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"Learning never exhausts the mind."
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Summary

D EVELOPMENTS in sequencing technology have drastically reduced the cost of DNA
sequencing. The raw sequencing data being generated requires processing through

computationally demanding suites of bioinformatics algorithms called genomics pipe-
lines. The greatly decreased cost of sequencing has resulted in its widespread adoption,
and the amount of data that is being generated is increasing exponentially, projected to
soon rival big data fields such as astronomy. Therefore, acceleration and optimization of
such genomics pipelines is becoming increasingly important.

The BWA-MEM genomic mapping algorithm is a critical first step of many genomics
pipelines, as it maps the raw input sequences onto a reference genome, thereby recon-
structing the sample’s original genetic assembly. A major part of overall BWA-MEM ex-
ecution time is spent performing Seed Extension, an algorithm closely related to the
Smith-Waterman pairwise sequence alignment algorithm. The standard approach for
the heterogeneous acceleration of the Smith-Waterman algorithm is to map it onto a
systolic array architecture to compute elements of the similarity matrix in parallel. In
order for systolic arrays to operate at high efficiency, they require long sequences to be
aligned to one another. The BWA-MEM algorithm, in contrast, typically generates very
short sequences that then require pairwise alignment through the Seed Extension algo-
rithm. Therefore, in this dissertation, various techniques to improve the efficiency of
systolic arrays for short sequence lengths are proposed.

The Variable Logical Length, the Variable Physical Length, and the Variable Logical
and Physical Length systolic array architectures are proposed to eliminate the depen-
dence of systolic array efficiency on read sequence length. To eliminate its dependence
on reference sequence length, a streaming, implicit synchronizing architecture is intro-
duced. Together, these techniques result in a maximally-efficient systolic array. A Seed
Extension kernel has been implemented on both FPGA and GPU with a threefold kernel-
level improvement to execution time, resulting in the first FPGA-accelerated and the
first GPU-accelerated implementation of BWA-MEM with an overall end-to-end twofold
application-level speedup. Moreover, a Smith-Waterman implementation has been de-
veloped on FPGA using the above efficiency improvements to the systolic array architec-
ture, resulting in an implementation that has a performance of 214 GCUPS and that is
able to attain 99.8% efficiency, which is the highest reported efficiency and performance
of any FPGA-accelerated Smith-Waterman implementation to date. Finally, various as-
pects of these designs are evaluated, including power-efficiency and design-time.
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Samenvatting

R ECENTE ontwikkelingen in sequencing-technologie hebben geresulteerd in drasti-
sche verlaging van de kosten voor DNA-sequencing. De onbewerkte gegevens die

worden gegenereerd, vereisen verwerking door middel van computationeel veeleisende
bioinformatica-algoritmen, de zogeheten genomics-pipelines. De sterk verminderde
kosten voor sequencing hebben geresulteerd in wijdverspreid gebruik en de hoeveel-
heid gegevens die wordt gegenereerd neemt exponentieel toe, met als gevolg een groei
die binnenkort big data-velden zoals astronomie zal evenaren. Hierdoor wordt versnel-
ling en optimalisatie van dergelijke genomics-pipelines steeds belangrijker.

Het BWA-MEM genomische mapping-algoritme is een belangrijke eerste stap van
veel genomics-pipelines, aangezien het de onbewerkte inputsequenties op een referen-
tiegenoom plaatst, om zodoende de originele genetische assemblage van het testsubject
te reconstrueren. Een groot deel van de totale BWA-MEM-uitvoeringstijd wordt besteed
aan het uitvoeren van Seed Extension, een algoritme dat nauw verwant is aan het Smith-
Waterman-algoritme voor paarsgewijze sequentie-uitlijning. De standaardbenadering
voor de heterogene versnelling van het Smith-Waterman-algoritme is om een systoli-
sche arrayarchitectuur te gebruiken, waarbij elementen van de similariteitsmatrix in pa-
rallel worden berekend. Systolische arrays kunnen uitsluitend op hoge efficiëntie werken
wanneer lange sequenties op elkaar worden uitgelijnd. Het BWA-MEM-algoritme daar-
entegen genereert doorgaans zeer korte sequenties ter uitlijning via het Seed Extension-
algoritme. Daarom worden in dit proefschrift verschillende technieken voorgesteld om
de efficiëntie van systolische arrays voor korte sequentielengtes te verbeteren.

De Variabele Logische Lengte, de Variabele Fysieke Lengte en de Variabele Logische
en Fysieke Lengte systolische array-architecturen worden voorgesteld om de afhanke-
lijkheid van systolische array-efficiëntie op invoersequentielengte te elimineren. Om de
afhankelijkheid van de lengte van de referentiesequentie te elimineren, wordt een strea-
ming, auto-synchronizerende architectuur geïntroduceerd. Samen resulteren deze tech-
nieken in een systolische array met maximale efficiënte. Een Seed Extension-kernel is
geïmplementeerd op zowel FPGA als GPU met een drievoudige snelheidsverbetering op
kernelniveau, resulterend in de eerste FPGA-versnelde en de eerste GPU-versnelde im-
plementatie van BWA-MEM met in totaal een tweevoudige snelheidsverbetering op ap-
plicatieniveau. Bovendien is een FPGA Smith-Waterman-implementatie ontwikkeld met
behulp van bovenstaande efficiëntieverbeteringen van de systolische arrayarchitectuur,
resulterend in een implementatie met een prestatie van 214 GCUPS en een efficiëntie
van 99,8%, de hoogste gerapporteerde efficiëntie en prestatie van enige FPGA-versnelde
Smith-Waterman-implementatie tot nu toe. Tenslotte worden verschillende aspecten
van deze ontwerpen geëvalueerd, waaronder energie-efficiëntie en ontwerptijd.
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CHAPTER 1

Introduction

"The dinosaurs became extinct because they did not have a space program."

— Larry Niven

R EVOLUTIONIZING biology in the process, one of the great scientific breakthroughs
in modern history has been the discovery of the structure of DNA by Watson and

Crick in the 1950s [1]. However, only recently improvements in sequencing techniques
have made DNA sequencing affordable enough to start affecting everyday life. The in-
creased adoption rate of sequencing techniques, combined with the greatly improved
capabilities of DNA sequencers have resulted in an exponential increase in the amount
of genomics data being generated [2]. Slowly but surely, the bottleneck of sequencing
techniques is shifting away from the generation of raw data towards processing it into a
useable form, by means of suites of computational bioinformatics tools called genomics
pipelines. Therefore, acceleration and optimization of such genomics pipelines is be-
coming increasingly relevant. This dissertation focuses on improvements to one par-
ticular technique used in bioinformatics, namely on improvements to systolic arrays.
These improvements are then applied to the BWA-MEM and the Smith-Waterman algo-
rithm.

The remainder of this chapter is organized as follows. In Section 1.1, the motivation
for this dissertation is discussed. In Section 1.2, a brief background on the two bioin-
formatics algorithms mentioned above is given and related work is presented. In Sec-
tion 1.3, the main contributions of this work are listed. The chapter is concluded with
Section 1.4, which explains the organization of the remainder of this dissertation.

1.1. MOTIVATION
The first time a single human genome was sequenced was less than two decades ago, in
2003, as part of the international Human Genome Project [3], a project that took fifteen
years and cost about $2.7 billion. Not even twenty years later, sequencing technology
has advanced so dramatically that it has become possible to sequence large groups of
people at a time, enabling numerous population studies around the world, such as the
Precision Medicine Initiative in the US [4], which aims to sequence at least a million

1
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Figure 1.1: The cost of sequencing a single human genome has fallen dramatically over the last twenty years.
Nowadays, a single genome can be sequenced for little more than $1,000, a drop of five orders of magnitude.
This is even significantly faster than the rate at which Moore’s law has revolutionized computing, as the extrap-
olated line shows. Data taken from [6].

genomes, and the 100,000 Genomes Project in the UK [5], which has even already com-
pleted sequencing its one hundred thousand genomes. Amongst others, these studies
are expected to result in new treatment options and drugs that are designed to match a
patient’s unique genetic profile, resulting in improved treatment success rates along with
fewer side-effects, in more accurate diagnoses, and in more effective prevention of dis-
ease. In stark contrast to the fifteen years it took to sequence the first human genome,
a single state-of-the-art Illumina HiSeq X sequencer is able to sequence more than a
dozen human genomes every three days, in the process reducing the cost of sequenc-
ing a single human genome to around $1,000. This dramatic fall in sequencing cost is
best illustrated through a graph (see Figure 1.1). Compared to the well-known Moore’s
law, which stands at the foundation of revolutionizing the field of computing, the fall in
sequencing cost is even more dramatic.

The rapid reduction in sequencing cost has resulted in widespread adoption of se-
quencing data, to be used in a variety of applications: apart from the uses in healthcare
mentioned earlier, DNA sequencing is also used in biotechnology, forensics, virology
and many other domains. The result is an explosion in the amount of data being gen-
erated, and sequencing data generation is soon expected to rival other big data fields,
such as astronomy and online video streaming services [2]. The bottleneck when using
sequencing data is slowly shifting away from data generation towards the computational
techniques used to process it into a useful, actionable form. For example, a typical WGS
cancer data set requires more than three thousand CPU-core hours to process. Hence, a
clear need exists for faster, more efficient algorithms to process this deluge of data.

Fortunately, computer technology also advanced at an exponential pace. Although
Moore’s law seemingly slowed down as of late, on-chip transistor densities still increase
and overall cost per transistor still falls. However, a main challenge in recent years has
been to put the available transistor budget to good use. Due to limitations in power dis-
sipation, spending the entire budget on a single, high performance monolithic core is
infeasible. Instead, a trend can be observed towards multicore and manycore designs,
and towards heterogeneous designs consisting of numerous small, highly specialized,
highly efficient cores. Such specialized cores can offer huge advantages in both com-
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putational power and in power-efficiency. An example is the System-on-a-Chip (SoC)
used in any modern cell phone, which might contain not only multiple clusters of low
and high power general purpose processors, but also multiple Graphical Processing Unit
(GPU) cores, one or more neural network acceleration cores, an image signal proces-
sor for accelerating image processing tasks, vector co-processors, large caches, blocks
facilitating I/O and memory interface, cores that implement the various wireless com-
munication protocols, and more. Heterogeneous computing is a key technological en-
abler for increased computational power whilst at the same time improving overall ef-
ficiency. Thus, in this dissertation, which is positioned at the intersection of genomics
and high performance computing, heterogeneously-accelerated solutions are investi-
gated and applied to the computational algorithms used in the bioinformatics domain.

1.2. BACKGROUND AND RELATED WORK

In this work, heterogeneous architectures are used in order to accelerate the kernels
of widely-used bioinformatics algorithms, mapping their most computationally expen-
sive parts onto specialized hardware to obtain significant gains to performance and effi-
ciency. In particular, Field-Programmable Gate Arrays (FPGAs) and Graphical Processing
Units (GPUs) are used. A GPU is a specialized chip containing thousands of simple pro-
cessing elements that excels at computing highly parallel tasks. Originally developed to
accelerate the rendering of 2D and 3D images, where each pixel can be computed inde-
pendently of the others, nowadays they have also become a popular tool for the accel-
eration of many high performance computing tasks that exhibit abundant parallelism,
and are especially well-suited for neural networks. An FPGA, on the other hand, can be
compared to a blank canvas, consisting of a large number of look-up-tables (LUTs), flex-
ible routing boxes and memory elements that can be reprogrammed and connected to
perform any kind of operation, and thus offering much flexibility to the programmer.
Typical FPGAs these days also contain "hardened" elements, such as complete general
purpose processors and floating point units. Similar to GPUs, FPGAs can offer huge com-
putational power and very low latency, but also excel at power-efficiency since they can
be programmed to exactly implement a certain functionality with little overhead.

The remainder of this section explains two bioinformatics algorithms in more detail,
along with related work aimed to accelerate them on heterogeneous hardware.

1.2.1. BWA-MEM GENOMIC MAPPING ALGORITHM

The human genome is contained into long strands of DNA, and encoded in a double-
helical sequence of symbols using an alphabet of nucleotides: Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). In total, the human genome contains about three billion
base pairs. Unfortunately, most sequencers are unable to read these long DNA strands
completely in one long stream. Instead, the raw sequencing data typically consists of
short read sequences of perhaps a hundred to one-hundred-and-fifty base pairs. How-
ever, these sequencers read each piece of DNA many times over, the so-called coverage.
A coverage of 30x is typical, resulting in a raw output of about ninety billion base pairs
for one human genome. The job of a genomics pipeline is then to transform this raw
sequencing data into useable information.
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Figure 1.2: The BWA-MEM genomic mapping algorithm maps read sequences onto a reference genome using
the Seed-and-Extend paradigm: for each read, Seeds, exactly matching subsequences between the read and
the reference, are found through a process called Seed Generation. Then, these Seeds are extended in both
directions using a Seed Extension algorithm, which is similar to the Smith-Waterman algorithm and allows for
inexact matches. From all of the extended seeds, the alignment with the highest score is selected as output.
This dissertation is focused on techniques directly applicable to the Seed Extension kernel of BWA-MEM.

One of the first steps in any genomics pipeline is to reconstruct the original genome
from this huge number of short reads. There are two main techniques to accomplish this:
de novo assembly and reference-based mapping algorithms. De novo assembly attempts
to recreate the original genome from the raw data without using any external informa-
tion. This can be compared to attempting to put together a puzzle without having an
overview image available as help. Unfortunately, in this case where only short reads are
available, the de novo assembling technique is impossible to use due to the nature of
the genome, as it contains very long repeating sections that cannot be accurately deter-
mined without long read sequences to act as a bridge for these regions. Moreover, de
novo sequencing is extremely computationally expensive. Therefore, reference-based
mapping is the genome assembly technique that is more widely-used in practice. In
keeping with the puzzle analogy, reference-based sequencing is similar to putting toge-
ther a puzzle when one does have a reference image available, that can be used to make
one or more initial guesses for the location where a piece might best fit. BWA-MEM then
is one of the most widely used reference-based mapping tools [7].

BWA-MEM is one of the more popular reference-based mapping tools, as it is a part
of the Broad Best Practices tool chain [8], a framework that gives guidelines on how to
best process data from the initial raw data to the final variant call output. However, many
other such mapping applications exist, such as Bowtie2 [9], FreeBayes [10], and many
more. One characteristic that all contemporary reference-based mapping tools share, is
that they use a heuristic called the Seed-and-Extend paradigm to reduce the complex-
ity of the problem of mapping each read sequence onto the reference (see Figure 1.2). In
the Seed-and-Extend paradigm, the first step is to determine probable locations for each
read sequence, typically using a BWT-based lookup table. This technique places a limi-
tation on seeds, as the BWT-lookup can only find exactly matching sequences between
the read and the reference. After one or more seed locations are determined, these seeds
are each extended using a Seed Extension algorithm that does allow for differences in
the read and reference sequence to determine the overall alignment. Such heuristics are
required, as the computational complexity makes it infeasible to use optimal algorithms
on the entire reference sequence. From all these extended seeds, the highest scoring one
is chosen as the final alignment. In the case of BWA-MEM, the Seed Extension algorithm
is based on the Smith-Waterman pairwise sequence alignment algorithm.
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1.2.2. SMITH-WATERMAN PAIRWISE SEQUENCE ALIGNMENT ALGORITHM
The Smith-Waterman algorithm, used in many bioinformatics tools, is able to com-
pute the optimal local alignment between two arbitrary sequences [11]. Given a func-
tion that assigns scores to matching symbols, mismatching symbols, and to insertions
and deletions, it is defined recursively to find the optimal solution. Local alignment in
this case refers to the fact that not all symbols of each sequence need to be used in the
alignment, if inclusion of additional symbols would yield a lowered score. Contrast this
with the highly similar Needleman-Wunsch algorithm [12] for global pairwise sequence
alignment, which requires all the symbols of both sequences to be used. The Smith-
Waterman algorithm can be expressed as follows:

Hi , j = max


Hi−1, j−1 + s(ai ,b j ) : (mis)match

Hi−1, j −gap penalty : insertion/deletion

Hi , j−1 −gap penalty : insertion/deletion

0 : local alignment

The collection of all values Hi , j is called the similarity matrix, the dimensions of
which are determined by the length of the two sequences to be aligned together. The
highest value in this matrix denotes the location of the optimal alignment between the
two sequences. A traceback procedure can then be followed to track back how this align-
ment is being generated. Since any value H is only dependent on its left, top-left, and
top neighbor, the entire similarity matrix can be computed using a dynamic program-
ming approach, using the fact that anti-diagonals of this matrix are independent of one
another and can therefore be computed in parallel.

The Seed Extension algorithm used in BWA-MEM is similar to the Smith-Waterman
algorithm, but differs in a few key aspects. Whereas the initial values of the Smith-
Waterman algorithm are all set to zero, the Seed Extension algorithm uses the length
of the Seed that is to be extended as an initial score. Moreover, the Seed Extension al-
gorithm calculates a few more statistics, besides only the maximum score. For example,
it also computes the best global alignment, where all symbols of both sequences are in-
cluded in the alignment. Finally, the Seed Extension includes a few heuristics aimed at
restricting the search in the similarity matrix to only those regions that are expected to
contribute to the final score, greatly reducing the amount of computation required.

1.2.3. SYSTOLIC ARRAYS
A typical approach to accelerate the Smith-Waterman algorithm on heterogeneous sys-
tems is to utilize the fact that the anti-diagonals in the similarity matrix are independent
and can therefore be computed in parallel. Instead of computing the similarity matrix
one value at a time, one cell after another, which requires O(N ×M) steps, the entire ma-
trix can be computed in a number of steps equal to the number of anti-diagonals in the
matrix, with the number of parallel computations increasing until the full width of the
matrix is reached, and then decreasing again until the entire matrix has been computed,
greatly reducing the number of steps required to just O(N +M). Such an approach maps
naturally onto an architecture called the systolic array. A systolic array consists of a chain
of Processing Elements (PEs), in which the output of one PE is used as input to the next.
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Figure 1.3: The Smith-Waterman algorithm is typically computed using a dynamic programming strategy by
the filling of a similarity matrix (left inset). Each cell in the matrix is only dependent on its left, top-left, and
upper neighbor, allowing antidiagonals to be processed in parallel. Read symbols are mapped onto PEs. The
Seed Extension algorithm (right inset) differs in a few key aspects: non-zero initial values are used, and more
values are calculated, including a global maximum.

This is illustrated in Figure 1.3, showing how the similarity matrix is mapped onto the
PEs. In this organization, each read symbol is mapped onto a PE, which in effect makes
this PE responsible to compute the respective column of the similarity matrix.

Numerous heterogeneously-accelerated versions of the Smith-Waterman algorithm
exist that use the systolic array as an underlying architecture, including for example the
following FPGA-accelerated Smith-Waterman implementations [13], [14] and [15], and
the GPU-accelerated implementation in [16]. A characteristic that all these implementa-
tions share, is that the speedup they offer increases with larger similarity matrix dimen-
sions, since the time complexity difference between O(N ×M) and O(N +M) becomes
much more pronounced for larger values of N and M . Since the matrix dimensions are
directly dependent on the respective sequence’s lengths, in effect, this means that per-
formance is better the longer the two sequences to be aligned together are. Conversely,
pairwise alignments between shorter sequences may not see much, if any, benefit from
such an approach, especially when taking overhead into account.

As mentioned in the previous section, the BWA-MEM Seed Extension algorithm is
closely related to the Smith-Waterman algorithm. In Figure 1.3, the Seed Extension sim-
ilarity matrix is shown for a seed with an initial value of fifty. It is clear that the overall
idea is very similar between both algorithms. The differences mainly reside in the fact
that the Seed Extension similarity matrix contains non-zero initial values, and that it also
computes a global maximum value. One intrinsic characteristic of BWA-MEM is that the
length of the sequences to be extended is closely related to the length of the raw input
data: for each sequence in the input one or more seeds are found, and, subtracting the
seed sequence from the input sequence, both sides are then extended. This means that
in practice, the sequences to be extended vary between just a single symbol in length, to
up to one-hundred-and-thirty-one symbols. The reference sequence is typically chosen
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to be a bit larger than the read sequence to be extended. Therefore, this makes it con-
venient to map the read symbols onto the PEs of the systolic array, since the array needs
to include at least as many PEs as there are symbols, and an upper bound exists on the
length of the read sequence. The reference sequence is then fed one-by-one as input to
the first PE in the systolic array.

The above highlights the main limitation of systolic array architectures, and in partic-
ular of the application of such architectures to accelerate the BWA-MEM Seed Extension
algorithm. On the one hand, a systolic array implementation provides a larger speedup
the longer the sequences to be aligned are. However, on the other hand, BWA-MEM gen-
erates quite short sequences that require to be extended. Therefore, the main objective
in this dissertation is to focus on improvements to the systolic array architecture to make
them operate efficiently even when applied to short read sequences.

1.3. MAIN CONTRIBUTIONS
In this dissertation, the following contributions are made:

• Various systolic array architectures are proposed to eliminate the dependence of
the systolic array’s efficiency on the length of the read sequence. Since the symbols
of the read sequence are mapped onto the PEs, the length of the read sequence
must closely match the number of PEs of the systolic array, otherwise its efficiency
will suffer. The impact that these techniques have is evaluated both on relative
performance, as well as on the required area.

• Systolic array-based Seed Extension kernels are designed for the FPGA using VHDL
and for the GPU using CUDA, obtaining the first FPGA-accelerated and the first
GPU-accelerated implementation of BWA-MEM, respectively.

• Two techniques, streamed loading of sequences and implicit synchronization, are
introduced that eliminate the dependence of the systolic array’s efficiency on the
length of the reference sequence. Normally, a systolic array process just a single
pairwise sequence alignment at a time. The symbols of the reference sequence are
fed one-by-one as input to the systolic array and subsequently flow through all the
PEs in the array in order to compute the output. Therefore, feeding short reference
sequences as input results in very low efficiency, since most time is spent waiting
while this short sequence passes through the array. By allowing any number of
pairwise sequence alignments to be performed simultaneously, without requiring
to wait for one alignment to finish before starting the next alignment, this source
of inefficiency is completely eliminated.

• A Smith-Waterman implementation including both the above techniques is cre-
ated using OpenCL to create a maximally-efficient systolic array implementation
that achieves the highest efficiency and the highest performance to date of any
FPGA Smith-Waterman implementation.

• The characteristics of all these implementations are analyzed across a number of
other relevant dimensions, namely: power-efficiency, design-time, and the impact
of read length on performance.
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1.4. THESIS ORGANIZATION
The remainder of this dissertation is organized as follows:

• In Chapter 2, a number of systolic array architecture variants are proposed that
are designed to eliminate one source of inefficiency of systolic arrays, the depen-
dence of the systolic array on read sequence length. The initial work on the GPU-
accelerated and FPGA-accelerated BWA-MEM implementations is discussed.

• In Chapter 3, further refinements are proposed for the FPGA and GPU BWA-MEM
implementations, resulting in versions that are able to completely hide the Seed
Extension kernel execution from overall program execution time, resulting in a
two-fold overall application-level speedup. Moreover, improvements to the systo-
lic array architecture are made that eliminate the other source of inefficiency in
systolic array operation, its dependence on reference sequence length. The result
is an architecture that is maximally-efficient.

• In Chapter 4, other key design metrics are considered, such as power-efficiency
and the required design-time to create and make changes to heterogeneously-
accelerated solutions. Furthermore, the impact of read length on performance
is analyzed, as this is an important external requirement from the bioinformatics
domain that is expected to increase in the near future.

• In Chapter 5, the conclusions and potential avenues for future work are presented.

REFERENCES
[1] J. D. Watson, F. H. Crick, et al., Molecular Structure of Nucleic Acids, Nature 171, 737

(1953).

[2] Z. Stephens, S. Lee, F. Faghri, R. Campbell, C. Zhai, M. Efron, R. Iyer, M. Schatz,
S. Sinha, and G. Robinson, Big Data: Astronomical or Genomical? PLoS Biology 13
(2015).

[3] International Human Genome Sequencing Consortium, and others, Initial Se-
quencing and Analysis of the Human Genome, Nature 409, 860 (2001).

[4] National Institutes of Health, All of Us Research Program, https://allofus.nih.
gov/, last visited: 2019-01-08.

[5] Genomics England, 100,000 Genomes Project, https://www.genomicsengland.
co.uk/, last visited: 2019-01-08.

[6] K. Wetterstrand, DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP), www.genome.gov/sequencingcostsdata/, last visited: 2019-01-
08.

[7] H. Li, J. Ruan, and R. Durbin, Mapping Short DNA Sequencing Reads and Calling
Variants Using Mapping Quality Scores, Genome research 18, 1851 (2008).

https://allofus.nih.gov/
https://allofus.nih.gov/
https://www.genomicsengland.co.uk/
https://www.genomicsengland.co.uk/
www.genome.gov/sequencingcostsdata/


REFERENCES

1

9

[8] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
Philippakis, G. Del Angel, M. A. Rivas, M. Hanna, et al., A Framework for Variation
Discovery and Genotyping Using Next-Generation DNA Sequencing Data, Nature ge-
netics 43, 491 (2011).

[9] B. Langmead and S. L. Salzberg, Fast Gapped-Read Alignment with Bowtie 2, Nature
methods 9, 357 (2012).

[10] E. Garrison and G. Marth, Haplotype-Based Variant Detection From Short-Read Se-
quencing, arXiv preprint arXiv:1207.3907 (2012).

[11] T. Smith and M. Waterman, Identification of Common Molecular Subsequences,
Journal of Molecular Biology 147, 195 (1981).

[12] S. B. Needleman and C. D. Wunsch, A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins, Journal of molecular biol-
ogy 48, 443 (1970).

[13] T. Oliver, B. Schmidt, and D. Maskell, Hyper Customized Processors for Bio-sequence
Database Scanning on FPGAs, in Proceedings of the 2005 ACM/SIGDA 13th interna-
tional symposium on Field-programmable gate arrays (ACM, 2005) pp. 229–237.

[14] P. Zhang, G. Tan, and G. R. Gao, Implementation of the Smith-Waterman Algorithm
on a Reconfigurable Supercomputing Platform, in Proceedings of the 1st interna-
tional workshop on High-performance reconfi- gurable computing technology and
applications: held in conjunction with SC07 (ACM, 2007) pp. 39–48.

[15] C. W. Yu, K. Kwong, K.-H. Lee, and P. H. W. Leong, A Smith-Waterman Systolic Cell,
in New Algorithms, Architectures and Applications for Reconfigurable Computing
(Springer, 2005) pp. 291–300.

[16] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig, Bio-sequence
database scanning on a GPU, in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International (IEEE, 2006) pp. 8–pp.



111



222

CHAPTER 2

Systolic Array Architectures and the Seed Extension Kernel

"There is nothing permanent except change."

— Heraclitus

N OVEL variants to the systolic array architecture, the main focus of this dissertation,
are introduced in this chapter, along with an analysis of their relative performance

and area requirements. These optimized systolic arrays are then used to accelerate the
Seed Extension kernel of BWA-MEM, a widely used genomic mapping algorithm. Seed
Extension is one of the main two kernels in which the BWA-MEM algorithm spends the
majority of its execution time. The Seed Extension algorithm is closely related to the
Smith-Waterman algorithm, which computes the optimum alignment between two se-
quences for any given scoring function. The typical approach for hardware-based im-
plementations of the Smith-Waterman algorithm is to use dynamic programming to
compute a similarity matrix, through the use of a systolic array. A systolic array con-
sists of a chain of Processing Elements (PEs), where PEN receives its input from PEN−1,
and passes its output to PEN+1. The systolic array architecture is not only useful for
dynamic programming tasks, but can address a wide variety of problems, including lin-
ear algebra computations and matrix multiplication. In the bioinformatics domain, al-
gorithms that have been accelerated using a systolic array implementation include the
Smith-Waterman algorithm for pairwise sequence alignment, BWA-MEM and BLAST for
read mapping, and the HaplotypeCaller for variant calling.

To obtain the best possible alignment between two sequences, the Smith-Waterman
algorithm computes a similarity matrix, in which the highest value denotes the opti-
mal solution. The dimensions of this similarity matrix are determined solely by the
lengths of the two sequences to be aligned. Typically, one sequence is called the ref-
erence sequence and the other the read sequence. In the systolic array approach, this
read sequence is mapped onto the PEs of the systolic array. The symbols of the reference
sequence are fed one-by-one as input to the first PE, and subsequently pass through
all PEs of the array to compute the desired function. Systolic arrays have a number of
advantages, most notably the fact that values are computed and stored inside the PEs,
eliminating the need for external memory and buses, and the fact that all PEs operate
independently of one another, allowing for a high degree of parallelism.
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A main challenge for any systolic array is to maintain high overall efficiency. Input
is fed into the first PE and then flows through the array until it reaches the last PE and
produces a result. Keeping all PEs busy is critical to achieve high utilization. However,
this is not trivial. The length of the reference and read sequences greatly impacts overall
efficiency: a mismatch between read sequence length and systolic array length results in
underutilization of the array, as not all PEs are required to compute the similarity matrix.
Short reference sequences result in lots of idle cycles while the short input flows through
the entire array. In this chapter, measures are proposed to remove the dependence on
read sequence length. In the next chapter, techniques are proposed to eliminate the
dependence on reference sequence length. Together, these result in an architecture that
can operate at maximal efficiency for any input data set.

2.1. MAIN CONTRIBUTIONS
The main contributions of this chapter are as follows:

• The Variable Logical Length, Variable Physical Length, and Variable Logical and
Physical Length systolic array design architectures are proposed and analyzed to
evaluate their efficiency for processing an input data set with sequences of vari-
ous lengths. Two measures are introduced to evaluate efficiency: Exit Point Opti-
mality and the Configuration Optimality, respectively measuring how well an exit
point configuration approximates the ideal situation where an exit point is avail-
able for each read length, and showing how well a configuration approximates op-
timal load balancing for a particular data set [SAMOS2015].

• A VLL-based Seed Extension implementation offering a threefold improvement to
performance is created on FPGA using a combination of VHDL (for the Seed Ex-
tension kernel) and HLS (for the integration code), resulting in the first accelerated
BWA-MEM implementation [SAMOS2015].

• A GPU-based Seed Extension kernel is created using CUDA, offering a threefold
improvement to performance. GPUs have a fixed underlying architecture, on which
the systolic array needs to be mapped. The implementation uses various kernels
to optimize resource requirements: a single-pass kernel that maps the full width
of the systolic array across multiple warps, two multi-pass kernels optimized for
shorter and longer reference sequence length, and a single-pass kernel. This re-
sults in the first GPU-accelerated implementation of BWA-MEM [ARCS2016].

2.2. RESEARCH ARTICLES
This chapter is based on the following papers:

1. E.J. Houtgast, V.M. Sima, K.L.M. Bertels, and Z. Al-Ars, An FPGA-Based Systolic
Array to Accelerate the BWA-MEM Genomic Mapping Algorithm, 15th International
Conference on Embedded Computer Systems (SAMOS), Jul 2015, Samos, Greece.

2. E.J. Houtgast, V.M. Sima, K.L.M. Bertels, and Z. Al-Ars, GPU-Accelerated BWA-MEM
Genomic Mapping Algorithm Using Adaptive Load Balancing, 29th International
Conference on Architecture of Computing Systems (ARCS), Apr 2016, Nuremberg,
Germany.
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Abstract—We present the first accelerated implementation of
BWA-MEM, a popular genome sequence alignment algorithm
widely used in next generation sequencing genomics pipelines.
The Smith-Waterman-like sequence alignment kernel requires a
significant portion of overall execution time. We propose and
evaluate a number of FPGA-based systolic array architectures,
presenting optimizations generally applicable to variable length
Smith-Waterman execution. Our kernel implementation is up to
3x faster, compared to software-only execution. This translates
into an overall application speedup of up to 45%, which is 96% of
the theoretically maximum achievable speedup when accelerating
only this kernel.

I. INTRODUCTION

As next generation sequencing techniques improve, the
resulting genomic data, which can be in the order of tens
of gigabytes, requires increasingly long time to process. This
is becoming a large bottleneck, for example in cancer diag-
nostics. Hence, acceleration of algorithms used in genomics
pipelines is of prime importance. General purpose processors
are not necessarily the best execution platform for such work-
loads, as many bioinformatics workloads lend themselves well
to parallel execution. Use of dedicated hardware, such as GPUs
or FPGAs, can then greatly accelerate the computationally
intensive kernels to achieve large speedups.

The initial stage for many genomics pipelines is sequence
alignment. DNA sequence reads are aligned against a reference
genome, producing the best found alignment for each read.
Many sequence alignment tools exist, such as Bowtie [5],
BWA [8], MAQ [9], and SOAP2 [10]. BWA-MEM [7] is
widely used in practice as a de facto sequence alignment
algorithm of choice. In this paper, we investigate and propose
the first accelerated version of BWA-MEM, using FPGAs to
improve performance. The use of FPGAs can yield order-
of-magnitude improvements in both processing speed and
power consumption, as they can be programmed to include
a huge number of execution units that are custom-tailored
to the problem at hand, providing much higher throughput
than conventional processors. At the same time, they consume
much less power, since they operate at relatively low clock
frequencies and use less silicon area for the same task.

In this paper, we present the following contributions: we (1)
analyze the BWA-MEM algorithm’s main execution kernels;
(2) propose novel systolic array design approaches optimized
for variable length Smith-Waterman execution; (3) implement
and integrate the design into the BWA-MEM algorithm; and

thus (4) create the first accelerated version of the BWA-MEM
algorithm, using FPGAs to offload execution of one kernel.

The rest of this paper is organized as follows. Section II
provides a brief background on the BWA-MEM algorithm.
Section III describes the details of our acceleration approach.
Section IV discusses design alternatives for the systolic array
implementation. Section V provides the details on the configu-
ration used to obtain results, which are presented in Section VI
and then discussed in Section VII. Section VIII concludes the
paper and indicates directions for future work.

II. BWA-MEM ALGORITHM

The BWA program is “a software package for mapping low-
divergent sequences against a large reference genome, such
as the human genome. It consists of three algorithms: BWA-
backtrack, BWA-SW and BWA-MEM . . . BWA-MEM, which is
the latest, is generally recommended for high-quality queries
as it is faster and more accurate.” [6] A characteristic work-
load of this algorithm is to align millions of DNA reads against
a reference genome. Currently, we align DNA reads of 150
base pairs (bp), a typical output length of next generation
sequencers [1], against the human genome.

A. BWA-MEM Algorithm Kernels

The BWA-MEM algorithm alignment procedure consists of
three main kernels, which are executed in succession for each
read in the input data set.

1. SMEM Generation: Find likely mapping locations,
which are called seeds, on the reference genome. To this end,
a BWT-based index of the reference genome, which has been
generated beforehand, is used [8]. Per read, zero or more seeds
are generated of varying length;

2. Seed Extension: Chain and extend seeds together using a
dynamic programming method that is similar, but not identical,
to the Smith-Waterman algorithm [12];

3. Output Generation: Sort and, if necessary, perform
global alignment on the intermediate results and produce
output in the standardized SAM-format.

The BWA-MEM algorithm processes reads in batches.
Figure 1 illustrates the order in which these kernels process a
batch of reads. The first two kernels, SMEM Generation and
Seed Extension, are performed directly after each other for
each read. When this is finished for all reads in a batch, Out-
put Generation is performed. BWA-MEM implements multi-
threaded execution of all three program kernels.

978-1-4673-7311-1/15/$31.00 ©2015 IEEE 1
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Fig. 1. Execution order of the three main BWA-MEM algorithm kernels. Per
batch, execution of SMEM Generation and Seed Extension is intertwined for
each read; afterwards, Output Generation is performed.

B. Profiling Results

A challenging factor in the acceleration of the BWA-MEM
algorithm is the fact that execution time is not isolated in
a single computationally-intensive kernel, but is spread over
three separate kernels. Hence, speedup of a single kernel will
only yield limited overall speedup. To investigate which of
these kernels is most suitable for FPGA-based acceleration,
we have analyzed and profiled the algorithm with gprof
and oprof. Both yielded similar results. Table I shows the
profiling results for a typical workload.1

TABLE I
RESULTS OF BWA-MEM ALGORITHM PROFILING

Program Kernel Time Bottleneck Processing

SMEM Generation 56% Memory Parallel
Seed Extension 32% Computation Parallel
Output Generation 9% Memory Parallel
Other 3% I/O Sequential

For each kernel, the relative execution time, type of process-
ing and whether it is bound by computation, memory or I/O is
specified, based on a combination of profiling and source code
inspection. Besides these computationally-intensive kernels,
the remaining execution time is comprised of other activities,
among them initialization and I/O.

In this paper, we investigate acceleration of the Seed
Extension kernel. This work is part of an on-going effort
to accelerate execution of the BWA-MEM algorithm. Our
rationale to start with the Seed Extension kernel is as follows:
although profiling results indicate that the SMEM Generation
kernel is more time-consuming, the dynamic programming-
type of algorithm used in the Seed Extension kernel is a much
better fit for execution on an FPGA. As shown in Table I,
Seed Extension requires 32% of overall execution time for
this workload. Hence, the maximum speedup we can expect
to gain from accelerating this part is 47%.

1Single-ended GCAT on the Convey HC-2EX (refer to Section V for more
details on the workload and execution platform).
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Fig. 2. Our implementation further subdivides batches into chunks. SMEM
Generation and Seed Extension are separated and Seed Extension is mapped
onto the FPGA; its execution is overlapped with SMEM Generation.

III. IMPLEMENTATION

Our efforts to accelerate the Seed Extension kernel can be
divided into two parts: (1) the FPGA-accelerated core that
implements the Seed Extension kernel; and (2), integration of
this kernel into the BWA-MEM algorithm.

A. Top-Level Accelerated Structure

As shown in Section II-B, the BWA-MEM algorithm con-
sists of three distinct kernels. As illustrated in Figure 1,
execution of the SMEM Generation kernel and Seed Exten-
sion is intertwined. Directly using this structure to offload
execution of the Seed Extension kernel onto an FPGA would
require a large number of small data transfers, two per read.
The resulting overhead makes such a structure undesirable.2

Hence, in order to facilitate offloading this kernel onto the
FPGA, SMEM Generation and Seed Extension are completely
separated from each other, which allows for fewer, but larger
transfers of data to and from the FPGA. The modified structure
of operation is shown in Figure 2. This approach does require
that some temporary data structures are kept in memory longer.
In practice, this is not an issue as the data is in the order of
tens of megabytes.

The accelerated approach is based on two principles: (1)
offloading the Seed Extension kernel onto the FPGA; and (2)
overlapping execution of SMEM Generation on the host CPU
and Seed Extension on the FPGA, thereby effectively hiding
the time required to process this stage. In order to overlap
these kernels, the reads in a batch are further subdivided into
chunks. After a chunk is processed by the SMEM Generation
kernel, it is dispatched to the FPGA. Output Generation is
performed only after both the kernels finish, as the CPU cores
are fully utilized while performing SMEM Generation. Hence,
there would be no benefit in overlapping execution of this
kernel with the other two.

Reads vary in the amount of temporary data required to pro-
cess them: some reads generate more SMEMs (i.e., potential

2For example, testing reveals that copying 1 Mbyte at once is almost 30x
faster than performing a thousand 1 kbyte transfers.
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Fig. 3. Smith-Waterman similarity matrix showing the local sequence align-
ment with maximum score. Each read symbol is mapped onto a Processing
Element of the systolic array.

alignment locations) than others, and all alignments need to be
kept in memory to be able to select the best overall alignment.
Hence, in order to limit the hardware resources required for
some extreme cases, not all reads are handled on the FPGA. In
practice, we process more than 99% of all alignments on the
FPGA. The remaining reads are instead executed on the host,
which does not suffer from fixed memory size limitations.

B. Seed Extension Kernel

This section provides more details on the particular function
of the Seed Extension kernel. Seeds, as generated by the
SMEM Generation kernel, are an exact match of symbols from
the read onto the reference (or a subsequence of either). The
purpose of Seed Extension is to extend the length of such an
exact match while allowing for small differences: mismatches
between the read and reference, or skipping symbols on either
the read or reference. A typical example of an alignment is
given below:

Seed Extension
Reference GCGC AAGCTA GCTGAGGCTAA
Read ---- AAGCTA AC-GAGG----

The Smith-Waterman algorithm [12] is a well-known dy-
namic programming algorithm that is guaranteed to find the
optimum alignment between two sequences for a given scoring
system. A similarity matrix is filled that computes the best
score out of all combinations of matches, mismatches and
gaps. This is illustrated by Figure 3. The process by which the
similarity matrix is filled contains much inherent parallelism,
as each cell only depends on its top, top-left and left neighbor.
This implies that all cells on the same anti-diagonal can be
computed in parallel.

Init PE0 PE1 PE2 PE3 EOQ output

G C A A

50 49 48 47 46

A 49 49 48 50 49

G 48 51 50 49 48

C 47 50 53 52 51

A 46 49 52 55

max

54

global

similarity matrix

initial values

re
fe
re
n
ce

sy
m
b
o
ls

read symbols

Fig. 4. Seed Extension similarity matrix showing an extension with an initial
score of 50. The implications to the systolic array design are highlighted:
additional Initialization and End-of-Query blocks; non-zero initial values; and
calculation of the global maximum alignment score.

1) Linear Systolic Arrays: A natural way to map dynamic
programming algorithms onto reconfigurable hardware is as
a linear systolic array. Many implementations that map the
Smith-Waterman algorithm onto a systolic array have been
proposed, amongst others [11], [13] and [14]. A systolic array
consists of Processing Elements, or PEs for short, that operate
in parallel. In the case at hand, we use such an array to
take advantage of the available parallelism that exists while
filling the similarity matrix, by processing the cells on the
anti-diagonal in parallel. As illustrated in Figure 3, we map
one read symbol to one PE, which corresponds to one column
of the matrix. Each cycle, a PE processes one cell of the matrix
and passes the resulting values to the next element. The values
typically passed along to calculate the similarity matrix are the
current cell’s score, the row maximum, the current reference
symbol, and the current gap score.

Although systolic array implementations excel in extracting
parallelism, they do possess a number of drawbacks. First, the
length of the PE-array determines the maximum length of a
read that can be processed: one PE is required per read symbol.
In this work we consider reads of up to 150 base pairs in
length. Hence, we can guarantee that all reads will fit onto an
array of a corresponding size.3 Second, reads shorter than the
PE-array still need to travel through it, incurring unnecessary
latency and wasting resources by underutilizing the array.
Finally, the maximum degree of parallelism is only achieved
when all PEs are kept busy, which by virtue of its pipelined
organization cannot always be ensured. In Section IV, we show
how to deal with these issues.

3In practice, as we only consider data with a read length of 150 and the
minimum seed length is 19 symbols, an extension can span at most 131
characters. Thus, an array of length 131 suffices.
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2) Differences with ”Standard” Smith-Waterman: The Seed
Extension kernel used in BWA-MEM is similar to the Smith-
Waterman algorithm, but the fact that the purpose is not to
find the optimal match between two sequences, but instead
to extend a seed found beforehand gives rise to three key
differences. These differences and the impact they have on
the design of the systolic array implementation are discussed
below and illustrated in Figure 4.

1. Non-Zero Initial Values: Since the purpose of the Seed
Extension kernel is to extend a seed, the match between
sequences will always start from the ”origin” of the similarity
matrix (i.e., the top-left corner). The initial values provided to
the first column and row of the dynamic programming matrix
are not zero, but depend on the alignment score of the seed
found by the SMEM Generation kernel.

Implication: An initial value block is placed in front of the
array and initial values are computed and passed from one PE
to the next.

2. Additional Output Generation: The Seed Extension
kernel not only generates local and global alignment scores,
which are the highest score in the matrix and the highest score
that spans the entire read respectively, but also returns the exact
location inside the similarity matrix where these scores have
been found. Furthermore, a maximum offset is calculated that
indicates the distance from the diagonal at which a maximum
score has been found.

Implication: The index of the PE where the maximum is
obtained is passed from one PE to the next. An End-of-Query
block, which generates the output values by post-processing
the results, is inserted at the end of the array.

3. Partial Similarity Matrix Calculation: To optimize for
execution speed, BWA-MEM uses a heuristic that attempts to
only calculate those cells that are expected to contribute to the
final score. Profiling reveals that, in practice, only about 42%
of all cells are calculated.

Implication: Our implementation does not use this heuris-
tic, as the systolic array is able to perform all calculations on
the anti-diagonal in parallel, which potentially leads to higher
quality alignments.

IV. DESIGN SPACE EXPLORATION

Before deciding upon the final design of the Seed Extension
kernel, a number of ideas and design alternatives, or PE-
module configurations, were considered, varying in speedup,
FPGA-resource consumption, suitability for certain data sets,
and complexity. These are depicted in Figure 5 and will
be discussed below. For analysis purposes, a data set with
uniformly distributed extension lengths was used. Inspection
of a histogram with GCAT seed extension lengths shows that
this assumption is reasonable. We also consider that we have
the entire data set available at the start for optimal scheduling.

A. Variable Logical Length Systolic Array

The length over which Seed Extension is to be performed
is not the entire read length, but shorter, ranging from a
single symbol up to the entire read length minus minimum

(a)

(b)

(c)

(d)

PE0 PE1 PE2 PE3 EOQ output

PE0 PE1 PE2 PE3 M
U
X

EOQ output

PE0 PE1 PE2 PE3 EOQ output

PE0 PE1 EOQ output

PE0 EOQ output PE0 EOQ output

Fig. 5. PE-Module configurations: (a) standard systolic array configuration;
(b) Variable Logical Length configuration that can bypass part of the array;
(c) Variable Physical Length configuration that matches systolic array length
to read length; (d) GPU-like single-PE modules.

seed length. Hence, the alignment that the kernel has to
perform varies in its length. As mentioned in Section III-B1,
a characteristic of systolic arrays is that processing time is
independent of read length, as a read has to travel through
the entire PE-array irrespective of its length: i.e., processing
time is O(|PEarray|+ |Reference|), instead of O(|Read|+
|Reference|). Hence, shorter reads incur unnecessary latency
and cause the systolic array to be underutilized.

To minimize latency, ideally a read would be processed by
a PE-array matching its exact length. However, in practice,
this is not achievable, since it would require having a PE-
array for each possible read length, which is impractical given
the available resources on the FPGA. Therefore, we propose
to insert multiple exit points into the PE-array, as shown in
Figure 5(b). We call this Variable Logical Length (VLL).
This ensures that shorter reads do not have to travel through
the entire array. Only a multiplexer and some control logic
to select the correct exit point is needed, so this technique
introduces minimal area overhead.

Definition 1 The Exit Point Optimality measures how well an
exit point configuration approximates the ideal situation of
having a PE-array matching each read length.

Of course, the Exit Point Optimality is data set dependent:
for a set of reads that are all of the same length, a single
module length suffices and the VLL technique can provide no
benefit. In the case of a data set with uniformly distributed
read lengths, it can be shown that minimal latency is achieved
with evenly distributed exit points.

This idea can be further extended by subdividing the systolic
array into two or more smaller logical systolic arrays that
can operate in parallel. For example, a 150-PE array could
present itself as two separate 75-PE arrays. This is similar to
the approach suggested in [11]. However, that technique needs
substantial additional hardware resources.

4

2

16 SYSTOLIC ARRAY ARCHITECTURES AND THE SEED EXTENSION KERNEL



S
iz
e
of

T
h
ir
d
P
E
-M

o
d
u
le

(#
of

P
E
s)

Size of Second PE-Module (# of PEs)

20

40

60

80

100

120

20 40 60 80 100 120

Optimality = 1.00
at (131,104,67)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.20

0.60

1.00

Optimality
Score

Fig. 6. Configuration Optimality for all three VPL PE-module combinations
given a data set with uniformly distributed extension lengths. The indicated
point shows the best configuration for the data set, which by definition has a
value of 1. Data were obtained through exhaustive search of the design space.

B. Variable Physical Length Systolic Array

Another method to improve performance is using multiple
systolic arrays together with Variable Physical Length (VPL),
as shown in Figure 5(c). Longer reads are processed by the
larger PE-arrays, while shorter reads are processed by the
smaller arrays. Besides the above-mentioned improvement to
execution speed, this has an additional benefit: the additional
PE-arrays are physically smaller, which in turn allows for
even more modules to be placed on the FPGA, improving
speed even more. Combining this idea with the VLL-technique
results in a Variable Logical and Physical Length (VLPL)
array.

Definition 2 The Configuration Optimality shows how closely
a VPL-configuration achieves optimal load-balancing for a
given data set, optimum CO being defined as 1.

Figure 6 shows the Configuration Optimality for all combi-
nations of three PE-modules, given a data set with uniformly
distributed extension lengths. The graph shows the relative
efficiency of all the configurations in the design space. To
derive the relative efficiency, we have modeled the required
time to process an entire data set, assuming optimal scheduling
of reads onto modules. This is relatively easy given the fact
that the processing time for each read is only dependent on the
systolic array length of the modules and the length of the read
to be processed. The optimal configuration is that configuration
with the smallest module sizes (to minimize latency) for which
all modules can be kept busy until the end.

Note that the optimal configuration of VLL- and VPL-
arrays depends on the specific distribution of extension lengths
of the data set at hand. In order to efficiently cope with
various input data sets, multiple FPGA bitstreams can be
compiled beforehand, each optimally configured for a different
distribution. Then, an initial sampling of the input data can be
used to select the best matching bitstream.

TABLE II
ESTIMATED RELATIVE PERFORMANCE OF SIMILAR AREA PE-MODULE
CONFIGURATIONS GIVEN A DATA SET WITH UNIFORMLY DISTRIBUTED

EXTENSION LENGTHS.

PE-Module Relative Relative
Design Configuration Speed Area

Standard 2x (131) 100% 100%
VLL 2x (131/87/43)4 125% 100%
VPL 1x (131), 1x (104), 1x (67) 181% 114%
VLPL 1x (131/122/113), 203% 114%

1x (104/92/79),
1x (67/45/22)

C. Single-PE Modules

The last alternative (see Figure 5(d)) is technically not a
systolic array. One PE processes a similarity matrix entirely
by itself. Parallelism is achieved not through intra-read paralle-
lism, but instead by utilizing inter-read parallelism: processing
multiple reads in parallel on a ”sea-of-cores”, similar to GPU-
accelerated Smith-Waterman approaches such as the method
discussed in [3]. Latency is traded for overall throughput.

An advantage of this approach is that it allows the use of
the heuristic mentioned in Section III-B2-3, to only calculate
relevant parts of the similarity matrix. Hence, as only about
42% of cells are processed, in theory a hundred single-PE
modules should be 2.5 times faster than a one-hundred-PE
module, not even considering the fact that the latter will
often be underutilized. Drawbacks of this method are the
considerable overhead this configuration suffers from: in PE-
terms, control and other overhead are about equivalent to two
PEs in logic cost. Moreover, whereas the systolic array designs
implicitly store temporary data inside the array, the single-PE
method requires explicit storage of temporary values. Finally,
our current top level design can only fit up to six modules (of
any kind), due to the resources required per core for input and
output data structures.

D. Evaluation of PE-Module Configurations

Table II shows the relative performance of the various
systolic array configurations. As we did not implement all
the different configurations, we derived these estimations with
the same approach as was used in Section IV-B to compute
the Configuration Optimality. The configurations all have area
requirements similar to a two 131-PE configuration. This will
be the area on the FPGA we expect to be able to dedicate
to seed extension logic in future implementations that also
accelerate other parts of the algorithm on the FPGA. Given
the extra resources the single PE configuration requires, we
excluded this approach from the comparison.

The results show that the fastest approach is the VLPL
configuration, being more than twice as fast as a standard
systolic array implementation. The VLL and VPL configu-
rations use different values for their exit points and module

4The Exit Point Optimality of this configuration is 0.87.
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Fig. 7. Floorplan of the implemented FPGA design showing the four identical
VLL-based modules and the memory controllers. The remainder of space is
taken up by the Convey-to-host interface.

sizes, respectively, as their optimization goal is different:
VLL optimizes for average latency, whereas VPL tries to
balance execution time between modules. More exit points, or
more modules would result in a higher speedup. The single-
PE module configuration (not shown in the table) would be
more than three times faster than a standard systolic array
implementation, as (1) it does not suffer from underutilization
of the array, and (2) it can take advantage of the similarity
matrix heuristic (refer to Section III-B2-3).

V. METHODS

All tests were run on the Convey HC-2EX platform [2],
configured with two Intel Xeon E5-2643 processors (four cores
each, HyperThreading disabled) running at 3.3 GHz with 64
GB of DDR3 memory, paired with four Xilinx Virtex-6 LX760
FPGA co-processors (speed grade 1) connected to 64GB of
SG-DIMM memory. Each FPGA is programmed with four
Seed Extension modules, for a total of sixteen modules across
all FPGAs. Modules are VLL-based and contain 131 PEs each.

To accelerate the Seed Extension kernel, we implemented
a VLL-based design with four identical modules per FPGA,
along with other components, such as memory controllers
and the Convey-to-host interface blocks. Figure 7 shows the
floorplan of the implemented design. A single module uses
about 16% of FPGA resources, while in total approximately
71% of all resources was used. Although with more effort we
would be able to place six modules per FPGA, a design with
four modules provided sufficient performance to completely
hide execution of the Seed Extension kernel. Hence, to re-
duce planning and routing complexity, we did not attempt to
completely fill up the entire FPGA.

Data sets from the Genome Comparison & Analytic Test-
ing (GCAT) framework [4] were used to obtain results for
single-ended alignment (150bp-se-small-indel) and pair-ended
alignment (150bp-pe-small-indel) of about eight million reads
against the reference human genome (UCSC HG19). We used
their online sequence alignment quality comparison service
to verify that results of our FPGA-accelerated version are
indistinguishable from those obtained with the BWA-MEM
algorithm. We used BWA-MEM version 0.7.7 [6].

VI. RESULTS

The results are summarized in Table III. Number of chunks
indicates how many chunks are sent to the FPGA per batch.
A value of one results in serial behavior, as then SMEM
Generation and Seed Extension do not overlap. The last
column shows the number of base pairs aligned per second.

A. Seed Extension Kernel

The table shows that the FPGA implementation of the Seed
Extension kernel is up to three times faster than execution on
the CPU, or 1.5 times faster when comparing a single module
against one Xeon core. This implementation is fast enough to
completely hide the execution of the Seed Extension kernel
through overlapping its execution with SMEM Generation.
Using a more advanced technique, such as VLPL, would
allow us to achieve an even larger performance gain in
Seed Extension, up to five-fold as compared to software-only
execution (refer to Section IV-D). However, this would only
benefit overall performance negligibly.

Note that the executions with only one chunk show slightly
higher Seed Extension performance, due to less overhead from
the chunking process. However, overall program execution
time is lower, as no overlap between the two kernels is realized
(refer to Figure 2 for more details).

B. Overall Program Execution

Offloading the Seed Extension kernel onto the FPGA results
in an overall improvement to BWA-MEM execution time of
up to 45%. Given the fact that BWA-MEM execution time is
spread over three kernels (see Section II-B), we manage to
attain 96% of the theoretically possible speedup of 47% from
accelerating just this one kernel. Different numbers of chunks
do not measurably impact performance, as long as overlap is
possible between Seed Extension and SMEM Generation. A
chunk size of one shows the isolated performance gain from
Seed Extension acceleration without overlap. Note that BWA-
MEM itself already offers multi-threaded execution.

VII. DISCUSSION

By optimizing one of the three main BWA-MEM kernels,
we realized an increase in application performance by up
to 45%. Focusing on only one kernel leaves us exposed to
the limitations clearly set out by Amdahl’s law, limiting the
potential gains in performance. Our next efforts are hence
focused on accelerating the other kernels.

The Seed Extension kernel proved to be a good fit to port
to the FPGA, although it is obvious that even just porting one
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TABLE III
EXECUTION TIME AND SPEEDUP FOR THE GCAT ALIGNMENT QUALITY BENCHMARK

Seed Extension Kernel Overall Program

Test Platform # of Chunks Execution Time Speedup Execution Time Speedup Throughput

Single-Ended CPU only - 167 s - 530 s - 2.3 Mbp/s
Data CPU+FPGA 11 62 s 2.69x 366 s 1.45x 3.3 Mbp/s

CPU+FPGA 6 62 s 2.70x 365 s 1.45x 3.3 Mbp/s
CPU+FPGA 1 61 s 2.73x 412 s 1.29x 2.9 Mbp/s

Pair-Ended CPU only - 172 s - 545 s - 2.2 Mbp/s
Data CPU+FPGA 11 63 s 2.75x 402 s 1.35x 3.0 Mbp/s

CPU+FPGA 6 62 s 2.78x 400 s 1.36x 3.0 Mbp/s
CPU+FPGA 1 61 s 2.82x 447 s 1.22x 2.7 Mbp/s

kernel has wider implications to the program structure than
just replacing a single function call: limitations in memory
transfer efficiency forced us to reorder the program execution
into batches to allow for larger, more efficient data transfers.
Moreover, the acceleration potential of using FPGAs is largely
dependent on data size. The huge parallelism an FPGA can
offer, granting O(n) scaling as compared to O(n2) on the
host CPU, will become much more apparent at longer read
sizes: a read length of 1,000 symbols would result in a ten-
fold speedup, compared to the 1.5x speedup we managed to
attain. Hence, it is important to have a deep understanding of
the data set at hand before applying a general solution. Finally,
knowledge of the extension length distribution is required to
implement a PE-module design with optimal efficiency.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the initial results of our
efforts to accelerate BWA-MEM. We propose the first accel-
erated version of BWA-MEM, offloading one of the three main
program kernels onto an FPGA and overlapping its execution.
We implemented the Seed Extension kernel as a systolic array
and achieved performance for this kernel up to three times
faster than software-only execution. This translates into an
overall improvement to execution time up to 45%, close to the
theoretical maximum of 47%, as the kernel’s execution time
is almost completely hidden. Moreover, we have presented
generally applicable techniques to improve the performance
of variable length Smith-Waterman systolic arrays by up to
three times, with very little area overhead.

Our next efforts will focus on offloading the other kernels of
the BWA-MEM algorithm onto the FPGA, for which SMEM
Generation is a natural candidate. We will also investigate the
implementation of a VLPL-module, mostly as area savings
measure, as the gains in speed can be used to reduce the allo-
cated space of the kernel on the FPGA. Successful acceleration
of BWA-MEM will bring us one step closer to overcoming
the computational bottlenecks inherent in the Next Generation
Sequencing genomics pipeline.
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Abstract. Genomic sequencing is rapidly becoming a premier generator
of Big Data, posing great computational challenges. Hence, acceleration
of the algorithms used is of utmost importance. This paper presents
a GPU-accelerated implementation of BWA-MEM, a widely used algo-
rithm to map genomic sequences onto a reference genome. BWA-MEM
contains three main computational functions: Seed Generation, Seed
Extension and Output Generation. This paper discusses acceleration of
the Seed Extension function on a GPU accelerator.

The GPU-based Extend kernel achieves three times higher perfor-
mance and, by offloading the kernel onto an accelerator and overlapping
its execution with the other functions, this results in an overall improve-
ment to application-level execution time of up to 1.6x.

To ensure that using an accelerator always results in an overall perfor-
mance improvement, especially when considering slower GPUs, an adap-
tive load balancing solution is introduced, which intelligently distributes
work between host and GPU. This provides, compared to not using load
balancing, up to +46 % more performance.

Keywords: Acceleration · BWA-MEM · GPU · High performance
genomics

1 Introduction

Genomics information proves to be a valuable source of information to clini-
cians and researchers alike. The amount of data generated by Next Generation
Sequencing (NGS) techniques is increasing at an explosive rate and will soon
rival, if not overtake, other Big Data fields such as astronomy [14]. The raw
sequenced data is processed by a complex pipeline of algorithms, a so-called
genomics analysis pipeline. This data processing can require many days, even
on a large cluster, and is becoming a bottleneck for applications dependent on
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GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 131

genetic information. Hence, the challenges in genomics are shifting from sequenc-
ing towards data processing. Therefore, acceleration of bioinformatics algorithms
is vital to relieve these bottlenecks.

One step in genomics analysis pipelines is to reconstruct the original genome
from the millions of short reads produced using NGS. The purpose of subsequent
steps in the pipeline is to find differences in the sequenced genetic material as
compared to annotated reference material. The reconstruction step of a typi-
cal pipeline is represented by the mapping of the short reads onto a reference
genome. BWA-MEM [9] is widely used in practice to this end.

This paper presents the following contributions:

– The first GPU-based implementation of the BWA-MEM algorithm.
– A load balancing algorithm to distribute reads between host and accelerator.
– A comparison of kernel and system-level results to an FPGA implementation.

The rest of this paper is organized as follows: Sect. 2 places this work into
its context within related work. Section 3 discusses the BWA-MEM program
operation and its main functions. Section 4 explains the modification of program
scheduling to improve the acceleration potential. Section 5 describes the load bal-
ancing system. Section 6 discusses the GPU implementation. Section 7 presents
the methods and results. The paper is concluded by Sect. 8.

2 Related Work

Although BWA-MEM [9] is one of the most popular mapping tools, there are
numerous other mapping tools available. Most state-of-the-art mapping tools,
such as [7], follow the Seed-and-Extend paradigm, explained below. Mapping
tools generally differ in their mapping quality and speed. BWA-MEM offers a
good compromise between mapping speed and quality. Many accelerated Seed-
and-Extend-based mapping tools exist. However, in the field of bioinformatics,
exactness of results is critical. To the authors’ knowledge, the only accelerated
versions of BWA-MEM are [1,5]. In [5], one of the BWA-MEM kernels is mapped
onto a FPGA-based systolic array. This is further improved upon in [1], in which
multiple BWA-MEM kernels are accelerated. The work here is similar to [5], but
implements the systolic array on a GPU-based platform instead.

3 BWA-MEM Algorithm

BWA-MEM [9] is used to map sequenced reads onto a reference genome, such
as the human genome. To illustrate the data sizes involved, a single run on a
currently state-of-the-art sequencing platform, the Illumina HiSeq X, generates
up to six billion pair-ended reads of 150 base pairs (or bp) in less than three
days [6]. Even on a cluster, processing this data can take multiple days.

BWA-MEM is based on the Seed-and-Extend paradigm (refer to Fig. 1). For
each read, seed locations on the genome are determined, exactly matching sub-
sequences of the read and the reference. Then, Seed Extension is performed: an
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132 E.J. Houtgast et al.

Fig. 1. BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read,
likely mapping locations on the reference are found by searching for exactly matching
subsequences between the read and the reference, so called seeds. Then, these seeds
are extended in both directions using a Smith-Waterman-like dynamic programming
approach that allows for inexact matches. From all of these extended seeds, the best
scoring alignment is selected.

attempt to extend these seeds in both directions using an alignment algorithm
that allows for inexact matches. The best scoring alignment is chosen from all the
resulting alignments. The final score is obtained by performing global alignment
over the entire read against the chosen reference region.

3.1 BWA-MEM Profiling Results

The BWA-MEM algorithm main functions are: Seed Generation, Seed Extension,
and Output Generation. To investigate the acceleration potential of BWA-MEM,
the application has been profiled using the GCAT data set. The results are
shown in Table 1, which reveals that acceleration of BWA-MEM is not trivial:
processing is divided over multiple functions. As per Amdahl’s law, speedup
resulting from acceleration of any single function is limited. Greater speedup
can only be achieved when accelerating multiple functions, such as in [1]. The
table also shows that Seed Extension is the function limited by a computational
bottleneck. For this reason, the Seed Extension function was chosen as initial
optimization target. The other functions are not further analyzed in this paper.

Table 1. Results of BWA-MEM algorithm profiling (tests performed on Intel Core
i7-4790 @ 4 GHz with the GCAT 150bp-se-small-indel data set)

Program kernel Time Bottleneck Processing Max speedup

Seed generation 46 % Memory Parallel 1.85x

Seed extension 43 % Computation Parallel 1.75x

Output generation 4 % Memory Parallel 1.04x

Other 7 % I/O Sequential 1.08x
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Fig. 2. Extend algorithm similarity matrix with initial score 60 showing local alignment
with maximum score and global maximum score. Read symbols map one-to-one onto
systolic array Processing Elements. Matrix entries only depend on top, top-left, and
left neighbor. Thus, anti-diagonals can be processed in parallel. Differences compared
to regular Smith-Waterman are: additional Initialization and End-of-Query blocks,
non-zero initial values, and additional outputs, such as the global maximum (from [5]).

3.2 Seed Extension Functional Details

After Seed Generation, Seed Extension is invoked, which consists of two separate
components: an outer function that loops over all seeds and determines whether
it should be extended or not; and the actual Extend kernel. The number of times
the Extend kernel is performed depends on the number of seeds found, which can
range from none to thousands of seeds per short read. Since seeds generally only
encompass a subsequence of the read, they may be extended in either direction,
unless the seed includes the first and/or last symbol of the read.

The outer function keeps track of all earlier found extensions belonging to one
read. If a later seed overlaps previous extensions by a certain amount, the seed is
ignored. Seeds that are located close together on the reference are grouped into
chains. Profiling shows that, in general, only one seed per chain is extended.
Hence, a dependency exists between the extension of seeds. This dependency
makes Extend less suitable for parallel execution: speculatively performing all
extensions in parallel would cause significant work that would outweigh any
benefit of parallelization. Therefore, Extend kernel executions for a read are
performed serially. Instead, parallelism is extracted on two other levels: on the
read-level by processing multiple reads at the same time, and by utilizing the
parallelism inherent in the extension algorithm itself.
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The extension algorithm is similar to the well-known Smith-Waterman
dynamic programming algorithm [13], used to align two sequences to each other.
Its basic operation is illustrated in Fig. 2. To compute the optimal alignment, a
similarity matrix is filled, thus computing all possible alignments. The value of
one cell in this matrix is only dependent on its top, top-left, and left- neighbor.
Hence, anti-diagonals can be computed in parallel. A systolic array implementa-
tion is a natural way to map the problem onto Processing Elements when using
an acceleration platform [10,15].

Most GPU-based Smith-Waterman acceleration efforts operate by mapping
the complete processing of one alignment to a single core, in effect doing hun-
dreds of sequence alignments in parallel [3,11]. As on a GPU the cores operate
in lock-step, optimal performance is contingent on balancing the workload per
core. Hence, alignments are sorted beforehand. Unfortunately, for BWA-MEM
this method is unsuitable as Extend kernel invocations are generated dynami-
cally and can have very different lengths. Therefore, to extract parallelism, the
implementation described here operates in a systolic array-like manner.

As the Extend kernel is used to extend an earlier found match, in contrast
to simply aligning sequences in complete isolation, it differs from regular Smith-
Waterman in three ways, explained below. These differences are also illustrated
in Fig. 2. The result is that the Extend kernel implementation is more complex
than a normal Smith-Waterman implementation.

Non-zero Initial values: The initial values of the similarity matrix are not
zero, but depend on the score of the seed that is being extended. Therefore, an
Initial Value block is added in front of the systolic array.

Additional Outputs: The Extend kernel produces more outputs than the nor-
mal Smith-Waterman algorithm. Therefore, to obtain these, the output is post-
processed by an additional End-of-Query block.

Partial Similarity Matrix Calculation: The algorithm uses a heuristic to
restrict the similarity matrix calculations to only those cells that are likely to
influence the end result.

4 Accelerated Program Architecture

In this section, changes made to enable an accelerated implementation of the
BWA-MEM algorithm are described. The main goal was to drastically reduce
the number of Seed Extension invocations. The original BWA-MEM algorithm
works as shown in Algorithm 1. The input data is processed in batches. For each
read in a batch, Seed Generation is performed first; then, Seed Extension; and
finally, Output Generation. Note that for each read, Seed Generation and Seed
Extension are performed directly after one another.

Applying heterogeneous acceleration of the Seed Extension function call
directly to this structure would imply accelerator invocation for every individual
read, along with the accompanying data transfers from and to the device’s mem-
ory. As typically many millions of reads are processed, the resulting overhead
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Algorithm 1. Original Program Structure

Input: a batch of n reads
Output: n aligned reads
1: for i = 1 to n do
2: Seed Generation(read i)
3: Seed Extension(read i)
4: end for
5: for i = 1 to n do
6: Output Generation(read i)
7: end for

would be likely to nullify any gains resulting from more efficient execution. More-
over, acceleration of a single alignment may not even be faster than processing
it on the host. Often, speedup is obtained by leveraging the massive parallelism
inherent in the data set to be processed, which accelerators are able to exploit.

Therefore, the BWA-MEM program structure has been refactored in order to
be more receptive to heterogeneous execution. The refactored structure is given
in Algorithm 2. Note that the workload has been subdivided into chunks of reads.
For each chunk, first, Seed Generation is performed for all reads in the chunk.
Then, the Seed Extension function is executed for all the reads in the chunk.
Then, the algorithm proceeds to the next chunk. After all chunks are finished,
Output Generation is performed. This setup requires temporary data storage,
which is in the order of tens of megabytes. However, this approach is far more
suitable to acceleration, as in this situation a single accelerator invocation suffices
to perform Seed Extension for the entire chunk, as opposed to one invocation per
read. The reduction in number of invocations is on the same order of magnitude
as the chunk size, which is typically in the order of tens of thousands.

Algorithm 2. Refactored Program Structure

Input: a batch of n reads
Output: n aligned reads
1: for i = 1 to n/chunksize do
2: for j = 1 to chunksize do
3: Seed Generation(read j + (i − 1) × chunksize)
4: end for
5: for j = 1 to chunksize do
6: Seed Extension(read j + (i − 1) × chunksize)
7: end for
8: end for
9: for i = 1 to n do

10: Output Generation(read i)
11: end for

Note that Algorithm 2 has been implemented in such a way that Seed Gener-
ation and Seed Extension are overlapped in a pipelined fashion. Hence, ideally,
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the execution of Seed Extension is almost completely hidden, resulting in a max-
imum theoretical speedup of 1.75x, as predicted by Amdahl’s law.

5 Adaptive Load Balancing Strategy

To accelerate the Seed Extension function (lines 5–7 of Algorithm2), a GPU is
used to assist the host in processing the Seed Extension work. To ensure optimal
speedup, even for slower GPUs, an adaptive load balancing strategy is used to
determine the optimal division of work between host and GPU, controlled by
a Load Balancing Factor parameter (LBF). The goal of this algorithm is to
minimize the idle time on both host and GPU. Otherwise, simply offloading all
the work onto a slower GPU might result in an application slowdown, instead
of in an application speedup. The LBF is recalculated after each batch of reads
as shown in Algorithm 3. As the amount of work per batch seems mostly stable,
idle time is minimized by measuring the host and the GPU processing times
to determine their respective busy percentage during the previous batch and
modifying the LBF accordingly (similar to [2]). Given a sufficiently fast GPU,
all the work can be offloaded from the host. However, for a slower GPU, only
part of the work may be performed on the GPU, hence LBF will be less than 1.
The load balancing should result in a speedup in all cases though. The algorithm
uses smoothing in order to prevent oscillations of the LBF.

Algorithm 3. Adaptive Load Balancing Strategy

Input: HostBusyPct, GPUBusyPct, LBFold

Output: LBFnew

1: for each batch of reads do
2: LBFold = LBFnew

3: LBFnew = (HostBusyPct / GPUBusyPct) × LBFold

4: LBFnew = min(1, (LBFnew + LBFold) / 2)
5: end for

6 Implementation Details

The GPU implementation of Seed Extension consists of an outer loop and the
actual Extend kernel. These have been implemented as separate kernels using
the NVIDIA CUDA Runtime API. In this section, the GPU kernels and the
optimizations that were applied are described in more detail.

6.1 Seed Extension Function Kernels

As discussed before (see Algorithm 2), reads are sent in large batches to the GPU.
Each read is processed independently by the outer loop kernel, a control function
that loops over the seeds and, using CUDA Dynamic Parallelism (available from
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Table 2. Summary of NVIDIA CUDA compiler & profiling information

CUDA kernel # Calls Time Registers Shared memory Threads

Outer loop 1 66 % 78 0 kB 1

Extend multipass long 24657 17 % 34 2.9 kB 32

Extend wide 17912 11 % 54 3.3 kB 1–131

Extend multipass short 9695 3 % 34 1.7 kB 32

Extend single pass 17640 3 % 30 0.5 kB 32

CUDA Compute Capability 3.5 onward), instantiates Extend kernels as needed.
This function only runs as a single thread. For the Extend kernel itself, four
versions of the kernel have been implemented to optimize register and shared
memory usage to improve occupancy. These are described in the next section.
Table 2 provides some information on the CUDA kernels in use.1 From the table,
it is clear that most time is spent in the outer loop, which is characterized by
random memory accesses and branching operations.

6.2 Extend Systolic Array Kernels

The basic idea of all the Extend kernels is their implementation as a systolic
array, similar to [5]. The largest advantage of using a systolic array is the possi-
bility to extract the available parallelism on anti-diagonals while calculating
the similarity matrix. Using a systolic array, calculation of the entire array
takes O(|Reference| + |Extension|) execution time, instead of O(|Reference| ×
|Extension|). For larger problem sizes, this can result in a large speedup com-
pared to a serialized implementation. The drawback of a systolic implementation
is the often low overall efficiency: in general, not all the Processing Elements (or
PEs) of the array can be kept busy. Full utilization is only attained during calcu-
lation of the “widest” diagonals of the matrix. For the other diagonals, PEs at the
start and/or at the end of the array will be idle, lowering overall efficiency. More-
over, for physically implemented systolic arrays, unnecessary latency is incurred
when processing reads shorter than the array itself. Also, the number of PEs
determines the maximum length of the extension that can be processed, as one
PE is required for each read symbol that is to be extended. Longer reads can
be processed by making multiple passes over the matrix, with temporary data
stored between passes, as in [12]. The GPU implementation does not suffer from
these issues as the systolic array length is dynamically instantiated.

The GPU implementation maps read symbols onto the systolic array PEs,
similar to Fig. 2. The PEs are implemented as CUDA cores, where a CUDA
thread performs the calculations of that PE. CUDA threads are grouped into
blocks of 32 threads, a warp, which all perform exactly the same instruction.

1 These numbers are obtained while executing the first 50,000 reads of the GCAT
150bp-se-small-indel data set using the nvprof and nvcc tools.
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A warp is the basic unit of action in an NVIDIA GPU. The Ext. wide kernel
is the most straightforward systolic array implementation. On the left of Fig. 3,
is shown how the similarity matrix is processed over time. As many warps as
necessary are allocated to process the matrix. After each cycle, PEs exchange
data through the on-chip Shared Memory cache. For larger extension lengths,
this can require a large amount of shared memory. Moreover, from Fig. 3 it is
clear that many PEs will be idle for much of the time.

Fig. 3. Systolic array-based GPU Extend kernel implementation. Extension symbols
are mapped one-to-one on CUDA cores, reference symbols are fed each iteration of the
loop. After each iteration, data is exchanged through shared memory (left). The single
warp-based implementation makes multiple passes over the array (right). Unnecessary
iterations are skipped over and per-pass temporary data is saved in shared memory.

Therefore, a number of kernels have been implemented designed to process
the matrix on a single warp, which corresponds to 32-symbol wide columns. This
is shown on the right of Fig. 3. Multiple passes are made over the matrix, with
intermediate data between passes saved into shared memory. Data exchange
between cores is implemented using shuffle instructions, avoiding the use of
shared memory. Unnecessary iterations per pass are skipped, drastically reduc-
ing idle time. For example, extending a size 150 reference against a size 100
extension would, in the simple implementation, result in on average 60 cores out
of 100 being busy; however, for the warp-based implementation, 27 out of 32 are
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busy. Efficiency is 40 % higher. The Ext. multipass long and Ext. multipass short
kernels differ in the available amount of statically allocated storage space. The
Ext. single pass kernel is used when the entire matrix fits within a single warp
(i.e., 32 read symbols or smaller), and hence only one pass is needed. In this
case, no intermediate data from the matrix needs to be saved in shared memory.
The use of the different kernels provides a 20 % improvement to performance.

6.3 GPU-Specific Optimizations

Apart from the multiple Extend kernel implementations, the following optimiza-
tions were applied and are worth mentioning:

Coalesced Memory Access: Memory accesses are coalesced as much as pos-
sible. In contrast to a normal systolic array, reference symbols are loaded in one
large coalesced access. Read symbols are obtained similarly.

Shuffle Instructions: Shuffle instructions are used to remove the need to use
shared memory for data exchange between PEs. This is only possible within a
warp, hence the need for a multiple pass implementation.

Dynamic Parallelism: To reduce register pressure, the outer controlling func-
tion uses only a single thread, subsequently invoking Extend kernels with as
many threads as needed using CUDA Dynamic Parallelism.

7 Results

Profiling and performance tests were performed on a machine with an Intel Core
i7-4790 (four cores, Hyper-Threading enabled) running at 4.0 GHz, with 32 GB
of DDR3 memory. The system contains two NVIDIA GeForce GTX TITAN X
cards, with 3,072 CUDA cores each, running at up to 1,076 MHz, and offering
Compute Capability 5.0. The GPU implementation requires at least Compute
Capability 3.5 in order to be able to use dynamic parallelism. NVIDIA CUDA
Runtime API version 7.5 was used.

The 150bp-se-small-indel data set from the Genome Comparison & Analytic
Testing (GCAT) framework [4] was used to map about eight million 150 base
pair reads onto the UCSC HG19 reference human genome. The GCAT online
sequence alignment quality comparison service was used to verify that results
of the GPU-accelerated version are similar to those obtained with the original
BWA-MEM algorithm. BWA-MEM version 0.7.7 was used [8].

7.1 Performance Results and Scaling

Table 3 shows the Extend kernel execution time and overall application per-
formance for single and dual GPU execution using eight CPU threads. The
results of the FPGA implementation from [5] are also given. As the platforms
are non-identical (they use 2x Intel Xeon E5-2643 at 3.3 GHz), relative Extend
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Table 3. Execution time and speedup on the GCAT alignment quality benchmark

Extend kernel Overall program

Platform Test Time Speedup Time Speedup Throughput

GPU-Accelerated CPU only 218 s - 510 s - 2.4 Mbp/s

CPU+Single GPU 118 s 1.9x 468 s 1.09x 2.6 Mbp/s

CPU+Dual GPU 73 s 3.0x 422 s 1.21x 2.9 Mbp/s

FPGA-Accelerated CPU only 167 s - 530 s - 2.3 Mbp/s

CPU+FPGA 62 s 2.7x 365 s 1.45x 3.3 Mbp/s

kernel times differ, mostly due to the different CPUs. Results are normalized to
throughput in base pairs per second, to facilitate comparison of numbers.

The Extend dynamic programming kernel is three times faster compared to
CPU-only execution. Even though execution of this kernel is overlapped with the
functions executed on the host CPU, the results show that, in contrast to the
FPGA implementation, the GPU-accelerated version is unable to hide the entire
Seed Extension function time, due to the large overhead of the outer function.
Performance results for varying CPU thread counts are given in Fig. 4. The dual
GPU setup is able to achieve a speedup of 1.6x for up to two threads, or 1.5x for
four threads. The maximum speedup of 1.75x is not achieved, due to batching
overhead and since GPU on-chip memory limitations allow only 99.5 % of Seed
Extensions to be processed on the GPU. The remaining reads, with thousands
of seeds, are processed on the host and still require about 4% of overall host
execution time, reducing the maximum achievable speedup accordingly.

Fig. 4. Overall application speedup for varying number of CPU threads and single and
dual GPUs. Results shown with load balancing enabled and disabled. The adaptive
load balancing ensures efficient host and accelerator usage and provides an overall
application speedup even for GPU-constrained scenarios, which might otherwise result
in an overall application slowdown.
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7.2 Load Balancing Results

An adaptive load balancing algorithm was implemented to ensure optimal benefit
from the use of acceleration. Figure 4 shows that the load balancing is effective:
for increasing number of CPU threads, the load balanced single GPU scenario
provides similar or better performance as compared to non-load balanced exe-
cution, improving performance by up to 46 %. Note that execution using eight
threads results in a slowdown on the non-load balanced situation, due to a mis-
match in host and accelerator performance. For a dual GPU setup, load balanc-
ing still provides a benefit, but only when using eight threads. The unbounded
LBF value is also given. This shows that the dual GPU setup is able to perform
up to 90 % more work than a single GPU setup.

8 Conclusion

This paper describes a GPU-accelerated version of the BWA-MEM genomic
mapping algorithm. It was possible to hide the execution time of the Seed Exten-
sion function, one of the three main computational functions, by overlapping its
execution with the other program functions for up to four CPU threads. Speedup
of up to three times is achieved for the Extend kernel, which translates in an
overall improvement to BWA-MEM execution time of up to 1.6x. This can save
days of processing time on real-world data sets.

A generally applicable adaptive load balancing strategy was implemented to
ensure an efficient division of work between the host and the GPU, improving
performance and ensuring application speedup even for mismatched host and
accelerator performance. The load balancing algorithm provides an improvement
to performance of up to 46%, compared to non-load balanced execution.

Although the work here focuses on BWA-MEM, a widely used genomic map-
ping tool, the approach is valid for many similar Seed-and-Extend-based bioin-
formatics algorithms. Future work will focus on the reorganization of the outer
Seed Extension function to make it better suitable towards parallel execution,
and will also focus on porting other parts of BWA-MEM onto the GPU.
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CHAPTER 3

Optimized Implementations with Efficient Systolic Arrays

"The pessimist complains about the wind;
The optimist expects it to change;

The realist adjusts the sails."

—William Arthur Ward

S OPHISTICATED techniques were proposed in the previous chapter, addressing one
source of inefficiency to systolic array performance. Normally, a mismatch between

the number of PEs in the systolic array and the read query length results in lowered ef-
ficiency as some of the PEs remain idle, since no read symbols are mapped onto them.
Through the judicious use of Exit Points, and Variable Logical and/or Physical Length
designs, this source of inefficiency can be completely eliminated. In this chapter, the re-
maining source of inefficiency is addressed. In a standard systolic array implementation,
only a single sequence alignment is performed at a time. Thus, three phases during the
sequence alignment can be distinguished: a startup phase where the reference sequence
symbols are fed into the array and more and more PEs take part in the computation; an
active phase, where all PEs join the sequence alignment computation; and a shutdown
phase, where more and more PEs are finished and have to wait for the others to complete
their computation. Naturally, the array is only at maximum efficiency during the active
phase, whereas the other two phases are characterized by reduced efficiency. Worse still,
short reference sequences might not even contain an active phase.

In this chapter, a streaming systolic array architecture is proposed that supports an
arbitrary number of active sequence alignments simultaneously, thus eliminating the is-
sue of idle PEs during the startup and/or shutdown phases and, in turn, resulting in a
maximally-efficient systolic array. Furthermore, two greatly improved FPGA and GPU
implementations of BWA-MEM are presented that are able to completely hide the Seed
Extension execution time from overall program execution by offloading the Seed Exten-
sion kernel onto hardware and overlapping its execution with the remaining BWA-MEM
kernels, resulting in the maximum two-fold speedup. The highest efficiency is obtained
when the accelerated Seed Extension kernel time and remaining BWA-MEM kernels re-
quire an equal amount of time so that neither the host or the accelerator sits idle. This is
analyzed in great detail.
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3.1. MAIN CONTRIBUTIONS
The main contributions of this chapter are as follows:

• An optimized systolic array architecture is presented that uses streamed loading of
sequences and implicit synchronization to fully eliminate the impact of reference
sequence length on efficiency. Together with the techniques proposed in Chap-
ter 2, this removes the traditional problem of keeping all PEs of a systolic array
active, and the result is an implementation with an overall efficiency of 99.8%. An
OpenCL implementation of the Smith-Waterman algorithm is proposed using the
above describe optimized systolic array, resulting in the most efficient and most
performant FPGA Smith-Waterman implementation to date, reaching 214 GCUPS
on a single Intel Arria10 GX development board [BIBE2017].

• Two optimized accelerated BWA-MEM implementations are proposed that each
offer the maximum possible two-fold speedup attainable from completely elimi-
nating the Seed Extension kernel from overall program execution time. The Alpha
Data FPGA implementation improves on the earlier implementation by being both
faster and more power-efficient, while at the same time requiring an equivalent of
only about 23% of the FPGA resources. The optimized GPU implementation also
contains a number of improvements, including memory access optimizations, the
use of a single kernel monolithic kernel, and improved handling of the reference
length. Moreover, recommendations are made to further improve the suitability
of the GPU for sequence alignment-type problems [FCCM2016], [CAN2017].

• A scalability analysis is performed to estimate the optimal balance in resources
between a host machine and an accelerator, be it FPGA or GPU. Since the accel-
erator performs the Seed Extension tasks, while the host performs all other BWA-
MEM tasks, optimal efficiency is achieved when these two require equal amounts
of time and when the processing capabilities are suitably matched [CAN2017].
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Abstract—We propose a novel FPGA-accelerated BWA-MEM
implementation, a popular tool for genomic data mapping. The
performance and power-efficiency of the FPGA implementation
on the single Xilinx Virtex-7 Alpha Data add-in card is com-
pared against a software-only baseline system. By offloading
the Seed Extension phase onto the FPGA, a two-fold speedup
in overall application-level performance is achieved and a 1.6x
gain in power-efficiency. To facilitate platform and tool-agnostic
comparisons, the base pairs per Joule unit is introduced as a
measure of power-efficiency. The FPGA design is able to map up
to 34 thousand base pairs per Joule.

Introduction— The extreme scale of genomics data ne-
cessitates the use of high performance and power-efficient
solutions. BWA-MEM [1] is the de facto standard for mapping
DNA short reads onto a reference genome. Following the
Seed-and-Extend paradigm, exactly matching seeds are gene-
rated for each read, which are subsequently extended using
inexact matching similar to the Smith-Waterman algorithm.
Here, we accelerate this Seed Extension phase, which forms a
major bottleneck in BWA-MEM requiring 30%-50% of total
execution time. Few accelerated BWA-MEM implementations
exist: two implementations on the Convey HC-2EX platform
with four Xilinx Virtex-6 FPGAs, one accelerating only the
Seed Extension phase [2] and achieving a 1.5x speedup,
and one accelerating multiple phases [3] for an overall 2.6x
speedup; and a GPU implementation [4]. Our work extends
[2], but is able to achieve a 2.0x speedup using only a
single Xilinx Virtex-7 FPGA, which offers about 23% of the
resources as compared to the Convey platform.

Approach— Our implementation offloads the Seed Ex-
tension phase that performs the inexact matching onto an
FPGA, accelerating the Smith-Waterman-like algorithm using
a systolic array. Our design contains six modules that are each
able to process the Seed Extension phase. The remainder of
the logic is filled with arbitration logic to distribute reads, with
the PCI-Express interface and with the memory controller. The
design is limited by the amount of LUTs available.

TABLE I: POWER CONSUMPTION, PERFORMANCE AND ENERGY-EFFICIENCY FOR SOFTWARE-ONLY AND FPGA-ACCELERATED PLATFORMS (TESTED ON:
INTEL CORE I7-4790 @ 3.6 GHZ + 16 GB RAM; ALPHA DATA ADM-PCIE-7V3 WITH XILINX VIRTEX-7 XC7VX690T-2 @ 160 MHZ + 16 GB RAM)

Kernel Performance Overall Performance Power Consumption Energy Efficiency

Platform Time Speedup Time Speedup Idle Load Power Efficiency Improvement

Software-Only 237 s - 552 s - 37 W 105 W 58 kJ 20.7 kbp/J -
FPGA-Accelerated 129 s 1.8x 272 s 2.0x 62 W 129 W 35 kJ 34.1 kbp/J 1.6x

Results— Results were gathered using BWA-MEM v0.7.8,
which is highly multi-threaded, with the publicly available
150bp-se-small-indel GCAT data set [5]. To measure the
power-efficiency, an emonPi energy monitor [6] was used
to track the system-level power consumption as measured at
the power plug. Performance and power-efficiency results are
summarized in Table I. On a kernel-level, the FPGA is 1.8x
faster as compared to software-only execution for the Seed
Extension phase. In our implementation, this phase is executed
in parallel with the other phases, thus resulting into a two-
fold improvement to overall application performance. Note
that the accelerated Seed Extension phase requires less than
half of the overall application execution time. This shows that
the FPGA is not fully utilized and can be used to accelerate
a more powerful system. Moreover, the FPGA-accelerated
implementation is much more power-efficient: it requires only
35 kJ, an energy efficiency improvement of 60%. The power-
efficiency would be even greater for a more balanced system.
A conservative estimate indicates that the FPGA-accelerated
platform is able to achieve an up to 2.1x improvement in
power-efficiency and is able to map up to 44 kbp/J.
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ABSTRACT
Next Generation Sequencing techniques have resulted in an
exponential growth in the generation of genetics data, the
amount of which will soon rival, if not overtake, other Big
Data fields, such as astronomy and streaming video services.
To become useful, this data requires processing by a complex
pipeline of algorithms, taking multiple days even on large
clusters. The mapping stage of such genomics pipelines,
which maps the short reads onto a reference genome, takes
up a significant portion of execution time. BWA-MEM is
the de-facto industry-standard for the mapping stage.

Here, a GPU-accelerated implementation of BWA-MEM
is proposed. The Seed Extension phase, one of the three
main BWA-MEM algorithm phases that requires between
30%-50% of overall processing time, is offloaded onto the
GPU. A thorough design space analysis is presented for an
optimized mapping of this phase onto the GPU. The re-
sulting systolic-array based implementation obtains a two-
fold overall application-level speedup, which is the maximum
theoretically achievable speedup. Moreover, this speedup is
sustained for systems with up to twenty-two logical cores.
Based on the findings, a number of suggestions are made to
improve GPU architecture, resulting in potentially greatly
increased performance for bioinformatics-class algorithms.

1. INTRODUCTION
The introduction of Next Generation Sequencing (NGS)

techniques has resulted in drastic, ongoing, cost reduction of
genomic sequencing, which, in turn, has led to an enormous
growth in the amount of genetic DNA data that is being se-
quenced. High-throughput sequencing facilities are coming
online around the world as facilities worldwide embrace NGS
[2]. The amount of data being generated is projected to
rival, if not outright overtake, other key Big Data-fields,
such as astronomy and streaming video services [13].

NGS machines output so-called short reads, short frag-
ments of DNA of at most a few hundred base pairs (bp)
in length. This data requires extensive processing using a
genomics pipeline, which typically contain multiple stages
with a number of highly complex algorithms. In the case of
a DNA sequencing pipeline, first, the millions of short reads
generated are mapped onto a reference genome. Then, these
mapped reads are sorted and duplicates are marked or re-
moved. Finally, the aligned data is compared at several
positions with known possibilities, in order to determine the
most probable variant. Only then the data is ready for con-
sumption by the end-user, such as a clinician or researcher.

To appear in the International Symposium on Highly Efficient Acceler-
ators and Reconfigurable Technologies, July 2016, Hong Kong.

These variants, or mutations, are generally what is of inte-
rest, as such a mutation could give insight on which is the
most effective treatment to follow for the particular illness a
patient has. The mapping stage takes a significant portion
of processing time for a typical pipeline execution, around
30%-40%, depending on data set and platform.

A sequencing run on an Illumina HiSeq X, a state-of-the-
art NGS sequencer, produces data in the order of 450 GB.
For cancer data sets, this data requires multiple days of
processing, even on high performance computing clusters.
The extreme scale of data and processing requires enormous
computing capabilities to make the analysis feasible within
a realistic time frame. As heterogeneous computing holds
great potential to provide large advantages in speed and
efficiency, in this paper, we demonstrate the effectiveness
of GPU-based acceleration of BWA-MEM, the most widely
used tool for the mapping stage of genomics pipelines.

The following contributions are made: 1) an optimized
GPU-based implementation of the BWA-MEM Seed Exten-
sion phase, resulting in an overall application-level speedup
of up to 2x; 2) a thorough discussion of the design space ana-
lysis, providing key insight into the requirements of a highly
optimized implementation; and 3) recommendations to fur-
ther improve the GPU architecture that would allow even
higher performance for bioinformatics-class applications.

The remainder of this paper is organized as follows. In
Section 2, related work is discussed. In Section 3, back-
ground information is given on the BWA-MEM algorithm
and, in particular, on the Seed Extension phase. In Sec-
tion 4, the advantages and disadvantages of various imple-
mentation architectures are reviewed. In Section 5, the re-
sults are presented. Section 6 contains a discussion of the
results and recommendations are made to improve the GPU
architecture. Section 7 concludes the paper.

2. RELATED WORK
Numerous GPU-accelerated implementations of short read

mapping tools exist, notable examples include SOAPv3 [9]
and CUSHAW [10]. Similar to BWA-MEM and most other
state-of-the-art mapping tools, these consist of an Exact
Matching phase using the Burrows-Wheeler transform to
find exactly matching subsequences, followed by an Inexact
Matching phase. However, these implementations are lim-
ited in the flexibility of their Inexact Matching algorithm,
allowing only for a small number of mismatches (CUSHAW),
or by disallowing gaps in the alignment (SOAPv3).

Using a variant of the Smith-Waterman (SW) algorithm
[12] for its Inexact Matching, BWA-MEM does not impose
such limitations. For example, gaps do not influence per-
formance. The SW algorithm is a dynamic programming
technique able to find the optimal match between two sub-
sequences given a certain scoring scheme. Many accelera-
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Figure 1: BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read, likely mapping
locations on the reference are found by searching for seeds, exactly matching subsequences between the read
and the reference. These seeds are then extended in both directions using a Smith-Waterman-like approach
allowing for inexact matches. The best scoring alignment is selected.

ted implementations of this algorithm exist (e.g., [8], [11]).
However, all these implementations perform one complete
sequence matching per compute thread, making such an im-
plementation unsuitable for direct application onto BWA-
MEM, as it requires batching and sorting of larger groups
of work. Section 3.2 explains in more detail why such a
parallelization strategy is inapplicable for BWA-MEM.

To the authors’ knowledge, only a few accelerated imple-
mentations of BWA-MEM exist: two FPGA implementa-
tions of BWA-MEM on the Convey supercomputing plat-
form: one offloading the Seed Extension phase onto four
Xilinx Virtex-6 FPGAs [4] obtaining a 1.5x speedup, the
other accelerating multiple BWA-MEM phases [1] obtain-
ing a 2.6x speedup; and a GPU-accelerated implementation
of the Seed Extension phase [5], achieving a 1.6x speedup.
This work improves upon [5], obtaining far better results: a
two-fold speedup for a system with up to twenty-two logi-
cal cores is obtained, compared to an at most 1.6x speedup
for a system with up to four cores. Moreover, an NVIDIA
GeForce GTX 970 is used, compared to using a setup with
dual NVIDIA GeForce GTX TITAN X, equivalent to about
one-third of the GPU resources. Note that all these imple-
mentations are actual production-quality implementations.

3. BACKGROUND
There are a number of traits that bioinformatics-class

algorithms share, making them interesting, but neverthe-
less challenging candidates for acceleration efforts. The two
most important ones are outlined below:

Extreme-Scale Data Size: The data size that many
bioinformatics applications deal with are of an enormous
magnitude, for example illustrated in the case of NGS se-
quencing. A single human genome contains three billion
base pairs. A base is one out of four possible nucleotides
(A, C, G or T). Moreover, the sequencer also provides a
quality score for each base, which indicates the confidence
with which the nucleotide was read. Finally, as only short
fragments are sequenced and this data often contains errors,
it is common practice to read the genome multiple times, a
coverage of 30x or more being typical. This results in a
compressed output size of around 100 GB.

Often, this huge amount of data coincides with an abun-
dance of parallelism. For example, in the case of BWA-
MEM, short reads can be mapped in parallel, as there exist
no dependencies between them.

Complex Multikernel Algorithms: Typical bioinfor-
matics algorithms do not consist of a single phase that domi-
nates execution time, but instead perform a number of time-
consuming steps. For example, BWA-MEM processing is
spread over three distinct stages, making acceleration of this

algorithm more challenging, as not only does it require the
adaptation of multiple separate algorithms, but also care has
to be taken to not shift the bottleneck to another part of the
application, limiting the benefit of any potential speedup as
per Amdahl’s law. This makes it quite difficult to obtain
larger performance gains.

3.1 The BWA-MEM Algorithm
The goal of the BWA-MEM algorithm is to find the best

mapping of a short read onto a reference genome [7]. To
achieve this, it makes use of the Seed-and-Extend paradigm
(refer to Figure 1), a two-step method consisting of an Exact
Matching phase and an Inexact Matching phase (for details,
see [1]). First, for each short read Seed Generation is per-
formed: exactly matching subsequences of the read and re-
ference called seeds are identified using a Burrows-Wheeler
Transform-based index. The BWT-method allows for effi-
cient string-lookup and forms the fundament of almost all
contemporary state-of-the-art mapping tools. A single short
read can have many such seed locations identified. Genera-
ted seeds that are found to be in close proximity of each
other on the reference genome are grouped into chains.

The Seed Generation phase is followed by a Seed Exten-
sion phase. Here, seeds found earlier on are extended using
an algorithm similar to the widely-used Smith-Waterman
algorithm, using a scoring system that awards matches and
penalizes mismatches, insertions and gaps. Typically, not
all seeds are extended. Instead, on average only one seed
per chain is extended. Out of all the extended seeds, the
highest scoring match is chosen as final alignment.

3.2 Seed Extension Phase
BWA-MEM contains three main computational phases:

Seed Generation, Seed Extension and Output Generation.
During Output Generation the best alignment is selected
and the output is written. Seed Extension typically requires
between 30%-50% of execution time [5]. As per Amdahl’s
law, the maximum obtainable speedup for only accelerating
this phase is thus limited to a two-fold speedup at best.

This paper focuses on GPU-based acceleration of the Seed
Extension phase, which consists of two main parts: an outer
loop that loops over all the seeds identified for the read
during Seed Generation, and an Inexact Matching kernel,
which performs the Smith-Waterman-like extension.

There are no dependencies between reads and thus reads
can be processed in parallel. For each read, the groups of
chains are processed iteratively, as the check for overlap be-
tween earlier found alignment regions introduces a depen-
dency in the program order. This dependency is the main
reason why typical Smith-Waterman GPU-implementations
are not applicable for the case of BWA-MEM: they ob-
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tain their speed by performing many Smith-Waterman align-
ments in parallel, which are batched and sorted together in
larger groups of approximately the same length for load ba-
lancing purposes. Due to the highly dynamic nature of the
Inexact Matching invocations, this is impractical to achieve
for BWA-MEM, and would at the very least require a major
algorithm overhaul, if at all possible.

3.3 Inexact Matching Kernel
The Inexact Matching algorithm is similar to the popular

Smith-Waterman dynamic programming algorithm, which
computes for a given scoring scheme the optimal alignment
between two subsequences by filling a similarity matrix, re-
sulting in a maximum score. Backtracking can be used to
obtain the actual path through the similarity matrix that
results in the optimal alignment. However, the algorithm is
computationally expensive, being of O(read × reference).
Therefore, most mapping tools use an initial Seeding-phase
to find likely mapping locations, and only then perform lo-
calized extension of these seeds.

The Inexact Matching algorithm of BWA-MEM is slightly
different from regular Smith-Waterman. Firstly, since the
algorithm is used to extend a seed, the initial values used
in the similarity matrix are non-zero. Secondly, some addi-
tional outputs are generated, most importantly the location
of the maximum in the similarity matrix, and a global maxi-
mum with its location. Since each value in the similarity
matrix only depends on its top, left, and top-left neighbor,
the anti-diagonals of the similarity matrix can be computed
in parallel, thus making a systolic array a natural imple-
mentation approach. Each column of the similarity matrix
is processed in parallel by a Processing Element (PE) of
the systolic array, thus reducing the processing time from
O(read× reference) to O(read + reference). This results
in speedups of several orders of magnitude for longer read
and reference sequences. However, as BWA-MEM is typi-
cally used for shorter reads of at most a few hundred base
pairs, the observed speedup is more modest.

4. DESIGN SPACE EXPLORATION
As explained in Section 3.2, the BWA-MEM Seed Exten-

sion phase consists of two very distinct parts: the Inexact
Matching algorithm, which is implemented as a systolic ar-
ray, and the Seed Extension main loop, that loops over all
the chains of seeds. This outer loop performs the sequential
tasks of control and branch operations to effectuate the loop-
ing over all seeds, proper decoding of the sequence and refe-
rence from main memory, and writes the result back to me-
mory. In contrast, the Inexact Matching function is highly
computationally intensive and can use as many threads as
the systolic array has PEs. Thus, the implementation in [5]
on which this work is based makes a clear separation between
both functions and utilizes CUDA Dynamic Parallelism to
dynamically instantiate Inexact Matching kernels as needed.
A number of kernels were implemented, each optimized for
different matrix dimensions, and are called appropriately.
However, our tests show that CUDA Dynamic Parallelism
brings about a large initialization penalty, making it unsuit-
able to use at this scale, where even a single read can gene-
rate thousands of calls, resulting in millions of invocations
during a typical program execution. Therefore, the imple-
mentation here does not make use of Dynamic Parallelism,
and instead uses a large monolithic kernel.

4.1 GPU-Based Inexact Matching
The main challenge of the GPU-accelerated Seed Exten-

sion function is the implementation of the Smith-Waterman-
like Inexact Matching kernel. Typical GPU implementa-
tions of Smith-Waterman extract parallelism by performing
many sequence alignments in parallel. Here, parallelism is
extracted from an individual alignment by harnessing the
parallelism residing in the anti-diagonals of the similarity
matrix, through use of a systolic array (see Figure 2).

The warp is the basic unit of action on an NVIDIA GPU.
All threads in a warp perform the same operation, and
jobs are always scheduled onto one or more complete warps.
Therefore, two types of systolic array implementations were
considered. A ”wide” systolic array implementation, map-
ping each PE onto a separate thread and using as many
warps as needed, and a single warp implementation, using
only a single warp and processes the similarity matrix in
multiple passes. These approaches differ in their utilization
of Shared Memory (SM), a limited on-chip resource. The
amount of SM a thread block requires directly puts an upper
bound on the number of thread blocks that can be resident,
thus impacting performance.

As data flows through the systolic array, the PEs exchange
data with their neighbors to share results and perform their
computations. The ”wide” implementation uses SM to sim-
ulate the data exchange between PEs. After computation
of each antidiagonal, each PE passes its results to the next
PE in the array. Thus, the amount of SM required depends
on the length of the systolic array, which in turn depends
on the length of the read. Explicit synchronization between
warps is required after each step, which can be costly.

In contrast, the single warp implementation requires sto-
rage for the data produced at the ”border” of each pass,
which is fed back into the array during the next pass. There-
fore, the amount of SM required depends on the length of
the reference query. A large advantage of using a single
warp is that intra-warp shuffle instructions can be used,

Figure 2: Read symbols map onto the systolic array
of threads. Multiple passes are required to process
all read symbols. Data exchange between passes is
implemented using Shared Memory.
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which allow threads within one warp to directly access each
other’s registers. This eliminates the need for data exchange
through SM, saving a huge amount of bandwidth. In this
approach, only the first PE in the warp needs to read, and
the last PE needs to write temporary data. Another advan-
tage is that intra-thread synchronization within one warp
is cheaper. Compared to the ”wide” implementation, the
single-warp implementation has a secondary benefit as it
eliminates a large drawback of systolic arrays: the difficulty
of keeping all PEs busy. Depending on the similarity ma-
trix dimensions, many of the PEs can be idle much of the
time. With the single warp implementation, this inefficiency
is drastically reduced by skipping those parts of the matrix
where all the PEs of the pass would be idle.

To implement the Smith-Waterman algorithm, each CUDA
thread performs the pseudo code as shown in Algorithm 1:
each pass, the warp of threads is assigned a new part of
the read symbols to process. Then, all the calculations are
performed for this subsection of the similarity matrix. Each
cycle, each thread reads its left neighbor’s results, this way
implementing the systolic array behavior.

4.2 Implementation Architecture
Due to the above reasons, the single-warp systolic array

design is implemented. To maximize occupancy, Shared Me-
mory and register usage was carefully balanced. The register
count was fixed to use 64 registers per thread. The maxi-
mum number of storage between passes was chosen such to
ensure that one thread block uses 2 kB of Shared Memory.
Hence, up to 32 thread blocks can be resident per multipro-
cessor. Analysis performed with the NVIDIA Visual Profiler
shows that the performance is mostly limited by latency of
arithmetic and memory instructions. The memory subsys-
tem is not very much utilized, as the Shared Memory band-
width is only 158 GB/s and the device memory bandwidth
is less than 5 GB/s. The GPU caching is effective, as de-
vice memory bandwidth is substantially lower than overall
unified cache bandwidth.

Our approach is limited by the fact that the latest NVIDIA
GPU architectures (Compute Capability 5.0) can have up to
2048 resident threads active per multiprocessor, but only 32
blocks. For optimal occupancy, thread blocks with at least
64 threads should be used, whereas here only 32 threads
are used per block. Hence, occupancy is limited to at most
50%. In practice, up to about 35% occupancy is realized.
Earlier Compute Capability versions were even more restric-
tive, only allowing 16 resident blocks per multiprocessor for
Compute Capability 3.0+, or just 8 resident blocks per mul-
tiprocessor for earlier architectures. This would have a di-
rect impact on the efficiency of this implementation.

Algorithm 1 Systolic Array CUDA Thread Pseudo Code

1: for (each pass) do
2: Load current read symbol
3: for (each reference symbol + warp size) do
4: if (active) then
5: Load left neighbor values
6: Perform Seed Extension cell computations
7: end if
8: end for
9: end for

4.3 BWA-MEM Optimizations
A number of optimizations has been implemented, result-

ing in much better performance as compared to the GPU-
based implementation in [5]:

Single Monolithic Kernel: Although in theory Dy-
namic Parallelism should help improve occupancy by low-
ering resource requirements, the incurred performance over-
head makes it unfeasible to use when it needs to instantiate
kernels dynamically on such an extremely large scale.

Memory Subsystem Optimizations: GPUs contain
specialized memory subsystems. The reference and input
data are placed inside read-only texture memory to take
advantage of locality. Constants are used for parameters
such as scoring variables to reduce register count.

Truncated Reference Length: Analysis of the Seed
Extension algorithm shows that it is unnecessary to process
the part of the similarity matrix where the reference is much
longer than the read, given that this would imply numerous
gaps or insertions, and thus a low score. The highest score
will be found in the upper part of the similarity matrix.

5. EXPERIMENTAL RESULTS
The optimized GPU implementation described here was

tested on a system with an Intel Core i7-4790 (3.6 GHz,
eight logical cores), SpeedStep and Hyper-Threading en-
abled, containing 16 GB of DDR3 memory, and an NVIDIA
GeForce GTX 970 with 1664 CUDA cores and 4 GB of on-
board RAM. CUDA version 7.5 was utilized. Results for
the GPU implementation described in [5] were obtained on
a system with an Intel Core i7-4790 (4.0 GHz, eight logical
cores), SpeedStep and Hyper-Threading enabled, contain-
ing 32 GB of DDR3 memory, and two NVIDIA GeForce
GTX TITAN X cards, with 3,072 CUDA cores each. The
FPGA results were obtained on a system with an Intel Core
i7-4790 (3.6 GHz, eight logical cores), SpeedStep and Hyper-
Threading enabled, containing 16 GB of RAM and a server-
grade Alpha Data ADM-PCIE-7V3 card with a Xilinx Virtex-
7 XC7VX690T-2 and 16 GB of on-board RAM, programmed
with six Seed Extension modules at 160 MHz [6].

BWA-MEM version 0.7.8 was used with publicly available
data sets for single-ended alignment (150bp-se-small-indel)
and pair-ended alignment (150bp-pe-large-indel) from the
Genome Comparison & Analytic Testing (GCAT) frame-
work [3]. These contain about eight million reads of 150
base pairs, about 1.2 billion base pairs in total. Reads were
aligned against the reference human genome (UCSC HG19).

5.1 Performance Results
Performance results are summarized in Table 1, given as

execution time in seconds as well as in throughput in mil-
lions of base pairs per second. This facilitates cross-data set
and cross-platform comparisons. To distinguish the GPU
implementations, the implementation from [5] is referred to
as GPU-accelerated, and the implementation proposed here
is called GPU-optimized. These two implementations are
compared to the FPGA-implementation from [6], which uses
the server-grade Alpha Data add-in card. The time for the
Seed Extension phase is omitted for the GPU-accelerated
implementation, as the number reported there is not di-
rectly comparable, as it only includes the Inexact Matching
computation time, and not the time required to process the
outer loop. Moreover, the GPU-optimized implementation
described here processes almost all reads, whereas the GPU-
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Table 1: Execution time and speedup for the synthetic GCAT alignment quality benchmark

Seed Extension Phase Overall Application

Test Platform Execution Time Speedup Execution Time Speedup Throughput

Single-Ended Software-Only 237 s - 552 s - 2.2 Mbp/s

Data FPGA-Accelerated [6] 129 s 1.8x 272 s 2.0x 4.5 Mbp/s

GPU-Optimized 144 s 1.6x 278 s 2.0x 4.3 Mbp/s

Software-Only [5] 218 s - 510 s - 2.4 Mbp/s

GPU-Accelerated [5] N/A N/A 422 s 1.2x 2.9 Mbp/s

Pair-Ended Software-Only 246 s - 572 s - 2.1 Mbp/s

Data FPGA-Accelerated [6] 130 s 1.9x 289 s 2.0x 4.1 Mbp/s

GPU-Optimized 141 s 1.7x 293 s 2.0x 4.1 Mbp/s

accelerated implementation is only able to process about
99.5% of all reads, leaving the most time-consuming reads
for the host CPU. The results for the two software-only plat-
forms differ slightly, as their clock frequency is slightly differ-
ent (4.0 GHz vs 3.6 GHz). Both the GPU-optimized imple-
mentation and the FPGA-accelerated implementation are
able to reach a 2x speedup, compared to software-only exe-
cution. The GPU-accelerated implementation only reaches
a 1.2x speedup. The results for the GPU-optimized im-
plementation are much better than for the GPU-accelerated
implementation, even though a GPU-subsystem is used with
only about 31% of the computational resources.

Note that we deliberately refrain from making a direct
comparison between BWA-MEM and other read mapping
tools, as in this field, strict reproducibility is critical, making
performance of other tools irrelevant.

5.2 Scalability Analysis
Besides overall performance, scalability of the implemen-

tations is also important: the number of CPU cores a system
can have for which the system is still accelerated with maxi-
mum speedup. This is estimated by considering the time re-
quired by the accelerator for the Seed Extension phase and
regarding this as a lower bound to overall execution time.
Assuming overall execution time scales linearly in processor
core count, which for BWA-MEM is not unreasonable, the
maximum number of logical CPU cores that can be effec-
tively accelerated is thus determined. The results are sum-
marized in Table 2. Results are also included for further
optimized implementations that include certain straightfor-
ward improvements to scalability behavior, such as further
decomposition and pipelining of the data preprocessing step
that prepares the data for the GPU or FPGA, indicated as
FPGA-opt and GPU-opt in the table.

The scalability results are also visually depicted in Fig-
ure 3, showing speedup compared to a host system with
the same number of cores. The increased speedup when us-
ing eight threads may be caused by Hyper-Threading, which
makes Seed Extension a larger part of overall execution time
due to being the least memory-intensive phase, thus bene-
fitting the least from Hyper-Threading.

Table 2: Scalability Analysis of the Implementations

Execution Time

Platform Seed Ext. Overall Utilization Scalability

FPGA 129 s 272 s 47% 16.8 cores
FPGA-opt 83 s 272 s 31% 26.1 cores
GPU 144 s 278 s 52% 15.4 cores
GPU-opt 101 s 282 s 36% 22.3 cores

6. DISCUSSION
This section presents lessons learned during the implemen-

tation work, and gives some recommendations to improve
GPU architecture for bioinformatics-class problems.

6.1 Lessons Learned
The abundance of parallelism in BWA-MEM, and many

bioinformatics-class algorithms in general, makes them in-
teresting candidates for GPU-based acceleration. However,
the complexity of these algorithms, with execution time
distributed over multiple distinct phases, makes obtaining
large overall application-level performance gains far from
straightforward. Bottlenecks quickly shift towards the non-
accelerated parts of the program.

For BWA-MEM Seed Extension, the existence of an outer
loop dynamically calling Inexact Matching functions makes
it ill-suited to apply typical Smith-Waterman acceleration
methods. Therefore, a systolic array approach was used to
accelerate the algorithm instead. To avoid large temporary
storage requirements for data transfer between systolic array
PEs, only a single warp was used, allowing the use of intra-
warp shuffle. This greatly reduces Shared Memory band-
width requirements. However, it puts an upper limit on the
achievable occupancy, as only 32 threads are instantiated
per thread block, whereas optimal occupancy can only be
obtained with at least 64 threads per thread block.

Dynamic parallelism, as used in [5], seems like a valid
approach given the two distinct parts of the Seed Extension
algorithm. However, in practice, it brings about a large
overhead. This shows the importance of testing a wide range
of implementations, and not just choosing the approach that
in theory should be the best.

6.2 Recommended Architecture Optimizations
The lessons learned during implementation of the GPU-

based Seed Extension phase have given key insights in the
requirements of bioinformatics-class algorithms. Therefore,
here follow a number of suggestions to GPU architecture
that could greatly improve performance for such algorithms:

Reduced Dynamic Parallelism Overhead: Reduced
Dynamic Parallelism overhead could make this into a valid
approach to reduce register and Shared Memory pressure,
thus improving occupancy.

Increased Resident Blocks per Multiprocessor: The
present limit of 32 resident blocks per multiprocessor limits
the maximum obtainable occupancy for single warp thread
blocks. Raising this limit to 64 resident blocks per multipro-
cessor could result in an up to 100% boost to performance, as
this limitation is the major obstacle to higher performance in
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Figure 3: Estimated application-level speedup compared to software-only execution on a system with identical
number of CPU cores. The GPU-Optimized implementation is able to sustain a two-fold speedup for systems
with up to twenty-two CPU cores, greatly exceeding the results of the GPU-Accelerated implementation,
which uses dual NVIDIA GeForce GTX TITAN X compared to the single GeForce GTX 970 here.

this work. Not only the implementation here would benefit,
but also other Smith-Waterman implementations, a staple
algorithm in bioinformatics. In general, this would improve
any implementation that relies on the intra-warp shuffle ca-
pability and are thus limited to a single warp.

Native Low Precision Data Formats: Many problems
in bioinformatics do not require high precision for their cal-
culations. For example, the maximum value of entries in
the Smith-Waterman similarity matrix can be easily deter-
mined based on the scoring parameters and length of both
sequences. In many instances, even eight bits of precision is
sufficient. The current native 32-bits of precision minimum
results in wasted register and Shared Memory space, unless
tricks are performed that require additional instructions.

7. CONCLUSIONS
In this paper, a GPU-accelerated implementation is de-

scribed of the BWA-MEM genomic mapping algorithm. The
Seed Extension phase is one of the three main BWA-MEM
program phases, which requires between 30%-50% of overall
execution time. Offloading this phase onto the GPU pro-
vides an up to twofold speedup in overall application-level
performance. Analysis shows that this implementation is
able to sustain this maximum speedup for a system with at
most twenty-two logical cores. This can save days of pro-
cessing time on the enormous real-world data sets that are
typical of NGS sequencing.

The implementation presented here greatly exceeds the
performance of the GPU implementation of [5], offering a
higher speedup of 2x for systems with up to twenty-two
cores, compared to 1.6x for systems with up to four cores,
even while at the same time using a GPU-subsystem that
only provides about 31% of the computational capabilities.

Although the work here focuses on BWA-MEM, a widely
used genomic mapping tool, the approach used is valid for
many similar Seed-and-Extend-based bioinformatics algo-
rithms. Moreover, based on the insights obtained, a number
of optimizations to GPU architecture are suggested: reduced
Dynamic Parallelism overhead, increased number of resident
blocks per multiprocessor, and native low precision data for-
mats. These should greatly improve GPU performance for
bioinformatics-class problems.
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Abstract—The Smith-Waterman algorithm is widely used in
bioinformatics and is often used as a benchmark of FPGA
performance. Here we present our highly optimized Smith-
Waterman implementation on Intel FPGAs using OpenCL.
Our implementation is both faster and more efficient than
other current Smith-Waterman implementations, obtaining a
theoretical performance of 214 GCUPS. Moreover, due to the
streaming, implicit synchronizing nature of our implementa-
tion, which streams alignments and places no restrictions on
the number of alignments in flight, it achieves 99.8% of this
performance in practice, almost three times as fast as previous
implementations. The expressiveness of OpenCL results in a
significant reduction in lines of code, and in a significant
reduction of development time compared to programming in
regular hardware description languages.

Keywords-FPGA; OpenCL; Smith-Waterman; systolic array

I. INTRODUCTION

The Smith-Waterman algorithm [1] can be used to find
the optimal pairwise alignment between two (sub)sequences
of symbols, which in the context of bioinformatics usually
means sequences of amino acids (for protein sequences) or
nucleotides (for DNA sequences). Given a certain scoring
scheme that awards matching symbols and penalizes differ-
ences or missing symbols, it uses a dynamic programming
approach to calculate the optimal alignment between the
sequences. The continued growth of bioinformatics data sets
makes optimized and/or accelerated implementations of key
algorithms of vital importance.

Field-Programmable Gate Arrays (or FPGAs), with their
flexible and reprogrammable substrate, are a natural fit
for a computationally intensive algorithm such as the
Smith-Waterman algorithm. However, programming FPGAs
through hardware description languages such as VHDL or
Verilog is difficult, being somewhat comparable to writing
software in assembly language. The rise of higher level
programming languages such as OpenCL makes FPGA
programming a much more accessible venture.

In this paper we present the following contributions:
• An OpenCL FPGA Smith-Waterman implementation

that, limited development complexity notwithstanding,
outperforms other implementations almost threefold;

• A streaming systolic array architecture that eliminates
a key design issue: low utilization of the systolic array.

The remainder of this paper is organized as follows.
We review related work in Section II. In Section III, we
explain the Smith-Waterman algorithm. In Section IV, the
two key features of our implementation, streaming and
implicit synchronization, are discussed. Methods and results
are presented in Section V and VI, respectively. A discussion
follows in Section VII. Section VIII concludes the paper.

II. RELATED WORK

As the Smith-Waterman algorithm [1] is a common al-
gorithm in bioinformatics, it has received much attention
to optimize the algorithm’s performance, resulting in nu-
merous accelerated implementations. The fastest software-
only Smith-Waterman version is SSW [2], which extends
the striped Smith-Waterman approach of Farrar [3]. These
implementations make pervasive use of SIMD instructions
to attain their excellent performance. However, accelerator-
based implementations are still able to significantly outper-
form software-only implementations. For example, the GPU-
based CUDASW++ 3.0 [4] is able to attain a performance
of 119.0 GCUPS on a GeForce GTX 680. The highest
performing FPGA-based implementation is the implementa-
tion from Sirasao[5], which attains a performance of 135.4
GCUPS using an AlphaData board with a Xilinx Virtex-
7. Moreover, their FPGA-based design is significantly more
efficient compared to most GPU-implementation, requiring
an order of magnitude less power compared to a GPU-
based approach. They measured a power-efficiency of 2.8
GCUPS/Watt compared to 0.24 GCUPS/Watt on the GPU.

Similar to the Sirasao implementation, we use OpenCL as
our implementation platform. However, our streaming imple-
mentation with implicit synchronization makes pervasive use
of OpenCL features such as kernels and channels to allow
for a higher performing, and more importantly, a much more
efficient Smith-Waterman implementation. Utilization of our
design approaches 100%, compared to 57% utilization of the
Sirasao design. As a result, our implementation outperforms
their implementation by almost three-fold.
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Figure 1. The Smith-Waterman algorithm operates by filling a dynamic
programming-based similarity matrix. Cells inside the matrix are only
dependent on their top, top-left, and left neighbor, allowing anti-diagonals
of the matrix to be processed in parallel. This maps naturally onto a
systolic array of Processing Elements. Each Processing Element calculates
the column for one of the query symbols. The traceback phase works
backwards from the highest scoring cell to produce the actual alignment.

III. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is guaranteed to find the
optimal pairwise alignment of two sequences. It consists of
two phases: first, it uses a dynamic programming approach
to fill a similarity matrix, followed by a traceback phase to
retrieve the optimal alignment. As the first phase is the most
computationally demanding, it is the focus of this work.

The Smith-Waterman equations that govern similarity
matrix score calculations are similar to the Needleman-
Wunsch algorithm [6], except that disallowing negative val-
ues makes the algorithm search for optimal local alignments,
as compared to optimal global alignments:

Hi,j = max

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Hi−1,j−1 + s(ai, bj) : (mis)match
Hi−1,j − gap penalty : insertion/deletion
Hi,j−1 − gap penalty : insertion/deletion

0 : local alignment

This is illustrated in Figure 1. The highest scoring cell
in the similarity matrix indicates the optimal alignment
score. From the above equations it is clear that each cell
in the similarity matrix only depends on its top, top-left,
and left neighbor. Therefore, anti-diagonals in the matrix are
independent of one another and can be calculated in parallel:
a wavefront of parallelism flows through the similarity
matrix. This maps nicely onto a systolic array of Processing
Elements, which is the typical approach when implementing
the Smith-Waterman algorithm on an FPGA.

IV. IMPLEMENTATION DETAILS

Our implementation uses the Intel FPGA SDK for
OpenCL. Two key concepts of OpenCL are kernels and
channels. An OpenCL kernel is a function executed on a
compute device, so in the case of an FPGA, this is syn-
thesized into actual hardware. Multiple identical kernels are
synthesized to work in parallel to achieve higher throughput.
An OpenCL channel is a mechanism that implements on-
chip low-latency, high bandwidth communication between
kernels. Our implementation makes pervasive use of chan-
nels, only using the on-board DDR for reading of the input
sequences and writing of the output scores.

Figure 2 shows the kernels and channels of a single
Smith-Waterman module. The largest area is reserved for the
systolic array of Processing Elements, which calculates the
Smith-Waterman similarity matrix. For each alignment, each
Processing Element has its unique query symbol, whereas
the symbols of the target sequence flow through the array.
There are two key innovations that work in unison to allow
for high utilization of the systolic array:

Implicit Synchronization: Our implementation does not
use a dedicated control unit. Instead, control and synchro-
nization is implicitly arranged within each kernel. Control
and data signals flow from left to the right: the Input Parser
sends packets to the Target and Query Loaders, and to the
Result Parser. These packets contain all the information re-
quired to know how many iterations this particular alignment
requires. This allows each kernel to work independently
without explicit synchronization with other kernels.

Streaming: Typically, due to the central control, a systolic
array is only able to work on a single alignment at a
time. However, the distributed control of our implementation
allows for a streaming nature. This is illustrated in Figure 3.
A key enabler is the use of Query Buffers, which for each
Processing Element hold the query symbols for upcoming
alignments. Whenever the current alignment is finished, a
New Read token is passed through the array, signaling to a
PE that it should reinitialize and load a new Query symbol.

The combined effect of both innovations is that, except
for the first alignment, processing time for an alignment
only depends on the length of the target sequence, and is
independent of query length. The only overhead is the New
Read token that is passed to indicate a new alignment. Thus,
very short target sequences do slightly impact efficiency. In
contrast, efficiency of the systolic array is mostly dependent
on the query length as compared to systolic array size, as
for shorter queries part of the systolic array will be idle. To
alleviate this, it would be possible to use multiple systolic
arrays of different size (refer to [7] for more details). Our
designs use multiple identically sized modules to utilize all
available resources on the FPGA.
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Figure 2. Overview of the kernels and channels of the Smith-Waterman module. Control and data signals flow from left to right through OpenCL channels,
with no dependencies or loops, removing any limitation on the number of simultaneous alignments in flight. This way, kernels are decoupled from one
another and operate asynchronously. The Query Buffer contains for each Processing Element a separate queue with query symbols for the alignments it
needs to process. Whenever the Processing Element encounters the new read token, it checks against the query length to verify if it is active during this
alignment; if so, it reads the next query symbol from its queue. Only the Input Parser and Output Parser communicate with the on-board DDR memory.

Figure 3. This example illustrates the difference in processing time for Serialized Processing compared to Streaming Processing, with three alignments
being performed. A traditional Smith-Waterman systolic array performs serialized processing of the alignments. Each alignment requires [tlen+# of PE-1]
cycles. The large amount of white space in the figure is indicative of the fact that large parts of the array are idle during the computation. Streaming
processing results in much higher utilization of the systolic array as, except for the first alignment, each alignment only requires [tlen+1] cycles. A
New Read token is inserted in-between sequences to signal to a Processing Element that is should proceed onto the next alignment. For ”real” systolic
arrays consisting of tens of Processing Elements, the benefits to systolic array utilization are even more pronounced.
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Table I
SMITH-WATERMAN KERNEL PERFORMANCE RESULTS

Design FPGA Resource Utilization Performance (GCUPS)

Modules PEs Frequency Logic RAM Blocks Theoretical Actual Utilization

BittWare A10PL4 2 131 153 MHz 27% 23% 40.1 40.0 99.8%
BittWare A10PL4 4 131 150 MHz 44% 34% 78.6 78.4 99.8%
BittWare A10PL4 6 131 137 MHz 59% 54% 107.4 107.2 99.8%

Intel A10 REF 2 131 193 MHz 25% 18% 50.5 50.4 99.8%
Intel A10 REF 4 131 188 MHz 41% 40% 98.5 98.3 99.8%
Intel A10 REF 6 131 166 MHz 58% 40% 130.4 130.2 99.8%
Intel A10 REF 8 131 178 MHz 69% 98% 186.5 186.2 99.8%
Intel A10 REF 10 131 164 MHz 91% 98% 214.8 214.4 99.8%

Sirasao[5] 42 32 N/A N/A N/A 135.4 77.0 56.9%

V. EXPERIMENTAL SETUP

Results were obtained on a system with an Intel Xeon
E5-1650 (six cores, twelve threads @ 3.2 GHz) with 64
GB of RAM. We used a BittWare A10PL4 PCIe board with
an Intel Arria 10 GX FPGA (BittWare A10PL4), and the
Intel Arria 10 GX FPGA Development Kit Reference Plat-
form board (Intel A10 REF). The only relevant difference
between these two boards is that the Intel Reference board
uses an Arria 10 GX with higher FPGA fabric speed-grade.
Both devices have the same logic density of 1150k logic
elements. We used the latest Intel FPGA SDK for OpenCL,
which is version 17.0.1 [8]. The results are obtained using
a data set of 100’000 pairwise alignment query/target pairs,
with a query length of 131 and a target length of 400.

VI. RESULTS

The standardized metric for comparing the performance
of Smith-Waterman implementations is by using the GCUPS
unit: giga-cell updates per seconds. This number indicates
the billions of cell updates that can be performed every
second on the Smith-Waterman similarity matrix. The the-
oretical value can be attained only when all Processing
Elements are busy performing useful work. This is not often
the case, usually only for very long target sequences. A
key innovation of our implementation is that our efficiency
is virtually independent of target sequence length. The
theoretical maximum GCUPS value is calculated by:

Maxtheo = # of modules× frequency× # of PEs

The results for the various designs are shown in Table I.
We show a number of designs, with increasing number of
modules, and for both Arria 10 FPGA boards (A10 REF and
A10PL4). The largest 10-module design is able to achieve
a theoretical maximum performance of 214 GCUPS. From
the results, it is clear that the higher FPGA speed-grade used
by the A10 REF board has a significant effect on achievable
frequency, improving it by 21-26%. The larger designs show
a bit reduced frequency compared to smaller designs, as

the FPGA synthesis tool chain has to put more effort into
generating a functional design.

We compare our results to the previously highest perform-
ing FPGA Smith-Waterman implementation of Sirasao [5].
Sirasao evaluated a variety of designs of which the ratio
between number of Processing Elements and number of
modules varied. Here, we included only the results for their
best performing design, which includes 42 modules of 32
PEs each. Note that the total number of Processing Elements
is quite similar to our largest design, with 1344 PEs for
Sirasao compared to 1310 for our 10-module design. This
42-module design is able to achieve a theoretical maximum
performance of 135 GCUPS. This means that our design has
a +58% higher theoretical performance.

However, for traditional Smith-Waterman systolic array
designs, the GCUPS value achievable in practice is sub-
stantially lower than the theoretical maximum performance.
Utilization can be defined as:

Utilization =
(PEs × cycles)useful

(PEs × cycles)overall

For example, the Sirasao design only achieves 56.9%
utilization on their data set, for an actual performance of
77 GCUPS. In contrast, our design achieves almost full
utilization, still obtaining 214 GCUPS. Peak performance
is only slightly reduced, as for each alignment, one target
symbol per alignment is used to indicate a new sequence,
thus resulting for our data set with target sequence length
400 in an efficiency of 99.8% (=400/401). In their paper,
Sirasao [5] tested with a data set with target length 256
sequences and query length 128, for this the efficiency of
our design would be 97.3%. This shows that in practice,
our streaming, implicit synchronizing design is almost three
times as fast as the fastest previously known implementation.

VII. DISCUSSION

The Streaming architecture significantly improves systolic
array utilization. Figure 4 and Figure 5 illustrate how uti-
lization depends on target and query length, respectively.
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Figure 4. Systolic array efficiency dependence on target length (data set:
100 alignments with query length 131 and variable target length).

Whereas efficiency of the Serialized systolic array slowly
increases with target length, the Streaming systolic array
obtains high efficiency almost immediately. For a data set
with so few alignments, the disproportionate long cycle time
of the first alignment has a large impact on efficiency; a
bigger data set would mask this better. The dependence on
query length is similar for both systolic array architectures,
showing linear dependence. In [7], various solution are
proposed to improve utilization in situations that have an
imbalance between systolic array size and query length.
For example, the Variable Physical Length (VPL)-systolic
array contains multiple sized systolic arrays: alignments with
shorter query length go to the smaller arrays. Therefore, the
improvements proposed here represent the missing link to
achieve a high utilization systolic array.

Compared to using normal hardware description lan-
guages, using a high-level language such as OpenCL has
two main benefits. First, OpenCL is more expressive (our
Processing Element kernel code in OpenCL requires 90 lines
of code compared to about 450 lines of VHDL). Second,
OpenCL development has more convenient testing and de-
bugging capabilities, such as rapid testing using software
emulation, and the ability to use printf statements inside
kernels. The end result is a much faster development cycle.

VIII. CONCLUSION

We presented our OpenCL-based FPGA Smith-Waterman
implementation that employs two key techniques to greatly
improve the utilization of its underlying systolic array ar-
chitecture. By eliminating centralized control and through
the use of Query Buffers, an arbitrary number of alignments
can be in flight at the same time, resulting in utilization
close to theoretical maximum performance. The techniques
presented here are generally applicable to any linear systolic
array design, although here we only consider the Smith-
Waterman algorithm. Our resulting implementation is both
the fastest and most efficient, resulting in a maximum
performance of 214 GCUPS and outperforming other Smith-
Waterman FPGA implementations almost three-fold.

Figure 5. Systolic array efficiency dependence on query length (data set:
100 alignments with variable query length and target length 400).

Compared to typical hardware description languages used
for FPGA development, OpenCL simplifies writing code,
testing and debugging. The ability to emulate and debug in
software allows for a much more agile development cycle,
allowing one to test many more different designs.
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CHAPTER 4

Power-Efficiency, Design-Time, and Read Length Analysis

Pelorat smiled, "You know, I never considered myself a patriot.
I like to think I recognize only humanity as my nation."

— Isaac Asimov

T HE previous two chapters contained a number of improvements to the systolic ar-
ray architecture that, when combined, result in a maximally-efficient systolic array.

However, although efficiency is often a key design metric, others aspects of a design may
be equally important. Therefore, in this chapter various other criteria of the proposed
implementations are analyzed. How power-efficient are these resulting implementa-
tions compared to the non-accelerated software-only implementation? How much time
does crafting a heterogeneously-accelerated application require, and how does the re-
quired implementation time vary across different programming languages? And, last
but not least, what ramifications could expected developments in sequencing hardware
have on the implementations described here?

Nowadays, a very important aspect of any design is overall power consumption, and
in particular power-efficiency. Mobile devices are greatly constrained by the amount
of power they can passively dissipate, and a large part of the total cost of a data center
results from active cooling. Therefore, the power-efficiency of the proposed implemen-
tations is analyzed, providing a unique insight as some very similar implementations
are compared across different hardware architectures. Furthermore, the effects of scal-
ing to more powerful host systems is estimated in order to deduce which system has
the overall highest possible efficiency. To ease the effort of programming heterogeneous
architectures, over time numerous programming languages have been proposed to facil-
itate this challenge. These languages differ greatly, amongst others in their abstraction
level and in the amount of low-level control they offer. Here, the CUDA, VHDL, and
OpenCL implementations are compared to offer a rudimentary idea on how the com-
plexity and design-time varies between these three languages. Finally, developments
in the sequencing hardware responsible for generating the raw sequencing data are ex-
pected to result in sequencers that output reads that are longer than the currently typical
100 or 150 base pairs, and is expected to grow significantly, which will have a major im-
pact on genomics sequencing pipelines. Here, we investigate its impact to efficiency and
performance on the GPU-accelerated BWA-MEM implementation.
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4.1. MAIN CONTRIBUTIONS
The main contributions of this chapter are as follows:

• The power-efficiency of the GPU-accelerated and the FPGA-accelerated BWA-MEM
implementations is compared to the software-only version. Although both imple-
mentations offer a two-fold overall speedup in performance, the FPGA version is
also 1.6x as power-efficient when compared to the software version, whereas the
GPU-accelerated implementation is not able to offer any efficiency benefit to the
system as tested. Extrapolating the results to a more balanced host and accelera-
tor system, the FPGA-accelerated implementation’s efficiency further increases to
2.1x, whereas the GPU-accelerated implementation is able to show a 1.4x power-
efficiency benefit [RECONFIG2016].

• Comparative analysis of the two BWA-MEM implementations in CUDA and VHDL,
and the Smith-Waterman FPGA-implementation in OpenCL shows that there are
stark differences in code complexity and design-time. All implementations re-
quire vastly more code compared to the software-only baseline implementation.
The CUDA and OpenCL implementations require 5-7x as much code, whereas the
VHDL implementation requires even 40x as much code. The implementation time
is similarly different, with the OpenCL and CUDA implementations being vastly
faster to create than the VHDL implementation [BIBE2018].

• An evaluation of the impact of longer read length on the GPU-accelerated BWA-
MEM implementation shows that increased read length greatly impacts the ability
of the GPU to execute tasks in parallel, emphasizing the need for efficiency im-
provements to the underlying GPU architecture. The inefficiencies in systolic ar-
rays are categorized in four main classes, and the VPL-based implementation is
shown to minimize the negative effects for each of these categories. Load balanc-
ing can be used to improve performance by up to 45% when a mismatch exists in
the performance of the host and accelerator [CBC2018].
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This chapter is based on the following articles:

1. E.J. Houtgast, V.M. Sima, K.L.M. Bertels, and Z. Al-Ars, Power-Efficiency Analysis of
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International Conference on Reconfigurable Computing and FPGAs (ReConFig),
December 2016, Cancun, Mexico.

2. E.J. Houtgast, V.M. Sima, K.L.M. Bertels, and Z. Al-Ars, Comparative Analysis of
System-Level Acceleration Techniques in Bioinformatics: A Case Study of Accelerat-
ing the Smith-Waterman Algorithm for BWA-MEM, 18th International Conference
on Bioinformatics and Bioengineering (BIBE), Oct 2018, Taichung, Taiwan.

3. E.J. Houtgast, V.M. Sima, K.L.M. Bertels, and Z. Al-Ars, Hardware Acceleration of
BWA-MEM Genomic Short Read Mapping for Longer Read Lengths, Computational
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Abstract—Next Generation Sequencing techniques have dra-
matically reduced the cost of sequencing genetic material, resul-
ting in huge amounts of data being sequenced. The processing
of this data poses huge challenges, both from a performance
perspective, as well as from a power-efficiency perspective.
Heterogeneous computing can help on both fronts, by enabling
more performant and more power-efficient solutions.

In this paper, power-efficiency of the BWA-MEM algorithm,
a popular tool for genomic data mapping, is studied on two
heterogeneous architectures. The performance and power-
efficiency of an FPGA-based implementation using a single
Xilinx Virtex-7 FPGA on the Alpha Data add-in card is
compared to a GPU-based implementation using an NVIDIA
GeForce GTX 970 and against the software-only baseline system.
By offloading the Seed Extension phase on an accelerator, both
implementations are able to achieve a two-fold speedup in
overall application-level performance over the software-only
implementation. Moreover, the highly customizable nature
of the FPGA results in much higher power-efficiency, as the
FPGA power consumption is less than one fourth of that of
the GPU. To facilitate platform and tool-agnostic comparisons,
the base pairs per Joule unit is introduced as a measure of
power-efficiency. The FPGA design is able to map up to 44
thousand base pairs per Joule, a 2.1x gain in power-efficiency
as compared to the software-only baseline.

Keywords- FPGA; GPU; Next Generation Sequencing; power-
efficiency; read mapping

I. INTRODUCTION

Next Generation Sequencing (NGS) techniques dramatically
decrease the cost of sequencing genetic material. The cost to
sequence one complete human genome is rapidly approaching
the important $1,000 mark [1]. As a result of these falling
costs, the production of genetic data is surging and is projected
to rival, if not overtake, other Big Data fields such as streaming
video services and astronomy [2]. A single run on a state-of-
the-art X Ten sequencing machine [3] can generate up to 1.2
TB of data, which in turn requires multiple days to process,
even on a large computing cluster. The extreme scale of
data and tremendous computing efforts involved in processing
this data necessitates the use of high performance computing
solutions to face this challenge. Heterogeneous computing,
and in particular reconfigurable computing, offers a large
promise as a solution that enables both high performance
and power-efficiency compared to traditional computing tech-

niques. Power-efficiency is becoming at least as important as
raw performance, as power consumption is an important driver
to overall data center cost.

NGS data is typically processed by a complex pipeline
of algorithms. In the case of DNA NGS data, the short
reads as produced by the sequencer are first mapped onto a
reference genome. Then, this output is sorted and duplicates
are marked. Finally, mutations in the genetic material as
compared to the reference are found during a variant calling
stage. Only at this stage does the raw data become usable for
further downstream analysis, for example by researchers or
medical professionals. To illustrate the immense computational
requirements, processing such a data set can easily require
multiple days, even on a large cluster.

BWA-MEM is a Burrows-Wheeler Alignment based tool for
mapping short reads onto a reference genome [4]. Although
many other alignment tools exist (examples include [5], [6]),
BWA-MEM is the de facto standard for alignment mapping
and is part of the popular BWA-MEM/GATK pipeline, used
in organizations around the world [7]. In the example above,
BWA-MEM contributes about 36% to the overall processing
time, making up a significant portion of the processing time
of the entire pipeline. Therefore, it is an important target for
acceleration to reduce the overall time, cost and energy of
processing NGS data sets.

Similar to other mapping tools, such as [5], BWA-MEM
operates using the Seed-and-Extend paradigm (see Figure 1).
For each read, seeds, exactly matching subsequences between
the read and the reference, are generated. Subsequently, each
seed is extended in both directions using an inexact matching
algorithm, similar to the popular Smith-Waterman dynamic
programming algorithm [8]. The highest scoring extended seed
is chosen as final alignment. The Seed Extension phase forms
a major bottleneck in the BWA-MEM algorithm, requiring
between 30%-50% of total execution time, depending on the
computing platform [9], [10]. For example, on the highly mul-
tithreaded IBM Power8 platform, the Seed Extension phase
requires almost 50% of overall execution time, allowing for
an up to two-fold performance improvement, whereas on the
Intel Core i7 platform, a performance improvement of up to
1.7x is possible. In this paper, accelerated implementations of
the BWA-MEM Seed Extension phase on the Intel Core i7
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Fig. 1. BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read, likely mapping locations on the reference are found by searching for
exactly matching subsequences between the read and the reference (seeds). Then, these seeds are extended in both directions using a Smith-Waterman-like
dynamic programming approach that allows for inexact matches. From all of these extended seeds, the best scoring alignment is selected.

platform are considered. However, the main idea is generally
applicable to other mapping applications as well.

The contributions in this paper include:
• A comparison of both performance and power-efficiency

of an FPGA-accelerated implementation to software-only
and GPU-based implementations.

• The introduction of the base pairs per Joule (bp/J) unit
as measure of power-efficiency, allowing for platform-
agnostic comparison of system-level power-efficiency on
genomic data sets.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. Architectural details of the
FPGA and GPU implementations are provided in Section III.
The results on performance, scalability and power-efficiency
are given in Section IV. Then follows a discussion of the results
in Section V. The conclusions are given in Section VI.

II. RELATED WORK

A major part of BWA-MEM execution time is spent in the
Seed Extension phase. The inexact mapping algorithm used
is similar to the Smith-Waterman algorithm. This algorithm
has received much acceleration attention (e.g., [11], [12]).
However, for multiple reasons most implementation ideas are
not directly applicable to BWA-MEM, the main ones being:

• The highest speedup is generally obtained when per-
forming mapping of very long sequences that contain
thousands of bases, whereas NGS reads and BWA-MEM
are more focused towards the mapping of short reads of
at most a few hundred base pairs.

• For load balancing purposes, these implementations batch
alignments of similar length together. In the case of
BWA-MEM, this is impractical as the inexact mapping
calls are dynamically generated for alignments of varying
length, which makes the batching strategy inefficient due
to the large communication and temporary data overheads
this would require.

Although many accelerated Seed-and-Extend based map-
ping tools have been proposed (for example [13]), results from
these implementations are not directly comparable. In bioin-
formatics, exactness of results is critical, as larger population
studies can take several years to complete and intermediate
results need to be comparable. Even a change in version is of-
ten unacceptable. Note that BWA-ALN, for which accelerated
implementations do exist, is a different algorithm.

A kernel-level acceleration effort specific to the BWA-MEM
algorithm is reported in [14], where one of the BWA-MEM
kernels, the inexact matching phase, has been accelerated on
an FPGA for an up to 26x kernel-level speedup. However,
due to the above mentioned reasons, only the kernel-level
speedup is reported, and no overall application-level speedup
is mentioned. In our experience, accommodating the kernel
implementation into a full application is far from a trivial
task. The authors acknowledge that the significantly varied
input data would pose a challenge for the Smith-Waterman
algorithm, but disregard the additional challenges a full-
application implementation needs to face.

To our knowledge the only application-level accelerated
integrated implementations of BWA-MEM that exist are:
an FPGA-accelerated implementation of the Seed Extension
phase [15] achieving a 1.5x speedup, further improved in
[16] for an overall 2.6x speedup; and a GPU implementation
[9], further improved to achieve an up to 2x speedup [17].
The FPGA implementation used here builds on [15], and
a comparison of the implementation here is made to the
improved GPU implementation. This paper focuses on power-
efficiency, besides overall application performance, as for
many scenarios, such as processing in a large scale data center,
this is at least as important as absolute performance.

III. ARCHITECTURE DESIGN AND IMPLEMENTATION

In this section, first the BWA-MEM algorithm is briefly
described, along with the features that both the FPGA and
GPU implementations share. Then, the details of the FPGA-
accelerated implementation on the Alpha Data card are given.
Finally, details of the GPU implementation are briefly dis-
cussed (further details can be found in [17]).

The original BWA-MEM algorithm operates in a serial
fashion (refer to Figure 2). The input is processed in batches
of reads, that are processed one-by-one by two major ker-
nels: Seed Generation, where seeds (exactly matching sub-
sequences) are generated for each read, and Seed Extension,
where the generated seeds are extended allowing for inexact
matches. This process repeats itself until the input is ex-
hausted. These phases take full advantage of multithreading,
as reads are completely independent from each other and can
be processed in parallel. To improve the utilization of system
resources when using an accelerator, the BWA-MEM algo-
rithm has been reorganized into a fully pipelined organization.
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Fig. 2. BWA-MEM processes the input reads one-by-one. For each read, the seeds are generated and then, these seeds are extended. To reduce communication
overhead, the accelerated implementations described here use an optimized program architecture, whereby work of multiple reads is batched together. First,
seeding is performed for a large group of reads. Then, such a batch is offloaded onto an accelerator that performs the Seed Extension. Its execution is
overlapped with work on the CPU. As long as the Seed Extension phase requires less time on the accelerator than the Seeding on the CPU, its execution
time is effectively ”hidden”.

Multiple reads are processed in groups, and the two phases are
executed in parallel and are overlapped. Thus, Seed Generation
executes simultaneously on the CPU with Seed Extension on
the accelerator, resulting in a large performance improvement.

A. FPGA Design and Implementation

The FPGA-accelerated BWA-MEM offloads the Seed Ex-
tension phase onto hardware (refer to Figures 1 and 2).
After seeds have been generated, they are transferred to the
FPGA on-board memory. Typically, a single read will result
in multiple seed locations on the reference genome being
found. Seeds that are mapped close together on the reference
genome are grouped into chains. Seeds are processed one-
by-one. Seed Extension for a seed can be skipped depending
on the result of previous extensions. On average only one
seed per chain requires extension. Moreover, the length of the
extension to be performed is dependent on the part of the read
that forms the seed. This interdependence between executions
makes this phase unsuitable for streaming and, therefore, the
FPGA performs both this control logic, as well as the inexact
mapping algorithm itself. The resulting mappings are stored
in on-board memory and transferred back to the host system.

The Seed Extension module design is based on the design
in [15]. The inexact mapping is similar to the Smith-Waterman
algorithm. To find the optimal mapping, a 2D similarity matrix
is filled. This is implemented as a systolic array, with anti-
diagonals of the matrix being calculated in parallel. Each
cycle, one processing element (or PE) of the systolic array
computes a value of the 2D similarity matrix. Hence, the
execution time is reduced from O(M× N) to O(M+N), where
M and N are the length of the reference and the read. This
is the reason why certain Smith-Waterman implementations,
at least for longer alignments, are able to achieve speedups
of several magnitude. In this paper, only short reads of up
to 150 base pairs are considered, which is the read length
of contemporary sequencers, such as the Illumina HiSeq X.
The minimum seed length for BWA-MEM is 19 symbols.
Therefore, each inexact mapping engine contains 131 PEs.
To improve utilization for shorter reads, early exit points as
described in [15] are implemented.

The implementation described here uses an Alpha Data
add-in card with a single Xilinx Virtex-7 FPGA (details
can be found in Section IV). A floorplan of the design is

shown in Figure 3. The design contains six modules that
are able to process the Seed Extension phase. Within each
module, the larger block contains the systolic array logic,
the smaller block is filled with control logic. Between the
six modules resides the logic that distributes reads over the
modules and is responsible for I/O. The rest of the area is
taken up by interconnection-related logic, such as the PCI-
Express interface and the memory controller.

A significant difference to the design in [15] and [16] is
the fact that the Alpha Data card used here contains only a
single Virtex-7 FPGA, whereas [15] and [16] use the Convey
HC-2EX as implementation platform, which contains four user-
configurable Virtex-6 FPGAs. As the design here is limited
by the amount of LUTs available, and the Virtex-7 FPGA on
the Alpha Data card contains 432,368 LUTs versus 474,240
LUTs per Virtex-6 FPGA on the Convey, this means only
about 23% of the resources are available as compared to the
Convey platform. This, in turn, requires a careful selection to
place only those modules on the FPGA that most benefit from
acceleration. Hence, the decision was made to only implement
the Seed Extension phase in hardware. In total, about 71% of
all LUTs is utilized and the Seed Extension modules run at a
clock rate of 160 MHz.

B. GPU Implementation

Similar to the FPGA implementation, the GPU implementa-
tion, further described in [17], also accelerates the Seed Exten-
sion phase. However, in contrast to the FPGA implementation,
which contains six Seed Extension modules, the available
execution resources on the GPU depend on the actual GPU
model being used. A batch of reads is sent to the GPU as a
grid of thread blocks, where each read is mapped onto a single
block of 32 threads. This ensures scheduling is automatically
taken care of by the GPU, with per-read granularity, based
on the available execution resources. In the case of the test
platform, an NVIDIA GeForce GTX 970, there are thirteen
multiprocessors available. Up to 32 thread blocks can be active
per multiprocessor at any single time, due to limits on the
amount of registers and shared memory available.

Similar to the FPGA implementation, the Seed Extension
phase is logically split between the control logic, which loops
over all the seeds of a single read, and the actual inexact
mapping. This control logic code is executed by a single
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Fig. 3. Floorplan of the FPGA design with six Seed Extension modules. Each module contains control logic to loop over all seeds to be extended, and the
Seed Extension systolic array with 131 Processing Elements (see inset). In between the Seed Extension modules resides the arbitrating logic. The remaining
area is filled with interconnection-related logic, such as the PCI-Express controller and the DRAM controller.

thread, whereas the inexact mapping code is performed in
a systolic array-like manner using 32-PEs at a time. In this
case, each CUDA thread acts as a separate PE. Hence, longer
extensions require that multiple passes are made over the
similarity matrix. The choice to use only 32-threads at a
time allows for the use of the intra-warp shuffle functionality,
which allows CUDA threads to access each other’s registers,
to implement data transfer between the PEs, eliminating the
need of temporary storage of row data while calculating the
similarity matrix elements.

IV. EXPERIMENTAL RESULTS

Tests have been performed using a system with an Intel Core
i7-4790 at 3.6 GHz with eight logical cores (four physical
cores), SpeedStep and Hyper-Threading enabled. The system
contains 16 GB of RAM. Tests were run using CentOS 7.1.
To minimize power consumption, no unnecessary services
were running. In addition, for the FPGA-accelerated tests,
an Alpha Data ADM-PCIE-7V3 card with a Xilinx Virtex-
7 XC7VX690T-2 and 16 GB of on-board RAM was added
to the system [18]. The Seed Extension modules run at a
clock rate of 160 MHz. For the GPU-accelerated tests, an
NVIDIA GeForce GTX 970 with 1664 CUDA cores with
a maximum clock frequency of up to 1.25 GHz and 4 GB
of on-board RAM was added to the system. The GPU is
allowed to go into lower power states when idle to conserve
power. The software-only results were gathered without either
of these cards installed. An emonPi energy measurement unit
from OpenEnergyMonitor [19] was used to measure idle and
load power utilization of the entire system under test. The
current probe was connected directly to the mains power cord
to measure system level power consumption, taking hundreds
of samples per second.

BWA-MEM version 0.7.8 was used. Tests were performed
using publicly available data from the Genome Comparison &
Analytic Testing (GCAT) framework [20]. The single-ended

alignment (150bp-se-small-indel) and pair-ended alignment
(150bp-pe-large-indel) data sets were used. Each data set
contains about eight million reads of 150 base pairs, or
about 1.2 billion base pairs in total. The reads were aligned
against the reference human genome (UCSC HG19). The
GCAT online sequence alignment quality comparison service
was used to verify that results of the FPGA-accelerated and
the GPU-accelerated versions are indistinguishable from those
obtained with the software BWA-MEM algorithm.

In the remainder of this section, performance results on all
three platform are shown for the single-ended and pair-ended
GCAT tests. The scalability of the heterogeneous platforms
is investigated to find the optimal balance between host
CPU count and accelerator performance. Finally, the power-
efficiency of the various platforms is determined.

A. Performance Analysis

The performance, scalability and power-efficiency results
have been gathered using the GCAT data sets. Each contains
about eight million reads with about 1.2 billion base pairs,
for a file size of about 3 GB for the single-ended data set
and 2x 1.5 GB for the pair-ended data set. A typical complete
Illumina X Ten sequencing run generates a data set about 400x
larger, or approximately 1.2 TB. The implementation has been
verified to scale up to work without issues on such larger data
sets, but, for reasons of practicality, tests have been performed
on the smaller data set.

Performance results on the single-ended and pair-ended
GCAT data sets are summarized in Table I. The execution time
is shown both as time required for the Seed Extension phase
on the accelerator hardware, and for the overall application
wall clock time. To facilitate cross-platform comparisons, the
results are converted into throughput in millions of base pairs
per second. Both the FPGA and GPU implementations are
able to achieve a two-fold improvement to performance, the
FPGA implementation being slightly faster.
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TABLE I
EXECUTION TIME AND SPEEDUP FOR THE GCAT ALIGNMENT QUALITY BENCHMARK

Seed Extension Phase Overall Application

Test Platform Execution Time Speedup Execution Time Speedup Throughput

Single-Ended Software-Only 237 s - 552 s - 2.2 Mbp/s
Data FPGA-Accelerated 129 s 1.8x 272 s 2.0x 4.5 Mbp/s

GPU-Accelerated 144 s 1.6x 278 s 2.0x 4.3 Mbp/s

Pair-Ended Software-Only 246 s - 572 s - 2.1 Mbp/s
Data FPGA-Accelerated 130 s 1.9x 289 s 2.0x 4.1 Mbp/s

GPU-Accelerated 141 s 1.7x 293 s 2.0x 4.1 Mbp/s

On a kernel-level, the Seed Extension phase itself is up to
1.9x faster on the FPGA and up to 1.7x faster on the GPU,
as compared to software-only execution. This is equivalent
to a speed of about 15 and 14 logical Intel Core i7 cores,
respectively. Since the execution time of the accelerated Seed
Extension implementations only requires about half the overall
application execution time, it is clear that in both cases, the
accelerator is not fully utilized. Therefore, both the FPGA
and GPU accelerators can be used to accelerate a system that
is more powerful than the system as tested here, which only
contains eight logical processor cores. This is explored in the
next section.

B. Scalability Analysis

From the differences in execution time between the Seed
Extension phase and the overall application, as described in
Table I, it is clear that the FPGA and GPU implementations
are not fully utilized. The time spent by the accelerators in the
Seed Extension phase is only about half the overall application
execution time. This implies that the accelerator hardware is
not busy 100% of the time. Therefore, a faster host system
would still be able to be accelerated for the maximum speedup
of 2x. In contrast, if the accelerated implementations could not
keep up with the host, overall speedup would fall below 2x. In
this case, more Alpha Data cards, or more and/or faster GPUs
could be used. Hence, the objective is to design a system for
which all system resources (the CPU cores and either an FPGA
or GPU-accelerator) are fully utilized.

In Table II, the estimated scalability of the accelerated
platforms is shown, which is expressed in number of logical
CPU cores for which the accelerator is able to provide the
maximum two-fold speedup. In order to estimate the optimal

TABLE II
SCALABILITY OF THE ACCELERATED IMPLEMENTATIONS

Execution Time

Platform Seed Ext. Overall Utilization Scalability

FPGA (4 modules) 171 s 272 s 63% 12.7 cores
FPGA (5 modules) 146 s 275 s 53% 15.1 cores
FPGA (6 modules) 129 s 272 s 47% 16.8 cores
GPU 144 s 278 s 52% 15.4 cores

ratio of logical CPU cores for each accelerated platforms, the
following assumptions have been made. It is assumed that
overall application times decreases linearly with additional
CPU cores. Furthermore, it is assumed that the maximum
speedup is achieved as long as the time required for the Seed
Extension phase does not exceed overall application time.

The scalability results are presented for three different
FPGA designs. These designs vary in the number of Seed
Extension modules that were placed onto the FPGA logic.
Although the time required for the Seed Extension phase
decreases significantly when more modules are available, this
proves to only have a slight impact on the overall execution
time. The reason for this is the fact that Seed Extension
performance is already fast enough. In contrast, scalability
results are much improved. The performance and power-
efficiency results in the other sections all consider the six
module FPGA design. This six module design is able to
support a host system with up to sixteen logical Intel Core
i7 cores at 3.6 GHz, for example the Intel Core i7-5960X.
The GPU implementation is able to support a host system
with up to fifteen logical cores.

C. Power-Efficiency Analysis

To measure the power-efficiency of the different platforms,
an emonPi energy monitor was used to track the system-level
power consumption as measured at the power plug. For the
power-efficiency tests, only the single-ended data set was used,
although the pair-ended data set should yield similar results,
given that the execution profile is similar. In order to minimize
the idle power draw, the tests were performed without active
GUI, and with a bare system with only an HDD, SSD and
optical drive present. In case of the accelerated platforms, the
respective accelerator card was added to the system.

To present a quick qualitative overview of the results, an
example trace of the power consumption for a single test is
shown in Figure 4. As expected, the accelerated platforms
use more instantaneous power than the software-only system,
both under load and when idle. However, they are also able
to map reads at a much higher rate, and both finish in
about half the time of the software-only implementation. The
results are summarized in Table III. This table gives the
power consumption, performance and energy efficiency for
each platform. Both the measured data is presented, as well
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Fig. 4. Example trace of the power consumption over time for the software-only, FPGA-accelerated and GPU-accelerated platforms. The software-only system
consumes the least power, both when idle and under load. However, the additional power utilized by the accelerated platforms results in much faster completion
of the test, as both implementations finish in much less than three hundred seconds. The FPGA-accelerated platform has the highest power-efficiency.

TABLE III
POWER CONSUMPTION, PERFORMANCE AND POWER-EFFICIENCY FOR SOFTWARE-ONLY AND ACCELERATED PLATFORMS.

Power Consumption Performance Energy Efficiency

Logical Idle Load Execution Application Total Base Pairs Efficiency
Test Platform Cores Power Power Time Speedup Energy Per Energy Improvement

Measured Software-Only 8 37 W 105 W 552 s - 58 kJ 20.7 kbp/J -
Data FPGA-Accelerated 8 62 W 129 W 272 s 2.0x 35 kJ 34.1 kbp/J 1.6x

GPU-Accelerated 8 63 W 210 W 278 s 2.0x 58 kJ 20.5 kbp/J 1.0x

Estimated Software-Only 15 37 W 164 W 294 s - 48 kJ 24.8 kbp/J 1.2x
Data FPGA-Accelerated 15 62 W 188 W 147 s 2.0x 28 kJ 43.2 kbp/J 2.1x

GPU-Accelerated 15 63 W 269 W 148 s 2.0x 40 kJ 30.0 kbp/J 1.4x

Software-Only 16 37 W 172 W 276 s - 47 kJ 25.2 kbp/J 1.2x
FPGA-Accelerated 16 62 W 196 W 138 s 2.0x 27 kJ 44.1 kbp/J 2.1x
GPU-Accelerated 16 63 W 277 W 144 s 1.9x 40 kJ 29.9 kbp/J 1.4x

as results for estimated, more well-balanced, systems with a
larger number of logical CPU cores. First, the results for the
measured data are discussed, afterwards the estimated data.

Similar to the trace shown in Figure 4, as expected the
power draw of the software-only system is the lowest, both
when idle at 37 W and under load at 105 W. The accelerated
platforms show significantly increased idle power consump-
tion, at 62 W for the FPGA platform and at 63 W for the GPU
platform, due to the addition of more hardware into the system.
Also, both platforms show a higher power consumption under
load, at 129 W for the FPGA platform and at 210 W for
the GPU platform. However, this is compensated by much
improved performance, as each implementation is able to
achieve a two-fold speedup as compared to software-only
execution. In addition, the FPGA-accelerated implementation
is much more power-efficient as compared to the other two
platforms: whereas the software-only and GPU-accelerated
platforms both require 58 kJ to complete the entire test, the
FPGA-accelerated platform requires only 35 kJ, an energy
efficiency improvement of 60%. On this system, use of a GPU-
accelerator merely provides the user a trade-off between per-
formance and power consumption, as overall power-efficiency
remains the same as compared to the software-only platform.

To put the relative power efficiency of the FPGA and the
GPU into perspective, consider their respective power con-
sumption when executing the same workload. The difference
in load and idle power on the software-only platform implies
that the host CPU uses about 68 W of power under load. If it is
assumed that the host CPU requires a similar power draw when
running the accelerated platforms, then the power consumption
under load used exclusively for powering the accelerators can
be computed, being 25 W for the FPGA and 105 W for the
GPU. Hence, the FPGA power consumption is less than one
fourth of the GPU, showing the clear advantage in energy
efficiency of the reconfigurable platform. Moreover, the FPGA
does not seem to consume any additional power under load,
as its logic is always active.

To facilitate comparisons of power-efficiency for mapping
a certain data set of reads, the data is also reported as
number of base pairs mapped per Joule of energy. Using
this measure, the power-efficiency for a given data set can be
evaluated across platforms, architectures and mapping tools.
However, it is important to note that performance of the
various tools is not the only measure of interest, as mapping
tools can differ greatly in their mapping quality, which is the
ability to accurately map reads. As the data set used in these
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tests contains about eight million reads, each with 150 base
pairs, the resulting power-efficiency for the FPGA-accelerated
platform is about 34 kbp/J, a 60% improvement in energy
efficiency as compared to the software-only platform.

Based on the scalability results obtained in the previous
section, Table III also contains the estimated performance
and power-efficiency for two more well-balanced systems that
contain more than eight logical CPU cores. The estimated
optimum configurations are shown for both the FPGA and
the GPU platforms. Note that the optimum configuration
for power-efficiency does not necessary need to be able to
obtain exactly the maximum two-fold speedup. The following
assumptions have been used for the estimation:

• For each platform, system idle power draw remains
identical to the measured platform, as no additional idle
power draw is assumed for the additional CPU cores (due
to perfect power gating of CPU cores);

• Additional power under load required by the additional
CPU cores is scaled linearly based on the difference
between software-only idle and load power consumption;

• The accelerators do not require additional power for the
scaled system, as their workload stays identical;

• Overall application performance scales linearly in CPU
core count.

All platforms show a higher energy efficiency as compared
to the base eight logical CPU core system. The faster execution
results in a lower overall execution time, in turn requiring less
power draw of the base system components. Conversely, a
system with fewer cores would show lowered power-efficiency.
The FPGA-accelerated platform is able to achieve an up to
2.1x improvement in power-efficiency, as compared to the
eight core software-only platform, and is able to map up to
44 kbp/J. The GPU-accelerated platform obtains a 46% power-
efficiency improvement on the more well-balanced system.

Note that the above results use a conservative estimate
for the power-efficiency of the accelerated platforms. These
platforms are the most efficient while fully utilized: only in
such a situation no unnecessary idle power loss is accumulated
while the accelerator is being idle. However, this is not the case
for the system on which the results have been gathered, as in
that system, the accelerators were idle about half of the overall
execution time. Hence, the measured power consumption
includes this idle power loss, which means that the results
as presented here are a conservative estimate of the power-
efficiency for both platforms. In practice, the power-efficiency
of a more well-balanced system should be even higher.

To illustrate the dependency of the power-efficiency on
the number of logical CPU cores in use, Figure 5 shows
the estimated normalized power-efficiency for a system with
varying number of cores, compared to the base eight core
software-only platform. Under all circumstances, the FPGA
platform is the most power-efficient. Both accelerated systems
show peak efficiency for a system with about sixteen cores.
Hence, a system with an Intel Core i7-5960X processor would
be a good matchup. A system with less cores is hampered by
under-utilization of the accelerator, whereas for a system with

Fig. 5. Estimated power-efficiency for a system with varying CPU core count.
The FPGA-accelerated platform is the most power-efficient.

more cores, the accelerator will not be able to keep up with the
CPU cores, which, as a result, will be partially idle. In such
a situation, load balancing between host and accelerator, as in
[9], could improve system resource utilization, resulting in a
more graceful drop-off in performance and power-efficiency.

V. DISCUSSION

Accelerate an algorithm such as BWA-MEM, which is
characterized by the fact that it contains multiple performance-
critical kernels, is always challenging. Hence, as per Amdahl’s
law, acceleration of a single kernel can only yield limited
overall application speedup. In the case of BWA-MEM on
the Intel Core i7 platforms, a maximum speedup of 1.7x
is implied. Even so, the FPGA and GPU implementations
manage to exceed this maximum speedup by at the same
time implementing a pipelined program organization, thus
achieving a two-fold improvement to execution time. Plat-
forms where the Seed Extension phase consumes a larger part
of total application execution time should be able to see an
even larger performance increase.

Both the FPGA and GPU-accelerated platforms manage to
obtain a two-fold performance improvement. However, it is
interesting to compare the nature of both architectures further.
The fixed function units on the GPU are able to process large
numbers of reads in parallel at a high clock frequency of up to
1.25 GHz. However, a large number of instructions is required
to perform a single systolic array cell update, and a large
amount of logic is required to provide the massive threading
and parallelism. In contrast, the much lower clock frequency
and highly customizable nature of the FPGA allows for much
more power-efficient processing, resulting in the fact that the
FPGA requires less than one fourth of the power consumption
of the GPU, while performing the same workload.

The highest power-efficiency of any system including ac-
celerator hardware will only be obtained through a careful
balance of system components. Utilizing an accelerator that
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is overpowered compared to the rest of the system reduces
power-efficiency, whereas a well-balanced system can provide
much improved power-efficiency. As shown here, the results
for an optimally-balanced system are much better compared
to the baseline system. A further improvement to power-
efficiency of 29% for the FPGA platform was obtained, and
even a 46% improvement to power-efficiency for the GPU
platform. This balance of components is especially important
when considering cloud-based solutions for data processing,
as the available options that can be selected, in particular
when accelerators are involved, are restricted to those offered
by the cloud provider. The optimal combination may not be
always available. It is an ongoing effort to monitor the best
available options, making the optimal trade-off between power
and power-efficiency.

VI. CONCLUSIONS

In this paper, an accelerated implementation of the BWA-
MEM algorithm is introduced that targets the Alpha Data add-
in card with a single Xilinx Virtex-7 FPGA. This design is
able to provide a two-fold improvement to overall application
performance by offloading the Seed Extension phase onto
the FPGA and through better pipelining of the application.
Scalability analysis shows that the current design is able to
provide this maximum two-fold gain in performance for a
system with up to sixteen logical CPU cores.

To facilitate platform-agnostic comparison of power-
efficiency on mapping genomic data sets, the base pairs per
Joule measure is proposed as a unit to express platform power-
efficiency. The performance and power-efficiency is compared
to a GPU-based implementation, which is also able to obtain
a two-fold performance improvement. However, the FPGA
implementation is much more power-efficient and can map
34,000 base pairs per Joule of energy, an improvement of 60%
compared to the software only and GPU-platforms. Design
space exploration shows that a more well-balanced platform,
designed to fully utilize the accelerator’s potential, can provide
an up to 2.1x improvement in power-efficiency, providing
a mapping power-efficiency of up to 44,000 base pairs per
Joule. Due to the highly customizable nature of the FPGA,
its power-efficiency is much higher compared to the GPU and
software-only platforms. The FPGA consumes less than one
fourth of the power the GPU requires when executing the same
workload, showing the large benefit of customizable hardware,
as compared to more fixed function hardware.

The authors expect to see increased use of FPGA hardware
in the bioinformatics context, as the improvement in speed
and power-efficiency will help to reduce the bottleneck of an
important part of the widely used BWA-MEM/GATK pipeline.
More generally, it offers a large promise of power-efficiency
gains for the often extremely large computational challenges
in this domain.
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Abstract—Bioinformatics workloads are characterized by
huge data sets and complex algorithms, requiring enormous
data processing and making high performance heterogeneous
computation platforms such as FPGAs and GPUs highly
relevant. We compare three accelerated implementations of the
widely used BWA-MEM genomic mapping tool as a case study
on design-time optimization for heterogeneous architectures:
BWA-MEM-CUDA, BWA-MEM-OpenCL, and BWA-MEM-
VHDL, each using an optimized Smith-Waterman algorithm
implementation. Optimization of design-time is important
because of the significant development effort of such im-
plementations: BWA-MEM-CUDA and BWA-MEM-OpenCL
require 5-7x more lines of code to express the Smith-Waterman
algorithm, while BWA-MEM-VHDL requires more than 40x
as many lines of code. Similar differences hold for required
implementation time, ranging from one month for BWA-MEM-
OpenCL to six months for BWA-MEM-VHDL. The advantages
and disadvantages of each implementation are described using
both quantitative and qualitative metrics, and recommenda-
tions are given for future algorithm implementations.

Keywords-CUDA, Design-Time Optimization, FPGA, GPU,
OpenCL, Sequence Alignment, Smith-Waterman, VHDL.

I. INTRODUCTION

Acceleration of bioinformatics algorithms is critical, due
to the huge data sets and complex algorithms involved.
However, algorithms and methods are still under active
development, resulting in a trade-off between optimal per-
formance and development time. Heterogeneous hardware
accelerators such as GPUs, FPGAs or DSPs often have
complex and sophisticated architectures, making their pro-
grammability critically important. High-level languages can
expose the power of these heterogeneous compute devices
for relatively little development effort by partly abstracting
away the underlying hardware complexity, thus immensely
increasing the productivity of a hardware engineer. Many
programming models exist for these platforms, each with
their own advantages and disadvantages, offering various
levels of performance, flexibility and programmability, such
as CUDA, OpenCL, VHDL, Verilog, or the various High
Level Synthesis (HLS) tools. Here, we compare CUDA,
OpenCL and VHDL on a number of metrics, based on our
experiences gained from accelerating BWA-MEM, a widely
used bioinformatics algorithm. Moreover, we distill some
guidelines on when to prefer a certain programming model
above others, using our work on BWA-MEM and the Smith-
Waterman (S/W) algorithm as a case study.

II. BACKGROUND

The use of heterogeneous platforms to accelerate com-
putation is not new. However, the rate of adoption and
ubiquitous nature of current heterogeneous systems, such as
cellphones that use SoCs with a variety of specialized hard-
ware blocks, or data centers with nodes containing highly
specialized hardware, is a relatively new phenomenon. Re-
cent developments in machine learning are partially enabled
through the widescale adoption of massively parallel GPU
hardware. Equally important are the improvements in high-
level languages. CUDA [1] and OpenCL [2], first released
in 2007 and 2009, respectively, made the massively parallel
hardware of GPUs available for general purpose problems
beyond just graphics rendering, thereby creating the general
purpose GPU compute paradigm, also known as GPGPU.
Similarly, whereas FPGAs were typically programmed using
VHDL, the introduction and ongoing improvement of high-
level synthesis tools from 1990s onward [3] made their use
more accessible. The more recent introduction of OpenCL
for FPGAs [4] again greatly lowers the barrier to utilize such
devices. Higher level language may not always be the best
tool when the only goal is absolute performance, but these
languages do enable a much broader range of applications.

Here, we compare our experiences while creating multi-
ple heterogeneously accelerated implementations of BWA-
MEM [5], a widely used genomic sequence mapping tool.
To accelerate this application, we offloaded the part of BWA-
MEM that performs pairwise sequence alignment using
the S/W algorithm [6] onto FPGA and GPU. The S/W
algorithm, along with the highly similar Needleman-Wunsch
algorithm, is used in many bioinformatics tools, such as
BLAST, BWA-MEM and ClustalW. It is able to find the
optimal pairwise alignment of two sequences, typically DNA
or protein sequences. The acceleration of BWA-MEM and
S/W presents us with a good case study, since on the one
hand the S/W algorithm consists of a single compact and
computationally intensive kernel and is regular, which makes
it easy to scale up to utilize the full resources of any device
by being able to both accept longer sequences and through
the use of multiple modules. On the other hand, the broader
effort to accelerate the complete BWA-MEM application
gives insight into the additional complexities that arise when
including an accelerated kernel into a larger program.
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Table I
METHODS USED FOR THE HETEROGENEOUSLY ACCELERATED

BWA-MEM / SMITH-WATERMAN IMPLEMENTATIONS

CUDA OpenCL VHDL/HLS

Developer NVIDIA Khronos Group Multiple
Implementer NVIDIA Altera,AMD,Apple,ARM, Altera,Cadence,

Intel,Samsung,Xilinx(a.o.) Xilinx (a.o.)
Scope Proprietary Open Standard Proprietary
Platform(s) NVIDIA GPU CPU, DSP, FPGA, GPU FPGA, ASIC
Key Concepts Blocks, Threads Kernels, Channels Code Transform
Initial Release 2007 2009 1990s
Latest Version CUDA 9.2 OpenCL 2.2 IEEE 1076-2008 [7]

III. HIGH-LEVEL LANGUAGES & TARGET PLATFORMS

Numerous high-level languages exist to address hetero-
geneous systems. Table I shows characteristics of those
languages we have used to adapt BWA-MEM and the S/W
algorithm. Each of these is now described in more detail.
Note that this list is not exhaustive; many other languages
and frameworks exist that can take advantage of hardware
accelerators, such as Metal, SDAccel, or TensorFlow.

CUDA for NVIDIA GPUs: While GPUs have been
used for general purpose processing even through graphics-
oriented APIs such as OpenGL, the introduction of CUDA
[1] started the revolution of GPU usage for mainstream
compute. Even though CUDA is only available for NVIDIA
GPUs, it is highly relevant in the GPU-compute field.
Development of CUDA and further generalization of GPU
hardware have caused extraordinary growth in application
of general purpose GPU compute. Key concepts in CUDA
are Threads and Thread Blocks. Parallel work is distributed
amongst threads, which each perform the same kernel
function applied to different data elements. Threads are
grouped into thread blocks that describe the layout of the
data structure. Thread blocks are dispatched onto the GPU’s
execution units, with numerous thread blocks executing
in parallel. The GPU-accelerated version of BWA-MEM
will be referred to as BWA-MEM-CUDA. The pairwise
sequence alignment phase is similar to the regular S/W
algorithm, and is offloaded on the GPU. The S/W algorithm
computes the optimal score of an alignment by computing
a similarity matrix. Each thread block computes one such
matrix, and each thread within the thread block computes a
column. More information can be found in [8] and [9].

VHDL+HLS for FPGA: A Field-Programmable Gate
Array (FPGA) is an accelerator similar to an ASIC, being
programmed to perform a single algorithm in hardware.
However, an FPGA can be reprogrammed to change its
function whenever required, allowing for greater flexibility
compared to an ASIC, which is typically very expensive.
FPGAs and ASICs offer high computational capabilities
with very low power consumption [10]. However, hardware
design with languages such as VHDL or Verilog is com-
plex, and significantly more time-consuming than writing
a software program. This resulted in development of High
Level Synthesis (HLS) tools, which can be used to generate

Register Transfer Level (RTL) representations from higher
level languages such as C, C++, greatly reducing the time
required to program the hardware. Many compilers that can
perform HLS exist. The main FPGA vendors (Intel and
Xilinx) each have their own HLS compilers, but many other
commercial and academic HLS compilers are also available,
differing in the input languages they accept for translation,
such as the DWARV compiler [11], which translates a subset
of C into VHDL. A disadvantage of any hardware design,
either created through VHDL or HLS, is the requirement
to place and route logic elements, which is very time-
consuming, often taking hours or even days. To create
BWA-MEM-VHDL, a combination of VHDL and HLS was
used for the accelerated implementation of BWA-MEM on
FPGA. The S/W kernel was handwritten in VHDL, whereas
less critical ”glue”-logic was created using HLS. The S/W
similarity matrix is computed using a systolic array, where
each Processing Element computes a single column of the
matrix. More details can be found in [12] and [10].

Intel OpenCL for FPGA: OpenCL is a C-like language
for programming a wide range of devices, such as CPUs,
GPUs, DSPs, and FPGAs [2]. An OpenCL program utilizes
kernels, which are executed on one or more compute units.
These compute units consist of processing elements. In
the case of Intel’s OpenCL implementation for its FPGAs
[4], they also added the concept of a channel, which
is an FPGA-specific construct that allows two kernels to
directly communicate through an on-chip communication
channel, instead of having to traverse the memory hierarchy,
greatly improving efficiency and performance. Similar to the
VHDL implementation, our BWA-MEM implementation in
OpenCL, BWA-MEM-OpenCL, utilizes a systolic array to
calculate the S/W similarity matrix, consisting of multiple
kernels that utilize channels pervasively to avoid memory
transaction except for the initial data loading and final results
storing. More details can be found in [13].

Software-Only Execution: Forgoing the use of an acce-
lerator and simply use software-only execution is a valid
design decision. The time required to implement a hetero-
geneous accelerated solution may not be worthwhile when
execution time is not a key design consideration. Also,
when a project is still in the early phase of design ex-
ploration, software-only execution provides easier algorithm
exploration, is easier to debug and troubleshoot, and may
sometimes even prove to be the fastest solution, such as in
latency bound, conditional branch-heavy code. In any case,
the software-only execution case can provide us with a firm
baseline for comparison.

IV. CASE STUDY: BWA-MEM AND SMITH-WATERMAN

The high-level languages used for our implementations
are compared on implementation complexity, the available
development environment, the portability, and performance.
Table II summarizes the findings.
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Table II
COMPARISON BETWEEN HETEROGENEOUS BWA-MEM / SMITH-WATERMAN IMPLEMENTATIONS ACROSS MULTIPLE METRICS

BWA-MEM-CUDA BWA-MEM-OpenCL BWA-MEM-VHDL Software-Only

Code Complexity Overall ++ ++ – ++
Kernel Code ∼500 lines ∼700 lines ∼3,700 lines <100 lines
Kernel Routines 3 functions 10 kernels 17 modules single function
Driver Code ∼300 lines ∼200 lines ∼1,700 lines N/A
Development Time ∼3 man-months ∼1 man-months ∼6 man-months N/A

Environment Overall ++ +/- – ++
IDE/SDK NVIDIA Nsight Intel SDK available many available many available
Debugging normal debug tools: emulation (fast), then VHDL simulation, normal debug tools:

breakpoints, stepping simulation (slow) requires testbenches breakpoints, stepping
Compilation Time minutes hours hours minutes

Portability Overall – +/- +/- ++
Hardware Architecture fixed, complex flexible flexible flexible
Scalability multiprocessor FPGA logic elements FPGA logic elements CPU cores

Performance Overall ++ ++ ++ –
Device GeForce GTX 970 Intel Arria 10 GX DevKit Alpha Data ADM-PCIE-7V3 Intel Core i7-4790
Specifications 13 SMXs @ 1,150 MHz 10 modules @ 164 MHz 6 modules @ 160 MHz 4 cores @ 3,600 MHz
Throughput (SW) - 215 GCUPS (1-cycle) 42 GCUPS (3-cycle) -
Throughput (BWA-MEM) 4.3 Mbp/s 4.5 Mbp/s 4.5 Mbp/s 2.2 Mbp/s

Code Complexity: for complexity we use the required
development time and the lines of code (LoC) for imple-
menting the kernel, and LoC required to integrate the S/W
kernel into the main application, not counting empty lines
or comments. Baseline software-only execution requires
fewer than a hundred LoC. All accelerated versions require
significantly more code, in-line with expectations that accel-
erated implementations will always require more LoC than
software-only execution. However, implementations differ
greatly in this regard: BWA-MEM-VHDL requires more
than 5,000 kernel and driver LoC, an order of magnitude
more than BWA-MEM-CUDA and BWA-MEM-OpenCL. It
also required by far the most development time. Differences
between BWA-MEM-OpenCL and BWA-MEM-CUDA are
smaller. BWA-MEM-OpenCL requires more LoC as the im-
plementation consists of many simple kernels, causing code
replication. BWA-MEM-CUDA and BWA-MEM-OpenCL
both have many predefined constructs available and offer
much higher levels of abstraction compared to BWA-MEM-
VHDL: CUDA and OpenCL allow instantiation of kernels
from the application without the need for a driver; the
memory hierarchy is (partially) abstracted away. Finally,
illustrating the complexity involved: a five-line change in
the BWA-MEM sequence alignment kernel of version 0.7.9
required a week of implementation time and a week of
testing and verification to update BWA-MEM-VHDL as the
code is very different from the original source code. In
contrast, BWA-MEM-CUDA and BWA-MEM-OpenCL only
required minor changes to their implementations.

Maturity and Ease of Development Environment: IDEs
and SDKs greatly influence developer productivity. The
CUDA development environment is similar to software-
only development as NVIDIA Nsight allows debugging
facilities such as breakpoints, code stepping, and variable
inspection. In contrast, two main challenges were faced dur-

ing FPGA development of BWA-MEM-OpenCL or BWA-
MEM-VHDL: the development cycle is inherently complex
and time-consuming due to placement and route. Also,
monitoring the internal state of the device is not possible
without adding extra outputs to the design. For BWA-MEM-
OpenCL, software emulation was used to verify the correct-
ness of functional requirements, but subsequent simulation
for performance optimization was very slow. Similarly, for
BWA-MEM-VHDL, co-simulation was used for the HLS
parts, but the VHDL kernel was debugged using a VHDL
simulator, which requires debugging on a signal-level. More-
over, writing VHDL testbenches is very time-consuming.

Portability: Optimization often reduces portability, and
accelerators exacerbate this issue. CUDA locks you into the
NVIDIA ecosystem, and moreover, taking optimal advantage
of a GPU requires full understanding of the underlying
architecture, so that code maps efficiently on to the available
hardware resources, requiring knowledge of threads, thread
blocks, memory access and coalescing rules, and the impact
of register usage per thread. A redeeming feature of CUDA
is its inherent scalability to wider GPUs, since thread blocks
automatically map onto available multiprocessors. However,
GPU architectures vary widely, requiring code refactoring
for optimal performance: from new features such as warp
shuffle, dynamic parallelism and tensor cores, to feature set
differences such as the shared memory per multiprocessor, or
the steady increase in number of resident threads and warps.
In contrast, FPGA development is less constrained, since
the underlying substrate is in essence just a large number
of logic elements and wires that can be programmed to
any desired function. Some knowledge of the underlying
technology is still required, but much fewer restrictions
are in place compared to the relatively fixed GPU design.
Changing between vendors or devices will, however, require
a recompilation at the very least.

245

RESEARCH ARTICLES

4

59



Performance: Throughput results are shown both at the
application level for BWA-MEM, measured in million bases
aligned per second (Mbp/s), and at the kernel level for S/W,
measured in billions of cell updates (GCUPS). Estimates are
shown in italics. Application-level results show that BWA-
MEM-VHDL and BWA-MEM-CUDA are twice as fast as
software-only execution, at 4.3-4.5 Mbp/s, the maximum
speedup obtainable from overlapping the pairwise sequence
alignment phase with other parts of BWA-MEM. The BWA-
MEM-VHDL design contains six hardware modules to per-
form S/W [10]. BWA-MEM-CUDA performs about equiva-
lent to a five module design, on a GeForce GTX 970. BWA-
MEM-OpenCL performs approximately equal to a thirty
module design. Conversely, one module of BWA-MEM-
OpenCL is fast enough to obtain a two-fold BWA-MEM
speedup. The S/W results show the maximum performance
for both BWA-MEM-OpenCL and BWA-MEM-VHDL. The
performance difference is due to the fact that the FPGA on
the Intel Arria 10 GX used for BWA-MEM-OpenCL is both
larger and faster than the FPGA on the Alpha Data card:
it has about 50% more logic units, and timing constraints
cause BWA-MEM-VHDL to use three cycles to compute
a single similarity matrix entry compared to one cycle for
BWA-MEM-OpenCL.

V. DISCUSSION

Although VHDL offers complete control over the FPGA
design, our experiences with OpenCL and CUDA have
shown that these languages are far easier to use: less code
needs to be written, and mundane tasks such as starting a
kernel from the host program or copying data between host
and device memory are unnecessary, resulting in a shortened
development cycle. For software still under development
this can be particularly relevant, highlighting the trade-off
between performance and development time. In this sense,
both CUDA and OpenCL seem the better choice. In [14],
an implementation of a tsunami simulation both on GPU
and FPGA using OpenCL, similar findings are reached.
The original Verilog code consisted of over 600,000 lines,
whereas the OpenCL code spanned just several hundred
lines. Moreover, they could reuse the OpenCL kernel ini-
tially developed for the GPU on an FPGA, although it
took four implementations to obtain similar performance,
showing the advantage in target platforms of OpenCL over
both CUDA and VHDL: a single code base can support a
variety of hardware architectures.

VI. CONCLUSION

We have compared our experiences in developing three
heterogeneously accelerated version of BWA-MEM: BWA-
MEM-CUDA targeting the GPU using CUDA, and BWA-
MEM-VHDL and BWA-MEM-OpenCL targeting the FPGA
using VHDL and OpenCL. Each version implements a
highly optimized version of the S/W algorithm. Although all
languages offer high performance, the complexity, required

effort and the maturity of the programming environments
differs greatly. The CUDA and OpenCL implementations
are much simpler and required fewer development time than
VHDL, requiring 5-7x more LoC compared to the original
code and required between 1-3 months of development. In
contrast, BWA-MEM-VHDL required 40x the number of
LoC, partially due to additional effort required in writing
a driver, and six months of development time. Inherent
to FPGA design is the slow compilation cycle, which can
take hours. Although software emulation and co-simulation
can be used for functional tests, performance optimization
requires the complete simulation cycle. For bioinformatics
tools still under active development, we would recommend
against heterogeneous acceleration unless increased per-
formance is absolutely required. Even then, higher-level
languages such as CUDA or OpenCL are preferable over
VHDL due to the much lower complexity.
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A B S T R A C T

We present our work on hardware accelerated genomics pipelines, using either FPGAs or GPUs to
accelerate execution of BWA-MEM, a widely-used algorithm for genomic short read mapping. The
mapping stage can take up to 40% of overall processing time for genomics pipelines. Our implementation
offloads the Seed Extension function, one of the main BWA-MEM computational functions, onto an
accelerator.
Sequencers typically output reads with a length of 150 base pairs. However, read length is expected to

increase in the near future. Here, we investigate the influence of read length on BWA-MEM performance
using data sets with read length up to 400 base pairs, and introduce methods to ameliorate the impact of
longer read length. For the industry-standard 150 base pair read length, our implementation achieves an
up to two-fold increase in overall application-level performance for systems with at most twenty-two
logical CPU cores. Longer read length requires commensurately bigger data structures, which directly
impacts accelerator efficiency. The two-fold performance increase is sustained for read length of at most
250 base pairs.
To improve performance, we perform a classification of the inefficiency of the underlying systolic array

architecture. By eliminating idle regions as much as possible, efficiency is improved by up to +95%.
Moreover, adaptive load balancing intelligently distributes work between host and accelerator to ensure
use of an accelerator always results in performance improvement, which in GPU-constrained scenarios
provides up to +45% more performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Next Generation Sequencing (NGS) has profoundly changed the
field of genomics. As the cost of sequencing continues to drop and,
in turn, its use is becoming pervasive, the bottleneck is starting to
shift from the actual sequencing itself, towards the IT domain. It is
projected that NGS will rival, if not overtake, other big data fields
such as astronomy and streaming video services within ten years,
both in terms of data storage as well as data processing (Stephens
et al., 2015). Hence, acceleration of the algorithms used for
genomics data processing is vital to keep up with the projected
growth in demand for these services.

A key characteristic of current NGS sequencers is that they
cannot read complete chromosomes, or even significantly long

stretches of DNA. Instead, only small fragments of DNA called short
reads are read, for example of 150 base pairs in length. However,
the sequencer can produce many millions of such short reads in
parallel. Therefore, reproducing the complete genome becomes a
bit analogous to reassembling a book that has been torn into very
small pieces. The process of reassembling is done through a
process called a genomics pipeline. Such a pipeline typically starts
with a mapping phases. Here, each short read fragment is
compared to a reference genome to find the best matching
location of where it would fit with the fewest number of
differences. Then, after all reads are mapped, a sorting and
deduplication phase follows, until, finally, the variant calling phase
can be performed. This is the phase where difference between the
sequenced genome and the reference genome are discovered. Such
differences, or variants, are what the sequencing exercise is all
about, because they can indicate phenotypical characteristics such
as eye color, but also a propensity towards certain diseases, such as
diabetes. As shown in Fig. 1, the mapping phase takes a significant
amount of time of the overall genomics pipeline execution time.
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Therefore, this paper investigates the acceleration of the mapping
phase, in particular for longer read lengths.

A typical sequencing run on an Illumina HiSeq X (Illumina,
2015), which is a state-of-the-art NGS sequencer, produces about
1.2 TB of data every two days. For cancer data processing pipelines,
this requires multiple days of processing, even when utilizing high
performance computing clusters. The extreme scale of data and
processing requires enormous computing capabilities to make the
analysis feasible within a realistic time frame. Heterogeneous
computing holds great potential for large advantages in speed and
efficiency, compared to pure software-only execution on general
purpose processors.

Most current sequencers output reads with a length of 150 base
pairs, examples include the Illumina MiniSeq, NextSeq, and HiSeq
series (Illumina, 2016). However, support for longer read lengths is
an important consideration as this is the direction that sequencing
technology is moving towards. Therefore, in this article we
investigate the effectiveness of hardware acceleration of BWA-
MEM for a variety of read lengths. We present:

� A GPU-based BWA-MEM Seed Extension kernel that is able to
map reads up to 1150 bp, resulting in an overall application-level
speedup of up to 2�, which is at least about 25% faster than
competing accelerated solutions.

� The effects of short read length on the overall application
behavior and performance profile, and on the resulting
effectiveness of acceleration.

� Aclassification of the inefficiencies that are inherent in systolic array
designs, in particular for designs with many processing elements.

� Techniques to ameliorate the increased computational load for
longer read lengths, through adaptive load balancing and
optimizing the underlying systolic array architecture.

The remainder of this article is organized as follows. In
Section 2, related work is discussed. Section 3 presents the
BWA-MEM algorithm and its functions, in particular the Seed
Extension kernel. Section 4 briefly mentions the modification
made to the program architecture to improve acceleration

potential and the load balancing system. Section 5 discusses the
accelerated implementation and its limitations. In Section 6,
methods and results are presented. Section 7 contains a discussion
of the results. The article is concluded by Section 8.

2. Related work

The mapping of sequences onto a reference genome is part of a
field called sequence alignment. Sequence alignment can be
broadly divided into two main categories: pairwise alignment, in
which two sequences are to be matched to each other, and multiple
sequence alignment, in which the best alignment between a group
of sequences is to be found. Many such alignment tools exist, along
with numerous accelerated implementations. In the current case,
we are only interested in pairwise alignment, since we need to map
a short read onto a reference genome. A large number of short read
mapping tools exists. As sequence alignment is computationally
expensive, the most popular ones all use a heuristic method called
Seed-and-Extend. This is explained in Fig. 2. BWA-MEM (Li, 2018)
is one of the most widely used tools for short read mapping, as it is
able to combine speed with accuracy of finding results.

BWA-MEM differs from most other pairwise alignment tools,
such as SOAPv3 (Liu et al., 2012a) and CUSHAW (Liu et al., 2012b), by
virtue of the fact that its extend phase offers the most flexibility. For
example,SOAPv3 does not allowgaps inthe alignment, andCUSHAW
only allows for a limited number of mismatches. By utilizing the
Smith-Waterman algorithm, BWA-MEM is free from these limita-
tions and is able to find the optimal result for the sections to be
extended. This does come at a cost, since the Smith-Waterman
algorithm is computationally expensive. Therefore, in our work we
focus on accelerating this part of the algorithm. Many accelerated
implementations of the Smith-Waterman algorithm exist, for
example Ligowski and Rudnicki (2009), Hasan et al. (2011), Manavski
and Valle (2008), and Di Tucci et al. (2017). However, the integration
of this algorithm into BWA-MEM is far from trivial, as most
implementations operate by performing many Smith-Waterman
invocations inparallel, which is something that cannot be used in the
case of BWA-MEM as will become clear in Section 5.

This work builds upon our prior work on accelerating the BWA-
MEM algorithm, which used FPGAs to accelerate the Seed
Extension algorithm, both on the Convey supercomputing
platform (Houtgast et al., 2015), as well as by using an AlphaData
add-in board (Houtgast et al., 2016a,b,c). These implementations
were able to achieve an up to two-fold speedup. We also ported our
work onto the GPU (Houtgast et al., 2016a,b,c), resulting in a similar
performance boost. This work is an extension of our earlier GPU
work, which was limited to processing input data sets with short
reads of 150 base pairs in length. Here, we focus on the effects of
longer read lengths of up to 4600 base pairs, requiring modified
GPU code. We investigate the bottlenecks and limitations of such
greatly increased read lengths. Besides our accelerated imple-
mentations, we know of two other accelerated BWA-MEM
implementations, both utilizing FPGAs: the work by Chang, which
accelerates the Seed Generation phase and is able to achieve a

Fig. 1. Breakdown of processing time per NGS pipeline stage for a typical 30�
coverage cancer NGS DNA data set. The data set consists of three tumor samples and
one normal tissue sample (time given in CPU-core hours).

Fig. 2. Most state-of-the-art mapping tools use a paradigm called Seed-and-Extend to map a short read fragment onto a reference genome: first, exactly matching
subsequences between the short read and the reference genome are identified, using for example the BWT. These are called seeds. Then, these subsequences or seeds are
further extended using an algorithm such as the Smith-Waterman algorithm that can tolerate mismatches between two sequences. Finally, out of the many seeds that may
have been generated and extended, the highest scoring alignment is selected as final output.
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1.26� speedup (Chang et al., 2016), and the work by Chen, which
accelerates the Seed Extension phase and is able to achieve a 1.5�
speedup (Chen et al., 2016).

3. BWA-MEM algorithm details

BWA-MEM is a popular short read mapping tool (Li, 2018),
widely used in genomics pipelines to find for each short read in the
input data set a suitable location on the reference genome. This is
accomplished through a method called the Seed-and-Extend
paradigm, explained in Fig. 2. This is a two-step process with an
Exact Matching phase and an Inexact Matching phase. For each
read, first, exactly matching subsequences called seeds are
identified using the Burrows-Wheeler Transform. These seeds
are then extended in both directions using the Smith-Waterman
algorithm. This algorithm is able to find the optimal alignment
between two sequences given a particular scoring system that
awards matching symbols, and penalizes gaps and mismatches. In
the case of BWA-MEM, seeds consist of at least nineteen symbols.
Seeds that are close to one another on the reference genome are
collected together into a longer chain, refer to Fig. 3. From all the
extended seeds, the one with the highest score is selected as the
final alignment.

3.1. BWA-MEM profiling results

Here we examine the run-time behavior of the BWA-MEM
algorithm. The overall execution time of BWA-MEM is spent in
three main computational kernels: Seed Generation, Seed Exten-
sion and Output Generation. The first two kernels have been
mentioned in the previous section. During Output Generation, the
final alignment is recomputed using the Needleman-Wunsch
global sequence alignment algorithm, and the result is then
written to disk. Profiling the application shows a behavior as given
in Table 1. For the profiling, freely available input data sets from the
GCAT (Highnam et al., 2015) have been used. To investigate the
impact of read length on the overall run-time behavior, input data
sets with increasingly large read lengths have been used. From this,
it is clear that the read length does not significantly affect BWA-
MEM behavior. Note that the overall number of base pairs in the
input data set is kept stable, which means that the data sets with
longer read length contain fewer reads.

Two main candidates for acceleration become obvious: Seed
Generation and Seed Extension. As Seed Generation seems to be
more memory-bound, we have chosen the Seed Extension kernel
as target for our acceleration efforts, as that function is
computationally bound. Amdahl's law teaches us that accelerating
only this function can provide a speedup of at most 1.7�. We can
only achieve higher speedup if other kernels are accelerated as
well, similar to what has been done in Ahmed et al. (2015).

3.2. Seed extension functional details

Accelerating the Seed Extension kernel is an important focus of
this article, hence a more in-depth explanation of this phase
follows here. The pseudo code of Algorithm 1 describes the main
algorithm. The Seed Extension stage consists of two main parts: an
outer loop looping over all the seeds identified for the read during
Seed Generation, and an Inexact Matching kernel, performing the
Smith-Waterman-like functionality as needed.

There are no dependencies between reads and thus, reads can
be processed in parallel by the algorithm. For each read, the groups
of chains are processed iteratively, as the check for overlap
between earlier found Alignment Regions (Line 4) introduces a
dependency in the program order. This dependency is the main
reason why the method typical Smith-Waterman GPU-implemen-
tations rely on is unsuitable in the case of BWA-MEM: these
implementations obtain their performance by performing many
Smith-Waterman alignments in parallel, which requires the
alignments to be batched together in large numbers and, moreover,
requires these alignments to be of approximately the same length
for load balancing purposes. The highly dynamic nature of the
Inexact Matching invocations makes both these requirements
impractical to achieve, and would at least require a major
algorithm overhaul, if at all possible. Since on average only one
seed per chain requires extension, and a typical chain consists of
about ten seeds, removing the overlap check (Line 4) and
bruteforcing all extensions and selecting the correct ones
afterwards would introduce too much overhead.

Algorithm 1. BWA-MEM Seed Extension Pseudo Code

Input: List of Chains of Seeds
Output: List of Alignment Regions
1: for (each Chain of Seeds) do
2: sort Seeds based on their length
3: for (each Seed) do
4 if (no overlap exists between current Seed and previously found

Alignment Regions) then
5: perform Inexact Matching Left
6: perform Inexact Matching Right
7: store Alignment Region
8: end if
9: end for
10: end for

3.3. Inexact matching kernel

The Inexact Matching algorithm BWA-MEM uses is similar to
the widely used Smith-Waterman algorithm. The Smith-Water-
man algorithm is able to compute the optimal alignment between
two subsequences, given a certain scoring scheme. The dynamic
programming algorithm works by filling a similarity matrix. This is
illustrated in Fig. 4. The end result of the Smith-Waterman
algorithm is a maximum score. Backtracking can be used to obtain
the actual path through the similarity matrix that results in the
final alignment. However, the algorithm is computationally
expensive, being of O(READ � REFERENCE), making it infeasible to

Fig. 3. BWA-MEM Seed Generation can result in many seeds being identified for a
single read. Seeds that are located in close proximity of one another on the reference
are grouped into chains.

Table 1
Results of BWA-MEM algorithm profiling for GCAT data sets with various read
length (tests performed on Intel Core i7-4790 @ 3.6 GHz).

Read length (in bp) Total

Program Kernel 100 150 250 400 bp

Seed Generation 45% 47% 45% 43% 1.2
Seed Extension 40% 40% 39% 38% 1.2
Other 15% 13% 15% 18% 1.2

Total time 656 s 594 s 589 s 612 s
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use the algorithm directly to align a short read to the complete
human genome as this would result in unacceptable computation
times. Hence, most mapping tools use an initial Seeding-phase to
find likely mapping locations, and only then perform localized
extension of these seeds.

There are a few key difference between the algorithm BWA-MEM
uses and the normal Smith-Waterman algorithm. Two sequences are
not compared in isolation; instead, we already have a seed that
requires extension. This results in the fact that the initial scores are
not set to zero, but have an initial value. Another important
difference is that for BWA-MEM, we track a number of additional
metrics: most importantly, the global maximum alignment value
and the locationwhere the maximum and global maximum are to be
found. A nice characteristic of the similarity matrix is that its values
only dependent on its top, left, and top-left neighbor. Therefore,
values in anti-diagonals of the similarity matrix can be computed in
parallel.Thismaps nicely toan implementationusingasystolicarray,
where each column of the similarity matrix is processed by a
Processing Element. The processing time is reduced from O(READ �
REFERENCE) to O(READ + REFERENCE).

4. Accelerated program architecture

One key characteristic of BWA-MEM is the fact that each short
read in the input is processed individually. Seed Generation and
Seed Extension is performed in an interleaved fashion for each
read. If this mechanism would have been kept in tact for the
accelerated version, this would require many small invocations of
the accelerated Seed Extension function, in turn resulting in much
overhead and hence little (if any) speedup. Therefore, the program
structure has been altered to process the input data in larger
batches, where for each batch, first Seed Generation is performed
for a large number of reads, then Seed Extension, and then Output
Generation. Execution of these functions is overlapped with one
another. This approach is explained in more details in Houtgast
et al. (2016a,b,c).

4.1. Adaptive load balancing strategy

When using an accelerator to offload a kernel, it is important to
properly balance the accelerator with the host machine. If the host
is too slow, the accelerator will be idle most of the time; whereas a

too slow accelerator will result in the host being idle most of the
time. Therefore, in order to maintain a good speedup, even when
both accelerator and host are not perfectly balanced, it is important
to use a load balancing strategy. This is especially important in
computationally complex situations such as the extension of
longer reads. An effective load balancing strategy is critical to
achieve overall application level speedup. This has been imple-
mented through the use of a Load Balancing Factor (LBF)
parameter, which is able to minimize the idle time on the
accelerator and the host by offloading only part, or all, of the work
to the accelerator. More details can be found in Houtgast et al.
(2016a,b,c). By using such a load balancing scheme is the use of an
accelerator always resulting in a speedup, even if the accelerator
itself is relatively slow.

5. Design space exploration

In this section, a number of design-related topics are addressed:
the GPU implementation is detailed, considering the GPU off-
loading strategy, the functional split in the Seed Extension
function, and the implementation of the Inexact Matching
algorithm; the FPGA implementation is briefly shown. Then, the
efficiency of systolic array implementations is discussed.

5.1. GPU implementation

Here, we describe three elements of the GPU-based implemen-
tation: the GPU offloading strategy, the functional division of the
Seed Extension phase, and the details for the accelerated Inexact
Matching function.

5.1.1. GPU offloading strategy
To offload work onto the GPU, results from the BWA-MEM Seed

Generation phase are grouped into batches of reads (note: this is
different from batching Inexact Matching). Each read in the batch
of reads is sent to the GPU as a separate thread block. Hence, the
GPU receives a grid of n thread blocks, where n is the number of
reads to be processed. The GPU automatically schedules the reads
onto its available execution resources, performing the Seed
Extension. Thus, the GPU can be actively processing hundreds of
reads at a time.

5.1.2. Seed extension functional division
As explained in Section 3.2, the BWA-MEM Seed Extension

phase consists of two distinct parts: the Inexact Matching
algorithm, which is implemented as a systolic array, and the Seed
Extension main loop, that loops over all the chains of seeds. These
two parts are quite different from one another. The outer loop
mostly performs control and branch operations to effectuate the
looping over all seeds, performs the loading of the sequence and
reference from main memory, and writes the eventual result back
to memory. These tasks can easily be performed by a single thread,
which most likely will be waiting for memory transactions to
finish. In contrast, the Inexact Matching function is highly
computationally intensive and can use as many threads as the
systolic array allows for. Thus, our earlier implementation
(Houtgast et al., 2016a,b,c) makes a clear separation between
both functions and utilizes CUDA Dynamic Parallelism to
dynamically instantiate Inexact Matching kernels as needed. A
number of kernels were implemented, each optimized for different
matrix dimensions, and called appropriately. The underlying idea
was that this should result in lower register and Shared Memory
pressure, as each function only needs to allocate as many resources
as it needs.

Unfortunately, our tests show that the dynamic kernel
instantiation of CUDA Dynamic Parallelism brings about a large

Fig. 4. Smith-Waterman algorithm similarity matrix. The maximum score is
indicated. As matrix entries only depend on top, top-left, and left neighbor, anti-
diagonals can be processed in parallel. This makes the systolic array a natural
implementation choice, whereby each column is processed by one Processing
Element (or PE).
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initialization penalty, making it unsuitable to use at this extreme
scale, as for even a single read it can be called thousands of times,
resulting in many millions of invocations during a typical program
execution. Therefore, the implementation here does not make use
of Dynamic Parallelism, instead executing the Seed Extension as
one large monolithic kernel.

5.1.3. GPU-based inexact matching
Although the main Seed Extension loop is interesting in its own

right, the main challenge of the GPU-accelerated BWA-MEM Seed
Extension function is the implementation of the Smith-Waterman-
like Inexact Matching kernel. As discussed before, typical GPU
implementations of Smith-Waterman perform many sequence
alignments in parallel, mapping one alignment per thread. This
facilitates the extraction of parallelism from the problem, but is

contingent on the ability to sort and batch work, which is
impractical.

Therefore, the other way of extracting parallelism is to make use
of the possibility of harnessing the parallelism residing in the anti-
diagonals of the similarity matrix, through use of a systolic array.
This is the approach followed here. The systolic array Processing
Elements (PEs) can be mapped either onto the read symbols (i.e.,
columns), or onto the reference symbols (i.e., rows) (refer to Fig. 5).
As careful analysis of BWA-MEM execution has shown that the
reads are always shorter than the reference symbols, it is chosen to
map PEs onto read symbols. This minimizes the number of PEs
required.

Since we use NVIDIA CUDA as an implementation platform, it is
important to explain some key concepts underlying the execution
model of all NVIDIA GPUs. The basic unit of action in this model is
the so-called warp, a cluster of typically 32 threads that all perform
the same operation in any given clock cycle. Computational jobs
are therefore always scheduled onto one or more warps, depend-
ing on how many threads they require. Therefore, two execution
models were considered to implement our Smith-Waterman
systolic array. Either a “wide” systolic array (refer to Fig. 6) that
uses as many threads as required, one for each processing element
in the systolic array. Hence, a job is scheduled across as many
warps as needed. The other model (refer to Fig. 7) is to use only a
single warp, or 32 threads. This in turn requires multiple passes
over the similarity matrix to completely calculate all entries.

In a systolic array, during each computation step values are
passed from one processing element to the next. Normally, in GPU
implementations Shared Memory is used to communicate
between threads. A key benefit of the single warp approach is
the fact that threads within a single warp are able to access each
others registers directly through intra-warp shuffle instructions,
foregoing the requirement of communicating through Shared
Memory. As Shared Memory is a very limited resource on the GPU,
with typically only 64 kB being available per multiprocessor, this is
a great benefit. The amount of Shared Memory used by a block of
threads puts an upper bound on the number of thread blocks that
can concurrently reside on a multiprocessor, so lower Shared
Memory requirements directly result in higher performance. The

Fig. 5. Inexact Matching algorithm similarity matrix with an initial score of 60. The
maximum and global maximum scores are indicated. Differences as compared to
the regular Smith-Waterman algorithm include the presence of initial values and
computation of a global maximum score. The locations of both maxima are also
calculated.

Fig. 6. Overview of the “wide” systolic array implementation, showing active threads when processing the similarity matrix with as many threads as there are read symbols.
The data exchanged between the successive threads passes through Shared Memory, resulting in a dependence on the read length for the Shared Memory size. Note that,
depending on matrix dimensions, many threads will be idle.
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single-warp implementation requires storage of the values on the
boundaries of each pass, so that these values can be reused during
the next pass over the similarity matrix. Therefore, the required
Shared Memory amount is depended on the length of the reference
query.

A secondary benefit of the single-warp implementation is that
for a typical systolic array implementation, it is impossible to keep
all processing elements busy. Depending on the exact dimensions
of the similarity matrix, many processing elements may not have
any useful work to do for large parts of the time. As will be shown
in the next sections, a single-warp implementation is able to
circumvent, or at least reduce, this problem by skipping parts of the
similarity matrix.

5.1.4. Implementation architecture
Due to the above reasons, the single-warp systolic array design

is implemented. This implementation is able to branch between
two single-warp Inexact Matching implementations: one function
for extensions that fit completely inside a single warp, or in other
words, the read symbols for the extension are 32 symbols or less;
and one function that can process longer extensions in multiple
passes. The benefit of this setup is that the shorter extensions can
skip the intermediate data storage step, saving bandwidth and
executed instruction, but not Shared Memory, as this is statically
allocated on a thread block basis for the Seed Extension function as
a whole. As Shared Memory and register usage is the aggregate of
all functions in the kernel, it needs to be carefully balanced in order
to maximize occupancy. The register count was fixed to use 64
registers per thread. The maximum number of rows that are
allowed on the reference was chosen specifically with the input
data set in mind, as this influences the amount of Shared Memory
each thread block requires. For example, for a data set with reads of
150 bp, the maximum reference read length can be set to 131
symbols, as the maximum seed length is 19 and it can be shown
that the part of the similarity matrix corresponding to those
reference symbols that exceed the input read length will not
contribute to the result. In the case of 131 symbols, one thread
block uses 2 kB of Shared Memory. Hence, up to 32 thread blocks

can be resident per multiprocessor. If the maximum rows are set to
381, which is required for test data with 400 bp reads, the Shared
Memory allocation increases to 5.4 kB per thread block, resulting in
only at most 11 resident thread blocks per multiprocessor. Unless
specifically mentioned otherwise, our tests use implementations
tuned to the specific input read length to optimize occupancy.

Figs. 8 and 9 show detailed results from analysis of a smaller
test, obtained with the NVIDIA Visual Profiler, a cross-platform
profiling tool to help optimize CUDA applications (NVIDIA, 2016a,
b). The results show that the performance is mostly limited by
latency of arithmetic and memory instructions. The memory
subsystem utilization is shown in Fig. 9. Most of the bandwidth is
directed onto the Shared Memory subsystem, holding temporary
data of the systolic array while calculating the Seed Extension
similarity matrix. The GPU caching is effective, as device memory
bandwidth is substantially lower than overall unified cache
bandwidth. The device memory bandwidth utilization is very

Fig. 7. Overview of the single warp systolic array implementation, showing active threads when processing the similarity matrix with one warp. Multiple passes are made
over the similarity matrix. Threads exchange data directly, eliminating the need to store this in Shared Memory. Data exchange between passes is stored in Shared Memory,
resulting in a dependence on the reference length for the Shared Memory size. Note that threads will be less idle, as processing of parts of the grid can be skipped.

Fig. 8. Output of NVIDIA Visual Profiler Latency Analysis for a test set with two
hundred thousand reads of 150 bp. The implementation performance is mostly
limited by the latency of arithmetic and memory operations, and by the number of
resident blocks per multiprocessor.
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low, which corresponds to our expectations for such a computa-
tionally-limited application: a Seed Extension algorithm invoca-
tion only requires two sequences, which for a read length of 150 bp
only amounts to 2 � 150 � 2 = 600 bits. Although in our imple-
mentation, the sequences are not ideally packed, this explains the
observed low external memory bandwidth requirements.

For the latest NVIDIA GPU architectures offering Compute
Capability 5.0+, a multiprocessor can have up to 2048 resident
threads (NVIDIA, 2016a,b). However, since at the same time only 32
blocks can be resident per multiprocessor, this means that optimal
occupancy can only be obtained for thread blocks with at least 64
threads. Since this implementation's thread blocks contain only 32
threads, occupancy is limited to at most 50%. In practice, up to
about 35% occupancy is realized. Earlier Compute Capability
versions were even more restrictive, only allowing sixteen resident
blocks per multiprocessor for architectures with Compute
Capability 3.0+, or even only eight resident blocks per multipro-
cessor for earlier architectures. This would have a direct impact on
the efficiency of this implementation.

5.2. FPGA implementation

The FPGA implementation uses a batching strategy similar to
the one used by the GPU as described in Section 5.1.1. Of course,
unlike the GPU implementation, which executes the Seed
Extension kernel on the underlying GPU substrate, the FPGA
implementation consists of a custom bitstream tailor-made for the
application. Our design consists of six physical Seed Extension
modules, each consisting of a systolic array with 131 Processing
Elements. The systolic array contains early exit points at Processing
Elements 100, 66, and 33. The function of these early exit points
will be described in more detail in the next section. Each Seed
Extension module is joined by a module that performs the
Seed Extension main loop, which loops over the chains of seeds.
The rest of the FPGA area is filled with the memory controller, PCI-
Express controller, and logic that distributes reads over the
modules. More details on the implementation can be found in
Houtgast et al. (2016a,b,c).

5.3. Classification of systolic array inefficiency

The efficiency of a systolic array is heavily dependent on the
length of the read and target, as compared to the length of the
systolic array itself. Since the read symbols are mapped one-to-one
onto systolic array processing elements, a read that is much shorter
than the systolic array causes most of the processing elements to
remain idle. Moreover, the output still needs to traverse the entire
systolic array, causing further inefficiency. A short target sequence
causes the systolic array to be occupied until it fully traverses the
array. In general, it can be summarized that systolic arrays perform
optimally when the read sequence is exactly the same length as the
systolic array length, and the target sequence is as long as possible.

This is illustrated by Fig. 10, which shows only some parts of the
systolic array are contributing to the calculation of the final result.
In the figure, each row represents a new time cycle in calculation of
the similarity matrix. We can categorize the above-mentioned
issues into four categories:

A–Waiting for input data: As each Processing Element passes its
result onto the next PE, it takes a number of cycles before all
Processing Elements can start their calculations. The further
along the PE is in the array, the longer it has to wait before it can
start its calculations. This area is indicated by area A, the time a
PE has to wait for input before it can join the calculations.
B–Waiting for all PEs to finish: Every cycle, a new symbol of the
target sequence is inserted into the systolic array, until all target
symbols are inserted. By then, the first PE is finished, however,
the overall processing is not. This is indicated as area B, the

Fig. 9. Output of NVIDIA Visual Profiler Memory Bandwidth Analysis for a test set
with two hundred thousand reads of 150 bp. Most of the bandwidth is used during
the Inexact Matching by the Shared Memory. Device memory bandwidth utilization
is low, as caching through texture memory of the reference and input data is
effective.

Fig. 10. The efficiency of a systolic array is heavily dependent on the length of the
read and target, as compared to the length of the systolic array itself. Areas indicated
by A, B, C, and D are areas of inefficiency, where some or all of the Processing
Elements are not contributing useful work. Reducing these areas can greatly
improve systolic array efficiency.
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cycles that while some PEs are already finished, others need to
finish as well.
C, D–Imbalanced read vs systolic array length: Each read symbol
is mapped onto a Processing Element. If the read sequence is
shorter than the systolic array length, some PEs will remain idle
during the entire computation. However, the results still need
to flow through the systolic array until the output data can be
extracted. Therefore, early exit points can be placed inside the
systolic array to bypass the need to traverse the entire array.
Area C indicates the imbalance between read length and exit
point location, area D the remaining portion of the array that
remains idle.

All together, it is clear that there are many situations in which a
systolic array operates only at partial capacity. However, having such
a categorization allows us to come up with strategies to eliminate or
reduce the impact each of these has. In Houtgast et al. (2015), a
number of systolic array architectures were introduced: Variable
Physical Length (VPL), Variable Logical Length (VLL), and Variable
Logical+Physical Length (VLPL). AVPL systolic array is simply to have
a number of systolic arrays work in parallel, each with a different
number of Processing Elements. This allows us to reduces area D-
type inefficiencies, as this inefficiency is caused by the mismatch in
systolic array and read length. A VLL systolic array allows a systolic
array of a larger size to act as if it is of shorter length, by including the
above-mentioned early exit points. These are points in the array that
are able to output its results, bypassing the need to pass results
through the entire array. Part of the array would still be idle during
the entire computation, however, the total number of cycles is
partially reduced. The VLL-array reduces the area-C. Finally, area A
and area B inefficiencies could be circumvented if the Processing
Elements of a systolic array were allowed to work on different reads,
in effect pipelining multiple reads after one another.

The FPGA implementation uses a VLL approach, where six
modules are used with 131 Processing Elements, each with early
exit points at 131, 100, 66. In contrast, the GPU implementation can
be considered to be a VPL implementation, as the multi-pass
approach results in an effective systolic array length of any
multiple of 32 PEs. Moreover, as can be seen in Fig. 7, each pass does
not cover the complete 32 PE-wide stripe, but is narrowed down
even further by starting at the relevant cycle and stopping as soon
as possible, reducing the area A and area B regions. This results for
an 96 � 100 alignment in an 48% efficiency improvement over
computing the entire region.

6. Experimental results

All tests have been performed using a system with an Intel Core
i7-4790 at 3.6 GHz with eight logical cores (four physical cores),
with both SpeedStep and Hyper-Threading enabled. The system
contains 16 GB of DDR3 memory. To obtain the GPU results, we

used an NVIDIA GeForce GTX 970 with 1664 CUDA cores with a
maximum clock frequency of up to 1.25 GHz and 4 GB of on-board
RAM. CUDA version 7.5 was utilized. The FPGA results were
obtained using the same base system, but with the server-grade
Alpha Data ADM-PCIE-7V3 card with a Xilinx Virtex-7 XC7VX690T-
2 and 16 GB of on-board RAM (Alpha Data, 2015), which contains
six Seed Extension modules at 160 MHz.

For testing purposes, BWA-MEM version 0.7.8 was used. Tests
were performed using data that is freely available from the
Genome Comparison & Analytic Testing (GCAT) framework
(Highnam et al., 2015). Pair-ended large indel alignment data sets
were used with various read lengths: gcat38 (100bp-pe-large-
indel), gcat42 (150bp-pe-large-indel), gcat46 (250bp-pe-large-
indel), and gcat50 (400bp-pe-large-indel). Each data set contains
about 1.2 billion base pairs. In other words, data sets with more
base pairs per read contain fewer reads overall, so that the total
amount of base pairs remains the same. The reads were aligned
against the reference human genome (UCSC HG19).

As mentioned in Section 2, in bioinformatics, a key requirement is
exactness of results. For example, population studies can take many
years to complete. For these studies, it is critical that the algorithm
does not change over a long period of time. Tests run using the online
GCAT portal that allows us to compare read aligner quality
(Bioplanet.com, 2016) show that the results from our implementa-
tion are indistinguishable from the software-only BWA-MEM.

6.1. Performance results

Performance results are summarized in Table 2. Not only
execution time is given, but the application performance is also
expressed in throughput in millions of base pairs per second, to
facilitate cross-algorithm, cross-data set and cross-platform
comparisons. Both the GPU-accelerated implementation and the
FPGA-accelerated implementation are able to offer an 2� speedup,
compared to software-only execution, with the FPGA-accelerated
implementation offering slightly higher performance. Most likely,
this is due to slightly lower overhead from the FPGA driver as
compared to the CUDA driver.

To compare performance between the various accelerated
implementations mentioned in Section 2, we also included the
results from Chang et al. (2016) and Chen et al. (2016). Chang
accelerates the BWA-MEM Seed Generation phase using the Intel-
Altera Heterogeneous Architecture Research Platform, which con-
tains an Altera Stratix V FPGA. Like our work, Chen (Chen et al., 2016)
accelerates the BWA-MEM Seed Extension phase, using the same
AlphaData FPGA board. Chang is able to achieve an overall
application-level speedup of 1.26�, whereas Chen claims an overall
application-level speedup of 3�. However, their baseline of
comparison is the Cloud-Scale BWA-MEM implementation, which
performs about 50% slower than regular BWA-MEM (Chen et al.,
2015). Moreover, their experimental platform, a dual node Intel

Table 2
Comparison of speedup and throughput of accelerated BWA-MEM v0.7.8 implementations for a data set with 150 bp reads.

Accelerated phase Overall application

Source Platform and method Execution TIME Speedup Execution time Speedup Throughput

Our Work Software-Only (Original BWA-MEM) 237 s – 552 s – 2.2 Mbp/s
Seed Extension on FPGA (Houtgast et al., 2016a,b,c) 129 s 1.8� 272 s 2.0� 4.5 Mbp/s
Seed Extension on GPU (Houtgast et al., 2016a,b,c) 144 s 1.6� 278 s 2.0� 4.3 Mbp/s

Chang (Chang et al., 2016) Seed Generation on FPGA N/A 4� N/A 1.26� N/A

Chen (Chen et al., 2016) Software-Only (CW-BWAMEM) N/A – N/A – 1.2 Mbp/sa

Seed Extension on FPGA N/A 10.5� N/A 3� 3.6 Mbp/sa

a Reported speedup is 2.4 Mbp/s and 7.2 Mbp/s for 2� Intel Xeon E5-2620v3, which is twice as fast as an Intel Core i7-4790.
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Xeon E5-2620v3, offers about twice the performance as the system
used here. In practice, we estimate that their implementation
achieves about 80% of the performance obtained by our imple-
mentations, when using the same system. The fact that they are able
to obtain a 3� speedup indicates that the performance profile of CS-
BWAMEM is substantially different from regular BWA-MEM, most
likely being much more limited by the Seed Extension phase.

The execution time for the Accelerated Phase considers only the
kernel execution time, not including data transfer times, as
performance in the limiting case will only be determined by the
computational part of the Seed Extension. Although in our current
implementation we do not overlap data transfer and computation,
this would be relative straightforward to implement. Moreover, to
illustrate the relative insignificance to this particular application,
total data transfer time excluding the transfer of the reference
genome, which is done only once at the start of program execution,
is less than one second in total.

6.2. Performance impact of read length

As explained in Section 5.1.4, the multi-warp GPU implemen-
tation requires Shared Memory directly proportional to the
number of rows that can be stored from the similarity matrix.
This, in turn, is directly related to the maximum supported read
length. The Shared Memory utilization is one of the factors that
determines the number of warps that can be scheduled
simultaneously onto an SMM, so this directly impacts efficiency.
To observe the effect of this, tests have been run with
implementations tuned to support different maximum read
lengths, against data sets with various read lengths. The results
are summarized in Table 3. It is clear that Shared Memory
requirements scale proportional to the supported read length. This
is inversely proportional to the maximum simultaneous Resident
Blocks per SMM. Note, however, that regardless of Shared Memory
usage, at most 32 blocks can be resident at any one time.

The impact on the overall application-level speedup is clear: as
the supported read length increases, GPU utilization decreases,
resulting in worse performance. Processing longer reads is also
more GPU-intensive, as only for data sets with up to 250 bp, the full
two-fold performance increase is attained. The 400 bp data set
only achieves an at most 1.7� speedup, and in one case, even
results in a slowdown, instead of a speedup. There are two reasons
for this behavior. First, the GPU implementation is not a true
systolic array, as for longer reads, multiple passes are necessary.
Hence, performance scales not as O(READ + REFERENCE), but as O(READ �
REFERENCE). Second, the CPU Seed Extension implementation uses a
mechanism whereby it only processes a small fraction of the
similarity matrix, resulting in more efficient operation (see
Houtgast et al., 2015 for details).

6.3. Scalability and impact of load balancing

Apart from overall performance on the test platform, it is also
interesting to analyze the scalability of the implementations. Here,

scalability is defined as the number of CPU cores that the
implementation is effectively able to accelerate while still
providing the maximum speedup. In simplified terms, this can
be approximated by considering the time required for the Seed
Extension phase, which is performed on the GPU and hence
insensitive to CPU core count, and regarding this as a lower bound
to overall application execution time. Assuming overall execution
time scales linearly in processor core count, which has been
observed to hold for CPU core count up to at least sixteen cores, the
maximum number of logical CPU cores that can be effectively
accelerated can thus be estimated.

The scalability results are visually depicted in Fig. 11. This graph
shows the relative speedup from using the GPU-accelerated
implementation compared to execution on a machine with the
same number of CPU cores. Note that, obviously, execution on an
eight core system will be faster than on a four core system. The
graph shows the normalized speedup obtain from using the GPU.
For data sets with 150 bp reads, maximum speedup is supported
for up to twenty-two logical CPU cores. After that, the relative
speedup gradually decreases as execution time no longer decreases
due to being limited by the GPU-only Seed Extension phase, which
is unaffected by CPU core count. For the 400 bp data set, only up to
twelve logical CPU cores can be supported.

Performance can be improved by using the adaptive load
balancing algorithm described in Section 4.1. This ensures optimal
benefit from the use of acceleration, by dividing the work between
host and accelerator in such a way as to minimize idle times. Thus,
it can prevent GPU-constrained situations to result in overall
application-level slowdown, by distributing Seed Extension work
between the host and the GPU. This results in a more graceful drop-
off in performance, as can be seen in Fig. 11. More importantly, it
should prevent an overall application-level slowdown. Under GPU-
constrained situations, performance can improve by up to +45%.

7. Discussion

7.1. Impact of read length and load balancing

From the above results, it becomes clear how longer read
lengths can impact overall GPU-acceleration capability, as the
Shared Memory requirements for longer reads greatly reduces the
GPU's ability to concurrently execute tasks. The current imple-
mentation is able to achieve a maximum two-fold speedup for data
sets with up to 250 bp read length. For longer reads, the system is
no longer capable to provide this full speedup. A faster GPU model
could be used to attain full performance.

Under normal circumstances, the GPU is sufficiently fast to
completely hide the Seed Extension phase by overlapping its
execution with the other tasks performed by the host CPU.
However, the load balancing algorithm can greatly improve
performance for scenarios where the system is imbalanced, which
is increasingly the case for more strenuous long read data sets. In
such a case, the load balancing helps to sustain the acceleration
capability of the system.

Table 3
GPU SMM requirements and relative speedup over software-only execution for data sets with increasing read length.

GPU SMM utilization Speedup over software-only execution per data set

Supported read length Shared memory Resident blocks gcat38 (100 bp) gcat42 (150 bp) gcat46 (250 bp) gcat50 (400 bp)

Up to 100 bp reads 1.3 kB 32 200% – – –

Up to 150 bp reads 2.0 kB 32 201% 197% – –

Up to 250 bp reads 3.3 kB 19 200% 194% 198% –

Up to 400 bp reads 5.4 kB 11 202% 195% 188% 168%
Up to 570 bp reads 8.0 kB 8 179% 194% 174% 127%
Up to 1150 bp reads 16.0 kB 4 150% 160% 113% 75%
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Finally, batching the work sent to the accelerator in larger
groups is often a base requirement to obtain good performance
from accelerators to overcome communication overhead. In the
case of BWA-MEM, the code transformation whereby Seed
Generation results are batched together before being sent to the
accelerator to perform Seed Extension is a prerequisite of getting a
performance benefit out of a GPU. Depending on the program
structure, this can take significant engineering effort. A more
closely coupled system, such as the Intel-Altera HARP, could reduce
or even eliminate the required effort.

7.2. Systolic array efficiency

The importance of improving the efficiency of a systolic array
greatly increases with increased read length, as longer systolic
arrays suffer much more from the inefficiencies as identified in
Section 5.3. Both implementations described here use a different
mechanism to improve their efficiency.

The GPU implementation can be considered as a VPL
implementation, as the multi-pass approach results in an effective
systolic array length of any multiple of 32 PEs. It would have been
infeasible to use a single-pass implementation, as such an
implementation would require a huge amount of shared memory
to emulate the data exchange between Processing Elements.
Moreover, for long reads, area A and B-type inefficiencies would be
quite large. A multi-pass implementation as used here is able to
avoid both these drawbacks. The effectiveness of the VPL-approach
is illustrated in Table 4. This VPL-based approach, combined with
the technique to only calculate the relevant parts of the stripe,
results for increasingly long reads into great improvements in
efficiency. Moreover, note that the 50% efficiency the normal
systolic array attains is a best case scenario, as an imbalance in
systolic array length and read length would greatly reduce
efficiency even further.

In contrast, the FPGA uses a VLL-based approach, where six
modules are used with 131 Processing Elements, each with early
exit points at 131, 100, 66. This helps reduce area C-type
inefficiencies when shorter read lengths are processed. However,
for longer read lengths such as the ones considered here, a multi-
pass solution can be considered to be almost mandatory. Given that
for a typical data set, read length varies considerably. Then, if only a
fraction of reads are long reads, this still requires a systolic array
that is able to process reads with the longest length, otherwise a
single-pass architecture is unable to process these long reads.
Then, apart from the longer processing time, this systolic array
would also take up a great amount of the available physical area on
the FPGA. For example, instead of six modules of length 131, we
would be able to fit only one module with length of about 800
Processing Elements.

8. Conclusion

This article describes a hardware accelerated implementation
of the BWA-MEM genomic mapping algorithm, one of the most
widely used read mapping tools and a linchpin in many genomics
pipelines. The GPU-based implementation has been modified to
allow it to process sequences with longer read sizes, a capability
that will become necessary as sequencers are expected to generate
longer reads in the near future. However, longer read lengths
impact the effectiveness of the GPU-based acceleration, as the
increased requirements on Shared Memory reduces the GPUs
ability to execute tasks in parallel. This makes efficiency improve-
ments to the underlying architecture even more important.

The Seed Extension phase is one of the three main BWA-MEM
program phases, which requires between 30% and 50% of overall
execution time. Offloading this phase onto the GPU provides an up
to two-fold speedup in overall application-level performance. For
data sets that use the typical read length of 150 bp, the use of the
GPU-accelerated implementation can offer this maximum two-
fold speedup for a system with up to twenty-two logical cores, as
compared to software-only execution. This can save days of
processing time on the enormous real-world data sets that are
typical of NGS sequencing. Data sets with up to 250 bp can be
accelerated with the maximum two-fold application-level speed-
up. Load balancing can be used to ensure an efficient division of
work between the host and the GPU, improving performance and
ensuring application speedup even for mismatched host and
accelerator performance. The load balancing algorithm provides an
improvement to performance of up to 45%, compared to non-load
balanced execution.

Fig. 11. Estimated application-level speedup depending on CPU core count for 150 bp and 400 bp data set. Load balancing improves performance in GPU-constrained
scenarios, ensuring application speedup in all cases.

Table 4
VPL-based systolic array compared to normal systolic array.

Read Target Useful Normal GPU VPL Gain
cycles SA cycles SA cycles

100 100 10,000 20,000 16,896 +18%
150 150 45,000 45,000 29,120 +55%
250 250 62,500 125,000 72,192 +73%
400 400 160,000 320,000 179,712 +78%
570 570 324,900 649,800 346,752 +87%
1150 1150 1,322,500 2,645,000 1,361,664 +94%
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CHAPTER 5

Conclusions

"Far better is it to dare mighty things,
To win glorious triumphs, even though checkered by failure..

Than to rank with those poor spirits who neither enjoy nor suffer much,
Because they live in a gray twilight that knows not victory nor defeat."

— Theodore Roosevelt

J UDICIOUS use of the proposals in this dissertation can, when combined, result in
an improved systolic array architecture that is able to operate at maximal efficiency.

These findings have been used to create accelerated implementations of the Seed Exten-
sion kernel of BWA-MEM, a widely-used genomic mapping algorithm, offering a twofold
increase to application-level performance. Moreover, an FPGA-accelerated implemen-
tation has been created of the Smith-Waterman pairwise sequence alignment algorithm,
offering the fastest performance and highest efficiency to date. In this chapter, the work
presented in the previous chapters is summarized, and a few suggestions for potential
future research directions are offered. In Section 5.1, the main contributions per chapter
are briefly revisited. In Section 5.2, opportunities for future work are discussed.

5.1. CONCLUSIONS

CONCLUSIONS FROM CHAPTER 1
In Chapter 1, "Introduction", the motivation and the background for this dissertation
are presented. Advancements in sequencing techniques and the widespread adoption
of sequencing hardware are resulting in increasingly large amounts of data being gen-
erated. This data requires processing through so-called genomics pipelines, computa-
tionally demanding pipelines of bioinformatics algorithms. Acceleration and optimiza-
tion of such pipelines is critical in order to keep up with the continuously growing data
processing needs. Heterogeneous systems are systems consisting of a variety of differ-
ent hardware architectures, where each architecture is specialized for a specific domain.
Such systems can offer the performance and power-efficiency that will be expected of
future bioinformatics applications.
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This dissertation focuses on improvements to techniques used for the acceleration
of two widely used bioinformatics algorithms: the BWA-MEM genomic mapping algo-
rithm and the Smith-Waterman pairwise sequence alignment algorithm, which are both
explained in some detail. These algorithms can be accelerated using the systolic array ar-
chitecture, as the Smith-Waterman dynamic programming similarity matrix maps well
onto this architecture. However, the short read and reference sequences generated by
the BWA-MEM algorithm limit the efficiency of a standard systolic array implementa-
tion, as systolic array utilization significantly depends on long sequence lengths. This
highlights the need for improvements to this architecture that reduce or remove this
dependence on read sequence and reference sequence length. The improvements to
the systolic array architecture proposed in this dissertation completely remove any such
limitations. Furthermore, they are not only useable to improve the performance of the
BWA-MEM Seed Extension algorithm, but can also be applied to accelerate or improve
the efficiency of a variety of other applications as well.

CONCLUSIONS FROM CHAPTER 2
In Chapter 2, "Systolic Array Architectures and the Seed Extension Kernel", one of the
two main sources of inefficiency of systolic arrays is addressed, namely the dependence
of systolic array efficiency on read sequence length. Due to the fact that the read symbols
are mapped one-to-one on the PEs of the systolic array, in the case that a read sequence
is to be processed on the array that contains fewer symbols than the number of PEs in
the systolic array, part of the PEs will have to remain idle, thus resulting in inefficient
use of the array. A number of techniques is proposed, namely Exit Points and three dif-
ferent systolic array architectures: the Variable Logical Length, Variable Physical Length,
and Variable Logical and Physical Length systolic array. These can be used to completely
eliminate the systolic array’s dependence on read sequence length and, therefore, to ob-
tain a systolic array implementation that can operate at maximum efficiency for any data
set, regardless of its distribution of read sequence lengths.

This independence is achieved through modification of the systolic array architec-
ture. Exit Points are introduced, which are points in the systolic array that allow shorter
read sequences to bypass the remainder of the systolic array, thus reducing the time re-
quired to process shorter read sequences. An array including such Exit Points is called
a Variable Logical Length systolic array. In contrast, a Variable Physical Length systolic
array consists of a collection of differently dimensioned systolic arrays, combined with a
simple scheduler to route alignments to the proper unit. This technique avoids that PEs
are being idle altogether. Apart from the benefit to execution time, this technique grants
an additional advantage, since systolic arrays with fewer PEs require correspondingly
fewer area on the FPGA. When combined, these techniques result in a Variable Physical
and Logical Length systolic array.

Variable Logical Length-based Seed Extension kernels have been implemented on
both FPGA and GPU to respectively create an FPGA-accelerated and a GPU-accelerated
version of the widely used genomic mapping algorithm BWA-MEM. These Seed Exten-
sion kernels offer a threefold performance increase, when compared to the software-
only Seed Extension kernel.
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CONCLUSIONS FROM CHAPTER 3
In Chapter 3, "Optimized Implementations with Efficient Systolic Arrays", the second
source of systolic array inefficiency is addressed: the dependence of the systolic array’s
efficiency on reference sequence length. A regular systolic array implementation is only
able to perform a single pairwise sequence alignment operation at a time. Thus, even
when a short reference sequence is used as input to a pairwise alignment, this short
reference sequence is required to pass through the entire array before the next pairwise
sequence alignment operation can commence. This obviously results in dramatically
low efficiency. Through a design in which the read and reference symbols belonging to
different pairwise sequence alignments are buffered in Query Buffers and immediately
streamed into the systolic array, one directly after the other, as opposed to having to
wait for a single pairwise sequence alignment computation to finish before starting the
next one, the dependence on reference sequence length can be completely eliminated.
The result is a maximally-efficient systolic array. These techniques are used to create the
fastest and most efficient Smith-Waterman FPGA implementation available to date, with
an overall efficiency of 99.8% and a performance of 214 GCUPS.

Furthermore, improved BWA-MEM implementations are discussed that are able to
completely eliminating the Seed Extension kernel from overall program execution time
by overlapping the Seed Extension computations on the accelerator with the execution
of other functions on the host machine, thus attaining the maximum possible twofold
speedup that is possible according to Amdahl’s law. The best overall efficiency is ob-
tained only when a host system and its accelerator, be it an FPGA or a GPU, are well-
matched with one another, so that neither has to wait for the other to finish. Therefore,
a scalability analysis is performed to estimate the best host configuration for both the
FPGA and the GPU implementation. This analysis shows that these implementations
perform best and are able to scale to host machines with up to 22 cores for the GPU
implementation, and up to 26 cores for the FPGA implementation.

CONCLUSIONS FROM CHAPTER 4
In Chapter 4, "Power-Efficiency, Design-Time, and Read Length Analysis", a number of
other important design metrics are considered. The power-efficiency of the hardware-
accelerated BWA-MEM implementations is compared against the baseline software-only
version. Both implementations are able to offer a twofold performance improvement.
However, only the FPGA implementation is able to also reduce the overall energy con-
sumption for the configuration as tested, resulting in an implementation that is 1.6x as
efficient as the software-only version. In contrast, although the GPU implementation
is twice as fast as the software-only implementation, it also consumes twice as much
power, thus erasing any power-efficiency gains. A scalability analysis is performed to
see whether it is possible to improve the power-efficiency further, when the host system
and the accelerator are better matched to one another so that their execution time is
comparable and neither has to wait for the other. Estimations for such a more balanced
system with a faster host processor indicate that, in the case of the FPGA implementa-
tion, the power-efficiency improves to 2.1x for a system with 16 cores, and, in the case of
the GPU implementation, at least some power-efficiency gains can be achieved, with a
power-efficiency that peaks at 1.4x for a system with 15 cores.
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The design-time of a heterogeneous solution can be an important aspect to consider,
especially in a relatively new field such as bioinformatics where algorithms continue to
be improved and replaced. Although heterogeneous designs are able to offer improve-
ments in both absolute performance as well as in power-efficiency, they also require sig-
nificantly more development effort, even when high-level languages such as CUDA or
OpenCL are used. In the case of the Seed Extension kernel and the Smith-Waterman
algorithm analyzed here, the CUDA and OpenCL languages required significantly more
lines of code to express these algorithms, resulting in a code size increase of a factor 5-
7x. The VHDL implementation required even 40x more lines of code. The design-time
for these implementations was similarly longer, with an implementation time between
1-3 months for the CUDA and OpenCL implementations, to more than half a year for the
VHDL implementation, due to the increased complexity of implementation and testing.

The final aspect under consideration is the influence of read sequence length on the
efficiency and performance of the implementations. This is relevant since the sequence
length of the raw output generated by DNA sequencers is expected to increase. An analy-
sis of the GPU implementations shows that read length greatly impacts the performance
of this implementation, as the number of parallel jobs that can be executed simultane-
ously is largely determined by the memory requirements for each job, which increase for
longer sequence lengths. This highlights the need for improvements to the GPU archi-
tecture, for example by supporting data types better suited to applications such as these
that require very low precision data formats.

5.2. FUTURE WORK
The following topics can be used as inspiration for future research, as they would make
the systolic array architecture more suitable for adoption by other applications:

EXTENSION TO HIGHER-DIMENSION SYSTOLIC ARRAYS
The work in this dissertation has restricted itself to linear, or 1D, systolic arrays, as this
is the type of systolic array used to accelerate the Seed Extension kernel and the Smith-
Waterman algorithm. However, it would be interesting to extend the work to 2D systolic
arrays. These are used, amongst others, to accelerate the GATK HaplotypeCaller, which
is another popular bioinformatics application, and for matrix multiplication. Here, the
potential gains may be even more profound, as a 2D systolic array would suffer even
more from PEs being idle during the startup and shutdown phases.

DYNAMICALLY-ADJUSTABLE SYSTOLIC ARRAY CONFIGURATIONS
The efficiency of the Variable Logical Length, Variable Physical Length, and Variable
Physical and Logical Length designs is data dependent and a static analysis of the in-
put data is required to calculate their optimal design. Dynamic runtime reconfiguration
could be used, based on a sampling of input data, to automatically adjust the configura-
tion to optimally conform to the input data set. Partial reconfiguration could be used to
guarantee a minimum level of service while other parts of the FPGA are being reconfig-
ured to the optimal configuration.
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