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Abstract
We develop for the first time a mathematical framework in which the class of
projection algorithms can be applied to high numerical aperture (NA) phase
retrieval. Within this framework, we first analyze the basic steps of solving
the high-NA phase retrieval problem by projection algorithms and establish
the closed forms of all the relevant projection operators. We then study the
geometry of the high-NA phase retrieval problem and the obtained results are
subsequently used to establish convergence criteria of projection algorithms in
the presence of noise. Making use of the vectorial point-spread-function (PSF)
is, on the one hand, the key difference between this paper and the literature
of phase retrieval mathematics which deals with the scalar PSF. The results of
this paper, on the other hand, can be viewed as extensions of those concern-
ing projection methods for low-NA phase retrieval. Importantly, the improved
performance of projection methods over the other classes of phase retrieval
algorithms in the low-NA setting now also becomes applicable to the high-NA
case. This is demonstrated by the accompanying numerical results which show
that available solution approaches for high-NA phase retrieval are outperformed
by projection methods.
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1. Introduction

Phase retrieval is an important inverse problem in optics which aims at recovering a complex
signal at the pupil plane of an optical system given a number of intensity measurements of its
Fourier transform. It appears in many scientific and engineering fields, including microscopy
[2, 30], astronomy imaging [12, 25], x-ray crystallography [26, 44], adaptive optics [1, 13, 14,
46], etc. For optical systems with low numerical aperture (NA), a vast number of phase retrieval
algorithms have been devised, for example, in [5, 10, 15, 18–20, 27, 35, 39, 51, 55, 57] based
on the Fresnel approximation stating that the intensity distribution in the focal plane and the
complex signal in the pupil plane are related via the Fourier transform [22]. Among solution
approaches for low-NA phase retrieval, the widely used class of projection algorithms, which
can be viewed as descendants of the classical Gerchberg–Saxton algorithm [20], outperforms
the other classes by almost every important performance measure: computational complexity,
convergence speed, accuracy and robustness [39, p 410].

In the great development of industry 4.0, high-NA lenses have played a fundamental role
in high resolution imaging technology, for example, in microscopy and extreme ultraviolet
(EUV) lithography. Retrieving the aberration of such high-NA lenses is critical to the perfor-
mance and maintenance of the high resolution imaging machines, for example, in monitoring
the performance degradation of EUV projection systems in lithography technology due to ther-
mal effects. This challenge can be cast in the framework of the high-NA phase retrieval problem
that will be considered in this paper. For high-NA optical systems, the vector nature of light can-
not be neglected and point-spread-functions (PSFs) are formed according to a more involved
imaging formulation [34, 42, 43, 49], which is called the vectorial PSF to be distinguished
from the scalar one according to the Fresnel diffraction equation. In contrast to low-NA set-
tings, only few solution algorithms have been proposed for phase retrieval in high-NA settings
[9, 23, 56].

Motivated by the rapidly growing application of high-NA optical systems and the scarcity
of solution methods for high-NA phase retrieval, in this paper we develop for the first time
a comprehensive mathematical framework in which the class of projection algorithms can be
applied to the high-NA phase retrieval problem. Within this framework, we first analyze the
basic steps of solving the high-NA phase retrieval problem by projection algorithms and estab-
lish the closed forms of all the relevant projectors. We then study the geometry of the high-NA
phase retrieval problem and the obtained results are subsequently used to establish convergence
criteria of projection algorithms in the presence of noise. Making use of the vectorial PSF is, on
the one hand, the key difference between this paper and the literature of phase retrieval math-
ematics which mostly deals with the scalar PSF, see, for example, [5, 18, 20, 21, 36, 37, 52,
53, 55, 57]. The results of this paper, on the other hand, can be viewed as extensions of those
concerning projection methods for low-NA phase retrieval. Importantly, the improved perfor-
mance of projection methods over the other classes of phase retrieval algorithms in the low-NA
setting [39, p 410] now also becomes applicable to the high-NA case. This is demonstrated
by the accompanying numerical results which show that all available solution approaches for
high-NA phase retrieval are outperformed by projection methods.

The remainder of this paper is organized as follows. Mathematical notation is introduced
in section 1.1 and the vectorial PSF model is recalled in section 1.2. In section 2, several
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feasibility models of the high-NA phase retrieval problem are formulated based on the vectorial
PSF model (data fidelity) and the prior knowledge of the solutions. In section 3, closed forms
of the projectors on the constituent sets of the feasibility models are established. In section 4,
we discuss projection algorithms for solving the feasibility problems in section 2. Section 5 is
devoted to studying the geometry of the high-NA phase retrieval problem where the constituent
sets of feasibility are proven to be prox-regular at the points relevant for the subsequent con-
vergence analysis. Section 6 is devoted to analyzing convergence of projection algorithms for
solving the high-NA phase retrieval in the presence of noise. As the first ingredient of conver-
gence, the pointwise almost averagedness property of projection algorithms is established in
section 6.1 based on the prox-regularity of the component sets proven in section 5. The second
condition of convergence concerning the mutual arrangement of the component sets around
the solution [32, 33] is beyond the analysis of this paper. Convergence criteria are formulated
in section 6.2. Numerical simulations are presented in section 7.

1.1. Mathematical notation

The underlying space in this paper is a finite dimensional Hilbert space denoted by H. The
Frobenius norm denoted by ‖ · ‖ is used for both vector and array objects. Equality, inequali-
ties and mathematical operations such as the multiplication, the division, the square, the square
root, the amplitude | · |, the argument arg(·) and the real part R(·) acting on arrays are under-
stood element-wise. The imaginary unit is j =

√
−1. The distance function associated to a set

Ω ⊂ H is defined by

dist(·,Ω) : H→ R+ : x �→ inf
w∈Ω

‖x − w‖ ,

and the set-valued mapping

PΩ : H ⇒ Ω : x �→ {w ∈ Ω | ‖x − w‖ = dist(x,Ω)} (1)

is the corresponding projector. A selection w ∈ PΩ(x) is called a projection of x on Ω. When
the projectionw is unique, we write PΩ(x) = w instead of PΩ(x) = {w} for brevity. The reflec-
tor associated with Ω is accordingly defined by RΩ ≡ 2PΩ − Id, where Id is the identity
mapping. Since only projections on either affine or compact sets are involved in the anal-
ysis of this paper, the existence of projections is guaranteed. The fixed point set of a self
set-valued mapping T : H ⇒ H is defined by Fix T ≡ {x ∈ H|x ∈ T(x)}, see, for example,
[41, definition 2.1]. An iterative sequence xk+1 ∈ T(xk) generated by T is said to converge
linearly to a point x with rate c ∈ (0, 1) if there exists a number γ > 0 such that

‖xk − x‖ � γck ∀ k ∈ N.

For x ∈ H, Ω ⊂ H and an integer m � 2, we make use of the following notation

[x]m ≡ (x, x, . . . , x)︸ ︷︷ ︸
m times

and [Ω]m ≡ {[w]m|w ∈ Ω} . (2)

Our other basic notation is standard; cf [16, 45, 50]. The open ball with radius δ > 0 and center
x is denoted by Bδ(x).

1.2. Vectorial point-spread-functions

This section presents the imaging formulation considered in the paper. For high-NA optical
systems, PSFs should be modeled according to the vector diffraction theory, see, for example,
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[24, 34, 42, 43, 49]. More specifically, the x, y, z components of the electromagnetic field right
after the lens should be considered separately for the x and y components of the electromag-
netic field just before the lens. Here we consider collimated beams and hence the z component
of the field before the lens is zero. Let the unit electromagnetic fields in the x and y direc-
tions just before the lens respectively produce the fields right after the lens with components
denoted by (EXX(x, y), EXY(x, y), EXZ(x, y)) and (EYX(x, y), EYY(x, y), EYZ(x, y)), where (x, y) are
the coordinates in the lens aperture denoted byP . Let the lens apertureP be normalized to have
radius equal the NA value. Then according to, for example, [42, table 3.1], the latter functions
are given by

EXX(x, y) = 1 − k2
X(x, y)

1 + kZ(x, y)
, EYX(x, y) = −kY(x, y)kX(x, y)

1 + kZ(x, y)
,

EXY(x, y) = −kX(x, y)kY(x, y)
1 + kZ(x, y)

, EYY(x, y) = 1 − k2
Y(x, y)

1 + kZ(x, y)
,

EXZ(x, y) = −kX(x, y), EYZ(x, y) = −kY(x, y), (3)

where (kX(x, y), kY(x, y), kZ(x, y)) is the unit wave vector determined for each point (x, y) of the
lens aperture P and satisfies

max
(x,y)∈P

(
k2
X(x, y) + k2

Y(x, y)
)
= max

(x,y)∈P

(
x2 + y2

)
= NA2,

where the maximum is attainable on the boundary of P and NA is the NA value. In particular,
the following equality will be used frequently in our subsequent analysis:∑

c ∈I
E2

c (x, y) = 2, ∀ (x, y) ∈ P , (4)

where and elsewhere in the paper, the letter c stands for elements of the index set:

I ≡ {XX,XY,XZ,YX,YY,YZ} . (5)

In the sequel, the coordinates (x, y) of two-dimensional arrays objects will be dropped for
brevity, for example, we simply write Ec instead of Ec(x, y).

Each of the right-hand side terms in (3) can be treated as a corresponding amplitude modula-
tion in the entrance pupil for calculation of a PSF according to the Fresnel diffraction equation:

pc(A,Φ) =
∣∣F (Ec · A · ejΦ

)∣∣2, (∀ c ∈ I), (6)

where A and Φ are respectively the amplitude and phase of the collimated beam in the pupil
plane, and F is the two-dimensional Fourier transform. The six constituent PSFs according
to (6) then can be used to calculate the vectorial PSF corresponding to any linear polariza-
tion of light in the entrance pupil. For unspecified polarization state of light, they are added
incoherently as follows:

I(A,Φ) =
∑
c ∈I

pc(A,Φ).

Thus, the vectorial PSF with an additional phase diversity φd is accordingly given by

I(A,Φ,φd) =
∑
c ∈I

∣∣∣F (Ec · A · ej(Φ+φd)
)∣∣∣2. (7)

4
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Remark 1.1 (Phase-diversity phase retrieval). [56, remark 3]. There are two widely
used techniques of acquiring the PSF images for the phase-diversity phase retrieval problem
considered in this paper. First, a phase modulator can be used to introduce the phase diversity
patterns in the pupil plane corresponding to which the images are measured in the focal plane.
Second, the images are registered in several planes parallel and at known distances to the focal
plane. It is well known that the two techniques are mathematically equivalent [22]. However,
in practice each approach to data acquisition has (dis)advantages compared to the other. For
example, the first one requires additional optical instruments (e.g. deformable mirrors) and
suffers approximation in generating the phase diversity patterns while the second one may
suffer inaccuracies in shifting the image detector (e.g. CCD arrays) and differences in signal-to-
noise ratio (SNR) of the acquired images as the distance between the pupil and the image planes
varies. In many practical settings of phase retrieval, the second approach is more preferable than
the first one.

The computational complexity of the vectorial PSF model (7) as a sum of six constituent
components is approximately six times higher than the one of the scalar PSF. There is hence
a trade off between computational complexity and model accuracy in choosing the imaging
model of high-NA phase retrieval. Let us briefly analyze this matter. Figure 1 reports a short
comparison between the scalar and vectorial PSF models for various NA values - 0.15, 0.55
and 0.95 in order from top to bottom. The left-hand side column of figure 1 shows PSFs with-
out phase aberration and the second one shows those with phase aberration. All the PSFs are
normalized to have total intensity one. In each plot, a pair of corresponding cross-sections of
the scalar (the blue curves) and vectorial (the red curves) PSFs are shown. Note that only the
central parts containing the main information of the cross-sections are plotted for the sake of
clarity. It is clear that for low-NA values (0.15), the use of the vectorial PSF is superfluous
as the two models are almost identical while the vectorial one is much more computationally
expensive. The scalar and vectorial PSF models differ more for higher-NA imaging systems
and for particular application purposes their discrepancy can become substantial for NA values
from 0.55. It is worth noting that the larger the NA value, the more concentrated the PSF, and
hence the larger the scale of the PSF.

2. Problem formulation

2.1. High-NA phase retrieval

This paper considers the same setting of high-NA phase retrieval as in [56]. For an unknown
phase aberration Φ ∈ Rn×n, let rd ∈ R

n×n
+ be the measurement of m PSF images I(A,Φ,φd)

generated by (7) with phase diversities φd (d = 1, 2, . . . , m). The high-NA phase retrieval
problem is to restore Φ given rd and φd (d = 1, 2, . . . , m) as well as the physical param-
eters of the optical system. Mathematically, we consider the problem of finding Φ ∈ Rn×n

such that

rd =
∑
c ∈I

∣∣∣F (Ec · A · ej(Φ+φd)
)∣∣∣2 + wd (d = 1, 2, . . . , m) , (8)

where A is the possibly unknown amplitude of the generalized pupil function (GPF) and wd ∈
Rn×n (d = 1, 2, . . . , m) represent the discrepancies between the theoretically predicted data
and the actually measured one, for example, due to noise and model deviations.

5
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Figure 1. Comparison between the scalar and vectorial PSF models for various NA
values - 0.15, 0.55 and 0.95 in order from top to bottom. In each plot, a pair of corre-
sponding cross-sections of the scalar (in blue color) and vectorial (in red color) PSFs are
shown. Only the central parts containing the main information of the cross-sections are
plotted for the sake of clarity. The PSFs on the left-hand side are without phase aberra-
tion (Φ = 0) and the ones on the right-hand side are with phase aberration (Φ �= 0). All
the PSFs are normalized to have total intensity one. The two PSF models differ more for
higher NA values and the discrepancy becomes substantial for NA from 0.55. Note that
the larger the NA value, the more concentrated the PSF, and hence the larger the scale
of the PSF.
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2.2. Feasibility models

In this section, we formulate feasibility models of the phase retrieval problem (8) in two sce-
narios of application—known and unknown amplitude of the GPF. According to the vectorial
PSF (7), we consider the underlying space

H ≡ C
n×n × C

n×n × · · · × C
n×n︸ ︷︷ ︸

6 times

.

In the sequel, for each (xXX, xXY, xXZ, xYX, xYY, xYZ) ∈ H and z ∈ Cn×n, we make use of the
following notation in accordance with (5):

(xc)c∈I ≡ (xXX, xXY, xXZ, xYX, xYY, xYZ) ,

(xc · z)c∈I ≡ (xXX · z, xXY · z, xXZ · z, xYX · z, xYY · z, xYZ · z) .

2.2.1. Unknown GPF amplitude. The following set captures the first constraint of a solution
to (8) as an element of H:

Ω0 ≡
{

(Ec · x)c∈I ∈ H | x ∈ C
n×n
}

, (9)

where the six matrices Ec (c ∈ I) are defined in (3). Note that Ω0 is linear subspace of H
with dim(Ω0) being one sixth of dim(H). For d = 1, 2, . . . , m, the intensity constraint set
corresponding to phase diversity φd is given by

Ωd ≡
{

(xc)c∈I ∈ H |
∑
c∈I

∣∣F (xc · ejφd
)∣∣2 = rd

}
. (10)

The high-NA phase retrieval problem (8) then can be addressed via the following (m + 1)-set
feasibility:

find x ∈
m⋂

d=0

Ωd. (11)

The following two-set feasibility models formulated in the product spaces, which are equivalent
to (11) in the case of consistent feasibility (i.e. the intersection is nonempty) [47], are widely
used in practice:

find u ∈ A ∩ B ⊂ Hm, (12)

find u ∈ D ∩ B+ ⊂ Hm+1, (13)

where

A ≡ {(x, x, . . . , x) ∈ Hm|x ∈ Ω0} , B ≡ Ω1 × Ω2 × · · · × Ωm,

D ≡
{

(x, x, . . . , x) ∈ Hm+1|x ∈ H
}

, B+ ≡ Ω0 × Ω1 × · · · × Ωm.
(14)
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2.2.2. Known GPF amplitude. When the amplitudeA of the GPF is known, it brings stronger
constraint on the solutions of (8) than (9):

χ ≡
{(

Ec · A · ejΦ
)

c∈I ∈ H|Φ ∈ R
n×n
}
. (15)

Similar to the case of unknown GPF amplitude, the phase retrieval problem (8) then can be
addressed via one of the following feasibility models:

find x ∈ χ ∩ Ω1 ∩ Ω2 ∩ · · · ∩ Ωm, (16)

find u ∈ Aχ ∩ B, (17)

find u ∈ D ∩ Bχ, (18)

where

Aχ ≡ {(x, x, . . . , x) ∈ Hm|x ∈ χ} , Bχ ≡ χ× Ω1 × Ω2 × · · · × Ωm. (19)

Remark 2.1 (Inconsistent feasibility). Due to noise and model deviations, the inter-
sections in (11)–(13) and (16)–(18) are empty for all practical purposes. Keeping in mind,
however, that projection algorithms as fixed point operators are not limited to finding points in
the intersection of the sets. The convergence of their iterations to fixed points is desirable and
sufficient in all scenarios of feasibility. Such fixed points should admit interpretation in terms of
meaningful (approximate) solutions to the practical problem captured by the feasibility model.
We refer the reader to [39, p 414] and [57, remark 5] for more details on inconsistency of
feasibility formulations of (low-NA) phase retrieval.

Remark 2.2 (Effectiveness of the feasibility approach). It was observed in the
recent benchmark paper [39, p 410] concerning low-NA phase retrieval that algorithms built
on feasibility models outperform all other classes of solution methods by almost every impor-
tant performance measure. This observation has strongly encouraged the current work which
extends this class of algorithms for high-NA phase retrieval.

Remark 2.3 (Choice of feasibility models). Depending on the specific setting of phase
retrieval, one feasibility model can result in better approximate solutions than others.

3. Calculation of projectors

The decisive step of solving feasibility problems is to calculate the projectors associated to the
relevant sets. The results of this section, which can be viewed as the high-NA extensions of the
ones concerning projection operators for low-NA phase retrieval [5, 18, 21, 36, 37, 52], enable
us to address the feasibility models formulated in section 2.2 using projection algorithms.

For convenience let us first introduce further notation and preliminary results. For each
d = 1, 2, . . . , m we define the operator Md : H→H by

x = (xc)c∈I �→ Md(x) ≡
(
F
(
xc · ejφd

))
c∈I , (20)

which is a unitary transform and its inverse is given by

M−1
d : x = (xc)c∈I �→

(
F−1 (xc) · e−jφd

)
c∈I . (21)

8
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We then define the matrix-valued function Gd : H→ R
n×n
+ by

x = (xc)c∈I ∈ H �→ Gd(x) ≡
√∑

c∈I
|Md(x)c|2 ∈ R

n×n
+ . (22)

Fact 3.1 (Continuity of Gd). The matrix-valued function Gd is continuous on H.

Proof. Since compositions of continuous mappings are continuous, the statement follows
from the continuity of Md and the elementwise amplitude and summation operations. �

We define the set Sd ⊂ H by

Sd ≡
{

x = (xc)c∈I ∈ H |
∑
c∈I

|xc|2 = rd

}
. (23)

In the sequel, we also make use of the following set of indices:

J ≡ {ξ = (ξ1, ξ2)|1 � ξ1, ξ2 � n},

and for any x = (xc)c ∈I ∈ H, we denote x[ξ] ≡ (xc[ξ])c ∈I and Sd[ξ] ≡ {x[ξ]|x ∈ Sd}. In
other words, the index of discretized two-dimensional signals (for example, xc for each c ∈ I)
is specified by ξ in square brackets while the index of higher-dimensional arrays such as
x = (xc)c ∈I ∈ H or Sd is defined inductively.

Fact 3.2 (Projection on Sd). It holds that

PSd (z) =
∏
ξ∈J

PSd[ξ] (z[ξ]) (∀ z ∈ H), (24)

where

PSd[ξ] (z[ξ]) =

⎧⎪⎨⎪⎩
√

rd[ξ]
‖z[ξ]‖ · z[ξ] if ‖z[ξ]‖ �= 0,{
s ∈ C

6 | ‖s‖2 = rd[ξ]
}

if ‖z[ξ]‖ = 0.
(25)

Proof. The product structure (24) is inherent from the product structure of the set Sd, that is,

Sd =
∏
ξ∈J

Sd[ξ] and hence PSd (z) =
∏
ξ∈J

PSd[ξ] (z[ξ]) (∀ z ∈ H).

Let us compute PSd[ξ] (z[ξ]) for each index ξ ∈ J . Note that by its definition the set Sd[ξ] is
the sphere in C6 centered at the origin with radius

√
rd[ξ], that is,

Sd[ξ] =
{

s ∈ C
6 | ‖s‖2 = rd[ξ]

}
. (26)

Hence its associated projector PSd[ξ] admits the closed form (25) as claimed. �

9
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The next two results are widely known in the literature of feasibility analysis [47]. Recall
the notation in (2).

Fact 3.3 (Projection on diagonals, PD). For any w = (w0,w1, . . . ,wm) ∈ Hm+1 it
holds that

PD(w) = [w]m+1 with w ≡ 1
m + 1

m∑
d=0

wd.

Fact 3.4 (Projection on product sets, PB). For any w = (w1,w2, . . . ,wm) ∈ Hm it
holds that

PB(w) =
m∏

d=1

PΩd (wd).

We can now calculate the projectors associated with the sets defined in section 2.2.

Lemma 3.5 (Projection on Ω0). For any x = (xc)c∈I ∈ H it holds that

PΩ0 (x) = (Ec · z)c∈I with z ≡ 1
2

∑
c ∈I

(Ec · xc) .

Proof. By definition (9) of Ω0 and the definition of projector in (1),
(
Ec · a · ejΨ

)
c∈I is a

projection of x on Ω0 if and only if (a,Ψ) is a solution to the following minimization problem:

min
a∈Rn×n

+ ,Ψ∈Rn×n

∥∥x −
(
Ec · a · ejΨ

)
c∈I
∥∥2
. (27)

The objective function of (27) can be rewritten as

∥∥x −
(
Ec · a · ejΨ

)
c∈I
∥∥2

= ‖x‖2 + ‖(Ec · a)c∈I‖2 − 2R

((∑
c∈I

(Ec · a · xc)

)
· e−jΨ

)
.

The problem (27) is hence equivalent to the following one:

min
a∈Rn×n

+ ,Ψ∈Rn×n
‖(Ec · a)c ∈I‖2 − 2R

((∑
c ∈I

(Ec · a · xc)

)
· e−jΨ

)
. (28)

The structure of (28) allows us to solve for Ψ and a successively though its objective function
is not completely separable in a and Ψ. Indeed, since a has no influence on the argument of∑

c∈I (Ec · a · xc), the set of optimal Ψ is given by{
Ψ ∈ R

n×n|Ψ ∈ arg

(∑
c∈I

(Ec · xc)

)}
. (29)

Plugging the optimalΨ above into (28), we arrive at minimizing a quadratic function of variable
a. Taking into account that

∑
c∈I |Ec|2 = 2Jn by (4) where Jn is the all-ones matrix of size

n × n, we obtain by direct calculation that the unique optimal a is given by

a =

∣∣∑
c∈I (Ec · xc)

∣∣∑
c∈I |Ec|2

=
1
2

∣∣∣∣∣∑
c∈I

(Ec · xc)

∣∣∣∣∣ .
10
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Note that for any index ξ ∈ J , if a[ξ] = 0, then Ψ[ξ] does not play any role in the product
a[ξ]ejΨ[ξ]. Otherwise, Ψ[ξ] is uniquely determined in view of (29). Hence, the unique optimal
solution to (27) is given by

z = a · ejΨ =
1
2

∑
c∈I

(Ec · xc) .

The proof is complete. �

Lemma 3.6 (Projection on Ωd). For each d = 1, 2, . . . , m and any x ∈ H it holds that

PΩd (x) = M−1
d (y),

where y ∈ H is characterized as follows.

(a) If Gd(x)[ξ] �= 0, then y[ξ] =
√

rd [ξ]
Gd(x)[ξ] · Md(x)[ξ].

(b) If Gd(x)[ξ] = 0, then y[ξ] varies on the set Sd[ξ] defined in (26).

Proof. By definitions (10), (20) and (23) of Ωd, Md and Sd respectively, it holds that

Sd = Md(Ωd).

Then by the unitarity property of Md, we have that

PΩd (x) = M−1
d

(
PMd(Ωd)(Md(x))

)
= M−1

d

(
PSd (Md(x))

)
(∀ x ∈ H) .

Plugging the formulas of Md, M−1
d and PSd respectively given by (20), (21) and fact 3.2 into

the above identity, we obtain the characterization of PΩd as claimed. �

Lemma 3.7 (Projection on χ). For any x = (xc)c∈I ∈ H, it holds that

Pχ(x) =

{(
Ec · A · ejΨ

)
c∈I |Ψ ∈ arg

(∑
c∈I

(Ec · A · xc)

)}
. (30)

Proof. By definition (15) of χ and the definition of projector in (1),
(
Ec · A · ejΨ

)
c∈I is a

projection of x on χ if and only if Ψ is a solution to the following minimization problem:

min
Ψ∈Rn×n

∥∥x −
(
Ec · A · ejΨ

)
c∈I
∥∥2
. (31)

The objective function of (31) can be rewritten as

∥∥x −
(
Ec · A · ejΨ

)
c∈I
∥∥2

= −2R

(
e−jΨ ·

∑
c∈I

(Ec · A · xc)

)
+ C,

where C ≡ ‖x‖2 + ‖(Ec · A)c∈I‖2 is independent of Ψ. The problem (31) is hence equivalent
to the following one:

max
Ψ∈Rn×n

R

(
e−jΨ ·

∑
c∈I

(Ec · A · xc)

)
. (32)

11
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It is clear that the solution set of the problem (32) is given by{
Ψ ∈ R

n×n|Ψ ∈ arg

(∑
c∈I

(Ec · A · xc)

)}
.

The proof is complete. �

Lemma 3.8 (Projection on A). For any w = (w1,w2, . . . ,wm) ∈ Hm, it holds that

PA(w) =
[
(Ec · z)c∈I

]
m

with z ≡ 1
2

∑
c ∈I

(Ec · wc) ,

where w = (wc)c∈I ≡
(
1/m
)∑m

d=1wd.

Proof. We first note that the set

L ≡ {[x]m ∈ Hm|x ∈ H} (33)

is a linear subspace of Hm and contains the set A. Then, for any w ∈ Hm and a ∈ A, it holds
that 〈w − PL(w), a − PL(w)〉 = 0, and thus

‖w − a‖2 = ‖PL(w) − a‖2 + ‖PL(w) − w‖2.

Since ‖PL(w) − w‖ = dist(w, L) is independent of the points of A, we have that

arg min
a∈A

‖w − a‖ = arg min
a∈A

‖PL(w) − a‖ ∀ w ∈ Hm.

In other words,

PA(w) = PA (PL(w)) ∀ w = (w1,w2, . . . ,wm) ∈ Hm.

By fact 3.3, the projector PL admits the following form:

PL(w) = [w]m with w ≡ 1
m

m∑
d=1

wd. (34)

This together with the definition of A in (14) yields that

PA(w) = PA ([w]m) =
[
PΩ0 (w)

]
m
. (35)

The claimed characterization of PA then follows from (35) and lemma 3.5. �

Lemma 3.9 (Projection on Aχ). For any w = (w1,w2, . . . ,wm) ∈ Hm, it holds that

PAχ(w) =

{[(
Ec · A · ejΨ

)
c∈I
]

m
|Ψ ∈ arg

(∑
c∈I

(Ec · A · wc)

)}
,

where w = (wc)c∈I ≡
(
1/m
)∑m

d=1wd.

12
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Proof. The proof is similar to that of lemma 3.8. We first observe that the linear subspace L
defined in (33) contains the set Aχ. As a consequence, it holds that

PAχ(w) = PAχ (PL(w)) ∀ w ∈ Hm.

In view of fact 3.3, the projector PL admits the explicit form (34). This together with the
definition of Aχ in (19) yields that

PAχ(w) = PAχ ([w]m) =
[
Pχ (w)

]
m
. (36)

The claimed characterization of PAχ then follows from (36) and lemma 3.7. �

Remark 3.10 (Projections on B+ and Bχ). The projectors PB+ and PBχ are analogous
to PB in view of fact 3.4.

Remark 3.11 (Nonconvexity). Lemmas 3.6, 3.7 and 3.9 show that the projectors PΩd , Pχ

and PAχ are not single-valued in general. This particularly implies that the feasibility models
of high-NA phase retrieval formulated in section 2.2 are nonconvex.

4. Projection algorithms

Projection methods for phase retrieval can be viewed as descendants of the famous Gerch-
berg–Saxton algorithm [20]. Its expansions to become the most widely used class of algorithms
has been motivated by the rapidly widening scope of phase retrieval applications. Having cal-
culated the relevant projectors in section 3, we can implement every projection algorithm for
solving the feasibility models formulated in section 2.2. This section will briefly recall widely
known projection methods for solving both two and more-set feasibility problems, typical
examples of which are (12) and (11), respectively.

Widely known projection methods for solving two-set feasibility are recalled next.

(a) The alternating projection (AP) algorithm

TAP[A, B] ≡ PAPB.

(b) The Douglas–Rachford (DR) algorithm

TDR[A, B] ≡ 1
2

(RARB + Id) = PARB − PB + Id,

and its Krasnoselski–Mann relaxation (KM–DR algorithm)

TKM–DR ≡ βTDR[A, B] + (1 − β)Id,

where β ∈ (0, 1] is the tuning parameter.
(c) The hybrid projection-reflection (HPR) algorithm [6, equation (19)]:

THPR ≡ PA ((1 + β)PB − Id) − βPB + Id,

where β ∈ (0, 1] is the tuning parameter. As shown in [6, proposition 1], the HPR
algorithm is equivalent to the Fienup’s hybrid input–output method [18] when A is a linear
subspace.

13
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(d) The relaxed-averaged-alternating-reflections (RAAR) algorithm [35]:

TRAAR[A, B] ≡ β

2
(RARB + Id) + (1 − β)PB

= βTDR[A, B] + (1 − β)PB,

where β ∈ (0, 1] is the tuning parameter.
(e) The relaxed-reflect–reflect (RRR) algorithm [17, algorithm 1]:

TRRR[A, B] ≡ βPA (2PB − Id) − βPB + Id,

where β ∈ (0, 1] is the tuning parameter.
(f ) The DRAP algorithm [54]:

TDRAP ≡ PA ((1 + β)PB − βId) − β (PB − Id) ,

where β ∈ [0, 1] is the tuning parameter. This algorithm covers both TDR (by setting
β = 1) and TAP (by setting β = 0). When A is affine, TDRAP is convex combination
of these two operators [57]. The latter also explains its name DRAP which stands for
Doughlas–Rachford and AP.

Solution algorithms for solving the (m + 1)-set feasibility are the cyclic projection and
the cyclic versions of two-set feasibility based algorithms.

(g) The cyclic projection algorithm

TCP[Ω0,Ω1, . . . ,Ωm] ≡ PΩ0PΩ1 · · ·PΩm .

(h) The cyclic DR algorithm proposed and analyzed in the context of convex feasibility [8]:

TCDR[Ω0,Ω1, . . . ,Ωm] ≡ TDR[Ω0,Ω1]TDR[Ω1,Ω2] · · · TDR[Ωm,Ω0].

(i) The cyclic RAAR algorithm proposed in the context of low-NA phase retrieval [39]:

TCRAAR[Ω0,Ω1, . . . ,Ωm] ≡ TRAAR[Ω0,Ω1]TRAAR[Ω1,Ω2] · · · TRAAR[Ωm,Ω0].

( j) The cyclically anchored Douglas–Rachford algorithm proposed in the context of convex
set feasibility [7]:

TCADR[Ω0,Ω1, . . . ,Ωm] ≡ TDR[Ω0,Ω1]TDR[Ω0,Ω2] · · · TDR[Ω0,Ωm].

The cyclic versions of TKM–DR, TRRR and TDRAP as well as the cyclically anchored versions
of TKM–DR, TRAAR, TRRR and TDRAP can also be designed similarly. Note that all the sets Ωd (d =
0, 1, . . . , m) are treated equally in the cyclic-type algorithms while the setΩ0 distinctively plays
the role of an anchor for the others in the cyclically-anchored-typealgorithms. The latter can be
supported by the fact that Ω0 represents a mathematical constraint while the other sets capture
the physical measurements. In fact, the distinctive role of Ω0 has been taken into account in
(12), the problem formulation we mainly work with in sections 6 and 7.

Remark 4.1 (Multi-valuedness of projection algorithms). Since the projectors pre-
sented in section 3 are potentially multi-valued, the above algorithms built on them are in
general not single-valued.

14
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Remark 4.2 (choice of algorithms). Depending on the specific setting of phase
retrieval, one algorithm can result in better approximate solutions than others, see also
remark 2.3. It is worth mentioning that AP is eventually needed for suppressing noise and
model deviations regardless of the chosen algorithm.

5. Geometry of high-NA phase retrieval

In this section we analyze the geometry of the high-NA phase retrieval problem. The sets
constituting the feasibility models in section 2 will be shown to be prox-regular at the points rel-
evant to our subsequent convergence analysis in section 6. We mention that the prox-regularity
property in the context of phase retrieval was first analyzed by Luke [36, section 3.1].

Definition 5.1 (Prox-regularity) [48]. A set Ω is prox-regular at a point x̂ ∈ Ω if the
associated projector PΩ is single-valued around x̂. Ω is prox-regular if it is prox-regular at
every of its points.

Example 5.2 (Prox-regularity of Ω0, A and D). Any closed and convex set is prox-
regular [50]. In particular, the linear subspaces Ω0, A and D defined in (9) and (14) are
prox-regular.

The next two assertions follow from the definition of prox-regularity. Recall the notation
[·]p in (2).

Fact 5.3. Let Ω ⊂ H be prox-regular at a point x̂ ∈ Ω and p � 2 be an integer. Then the set
Ω ≡ {[x]p ∈ Hp|x ∈ Ω} is prox-regular at [x̂]p.

Proof. By definition 5.1, there is a neighborhood U of x̂ on which PΩ is single-valued. Let
us define the set U ⊂ Hp by

U ≡
{

[x̂]p + (r1, r2, . . . , rp) ∈ Hp | x̂ +
1
p

p∑
k=1

rk ∈ U

}
. (37)

Note that U is a neighborhood of [x̂]p since U is a neighborhood of x̂. It suffices to check that
PΩ is single-valued on U . Indeed, take an arbitrary point

(x1, x2, . . . , xp) = [x̂]p + (r1, r2, . . . , rp) ∈ U .

Then in view of (37), it holds that

x̄ ≡ 1
p

p∑
k=1

xk = x̂ +
1
p

p∑
k=1

rk ∈ U,

and hence PΩ(x̄) is singleton since PΩ is single-valued on U. Using the reasoning in the proof of
lemma 3.8, we have PΩ(x1, x2, . . . , xp) =

{
[PΩ(x̄)]p

}
which is singleton. Hence PΩ is singled-

valued on U and the proof is complete. �

15



Inverse Problems 37 (2021) 125005 N Hieu Thao et al

Fact 5.4 (Prox-regularity of products). For each k = 1, 2, . . . , p let Ωk be prox-regular
at x̂k. Then the product set

∏p
k=1 Ωk is prox-regular at (x̂1, x̂2, . . . , x̂p).

Proof. The proof follows from the definition of prox-regularity and the separation property
of projection on product sets. �

We can now analyze the prox-regularity of the other sets defined in section 2.2.

Proposition 5.5 (Prox-regularity of Ωd). For each d = 1, 2, . . . , m the set Ωd defined
in (10) is prox-regular at every point x̂ ∈ Ωd with Gd(x̂) nonzero everywhere.

Proof. Consider a point x̂ ∈ Ωd with Gd(x̂) nonzero everywhere. By definition 5.1, it suffices
to find a neighborhood of x̂ on which PΩd is single-valued. Let us define the set Ud by

Ud ≡ {x̂ + r|r ∈ H, Gd(r) < Gd(x̂)} . (38)

Since Gd is continuous by fact 3.1, it holds that

Gd(r) → 0 in R
n×n
+ as r → 0 in H.

This together with Gd(x̂) being nonzero everywhere implies that Ud is a neighborhood of x̂. We
will show that PΩd is single-valued on Ud . Indeed, let us take an arbitrary point x = x̂ + r ∈ Ud

and first check that Gd(x) �= 0 for all entries. Using (22), the linearity of Md and the triangle
inequality successively, we have that

Gd(x) = Gd(x̂ + r) =

√∑
c∈I

|Md(x̂ + r)c|2

=

√∑
c∈I

|Md(x̂)c + Md(r)c|2

�
√∑

c ∈I

(
|Md(x̂)c| − |Md(r)c|

)2
. (39)

Suppose on the contrary that Gd(x)[ξ] = 0 for some index ξ ∈ J . Then (39) implies that

|Md(x̂)c| [ξ] = |Md(r)c| [ξ] ∀ c ∈ I.

This in particular yields Gd(x̂)[ξ] = Gd(r)[ξ] which is a contradiction to (38) as x̂ + r ∈ Ud.
Hence we have Gd(x) �= 0 for all entries as claimed. Now by lemma 3.6, PΩd (x) is the singleton{

M−1
d (y)

}
, where y is uniquely determined. The proof is complete. �

Proposition 5.6 (Prox-regularity of χ). Suppose that the amplitudeA is nonzero every-
where. Then the set χ defined in (15) is prox-regular.
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Proof. Let us consider an arbitrary point x̂ = (x̂c)c∈I ∈ χ. By definition 5.1, it suffices to
find a neighborhood of x̂ on which Pχ is single-valued. Let us define the set Uχ by

Uχ ≡

⎧⎨⎩x̂ + (rc)c∈I ∈ H |
√∑

c∈I
|rc|2 <

√
2A

⎫⎬⎭ . (40)

SinceA is nonzero everywhere, the set Uχ defined in (40) is a neighborhood of x̂. We will show
that Pχ is single-valued on Uχ. Take an arbitrary point x = (xc)c∈I = x̂ + (rc)c∈I ∈ Uχ. Then
using the triangle inequality, the Cauchy–Schwarz inequality, (15), (4) and (40) successively,
we get that ∣∣∣∣∣∑

c∈I
(Ec · A · xc)

∣∣∣∣∣ =
∣∣∣∣∣∑

c∈I
(Ec · A · (x̂c + rc))

∣∣∣∣∣
�
∣∣∣∣∣∑

c∈I
(Ec · A · x̂c)

∣∣∣∣∣−
∣∣∣∣∣∑

c∈I
(Ec · A · rc)

∣∣∣∣∣
�
∣∣∣∣∣∑

c∈I
(Ec · A · x̂c)

∣∣∣∣∣−
√∑

c∈I
(Ec · A)2 ·

√∑
c∈I

|rc|2

=
∑
c∈I

(Ec · A)2 −
√∑

c∈I
(Ec · A)2 ·

√∑
c∈I

|rc|2

= 2A2 −
√

2 A ·
√∑

c∈I
|rc|2 > 0.

This implies that
∑

c ∈I (Ec · A · xc) is nonzero everywhere. Hence, by lemma 3.7, Pχ(x) is
the singleton

{(
Ec · A · ejΨ

)
c ∈I
}

, where Ψ ∈ Rn×n is uniquely given by (30). The proof is
complete. �

Proposition 5.7 (Prox-regularity of Aχ). Suppose that the amplitude A is nonzero
everywhere. Then the set Aχ defined in (19) is prox-regular at every point [x̂]m with x̂ ∈ χ.

Proof. The proof follows from proposition 5.6 and fact 5.3. �

Proposition 5.8 (Prox-regularity of B, B+ and Bχ). The following statements hold
true.

(a) The set B defined in (14) is prox-regular at every point (x̂1, x̂2, . . . , x̂m) ∈ B with Gd(x̂d)
nonzero everywhere (∀ d = 1, 2, . . . , m).

(b) The set B+ defined in (14) is prox-regular at every point (x̂, x̂1, x̂2, . . . , x̂m) ∈ B+ with
Gd(x̂d) nonzero everywhere (∀ d = 1, 2, . . . , m).

(c) Suppose that the amplitude A is nonzero everywhere. Then the set Bχ defined in (19)
is prox-regular at every point (x̂, x̂1, x̂2, . . . , x̂m) ∈ Bχ with Gd(x̂d) nonzero everywhere
(∀ d = 1, 2, . . . , m).
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Proof. (a) By proposition 5.5, for each d = 1, 2, . . . , m there exists a neighborhood Ud of
x̂d on which PΩd is single-valued. This combined with fact 3.4 yields that PB =

∏m
d=1PΩd is

single-valued in the neighborhood
∏m

d=1Ud of (x̂1, x̂2, . . . , x̂m). This yields the prox-regularity
of B at this point as claimed. (b) This part is also encompassed by part (a) since Ω0 is prox-
regular in view of example 5.2. (c) Thanks to proposition 5.6, there exists a neighborhood
Uχ of x̂ on which Pχ is single-valued. By proposition 5.5, for each d = 1, 2, . . . , m there
exists a neighborhood Ud of x̂d on which PΩd is single-valued. We thus have in view of
remark 3.10 that PBχ = Pχ ×

∏m
d=1PΩd is single-valued on the neighborhood Uχ ×

∏m
d=1Ud

of (x̂, x̂1, x̂2, . . . , x̂m). This yields the prox-regularity of Bχ at this point as claimed. The proof
is complete. �

Remark 5.9. The condition that A are nonzero everywhere imposed in propositions 5.6, 5.7
and 5.8(c) physically means that the entire aperture of the imaging system is illuminated.

6. Convergence analysis

Since the feasibility models of high-NA phase retrieval formulated in section 2.2 are noncon-
vex (remark 3.11), the projectors upon which our algorithms are based are not nonexpansive
(Lipschitz continuous with constant 1). As a result, the tools of convex analysis and mono-
tone/averaged operator theory (for example, [3, 4]) are not directly applicable to the problem
under consideration. Recently, however, a framework has been established that accommo-
dates fixed point iterations built from compositions and averages of set-valued, expansive
mappings [41]. The extended analysis scheme is based on the theory of pointwise almost
averaged mappings and has been applied to prove, for the first time, local (linear) conver-
gence of fundamental algorithms like cyclic projections and relaxed DR for solving incon-
sistent, nonconvex feasibility problems; see, for example, [15, 38, 54, 55, 57]. It is worth
mentioning that (low-NA) phase retrieval has been a main motivation of the mathematical
development in [41]. In this paper, we also follow the analysis scheme of the aforemen-
tioned paper, according to which convergence of the iterative sequences generated by a fixed
point operator T is guaranteed by the pointwise almost averagedness of T and the metric sub-
regularity of the mapping Id− T on the relevant regions. The contribution of this section
concerns the first condition of convergence. The almost averagedness property of projection
algorithms will be derived from the geometry of the high-NA phase retrieval problem analyzed
in section 5.

Although being derived from the general scheme of [41], convergence analysis is different
for each projection method, depending on its fixed point set and its complexity, especially for
solving nonconvex and inconsistent feasibility problems. In this section, we analyze the AP
algorithm for high-NA phase retrieval in the presence of noise. We consider the two-set feasi-
bility model (12) in the inconsistent setting, i.e. the sets do not intersect. It is worth emphasizing
that the class of projection methods for high-NA phase retrieval is first considered in this paper,
and thus the obtained results are new from the application point of view, even in the consistent
case.
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6.1. Pointwise almost averagedness

The following property is taken from definition 2.2 and proposition 2.1 of [41].

Definition 6.1 (Pointwise almost averaged mappings). A fixed point mapping T :
H ⇒ H is pointwise almost averaged at a point y on a set Ω ⊂ H with violation ε � 0 and
averaging constant α ∈ (0, 1) if for all y+ ∈ T(y), z ∈ Ω and z+ ∈ T(z), it holds that

∥∥z+ − y+
∥∥2 � (1 + ε) ‖z − y‖2 − 1 − α

α

∥∥(z+ − z) − (y+ − y)
∥∥2
.

When the violation ε = 0, the quantifiers ‘almost’ and ‘violation’ in definition 6.1 are
dropped and the property goes back to the conventional averagedness property, see, for
example, [4]. When the property holds for every point y ∈ Ω with the same violation and aver-
aging constant, the quantifiers ‘pointwise’ and ‘at a point’ in definition 6.1 are dropped. The
property is well defined for any averaging constant α > 0, not necessarily limited to α ∈ (0, 1)
though the latter is often of the main interest.

Example 6.2 (Projection on convex sets). The projectors associated with closed and
convex sets are globally averaged with averaging constant α = 1/2 (i.e. firmly nonexpansive),
see, for example, [11, theorem 2.2.21].

The following statement is a consequence of widely known results concerning projections
on nonconvex sets, see, for example, [28, theorem 2.14].

Proposition 6.3 (Projection on prox-regular sets). Let Ω be closed and prox-regular
at x̂ ∈ Ω. Then given an arbitrarily small number ε > 0, there exists a neighborhood of x̂
(depending on ε) on which PΩ is almost averaged with violation ε and averaging constant
α = 1/2.

The next property of pointwise almost averaged mappings is needed [41, proposition
2.4(ii)]. The version specialized to the problem (12) is presented here for brevity.

Proposition 6.4 (Pointwise almost averagedness of composite mappings). Let
Tk : H ⇒ H for k = 1, 2 be pointwise almost averaged on Uk at all yk ∈ Sk with violation εk �
0 and averaging constant αk ∈ (0, 1). If T2 (U2) ⊆ U1 and T2 (S2) ⊆ S1, then the composite
mapping T ≡ T1 ◦ T2 is pointwise almost averaged on U2 at all y ∈ S2 with violation ε and
averaging constant α given by

ε = ε1 + ε2 + ε1ε2; α =
2 max{α1,α2}

1 + max{α1,α2}
.

The next result links the prox-regularity of the sets in (12) with the almost averagedness of
the AP operator.

Proposition 6.5 (Almost averagedness of TAP). Let b̂ ≡ (x̂1, x̂2, . . . , x̂m) ∈ B, where
x̂d ∈ Ωd with Gd(x̂d) nonzero everywhere (∀ d = 1, 2, . . . , m). Then given any number ε > 0,
there is a neighborhood of b̂, denoted by Uε(b̂), on which the AP operator TAP ≡ PAPB

associated with (12) is almost averaged with violation ε and averaging constant α = 2/3.
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Proof. By proposition 5.5, the sets Ωd are prox-regular at x̂d as Gd(x̂d) are nonzero every-
where (∀ d = 1, 2, . . . , m). Thanks to fact 5.4, the set B is prox-regular at b̂. Then by proposition
6.3, there exists a neighborhood Uε(b̂) of b̂ on which the projector PB is almost averaged
with violation ε and averaging constant 1/2. On the other hand, since A is convex in view of
example 5.2, the projector PA is globally averaged with averaging constant 1/2 (i.e. firmly
nonexpansive) in view of example 6.2. Thus by proposition 6.4, the composite mapping
TAP ≡ PAPB is almost averaged on Uε(b̂) with violation ε and averaging constant α = 2/3 as
claimed. �

6.2. Convergence statements

The goal of this section is to combine the results of section 6.1 with the analysis scheme of
[41, section 2.2] to obtain convergence criteria for the AP algorithm for solving (12) in the
inconsistent setting. The following notion of metric subregularity is a cornerstone of variational
analysis and optimization theory with many important applications, such as in establishing
calculus rules for subdifferentials and coderivatives [29, 45, 50] and in analyzing stability and
convergence of numerical algorithms, see, for example, [16, 31].

Definition 6.6 (Metric subregularity on a set). A set-valued mapping Θ : H ⇒ H is
metrically subregular on U ⊂ H for ŷ ∈ H relative to Λ ⊂ H with modulus κ > 0 if

κdist(x,Θ−1(ŷ) ∩ Λ) � dist(ŷ,Θ(x)), ∀ x ∈ U ∩ Λ.

When U is some neighborhood of a point x̂ ∈ Θ−1(ŷ), the property is called metric subregu-
larity of Θ at x̂ for ŷ relative to Λ.

The next lemma is a specification of [41, corollary 2.3] to our target application.

Lemma 6.7 (Linear convergence with metric subregularity). Let T : H ⇒ H be a
fixed point operator with Fix T closed, Λ ⊂ H with T(Λ) ⊂ Λ, x̂ ∈ Λ ∩ Fix T and U a
neighborhood of x̂ with T(U) ⊂ U. Suppose that

(a) T is pointwise almost averaged at x̂ onΛ ∩ U with violation ε � 0 and averaging constant
α ∈ (0, 1);

(b) the mapping Id− T is metrically subregular on U for 0 relative to Λ with modulus κ >√
εα/(1 − α).

Then every iterative sequence generated by T with the initial point in Λ ∩ U converges
linearly to a point in Fix T with rate at most (worst) c ≡

√
1 + ε− κ2(1 − α)/α < 1.

We are now ready to formulate the main convergence results.

Theorem 6.8 (Linear convergence of TAP for (12)). Let â ∈ A be a fixed point of

TAP ≡ PAPB and suppose that PB(â) =
{

b̂ ≡ (x̂1, x̂2, . . . , x̂m)
}

is singleton with Gd(x̂d)

nonzero everywhere (∀ d = 1, 2, . . . , m). Given a number ε > 0, let Uε(b̂) be the neighborhood
of b̂ on which TAP is almost averaged with violation ε and averaging constant α = 2/3 as
determined by proposition 6.5. Suppose further that â ∈ Uε(b̂), TAP(A ∩ Uε(b̂)) ⊂ Uε(b̂) and
the mapping Θ ≡ Id− TAP is metrically subregular on Uε(b̂) for 0 relative to A with modulus
κ >

√
2ε. Then every iterative sequence generated by TAP with the initial point in A ∩ Uε(b̂)

converges linearly to a point in Fix TAP with rate at most c ≡
√

1 + ε− κ2/2 < 1.
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Proof. The assumption â ∈ Uε(b̂) ensures that TAP is pointwise almost averaged at â on
Uε(b̂) with violation ε and averaging constant α = 2/3 in view of proposition 6.5. Hence all
the assumptions of lemma 6.7 are satisfied with Λ = A and U = Uε(b̂) and the convergence
statement follows as claimed. �

We next explain and remark on the assumptions imposed in theorem 6.8.

Remark 6.9. It is important to keep in mind that Uε(b̂) is not limited to some ball centered at
b̂. It can be an unbounded set, see, for example, the typical intuitive example of phase retrieval
in [38, figure 3 and example 3.9(ii)]. This in particular makes the assumption â ∈ Uε(b̂) not
restrictive. A more general notion than prox-regularity called regularity at a distance was pro-
posed in [38] for analyzing the RAAR algorithm for nonconvex and inconsistent feasibility.
However, we are unable to verify that property for the high-NA phase retrieval problem and
hence do not apply it to the analysis in this application paper to avoid further unverifiable
assumptions.

Remark 6.10. Since the set B in (12) is compact, every iterative sequence generated by the
AP methods has a subsequence converging to a point in Fix TAP, a local best approxima-
tion point to B. Theorem 6.8 provides sufficient conditions for local linear convergence of the
algorithm around a single fixed point. Its assumptions can be strengthened for all fixed points of
TAP to yield global convergence of the algorithm, but the quality of the fixed point it converges
to and the convergence rate in general depend on where it starts as the problem is nonconvex.
However, such additional assumptions would be unverifiable for the high-NA phase retrieval
problem, we chose not to include them in this application paper.

Remark 6.11 (Necessity of metric subregularity). As mentioned early this section
there are two groups of properties often required to prove convergence of nonconvex optimiza-
tion algorithms. The geometry of the high-NA phase retrieval problem analyzed in section 5
yields the first one—pointwise almost averagedness. It has been known that the second
one—metric subregularity is difficult to verify, but as been shown in [40] this condition is
not only sufficient but also necessary for local linear convergence.

The mathematical complication of theorem 6.8 is mainly due to the inconsistency of the
problem under study. In the consistent setting, it reduces to the following much simpler form,
where the metric subregularity of Id− TAP also reduces to the more intuitive notion called
subtransversality of the collection of sets {A, B} at the intersection point. For cartoon model
of phase retrieval consisting of two (products of) spheres, the subtransversality property is
satisfied except when they are tangent. The proof of the next statement follows from the one
of theorem 6.8 and is left out for brevity.

Corollary 6.12 (Linear convergence of TAP for consistent (12)). Consider the
problem (12) with A ∩ B �= ∅. Let â ≡ [x̂]m ∈ A ∩ B with Gd(x̂) nonzero everywhere
(∀ d = 1, 2, . . . , m). Given a number ε > 0, let Bε(â) be the ball on which TAP is almost
averaged with violation ε and averaging constant α = 2/3 as determined by proposition 6.5.
Suppose that the mapping Θ ≡ Id− TAP is metrically subregular at â for 0 relative to A with
modulus κ >

√
2ε. Then every iterative sequence generated by TAP with the initial point in

A ∩ Bε(â) converges linearly to a point inFix TAP with rate at most c ≡
√

1 + ε− κ2/2 < 1.
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Table 1. Parameters used in numerical simulations: NA-numerical aperture, λ-
wavelength of illumination light (μm), s-pixel size (μm), m-number of images, n ×
n-image size (pixels), w-noise model, and SNR-signal-to-noise ratio (decibels).

Parameter NA λ s m n × n w SNR
Value 0.95 0.3 0.06 7 128 × 128 Gaussian 30 dB

It is worth mentioning that the technical assumptions imposed in theorem 6.8 and corollary
6.12 concerning high-NA phase retrieval also remain unverifiable for the low-NA problem.

7. Numerical simulations

The goal of this section is to demonstrate that the new mathematical analysis obtained in this
paper enables us to apply the class of projection algorithms for solving the high-NA phase
retrieval problem. In contrast to a vast number of existing solution methods for low-NA phase
retrieval, very few algorithms have been proposed for the high-NA case. The vectorial PSF
model-based alternating minimization (VAM) algorithm was proposed in [56]. It outperforms
several available high-NA phase retrieval approaches, including the scalar PSF model-based
alternating minimization (SAM) algorithm of Hanser et al [23] which is limited in accu-
racy due to model deviations, and the modal-based approach through the use of extended
Nijboer–Zernike expansion of Braat et al [9] which is of high computational complexity and
excludes applications with discontinuous phase. The VAM algorithm is nothing else, but the
AP method applied to the feasibility model (12). The projectors computed in section 3 enable
the implementation of every projection method (not only those mentioned in section 4) for
solving every corresponding feasibility model formulated in section 2. This section aims at
demonstrating the improved performance of more delicate projection algorithms over available
solution methods for high-NA phase retrieval. As projection methods have not been applied to
high-NA phase retrieval before, their comparison is not a goal of this paper, which instead
establishes groundwork enabling the implementation and analysis of this efficient class of
solution methods for high-NA phase retrieval.

We consider the practically relevant simulation setting of high-NA phase retrieval as in [56,
section 5] where the vectorial PSF (7) is taken as the forward imaging model for generating the
images. The simulated imaging system has circular aperture with the amplitude A being the
two-dimensional Gaussian distribution truncated at 0.5 on the boundary. We do 75 experiments
for different phase realizations with values in [−π, π]. Each data set consists of seven out-of-
focus PSF images which are uniformly separated by one depth of focus along the optical axis.
A schematic diagram of this phase retrieval setup can be seen, for example, in [56, figure 1].
The generated PSF images after being normalized to unity energy are corrupted by additive
white Gaussian noise with SNR 30 decibels (dB). Recall that SNR = 10 ln

(
P/P0

)
, where P

and P0 are the powers of the signal and the noise, respectively. The parameters used in the
simulation experiments are summarized in table 1. The quality of phase retrieval is measured
by the relative root mean square (RMS) error ‖Φ̂− Φ‖ /‖Φ‖, whereΦ and Φ̂ are the simulation
and the retrieved phase aberrations, respectively. As phase retrieval is ambiguous up to at least
a global phase shift (a piston term or the first Zernike mode), the norms of the phases are
computed with the piston terms removed.

We first analyze the performance of the SAM, VAM (equivalently, AP), DR, KM-DR, HPR,
RAAR, RRR and DRAP algorithms for solving the feasibility problem (12), for which recall
that the amplitude A is assumed unknown to the algorithms. As the DR, KM–DR, HPR and
RRR algorithms are clearly outperformed by the RAAR and DRAP methods, we chose to

22



Inverse Problems 37 (2021) 125005 N Hieu Thao et al

Table 2. The number of iterations (the second row) and the parameter β (the third row)
of the algorithms used in numerical simulations. The averaged RMS errors of phase
retrieval over 75 phase realizations are presented in the last row.

Algorithm SAM VAM DRAP RAAR VAM+ DRAP+ RAAR+

#Iterations 100 100 30 + 20 30 + 20 100 30 + 20 30 + 20
Parameter β 0.95 0.95 0.95 0.95
Error (%) 8.47 7.69 6.14 5.98 6.82 4.68 4.69

Figure 2. The box-plots show the improved performance of the RAAR and DRAP
algorithms over available high-NA phase retrieval methods, including SAM [23] and
VAM [56]. Each box-plot summarizes the numerical results in relative RMS errors of
seventy-five examples with different phase realizations taking values in [−π,π]. The
RAAR algorithm yields phase retrieval with the smallest RMS error on average, 5.98%
compared to 8.47% of SAM, 7.69% of VAM and 6.14% of DRAP. RAAR also has
smaller error variance than the others as indicated by its shorter box-plot. The additional
‘+’ sign in the algorithm names (for example, RAAR+) indicates that the algorithms in
addition know the amplitude A, i.e. they are applied to the more informative feasibil-
ity model (17) instead of (12). The additional information of the amplitude A improves
the performance of every solution method. In this case, we also observe the improved
performance of DRAP+ and RAAR+ over VAM+, with average relative RMS errors
4.68%, 4.69% and 6.82%, respectively. The RAAR+ algorithm also has the smallest
error variance.

skip their results for brevity. Table 2 shows the number of iterations (the second row), the
tuning parameter β (the third row) of the algorithms, and the averaged RMS errors over the
75 experiments (the last row). Due to the extrapolation feature of RAAR and DRAP, each
experiment with them is also followed by an averaging process of 20 iterations of AP, indicated
by the term ‘+20’ in the second row of table 2. Figure 2 shows the improved performance
in terms of accuracy of RAAR and also DRAP over SAM and VAM. The RAAR algorithm
yields phase retrieval with the smallest RMS error on average, 5.98% compared to 8.47% of
SAM, 7.69% of VAM and 6.14% of DRAP as shown in the last row of table 2. RAAR also
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has smaller error variance than the others as indicated by its shorter box-plot in figure 2. In
terms of computational complexity, RAAR and DRAP (50 iterations) are much more efficient
than VAM (100 iterations) as shown in table 2 (the second row). Note that SAM making use
of the scalar PSF model has about six times lower complexity per iteration than the other
methods; however, this advantage is often dominated by the disadvantage of model deviations
for high-NA phase retrieval.

We consider the same 75 high-NA phase retrieval examples as above, but the amplitudeA is
now assumed known. The tighter feasibility model (17) then comes into play in place of (12).
In this section, the algorithms applied to (17) will be indicated by the additional ‘+’ sign in
their names (for example, RAAR+) to distinguish with themselves for solving (12). We analyze
the performance of the VAM+ [56] (equivalently, AP+), DR+, KM–DR+, HPR+, RAAR+,
RRR+ and DRAP+ algorithms for solving (17). For the same reason as for solving (12), we
chose to skip the phase retrieval results of DR+, KM–DR+, HPR+ and RRR+ for brevity.
The additional information of A clearly improves the performance of every solution method
as shown by figure 2, which also demonstrates the improved performance of DRAP+ and
RAAR+ over VAM+, with average relative RMS errors 4.68%, 4.69% and 6.82%, respectively.
The RAAR+ algorithm has the smallest error variance.

Remark 7.1. As discussed in remark 2.3, the choice of a feasibility model of high-NA phase
retrieval depends on the specific conditions of the problem under consideration, e.g. the number
of images, noise level and model deviations. In particular, for problems given sufficiently many
noisy images like those simulated in this section, two-set feasibility models like (12) are a better
choice than multiple-set models like (11). This is because the algorithms built on the two-set
models implicitly include an averaging process on the data and thus can better suppress noise.
For this reason, the cyclic-type algorithms are outperformed by those reported in table 2 and
thus their performance was left out for brevity.
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