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A B S T R A C T

Wire and Arc Additive Manufacturing (WAAM) has great potential for efficiently producing large metallic
components. However, like other additive manufacturing techniques, materials processed by WAAM exhibit
anisotropic properties. Assuming isotropic material properties in design optimization thus leads to less efficient
material utilization. Instead of viewing WAAM-induced material anisotropy as a limitation, we consider it an
opportunity to improve structural performance. This requires the integration of process planning into structural
design. In this paper, we propose a novel method to utilize material anisotropy to enhance the performance
of structures both during fabrication and in their use. Our approach is based on space–time topology
optimization, which simultaneously optimizes the structural layout and the fabrication sequence. To model
material anisotropy in space–time topology optimization, we derive the material deposition direction from
the gradient of the pseudo-time field, which encodes the fabrication sequence. Numerical results demonstrate
that leveraging material anisotropy effectively improves the performance of intermediate structures during
fabrication as well as the overall structure.
1. Introduction

Topology optimization is essential in structural design for additive
manufacturing. By topology optimization, structural design is trans-
formed into an optimization problem of determining the optimal ma-
terial distribution to maximize structural performance, such as cre-
ating lightweight structures with high load-bearing capacity [1,2].
It has been widely applied across engineering disciplines, including
aerospace, automotive, civil and biomechanical engineering. Additive
manufacturing (AM, also known as 3D printing) fabricates components
layer-upon-layer from digital models. In an AM process, the material is
added precisely where needed, allowing for complex geometries, cus-
tomization, and reduced waste compared to traditional manufacturing
methods [3]. The design freedom provided by topology optimization
complements the manufacturing flexibility of AM, allowing for the
creation of components with exceptional performance [4,5]. However,
the complex geometries resulting from topology optimization often
pose production challenges, even with advanced AM techniques. Conse-
quently, integrating AM constraints into structural design optimization
has been a key research area over the past decade. Important issues that
have been addressed include overhang limitation [6–8], local overheat-
ing [9], support structures [10,11], and residual stresses [12,13]. We
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refer to the review articles [14–16] for a comprehensive overview of
developments in topology optimization for AM.

Beyond structural design, the manufacturing process itself greatly
influences the quality of additively produced components. For example,
in wire and arc additive manufacturing (WAAM) [17–19], substantial
distortion may occur during fabrication and after cutting off from the
build plate. An essential aspect of manufacturing process planning is
the fabrication sequence, which dictates the layer-by-layer construction
of the structure. In traditional 2.5D printing, where each layer is
planar and parallel to each other, the layer-wise sequence is uniquely
defined by the orientation of the structure on the build plate. Topol-
ogy optimization, combined with build orientation optimization for
2.5D printing, has been explored in several studies [20–25]. However,
advancements in multi-axis printing using robotic arms, capable of rota-
tional and translational movements, allow for material deposition along
non-planar layers [26–29]. This capability expands the solution space
for fabrication sequence planning. Optimizing the fabrication sequence
can significantly enhance the quality of fabricated components. For
instance, it reduces structural distortions caused by high temperature
gradients and phase transitions in WAAM [30].
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Fabrication sequences are typically planned after the structure has
been designed, leading to insufficient consideration of the manufac-
turing process during the design phase. This disconnect results in
discrepancies between digital designs and their physical counterparts.
Recent studies aim to close this gap by integrating manufacturing
process planning into structural design optimization [31,32]. Achieving
optimal structural performance necessitates a holistic approach that
concurrently optimizes both the structural layout and the fabrication
sequence [33,34]. Known as space–time topology optimization [33], it
introduces a pseudo-time field alongside the pseudo-density field used
in conventional topology optimization. The pseudo-time field encodes
the fabrication sequence, facilitating the planning of the sequence as
the structural layout evolves during optimization. The isolines of the
pseudo-time field divide the structural layout into an ordered sequence
of curved layers, enabling the analysis of intermediate structures that
emerge during the manufacturing process.

Previous implementations of the space–time topology optimiza-
tion framework have generally assumed isotropic material properties.
However, in AM, material properties such as elastic modulus, ten-
sile strength, and yield strength are significantly influenced by the
manufacturing process, leading to anisotropic behavior [35–43]. As-
suming isotropic material properties in design optimization thus leads
to suboptimal performance [44–48]. In WAAM, material anisotropy
is particularly prevalent in components fabricated from materials like
austenitic stainless steel [49] and Ti-6Al-4V [50], primarily due to rapid
and uneven solidification during manufacturing [49]. It is therefore
important to take material anisotropy into account when designing for
WAAM [51,52].

In this paper, we propose a novel method to utilize material
anisotropy to enhance the performance of structures both during fabri-
cation and in their use. By considering the effects of material anisotropy
in the concurrent optimization of structural design and process plan-
ning, we aim to reduce the gap between digital designs and their
physical counterparts, ultimately enhancing the quality of produced
components.

The consideration of material anisotropy in structural topology
optimization dates back to the 1980s. Early research was driven by
the anisotropic properties of laminated and fiber-reinforced compos-
ites [53–57]. Pedersen [58,59] established that the optimal orientations
of orthotropic materials for maximizing structural stiffness align with
the principal stress directions. This foundation led to stress-based meth-
ods [28,60–65] where the material reinforcement direction is derived
from principal stress directions. For structures subjected to multiple
load cases, the arrangement of local material orientation is treated as an
optimization problem, with material orientation defined as either a dis-
crete or continuous variable, represented using the polar angle [66,67]
or a vector in the Cartesian coordinate system [68,69]. This approach
has been integrated with topology optimization to simultaneously op-
timize structural layout and material orientation [66–70]. However,
these methods are not directly applicable to design for additive manu-
facturing, as they either derive material orientation from stress fields or
treat local material orientation as independent optimization variables.
The resulting optimized anisotropic material orientation may not be
achievable through an AM process.

Recent studies have incorporated material anisotropy in structural
optimization for AM, coupling material orientation with structural
design based on material deposition toolpaths in AM processes. Level-
set-based topology optimization [2] is particularly well-suited for this
purpose, where iso-value level set contours are interpreted as deposi-
tion toolpaths, with material orientations aligned accordingly [71–74].
While this typically results in toolpaths that are quasi-parallel to the op-
timized shape’s boundary, it does not allow for more complex patterns,
such as zig-zag toolpaths. Vibhas et al. [51] proposed a method to op-
timize structural design for WAAM by integrating material anisotropy,
with deposition toolpaths manually derived from the optimized orien-

tation in a post-processing step. Automated extraction of toolpaths from v

2 
specialized topology optimization methods has also been explored, such
as the phase-field de-homogenization approach [75] and the streamline
algorithm [76]. However, it is important to note that in both these
methods and others, the toolpaths are static and do not determine the
printing order. Our work differs by specifically analyzing the printing
order of toolpaths, an investigation made possible through space–time
topology optimization [30,33,77].

In space–time topology optimization, the fabrication sequence is
represented by a pseudo-time field, and it is optimized concurrently
with the pseudo-density field representing the structural layout. To
integrate material anisotropy into space–time topology optimization, a
differentiable relationship between material anisotropy and the fabrica-
tion sequence should be established. In this paper, we will illustrate that
the anisotropic material orientation can be implicitly derived from the
pseudo-time field. Furthermore, the printing order can also be derived
from the pseudo-time field, allowing us to predict its consequence
on printing quality. This research demonstrates the feasibility and
benefits of incorporating manufacturing-induced material anisotropy in
space–time topology optimization.

The remainder of the paper is organized as follows. Section 2 details
the mathematical model underlying our method. Section 3 presents
a series of numerical examples, validating the effectiveness of the
proposed method. Lastly, Section 4 summarizes the key findings and
contributions.

2. Method

In this section, we first introduce the parameterization of the
structural layout and fabrication sequence, specifically the space–time
parameterization using pseudo-density and pseudo-time fields (Sec-
tion 2.1). Next, we discuss the anisotropic material model, emphasizing
the relationship between material anisotropy and the pseudo-time field
(Section 2.2). The computational steps involved in space–time topology
optimization are detailed in Section 2.3. Finally, Section 2.3.3 presents
the mathematical model for space–time topology optimization with
anisotropic materials, along with the pseudo-code summarizing the
solution process.

2.1. Space–time parameterization

Here we review the parameterization for space–time topology opti-
mization, which forms the foundation of our current work. In space–
time optimization, both the structural layout and the corresponding
fabrication sequence are optimized concurrently. The structural layout
is represented using a pseudo-density field 𝝆, as in classic density-
based topology optimization. Simultaneously, the fabrication sequence
is encoded through a pseudo-time field 𝒕. For simplicity, the pseudo-
density and pseudo-time fields are referred to as density and time fields,
respectively. These fields are defined in the domain of the 2D or 3D
component.

Applying the same discretization to both density and time fields,
each element is assigned two variables, 𝜌𝑒 and 𝑡𝑒. In a discrete setup,
the density 𝜌𝑒 assumes values of either 0 or 1, where 𝜌𝑒 = 0 indicates
oid and 𝜌𝑒 = 1 represents solid material. To avoid solving a binary
ptimization problem, this binary design variable is relaxed, allowing
ensities to take intermediate values. Correspondingly, the elastic mod-
lus associated with intermediate density values is determined by a
ommonly used material interpolation model, i.e., SIMP (Solid Isotropic
aterial with Penalization).

Unlike the intended binary representation of the density field, the
ime variable 𝑡𝑒 assumes continuous values between 0 and 1. A higher
ime value indicates that an element is to be built later in the manu-
acturing process. Specifically, a time value of 0 denotes the beginning
f manufacturing, while 1 indicates that the element is produced at the

ery end of the manufacturing process.
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Fig. 1. Illustration of space–time parameterization and the orthogonal relationship between the gradient of the time field and the local material orientation. Top row:
(a) A structural layout, represented by a density field. (b) The structure color-coded by a time field, with the isolines partitioning the structure into 12 layers. (c, d) Two successive
intermediate structures during fabrication, in which 8 or 9 layers have been produced. Bottom row: (e) The time field in a rectangular domain. (f) The normalized gradient (blue
arrow) of the time field. (g) The local material deposition direction (red) is perpendicular to the gradient vector element-wise. The local material orientation is denoted by angle
𝜃.
As illustrated in Fig. 1, from the continuous time field, a series of
intermediate structures is derived. Fig. 1(a) shows the structural layout,
represented by a density field. Fig. 1(b) visualizes the time field on
the structure using a colormap. The isolines of the time field partition
the component into a series of layers. The iso-values are 𝜏𝑗 = 𝑗

𝑁 , 𝑗 =
0, 1,… , 𝑁 , with 𝑁 being the prescribed number of layers. The elements
with a time value belonging to the interval [𝜏𝑗−1, 𝜏𝑗 ], 𝑗 = 1,… , 𝑁 ,
are part of the 𝑗th layer. Fig. 1(c) and (d) illustrate the intermediate
structure at two consecutive stages during the manufacturing process.
The intermediate structure at time 𝜏 is composed of elements with a
time value equal to or less than 𝜏. Elements with a time value larger
than 𝜏 have not been produced and thus are assigned a density value
of zero,

𝜌{𝜏}𝑒 =

{

𝜌𝑒, if 𝑡𝑒 ≤ 𝜏,
0, otherwise.

(1)

To facilitate gradient-based optimization, this conditional equation
is approximated using a smoothed Heaviside function,

𝜌{𝜏}𝑒 = 𝜌𝑒𝑡
{𝜏}
𝑒 , (2)

with

𝑡{𝜏}𝑒 = 1 −
tanh(𝛽𝑡𝜏) + tanh(𝛽𝑡(𝑡𝑒 − 𝜏))
tanh(𝛽𝑡𝜏) + tanh(𝛽𝑡(1 − 𝜏))

. (3)

Here, 𝛽𝑡 determines the sharpness of the step function. This function
converts, in a differentiable manner, a time value smaller than the
threshold value 𝜏 to 1, and, conversely, a time value larger than 𝜏 to 0.

2.2. Material anisotropy

From the time field that encodes the fabrication sequence, the
direction of material deposition can be derived accordingly. In this
subsection, we present the computation of local material deposition
directions, followed by the constitutive model of anisotropic material
in space–time topology optimization.

The direction of material deposition correlates with the gradient
of the time field, as depicted in the bottom row of Fig. 1. Shown in
Fig. 1(e) is the time field, visualized by a colormap, along with the
3 
isolines, which segment this component into curved layers. In Fig. 1(f),
the gradient of the time field is visualized, while Fig. 1(g) additionally
displays the tangent of the time field, which defines the material
deposition direction. Although the tangent direction is a vector, we do
not differentiate whether the material is deposited along the positive or
negative direction of the vector, as this has little influence on material
anisotropy. We represent the local material deposition direction using
the angle formed between the tangent of the time field and the hori-
zontal axis. As shown in Fig. 1(g), the 𝑥−𝑦 axes are the global reference
axes pointing in horizontal and vertical directions. The local material
axes 𝑥′ − 𝑦′ are aligned with the local material deposition direction,
represented by angle 𝜃, which is confined within the range of −90◦ to
90◦.

The local material deposition direction is orthogonal to the gradient
of the time field (∇𝑡),

∇𝑡||
|𝑒
⋅ �⃗�𝑒 = 0, (4)

where ∇𝑡||
|𝑒

is the gradient vector of the time field on element 𝑒, and
�⃗�𝑒 = [cos 𝜃𝑒, sin 𝜃𝑒]⊤ is the vector form of the local material deposition
direction 𝜃𝑒. On a structured mesh, the gradient of the time field is
calculated using the shape function,

∇𝑡||
|𝑒
=

[

∑

𝑖∈𝑒

𝜕𝑁𝑖
𝜕𝑥

𝑡𝑖,
∑

𝑖∈𝑒

𝜕𝑁𝑖
𝜕𝑦

𝑡𝑖

]⊤

, (5)

where 𝜕𝑁𝑖
𝜕𝑥 and 𝜕𝑁𝑖

𝜕𝑦 are the spatial derivative of the shape functions
evaluated at the centroid of element 𝑒. 𝑖 is a node of element 𝑒, and 𝑡𝑖 is
the nodal time value. The local material deposition direction, restricted
to the range of [−90◦, 90◦], is calculated by

𝜃𝑒 = arctan
⎛

⎜

⎜

⎝

−

∑

𝑖∈𝑒
𝜕𝑁𝑖
𝜕𝑥 𝑡𝑖

∑

𝑖∈𝑒
𝜕𝑁𝑖
𝜕𝑦 𝑡𝑖

⎞

⎟

⎟

⎠

. (6)

The generalized Hooke’s law of an orthotropic material can be found
in Appendix A. After obtaining the local material deposition direction
𝜃, the elasticity tensor 𝐃 in the global reference axes (𝑥 − 𝑦) is related
to 𝐃0 in the local material axes (𝑥′ − 𝑦′) by a transformation [51]:

𝐃 𝜃 = 𝐑⊤ 𝜃 𝐃 𝐑 𝜃 , (7)
( ) ( ) 0 ( )
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Fig. 2. Anisotropic elasticity in WAAM-processed material. (a) Test samples with different orientations relative to layer print direction. (b) Polar plot of Young’s modulus and
shear modulus measured in the horizontal axis when the WAAM-processed stainless steel is deposited at different angles (𝜃). The highest Young’s modulus is achieved when the
material is deposited at ±45◦. (c) Polar plot of another cubic orthotropic material, whose highest Young’s modulus is achieved along or perpendicular to the material deposition
direction.
the transformation matrix is

𝐑 (𝜃) =
⎡

⎢

⎢

⎣

cos2 𝜃 sin2 𝜃 sin 𝜃 cos 𝜃
sin2 𝜃 cos2 𝜃 − sin 𝜃 cos 𝜃

−2 sin 𝜃 cos 𝜃 2 sin 𝜃 cos 𝜃 cos2 𝜃 − sin2 𝜃

⎤

⎥

⎥

⎦

. (8)

Eq. (7) describes the elasticity tensor for a solid element (𝜌𝑒 = 1)
with anisotropic material. For elements with an intermediate density
(𝜌𝑒 ∈ [0.0, 1.0]), we apply the SIMP interpolation scheme to anisotropic
material,

𝐃𝑒(𝜌𝑒, 𝜃𝑒) = 𝐑⊤ (

𝜃𝑒
)

𝐃0
(

𝜌𝑒
)

𝐑
(

𝜃𝑒
)

=
[

𝜖 + (1 − 𝜖)𝜌𝑝𝑒
]

𝐑⊤ (

𝜃𝑒
)

𝐃0𝐑
(

𝜃𝑒
)

,
(9)

where 𝜖 is a very small stiffness assigned to void elements to prevent
the stiffness matrix from becoming singular. 𝑝 is a penalization of
intermediate densities to promote a black-and-white design (typically
𝑝 = 3).

2.2.1. Material anisotropy in WAAM
Materials processed by metal additive manufacturing exhibit dis-

tinctive anisotropic behavior. Here we focus on stainless steel, one
of the most common materials used in WAAM. Fig. 2(a) illustrates a
thin-walled structure manufactured layer-by-layer using WAAM. The
material behavior is measured on samples taken in three directions:
along the horizontal layer (𝛼 = 0◦), perpendicular to the layer (𝛼 =
90◦), and with an angle of 45◦. According to the experimental data
reported by Kyvelou et al. [49], the Young’s modulus (slope of the
curves) of these samples is different, revealing the anisotropic elasticity.
Specifically, the Young’s modulus along the layer (𝛼 = 0◦) is very close
to that perpendicular to the layer (𝛼 = 90◦); 143.3GPa and 139.6GPa,
respectively. In contrast, with a Young’s modulus of 219.5GPa, the sam-
ples along the 45◦ direction are significantly stiffer. We note that this
anisotropic material behavior differs from the anisotropy in material
extrusion 3D printing or fiber-reinforced 3D printing [76], where the
material is often stiffest in the deposition direction.

Fig. 2(b) and (c) visualize the modulus in reference axes for finite
element analysis, when the material is deposited at different angles (𝜃).
The plots in Fig. 2(b) correspond to the WAAM-produced stainless steel.
Considering the nearly identical values of the Young’s modulus along
and perpendicular to the layer (143.3GPa and 139.6GPa, respectively),
we simplify by setting 𝐸𝑥 and 𝐸𝑦 to the same value, 𝐸𝑥 = 𝐸𝑦 =
141.45GPa, indicating a cubic orthotropic material. The Poisson’s ratio
in this context is 𝜈𝑥𝑦 = 𝜈𝑦𝑥 = 0.30. The shear modulus of this material
reaches its peak when the material is deposited along the horizontal
reference axis (𝜃 = 0◦). The stiffest direction of this material appears at
𝜃 = ±45◦ with 𝐸±45◦ = 219.50GPa, conforming to Fig. 2(b).

As a comparison, Fig. 2(c) plots the Young’s modulus and shear
modulus of a different material for various material deposition di-
rections. At 𝜃 = 0◦, this material shares the same Young’s modulus
4 
(𝐸 = 141.45GPa) as with the material in Fig. 2(b). However, its shear
modulus is minimal at 𝜃 = 0◦. This material is stiffer along (and
perpendicular to) the deposition direction 𝜃 = 0◦ than along other
directions. While such behavior differs from that observed in WAAM-
processed metals, we employ it in our results section for a comparative
study investigating the influence of material properties on fabrication
sequence optimization.

2.3. Computational workflow

This section presents key steps in the computational workflow of
space–time topology optimization, including the regularization of the
time field (Section 2.3.1) and the filtering and projection procedures
(Section 2.3.2).

Fig. 3 depicts the computational workflow of space–time topology
optimization, with the integration of the anisotropic material model.
We employ the space–time optimization framework recently proposed
by Wang et al. [77]. Rather than directly taking the time field as
optimization variables, this framework introduces auxiliary variables
𝝁 and a partial differential equation to implicitly define the time field,
avoiding local minima that may appear when the time field is directly
optimized. Specifically, as will be elaborated in Section 2.3.1, the time
field 𝒕 is computed by solving a heat equation, based on the density
field 𝝆 that represents the structural layout, and a thermal diffusivity
field �̃�. The density and thermal diffusivity fields are filtered versions
of optimization variables 𝝋 and 𝝁, respectively. The filtering procedure
is common in density-based topology optimization, and thus omitted
in the illustration but will be explained in Section 2.3.2. From the
time field, the material deposition direction is calculated, accordingly
to Section 2.2. By combining the density and time fields, intermediate
structures are computed, as introduced in Section 2.1. Afterward, the
stiffness matrix of intermediate structures is calculated, taking the
material anisotropy into account (Section 2.2.1). This is then used to
analyze the response of intermediate structures. Based on the response
functions, as well as the sensitivities, the optimization variables are
updated.

2.3.1. Regularization of the time field
As discussed in Section 2.1, we use a time field to encode the

fabrication sequence, with a larger time value indicating that the
corresponding location is intended for fabrication at a later stage.
Isolines of this scalar field divide the structural layout into curved
layers. This parameterization of the fabrication process opens up a
huge solution space. However, the sequence represented by the isolines
does not guarantee manufacturability. Ensuring fabrication continuity
is crucial among the manufacturability constraints: material should
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Fig. 3. Workflow of space–time topology optimization considering material anisotropy. (a) The heat diffusivity field. (b) The physical density field. (c) The pseudo-time
field obtained from solving the heat equation Eq. (11). (d) Material orientation field obtained through the orthogonal relationship as in Eq. (4). (e) The 𝑗th intermediate structure
represented as in Eq. (2). (f) The mechanical properties of the intermediate structure. (g) The mechanical analysis of the intermediate structure.
only be deposited on already produced parts or directly onto the build
plate. This requires the time field to be free of local minima.

To address this issue, Wang et al. proposed to regularize the time
field using a heat equation. Assuming a virtual heat source (with a
constant temperature of 1) at the build plate, this creates a virtual
temperature field that gradually decreases. The temperature field (𝑻 )
is continuous and free of local maxima. Its inverse is interpreted as the
time field,

𝒕 = 𝟏 − 𝑻 . (10)

We note that the virtual heat source is introduced to create a contin-
uous scalar field, and shall not be confused with the thermomechanical
process during additive manufacturing.

The virtual temperature field is determined by locally varying ther-
mal diffusivity (𝝁) across the domain, treated as optimization variables
to steer the fabrication sequence. It is further coupled with the density
field to reflect the influence of the structural layout. The heat equation
takes the form of

∇(𝜌�̃�∇𝑇 ) − 𝛼𝚃𝑇 = 0. (11)

Here ∇ is the vector differential operator. 𝜌 is the density, obtained
from the design variable 𝜙 ∈ [0.0, 1.0]. �̃� represents the pseudo thermal
diffusivity. It is obtained from a new set of optimization variables
𝜇 ∈ [0.0, 1.0]. 𝛼𝚃 denotes a constant drain rate.

Using the finite element method, the heat equation is discretized
into a linear form,

𝑲𝚃 (𝝆, �̃�)𝑻 = 𝒃, (12)

where 𝑲𝚃 is the thermal stiffness matrix. 𝑻 denotes the nodal tem-
perature vector. 𝒃 represents the thermal load vector specifying the
virtual heat source, corresponding to the region where manufacturing
is prescribed to start. Bi-linear interpolation is used to obtain the
temperature field on the elements.

The thermal stiffness matrix consists of two parts,

𝑲𝑒
T (𝜌, �̃�) =∫𝛺𝑒

𝜌𝑒�̃�𝑒

(

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦

)

𝑑𝛺𝑒

+ 𝛼𝚃𝑁𝑖𝑁𝑗𝑑𝛺𝑒.
(13)
∫𝛺𝑒

5 
The first part corresponds to the thermal diffusivity, while the second
part represents the drain term. 𝑁𝑖 and 𝑁𝑗 are the shape functions.

2.3.2. Filtering and projection procedures
Filtering of the design variables is important in density-based topol-

ogy optimization to avoid checkerboard problems for low-order ele-
ments [78]. We use the convolution filter as introduced in [79,80] for
the density field:

�̃�𝑒 =

∑

𝑖∈N𝑒
𝐻

(

𝐱𝑖
)

𝜙𝑖
∑

𝑖∈N𝑒
𝐻

(

𝐱𝑖
) , (14)

where N𝑒 is the neighborhood set of element 𝑒, including elements
whose distance to element 𝑒 is less than a given radius 𝑅𝑒. 𝐱𝑖 denotes
the centroid of element 𝑖. The weighting factor of an element linearly
decreases according to its distance to 𝐱𝑒,

𝐻
(

𝐱𝑖
)

= 𝑅𝑒 − ‖

‖

𝐱𝑖 − 𝐱𝑒‖‖. (15)

The filtering is followed by a projection to promote a black-and-
white design. We use the tanh function [81,82]:

𝜌𝑒 = ̄̃𝜙𝑒 =
tanh(𝛽𝑑𝜂) + tanh(𝛽𝑑 (�̃�𝑒 − 𝜂))
tanh(𝛽𝑑𝜂) + tanh(𝛽𝑑 (1 − 𝜂))

. (16)

This function projects values larger than 𝜂 to one, and those less than
𝜂 to zero. 𝜂 is set to 0.5. The parameter 𝛽𝑑 controls the sharpness of
projection. A continuous is applied in optimization; the optimization
starts with a small 𝛽𝑑 and gradually increases it after a fixed number
of iterations. The obtained physical density 𝝆 is used in the structural
analysis and the heat equation Eq. (11).

Filtering is also necessary for the second set of optimization vari-
ables, 𝜇. We use the same filtering technique as for the density field,
but note that the filter radius and weighting functions for 𝜌 and 𝜇 are
not necessarily the same:

�̃�𝑒 =

∑

𝑖∈N𝑒
𝐻

(

𝐱𝑖
)

𝜇𝑖
∑

𝑖∈N𝑒
𝐻

(

𝐱𝑖
) . (17)

The filtering of the thermal diffusivity field is important to increase
the smoothness of the time field, which contributes to the smoothness
of the local material orientation.
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2.3.3. Space–time topology optimization for anisotropic material
In space–time topology optimization, the objective includes perfor-

mance measures of both intermediate structures during fabrication and
the final structure. It should be noted that the intermediate structures
and the final structure can have different boundary conditions and
load cases. The boundary conditions of the intermediate structures
correspond to the manufacturing process, whereas the boundary con-
ditions for the final structure relate to its intended use scenario. The
optimization problem is formulated as follows:

min
𝝓,𝝁

𝑓0 = 𝑐0 +
𝑁
∑

𝑗=1
𝑤𝑗𝑐𝑗 , (18)

s.t. 𝐊 (𝝆,𝜽)𝐔 = 𝐅, (19)

𝐊{𝑗} (𝝆{𝑗},𝜽
)

𝐔{𝑗} = 𝐆{𝑗}, 𝑗 = 1, 2,… , 𝑁, (20)

𝑔0 =
∑

𝜌𝑒𝑣𝑒 ≤ 𝑉0, (21)

𝑔𝑗 =
∑

𝜌{𝑗}𝑒 𝑣𝑒 ≤
𝑗
𝑁

𝑉0, 𝑗 = 1, 2,… , 𝑁, (22)

0.0 ≤ 𝜙𝑒 ≤ 1.0, (23)

0.0 ≤ 𝜇𝑒 ≤ 1.0, (24)

where 𝑁 is the prescribed number of layers or intermediate struc-
tures. 𝑐0 = 𝐔⊤𝐊𝐔 is the compliance of the final structure, and 𝑐𝑗 =
(

𝐔{𝑗})⊤𝐊{𝑗}𝐔{𝑗} is the compliance of the 𝑗th intermediate structure.
The compliances are weighted by 𝑤𝑗 .

Eqs. (19) and (20) describe the governing equations of the final
structure and intermediate structures, respectively. 𝐅 is the external
load for the final structure. 𝐆{𝑗} is the load applied on the 𝑗th in-
termediate structure, such as the structure’s self-weight, the weight
of the robotic arm, or thermal-induced loads. The stiffness matrices
of intermediate structures are a function of 𝝆{𝑗} and 𝜽. 𝝆{𝑗} is the
material distribution of the 𝑗th intermediate structure, corresponding
to the time point 𝜏𝑗 . It is obtained by re-writing Eq. (2) in a vector
form, 𝝆{𝑗} = 𝝆◦�̄�{𝜏𝑗}, with ◦ denoting the Hadamard product of two
vectors. 𝜽 is derived from the time field (Eq. (6)).

Eqs. (21) and (22) prescribe the volume of the entire structure and
intermediate structures, respectively. 𝑉0 is the total material budget,
and 𝑣𝑒 is the volume of each element. Assuming a constant material
deposition rate, the volume increase per layer is constant, i.e., 1

𝑁 𝑉0.
The optimization includes two sets of variables, each ranging be-

tween 0.0 and 1.0. By fixing the density field and excluding it from
the design update, the formulation is simplified to optimize only the
fabrication sequence.

We solve the optimization problem by using the method of moving
asymptotes (MMA) [83]. The sensitivity analysis is detailed in the
Appendix B. Algorithm 1 details the optimization process. The opti-
mization stopping criteria is either the design change 𝛥 is smaller than a
certain value, e.g., 𝜖lim = 1𝑒−5 or the number of total iterations reaches
the maximum iteration step Itmax.

3. Numerical examples

In this section, we validate the proposed method through multiple
numerical examples. We start by comparing the fabrication sequences
optimized with different types of material anisotropy, using a simple
geometry (Section 3.1), followed by fabrication sequence optimization
of a mechanical component (Section 3.2). We then proceed to validate
the effects of material anisotropy in space–time topology optimization,
considering the self-weight of intermediate structures (Section 3.3) and
the weight of a mobile robotic platform on intermediate structures
(Section 3.4). All examples are in 2D and under the plane stress
condition. Each optimization involves 600 iterations.
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Algorithm 1 Space–time topology optimization for anisotropic materi-
als
Input: Total material volume 𝑉0 and number of layers 𝑁
Output: Optimized density field 𝝆 and time field 𝒕
1: Design variables initialization 𝝓 = 𝝓0,𝝁 = 𝝁0
2: Iteration index 𝑖𝑡𝑟 = 0
3: Design change 𝛥 = 1.0
4: Projection parameters 𝛽𝑡 = 10.0, 𝛽𝑑 = 1.0
5: while 𝛥 ≥ 𝜖lim and 𝑖𝑡𝑟 ≤ Itmax do
6: 𝑖𝑡𝑟 = 𝑖𝑡𝑟 + 1
7: 𝝆 = ̄̃𝝓 ← �̃� ← 𝝓 via Eq. (14) and Eq. (16)
8: �̃� ← 𝝁 via Eq. (17)
9: 𝑲T ← 𝝆, �̃� via Eq. (13)

10: 𝒕 = 1 − 𝑻 via solving Eq. (12)
1: ∇𝒕 ← 𝒕 via Eq. (5)
2: 𝜽 ← ∇𝒕 via Eq. (4)
3: 𝑲 ← 𝝆,𝜽 via Eq. (9)
4: 𝑼 ← 𝑲 via solving Eq. (19)
5: 𝑐0 ← 𝑲 ,𝑼
6: 𝜕𝑐0

𝜕𝝓 , 𝜕𝑐0𝜕𝝁 as formulated in Appendix.
17: for 𝑗 = 1 to 𝑁 do
18: 𝝆{𝑗} ← 𝝆, 𝒕 via Eq. (2)
19: 𝐊{𝑗} ← 𝝆{𝑗},𝜽 via Eq. (9)
0: 𝐔{𝑗} ← 𝐊{𝑗} via solving Eq. (20)
1: 𝑐𝑗 ← 𝐊{𝑗},𝐔{𝑗}

2:
𝜕𝑐𝑗
𝜕𝝓 ,

𝜕𝑐𝑗
𝜕𝝁 as formulated in Appendix.

23: end for
24: 𝝓,𝝁 ←

𝜕𝑐0
𝜕𝝓 , 𝜕𝑐0𝜕𝝁 ,

𝜕𝑐𝑗
𝜕𝝓 ,

𝜕𝑐𝑗
𝜕𝝁 via MMA solver

25: 𝛥 = max∀𝑒
(

∣ 𝜙𝑖𝑡𝑟
𝑒 − 𝜙𝑖𝑡𝑟−1

𝑒 ∣, ∣ 𝜇𝑖𝑡𝑟
𝑒 − 𝜇𝑖𝑡𝑟−1

𝑒 ∣
)

26: if mod (𝑖𝑡𝑟, 50) = 0 then
7: 𝛽𝑡 = 𝛽𝑡 + 10.0
8: 𝛽𝑑 = 𝛽𝑑 × 2
9: end if
0: end while

3.1. Anisotropic materials

To investigate the effects of material anisotropy on design op-
timization, we consider two simple load cases where a rectangular
shape is under pure tension or shear stress, as illustrated in Fig. 4(a)
and Fig. 5(a), respectively. We optimize the fabrication sequence to
produce this rectangular shape, i.e., the density field is kept constant
and excluded from optimization, while the time field is to be optimized.
The objective is to minimize the compliance of the shape as it is fully
fabricated. No performance characteristics of intermediate structures
are included in the objective. The compliance of the entire shape de-
pends on the orientation of the anisotropic material, which is governed
by the fabrication sequence. The fabrication is prescribed to start from
the bottom of the domain, and finish with 10 layers. The domain is
discretized into a regular grid of 40 by 40 finite elements.

We test sequence optimization with two anisotropic materials, as
previously introduced in Section 2.2.1 and illustrated in Fig. 2. The
material properties are summarized in Table 1. Material-1 has a high
shear modulus. Its stiffest direction is at 45◦ to the layer orientation,
i.e., 𝜃 = ±45◦. In contrast, the shear modulus of Material-2 is low. Its
stiffest direction is along and perpendicular to the layer, i.e., 𝜃 = 0◦ and
𝜃 = 90◦.

In the uniaxial tension case (Fig. 4), the major principal stress is
horizontal, shown in (e). The fabrication sequences, optimized with
Material-1 and Material-2, are shown in the first row (b, c, d) and
second row (f, g, h), respectively. With the high-shear material, the
layers are oriented at ±45◦ to the 𝑥-axis (b, c). In contrast, with the

low-shear material, the layers are horizontal (f, g). However, with both
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Fig. 4. Comparison of optimized fabrication sequences for anisotropic materials with high-shear and low-shear modulus, tested for uniaxial tension condition. (a) A
rectangular component under uniaxial tension. (e) The optimal orientation of the stiffest direction of the material (major principal stress direction) is horizontal. For anisotropic
materials with high-shear modulus: (b) The optimized time field with isolines, representing the optimized fabrication sequence, (c) The gradient direction of the time field (blue
arrows) and the corresponding material orientation (red lines), (d) The two orthogonal stiffest directions of the anisotropic material. In the same order, (f–h) depict the results for
anisotropic materials with low-shear modulus.
Fig. 5. Comparison of optimized fabrication sequences for anisotropic materials with high-shear and low-shear modulus, tested for pure shear stress condition. (a) A
rectangular component under pure shear stress. (e) The optimal orientation of the stiffest direction of the material (major principal stress direction) is at ±45◦ to the 𝑥-axis. For
anisotropic materials with high-shear modulus: (b) The optimized time field with isolines, representing the optimized fabrication sequence, (c) The gradient direction of the time
field (blue arrows) and the corresponding material orientation (red lines), (d) The two orthogonal stiffest directions of the anisotropic material. In the same order, (f–h) depict the
results for anisotropic materials with low-shear modulus.
Table 1
Material properties of two anisotropic materials. The unit of elastic modules is
GPa.

𝐸𝑥 𝐸𝑦 𝐺𝑥𝑦 𝜈𝑥𝑦
Material-1 141.45 141.45 120.10 0.3
Material-2 141.45 141.45 12.01 0.3
7 
materials, the stiffest material direction is primarily along the 𝑥- and
𝑦-axis (d, h), in agreement with the major principal stress direction (e).

An alignment of the stiffest material direction to the major principal
stress is also observed in the case of pure shear stress (Fig. 5). In the first
row, corresponding to the high-shear material, the optimized layers
are horizontal (b, c), resulting in the stiffest material direction at ±45◦
to the 𝑥-axis (d). In the second row, with the low-shear material, the
optimized layers are curved, and mostly at ±45◦ to the 𝑥-axis (f, g),
leading to the stiffest material direction at ±45◦ to the 𝑥-axis (h).
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Fig. 6. Fabrication sequence optimization for an engineering component. (a) The bracket and boundary conditions for its intended use scenario. (b) Planar fabrication process
as a reference. (c, d) Optimized time field and isolines, representing the optimized fabrication sequence, obtained using the anisotropic material with (c) high-shear modulus,
Material-1 and (d) with low-shear modulus, Material-2.
3.2. Fabrication sequence optimization

The third example of fabrication sequence optimization is a bracket
shown in Fig. 6. The bracket is clamped at its bottom, on the left and
right. It has two alternating loads on its inner circle, pointing upwards
and downwards. The objective is to minimize the compliance of the
component subject to both loading conditions. Similar to previous
examples, the fabrication is prescribed to start from the bottom. The
prescribed number of layers is 20.

The optimized fabrication sequence using Material-1 is shown in
Fig. 6(c). It is symmetric due to the symmetric boundary conditions
and structural layout. For comparison, the planar fabrication sequence
is illustrated in Fig. 6(b). The component manufactured using planar
layers has the compliances of 𝑐1 = 98.85 and 𝑐2 = 92.59 for the
two loads, while according to the optimized fabrication sequence in
Fig. 6(b) it has the compliances of 𝑐1 = 91.75 and 𝑐2 = 88.61. The smaller
compliances confirm that by optimizing the fabrication sequence, the
mechanical capabilities of the final structure can be enhanced through
the effective utilization of material anisotropy.

We note that the improvement in structural performance through
fabrication sequence optimization depends on the extent of material
anisotropy. When repeating the fabrication sequence optimization with
Material-2, the improvement in structural performance compared to
planar layers is more significant. The optimized sequence is illustrated
in Fig. 6(d). In most areas, the layer orientation differs from that of
Material-1 by ±45◦. The component manufactured using planar layers
with Material-2 has compliances of 𝑐1 = 321.0 and 𝑐2 = 336.1 for the
two loads. In contrast, the component produced with the optimized
fabrication sequence shown in Fig. 6(d) has compliances of 𝑐1 = 163.6
and 𝑐2 = 154.2. This optimization reduces the sum of compliances by
51.64%.

Material-2 has its stiffest direction aligned with the material depo-
sition direction. For single-load cases, arranging the material along the
principal stress distribution results in a stiff structure. For two load
cases, aligning the material direction according to the principal stress
of one load case improves the stiffness for that specific load but leaves
the performance under the other load unoptimized. In this example,
aligning the material deposition direction with the principal stress
direction of the first load case, 𝐅1, results in structural compliances
of 𝑐1 = 142.9 and 𝑐2 = 195.3. Conversely, using the principal stress
directions of the second load case, 𝐅2, yields compliances of 𝑐1 = 197.9
and 𝑐 = 137.6. The sums of these compliances are 6.42% and 5.57%
2
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higher, respectively, than those achieved with the optimized sequence
considering both loads simultaneously.

The examples above have demonstrated that the optimized fabri-
cation sequence is influenced by the anisotropic characteristics of the
material. In the following section, we will continue with the high-shear
material model (Material-1), which corresponds to WAAM-processed
austenitic stainless steel.

3.3. Space–time optimization for self-weight

After demonstrating the impact of fabrication sequence on material
anisotropy and, consequently, on structural performance, we proceed
to showcase the importance of incorporating material anisotropy in
space–time topology optimization. The structural layout and fabrica-
tion sequence will collectively exploit the anisotropic characteristics of
material stiffness.

This example concerns a vertically oriented beam, as shown in
Fig. 7(a). The rectangular design domain is discretized into 100 × 400
finite elements. The objective is to minimize the compliance of the
entire structure in its intended use scenario (𝑐0) and the compliance of
intermediate structures during fabrication (∑ 𝑐𝑗). In the use scenario,
i.e., after the beam has been fully fabricated, it is fixed at its bottom and
supports a horizontal load at its top. The fabrication process starts from
the bottom, assuming the bottom of the beam is fixed on a horizontal
baseplate. Throughout fabrication, the intermediate structure supports
the gravitational load of its own weight. This load is dependent on both
the structural layout and fabrication sequence. The total weight of the
structure equals the magnitude of the external force 𝐅 applied during
its use scenario.

Some key parameters for optimization are outlined below: The en-
tire structure is segmented into 𝑁 = 20 or 40 layers for manufacturing.
The weight coefficients assigned to compliances of intermediate struc-
tures in the objective function are set to 𝑤𝑗 = 1∕𝑁 . The volume fraction
of the entire structure is fixed at 0.5. The filter radius for the density
and heat conductivity fields is set to 3 times the length of a single
element. The material property corresponding to the WAAM-produced
stainless steel (Material-1) is utilized.

The optimized results with 𝑁 = 20 are visualized in Fig. 7(b–d).
Fig. 7(b) shows the optimized structural layout, represented by the
physical density field after filtering and projection. In Fig. 7(c), the
structural layout is color-coded according to the time field, illustrating
the fabrication sequence. The isolines of the time field, indicated by the
black lines, outline the boundaries of layers. The layers are sequentially
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Fig. 7. Space–time topology optimization of a vertical beam. (a) Design domain of a vertical beam, consider the self-weight of the structure during fabrication, and an external
load (𝑭 ) on the fully fabricated structure. The optimization is performed in four different setups. Top row (b–g): 𝑁 = 20, with anisotropic material (b, c, d) and isotropic material
(e, f, g). Bottom row (h–m): 𝑁 = 40, with anisotropic material (h, i, j) and isotropic material (k, l, m). For each setup, from left to right: Optimized structural layout, optimized
structure color-coded by the optimized time field, and gradient directions and the corresponding material orientations.
Table 2
Mechanical performances of a vertically oriented beam, considering the self-weight of intermediate structures.

Optimization result Analysis with anisotropic material

Compliances (scaled) 𝑐0
∑

𝑐𝑗 𝑓0 = 𝑐0 +
∑

𝑤𝑗𝑐𝑗 𝑐0
∑

𝑐𝑗 𝑐0+
∑

𝑤𝑗𝑐𝑗

𝑁 = 20
Optimized with anisotropic material 98.76 1.00 98.81 98.76 1.00 98.81
Optimized with isotropic material 138.55 1.21 138.62 134.19 1.19 134.25

𝑁 = 40
Optimized with anisotropic material 99.82 1.68 99.86 99.82 1.68 99.86
Optimized with isotropic material 140.52 2.14 140.57 134.48 2.09 134.54
i
r
o
0
m
o
l
t
c
c
a
u
r

tacked from the bottom. In Fig. 7(d), the gradient direction of the
ptimized time field and the material orientation are depicted, which
re orthogonal. The material orientations are observed to generally
lign with the layer boundaries, as in all examples.

The compliance of the final structure under the external force is
0 = 1825.85, and the sum of compliances of intermediate structures
nder their own weight is ∑

𝑐𝑗 = 18.49. For an easy comparison to
ariations later on, we scale these values by dividing ∑

𝑐𝑗 , leading to
0 = 98.76 and ∑

𝑐𝑗 = 1.00. The same scaling factor is applied to other
esigns in this section. As a comparison, if the optimized structure
s to be manufactured using planar layers, the compliances become
0 = 131.62 and ∑

𝑐𝑗 = 1.31. Both are larger in comparison to the design
ith optimized curved layers and material orientations. This confirms

he advantage of optimizing the fabrication sequences along with the
tructural design using space–time topology optimization.
 t
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In a further comparative study, we optimize the beam using an
sotropic material to reveal the differences in structural layout and fab-
ication sequence with and without material anisotropy. The property
f the isotropic material is: 𝐸𝑥 = 141.45GPa, 𝐸𝑦 = 141.45GPa, 𝜈𝑥𝑦 =
.30, 𝐺𝑥𝑦 = 𝐸𝑥∕2(1 + 𝜈) = 54.40GPa. As the material is isotropic, the
aterial orientation does not influence structural performance. The

ptimized results are shown in Fig. 7(e–g). The optimized structural
ayout displayed in Fig. 7(e) is rather similar to that in Fig. 7(b), while
he optimized fabrication sequences differ more. The whole structure’s
ompliance is 𝑐0 = 138.55, and the sum of intermediate structures’
ompliances is ∑

𝑐𝑗 = 1.21. For a fair comparison, we conduct a post-
nalysis on the optimized structural layout and fabrication sequence,
sing the anisotropic material in replacement of the isotropic one. The
esults are summarized in Table 2. The compliances resulting from
he optimization using the anisotropic material are 26.54% smaller



K. Wu et al. International Journal of Mechanical Sciences 284 (2024) 109712 
Fig. 8. Convergence curves of the objective function and constraints for anisotropic (a) and isotropic material (b). The two plots correspond to the final designs shown
in Fig. 7(c) and (f), respectively.
than those using the isotropic material. Both the compliance of the
final structure and that of intermediate structures are improved when
material anisotropy is included in space–time topology optimization.

The same conclusion holds when the structure and sequence are
optimized with 40 layers. The optimized results using anisotropic and
isotropic materials are shown in the second row in Fig. 7, and their cor-
responding structural performances are included in Table 2. Compared
to the compliances with 𝑁 = 20, the optimization with more layers
results in slightly increased compliances. This is because the constraints
are more strict as the granularity of the fabrication sequence increases.

In addition, Fig. 8 shows convergence curves of the objective func-
tion and constraint functions corresponding to the results in Fig. 7(c)
and (f). In both scenarios, the objective function (red dotted line)
stably decreases, and all the constraint functions converge to zero. The
slight discontinuities in the curves, which occur every 50 iterations,
are due to the continuation scheme of the projection parameters 𝛽𝑡
and 𝛽𝑑 . The designs at the 100-th, 200-th, and 300-th iteration are
included in the figures. Both scenarios show comparable convergence,
with the isotropic scenario converging somewhat faster, suggesting
added complexity introduced by the anisotropic material. The objective
function with the anisotropic material converges to a smaller value than
with the isotropic material.

3.4. Space–time optimization for a mobile robot

Our last example is the construction of a large cantilever beam
using a mobile robotic platform, inspired by an artistic illustration from
MX3D. The artistic illustration and the simplified model for space–time
optimization are shown in Fig. 9(a, b). Similar to the previous example,
the objective is to minimize the compliance of the entire structure
(𝑐0) and compliance of intermediate structures (∑ 𝑐𝑗). However, for
intermediate structures, rather than the self-weight of the structure, we
consider the weight of the mobile robot. The full structure is anchored
on the left and supports an external load on the right (𝐅 = 5000N).
The fabrication is prescribed to start from the edge on the left. During
fabrication, the intermediate structure provides support to the mobile
robotic platform, which moves from left to right. It is assumed that
the robot moves at a constant speed and its weight is also constant
(𝐆 = 1000N). At the 𝑖th stage in fabrication, the robot is located at
a distance of 𝑖−1

𝑁 𝐿𝑥 to the left edge, where 𝑁 is the number of stages
and 𝐿𝑥 = 160 represents the length of the domain. The key optimization
parameters remain the same as in the previous example.

The results optimized using both the anisotropic and isotropic ma-
terial are shown in Fig. 9. As can be seen from (c, f), the optimized
structural layouts using the two different materials are quite similar.
The overhang feature in the top right of the domain might not seem in-
tuitive. It is created to support the last location of the robotic platform.
The fabrication sequences differ for the two materials. For example,
for the part of structures dominated by tension (marked by the red
box), for the anisotropic material the layers are more curved, while for
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the isotropic material, the layers are close to planar. The anisotropic
material is oriented in such a way to make use of its stiffer directions.

Fig. 9(i) shows the manufacturing process according to the opti-
mized fabrication sequence in Fig. 9(d). The positions where the mobile
robot is located during manufacturing are marked in red bricks on the
top boundary. It can be seen that the intermediate structure provides
support to the mobile robot.

Comparisons of mechanical performances between the results opti-
mized using anisotropic and isotropic materials are included in Table 3.
The compliance values are scaled for clarity. The overall performance,
measured as 𝑐0 +

∑

𝑤𝑗𝑐𝑗 , of the result optimized using the anisotropic
material is smaller, which again confirms the benefit of incorporating
manufacturing-induced material anisotropy into space–time topology
optimization. This performance gain is primarily due to the improved
performance of the entire structure (100.00 vs 125.28).

4. Conclusions and future work

In this paper, we have introduced a space–time topology optimiza-
tion method that accounts for elastic anisotropy in WAAM-processed
material. We utilize a pseudo-density field to represent the structural
layout and a pseudo-time field to encode the fabrication sequence. The
orientation of anisotropic materials is determined from the pseudo-
time field, with the local material deposition direction orthogonal
to the gradient of the time field. Our numerical study focuses on
anisotropic stiffness, and we anticipate that extending this approach to
consider anisotropic strength is feasible since the anisotropic direction
has already been derived from the optimization variables.

Our results prove the possibility and benefits of incorporating ma-
terial anisotropy into structural design and process planning. Firstly,
by examples of fabrication sequence optimization, we have shown that
leveraging elastic anisotropy can enhance mechanical performance.
Unlike planar fabrication sequences in conventional 2.5D printing,
optimized fabrication sequences align material deposition orientations
to take advantage of the stiffer direction of materials. It was observed
that the anisotropic characteristic (high-shear vs low-shear modulus)
significantly influences the optimization results. Secondly, incorporat-
ing material anisotropy into space–time topology optimization also
yields distinct structural layouts and fabrication sequences compared
to those based on isotropic materials. Leveraging material anisotropy
proves to be an effective approach to enhancing the performance of
intermediate structures as well as the overall structure.

Future work. The work presented in this paper provides a strong foun-
dation for exploring the full potential of robot-assisted additive man-
ufacturing. However, further advancements are necessary to achieve
experimental validation of the innovative fabrication sequences pro-
posed. One of the primary challenges lies in accurately producing layers
with significant thickness variations, even when utilizing multi-axis
printing. To address this, it is essential to limit these variations within
the computational design method and implement adaptive adjustments
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Fig. 9. Space–time topology optimization of a cantilever beam. (a) Artistic illustration of building a bridge with a robot moving on top of it. The bridge under construction
shall support the mobile robotic platform at all intermediate stages. Image courtesy of MX3D (www.mx3d.com). (b) Simplified design domain of the cantilever bridge, consider the
weight of a robotic platform during fabrication, and an external load (𝑭 ) on the fully fabricated structure. (c–h) The optimization results for anisotropic material (c–e) and isotropic
material (f–h). From left to right: Optimized structural layout (c, f), optimized structure color-coded by the optimized time field (d, g), gradient directions and the corresponding
material orientations (e, h). (i) Illustration of the manufacturing process according to the optimized fabrication sequence in (d), the locations of the robotic platform on the top
of the domain are marked in red bricks.
Table 3
Mechanical performances of a cantilever beam, considering the weight of a mobile robot on intermediate structures.

Optimization result Analysis with anisotropic material

Compliances (scaled) 𝑐0
∑

𝑐𝑗 𝑓0 = 𝑐0 +
∑

𝑤𝑗𝑐𝑗 𝑐0
∑

𝑐𝑗 𝑐0+
∑

𝑤𝑗𝑐𝑗

𝑁 = 30
Optimized with anisotropic material 100.00 57.22 101.97 100.00 57.22 101.97
Optimized with isotropic material 134.58 72.22 137.07 125.28 64.92 127.52
to process parameters during manufacturing, to account for the impact
of the curved fabrication on the geometry of layer beads. Addition-
ally, incorporating advanced models of the WAAM (Wire Arc Additive
Manufacturing) process, including factors such as metal transfer modes
and intermediate cooling processes, would enhance the accuracy of pre-
dictions regarding mechanical properties and manufacturing precision.
However, this approach demands intensive computational resources,
as performance predictions are required at each iteration of the op-
timization process. Lastly, our current method is primarily for the
manufacturing of thin-walled structures. Extending this approach to
bulkier 3D components will necessitate the development of toolpath
planning within each layer. These aspects represent our ongoing re-
search efforts, which are part of the broader and exciting direction
initiated by this study.
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Appendix A. Generalized Hooke’s law of orthotropic material

The generalized Hooke’s law of an orthotropic material in the Voigt
notation is

𝝈0 = 𝐃0 𝜺0, (25)

where 𝜺0 and 𝝈0 denote the stress and strain tensor, respectively.
𝐃0 represents the elasticity tensor. For plane stress problems with
infinitesimal strain, and with the horizontal axis denoted as 𝑥 and the
vertical axis as 𝑦, the elasticity tensor is expressed as

𝐃0 =
1

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

⎡

⎢

⎢

⎢

𝐸𝑥 𝜈𝑦𝑥𝐸𝑥 0

𝜈𝑥𝑦𝐸𝑦 𝐸𝑦 0

⎤

⎥

⎥

⎥

, (26)
⎣
0 0 𝐺𝑥𝑦(1 − 𝜈𝑥𝑦𝜈𝑦𝑥)⎦

http://www.mx3d.com
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where 𝐸𝑥 and 𝐸𝑦 are the Young’s modulus along the reference axes,
nd 𝐺𝑥𝑦 is the shear modulus. 𝜈𝑥𝑦, 𝜈𝑦𝑥 are the Poisson’s ratio, satisfying

𝜈𝑥𝑦𝐸𝑦 = 𝜈𝑦𝑥𝐸𝑥.

Appendix B. Sensitivity analysis

We focus on the sensitivity of the objective function related to
the material anisotropy. For the sensitivities of constraints in various
application scenarios of space–time topology optimization, we refer to
the work of Wang et al. [77].

The objective function is determined by optimization variables 𝝓
and 𝝁 via two intermediate fields, the density field 𝝆 = ̄̃𝝓, and the time
field 𝒕. The time field, according to Eq. (11), is determined by both
the density field 𝝆 and the thermal diffusivity field �̃�. Re-writing the
objective function by

f0(𝝆, �̃�) = 𝑓0(𝝆, 𝒕(𝝆, �̃�)), (27)

the sensitivity of the objective function with respect to 𝝆 and �̃� are,
respectively,
𝜕f0
𝜕𝜌𝑒

=
𝜕𝑓0
𝜕𝜌𝑒

+
𝜕𝑓0
𝜕𝐭

𝜕𝐭
𝜕𝜌𝑒

, (28)

nd
𝜕f0
𝜕�̃�𝑒

=
𝜕𝑓0
𝜕𝐭

𝜕𝐭
𝜕�̃�𝑒

. (29)

Sensitivity w.r.t design variable 𝝓. The augmented form of the objec-
tive function is written as:

f0 = 𝑓0 + 𝝀⊤
(

𝐛 −𝐊T𝐓
)

, (30)

where 𝜆 is the vector of Lagrange multipliers. The sensitivity of the
objective function in relation to the density is:
𝜕f0
𝜕𝜌𝑒

=
𝜕𝑓0
𝜕𝜌𝑒

+
𝜕𝑓0
𝜕𝐭

𝜕𝐭
𝜕𝜌𝑒

+ 𝝀⊤
(

𝜕𝐛
𝜕𝜌𝑒

−
𝜕𝐊T
𝜕𝜌𝑒

𝐓 −𝐊T
𝜕𝐓
𝜕𝜌𝑒

)

,

=
𝜕𝑓0
𝜕𝜌𝑒

−
𝜕𝑓0
𝜕𝐭

𝜕𝐓
𝜕𝜌𝑒

+ 𝝀⊤
(

−
𝜕𝐊T
𝜕𝜌𝑒

𝐓 −𝐊T
𝜕𝐓
𝜕𝜌𝑒

)

,

=
𝜕𝑓0
𝜕𝜌𝑒

−
(

𝜕𝑓0
𝜕𝐭

+ 𝝀⊤𝐊T

)

𝜕𝐓
𝜕𝜌𝑒

− 𝝀⊤
𝜕𝐊T
𝜕𝜌𝑒

𝐓. (31)

By setting the Lagrange multiplier according to the equation:
𝜕𝑓0
𝜕𝐭

+ 𝝀⊤𝐊T = 𝟎, (32)

he sensitivity of the objective function is simplified to
𝜕f0
𝜕𝜌𝑒

=
𝜕𝑓0
𝜕𝜌𝑒

− 𝝀⊤
𝜕𝐊T
𝜕𝜌𝑒

𝐓. (33)

Substantiating the objective function, 𝑓0 = 𝑐0 +
∑𝑁

𝑗=1 𝑤𝑗𝑐𝑗 , the first
part of the above equation is calculated as

𝜕𝑓0
𝜕𝜌𝑒

=
𝜕𝑐0
𝜕𝜌𝑒

+
𝑁
∑

𝑗=1
𝑤𝑗

𝜕𝑐𝑗
𝜕𝜌𝑒

, (34)

here the adjoint method should again be used, resulting in
𝜕𝑐0
𝜕𝜌𝑒

= 𝜕𝐔⊤𝐊𝐔
𝜕𝜌𝑒

= −𝐔⊤ 𝜕𝐊
𝜕𝜌𝑒

𝐔, (35)

nd
𝜕𝑐𝑗
𝜕𝜌𝑒

=
𝜕
(

𝐔{𝑗})⊤𝐊{𝑗}𝐔{𝑗}

𝜕𝜌𝑒
,

= 2
(

𝐔{𝑗})⊤ 𝜕𝐆{𝑗}

𝜕𝜌𝑒
−
(

𝐔{𝑗})⊤ 𝜕𝐊{𝑗}

𝜕𝜌𝑒
𝐔{𝑗}.

(36)

Here the external load on intermediate structures 𝐆{𝑗} can be design
dependent, e.g., self-weight.

Lastly, by using the chain rule, the sensitivity of the objective
function in relation to the optimization variable 𝜙 can be computed
using:
𝜕f0
𝜕𝜙

=
∑ 𝜕f0

𝜕𝜌
𝜕𝜌𝑖
𝜕�̃�

𝜕�̃�𝑖
𝜕𝜙

. (37)

𝑒 𝑖∈𝑒

𝑖 𝑖 𝑒
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Sensitivity w.r.t design variable 𝝁. The sensitivity of the objective
function in relation to the thermal diffusivity �̃� is calculated by using
the adjoint method as well:
𝜕f0
𝜕�̃�𝑒

=
𝜕𝑓0
𝜕𝐭

𝜕𝐭
𝜕�̃�𝑒

+ 𝝀⊤
(

𝜕𝐛
𝜕�̃�𝑒

−
𝜕𝐊T
𝜕�̃�𝑒

𝐓 −𝐊T
𝜕𝐓
𝜕�̃�𝑒

)

,

= −
(

𝜕𝑓0
𝜕𝐭

+ 𝝀⊤𝐊T

)

𝜕𝐓
𝜕�̃�𝑒

− 𝝀⊤
𝜕𝐊T
𝜕�̃�𝑒

𝐓. (38)

The sensitivity in relation to the original optimization variable 𝜇 is
computed using the chain rule:
𝜕f0
𝜕𝜇𝑒

=
∑

𝑖∈𝑒

𝜕𝑓0
𝜕�̃�𝑖

𝜕�̃�𝑖
𝜕𝜇𝑒

. (39)

Lagrangian multiplier 𝝀. Eqs. (31) and (38) have the same Lagrange
multiplier 𝝀. To solve for 𝝀, we need the derivative of the objective
function with regard to the nodal time field:

𝜕𝑓0
𝜕𝑡𝑖

=
𝜕𝑐0
𝜕𝑡𝑖

+
𝑁
∑

𝑗=1
𝑤𝑗

𝜕𝑐𝑗
𝜕𝑡𝑖

. (40)

Again by using the adjoint method we obtain:
𝜕𝑐0
𝜕𝑡𝑖

= 𝜕𝐔⊤𝐊𝐔
𝜕𝑡𝑖

= 𝐔⊤ 𝜕𝐊
𝜕𝑡𝑖

𝐔 =
∑

𝑒
𝐔⊤
𝑒
𝜕𝐊𝑒
𝜕𝑡𝑖

𝐔𝑒, (41)

𝜕𝑐𝑗
𝜕𝑡𝑖

=
𝜕
(

𝐔{𝑗})⊤𝐊{𝑗}𝐔{𝑗}

𝜕𝑡𝑖
,

= 2
(

𝐔{𝑗})⊤ 𝜕𝐆{𝑗}

𝜕𝑡𝑖
−
∑

𝑒

(

𝐔{𝑗}
𝑒

)⊤ 𝜕𝐊{𝑗}
𝑒

𝜕𝑡𝑖
𝐔{𝑗}
𝑒 .

(42)

The derivative of the stiffness matrices in relation to 𝑡𝑖 is obtained
using Eq. (9):

𝜕𝐊𝑒
𝜕𝑡𝑖

=
[

𝜀 + (1 − 𝜀)𝜌𝑝𝑒
]

∫𝛺𝑒

[

𝐁⊤ 𝜕𝐑⊤(𝜃𝑒)
𝜕𝑡𝑖

𝐃0𝐑
(

𝜃𝑒
)

𝐁

+ 𝐁⊤𝐑⊤ (

𝜃𝑒
)

𝐃0
𝜕𝐑(𝜃𝑒)
𝜕𝑡𝑖

𝐁
]

𝑑𝛺𝑒,
(43)

𝜕𝐊{𝑗}
𝑒

𝜕𝑡𝑖
= (1 − 𝜀)

𝜕
(

𝜌{𝑗}𝑒

)𝑝

𝜕𝑡𝑖
∫𝛺𝑒

𝐁⊤𝐑⊤ (

𝜃𝑒
)

𝐃0𝐑
(

𝜃𝑒
)

𝐁 𝑑𝛺𝑒

+
[

𝜀 + (1 − 𝜀)
(

𝜌{𝑗}𝑒

)𝑝]
∫𝛺𝑒

[

𝐁⊤ 𝜕𝐑⊤(𝜃𝑒)
𝜕𝑡𝑖

𝐃0𝐑
(

𝜃𝑒
)

𝐁

+ 𝐁⊤𝐑⊤ (

𝜃𝑒
)

𝐃0
𝜕𝐑(𝜃𝑒)
𝜕𝑡𝑖

𝐁
]

𝑑𝛺𝑒.

(44)

The derivative of the rotation matrix 𝐑
(

𝜃𝑒
)

with regard to 𝑡𝑖 is
alculated using the chain rule:

𝜕𝐑
(

𝜃𝑒
)

𝜕𝑡𝑖
=

𝜕𝐑
(

𝜃𝑒
)

𝜕𝜃𝑒

𝜕𝜃𝑒
𝜕𝑡𝑖

, (45)

𝜕𝜃𝑒
/

𝜕𝑡𝑖 is non-zero only if node 𝑖 belongs to element 𝑒. From Eq. (6)
e get

𝜕𝜃𝑒
𝜕𝑡𝑖

=

(

∑

𝑗∈𝑒
𝜕𝑁𝑗
𝜕𝑦 𝑡𝑗

)

𝜕𝑁𝑖
𝜕𝑥 −

(

∑

𝑗∈𝑒
𝜕𝑁𝑗
𝜕𝑥 𝑡𝑗

)

𝜕𝑁𝑖
𝜕𝑦

(

∑

𝑗∈𝑒
𝜕𝑁𝑗
𝜕𝑥 𝑡𝑗

)2
+
(

∑

𝑗∈𝑒
𝜕𝑁𝑗
𝜕𝑦 𝑡𝑗

)2
. (46)
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