Efficient Matrix Operations and Parallel
Programming for the Conjugate Gradient method
on the DelftBlue

Pieter de la Court

July 12, 2025

Supervisor
Prof.dr.ir. M.B. van Gijzen

Faculty EEMCS, Delft University of Technology

%
TU Delft

Brief summary

This research has focussed on developing efficient matrix operations to utilize
in the Conjugate Gradient method by means of parallel programming. The aim
was to find a solution to the linear system.

Ax =0,

The Conjugate Gradient method is an iterative solver for such systems. The
main bottleneck of this method is matrix-vector products, so naturally decreas-
ing compute time for this operation was the focus for this project.

The compute time was decreased in two ways. First by storing the matrices
used more efficiently by making use of Compressed Diagonal Storage. Secondly
by implementing GPU offloading using directive based languages such as CUDA
and OpenACC.

Contents
1 Introduction

2 Conjugate Gradient method
2.1 The method of Steepest Descent
2.2 The method of Conjugate Directions
2.3 The Conjugate Gradient method

3 Storing matrices efficiently
3.1 Sparse matrices
3.2 Dense matrices e

4 Efficient matrix operations
4.1 GPU vs CPU architecture

4.2 Fortran

421 Compilers
4.3 OpenACC
4.4 CUDA e

5 Testing setup
5.1 Test environment
5.2 Test matrices
53 Testcases
5.4 Test procedure L e

6 Results & Discussion
6.1 Storage Comparison oL
6.2 Parallel computing comparison
6.2.1 Laplacian 1Do
6.2.2 Poisson 2Do
6.23 Dense SPD oo
6.3 Discussion Lo
6.3.1 Standard Fortran vs Parallel Implementations
6.3.2 Impact of Matrix Choice on Performance
6.3.3 Scalability of the Implementations
6.4 Limitations
6.4.1 Standard Fortran with GPU offloading
6.4.2 Profiling thecode.
6.4.3 Coarraysand MPI,

7 Conclusion

References

A Appendix: CDS code

B Appendix: Standard Fortran code

C Appendix: OpenACC code

10
10
11
11

12
12
12
13
13

14
14
15
15
16
17
17
17
18
19
19
19
19
20

21

22

24

30

35

D Appendix: CUDA code

E Appendix: Matrix building code

40

48

Abstract

This research investigates efficient matrix-vector multiplication and
storage techniques for a Fortran implementation of the Conjugate Gradi-
ent (CG) method on GPUs. The CG method is a widely used iterative
algorithm for solving large, sparse linear systems.

Ax =0,

Because its performance is heavily influenced by the efficiency of matrix
operations it is important to make use of parallel computing to run the
computations on a GPU.

Three types of matrices were considered as A, a dense symmetric
positive-definite matrix and two sparse matrices, defined by the discretiza-
tion of a 1D Laplace equation and a 2D Poisson equation respectively. For
sparse matrices, the Compressed Diagonal Storage (CDS) format was im-
plemented to reduce memory usage and computational cost. For parallel
execution, three implementations were benchmarked: Standard Fortran,
OpenACC, and CUDA Fortran.

The results show that CDS significantly improves both memory effi-
ciency and runtime performance for sparse matrices, while CUDA outper-
forms OpenACC and Standard Fortran in terms of speed, especially for
large matrices. Standard Fortran remains competitive for small matrices
due to low overhead, but it scales poorly. The convergence behavior of
the CG method was also found to be highly dependent on the condition
number of the matrix, with the 2D Poisson matrix exhibiting much faster
convergence than the 1D Laplace matrix.

This study concludes that efficient storage and GPU-based matrix
operations, particularly using CUDA, are critical for scalable performance
in solving large linear systems with the CG method. Future work could
explore combining the portability and ease of use of Standard Fortran with
GPU acceleration to achieve both maintainability and high performance.

1 Introduction

Matrices are a very common tool in many fields of science and engineering.
They enable us to represent and manipulate data in a structured way, making
them essential for large scale scientific computations. One particular usage of
matrices is in solving linear systems, which is a common problem in many fields,
such as physics, engineering, and computer science.

In this context, the Conjugate Gradient method [21] is a widely used iterative
algorithm for solving large linear systems. This method was discovered in 1952
by Hestenes and Stiefel[10] and implementations of Conjugate gradient have
been studied extensively in literature. A handful of these articles are Powell in
1977 [19] Bondarenko in 2014 [2] and Fletcher, Reeves in 1964 [5]. By looking
at the dates it is clear that Conjugate Gradient has been around for a while.

The method is particularly effective for sparse matrices, which are common in
many applications. The method is based on the idea of minimizing the quadratic
form associated with the linear system. In calculating the solution, the method
relies heavily on matrix-vector multiplications, which can be computationally
expensive, especially for large matrices.

Real world problems often require A in the linear system to be very large, so
the necessity for high-performance computing (HPC) arises quickly. On systems
like DelftBlue[4] researchers are constantly working with matrices of enormous
scale. To effectively utilize the computational power of such systems, it is crucial
to leverage the potential of GPUs (Graphics Processing Units) for parallel pro-
cessing. GPUs are particularly well-suited for matrix operations due to their
ability to perform many calculations simultaneously, which can significantly
speed up the computation of matrix-vector multiplications [7][1] This was the
context which provided the main motivation for this research.

The research has focussed on exploring the most effective ways to store and
multiply dense and sparse matrices on the GPU. The language chosen to do this
research was Modern Fortran, since it is well suited for numerical computations
on a HPC environment and has great support for parallel programming on GPUs
[6]. In particular, OpenACC[18], CUDAJ[16][20] and Standard Fortran were
implemented as different means to effectively utilize the GPU. The performance
of the Conjugate Gradient method served as a benchmark for these different
implementations.

The aim of the research will be to optimize the computation cost of the
Conjugate Gradient method. To accomplish this goal efficient matrix multipli-
cation and storage techniques need to be developed, which should generalize
well to different problems and improve performance on the GPU. Accordingly,
the research question is:

What are the best matriz-vector multiplication and storage techniques for a
Fortran implementation of the Conjugate Gradient method for dense and
sparse matrices on a GPU?

I will utilize the following structure to examine my research question:
@
(ii

(iii

Explanation of Conjugate Gradient method
Efficient data storage

Efficient calculation of matrix-vector products
(iv) Test setup
(v

(vi

Results

)
)
)
)
)
)

Conclusion

The first section will be a clarification of the Conjugate Gradient method,
it will be vital to understand the method in order to make sense of the results.
The second and third will be exploring storage and multiplications of matrices.
Finally, the fourth and fifth sections will discuss the results of my research, my
conclusion and include my recommendations.

2 Conjugate Gradient method

The Conjugate Gradient (CG)[21] method, originally discovered by Hestenes
and Stiefel [10], is an iterative algorithm for solving systems of linear equations

of the form:
Ax = b,

where A € R™ "™ is symmetric and positive-definite, b € R", and = € R™ is the
unknown solution vector. CG is mainly suited to sparse matrices. For dense
matrices, it is usually better to use a direct method instead.

Rather than solving the system directly we reduce the problem to a form
solvable by an iterative method. To be able to do this CG makes use of the
quadratic function associated with the system.

flx) = %xTAx —27b.

We require the matrix A to be positive definite because this ensures that
the quadratic form will have a minimum. We require A to be symmetric such
that the equality V f(z) = Az — b holds, where V f(z) is the gradient of f(x),
as seen in figure la and 1b.

The minimum of this function corresponds to the solution of the linear sys-
tem, since V f(z) = Az — b = 0. Hence we are looking for the optimal way to
find the minimum of the quadratic form.

(a) Contours of the quadratic form. (b) Gradient of the quadratic form.

Figure 1: The gradient of the quadratic form presented as contours and in a 3D
graph. Pictures referenced from [21].

2.1 The method of Steepest Descent

The method of Steepest Descent minimizes f(x) iteratively by moving in the
direction of the negative gradient. The negative gradient of f at iteration k is
given by:

T = b— Amk,

which also represents the residual vector (i.e., A times the difference between
the current approximation and the true solution).

Each iteration updates the solution by:
Th41 = Tk + QpTk,
where the step size ay, is chosen to minimize f(zx11) along the direction 7:

T
T Tk
= .
. Ary

Qp =

While Steepest Descent is simple to implement, its convergence is often slow,
especially when the condition number of A is large. The method can exhibit
zigzagging behavior due to the fact that consecutive residuals are orthogonal
but not A-orthogonal, this behavior is shown in figure 2.

Figure 2: Slow convergence of the steepest descent method for an ill-conditioned
matrix. Picture referenced from [21].

2.2 The method of Conjugate Directions

To improve convergence, the method of Conjugate Directions uses a sequence
of search directions pg,p1,...,pn—1 that are A-conjugate (figure 3), i.e.,

perpj =0 fori#j.
Each update takes the form:
Tk41 = Tk + QxPk,
where
L = TkTPk
Pi; Apk

The residual is updated as:
Tk+1 =Tk — OzkApk.

With a set of n linearly independent A-conjugate directions, the method will
reach the solution in at most n iterations [21]. However, generating and storing
all n conjugate directions explicitly is computationally expensive in practice.

Figure 3: A orthogonality vs Normal orthogonality

2.3 The Conjugate Gradient method

The Conjugate Gradient method combines the efficiency of Steepest Descent

with the optimality of Conjugate Directions. Instead of precomputing all direc-

tions, CG constructs the A-conjugate directions iteratively from the residuals.
Given an initial guess g, the algorithm proceeds as follows:

To = b — Allfo,
Po = To-
For each iteration £k =0,1,2, ..., compute:
o T%Tk
k= 3
pi Apx

Tk4+1 = Tk + QkDk,

Thy1 = Tk — i Apy,
_ i1 Th+1

Pk+1 = Tht1 + BrPrk-

At each step, the new direction pg,1 is constructed to be A-conjugate to
the previous directions, and the algorithm avoids the need to store all past
directions. CG guarantees convergence in at most n steps in exact arithmetic.

Final notes

The primary computational bottleneck in CG is the matrix-vector product.
This makes CG a suitable benchmark for evaluating the efficiency of matrix
multiplication techniques, because the computation time of CG will be heavily
correlated to the ability of efficient matrix operations.

3 Storing matrices efficiently

As we increase the size of the problems we’re trying to solve, the size of the
matrices grow as well. To illustrate the problem this could pose, consider a
finite difference scheme of size n. The corresponding matrix will be of size n xn
and thus have n? entries. If we were to store this matrix in a dense format, it
would require 8n? bytes of memory (assuming double precision floating point
numbers). For example, for n = 10°, this would require approximately 8 TB of
memory, which is impractical for most systems.

For this reason, we need to consider alternative storage formats that are
more memory-efficient, where we try to make use of the special properties of
the graph to find the best format. In this section, we will explore Compressed
Diagonal Storage (CDS)[13] for sparse matrices.

3.1 Sparse matrices
Compressed Diagonal Storage (CDS)

CDS is a memory-efficient format well suited for storing band matrices. These
are a special subset of sparse matrices where non-zero elements are clustered
around the main diagonal. Instead of storing all entries, CDS stores only the
diagonals that contain non-zero values. In theory CDS works well for any matrix
with a large amount of diagonals which only contain zeros, but for our purposes
we will only consider band matrices. An important note is that CDS will not
store all diagonals which fall within the band, regardless if they have non zero
entries or not. A diagonal with all entries zero will not be stored, even if it is
within the band of the matrix. An example of a matrix where this occurs would
be a matrix of the discretized 2D Poisson equation.

Storing the matrix more efficiently does not only have benefits for the storage
in memory. Since the original matrix contains many zero entries, when doing
a matrix multiplication we are doing lots of unnecessary work. By compressing
all the relevant data in a smaller format we can drastically reduce the amount
of operations needed for a matrix multiplication.

Example of CDS format

To illustrate the way a matrix is converted to CDS format we consider the
following matrix with one lower and one upper diagonal:

2 3 000
12 3 00
A=10 1 2 3 0
001 2 3
00 0 1 2

This matrix has 3 non-zero diagonals:
e Lower diagonal (offset -1): [1,1,1,1]
e Main diagonal (offset 0): [2,2,2,2,2]
e Upper diagonal (offset +1): [3,3, 3, 3]

In CDS, we store the diagonals in a matrix of size n by the number of
diagonals. In this case that amounts to 5 by 3. The offsets can be included in
the matrix or stored in an additional array. These will help us to reconstruct A
in order to perform operations.

e The first column of the matrix corresponds to the first row of A
e Each row of the table represents one diagonal

e Values not present in the matrix (outside the bounds of the diagonal) are
padded with 0

-1 Oj1}j1}]1|1
0 2121222
+1 313131130
(a) The offsets of Matrix A (b) Matrix A in CDS format.

3.2 Dense matrices

Unfortunately, dense matrices offer limited opportunities for compression. So
for dense matrices, we can use a simple 2D array to store the matrix. This is
straightforward and efficient for small to medium-sized matrices. However, as
the size of the matrix grows, this approach becomes impractical due to memory
constraints. Unfortunately, there is no way to compress a dense matrix in the
same way as we can with sparse matrices. The only way to reduce the memory
footprint of a dense matrix is to use a lower precision data type.

4 Efficient matrix operations

With the storage formats and algorithm established, we now need to implement
the matrix operations in order to solve the linear systems. Conjugate Gradient
relies on 2 main operations [21]:

e Matrix-vector multiplication
e Dot products

These operations are the building blocks of the algorithm and need to be imple-
mented efficiently to ensure good performance. There are other operations that
are used in the algorithm, such as vector addition and scalar multiplication, but
any techniques we develop for the two main operations will be applicable to the
other operations as well. The matrix-vector multiplication and dot products are
the most computationally expensive operations in the algorithm, and therefore
we will focus on optimizing these.

Matrix operations are highly suitable for parallelization as they are made
up of many independent operations. This means that we can use multiple
threads to perform the operations in parallel, which can significantly speed up
the computations. This is where parallel programming and the DelftBlue HPC
system become essential. The DelftBlue[4] is a HPC cluster which provides
top of the line GPU’s and CPU’s to perform the computations. The main
challenge of this research will be to make optimal use of the available resources
of DelftBlue. The best approach to do this is by using parallel programming
techniques.

4.1 GPU vs CPU architecture

To start off we must decide whether to offload some of the computation to the
GPU or to perform all of them on the CPU. In order to make this decision the
main differences between the two architectures will be listed and how they affect
the performance of matrix operations.

The main difference between GPU and CPU architecture is the number of
cores and the way they are designed to handle parallelism. Have a look at figure
5 for a graphical representation. A CPU is designed to handle a few threads
at a time, with each core being optimized for single-threaded performance. A
GPU, on the other hand, is designed to handle thousands of threads at a time,
with each core being optimized for parallelism [14]. The result is that GPUs
are much better suited for tasks that can be highly parallelized, such as matrix
operations [12].

(Fewer strong cores)

CPU (Thousands weaker cores)

GPU

Figure 5: A simplified version of CPU architecture vs GPU architecture. [22]

This highlights limitations in CPU parallelism, but it is important to note
that each individual core of a CPU is much more powerful than a single core
of a GPU. This means that GPUs are mainly effective at tasks which can be
split up in many simple subtasks. So essentially GPUs are a highly specialized
form of CPUs, not suitable for all calculations, but extremely well tailored to
our problem of matrix operations.

Data transfer

We have now spoken about the CPU and GPU in isolation, but in reality all
computations will be performed on the CPU and GPU in tandem. This means
that we need to transfer data between the two architectures. The data transfer
is a crucial part of the performance of our algorithm, as it can be a bottleneck
if not done efficiently[20].

If we inefficiently transfer data between the CPU and GPU, we will create
a bottleneck that will slow down our computations. This is because the data
transfer is much slower than the actual computations performed on the GPU.
This means that we need to minimize the amount of data transfer between the
CPU and GPU, and only transfer data when absolutely necessary.

Figure 6 shows an application which makes use of GPU acceleration. The
CPU runs the main program, while the GPU performs the tasks which are
parallelized. The data transfer is shown by the black line, where the CPU and
GPU communicate with each other to transfer data.

Application Code

—)
Rest of Sequential CpU
CPl

Code

G p U Compute-

Intensive Functions

-«

o 111
|

Figure 6: Running a program which makes use of GPU offloading. The CPU
runs the main program, while the GPU performs the matrix operations. Picture
referenced from [8]

Having seen the difference between CPU and GPU architecture our objective
is now clear:

To decrease compute time for CG we need to offload the matrix operations to
the GPU while minimizing the time spent transferring data between the CPU
and GPU.

4.2 Fortran

To write our code we will use Fortran[6], which is a high-level programming
language that is widely used in scientific computing. Fortran has a long history
of being used for numerical computations and is well suited to support parallel
programming.

Fortran intrinsics provide a set of built-in functions that can be used to
perform common operations, such as matrix multiplication (matmul) and dot
products (dot_product) . Additionally, Fortran has a built in construct that
allows for easy parallelization of loops (do concurrent). However, by default
these intrinsics and constructs will only use the CPU.

4.2.1 Compilers

A compiler is a program that translates source code written in a high-level
programming language into machine code that can be executed by a computer.
There are multiple compilers available for Fortran, but not all of them are
suitable for GPU offloading. The most commonly used compilers for Fortran
are:

e GNU Fortran [9] (gfortran)
e Intel Fortran [11] (ifort)

e NVIDIA HPC SDK [17] (nvfortran)

10

We will not go into depth about each compiler, but it is important to note
that they all have different capabilities and performance characteristics. The
NVIDIA HPC SDK is specifically designed for GPU programming and provides
the best support for offloading Fortran code to the GPU.

Nvfortran provides us with support for OpenACC and CUDA, which are
two programming models that allow us to offload code to the GPU.

4.3 OpenACC

While Fortran intrinsics offer an elegant high-level approach, they provide lim-
ited control over hardware-specific optimizations. OpenACC addresses this by
allowing explicit control over parallel regions and memory transfers using direc-
tives.

OpenACC [18] is a programming model which allows us to write standard
Fortran code and then add directives to indicate which parts of the code should
be offloaded to the GPU. However, to get the best performance we also have
to manually manage the data transfer from the CPU to the GPU. In theory
this should allow us to write high-level code that is easy to read and maintain,
while giving us more control over the hardware thus increasing performance over
standard Fortran.

But as we will see this does not always lead to better performance and can
sometimes lead to worse performance than using Fortran intrinsics. The reason
being that we manually manage the data transfer, which can lead to suboptimal
performance if not done correctly.

4.4 CUDA

CUDA [16] is similar to OpenACC in that it allows us to write code that can be
offloaded to the GPU. However, CUDA is a lower-level programming model that
requires us to write more code to achieve the same result. This means that we
have more control over the hardware, but it also means that the code is harder
to read and maintain. The upside of CUDA is that the potential performance
benefits are greater [20]. Additionally, CUDA is developed by NVIDIA and is
specifically designed for their GPUs, which means that it can take advantage of
the latest hardware features.

11

5 Testing setup

Having established the theoretical background of the Conjugate Gradient method,
we now turn to its practical implementation and testing. As we have seen we
can use parallel programming to speed up computation.

In section 5.3 we discuss the different ways we implement parallel program-
ming to offload to the GPU. Section 5.2 defines the range of matrices which
we will test these implementations on and 5.1 states the system specifications
on which the tests were run. Finally, one of the pillars of good research is
reproducibility so the section 5.4 will describe the testing procedure used.

5.1 Test environment

The tests were conducted on a GPU node of the DelftBlue with the specifications
[3]:

e CPU: Intel XEON E5-6448Y 32C 2.1GHz
e GPU: NVIDIA A100 GPU
e RAM: 512 GB

e OS: Red Hat Enterprise Linux 8

Furthermore, the tests were ran with the following software:
e Modern Fortran

e OpenACC : 2.7 (tied to the NVIDIA HPC SDK)

e NVIDIA HPC SDK : 23.5

e CUDA : 116

5.2 Test matrices
The tests were conducted on 3 types of matrices:
e A dense, symmetric and positive definite matrix

e A sparse matrix attained by the finite difference scheme of a 1D laplace
equation in CDS format.

e A sparse matrix attained by the finite difference scheme of a 2D poisson
equation in CDS format.

The sizes of these matrices we tested on were:

Matrix Size Range | Storage Format
Dense matrix 21 _ 22 Dense 2D array
1D Laplace o - A CDS format
2D Poisson 24 - 220 CDS format

Table 1: Test matrices and their sizes, step size of -2 between sizes.

12

It is evident that the range of size for the matrices is quite large. The
dense matrix has the smallest range, because it is not practical to test on larger
matrices due to memory constraints. The sparse matrices, however, can be
much larger, and we will be testing on matrices with up to 1 million elements.
A step size of 22 between sizes allows us to see how the performance scales with
the size of the matrix.

5.3 Test cases

Having established the matrices and the environment, we can now describe the
test cases. A quick reminder of the linear system we are solving:

Ax =0,

where A is the matrix, b is the right-hand side vector, and z is the solution vector
we are trying to find. As mentioned before, we will be using the Conjugate
Gradient method to solve this system.

For all test cases, we will be using the same right-hand side vector b which
is a vector of ones. The initial guess for the solution vector x will be a vector
of zeros.

The test cases will be the 3 matrices described above, and we will be testing
the following implementations of CG on each of these matrices.

e Standard Fortran, run on the CPU.

e OpenACC, parallelized and offloaded to the GPU using OpenACC direc-

tives.
e CUDA, parallelized and offloaded to the GPU using CUDA directives.

In each case we will implement the Compressed Data Storage (CDS) format
for the sparse matrix, where applicable, and compare the performance of the
different implementations. The goal is to see how much speedup we can achieve
by using parallel programming and efficient storage formats.

5.4 Test procedure

It is now clear what our test cases are and how we will implement them. The
next step is to describe the procedure we will follow to conduct the tests.

1. Set epsilon to 1.0d-8 and max iterations to a suitable number for the
matrix size

2. Compile each case with nvfortran and the -0fast flag, along with any
other required flag for the specific implementation.

3. Run the program 100 times for each test case to ensure statistical signifi-
cance.

4. Measure the time taken for each run using the cpu_time() function.

5. Calculate the average time taken for each test case and implementation.

13

6 Results & Discussion

The previous sections were suggestively named Efficient matrix operations and
Efficient storage, but the performance of the implementations were never shown.
In this section, the results of the tests conducted for the different implementa-
tions of matrix operations and storage methods will be shown.

6.1 Storage Comparison

We will start off by focussing on the storage methods. Because storing dense
matrices rapidly becomes infeasible, we will keep the size of the matrices small,
but the results will still be representative of larger matrices. We will consider the
3 cases mentioned in section 5.3 and compare a naive implementation, which
stores the matrix in a 2D array, with the Compressed Data Storage (CDS)
format.

The table below shows the memory usage of the different storage methods
for the 3 matrices. The memory usage is given in bytes, and the size of the
matrix is given in number of elements.

Matrix Naive Storage | CDS Storage | Size matrix
Dense matrix 50 Mb 50 Mb 2500 x 2500
1D Laplace 50 Mb 0.06 Mb 2500 x 2500
2D Poisson 50 Mb 0.1 Mb 2500 x 2500

Table 2: Memory usage of different storage methods for matrices

As we can see, the memory usage is the same for both storage methods for
the dense matrix, as it is a dense matrix and the CDS format does not provide
any benefits. However, for the 1D Laplace and 2D Poisson matrices, the CDS
format provides a significant reduction in memory usage. The reason for this
reduction is due to the fact that the CDS format only stores the diagonals with
non-zero elements of the matrix, which is a significant reduction in size for sparse
matrices.

Now for the important part, how does this affect the performance of the
Conjugate Gradient (CG) method? The table below shows the average time
taken to solve the linear system Az = b for the different storage methods and
matrices. For this comparison standard Fortran was used without any offloading
to the gpu. The time is given in seconds, and the size of the matrix is given in
number of elements.

Matrix Naive Storage (s) | CDS Storage (s) | Size matrix
Dense matrix 102.9 - 4096 x 4096
1D Laplace 22.03 0.015 4096 x 4096
2D Poisson 1.326 0.001 4096 x 4096

Table 3: Conjugate Gradient performance comparison of naive storage vs CDS
storage for matrices

As we can see, the CDS format provides a significant speedup for the 1D
Laplace and 2D Poisson matrices, while the dense matrix does not show a sig-

14

nificant difference. This is because the CDS format reduces the number of op-
erations required to solve the linear system, as it only operates on the non-zero
elements of the matrix.

Due to this conclusion, in the next section we will only consider the CDS
format for the 1D Laplace and 2D Poisson matrices, as in practice one would
never store a sparse matrix in a dense format. This will also allow us to run our
tests on larger, more realistic matrices, as the memory usage will be significantly
lower.

6.2 Parallel computing comparison

In this section, we will compare the performance of the different parallel com-
puting methods for the test cases defined in section 5.3. We will compare the
performance of Standard Fortran without any optimizations, OpenACC and
CUDA. Both the 1D Laplace and 2D Poisson matrices will be in CDS format,
while the dense matrix will be stored in a 2D array. The performance will be
measured in seconds.

Tables and Graphs

The results of the performance tests are presented in the form of tables and
accompanying graphs. The tables will show the time taken to solve the linear
system Az = b for the different storage methods and parallel computing meth-
ods. The graphs will show the performance of the different methods in a log-log
plot, which allows us to see the performance scaling with increasing matrix size.

6.2.1 Laplacian 1D

Size | Standard Time (s) | OpenACC Time (s) | CUDA Time (s) | Iterations
24 4.268e-7 6.600e-4 5.388e-4 8

26 3.419e-6 2.519e-3 1.564e-3 32

28 4.293e-5 1.009e-2 6.800e-3 128
210 6.901e-4 3.535e-2 2.788e-2 512
212 1.463e-2 1.556e-1 1.1109e-1 2048
214 2.281e-1 6.384e-1 4.526e-1 8192
216 4.572 2.928 1.827 32768
218 175.7 20.23 7.712 131072
220 - 221.6 72.84 524288

Table 4: Comparison of Laplacian 1D results for Standard, OpenACC and
CUDA implementations. The last two entries of Standard and OpenACC were
omitted, because they took too long to compute.

15

103 —

1077 b

24 96

28

|
210 212 214 216 218 220

—e— Standard —#— OpenACC —— CUDA

Figure 7: Log-log plot of Laplacian 1D times for Standard, OpenACC, and

CUDA.

6.2.2 Poisson 2D

Size | Standard Time (s) | OpenACC Time (s) | CUDA Time (s) | Iterations
24 1.979e-7 2.859e-4 2.055e-4 3
26 1.416e-6 7.914e-4 5.358e-4 10
28 1.331e-5 2.018e-3 1.561e-3 28
R 1.146e-4 4.176e-3 3.313e-3 99
212 1.198e-3 9.128e-3 6.459e-3 119
214 8.874e-3 1.904e-2 1.351e-2 239
216 8.781e-2 4.070e-2 2.751e-2 470
218 1.650 0.1496 6.022¢-2 941
220 18.11 0.8389 0.3000 1898

Table 5: Comparison of Poisson 2D results for Standard, OpenACC and CUDA
implementations.

1077 ¢

24

\ \
26 28

210 212 214 216 218 220

—e— Standard —#— OpenACC —— CUDA

Figure 8: Log-log plot of Poisson 2D times for Standard, OpenACC, and CUDA.

16

6.2.3 Dense SPD

Size | Standard Time (s) | OpenACC Time (s) | CUDA Time (s) | Iterations
21 1.457e-6 1.273e-3 8.985e-4 18

26 9.882e-5 7.494e-3 5.011e-3 104

28 6.057e-3 3.657e-2 3.126e-2 524
210 6.989¢-1 2.037e-1 2.047e-1 2448
212 103.0 2.710 2.534 9759

Table 6: Comparison of Dense SPD results for Standard, OpenACC, and CUDA
implementations.

1076 \ | | | [
24 26 28 210 212
—e— Standard —#— OpenACC —— CUDA

Figure 9: Log-log plot of Dense SPD times for Standard, OpenACC, and CUDA.

6.3 Discussion

The results of the performance tests show that the OpenACC and CUDA im-
plementations provide a significant speedup compared to the Standard Fortran
implementation when large matrix-vector multiplications are involved. The
speedup is especially significant for large dense matrices, where the performance
difference can be several orders of magnitude. To structure the discussion the
following aspects will be discussed:

e Performance of Standard Fortran vs Parallel implementations
e The impact of matrix choice on performance.

e The scalability of the different implementations.

6.3.1 Standard Fortran vs Parallel Implementations

The Standard Fortran implementation is significantly slower than the OpenACC
and CUDA implementations for large matrices. The performance difference is
especially pronounced for the dense matrix, where the OpenACC and CUDA
implementations are several orders of magnitude faster. This is due to the fact
that the OpenACC and CUDA implementations are able to take advantage of
the parallelism offered by the GPU, while the Standard Fortran implementation
is limited to the CPU’s capabilities.

17

It is evident that for small matrices, the performance difference is not as
pronounced, and the Standard Fortran implementation can still be competitive.
This is because the overhead of transferring data to and from the GPU can
outweigh the performance benefits for small matrices. The effects are especially
pronounced for the 1D Laplace and 2D Poisson matrices. The cause for this
effect presumably is the conversion to CDS format. This means that the number
of operation required to solve the linear system is significantly reduced. Thus
the OpenACC and CUDA implementations aren’t able to take advantage of
the parallelism offered by the GPU, as the number of operations is too small.
Hence the performance difference becomes pronounced only when the matrix
size increases to significantly larger matrices.

The dense matrix, on the other hand, does not benefit from the CDS format
and the OpenACC and CUDA implementations are able to take advantage of
the parallelism offered by the GPU. This is why the performance difference
becomes apparent at smaller matrix sizes for dense matrices.

6.3.2 Impact of Matrix Choice on Performance

So far we only made a distinction between a sparse and a dense matrix, but this
does not tell the entire story. The performance of the different implementations
is also affected by other aspects of the matrix. The 1D Laplace and 2D Poisson
matrices are both sparse matrices, but they have different sparsity patterns. The
1D Laplace matrix has a tridiagonal structure, while the 2D Poisson matrix has
a block structure. When looking at their convergence, the 2D Poisson matrix
converges in significantly less iterations.

To understand why this happens it is important to have a solid grasp of
Conjugate Gradient (CG) method. The number of iterations in which CG con-
verges is mainly driven by the condition number of the matrix. A brief reminder:
the condition number of a matrix is the ratio of the largest eigenvalue to the
smallest eigenvalue.

K(A) = Amax
)\min

A matrix with a low condition number will converge in fewer iterations than
a matrix with a high condition number.

The 1D Laplace matrix has a condition number which scales with x(A) ~
O(N?) [23]. While the 2D Poisson matrix has a condition number which scales
with k(A) ~ O(N) [23]. This means that the 2D Poisson matrix will converge
in significantly fewer iterations than the 1D Laplace matrix, as the condition
number is lower. This means that even though each iteration is computationally
more expensive for the 2D Poisson matrix since it has 2 extra non zero diago-
nals, the number of iterations is significantly lower, resulting in a lower overall
computational cost.

The difference between these 2 matrices illustrates the importance of the
choice of matrix in the performance of the CG method. The condition number
of the matrix is a key factor in determining the number of iterations required
for convergence, and thus the overall performance of the CG method.

18

6.3.3 Scalability of the Implementations

The previous section have briefly touched on the scalability of the different im-
plementations, but it is important to discuss this aspect in more detail. Real
world use cases often involve matrices which are even larger than the ones tested,
S0 it is important to understand how the performance of the different implemen-
tations scales with increasing matrix size.

The results are somewhat surprising, as particularly the OpenACC imple-
mentation does not scale as well as one might expect. The performance of
the OpenACC implementation is significantly slower than the CUDA imple-
mentation for large matrices, and the performance difference becomes more
pronounced as the matrix size increases.

We identified two possible causes for this performance difference. The first is
that the OpenACC implementation is not able to take advantage of the full par-
allelism offered by the GPU, possibly due to the way the OpenACC directives
are compiled. The second is that within the implementation of the OpenACC
directives, the data transfer between the CPU and GPU is not optimized, re-
sulting in a significant overhead for large matrices.

The CUDA implementation, on the other hand, scales well with increasing
matrix size. This was expected as CUDA is a lower level programming model
which allows for more fine-grained control over the GPU. Comparing CUDA
to Standard Fortran, the performance difference becomes quite large when the
matrix size increases. The CUDA implementation is able to take advantage of
the parallelism offered by the GPU, and it is clear that for large matrices the
CUDA implementation is the best choice.

6.4 Limitations
6.4.1 Standard Fortran with GPU offloading

One of the other implementations that was attempted is Standard Fortran with
GPU offloading. This implementation showed promise due to combining the
ease of use and portability of Standard Fortran with GPU offloading. However,
the implementation could not be finalized within the project timeline. This
might seem contradictory since it was just mentioned that Standard Fortran is
easier to use, but the problem arose in compilation, not in writing the actual
code. For future research this implementation could definitely be an interesting
area to explore.

6.4.2 Profiling the code

While this research focused on algorithmic and architectural optimization, it did
not involve formal profiling of execution time or memory usage. Tools such as
NVIDIA Nsight Systems or Nsight Compute could have provided deeper insights
into kernel efficiency, memory transfer bottlenecks, and warp utilization. With-
out such profiling, performance interpretations—particularly for OpenACC and
CUDA—rely on indirect evidence. Future work should include systematic pro-
filing to support optimization decisions and reveal hidden inefficiencies.

19

6.4.3 Coarrays and MPI

A reader familiar with HPC and parallel computing might have expected a
section on MPI or on coarrays, the Standard Fortran alternative to MPI. While
MPI and coarrays are both powerful tools to distribute work over multiple nodes,
they are not included in this thesis. There were multiple reasons as to this
decision was made.

The first reason is that the scale of the problems we were working with was
not large enough to warrant the use of MPI or coarrays. The matrices were still
relatively small, and the performance gains from using MPI or coarrays would
not have been significant enough to justify the added complexity.

The second and main reason was that we chose to focus on developing the
fastest solution for a GPU on a single node. The addition of MPI or coarrays
would have added unnecessary complexity and taken away from this focus.

20

7 Conclusion
Let’s start off by restating the research question of this project.

What are the best matriz-vector multiplication and storage techniques for a
Fortran implementation of the Conjugate Gradient method for dense and
sparse matrices on a GPU?

The key findings of this research can be split into two parts: the storage of
matrices and the multiplication of matrices and vectors.

For the storage of matrices, it became clear that the choice of format has a
significant impact on performance. The Compressed Diagonal Storage (CDS)
format was found to be the most efficient for sparse matrices, while for dense ma-
trices, no improvement was found over the standard Fortran array storage. The
CDS format allowed for efficient access to non-zero elements, which is crucial
for the performance of the Conjugate Gradient method.

The main part of the research focused on the multiplication of matrices and
vectors. While OpenACC was promising, the results showed us that the CUDA
implementation outperformed OpenACC in terms of speed. The CUDA imple-
mentation was able to leverage the parallel processing capabilities of the GPU
more effectively, resulting in faster matrix-vector multiplications. Standard For-
tran was faster for small matrices as expected, but it did not scale well for larger
matrices. We conclude that CUDA is the preferred choice for high-performance
computing applications.

The scope of this research was limited, which meant that not all possible
matrix configurations and multiplication techniques could be explored. How-
ever, the findings provide a solid foundation for future work in this area. Future
work could focus on implementing Standard Fortran combined with GPU accel-
eration. This was an area which showed promise, but which was not realized in
this research. Other potential research could focus on using coarrays or profiling
tools such as Nsight Compute to further optimize memory transfers and kernel
launch overheads. Incorporating MPI or multi-node extensions would also be
essential for scaling this approach beyond a single GPU node on DelftBlue.

In conclusion, this research has demonstrated the importance of efficient
matrix storage and multiplication techniques using parallelism for the Conju-
gate Gradient method on a GPU environment. While the allure of easy to
implement GPU acceleration is tempting, as of right now CUDA Fortran still
reigns supreme in terms of performance. However, the potential for future work
in this area is promising, and further research could combine the portability
of Standard Fortran with the performance benefits CUDA provides [15]. The
findings of this research hopefully serve as a basis for future work, and it is
hoped that they will contribute to the DelftBlue project and the broader field
of high-performance computing.

21

References

[1]

[11]

[12]

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schréder. Sparse matrix
solvers on the gpu: conjugate gradients and multigrid. ACM Trans. Graph.,
22(3):917-924, July 2003.

E Bondarenko. Modern parallel programming tools for solving system of
the linear equations by conjugate gradient methods. System technologies,
2(2):108-115, 2014.

Delft High Performance Computing Centre. System specifications — delft-
blue supercomputer. https://www.tudelft.nl/dhpc/system, 2023.

Delft High Performance Computing Centre (DHPC). DelftBlue Su-
percomputer (Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/
DelftBluePhase2, 2024.

Reeves Fletcher and Colin M Reeves. Function minimization by conjugate
gradients. The computer journal, 7(2):149-154, 1964.

fortran-lang community. Fortran programming language general informa-
tion. https://fortran-lang.org, 2023.

Noriyuki Fujimoto. Faster matrix-vector multiplication on geforce 8800gtx.
In 2008 IEEFE International Symposium on Parallel and Distributed Pro-
cessing, pages 1-8. IEEE, 2008.

GeeksforGeeks. What is gpu acceleration? https://www.geeksforgeeks.
org/what-is-gpu-acceleration/, 2022.

GNU Project. GNU Fortran Compiler Manual, 2023.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients
for solving linear systems. Journal of research of the National Bureau of
Standards, 49(6):409-436, 1952.

Intel Corporation. Intel Fortran Compiler Classic and Intel Fortran Com-
piler Developer Guide and Reference, 2023.

Feng Li, Yunming Ye, Zhaoyang Tian, and Xiaofeng Zhang. Cpu versus
gpu: which can perform matrix computation faster—performance compar-
ison for basic linear algebra subprograms. Neural Computing and Applica-
tions, 31:4353-4365, 2019.

Netlib. Compressed diagonal storage format. https://www.netlib.org/,
n.d.

NVIDIA Corporation. Whats the difference between a
cpu and a gpu? https://blogs.nvidia.com/blog/
whats-the-difference-between-a-cpu-and-a-gpu/, 2009.

NVIDIA Corporation. Bringing tensor cores to standard fortran, 2022.

NVIDIA Corporation. CUDA Fortran Programming Guide and Reference,
2023.

22

[17]
[18]

[19]

[20]

NVIDIA Corporation. NVIDIA HPC SDK Documentation, 2023.

OpenACC. The openacc application programming interface, version 2.7.
Technical report, OpenACC-Standard.org, 2022.

Michael James David Powell. Restart procedures for the conjugate gradient
method. Mathematical programming, 12:241-254, 1977.

Gregory Ruetsch and Massimiliano Fatica. CUDA Fortran for Scientists
and Engineers: Best Practices for Efficient CUDA Fortran Programming.
Morgan Kaufmann, 2013.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical Report, Carnegie Mellon
University, 1994, 1994.

TecAdmin. Cpu vs gpu: Key differences, 2022.

Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. STAM,
1997.

23

A Appendix: CDS code

module cds_matrix

use iso_fortran_env , only: real64
implicit none

public

ICDS stands for Compressed Diagonal Storage, which is a format for storing sy

type :: cds_type
integer :: n ! matriz size (n z n)
integer :: ndiag ! number of diagonals
real(real64), pointer :: data(:,:) ! diagonal data (n z ndiag)
integer, pointer :: offsets (:) ! diagonal offsets

end type cds_type

contains

! Helper subroutine to count the number of diagonals in a 2D array and store tI
subroutine count_diagonals(array, num_diagonals, diagonal_offsets)

real(real64), intent(in) :: array(:,:) ! Input 2D array
integer, intent(out) :: num_diagonals ! Number of diagonals
integer, allocatable, intent(out) :: diagonal_offsets(:)

! Valid diagonal offsets

integer :: m, n, min.dim, max.dim, d, i

logical :: offset_exists

integer :: count

real(real64), parameter :: tolerance = 1.0e—10_real64

! Add tolerance for floating—point comparison

m = size(array, 1) [Number of rows
n = size(array, 2) ! Number of columns

! Calculate possible diagonal range
min_dim = 1 — n ! Minimum possible diagonal offset
max_dim = m — 1 ! Mazimum possible diagonal offset

! Initialize counter
num_diagonals = 0

! First pass: Count the number of wvalid diagonals
do d = min_dim, max_dim
offset_exists = .false.

! Check if this diagonal has any non—zero elements
do i = max(1l, 1-d), min(m, n—d)
if (abs(array(i, i+d)) > tolerance) then ! Compare using tolerance
offset_exists = .true.
exit

24

end if
end do

!I' If diagonal exists, increment the count
if (offset_exists) then
num_diagonals = num_diagonals + 1
end if
end do

! Allocate diagonal_offsets to the exact size of wvalid diagonals
allocate(diagonal_offsets (num_diagonals))

! Second pass: Store the wvalid diagonal offsets
count = 0
do d = min_dim, max_dim

offset_exists = .false.

! Check if this diagonal has any non—zero elements
do i =max(l, 1 — d), min(m, n — d)
if (array(i, i +d) /= 0.0) then
offset _exists = .true.
exit
end if
end do

! If diagonal exists, store the offset
if (offset_exists) then

count = count + 1
diagonal_offsets (count) = d
end if
end do

end subroutine count_diagonals

! Initialize a CDS matriz with size n, ndiag number of diagonals and [] as the
subroutine cds_init (cds_matrix, n, ndiag, offsets)

type(cds_type), intent(out) :: cds_matrix

integer, intent(in) :: n, ndiag

integer, intent(in) :: offsets(ndiag)

cds_matrix%n = n

cds_matrix%ndiag = ndiag

allocate (cds_matrix%data(n, ndiag))

allocate (cds_matrix%offsets (ndiag))

cds_matrix%offsets = offsets

cds_matrix%data = 0.0 _real64 ! Initialize to zero
end subroutine cds_init

!I'Convert regular finite difference matriz to CDS format
subroutine cds_convert (fdm_matrix, cds_matrix)

25

real(real64), intent(in) :: fdm_matrix(:,:)

type(cds_type), intent(out) :: cds_matrix
integer :: n_diags

integer , allocatable :: diag_offsets (:)
integer :: 1i,]j

call count_diagonals(fdm_matrix, n_diags, diag_offsets)
call cds_init (cds.matrix, size(fdm_matrix, 1), n_diags, diag_offsets)

do i = 1, cds_matrix%ndiag
do j = 1, cds_matrix%n
! Check if the column index is within bounds
if (j + cds_matrix%offsets (i) >= 1 .and. j + cds_matrix%offsets (i) <= «
cds_matrix%data(j, i) = fdm_matrix(j, j + cds_matrix%offsets (i))
else
cds_matrix%data(j, i) = 0.0_real64 ! Set to zero if the entry doesn
end if
end do
end do

end subroutine cds_convert

I'Multiply a vector with a Matriz in CDS format

subroutine cds_matvec(cds_matrix, vector, result)
type(cds_type), intent(in) :: cds_matrix
real(real64), intent(in) :: vector(cds_matrix%m)
real(real64), intent(out) :: result(cds_matrix%m)
integer :: 1i,]j
integer :: n,ndiag, offset

n = cds_matrix%n
ndiag = cds_matrix%ndiag

result = 0.0_real64

do j = 1, ndiag
offset = cds_matrix%offsets (j)
if (offset < 0) then
do i = 1—offset ,n
result (i) = result(i) + cds_matrix%data(i,j)*vector (it+offset)
end do
else
do i = 1,n—offset
result (i) = result(i) 4+ cds_matrix%data(i,j)*vector(i+offset)
end do
end if
end do

end subroutine cds_matvec

I'Multiply a vector with a Matriz in CDS format using regular do concurrent par
subroutine cds_matvec_parallel (cds_matrix, vector, result)

26

type(cds_type), intent(in) :: cds_matrix
real(real64), intent(in) :: vector(cds_matrix%m)
real(real64), intent(out) :: result(cds_matrix%m)
integer :: i]

integer :: n,ndiag, offset

n = cds_matrix%n
ndiag = cds_matrix%ndiag

result = 0.0_real64

do j = 1, ndiag
offset = cds_matrix%offsets (j)
if (offset < 0) then
do concurrent (i=l—offset:n)
result (i) = result(i) 4+ cds_matrix%data(i,j)*vector(itoffset)
end do
else
do concurrent (i=1l:n—offset)
result (i) = result(i) + cds_matrix%data(i,j)*xvector (i+offset)
end do
end if
end do

end subroutine cds_matvec_parallel

I'Multiply a vector with a Matriz in CDS format using OpenACC parallelization
subroutine cds_matvec.OpenACC (cds_matrix, vector, result)

type(cds_type), intent(in) :: cds_matrix
real(real64), intent(in) :: vector (cds_matrix%m)
real(real64), intent (out) :: result(cds_matrix%m)
real(real64), allocatable :: entries (:,:)

integer , allocatable :: offsets(:)

integer :: i, j

integer :: n, ndiag, offset

real(real64) :: sum

n = cds_matrix%n

ndiag = cds_matrix%ndiag

result = 0.0_real64

! Allocate and initialize local arrays
allocate(entries (n, ndiag), source=cds_matrix%data)
allocate (offsets (ndiag), source=cds_matrix%offsets)

!$acc data present_or_copyin(entries, offsets, wvector) copyout(result)
!$acc parallel loop gang vector_length (128) private (j, offset ,sum) present (¢
doi =1, n

sum = 0.0 _real64

do j = 1, ndiag

27

offset = offsets(j)
if (offset < 0) then
if (i + offset >= 1) sum = sum + entries(i, j) * vector(i + off

else
if (i + offset <= n) sum = sum + entries(i, j) * vector(i + off
end if
end do
result (i) = sum

end do
!$acc end parallel loop
!$acc end data

deallocate (entries , offsets)

end subroutine cds_matvec_OpenACC

!'Print CDS matriz in correct formatting

subroutine cds_print (cds_matrix)
type(cds_type), intent(in) :: cds_matrix
integer :: i, j

print x, "CDS-Matrix:”
do i = 1, cds_matrix%n
write(x, '(10F8.2)’, advance="no’) (cds_matrix%data(i, j), j = 1, cds_ma
print x
end do
end subroutine cds_print

! Free memory after allocating memory to CSD matrix
subroutine cds_destroy (cds_matrix)
type(cds_type), intent(inout) :: cds_matrix
if (associated(cds_matrix%data)) deallocate(cds_matrix%data)
if (associated(cds_matrix%offsets)) deallocate(cds_matrix%offsets)
end subroutine cds_destroy
! Build a 1D Laplacian matriz directly in CDS format
subroutine build_laplacian_1d_cds(cds_matrix, n)
use iso_fortran_env , only: real64
implicit none

type(cds_type), intent(out) :: cds_matrix
integer, intent(in) :: n

integer , parameter :: ndiag = 3

integer :: i, d

integer , dimension(ndiag) :: offsets

offsets = (/ —1, 0, 1 /)
call cds_init (cds_matrix, n, ndiag, offsets)

! Fill diagonals

do d = 1, ndiag
select case(offsets(d))
case(—1)

28

do i =2, n

cds_matrix%data(i, d) = —1.0d0
end do
case (0)
doi=1,n
cds_matrix%data(i, d) = 2.0d0
end do
case (1)
doi =1, n-1
cds_matrix%data(i, d) = —1.0d0
end do
end select
end do

end subroutine build_laplacian_1d_cds
! Build a 2D Poisson matriz directly in CDS format
subroutine build_poisson_2d_cds (cds_matrix, N)

use iso_fortran_env , only: real64

implicit none

type(cds_type), intent(out) :: cds_matrix
integer, intent(in) :: N

integer :: total_size, i, j, idx, d
integer , parameter :: ndiag = 5

integer , dimension(ndiag) :: offsets

total_size = NxN
offsets = (/ N, -1, 0, 1, N /)

call cds_init (cds-matrix, total_size , ndiag, offsets)

! Loop over all grid points

do j =1, N
do i =1, N
idx = (j—1)*N + i
do d = 1, ndiag
if (offsets(d) = —N) then
if (j > 1) cds.matrix%data(idx, d)
else if (offsets(d) = —1) then

if (i > 1) cds_matrix%data(idx, d)

else if (offsets(d) = 0) then
cds_matrix%data(idx, d) = 4.0d0
else if (offsets(d) = 1) then

if (i < N) cds.matrix%data(idx, d)

else if (offsets(d) = N) then

if (j < N) cds_matrix%data(idx, d)

end if
end do
end do
end do
end subroutine build_poisson_2d_cds

end module cds_matrix

29

—1.0d0

—1.0d0

—1.0d0

—1.0d0

B Appendix: Standard Fortran code

program cg_solver
use iso_fortran_env , only: real64
use cds_matrix

! Problem sizes

integer , parameter :: size = 2xx4
integer , parameter :: s_P = 2xx2
integer, parameter :: size_large = 2xx20

integer , parameter :: s_P_large = 2x%x10
real(real64), parameter :: eps = 1.0d-8

integer , parameter :: max_iteration = 600000
integer :: iter_test
integer :: num_runs = 100

! Host arrays

Ireal(real64) :: matriz_full(size, size)

type(cds_type) :: laplace_1d_cds, laplace_ld_cds_large

Ireal(real64) :: laplace_1d(size,size)

type(cds_type) :: poisson_2d_cds, poisson_-2d_cds_large

Ireal(real64) :: poisson_2d(s-Pxs_P, s.Pxs_P)

real(real64) :: output(size), input(size)

real(real64) :: output_large(size_large), input_large(size_large)
real(real64) :: t_start, t_end

real(real64) :: sum_time_lapld = 0.0d0, sum_time_lapld_cds = 0.0d0, sum_time
real(real64) :: sum_time_poisson2d = 0.0d0, sum_time_poisson2d_cds = 0.0d0, =
real(real64) :: sum_time_randspd = 0.0d0

integer :: sum_iters_lapld = 0, sum_iters_lapld_cds = 0, sum_iters_lapld_cds.
integer :: sum_iters_poisson2d = 0, sum_iters_poisson2d_cds = 0, sum_iters_pc
integer :: sum_iters_randspd = 0

integer :: it_lapld, it_lapld_cds, it_lapld_cds_large, it_poisson2d , it_poiss¢

! Initialize Laplacian matrix

!call build_-laplacian_1d(laplace_1d, size)

call build_laplacian_1d_cds(laplace_1d_cds, size)

call build_laplacian_1d_cds(laplace_1d_cds_large , size_large)

! Initialize a 2D Poisson malric

!call build-poisson_2d(poisson_2d, s_P)

call build_poisson_2d_cds(poisson_2d_cds, s_P)

call build_poisson_2d_cds(poisson_2d_cds_large , s_P_large)

! Initialize a random symmetric positive definite matriz

30

call build_symmetric_pd(matriz_full , size)

input = 1.0d0
input_large = 1.0d0

do iter_test = 1, num_runs

! Laplacian 1D

call cpu_time(t_start)

'call cg_solve(laplace_1d, input, output, size, eps, maz_iteration, it_la
call cpu_time(t_end)

I'sum_time_lapld = sum_time_lapld + (t_end — t_start)

I'sum_iters_lapld = sum_iters_lapld + it_lapld

! Laplacian 1D CDS

call cpu_time(t_start)

'call cg-solve_cds(laplace_1d_cds , input, output, size, eps, maz_iteratio
call cpu_time(t_end)

I'sum_time_lapld_cds = sum_time_lapld_cds + (t_-end — t_start)
I'sum_iters_lapld_cds = sum_iters_lapld_cds + it_lapld_cds

! Laplacian matriz 1D converted to CDS format LARGE

'call cpu_time(t_start)

lcall cg-solve_cds(laplace_1d_cds_large , input_large, output_large, size_
call cpu_time(t_end)

I'sum_time_lapld_cds_large = sum_time_lapld_cds_large + (t_end — t_start)
I'sum_iters_lapld_cds_large = sum_iters_lapld_cds_large + it_lapld_cds_lar

! Poisson 2D

call cpu_time(t_start)

call cg_solve(poisson_2d, input, output, s_Pxs_P, eps, max_iteration , it
call cpu_time(t_end)

I'sum_time_poisson2d = sum_time_poisson2d + (t_end — t_start)
I'sum_iters_poisson2d = sum_iters_poisson2d + it_poisson2d

! Poisson 2D CDS

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds, input, output, s_.Pxs.P, eps, max_iterat
call cpu_time(t_end)

sum_time_poisson2d_cds = sum_time_poisson2d_cds + (t-end — t_start)
sum_iters_poisson2d_cds = sum_iters_poisson2d_cds + it_poisson2d_cds

! Poisson matriz 2D converted to CDS format LARGE

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds_large , input_large, output_large, s_P_la
call cpu_time(t_end)

sum_time_poisson2d_cds_large = sum_time_poisson2d_cds_large + (t_end — t.
sum _iters_poisson2d_cds_large = sum_iters_poisson2d_cds_large + it_poisso

! Random SPD

31

'call cpu_time(t_start)
call cg-solve(matriz_full, input, output, size, eps, maz_iteration , it_r
call cpu_time(t_end)

I'sum_time_randspd = sum_time_randspd + (t_end — t_start)
I'sum_iters_randspd = sum_iters_randspd + it_randspd
end do

call cds_destroy
call cds_destroy
call cds_destroy
call cds_destroy

laplace_1d_cds)
laplace_1d_cds_large)
poisson_2d_cds)
poisson_2d_cds_large)

A~ N S

print x, ’ ’

print *, ’Averages-over’, num_runs, ’iterations:’

print x, ’ ’

I'print ’(A,I0,A,F15.10,A,10)’, ’Size: ’, size, ' Laplacian 1D avg time (s):
print ’(A,10,A,F15.10,A,10)’, ’Size:-’, size, ’-Laplacian-1D-CDS-avg-time - (s
print ’(A,10,A,F15.10,A,10)’, ’Size:-’, size_large, ’-Laplacian-1D-CDS-LARGE
I'print (A, I0,A,F15.10,A,10)’, ’Size: ’, size, ’ Poisson 2D avg time (s):’,
print ’(A,I0,A,F15.10,A,10)’, ’Size:-’, size, ’-Poisson-2D-CDS-avg-time-(s):
print ’(A,I0,A,F15.10,A,10)’, ’Size:-’, size_large , ’'-Poisson-2D-CDS-LARGE- ¢
I'print (A, I0,A,F15.10,A,10)’, ’Size: ’, size, ’ Random SPD avg time (s):’,
contains

!'Subroutine for Conjugate Gradient solver
subroutine cg_solve(M, b, x, n, epsilon, imax, iter_count)
integer, intent(out) :: iter_count
integer , intent(in) :: n, imax
real(real64), intent(in) :: M(n,n), b(n), epsilon
, intent(out) :: x(n)

real(real64)

real(real64) r(n), d(n), q(n)
real(real64) :: delta_new, delta_old, delta_0
real(real64) alpha, beta
real(real64) dg-sum

integer iter

x = 0.0d0

r=>0 ! residual

d=r ! search direction
delta_new = dot_product(r, r)

delta_.0 = sqrt(delta_new)

iter = 0

do while (iter < imax .and. sqrt(delta.new) > (epsilon * delta_0))
I g =M x d using intrinsic matmul
q = matmul(M, d)

! d+*q using intrinsic dot_product

32

dgq-sum = dot_product(d, q)
alpha = delta_new / dgq_sum

x = x 4+ alpha *x d ! whole—array updates
r =1 — alpha *x q

delta_old = delta_new
delta_new = dot_product(r, r)

beta = delta_new / delta_old
d =71 4+ beta * d
iter = iter + 1

end do

if (iter >= imax—1) then

print x, ’--WARNING: -Maximum-number-of -iterations -reached-before-conve
end if
iter_count = iter
I'print %, ° Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrt(delta_new)
I'print %, 7 Solution wvector z (first 10 wvalues):’

I'print °(10F12.4)°, z(1:min(10,n))
end subroutine cg_solve

!'Subroutine for CG solve which implements CDS file format
subroutine cg_solve_cds(M, b, x, n, epsilon, imax, iter_count)

integer , intent(out) :: iter_count
integer, intent(in) :: n, imax
real(real64), intent(in) :: b(n), epsilon
type(cds_type), intent(in) :: M
real(real64), intent(out) :: x(n)
real(real64) r(n), d(n), q(n)
real(real64) delta_new , delta_old, delta_0
real(real64) :: alpha, beta

real(real64) dq_sum

integer iter

x = 0.0d0

r==>O ! residual

d=r ! search direction
delta_new = dot_product(r, r)

delta_.0 = sqrt(delta_new)

iter = 0

do while (iter < imax .and. sqrt(delta_new) > (epsilon % delta_0))

33

! ¢ =M * d using cds_matvec
call cds_matvec_parallel (M, d, q)

! d+*q using intrinsic dot_product
dq-sum = dot_product(d, q)

alpha = delta_new / dq_sum

x = x 4+ alpha * d ! whole—array updates
r = r — alpha *x q

delta_old = delta_new
delta_.new = dot_product(r, r)

beta = delta_new / delta_old
d =71 4+ beta * d
iter = iter + 1

end do

if (iter >= imax—1) then

print x, ’--WARNNG: -Maximum-number-of -iterations -reached-before-conve
end if
iter_count = iter
I'print %, ° Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrit(delta_new)
I'print %, 7 Solution wvector z (first 10 wvalues):’

I'print °(10F12.4)°, x(1:min(10,n))
end subroutine cg_solve_cds

! Include matriz building subroutines
include 'matrix_builders.f90’

end program cg_solver

34

C Appendix: OpenACC code

program cg_solver
use iso_fortran_env , only: real64
use cds_matrix

! Problem sizes

integer , parameter :: size = 2xx4
integer , parameter :: s_P = 2xx2
integer, parameter :: size_large = 2xx20

integer , parameter :: s_P_large = 2x%x10
real(real64), parameter :: eps = 1.0d-8

integer , parameter :: max_iteration = 600000
integer :: iter_test
integer :: num_runs = 100

! Host arrays

Ireal(real64) :: matriz_full(size, size)

type(cds_type) :: laplace_1d_cds, laplace_ld_cds_large

Ireal(real64) :: laplace_1d(size,size)

type(cds_type) :: poisson_2d_cds, poisson_-2d_cds_large

Ireal(real64) :: poisson_2d(s-Pxs_P, s.Pxs_P)

real(real64) :: output(size), input(size)

real(real64) :: output_large(size_large), input_large(size_large)
real(real64) :: t_start, t_end

real(real64) :: sum_time_lapld = 0.0d0, sum_time_lapld_cds = 0.0d0, sum_time
real(real64) :: sum_time_poisson2d = 0.0d0, sum_time_poisson2d_cds 0.0d0, =
real(real64) :: sum_time_randspd = 0.0d0

integer :: sum_iters_lapld = 0, sum_iters_lapld_cds = 0, sum_iters_lapld_cds.
integer :: sum_iters_poisson2d = 0, sum_iters_poisson2d_cds = 0, sum_iters_pc
integer :: sum_iters_randspd = 0

integer :: it_lapld, it_lapld_cds, it_lapld_cds_large, it_poisson2d , it_poiss¢

! Initialize Laplacian matrix

!call build_-laplacian_1d(laplace_1d, size)

call build_laplacian_1d_cds(laplace_1d_cds, size)

call build_laplacian_1d_cds(laplace_1d_cds_large , size_large)

! Initialize a 2D Poisson malric

!call build-poisson_2d(poisson_2d, s_P)

call build_poisson_2d_cds(poisson_2d_cds, s_P)

call build_poisson_2d_cds(poisson_2d_cds_large , s_P_large)

! Initialize a random symmetric positive definite matriz

35

call build_symmetric_pd(matriz_full , size)

input = 1.0d0
input_large = 1.0d0

do iter_test = 1, num_runs

! Laplacian 1D

call cpu_time(t_start)

'call cg_solve(laplace_1d, input, output, size, eps, maz_iteration, it_la
call cpu_time(t_end)

I'sum_time_lapld = sum_time_lapld + (t_end — t_start)

I'sum_iters_lapld = sum_iters_lapld + it_lapld

! Laplacian 1D CDS

call cpu_time(t_start)

'call cg-solve_cds(laplace_1d_cds , input, output, size, eps, maz_iteratio
call cpu_time(t_end)

I'sum_time_lapld_cds = sum_time_lapld_cds + (t_-end — t_start)
I'sum_iters_lapld_cds = sum_iters_lapld_cds + it_lapld_cds

! Laplacian matriz 1D converted to CDS format LARGE

'call cpu_time(t_start)

lcall cg-solve_cds(laplace_1d_cds_large , input_large, output_large, size_
call cpu_time(t_end)

I'sum_time_lapld_cds_large = sum_time_lapld_cds_large + (t_end — t_start)
I'sum_iters_lapld_cds_large = sum_iters_lapld_cds_large + it_lapld_cds_lar

! Poisson 2D

call cpu_time(t_start)

call cg_solve(poisson_2d, input, output, s_Pxs_P, eps, max_iteration , it
call cpu_time(t_end)

I'sum_time_poisson2d = sum_time_poisson2d + (t_end — t_start)
I'sum_iters_poisson2d = sum_iters_poisson2d + it_poisson2d

! Poisson 2D CDS

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds, input, output, s_.Pxs.P, eps, max_iterat
call cpu_time(t_end)

sum_time_poisson2d_cds = sum_time_poisson2d_cds + (t-end — t_start)
sum_iters_poisson2d_cds = sum_iters_poisson2d_cds + it_poisson2d_cds

! Poisson matriz 2D converted to CDS format LARGE

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds_large , input_large, output_large, s_P_la
call cpu_time(t_end)

sum_time_poisson2d_cds_large = sum_time_poisson2d_cds_large + (t_end — t.
sum _iters_poisson2d_cds_large = sum_iters_poisson2d_cds_large + it_poisso

! Random SPD

36

'call cpu_time(t_start)
call cg-solve(matriz_full, input, output, size, eps, maz_iteration , it_r
call cpu_time(t_end)

I'sum_time_randspd = sum_time_randspd + (t_end — t_start)
I'sum_iters_randspd = sum_iters_randspd + it_randspd
end do

call cds_destroy
call cds_destroy
call cds_destroy
call cds_destroy

laplace_1d_cds)
laplace_1d_cds_large)
poisson_2d_cds)
poisson_2d_cds_large)

A~ N S

print x, ’ ’

print *, ’Averages-over’, num_runs, ’iterations:’

print x, ’ ’

I'print ’(A,I0,A,F15.10,A,10)’, ’Size: ’, size, ' Laplacian 1D avg time (s):
print ’(A,10,A,F15.10,A,10)’, ’Size:-’, size, ’-Laplacian-1D-CDS-avg-time - (s
print ’(A,10,A,F15.10,A,10)’, ’Size:-’, size_large, ’-Laplacian-1D-CDS-LARGE
I'print (A, I0,A,F15.10,A,10)’, ’Size: ’, size, ’ Poisson 2D avg time (s):’,
print ’(A,I0,A,F15.10,A,10)’, ’Size:-’, size, ’-Poisson-2D-CDS-avg-time-(s):
print ’(A,I0,A,F15.10,A,10)’, ’Size:-’, size_large , ’'-Poisson-2D-CDS-LARGE- ¢
I'print (A, I0,A,F15.10,A,10)’, ’Size: ’, size, ’ Random SPD avg time (s):’,
contains

!'Subroutine for Conjugate Gradient solver
subroutine cg_solve(M, b, x, n, epsilon, imax, iter_count)
integer, intent(out) :: iter_count
integer , intent(in) :: n, imax
real(real64), intent(in) :: M(n,n), b(n), epsilon
, intent(out) :: x(n)

real(real64)

real(real64) r(n), d(n), q(n)
real(real64) :: delta_new, delta_old, delta_0
real(real64) alpha, beta
real(real64) dg-sum

integer iter

x = 0.0d0

r=>0 ! residual

d=r ! search direction
delta_new = dot_product(r, r)

delta_.0 = sqrt(delta_new)

iter = 0

do while (iter < imax .and. sqrt(delta.new) > (epsilon * delta_0))
I g =M x d using intrinsic matmul
q = matmul(M, d)

! d+*q using intrinsic dot_product

37

dgq-sum = dot_product(d, q)
alpha = delta_new / dgq_sum

x = x 4+ alpha *x d ! whole—array updates
r =1 — alpha *x q

delta_old = delta_new
delta_new = dot_product(r, r)

beta = delta_new / delta_old
d =71 4+ beta * d
iter = iter + 1

end do

if (iter >= imax—1) then

print x, ’--WARNING: -Maximum-number-of -iterations -reached-before-conve
end if
iter_count = iter
I'print %, ° Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrt(delta_new)
I'print %, 7 Solution wvector z (first 10 wvalues):’

I'print °(10F12.4)°, z(1:min(10,n))
end subroutine cg_solve

!'Subroutine for CG solve which implements CDS file format
subroutine cg_solve_cds(M, b, x, n, epsilon, imax, iter_count)

integer , intent(out) :: iter_count
integer, intent(in) :: n, imax
real(real64), intent(in) :: b(n), epsilon
type(cds_type), intent(in) :: M
real(real64), intent(out) :: x(n)
real(real64) r(n), d(n), q(n)
real(real64) delta_new , delta_old, delta_0
real(real64) :: alpha, beta

real(real64) dq_sum

integer iter

x = 0.0d0

r==>O ! residual

d=r ! search direction
delta_new = dot_product(r, r)

delta_.0 = sqrt(delta_new)

iter = 0

do while (iter < imax .and. sqrt(delta_new) > (epsilon % delta_0))

38

! ¢ =M * d using cds_matvec
call cds_matvec_parallel (M, d, q)

! d+*q using intrinsic dot_product
dq-sum = dot_product(d, q)

alpha = delta_new / dq_sum

x = x 4+ alpha * d ! whole—array updates
r = r — alpha *x q

delta_old = delta_new
delta_.new = dot_product(r, r)

beta = delta_new / delta_old
d =71 4+ beta * d
iter = iter + 1

end do

if (iter >= imax—1) then

print x, ’--WARNNG: -Maximum-number-of -iterations -reached-before-conve
end if
iter_count = iter
I'print %, ° Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrit(delta_new)
I'print %, 7 Solution wvector z (first 10 wvalues):’

I'print °(10F12.4)°, x(1:min(10,n))
end subroutine cg_solve_cds

! Include matriz building subroutines
include 'matrix_builders.f90’

end program cg_solver

39

D Appendix: CUDA code

program cg_solver
use cudafor

use cds_matrix

use iso_fortran_env
implicit none

, only: real64

! Add device memory attributes for arrays used in CUDA kernels

real(real64), device, allocatable, dimension(:) :: d.d, dor, d.q, dx, db, «
real(real64), device, allocatable, dimension(:,:) :: dM

integer , parameter :: size = 2xx4

integer , parameter :: s_.P = 2xx2

integer , parameter :: size_large = 2xx%20

integer , parameter :: s_P_large = 2x%x10

real(real64), parameter :: eps 1.0d-8

integer , parameter :: max_iteration = 600000

integer :: iter_test

integer :: num_runs = 100

Ireal(real64), allocatable :: laplace_1d(:,:), matriz_full(:,:), poisson_2d (.
type(cds_type) :: laplace_ld_cds, laplace_ld_cds_large

type(cds_type) :: poisson_2d_cds, poisson_-2d_cds_large

real(real64), allocatable :: output(:), input(:), output_large(:), input_larg
real(real64) :: t_start, t_end

real(real64) :: sum_time_lapld = 0.0d0, sum_time_lapld_cds = 0.0d0, sum_time
real(real64) :: sum_time_poisson2d = 0.0d0, sum_time_poisson2d_cds = 0.0d0, =
real(real64) :: sum_time_randspd = 0.0d0

integer :: sum_iters_lapld = 0, sum_iters_lapld_cds = 0, sum_iters_lapld_cds.
integer :: sum_iters_poisson2d = 0, sum_iters_poisson2d_cds = 0, sum_iters_pc
integer :: sum_iters_randspd = 0

integer :: it_lapld, it_lapld_cds, it_lapld_cds_large, it_poisson2d , it_poiss¢

lallocate (laplace_1d(size ,size), matriz_full(size, size), poisson_2d(s_.Pxs_P ¢
allocate (input (size), output(size), input_large(size_large), output_large(siz

! Initialize Laplacian matrix

call build_laplacian_1d(laplace_1d, size)

call build_laplacian_1d_cds(laplace_1d_cds, size)

call build_laplacian_ld_cds(laplace_1d_cds_large , size_large)

! Imitialize a 2D Poisson malriz

Icall build_poisson_2d(poisson_2d, s_P)

call build_poisson_2d_cds(poisson_2d_cds, s_P)

call build_poisson_2d_cds(poisson_2d_cds_large , s_P_large)

40

! Initialize a random symmetric positive definite matriz
Icall build_symmetric_pd (matriz_full , size)

input = 1.0d0
input_-large = 1.0d0

do

iter_test = 1, num_runs

! Laplacian 1D

call cpu_time(t_start)

'call cg-solve(laplace-1d, input, output, size, eps, maz_iteration, it_la
'call cpu_time(t_end)

I'sum_time_lapld = sum_time_lapld + (t_end — t_start)

I'sum_iters_lapld = sum_iters_lapld + it_lapld

! Laplacian 1D CDS

call cpu_time(t_start)

call cg_solve_cds(laplace_1d_cds, input, output, size, eps, max_iteration
call cpu_time(t_end)

sum_time_lapld_cds = sum_time_lapld_cds + (t_end — t_start)
sum_iters_lapld_cds = sum_iters_lapld_cds + it_lapld_cds

! Laplacian matriz 1D converted to CDS format LARGE

call cpu_time(t_start)

call cg_solve_cds(laplace_1d_cds_large , input_large, output_large, size_l
call cpu_time(t_end)

sum_time_lapld_cds_large = sum_time_lapld_cds_large + (t_end — t_start)
sum_iters_lapld_cds_large = sum_iters_lapld_cds_large + it_lapld_cds_larg

! Poisson 2D

call cpu_time(t_start)

call cg_solve(poisson_2d, input, output, s _Pxs_P, eps, max_iteration , it
'call cpu_time(t_end)

'sum_time_poisson2d = sum_time_poisson2d + (t_-end — t_start)
Isum_iters_poisson2d = sum_iters_poisson2d + it_poisson2d

! Poisson 2D CDS

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds, input, output, s_Pxs_.P, eps, max_iterat
call cpu_time(t_end)

sum_time_poisson2d_cds = sum_time_poisson2d_cds + (t-end — t_start)
sum_iters_poisson2d_cds = sum_iters_poisson2d_cds + it_poisson2d_cds

! Poisson matriz 2D converted to CDS format LARGE

call cpu_time(t_start)

call cg_solve_cds(poisson_2d_cds_large, input_large, output_large, s_P_la
call cpu_time(t_end)

sum_time_poisson2d_cds_large = sum_time_poisson2d_cds_large + (t_end — t.
sum_iters_poisson2d_cds_large = sum_iters_poisson2d_cds_large + it_poisso

41

! Random SPD
call cpu_time(t_start)

call cg_solve(matriz_full , input, output, size,

call cpu_time(t_end)

eps,

I'sum_time_randspd = sum_time_randspd + (t_end — t_start)

Isum_iters_randspd = sum_iters_randspd + it_randspd

end do

call cds_destroy
call cds_destroy
call cds_destroy
call cds_destroy

laplace_1d_cds)
laplace_1d_cds_large)
poisson_2d_cds)
poisson_2d_cds_large)

A~ N S

print x, ’ ’

print *, ’Averages-over’, num_runs, ’iterations:’

print x, ’ ’

I'print (A, I0,A,F15.10,A,10)’, ’Size:’, size, ’ Laplacian 1D avg time (s):’,
print ’(A,10,A,F15.10,A,10)’, ’Size:’, size, ’-Laplacian-1D-CDS-avg-time- (s
print ’(A,10,A,F15.10,A,10)’, ’Size:’, size_large, ’-Laplacian-1D-CDS-LARGE-
I'print (A,I0,A,F15.10,A,10)", ’Size:’, size, ' Poisson 2D avg time (s):’, ¢
print ’(A,I0,A,F15.10,A,10)’, ’Size:’, size, ’-Poisson-2D-CDS-avg-time-(s):’

print ’(A,I0,A,F15.10,A,10)’, ’Size:’
I'print (A, I0,A,F15.10,A,10)’, ’Size:’, size,

contains

subroutine cg_solve_cds (M_host, b_host, x_host, n, epsilon, imax,

integer, intent(out) :: iter_count
integer, intent(in) :: n, imax
type(cds_type), intent(in) :: M_host
real(real64), intent(in) :: b_host(n)
real(real64), intent(out) :: x_host(n
! Device wvariables

)

, size_large ,

epsilon

maz_iteration ,

it_r

’-Poisson - 2D-CDS-LARGE- ax
* Random SPD avg time (s):7,

<
&

iter_count)

real(real64), device, allocatable, target :: d_data(:,:), d-b(:), d-x(:), ¢

integer, device, allocatable, target :: d_offsets(:)
real(real64), allocatable :: r(:), d(:), q(:)
real(real64) :: delta_new, delta_old, delta_0, alpha,
integer :: iter , istat , ndiag

! Allocate and copy CDS matriz components to device

ndiag = M_host%ndiag
allocate (d_data(n, ndiag))
allocate(d_offsets (ndiag))
d_data = M_host%data
d_offsets = M_host%offsets

! Allocate device wectors

allocate(d_-b(n), dx(n), d_-r(n), d-d(n), d_-q(n))

d_-b = b_host
d_x = 0.0d0
d.r = dob

42

beta ,

dq_sum

d.d = d-r

! Allocate host workspace for final result
allocate(r(n), d(n), q(n))

! Initial residual norm
delta_new = 0.0d0
!$cuf kernel do(1) <<<#,128>>>, reduction (+:delta_new)
doi =1, n
delta_new = delta_new + d_r(i) * d_r(i)
end do
delta_0 = sqrt(max(delta_new , tiny(1.0d0)))
delta_old = delta_new
iter =0

do while (iter < imax .and. sqrt(delta_new) > (epsilon * delta_0))
! ¢ = Mxd (CDS matvec)
call cds_matvec(M_hostym, M_host%ndiag, d_data, d_offsets, d.d, d_q)

! dg_sum = d"T q
dg_sum = 0.0d0
'$cuf kernel do(1) <<<x128>>>, reduction (+:dq-sum)
do i =1, n
dg-sum = dq_sum + d_d(i) * d-q(1i)
end do

alpha = delta_new / max(dq-sum, tiny(1.0d0))
'$cuf kernel do (1) <<<#128>>>
doi =1, n
dx(i) = dx(i) + alpha % d.d(i)
dor(i) = d-r(i) — alpha % d_q(1i)
end do

delta_old = delta_new
delta_.new = 0.0d0
!'$cuf kernel do(1) <<<x128>>>, reduction (+:delta_new)
doi =1, n
delta_new = delta_new + d_r(i) * d_r(i)
end do

beta = delta_new / max(delta_old , tiny(1.0d0))
$cuf kernel do(1) <<<#128>>>
doi =1, n
d.d(i) = d-r(i) + beta x d-d(i)
end do

iter = iter + 1
end do

! Copy result back to host

43

x_host = d_x

if (iter >= imax—1) then

print x, ’--WARNING: -Maximum-number-of -iterations -reached - before-converg
end if
I'print %, 7 Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrt(delta_new)
iter_count = iter

! Deallocate device arrays

if (allocated(d_data)) deallocate(d_data)
if (allocated(d- offsets)) deallocate(d_offsets)
if (allocated(d-b)) deallocate(d-b)
if (allocated(d._x)) deallocate(d_x)
if (allocated(d.r)) deallocate(d_r)
if (allocated(d.d)) deallocate(d._d)
if (allocated(d.q)) deallocate(d_q)
if (allocated(r)) deallocate(r)
if (allocated(d)) deallocate(d)
if (allocated(q)) deallocate(q)
end subroutine cg_solve_cds

subroutine cg_solve (M, b, x, n, epsilon, imax, iter_count)

integer , intent(out) :: iter_count

integer, intent(in) :: n, imax

real(real64), intent(in) :: M(n,n), b(n), epsilon
real(real64), intent(out) :: x(n)

real(real64) r(n), d(n), q(n)

real(real64) :: delta_new, delta_old, delta_0
real (real64) alpha, beta, dq_sum

integer iter , istat

! Allocate device memory
allocate(d.d(n), d-r(n), d-q(n), d-x(n), d-b(n), dM(n,n), stat=istat)
if (istat /= 0) stop ’'Failed-to-allocate-device-memory’

! Initialize host arrays
= 0.0d0
=b

=T

(oM IS

! Copy initial data to device

d.b=">
dM =M
dx = x
dor =1
dd =4d

! Compute initial residual morm squared on device

44

delta_new = 0.0d0
!$cuf kernel do(1) <<<#,128>>>, reduction (+:delta_new)
do i =1, n
delta_new = delta_new + d._r(i) * d.r(i)
end do

delta_0 = sqrt (max(delta_new, tiny(1.0d0))) ! Ensure non—zero
delta_old = delta_new
iter = 0

do while (iter < imax .and. sqrt(delta_new) > (epsilon * delta_0))
! Compute q = A*d on device
call matvec(d.d, d_q, n)

! Compute dg_.sum = d°T * q and update x, r in a single kernel
dg_sum = 0.0d0

delta_old = delta_new

delta_new = 0.0d0

! First, compute alpha = delta_old / (d"T % q)
dg_sum = 0.0d0
'$cuf kernel do(1) <<<#128>>>, reduction (+:dq-sum)
do i =1, n

dg-sum = dq_sum + d_d(i) * d-q(1i)
end do

! Update x and r
alpha = delta_old / max(dq-sum, tiny(1.0d0)) ! Awvoid division by zero
!$cuf kernel do (1) <<<#128>>>
do i =1, n
dx(i) = dx(i) + alpha % d.d(i)
dr(i) = d.r(i) — alpha * d_q(i)
end do

! Compute new residual norm
delta_new = 0.0d0
!'$cuf kernel do(1) <<<#,128>>>, reduction (+:delta_new)
doi=1,n
delta_new = delta_new + d_r(i) * d_r(i)
end do

! Update search direction
beta = delta_new / max(delta_old, tiny(1.0d0)) [/ Awoid division by zerc

'$cuf kernel do (1) <<<#128>>>
do i =1, n

d.d(i) = d-r(i) + beta * dd(i)
end do

iter = iter + 1
end do

45

! Copy final result back to host
= d.x

if (iter >= imax—1) then

print x, ’--WARNNG: -Maximum-number-of -iterations -reached-before-converg
end if
I'print %, 7 Converged in’, iter, ’iterations.’
I'print %, 7 Residual norm =’, sqrit(delta_new)
I'print %, 7 Solution vector z (first 10 wvalues):’

I'print °(10F12.4)°, x(1:min(10,n))
! Copy result back to host

x = d_x

iter_count = iter

! Free device memory (if allocated)

if (allocated(d.d)) deallocate(d-d)

if (allocated(d.r)) deallocate(d_r)

if (allocated(d._q)) deallocate(d_q)

if (allocated(d_x)) deallocate(d_x)

if (allocated(d-b)) deallocate(d.-b)

if (allocated(d-M)) deallocate(d-M)
end subroutine cg_solve

' Multiply a vector with a Matriz in full format using CUDA parallelization
subroutine matvec(d_in, d_out, nn)

integer, intent(in) :: nn

real(real64), device, intent(in) :: d_in(nn)
real(real64), device, intent(out) :: d_out(nn)
integer :: i, jj

real*x8 :: sum_val

! Perform matrix—vector multiplication on device
!$cuf kernel do(1) <<<#128>>>
do i =1, nn
sum_val = 0.0d0
do jj = 1, nn
sum_val = sum_val + d-M(i,jj) * d-in(jj)
end do
d_out (i) = sum_val
end do
end subroutine matvec

I'Multiply a vector with a Matriz in CDS format wusing CUDA parallelization
subroutine cds_matvec(n, ndiag, data, offsets, vector, result)

integer, value :: n, ndiag

real(real64), device :: data(n, ndiag)

integer, device :: offsets(ndiag)

real(real64), device :: vector(n)

46

real(real64), device :: result(n)

integer :: i, j, offset
real(real64) :: sum_val

!'$cuf kernel do(1) <<<#128>>>
doi =1, n
sum_val = 0.0 _real64
do j = 1, ndiag
offset = offsets(j)
if (offset < 0) then

if (i + offset >= 1) sum_val

else
if (i + offset <= n)
end if
end do
result (i) = sum_val
end do

end subroutine cds_matvec

include ’'matrix_builders.f90’

end program cg_solver

47

sum_val + data(i, j) * vector(i +

sum_val + data(i, j) * vector(i +

E Appendix: Matrix building code

! Creates a 1D Laplacian matriz (tridiagonal with 2 on diagonal,
! —1 on off—diagonals)
subroutine build_laplacian_1d (A, n)

use iso_fortran_env , only: real64

implicit none

integer, intent(in) :: n
real(real64), intent(out) :: A(n,n)
integer :: i
A = 0.0d0
do i =1, n

A(i,i) = 2.0d0

if (i >1) A(i, i—1) = —1.0d0

if (i <n) A(i, i+1) = —1.0d0
end do

end subroutine build_laplacian_1d

! Creates a random symmetric positive definite matrix
subroutine build_symmetric_pd (A, n, shift)

use iso_fortran_env , only: real64

implicit none

integer, intent(in) :: n

real(real64), intent(out) :: A(n,n)
real(real64), optional, intent(in) :: shift
real(real64) :: C(n,n)
real(real64) diag_shift
integer i

! Default shift to make matriz positive definite
diag_shift = 1.0d—3
if (present(shift)) diag_shift = shift

! Create random matriz
call random _seed ()
call random number (C)

! Make it symmetric positive definite: A = C'T x C + shiftxl
A = matmul(transpose(C), C)
doi=1,n
A(i,i) =A(i,i) + diag_shift
end do
end subroutine build_symmetric_pd

! Creates a 2D Poisson matriz (5—point stencil for 2D Laplacian)
subroutine build_poisson_2d (A, N)

use iso_fortran_env , only: real64

implicit none

48

integer, intent(in) :: N

integer :: total_size
real(real64), intent(out) :: A(N«N, NxN)
integer :: i, j, idx, neighbor

total_size = NxN
A= 0.0d0

do j =1, N

i=1,N
idx = (j—1)«N + i ! Flattened index
A(idx, idx) = 4.0d0

! Left neighbor
if (i > 1) then

neighbor = idx — 1

A(idx, neighbor) = —1.0d0
end if

! Right neighbor
if (i < N) then
neighbor = idx +
A(idx, neighbor) = —1.0d0
end if

—_

! Bottom mneighbor
if (j > 1) then
neighbor = idx — N
A(idx, neighbor) = —1.0d0
end if

! Top neighbor

if (j < N) then
neighbor = idx + N
A(idx, neighbor) = —1.0d0

end if

end do
end do
end subroutine build_poisson_2d

49

