that

ζ := 100×max(0,
Mp

1r
), (20)

where ymax is the maximum response in the transition period,
1r := r2 − r1 is the step height, Mp := ymax − y(T ) is the
peak overshoot, and T is the final time. Percentage overshoot
presents the stability degree and damping in the system [55].

2) Settling Time: This is the time that the system response
takes to converge and stay within an error band, i.e., 2% of the
step height, from the final value [56]. Settling time indicates
a closed-loop system’s convergence time to reach its steady
state. The settling time Ts is defined as

∀t ≥ Ts : |y(t)− r2| ≤
2

100
×1r . (21)

3) Rise Time: Tr indicates the time for the step response to
rise from 10% to 60% of the way from r1 to r2 (see Fig. 3). So,
a shorter rise time indicates a rapid response to the changes
in the input signal.

4) Integral of Time-Weighted Absolute Error: Integral of
time-weighted absolute error (ITAE) is the absolute time-
weighted area of the step response error from the reference
signal. This performance index reduces system overshoot and
oscillations [57], allowing a smoother response. We write
ITAE as

eITAE :=

∫ T

0
t |y(t)− r2)|dt, (22)

where the final time T ≥ Ts is a fixed period. Fig. 3 visualizes
details of our selected performance metrics.

According to the overall cost function in (1), a weighted sum
of four performance metrics is defined. The system performs
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well if its step response rises fast enough with minimum
overshoot and fluctuations to a stable bandwidth. We can write

J (θ) = w1ζ + w2Ts + w3Tr + w4eITAE, (23)

such that
∑i=4

i=1 wi = 1 and wi > 0 where wi are the
normalized weights of our selected individual performance
metrics. Different weights can be used to attain different trade-
offs between the performance metrics; in the experiments
below, we measure each performance metric using 5 controller
gains evenly spanning the entire feasible set 2, then take the
average of each metric as a normalization weight.

We adjust the weights based on the relative significance
of each metric. For instance, we put more relevant gravity on
minimizing overshoot related to performance and stability. The
normalized weights w1, w2, w3, w4 are respectively selected as
0.44, 0.22, 0.22, 0.11, summing up to unit value.

The following Section will analyze our guided BO proper-
ties on the identified plant G.

V. NUMERICAL ANALYSIS

We numerically study the guided BO properties using the
controller (15) and plant G comparing with the nominal
controller tuning. Computations are performed by the Euler
high-performance cloud-based cluster of ETH Zurich [58].
We use 8 AMD EPYC 7742 CPUS cores with a clock speed
of 2.25 GHz nominal and 3.4 GHz peak and 3072 MB of
memory.

The reference input r of the closed-loop system equals the
angular encoder speed ω in radian per second. We consider
low and high reference encoder speed inputs equal to r1 =

245 rad/s and r2 = 306 rad/s corresponding to the nominal
encoder speeds of v = 1600 and v = 2000, respectively.
We model the output measurement noise by an additive Gaus-
sian noise with zero mean and standard deviation σϵ = 0.03.

We calculate the ground truth speed controller parameters
θ∗ with an exhaustive grid search in the feasible set 2 such
that the cost in (23) is minimized. The optimality ratio φ is
the ratio between the cost and the ground truth optimum cost
value J (θ∗). We calculate once the θ∗ ∈ 2 with a dense grid
search where the minimum cost on the numerical system is
retrieved (see Table VI). The optimality ratios of our nominal
controllers in Table II are φ = 1.71 and φ = 1.49, respectively.

We will analyze the DT plant fidelity, the proportion of BO
iterations on DT, and the number of data in the initial training
data set D on the identified plant. To build the DT data set
in (10), for simplicity, we fix the DT re-initialization threshold
δ̃ = 2 and the sampling length ñ = 100 in a fixed period T
for all experiments. We summarize the parameter values used
in our guided BO algorithm in Table III.

A. Digital Twin Fidelity

We identify two DT plants using second-order and fifth-
order LTI models to assess the DT fidelity on the guided BO
performance, as described in Section III-B. We sample uniform
data from the actual system’s step response over a fixed period
T = 5 s, which is longer than the nominal closed-loop settling
time. We compare the fidelity of these two DT plant models

TABLE III
PARAMETER VALUES OF OUR GUIDED BO USED IN CORRESPONDING

SECTIONS, INCLUDING THE RANGE FOR VARIED PARAMETERS

TABLE IV
MONTE CARLO RESULTS WITH 100 BATCHES OF 50 EXPERIMENTS ON THE

REAL PLANT, EACH STARTING FROM A DIFFERENT INITIAL DATA SET
D. COLUMNS 3− 5 REPORT THE ROUNDED AVERAGE NUMBER OF

EXPERIMENTS OVER THE REAL PLANT REQUIRED TO OUTPER-
FORM THE NOMINAL OPTIMALITY RATIO φ = 1.49

with RMSE in (11) at the beginning of optimization using
the DT data set D̃. Second order DT plant is a high-fidelity
model with RMSE of eRMSE = 0.01; whereas the fifth-order
model called low-fidelity DT plant has a higher RMSE equal
to eRMSE = 2.41.

We run a Monte Carlo analysis of the guided BO algorithm
using both DTs with 100 batches of experiments. Each batch
includes nmax = 50 experiments on the real plant starting from
an initial data set with a single data N0 = 1. The controller
gains of the initial data set are randomly selected inside the
feasible set. So, the initial data sets of the batches are different
from each other. Starting from the initial training data set,
we set η1 = 0 in (12a) and perform BO on the DT plant ñEI
times. Each time we activate DT, we continue BO iterations on
DT up to a fixed number of iterations ñEI. Next, we deactivate
the DT by setting η1 = inf, and continue NG iterations on the
real plant until we activate the DT plant by setting η1 = 0.
This way, we activate DT periodically after every NG iteration
on the real plant G. Here we set η2 = 0.09 and η2 = 2.5 when
using high- and low-fidelity DT plants, respectively.

Results on Table IV show that with the same number and
frequency of DT integration, the guided BO with high-fidelity
DT converges to a desired optimality ratio sooner than BO.
Thus, the DT directly affects the convergence of the guided
BO method.

B. Initial Training Set Size

We study how the number of initial data N0 measured on
the real plant contributes to the performance. We perform
Monte Carlo analysis with 100 batches of experiments. For
each batch, we build the initial training data set D by selecting
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TABLE V
MONTE CARLO RESULTS ON 100 BATCHES OF EXPERIMENTS WITH

DIFFERENT INITIAL DATA SET SIZE N0 . EACH ROW IS THE
ROUNDED AVERAGE NUMBER OF ITERATIONS ON THE REAL

PLANT REQUIRED TO OUTPERFORM THE
NOMINAL CONTROLLER

N0 number of controller vectors θ using a Latin hyper-cube
sampling method inside the feasible set 2. According to
Table V, for a small N0, the guided BO converges on average
3 experiments faster than BO. In this case, DT compensates for
insufficient initial information. The DT benefit for the guided
BO diminishes when the initial training set contains more data.

C. Digital Twin Activation Threshold

We determine the DT activation threshold η1 in (12a).
At each threshold η1, we repeat the guided BO algorithm
100 times using different initial data sets. Fig. 4 shows that
guided BO tunes the controller gains faster than BO when
the DT is sufficiently activated, allowing the average opti-
mality ratio of the measured performance to be low enough.
More precisely, we observe in Fig. 4a that for guided BO,
choosing a DT activation threshold in the range η1 ∈ [2, 8]
(corresponding to DT activation around 12 times on average in
each batch) results in improved convergence of approximately
9 experiments to the nominal performance compared to the
BO method. We also observe that with large η1 = 20, the
guided BO approaches the BO’s performance indicated by
dashed lines.

Fig. 4 indicates the correlation between the total DT acti-
vations and the average optimality ratio measured on the
real plant using various η1 thresholds. For the DT activation
threshold η1 ≥ 5 in 12a, increasing η1 decreases the number
of times DT guides the optimizer and increases the average
optimality ratio measured on the real plant. However, the cost
estimated by DT is inaccurate, and over-activating the DT
results in lower performance. That is why using small η1 =

1e − 6 results in the excessive activation of the DT, in which
the average optimality ratio also increases to 2.2. Therefore,
choosing the DT activation threshold in the range η1 ∈ [2, 8]
provides a better trade-off between the DT activation and the
guided BO performance.

D. Performance Evaluation

A Monte Carlo study is performed with 100 batches of
experiments. Table III specifies the guided BO algorithm
parameter values. According to V-C, the parameter η1 = 3 is
chosen to provide us with an optimum trade-off between
DT activation and the convergence speed of the algorithm.
η2 = 0.09 is chosen concerning three times the system noise
boundary compared to the expected fidelity of the DT through
RMSE error. We set the stopping threshold η3 = 0.2 and

Fig. 4. Results for different activation threshold η1 of DT in guided
BO method. Each data point averages over 100 batches, each including
50 experiments on the real plant. (top) The required number of experiments
on the real system to outperform the nominal controller performance or to
converge to the ground truth performance J (θ∗). The shaded area indicates
η1 range where guided BO converges faster to the ground truth performance
than BO. (bottom) The left axis is the average optimality ratio. The right axis
shows the average number of DT activations in each batch.

Fig. 5. Minimum observed optimality ratio up to number of BO experiments
on the real plant. The thick line is the average over 100 batches, and the shaded
area shows the 99%, 95%, 90%, and 68% confidence intervals.

ñEI = 3 to avoid unnecessary optimization on the DT. The
minimum number of initial data N0 = 1 is chosen to provide
the GP model with the least prior information when the guided
BO is shown to improve the optimization further compared
to BO as revealed in section V-B. The results are shown in
Fig. 5. Guided BO with high-fidelity DT outperforms the nom-
inal controller on average after approximately 2 experiments,
whereas BO requires approximately 12 experiments.

We compare the evaluated controller parameters of guided
BO and BO in a batch of experiments starting from the
same initial controller parameters 2init. In Fig. 6, we visu-
alize one batch of our Monte Carlo analysis consisting of
35 control parameters proposed by each optimizer to measure
the performance with the real plant. The true cost surface is
presented with a colormap in Fig. 6 which is a non-convex
function of the controller parameters. This figure shows that
the BO (magenta squares) requires exploring the feasible set.
Fig. 6 (bottom panel) depicts the cost estimated by DT after
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Fig. 6. Control parameters proposed by the acquisition function to measure
performance in one batch of 35 iterations in guided BO and BO starting from
the same initial data set. (top) Colormap shows true cost surface using the
real plant. (bottom) Colormap shows the estimated cost by DT plant after
34 iterations on the numerical system. Hollow circles are the gains where DT
estimates the performance.

Fig. 7. Histogram of all measured performance values on the real plant in
100 batches of 35 experiments.

34 iterations on the real plant where the filled circles represent
the measured parameters by guided BO on the real plant,
and the hollow circles show the DT evaluations. We see that
DT retrieves the true cost. Thus, the guided BO exploits the
optimum region, avoiding the regions with higher costs.

The histogram in Fig. 7 shows the percentage of mea-
surements on the real plant in each optimality ratio range
during our Monte Carlo analysis. This histogram indicates
a higher proportion of the guided BO experiments around
the optimum, allowing the optimizer to exploit more around
the optimum region. The BO requires more exploration with
higher optimality ratios.

Table VI specifies the tuned controller parameters and
corrosponding cost values. The nominal controller is the PGM
controller introduced in subsection IV-B with phase margin of
60◦. The ground truth optimum controller gains are retrieved
by dense grid search in the feasible set on the numerical
system. According to this table, the tuned controller by our
guided BO method has lower cost than BO and the nominal

TABLE VI
COMPARISON OF OPTIMUM COST AND CONTROLLER PARAMETERS

TUNED BY GROUND TRUTH GRID SEARCH, NOMINAL, BO AND
GUIDED BO METHODS AFTER n = 21 ITERATIONS ON G

Fig. 8. Step response of the closed-loop numerical system with the speed
controller tuned with different methods.

controller, and its tuned controller parameters are almost equal
to the ground truth optimum gains.

Fig. 8 shows the step response of the closed-loop system
with the guided BO controller on the real plant, corresponding
to batch 4 and experiment 21 in Fig. 5. While BO step
responses have over-damped behavior, the guided BO outper-
forms the other data-driven and nominal approaches. However,
the nominal has larger overshoot resulting from its large
proportional gain. The guided BO controller performance fits
the ground truth performance with a slight overshoot, ITAE,
and reasonably fast rise and settling time.

VI. EXPERIMENTAL RESULTS

We demonstrate the performance of our proposed guided
BO algorithm on two closed-loop real-time systems with
different controller and system structures: direct current (DC)
rotary motor and linear servomotor systems. The former
system is time-variant, but the latter is time-invariant. We iter-
atively tune the speed controller’s PI gains for the DC motor
while we tune the position controller’s PD gains for our
servomotor system. At the end, each method’s total controller
tuning time is compared.

A. Rotary Motor System

We have a DC rotary electrical motor setup presented in
Fig. 9. This setup allows us to measure the system feedback
in real time and modify the closed-loop system behavior by
overwriting the controller gains. The controlled system com-
prises a DC rotary electrical motor with an angle encoder for
speed measurements. We use a CompactPCI real-time engine
PXI-7846R from National Instruments Corp to implement the
PI speed controller. Given the reference input signal r and the
PI controller gains Kp and Ki to the CompactPCI, a digital-to-
analog data conversion with pulse-width modulation converts
the digital speed control command to the analog voltage
signal. Then, a current converter amplifies the voltage to its
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Fig. 9. Real-time DC rotary motor system structure for measurement and
control.

Fig. 10. Minimum observed optimality ratio up to each experiment on the
DC rotary motor system. The thick line is the average over 100 batches, and
the shaded area shows the 99%, 95%, 90%, and 68% confidence intervals.

proportional current u as an input to the DC motor. We use
LabView software on our PC to interface with the hardware
and implement the guided BO algorithm.

We want to tune the PI speed controller gains. We study the
performance of our iterative tuning methods in the presence
of unknown effects, such as friction and measurement noise.
We focus on controlling the speed of the motor as it is relevant
for its practical use. At the beginning of each experiment,
we initialize the motor speed to reach a constant encoder
angular speed equal to r1 = 245 rad/sec. This allows us to
remove the uncertainty of starting from an arbitrary initial
condition on this hardware. We build the initial data set D
with one gain pair (N0 = 1) and the respective measured
objective according to (23). With a sampling rate of 20 Hz,
we measure ñ = 100 pairs of control commands u and
physical plant’s output y. In the guided BO algorithm, we use
tfest function in MATLAB [59] with a second-order model
to identify the DT of the nonlinear DC motor system based
on refined instrumental variable method [47]. By measuring
five times the performance metrics in (23) with a randomnly
selected θ ∈ 2, we estimate the additive noise variance
σϵ = 0.03. Table III summarizes the guided BO parameter
parameter values.

We study the measured performance of 100 experiment
batches. Each batch starts with a different 2init randomly
selected inside the feasible set 2 in (16), which is identical
for both guided BO and BO methods. We define the optimum
cost as the minimum cost measured among all batches of
experiments. The optimality ratio is between the minimum
observed cost in each batch and the optimum cost.

Fig. 10 demonstrates that guided BO converges on average
with fewer experiments on the real DC rotary motor system
and has a smaller variance between repetitions. Let’s consider
a threshold for the optimality ratio within 5% of the optimal
cost. BO requires, on average, 38 experiments to converge to
the optimality ratio of 1.05, whereas guided BO requires only

Fig. 11. Histogram of the experiments percentage vs. the optimality ratio
of the measured performance among 100 batches of 40 experiments on the
rotary motor system.

11 experiments to perform the same, a 71% improvement.
Indeed, the best among the 100 batches of guided BO accom-
plishes this in 3 experiments (compared to 7 experiments
required for BO, a 57% improvement), and the worst in
30 experiments (compared to 39 experiments required by BO,
a 23% improvement). After 15 experiments, all 100 repetitions
of guided BO attain optimality ratios better than 1.1, compared
to 55% of the BO repetitions. In contrast, at this stage, the
worst among the BO repetitions still has an optimality ratio
of 2.85. The dashed black line in Fig. 10 depicts the cost
value given the first nominal PGM controller designed based
on the identified linear model of the system as described in
Section IV-A. Both data-driven controller tuning approaches
outperform the nominal GPM method in terms of the cost
value at the expense of the number of iterations needed.

From the histogram of all measured performance values on
Fig. 11, it can be seen that BO on the actual system requires
performance measurements further away from the optimum,
whereas the DT carries out the exploration allowing guided
BO to test the controller gains on the real system at regions
with smaller costs. Therefore, guided BO exploits more around
the optimum cost, whereas BO explores further away from the
optimum.

B. Linear Servo Motor System

Our linear motor setup has a DM01 linear module from NTI
AG company, displayed in Fig. 12. This module consists of a
linear guide with an integrated LinMot P01 linear permanently
actuated servo motor. We integrate a MS01-1/D-SSI non-
contacting external position sensor with our module. This
sensor has 5 µm absolute resolution and 0.005 mm repeatabil-
ity error. We build a unit feedback closed-loop system with a
C1250-IP-XC-1S-C00 NTI AG axis controller and our external
sensor to control the output position of the LinMot P01 linear
motor with a sampling frequency of 1 kHz. This industrial
position controller is a PDT1 controller implemented in C and
defined as

C(s) = Kp + Kd
s

0.001s + 1
, (24)

where Kp and Kd are proportional and derivative gains, respec-
tively. This controller commands the linear motor plant as
a current signal. A saturation mechanism clips the control
signal once it exceeds the range [−7A, 7A]. We use OPC
Unified Architecture in MATLAB to communicate with the
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Fig. 12. LinMot P01 linear servo motor closed-loop control system and
data-driven controller tuning framework.

hardware for the input and output measurements and controller
parameter tuning. Given the current and linear motor position
measurements, our algorithm sets the reference output r with
certain industrial controller gains Kp and Kd.

We tune Kp and Kd gains of the position controller.
To determine the RMSE threshold η2 in (12b), we estimate
the noise standard deviation by measuring the performance
metrics in 5 experiments with fixed identical controller gains.
We normalize the standard deviation of each metric in f =
[ζ, Ts, Tr, eITAE] according to their mean measured value
to retrieve the inverse of the signal-to-noise ratio (1/SNR)
equal to [0.0001, 0.004, 0.002, 0.001]. Assuming weighted
aggregation-based cost function in (23), we estimate the
additive noise standard deviation as σϵ = 0.001. We choose
the RMSE threshold η2 = 3σϵ = 0.003 to accept DT with
sufficient fidelity considering the estimated noise level.

We assume that our linear motor generates linear motion for
precise and automatic screw-driving applications. The speed
of the step response is crucial, which can be represented by
the rise time performance metric. One could also expect to
avoid overshooting, whereas a slightly longer settling time
could be permissible. We assume the ISO metric thread type
M8.1 according to ISO 965 standard for the metric screw
thread tolerances [60]. This thread type has a Pitch dimension
tolerance of 0.112 mm. Therefore, considering our position
controller’s reference step height of 10 mm, the maximum
overshoot must not exceed 0.112

10 × 100 = 1.12%.
We define the feasible set using a simplified and approx-

imated model of the linear motor system retrieved from
the system specifications provided by the LinMot com-
pany datasheet [61] where the phase margin is larger than
20 degrees. We thus redefine the feasible set for the control
parameters as

2 =
{
[Kp, Kd]

∣∣∣ Kp ∈ [Kpmin
, Kpmax

],

Kd ∈ [Kdmin , Kdmax ]

}
, (25)

where the boundaries of each control parameter
Kpmin

, Kpmax
, Kdmin , Kdmax are equal to 5123.8, 6136.2, 40.1,

51.0, respectively.
We approximate the order of magnitude for each perfor-

mance metric to define our overall performance function.
We first measure the system’s step response given four pairs
of control gains in the rectangular feasible set vertices:
(Kpmin

, Kdmin), (Kpmin
, Kdmax), (Kpmax

, Kdmin), and (Kpmax
, Kdmax).

Considering SNR values, we also assume a priori relative
importance weight to the metrics suitable for the screw
driving application. Namely, we put 10 and 5 percent more

Fig. 13. Minimum observed optimality ratio on the linear motor system up
to each experiment on the linear servo motor system, including 100 batches
of 25 experiments where only the iterations on the real system are counted.
The shaded area shows the 99%, 95%, 90%, and 68% confidence intervals.
The thick line is the average of the batches.

Fig. 14. Percentage of experiments on the real system vs. the optimality
ratio for 100 batches in a fixed number (25) BO iterations.

weight on the maximum overshoot and rise time metrics.
So the cost function weights w1, w2, w3, w4 are equal to
0.10, 0.18, 0.69, 0.04, respectively, where

∑4
i=1 wi = 1.

We compare the performance of our proposed Guided BO
with BO in 100 batches of experiments. Each batch consists
of initial data with N0 and 25 performance measurements on
the real linear motor system, whereas Guided BO internally
may estimate the cost function with its DT model. To build the
initial data set D for the batches, we randomly select 100 pair
of gains θ = [Kp, Kd] ∈ 2. We use the same initial data
set D for each batch in both BO and guided BO methods.
In guided BO, each time that we estimate the performance
with an updated DT model G̃, we remove previous (θ̃ , ξ̃ ) data
from the training data set D. We perform an exhaustive grid
search in 2 to calculate the ground truth optimum performance
J (θ∗) required to calculate the optimality ratios.

Results on Fig. 13 prove that guided BO, on average,
requires fewer experiments on the linear motor system and has
a smaller variance between repetitions. Let’s put a threshold
on the optimality ratio equal to 1.01. BO requires, on average,
18 experiments on the real plant, excluding the initial data set
experiment, to converge to the optimality ratio of 1.01.; in
contrast, guided BO requires only 10 experiments to perform
the same, a 44% improvement. Indeed, the best among the
100 batches of guided BO accomplishes this in 2 experi-
ments (compared to 6 experiments required for BO, a 66%
improvement), and the worst in 17 experiments, compared to
24 experiments required by BO, a 29% improvement). After
10 experiments, 86% of guided BO iterations attain optimality
ratios better than 1.01, compared to only 14% of the BO
repetitions.
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TABLE VII
CONTROLLER PARAMETERS FOR THE LINEAR MOTOR SETUP AT

ITERATION i = 13 OF A SINGLE BATCH OF
EXPERIMENTS IN FIG. 13

Fig. 15. Optimum controller performance at different iterations on the real
system (linear motor closed-loop step response).

Furthermore, the confidence interval of the guided BO
shrinks faster than BO and both eventually shrink inside the
noise boundary. Looking at the corresponding histogram of all
measured performance on the actual system in Fig. 14, guided
BO does not explore the controller parameters with high-cost
values due to the guidance of its DT. However, BO alone
requires further exploration, eventually leading to its slower
tuning performance.

We summarize the optimum controller gains of guided BO,
standard BO, and the ground truth in Table VII. The guided
BO controller’s Kd is higher than the one obtained with BO,
in line with the step responses shown in Fig. 15, causing
smaller tracking error rate and a minor overshoot. The standard
BO method has a larger Kp attempting to respond rapidly
immediately after we change to a new reference signal. The
optimum response has a maximum overshoot of 0.06%, lower
than the required 1.12% by the metric thread standard.

Figure 15 visualizes the closed-loop response given the
optimum controller gains of guided BO and BO methods after
experiment i = 13 of a batch of experiments. This figure
indicates that the optimum step response tuned by guided
BO converges faster than BO to the ground truth optimum
response shown with the green line. We can rationalize the
system’s behavior based on the aggregated performance met-
rics. Recalling our cost in (23), we notice that the area under
the curve of guided BO response is less than BO. While the
settling and rise times are similar, we realize that the guided
BO reduces the overshoot, resulting in a lower aggregate cost
value closer to the optimum response.

C. Controller Tuning Time

In each experiment on the physical systems, starting from an
initial condition, we measure the step response during 10 s and
0.30 s for the rotary and linear motor systems, respectively.
To decrease the noise level, we repeat it twice per experiment

TABLE VIII
TIME REQUIRED BY EACH CONTROLLER TUNING METHOD

for the DC motor setup and take the average estimated value
per each performance metric.

Each batch of experiments consists of a single experi-
ment conducted for the offline initial data set and specific
experiments per each data-driven tuning, and on average,
121 experiments on DT in the guided BO method. The DT
does not require a sophisticated model that would be time-
consuming to calculate, and each BO iteration on the DT
requires only 0.09 s of overdue computation time. So, the
experiments on the physical system demand longer than the
DT iterations.

For the PGM nominal controller, one needs to identify the
plant model, which takes 7.66 s for the linear system and
40.35 s for the rotary system using the Labview-based real-
time tool introduced in [51]. The PGM method takes 2 ms
to calculate the controller parameters given the identified LTI
model.

The results of the total tuning time are shown in Table VIII.
Our guided BO is more time-efficient than the BO method
because it requires fewer tedious experiments on the physical
system and lower computational overdue by DT iterations.

VII. CONCLUSION

In this paper, we guided the data-driven Bayesian
optimization-based controller with a digital twin according to
the uncertainty level of the GP model. The digital twin is
approximated with available data during the system’s operation
without additional experiments. As long as the digital twin
plant roughly captures the overall behavior of the system far
away from the optimum region, it is going to be helpful to
guide the Bayesian optimizer. We showed that the digital twin
carries out the exploration duty of the optimizer whereas the
exploitation is performed on the real system. We demonstrated
that our guided BO approach considerably improves the con-
troller tuning data efficiency, generalizes across the system
and industrial controller structures, and converges faster to
optimum values. Namely, we proved the guided BO’s superior
performance on a noisy linear servo motor and DC rotary
motor real-time hardware.

A prospective extension of our method is to enhance it
beyond motor systems to any complex plant with changing
behavior. One can investigate how to develop a constrained
version of the guided BO algorithm which can optimally
update the feasible set while maintaining the plant’s safety
properties. Another future direction is to study estimation
methods to obtain the DT plant model by further analyz-
ing excitation signals or various closed-loop identification
or regression methods. Our overall assessment can also be
replaced with a multi-objective optimization using Pareto
without emphasizing any single performance metric. Lastly,
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online validation of the DT model can be integrated with our
guided BO method to discard unnecessary information.
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