
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

Towards the development of a Digital Twin
for the improvement of cool chain opera-
tional quality
A KLM Cargo case study

J.A. Sijtsma





Towards the development of a Digital
Twin for the improvement of cool chain

operational quality
A KLM Cargo case study

By

J.A. Sijtsma

Master Thesis

in partial fulfilment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Department Maritime and Transport Technology of Faculty Mechanical, Maritime and
Materials Engineering of Delft University of Technology

to be defended publicly on Thursday, February 23, 2023 at 10:00 AM

Student number: 5349664
MSc track: Multi-Machine Engineering
Report number: 2023.MME.8765

Supervisor: Dr. ir. Y. Pang
Thesis committee: Prof. dr. R. R. Negenborn, TU Delft committee Chair, 3mE

A. Nicolet, TU Delft committee member, 3mE
B. Krol, Company supervisor, KLM Cargo

Date: Tuesday 14th February, 2023

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover Image: Loading a Full Freight Boeing 747 through the nose cargo door, BRIX AFKL Cargo (2015)

It may only be reproduced literally and as a whole. For commercial purposes only with written authorisation
of Delft university of Technology. Requests for consult are only taken into consideration under the condition
that the applicant denies all legal rights on liabilities concerning the contents of the advice

http://repository.tudelft.nl/




Preface

You have just opened the report that covers my graduation research, which is the final academic work
for the Master program Mechanical Engineering - Multi-Machine Engineering at the TU Delft. I have
performed my research at KLM Cargo, which was an opportunity for which I am very grateful. The
dynamic environment of KLM Cargo, while overwhelming at times, provided many opportunities to
further develop my skills and more importantly learn new ones. This graduation research has been a
very rich experience full of challenges, new insights and most enjoyably a lot of laughs.

First of all, I would like to thank KLM Cargo for the opportunity to develop and conduct my own
research project at the Business and Process Improvement department. Most importantly, I would like
to thank my company supervisor Bart Krol for his patience and useful feedback and insights in order to
improve my work. In general, I would also like to thank all the employees at BPI for their welcoming
and open attitudes, as well as the other graduate interns with whom I have formed new friendships.

Furthermore, I would like to express my gratitude to the graduation committee for the guidance and
supervision throughout the research process. Firstly, I would like to thank Prof. dr. R. R. Negenborn
for the critical feedback and suggestions for the improvement of the project during our meetings. Of
course, I would also like to thank my daily supervisor Dr. ir. Yusong Pang for his patience when my
progress was slow, the very useful discussions we had on the research structure and specific contents
and most of all his expertise and guidance throughout my research. Your style of supervision allowed
me to truly be the project manager, from which I have learnt a great deal about myself and project
management in general.

Above all, I would like to express my deepest appreciation to my girlfriend Els, whose unconditional
support, encouragement and understanding throughout the past year has greatly helped me in the
completion of this work. I would also really like to thank my friends and family for their continuous
support. I would not be in the position I am right now if it was not for all of you.

For now, I hope you will enjoy reading this report.

J.A. Sijtsma
Rotterdam, February 2023

i



Executive summary

There is a rising demand for and reliance on pharmaceutical cool chains given the rise of the bio-
pharmaceutical industry and tightening regulations around the world. However, several problems and
challenges remain such as breaks in the cool chain and cool storage capacity constraints, ultimately
impacting the operational quality of cool chains. One actor within the air freight industry facing such
issues is KLM Cargo.

From the literature, it has been acknowledged that cool chain improvement may be focused on the
information extraction and improved decision-making layers, while the application of the Digital Twin
(DT) concept has been recognised as a potential for improvement. However, more research is needed
on the application of DTs in logistics, especially the pharmaceutical cool chain. Furthermore, in order
to quantify the operational quality of a cool chain, a novel metric has been introduced based on the
Overall Equipment Effectiveness (OEE) methodology: the Overall Cool Chain Effectiveness (OCCE).
The OCCE has been built up from three rates: the cool storage availability, on time performance and
temperature adherence. Therefore, the research has been aimed at the following research question:

To what extent can the pharmaceutical cool chain operational quality be improved through
the development of a real-time decision-making methodology?

An answer to the main research question has been aimed to be achieved through the application of
the DT concept in a digital system. Based on the studied literature, a DT has been defined as the
additional functionalities offered by a digital system through interactions with a Physical Twin (PT)
model representation of the physical system, while utilising automatic data connections. The proposed
digital system has thus been built up from a PT simulation model, which represents the studied cool
chain at KLM Cargo. The DT has been applied in the form of a decision-support module which offers
additional functionalities to the system, compared to the PT.

From the studied cool chain process at KLM Cargo, it has been found that the cool storage facility is
typically constrained in terms of capacity. Furthermore, the business ruling in place which determines
whether freight receives cool storage, has been based on static ruling, depending on the transit time
and Special Handling Code (SHC). Furthermore, although large quantities of data are generated in the
system, this information is currently not utilised in the cool storage decision-making process. Moreover,
a large amount of Key Performance Indicator (KPI) are in use at KLM Cargo in order to assess the
operational performance of the system. However, these KPIs do not provide a coherent overview of
the operational quality of the cool chain as a whole, while the temperature exposure on a Unit Load
Device (ULD) level is currently not monitored. Therefore, it has been concluded that the studied
pharmaceutical cool chain may benefit from the implementation of the DT concept through improved
cool storage decision-making.

The PT model has been manually programmed in Python by means of Discrete Event Simulation (DES)
and has been fully verified and partly validated with respect to performance data of the studied system,
which has been noted as a limitation of the research. Similarly, the DT decision support module has
been manually programmed in Python and loaded into the PT model. The studied system at KLM
Cargo has thus been digitised through the PT model and has served as the baseline scenario in order
to quantify the operational quality improvement by means of the OCCE metric. The DT module has
been applied for the cool storage decision-making, therefore replacing the static business ruling with
dynamic real-time business ruling based on the current system state. In specific, the dynamic real-time
business ruling has been based on the expected exposure of a ULD.

From the PT model output in the digital system, it has been concluded that the operational quality
of the pharmaceutical cool chain at KLM Cargo can be improved by 3.80% through the application of
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the DT concept for improved cool storage decision-making. The operational quality improvement has
been primarily achieved through the increase of the CRT cool storage availability increase. Further-
more, it has been found that during the critical periods of spring and summer, the operational quality
improvement was most significant with a 6.39% increase, while overall the average exposure per ULD
has decreased by 2.05%. Finally, it has been found to be possible to derive temperature profile plots
for each unique ULD, with currently available data from the studied system, which could provide a
method for improving the monitoring of temperature sensitive freight.

For further research, it has been recommended to consider the actual automatic data connections to and
from the physical system and the digital system, in order to achieve an actual DT of a pharmaceutical
cool chain. Besides, it has been recommended to consider the improvement of the improved decision-
making algorithm for further operational quality improvements.
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1
Introduction

In the following chapter, an introduction to the research project has been given. Firstly, the research
background has been provided in Section 1.1. Then, the research problem addressed in this work has
been introduced in Section 1.2. Consequently, the research goal has been defined in Section 1.3 and
the research scope has been discussed in Section 1.4. The chapter has been concluded by providing the
research questions in Section 1.5 and an overview of the research structure and applied methodologies
in Section 1.6.

1.1. Research background
The air freight logistics industry has become an increasingly important part of the modern global
economy [1]. Annually, airlines transport over 52 million metric tons of cargo with a value equivalent
to $6.8 trillion [2]. The flow of air cargo includes products as diverse as cut flowers, pharmaceutical
products, consumer electronics, perishable foods and medical diagnostic devices. Even though air freight
shipments may account for less than 1% of global trade by volume, the total value accounts for 35% of
all global shipments [3]. The air freight industry can be considered as a highly heterogeneous industry
with a wide variety of major actors and traffic flows [1]. Nonetheless, three major actors in the air
freight supply chain have been recognised: shippers, forwarders and carriers [4]. The shipper can be
considered as the party who wants to ship cargo from one place to another. Consequently, the forwarder
arranges the door-to-door transport of the shipment, handles the necessary documentation and possibly
consolidates freight with the same destination into a single shipment. Finally, the carrier performs the
airport-to-airport movement of freight. Although the industry generally exhibits turbulent behaviour
with an uncertain future trajectory, it has been characterised by a relatively long-term growth rate
for the past fifty years. Furthermore, despite the uncertainty, a demand increase has been anticipated
for certain specialist products such as pharmaceuticals, cut flowers and medical diagnostic devices
[1]. However, pharmaceuticals, fresh food and flowers are products characterised by the requirement of
special handling conditions, especially regarding temperature. Therefore, these products are distributed
through the so-called cool chain. Compared to supply chains for regular cargo, the cool chain includes all
steps and facilities for storing, handling and transportation of perishable products, for which controlled
temperature conditions must be maintained from the point of production to the point of sale [5]. The
goal of an effective cool chain is to ensure a specific temperature range for specific products, such as fresh
food products, medicine and vaccines. Therefore, besides the primary objectives of managing regular
supply chains, cool chain management also aims at preserving the quality of products throughout the
chain [6]. Depending on the temperature range, a cool chain may also be referred to in the literature
as the cold chain if the supply chain has been designed to handle products under a low-temperature
range such as 2°C to 8°C and below 0°C. However, in this work, any supply chain designed to handle
temperature-sensitive goods has been referred to as a cool chain.

The primary product categories which can be distinguished that require an adequate cool chain are fresh
and pharmaceuticals. Fresh products include different types of food such as fruit, vegetables, frozen
meat, seafood, and dairy, as well as non-food products such as cut flowers. Pharmaceuticals include
medicine, a wide range of vaccines and medical diagnostic devices. The demand for an adequate cool

1
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chain for each product category is driven by different developments. In terms of nutrition, the food
industry is under significant strain to provide an adequate supply to an ever-growing human population.
Alarmingly, however, it has been estimated that roughly one-third of food produced for human consump-
tion is lost or wasted globally [7]. Among other reasons, food losses are generally attributed to natural
decay, which can be accelerated by lacking or poor temperature management. In specific, unnecessary
food losses tend to occur due to the fact that the actual temperature conditions during transport and
storage often do not meet the optimal product-specific values [8]. Therefore, given a growing worldwide
population, the challenge of nutritional supply could be significantly addressed through a reduction
of losses throughout the supply chain. Although similar to fresh products, pharmaceutical shipments
impose greater risks in terms of consumer health whenever environmental changes and fluctuations
reduce the product quality [9]. This is due to the fact that many medicines and especially vaccines need
to be preserved in a certain temperature range in order to remain effective. Whenever the effective-
ness of a pharmaceutical product is compromised, it might ultimately put the receiving patient at risk.
The reliance on and demand for a temperature-controlled cool chain for the pharmaceutical industry is
actively driven by the expansion of the biopharmaceutical sector [10]. Compared to generic pharmaceu-
tical products, biopharmaceuticals are based on biotechnology, which means that it is produced from
naturally made protein, enzyme and antibody. Such biopharmaceuticals exhibit the advantage of low
non-specific toxicity. However, disadvantages include the relatively high costs and sensitivity to the
surroundings [11]. Due to the sensitivity of the products, biopharmaceutical is one of the major sectors
in the pharmaceutical industry requiring temperature control. Furthermore, cool chain management is
critical due to the high costs and thus significant shipment values of pharmaceuticals in general.

Despite the actively driven demand for effective cool chain management, several problems and challenges
remain. As an example, an ideal cool chain provides the correct environmental conditions at all times
and locations throughout a network. However, especially in the air freight industry, a network may
contain many handovers of shipments that in principle constitute to breaks in the cool chain. During
such breaks in the chain, the risk of temperature excursions and thus shipment losses significantly
increase. Besides, Kartoglu and Milstien [12] have justly noted that a general illusion exists in the sense
that cool chain problems are mainly encountered in developing countries. In fact, cool chain problems
have been documented in all countries where temperature monitoring studies have been performed.
Although such challenges have given rise to specialised active Unit Load Device (ULD)s, or refrigerated
aircraft containers, there are rarely routine systems in place to provide consistent insight into cool chain
performance and enable day-to-day performance management [13]. For the following work, it has been
chosen to limit the research object to the pharmaceutical air freight cool chain only, which has been
further elaborated in the research scope.

1.2. Problem definition
One actor within the air freight industry facing cool chain challenges is the Koninklijke Luchtvaart
Maatschappij (KLM), or Royal Dutch Airlines in English, and the respective cargo division KLM
Cargo at which a case study has been performed for this research project. KLM Cargo is the division of
KLM which handles, prepares and finally offers the freight for air transportation to KLM, the carrier.
Besides the arrangement of air transport of general cargo and valuables, the division has also invested
significantly in a cool chain for both fresh and more importantly pharmaceutical shipments. The case
study for this research project has been performed at the Business and Process Improvement (BPI)
department, which focuses on the improvement of the cargo handling and transportation processes.
The BPI department has an active and dedicated cool chain program aimed at the improvement of the
cool chain processes, transparency and compliance. Naturally, pharmaceutical shipments are subject to
strict regulations. In fact, regulations have been tightened in Europe, which has been followed by the
United States [14]. In order to provide a common baseline from existing regulations and standards such
as the European Union (EU) Good Distribution Practice (GDP) and the World Health Organisation
(WHO) Annex 5, the International Air Transport Association (IATA) has established the Center of
Excellence for Independent Validators in Pharmaceutical Logistics (CEIV Pharma) certification, for
which re-certification is necessary every three years. Air France KLM Martinair Cargo (AFKLMP
Cargo) has already received the CEIV Pharma certificate three times in a row, where the re-certification
continues to demand sufficient quality management. Despite investments and certifications, the joint
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cargo division of the Air-France KLM Group Air France KLM Martinair Cargo (AFKLMP Cargo) has
been losing market share in the pharmaceutical segment. In fact, between 2015 and 2018, the business
share decreased from 27% to 15.8% respectively, while the total market has been growing. Customers
have attributed the market share decline to, among other reasons, operational quality. The latter term
is a broad concept and has therefore been further delineated for the studied research subject. In a
general sense, transport logistics quality has been defined as the degree to which the performance of
the freight transport operations across modes in the supply chains, meets stated service criteria [15].
The latter is a general notion of operational quality in transport logistics which has been extended to
the cool chain. In essence, the operational quality of a cool chain has been defined as the performance
of the system with respect to certain criteria or service levels. In other words, operational quality has
been understood as the effectiveness of the system. Logically, the degree of operational quality or the
effectiveness of the system should be quantifiable to allow for a proper assessment of the research object.
For the cool chain studied in the case study, multiple KPIs are used to quantify the performance of the
system. However, a single metric which represents the operational quality of the cool chain is currently
not in use nor has it been defined.

In the current situation, the handling operations of pharmaceutical shipments are primarily driven
through standardised handling process milestones while operational tasks are generated by a Warehouse
Managment System (WMS), which thus lacks certain flexibility with regard to operational decision-
making. Although supporting personnel has some ways of intervening in the cool chain process, it is
generally done based on experience or intuition which may not lead to optimal results. Furthermore,
the current monitoring capabilities of pharmaceutical freight at KLM Cargo remain limited. In this
study, monitoring has been referred to as the process of continuously gathering logistics and programme
information to verify whether the objectives are met [16]. As an example, only pharmaceutical shipments
which are to be handled between 2°C and 8°C are monitored twice a day on a time and location basis.
Although it is therefore possible to verify whether such a shipment is in a cool room at or before a given
time according to the WMS, there is no insight into the actual state of the cargo and cool chain as a whole.
The latter is of importance due to capacity limitations present in the cool cells used in the warehouse
to temporarily store temperature-sensitive freight. In fact, it has not been uncommon for cool cells to
be completely full, resulting in the inability to ensure the correct handling of pharmaceutical freight,
which ultimately negatively influences the operational quality of the cool chain. However, expansion of
the cool cells requires significant investments and may even not be possible given spatial arrangements
in warehouses. Therefore, improved decision-making on the use of resources such as cool cell storage
may provide an opportunity to improve the cool chain with the given infrastructure while allowing for
proactive interventions in the process. In conclusion, the problem has been defined as follows:

Problem Statement

Currently, there is no capability in place for real-time decision-making in order to improve the
cool chain operational quality based on the actual system state with the existing infrastructure.

1.3. Research goal
Based on the described problem definition, the goal of the research has been formulated as follows:

Research Goal

The research project has been aimed at the development of a real-time decision-making method-
ology in order to improve the operational quality of the pharmaceutical cool chain.

In principle, the goal of decision-making improvement entails the aim of utilising process and envi-
ronmental data in order to determine, support and possibly improve the decision-making with regard
to cool storage of pharmaceutical freight. In other words, the decision-making goal is to improve the
decision-making with regard to whether freight should receive cool storage or not. Therefore, the re-
search has been focused on the development of real-time decision-making based on the actual system
state, for the improvement of the operational quality of pharmaceutical cool chains.
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1.4. Research scope
Time is a substantial constraint in any research project. Therefore, in order to ensure the feasibility of
this work, a certain scope has been set that simultaneously permits sufficient complexity in the studied
system. Firstly, since the case study has been carried out at KLM Cargo, the scope has been limited
to the domain in which this division operates. Although the latter can be considered self-evident, it
should be recognised that the global cool chain from shipper to consignee is a rather extensive network
involving many different parties. However, KLM Cargo only has the capability to intervene in the part
of the cool chain for which the company bears responsibility. Therefore, the scope has been limited to
this domain, which has been further elaborated in Chapter 3. Secondly, it has been decided to limit
the scope to pharmaceutical shipments only, therefore not considering fresh or perishable shipment
flows. The fresh and pharmaceutical products do not differ significantly from a technical perspective;
the process steps are comparable and there is no differentiation in the equipment used to handle either
type of shipment. However, the products within the shipments are inherently different and customers
undoubtedly have a different and more stringent regulatory responsibility for pharmaceutical shipments.
In principle, the latter is also true for KLM Cargo and for instance temperature violations are typically
of greater concern for pharmaceutical customers, who also demand higher standards compared to fresh
customers. Finally, it has been chosen to limit the scope to the truck-aircraft transit shipment flow only
at the hub of KLM Cargo. With regard to the proposed methodology, actual implementation has not
been achieved in this research project. Therefore, the automatic connection of data exchanges between
the proposed digital system and the physical system and vice versa has not been included in the scope.

1.5. Research questions
The research has been structured according to a main research question along with several sub-questions:

Research Questions

To what extent can the pharmaceutical cool chain operational quality be improved
through the development of a real-time decision-making methodology?

1. Considering the state of the art, how can cool chain management be improved?
2. What is the current state of a pharmaceutical air freight cool chain process, based on an

applied case study?
3. How can a pharmaceutical air freight cool chain be modelled?
4. To what extent does the developed model effectively represent the research object, in terms

of verification and validation?
5. How can the improved decision-making be implemented?
6. Which insights can be derived from the developed model?

1.6. Research methodology
In order to clarify the methodology and structure used for answering the presented research questions,
the research framework has been visualised in a conceptual model, which can be seen in Figure 1.1. In
order to obtain the research goal, several methodologies have been used. Firstly, the OEE has been
applied in order to define a suitable effectiveness measure for the operational quality of the pharma
cool chain. Although metrics such as the OEE have been defined in the literature in order to study the
effectiveness of individual machines, production lines and even production facilities, a similar metric
has not been found in the literature for a cool chain. Therefore, in order to quantify the improvement
instated by the proposed methodology, the OEE methodology has been adapted to fit the needs for an
effectiveness metric of a cool chain which can quantify changes in terms of operational quality. Secondly,
as typically encountered in industry, k-Nearest Neighbours (kNN) missing data imputation has been
applied in order to obtain an adequate data input for the process modelling. Thirdly, in order to quantify
the extent to which the operational quality of a pharmaceutical air freight cool chain can be improved
by the proposed methodology, Discrete Event Simulation (DES) modelling has been applied in order to
experiment with the studied system. Finally, in order to achieve the research goal, a decision-making
improvement method is required. For fresh cool chains, a significant area of research has been aimed at
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extracting the product state or quality remotely, in order to assist the decision-making process in such
systems. Similarly, a separate area of research which has been under development is that of a Digital
Twin (DT), which can be considered as a virtual copy of a real-world object through which additional
functionalities may be offered. Interestingly, the concept of a DT has been applied in fresh cool chain
studies [17, 18, 19, 20, 21, 22], where the fresh product itself has mainly been studied with respect
to the DT. However, the application of the concept to a pharmaceutical air freight cool chain in the
literature has been found to be limited. Therefore, the DT concept has been chosen in order to develop
the real-time decision-making methodology for the improvement of operational quality. In specific, a
DT development methodology introduced by Ait-Alla et al. [23] has been used as the basis for the
development of the improvement method. This method has been used in order to construct a digital
system containing a process virtualisation, or Physical Twin (PT), and a DT decision support module
containing improved real-time decision-making. Given the research scope, the cool chain operational
quality improvement methodology has been applied to a specific pharmaceutical air freight cool chain
system through a case study at KLM Cargo. The resulting improvements have been quantified by means
of a proposed novel effectiveness metric. Consequently, the contribution of this research project has been
recognised as an extension of the application of the DT concept into the domain of the pharmaceutical
air freight cool chain in order to improve operational quality by means of real-time decision-making.

Ch. 7

Ch. 6

RQ 5

Ch. 5

Ch. 4

Ch. 3

Ch. 2

Ch. 1

RQ 6

M. RQ

RQ 4

RQ 3

RQ 2

RQ 1

Start research

Problem definition

RQs and
methodology

Case study 
process analysis

Literature study

Data collection and
processing

Model development

N

Y

Verified +
validated?

Results

Conclusions and
recommendations

Digital Twin
concept

Discrete Event
Simulation

Improved decision
making

Overall Equipment
Effectiveness

kNN data
imputation

Figure 1.1: Conceptual model of the research project



2
Current state of the art of cool chain

management

In the following chapter, the relevant and required literature and methodologies for the development of
a cool chain management improvement methodology have been presented. Firstly, a general overview of
the air freight industry has been provided in Section 2.1. Thereafter, a literature overview on cool chain
management has been provided in Section 2.2. Then, the relevant literature on missing data in industry
has been discussed in Section 2.3. Consequently, the evaluation of a system such as a cool chain has
been discussed in Section 2.4. In Section 2.5, relevant modelling techniques have been discussed for the
implementation and execution of the research. Then, the suggested concept for improved cool chain
management has been elaborated on in Section 2.6. Finally, the company related to the case study
has been introduced in Section 2.7. The chapter has been concluded with a synthesis of the previously
mentioned sections and the relevant findings in Section 2.8, with the aim of answering the following
research question:

1. Considering the state of the art, how can cool chain management be improved?

2.1. The air freight industry
In order to provide the required background information for a proper understanding of the air freight cool
chain, a general discussion on the air freight industry has been provided. The air freight supply chain
consists of three major actors: shippers, forwarders and carriers [4]. The shipper can be considered as
the party who wants to ship cargo from one place to another. Consequently, the forwarder arranges the
door-to-door transport of the shipment, handles the necessary documentation and possibly consolidates
freight with the same destination into a single shipment. Finally, the carrier performs the airport-to-
airport shipment. Kupfer et al. [24] have extended the air freight business model with the notion that an
important distinction should always be drawn between integrated and non-integrated air cargo carriers
in any discussion of air freight operations. The reason has been interpreted as the influence of the type
of carrier on the involved actors and processes in the supply chain. The extended business model can
be seen in Figure 2.1.

6
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Shipper Forwarder 
(e.g., Kuehne and Nagel)

Combination Carriers 
(e.g., KLM; Emirates)

Integrators 
(e.g., FedEx; UPS)

All-Cargo Carriers 
(e.g., Cargolux)

Forwarder 
(e.g., DB Schenker) Consignee

Figure 2.1: Air freight delivery business model, adapted from Kupfer et al. [24] and Debbage and Debbage [1]

Most companies in the air freight industry operate as non-integrated service providers, including for-
warders, combination carriers such as KLM and all-cargo carriers such as Cargolux [24]. As the name
suggests, combination carriers combine the capacity of aircraft for both passengers and their luggage
and freight, while all-cargo carriers utilise aircraft solely for the transportation of freight and are thus
not involved in the passenger business. However, the distinction between combination and all-cargo
carriers is not always as clear as just indicated since many large passenger carriers also operate dedi-
cated all-cargo aircraft besides the passenger fleets. Integrated carriers, or integrators, provide a full
door-to-door solution using a combined fleet of aircraft and road vehicles, such as FedEx. Integrators
tend to own all the assets of production throughout the entire logistics value chain [1] and are among
the largest cargo airlines in the world. Although the approach of a combination carrier, all-cargo car-
rier or integrator differs, the basic service offered is essentially equal for all; the air transportation of
freight. Considering a combination carrier such as KLM, the forwarder is the primary party which
places bookings for freight transportation and may thus be considered as the customer. By zooming
in and reducing the perspective to an airport or hub, additional actors in the supply chain become
apparent, which has been shown in Figure 2.2.

Forwarders

Carriers

Major
actors

Other
service
providers

Shippers

Agents

Ground handling
agents

Hinterland
transport

companies

(Handling and
storage)

Customs, 
MaintenanceCustoms brokerCargo handlers

Figure 2.2: Air freight actors at an airport or hub, adapted from Merkert, Van de Voorde, and Wit [25]
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In principle, each actor involved in the air freight supply chain constitutes an integral part of air
logistics and provides services to other actors and ultimately the shipper. Additional major actors worth
mentioning include the hinterland transport companies and terminal operating companies. Merkert,
Van de Voorde, and Wit [25] have mentioned the phenomenon of frequent feeding of freight towards
large intercontinental hubs such as Schiphol (SPL), which is mostly done through trucking in Europe.
The actors which provide the feeding of freight towards the hub are the hinterland transport companies.
Upon the arrival of freight at the hub, a terminal operating company, or Ground Handling Agent (GHA),
arranges the handling, temporary storage and preparation of freight for air transportation.

2.2. Cool chain management
A cool chain is a system used for keeping and distributing environmentally sensitive products in the
required conditions. Generally speaking, the system consists of a series of storage and transport links
which have been arranged in such a way as to maintain pharmaceutical freight at the correct tempera-
ture. Unfortunately, in reality, a cool chain system is not ideal and may contain certain breaks, such
as handovers in an intermodal connection. As an example, considering the air freight industry, phar-
maceutical freight arriving by truck at an airport must be unloaded, handled and finally transported
towards the aircraft. During such activities, it is not uncommon for sensitive freight to be exposed to
harmful environmental conditions. In principle, loss of quality throughout a cool chain transportation
network is a cumulative process in which each break adds up [26]. However, it is especially difficult to
eliminate cool chain breaks in the air freight industry due to for instance the required warehouse and
air-side handling at airports. Through experience, pharmaceutical companies are aware of the risks
encountered throughout a cool chain. Therefore, appropriate packaging solutions are chosen in order
to mitigate the risks of cool chain breaks. Nonetheless, the packaging has usually been optimised for
specific external temperature ranges. Consequently, it is the responsibility of the shipper to define the
acceptable temperature range for a shipment. The temperature range or limit thus only reflects the
external or ambient handling temperature allowed during transportation and not the actual internal
product temperature IATA [26]. Since cool chain management aims at preserving the quality of prod-
ucts throughout the chain [6], businesses in the pharmaceutical and medical industries are increasingly
relying on cool chains [27]. The demand increase can largely be attributed to the growth of the bio-
pharmaceutical industry [10]. Considering for example vaccines, Kartoglu and Milstien [12] have noted
that the inherent sensitivity and instability differs between the types of vaccines. For instance, there
are two original types of vaccines; live viral and bacterial or inactivated vaccines. Live vaccines are
typically freeze sensitive and also not stable to high temperatures, whereas inactive vaccines cannot be
frozen yet are more stable to heat. In principle, the cool chain was developed for these two types of
vaccines. However, especially with the growth of the biopharmaceutical sector, many newer vaccines
and other pharmaceutical products cannot be easily divided into the two categories. Furthermore, such
vaccines show a wider range of behaviour in terms of heat stability and freeze sensitivity. Therefore,
the necessity for careful attention at all levels of the cool chain has become apparent. Besides the fact
that cool chain problems occur globally as noted by Kartoglu and Milstien [12], it has been mentioned
that the cool chain is typically thought of as a protection mechanism from excessive heat. However,
it is imperative to note that low temperatures are an equally important hazard for the integrity of
pharmaceutical shipments [12, 28, 29] and should thus also be considered in cool chain management.
The fact that pharmaceutical products may be more sensitive to either excessive cold, heat or both, ac-
centuates the importance of maintaining shipment temperature within the specified temperature range.
Despite efforts such as product packaging, cool chain failures remain present during day-to-day opera-
tions. However, for effective cool chain management and the improvement thereof, it is imperative to
consider the types of failures that may occur in such a system.

Since a cool chain has been regarded as a supply chain with the additional aim of preserving product
quality [6], cool chain management and the related challenges may be expected to parallel supply chain
management. Indeed, considering a three-fold understanding of a supply chain in terms of physical
movement of goods, informational flows and decision making, Comes, Sandvik, and Van de Walle [30]
have attributed cool chain failures to a failure in any of these categories:

• The lack or failures of the physical layer leading to a disruption of material flows;
• Information gaps and the lack of the ability to manage flawed information;
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• A failure of decision-making, coordination or planning.

Furthermore, from a humanitarian supply chain perspective, the categories have been related to spe-
cific cool chain challenges in Table 2.1 while a cool chain analysis framework has been proposed. An
adaptation of the framework can be seen in Figure 2.3.

Category Disruptions
Disruption of material flows Critical infrastructure failure, e.g. power blackout, disruptions of transportation

network, closed warehouses [31];
Failure of equipment and lack of redundancies, e.g. lack of fuel, spare parts and back-up
energy [32]

Information gaps Failure of monitoring and tracking systems; incorrect use of vaccine vial monitors; no
tracking of minimum and maximum temperatures [29];
Breakdown of communication and information systems;
Lack of ability to manage the complex information stream, and work with delayed,
lacking or uncertain information

Failure of decision making Deficiencies in vaccine storage and handling and lack of training [33, 34];
Lack of mitigation and management options for possible disruptions and lack of
planning [35];
Lack of operational decision support [36]

Table 2.1: Cool chain disruption taxonomy [30]

As shown in Table 2.1, a wide range of cool chain disruptions and challenges can be encountered, which
generally can be associated with the three failure categories. A disruption of material flow is typically
attributed to a lack of infrastructure or equipment, or the failure thereof. Furthermore, a lack of the
ability to extract useful information from the cool chain may lead to information gaps, which increase
the difficulty to assess the performance of the system. Finally, related to information gaps, there may in
general be a failure of decision making or lack of operational support available. This could be attributed
to both a lack of information available or the inability to utilise available data for improved decision
making. Figure 2.3 depicts the different layers and their dependencies as related to the cool chain
disruption taxonomy which has been shown in Table 2.1.

Improve capacity

Reduce uncertainty

Increase flexibility

Infrastructure
and Capacity

Information

Decisions

Figure 2.3: Analysis grid for cool chain review, adapted from Comes, Sandvik, and Van de Walle [30]
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The infrastructure and capacity layer enables and generates the information and communication flows.
Such information flows then enable and support the decision making which in turn impact the physical
layer through for instance possible interventions or resource allocation. Furthermore, the framework
shown in Figure 2.3 indicates that for effective decision making, supporting information is to be extracted
from the physical layer by active monitoring of the process. Considering Table 2.1, Comes, Sandvik,
and Van de Walle [30] have mentioned that technologies are increasingly used to overcome the specific
disruption categories in the different layers by; improving capacity in order to address infrastructure
problems, reducing uncertainties or information gaps and by increasing flexibility through improved
decision making. However, improving capacity is generally not a viable option for any short term
improvements since apart from significant investments, the lead time and procurement of cool chain
equipment may take up to two years [13]. Nonetheless, the unavailability of cool chain facilities has
been recognised as a typically encountered problem in practice, which is simply caused for instance by
cool storage being full [37, 38]. Therefore, information extraction and improved decision making may
provide a suitable method for cool chain management improvement. In fact, regarding the information
and decisions layers, Han et al. [39] have noted that for a cool chain, one of the main research directions
is to ensure the integrity of the cool chain and its precise control. Given the research goal and scope,
this work has been primarily focused on the information and decisions layers portrayed in Figure 2.3.

Considering the literature with regards to cool chains in general, significant efforts have been spent on
the improvement of such systems, especially in the information and decisions domain shown in Figure 2.3.
As an example, Wang, Kwok, and Ip [40] have developed a real-time monitoring and online decision
support system with Radio Frequency Identification (RFID) and a sensor network and a decision rule
base for the improvement of perishables transportation. The results from the simulation have shown
that the monitoring and decision support system is an efficient tool for reducing the transportation
losses of perishable products for the enterprises in cold chain. Askin, Khodadadegan, and Haghnevis
[41] have developed mathematical decision models that consider remaining shelf life in determining
the dynamic assignment of perishable items in warehouses, using environmental data collected with
RFID technology. Similarly, a significant amount of research has been performed on shelf life prediction
and product quality status assessment throughout fresh cool chains [42, 43, 44, 45]. However, given
the wide range of pharmaceutical product characteristics and limited information sharing between
cool chain partners, methods for improvement in the food cool chain are not easily transferred to the
pharmaceutical cool chain. As previously mentioned, pharmaceutical companies choose appropriate
packaging. However, since technical details on the packaging such as thermal conductivity and the
product itself is not shared, it is not possible to accurately determine shelf life as seen in the literature
for fresh cool chains. Consequently, pharmaceutical cool chain improvement in the air freight industry,
has received less attention in the literature especially with regards to digitisation. Higgins et al. [46]
have proposed a configuration designed to improve data management for real-time analysis of sensor
data, for which a pilot has been performed in a pharmaceutical cool chain containing air shipping
lanes. Terpstra, Zhang, and Akçay [47] have attempted to utilise available data in a pharmaceutical
air freight cool chain in order to predict temperature profiles of new shipments. However, Ashok,
Brison, and LeTallec [13] have noted that an understanding of cool chain performance is typically
limited due to a lack of performance management systems. Furthermore, a brief understanding of cool
chain performance may be available from infrequent assessments, yet there are rarely routine systems
in place to provide consistent insight into cold chain performance and enable day-to-day performance
management. At the same time, Kartoglu and Milstien [12] have noted that the regulatory trend has
been aimed towards increased oversight, management and control of environmental conditions across
the entire supply chain. In general, supply chain risk managers and especially cool chain managers,
are interested in decision-making support in order to monitor and recognise disruptions in real time
while being able to determine the required actions to deal with such situations [48, 49, 50, 51]. Some
researches have pointed out a trend in supply chain management towards a Digital Twin (DT), i.e.
computerised models which represent a physical object in real time [52, 53, 54, 55, 56]. In fact, Haße
et al. [57] have mentioned that a DT can offer considerable potential, especially in logistics. A DT
which represents a physical supply chain based on actual system data has the potential to be used for
planning and real-time control decisions [58]. Similarly, Verdouw et al. [59] have addressed that object
virtualisation within supply chains has been an important topic in research. Furthermore, the authors
have mentioned that virtualisation allows for the decoupling of physical flows and information aspects.
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Consequently, virtual objects such as freight can be enriched with sensor data about properties such as
temperature information, which allows for advanced control capabilities including tracking and tracing,
quality monitoring and planning functionalities. Moreover, in order to advance a transport system
such as the cool chain towards an intelligent system, it is necessary to monitor the system and collect
information, model and predict dynamics and finally control the process for optimal performance [60].
Therefore the concept of a DT has been deemed as an appropriate method for the improvement of the
air freight pharmaceutical cool chain. Nonetheless, the quality of model-based decision-making support
in supply chains crucially depends on the availability of data and the quality thereof [58]. Accordingly,
in Section 2.3 an overview of methods for handling missing data has been provided. Consequently, a
novel method for assessing cool chain performance has been investigated in Section 2.4.

2.3. Missing data imputation
Throughout many industries, an unfortunate yet frequently occurring issue is that of missing data.
Besides operational issues encountered with missing data, any absence of data may cause bias in statis-
tical analysis while making many data modelling techniques ineffective [61, 62]. Consequently, effective
methods for handling missing data have become a necessity. Such common known methods range from
data omission to sophisticated imputation algorithms [63]. Data omission is commonly applied and
simply entails the removal of data samples which contain missing data values. Although it is an in-
herently simple method, it may significantly decrease the sample size of a data set. Furthermore, any
deletion of samples may result in discontinuous time-series data [64]. On the other hand, the goal of
data imputation is to generate plausible replacement values of missing data such that sample omission
is not necessary [65]. However, before considering available data imputation methods in the literature,
it has been deemed appropriate to further elaborate on the characteristics of missing data. In spe-
cific, missing data patterns and missing data mechanisms have been further discussed in the following
subsection, followed by the different imputation methods.

2.3.1. Missing data patterns and mechanisms
Ehrlinger et al. [66] have noted the fact that no standardised list of missing data patterns exists in
the literature. Therefore, the authors have described the three most occurring patterns as well as two
additional patterns of special interest for the industrial domain [66]. The respective patterns have been
visualised in Figure 2.4.

X1 X2 Y1 Y2 Y3

(b) Multivariate

X1 X2 X3 X4 Y1

(a) Univariate

X1 Y1 Y2 Y3 Y4

(c) Monotone

X1 Y1 Y2 Y3 Y4

(d) General

X1 Y1 Y2 Y3 Y4

(e) Line

X1 X2 Y1 Y2 Y3

(f) Multi-rate

Figure 2.4: Missing data patterns, adapted from Ehrlinger et al. [66]
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Each missing data pattern has been further elaborated on following the work by Ehrlinger et al. [66]:

1. Univariate and multivariate pattern: the univariate pattern in Figure 2.4 (a) has been
considered as the simplest case, where exactly one variable Y1 contains missing values. The
multivariate pattern in Figure 2.4 (b) has been considered as a special case of the univariate
pattern, containing a set of variables with missing data, in this case, Y1, . . . , Y3. Univariate and
multivariate patterns may occur with the failure of one or more sensors.

2. Monotone pattern: the monotone pattern shown in Figure 2.4 (c) is typical for social sciences
where participants tend to leave a study which is conducted over time. However, the monotone
pattern has little significance in the industrial domain.

3. General pattern: the general pattern shown in Figure 2.4 (d) is the default missing data pattern
encountered in practice. Despite the frequency of occurrence of this pattern, it has also been
considered the most difficult pattern to handle, since it is often a combination of other patterns.
The causes may be the co-occurrence of sensor failures and manual data removal.

4. Patterns for industrial applications: the line and multi-rate patterns shown in Figure 2.4 (e)
and (f) respectively have been denoted as of specific interest for the industrial domain [67]. The
line pattern is typically attributed to sensor breakdown. In contrast, the multi-rate pattern does
not necessarily represent an error since this pattern typically occurs intentionally. As an example,
specific features may be measured less often than other features in the data set.

Besides the pattern of occurrence of missing data, several mechanisms of missing data have been recog-
nised which describe the relationship between missing and existing values [68]. The three mechanisms
have been further discussed following the work by Ehrlinger et al. [66] and Zhang and Thorburn [64]
and have been visualised in Figure 2.5.
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Figure 2.5: Missing data mechanisms, adapted from [69]

Figure 2.5 indicates how the missingness R is affected by the complete variables X, the partially missing
variables Y and external causes Z. The three mechanisms have been further discussed in relation to
Figure 2.5:

1. Missing Completely at Random (MCAR): if the missing data is completely at random, the miss-
ingness only depends on external causes Z, which have no influence on the overall data, as seen
in Figure 2.5 (a). In this sense, MCAR is an ideal situation with regards to imputation, yet does
not occur frequently in practice.

2. Missing at Random (MAR): when data is missing at random, missing values are not only caused
by Z but are also influenced by complete variables X, as shown in Figure 2.5 (b). It is there-
fore possible to distinguish MAR from MCAR by identifying patterns in X which describe the
missingness. For example, if all sensor readings for a specific machine are missing, the data is
MAR.

3. Missing Not at Random (MNAR): with respect to Figure 2.5 (c), data which is missing not at
random is influenced by three factors: Z, X and the observed variable which contains missing
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values Y . An exemplary cause of MNAR could be the missing of values for sensor readings above
a certain temperature. In principle, in this case, the missing data is systematically related to the
unobserved data and is thus significantly difficult to handle.

In general, since any information about the missing values is not available, it is difficult to automatically
distinguish between MAR and MCAR. In such cases, it is only possible to collect additional information
on the missing data.

2.3.2. Imputation methods
Zhang and Thorburn [64] have classified the imputation methods according to three groups: statistical-
based methods, model-based methods and neural network-based methods. Each group has been briefly
discussed below.

Statistical based
In statistical-based imputation methods, missing data values are replaced with plausible values which
can be derived by substituting values from the available observed variables [70]. Three commonly
used statistical imputation methods are mean imputation, last observation carried forward and linear
imputation. As the name suggests, mean imputation involves the replacement of missing values with
the arithmetic mean of the other available values. With the last observation carried forward method,
missing values are imputed from the last observation in the data set. It is evident that with this method,
a rather unrealistic assumption is made that there has been no change at all since the last measured
observation [71]. Finally, with linear imputation, missing values are based on adjacent available values
through linear interpolation. Linear imputation is a preferred method for estimating continuously
missing data over a short time interval. This is due to the fact that the accuracy of linear imputation
typically decreases as the length of the missing data period increases [64].

Model based
Model-based imputation has the goal of building predictive models in order to impute estimated values
for each target variable which contains missing values. Several commonly deployed methods include:
Expectation-Maximisation (EM), Multiple Imputations by Chained Equations (MICE) and k-Nearest
Neighbours (kNN). EM is a parametric method in which missing values are imputed based on the max-
imum likelihood estimation. The method contains two steps in which firstly missing data is estimated
based on all observed data and estimation model parameters, after which the expectation of the full
data set is maximised to obtain the next guess of missing data. Both steps are iterated until the model
converges and the missing data can be estimated. In the MICE procedure, a series of regression models
are run whereby each variable with missing data is modelled conditional upon the other variables in the
data [72]. Finally, kNN is a popular approach in data processing applications. In principle, it has been
designed to replace missing values by using k-most similar non-missing data. The kNN algorithm is
therefore used to search the entire data set for the k number of most similar cases, or neighbours, which
show the same patterns as the row with missing data [73]. The missing data value is then computed
based on the mean values of the kNN values.

Neural network based
Given recent advancements in the application of Deep Neural networks in various fields, such methods
have likewise been applied in estimating missing data. Two main architectures for neural network-based
imputation models have been considered: sequence-to-sequence model and recurrent neural network. In
sequence-to-sequence-based models, missing values are imputed directly based on predictions whereas
for recurrent neural networks missing data is estimated when computing other correlated prediction
tasks. The exact inner workings of either model architecture have been deemed beyond the scope of
this work and have thus not been discussed any further.

Given the inherent differences between the discussed imputation groups, several limitations have been
recognised by Zhang and Thorburn [64]. Regarding statistical-based methods, missing values are re-
placed by values as prescribed by a certain rule. Although these methods are computationally simple,
the relationships between variables in the data set are ignored. Therefore, statistical methods tend
to lead to an underestimation of the variability in the data set [74]. Furthermore, statistical-based
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methods assume all missing data follows a constant pattern. For example, missing values are close to
the mean value with mean imputation or the preceding available value with the last observation carried
forward technique. As a consequence, statistical-based methods are often potentially biased and are
to be used with significant caution [75]. Regarding model-based methods, the relationship between
different variables is taken into account through the creation of regression models for missing values
which take the non-missing values as inputs [76]. However, the creation of such models may lead to sig-
nificant computational overhead. Finally, neural network-based methods can offer advantages that are
not offered through different methods, such as the ability to capture long-term temporal dependencies.
However, neural network models are typically non-transparent [77], require significant time to train [78]
and are highly dependent on hyper-parameter tuning [79].

2.4. System evaluation
In order to assess the operational quality, as defined in Chapter 1, of a system such as a cool chain,
certain performance indicators are required. The Overall Equipment Effectiveness (OEE) indicator has
been introduced by Nakajima [80] within the Total Productive Maintenance conceptual framework. In
principle, OEE is a metric which can be used to measure the effectiveness of production equipment
and how effectively a manufacturing operation is realised [81]. The original definition of OEE has been
expressed as a percentage resulting from the multiplication of three measures, which can be seen in
Equation 2.1.

OEE = Availability rate · Performance rate · Quality rate (2.1)
where each measure has been defined as:

• Availability: the actual time used versus the planned time;
• Performance: the actual production versus the standard during the actual time used in produc-

tion;
• Quality: the number of faulty products produced in comparison to the total number produced.

Although the OEE is computed in percentages, time is the central metric unit for the respective sub-
measures [82]. As a main advantage of using the OEE, the most important factors influencing equipment
performance are allowed to be monitored while clearly identifying root causes for losses in manufacturing
effectiveness [83, 84]. In the literature, there has been some confusion on whether the OEE indicator
refers to efficiency or effectiveness as depicted in the name [85]. Muchiri and Pintelon [86] have noted that
effectiveness is defined as a process characteristic that indicates the degree to which the process output
conforms to the requirements while efficiency is defined as a process characteristic indicating the degree
to which the process produces the required output at minimum resource cost. Furthermore, Muchiri
and Pintelon [86] have indicated that the three measures captured by the OEE indicate the degree of
conformation to output requirements. Therefore, the conclusion has been drawn that the OEE is indeed
a measure of effectiveness, which in other words thus measures the degree to which equipment is doing
what it is supposed to do. Nonetheless, it should be noted that the OEE may measure effectiveness,
efficiency or both depending on the formulation of the metric. In terms of application, OEE has been
widely used to control production systems and verify operational improvements [87]. Besides equipment
in a production environment, the OEE methodology for measuring the effectiveness and or efficiency
of a system has been applied to other fields. As an example, Pinto, Goldberg, and Cardoso [88] have
applied the OEE indicator to benchmark the operational efficiency of port terminals. Muñoz-Villamizar
et al. [89] have applied OEE to evaluate the effectiveness of urban freight transportation systems.
Similarly, Garcı́a-Arca, Prado-Prado, and Fernández-González [90] have adapted the OEE for usage
in road transportation management for the improvement of the overall system efficiency. Therefore, it
can be concluded that the concept is generally acceptable while its use can be extended beyond the
application in manufacturing [91]. Consequently, it has been deemed possible to adapt the OEE to
match the research object; the cool chain. Furthermore, an adaptation of the OEE methodology to fit
the need for cool chain management may introduce a novel performance assessment and management
tool. Interestingly, Kaiblinger and Woschank [92] have found that, among other concepts, OEE was
most often addressed as the main objective in reviewed DT studies. Although no paper has mentioned
OEE specifically, many studies have considered this performance indicator through the consideration of
the underlying indicators; quality rate, machine availability and machine performance. Therefore, this
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work may provide additional novelty through the explicit application of an OEE based performance
indicator in a DT development study.

Based on the OEE performance measurement methodology, a new framework has been constructed to
suit the characteristics of a cool chain: the Overall Cool Chain Effectiveness (OCCE). In comparison
to the traditional OEE, which is typically meant for one equipment [91], the OCCE has been proposed
as a measure for the effectiveness of a cool chain as a whole, or part of it depending on the research
scope. Characteristically for a cool chain in general is the duality in operational quality with regards
to the timeliness of freight handling as well as the conformity to required environmental conditions. In
essence, the metric indicates to which degree the cool chain is doing what it is supposed to do and thus
quantifies the conformation to output requirements of the system. A formal definition of the proposed
OCCE metric has been shown in Equation 2.2.

OCCE = Cool Storage Availability · On Time Performance · Temperature Adherence (2.2)

Similar to any type of equipment, the effectiveness of a cool chain may also be represented by three
rates as shown in Equation 2.2. Each respective rate has been further discussed:

• Cool storage availability: cool storage availability refers to the utilisation of cool storage
facilities. As mentioned in Section 2.2, the unavailability of cool storage facilities is a typical
problem encountered in cool chains. Therefore, the availability rate indicates to which extent a
cool chain provides the availability of required infrastructure.

• On time performance: in principle, the quality of a cool chain can be seen as twofold; on the
one hand timeliness and on the other the extent to which freight is handled according to the
required environmental conditions. The on time performance provides an indication of to which
extent the timeliness of a cool chain is as per request.

• Temperature adherence: finally, the temperature adherence provides an indication of to which
extent freight is handled according to specification by the shipper.

Combined, the OCCE measure thus provides an overview to which extent a cool chain conforms to the
requirements, based on the availability of critical infrastructure, the timeliness of freight processing and
finally the adherence to temperature restrictions for the sensitive cargo.

2.5. Modelling techniques
In general, Law, Kelton, and Kelton [93] have elaborated on the multiple ways to study a system, which
can be seen in Figure 2.6.
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Figure 2.6: Methods for studying a system, adapted from Law, Kelton, and Kelton [93].
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In principle, depending on the research object, it is possible to experiment with the actual system.
However, more commonly it is either too disruptive or too costly to do so, therefore necessitating
the need for a model of the system under study. A model may then be classified as either physical
or mathematical in nature. A physical model is typically not of interest in systems analysis whereas
the vast majority of models built for such purpose are mathematical [93]. A mathematical model
represents a system in terms of logical and quantitative relationships. Finally, a mathematical model
may provide either an analytical solution or a simulation. Since many systems are significantly complex,
analytical solutions are usually not available. Furthermore, simulation models are among the most
widely used quantitative approaches in the modelling of production and logistics systems, in turn
allowing to simulate the operation and decide on any operational aspects [94, 95]. Therefore, given
the complexity and specificity of the research object, a cool chain can be adequately studied through
simulation modelling.

Simulation models have been classified along three different dimensions by Law, Kelton, and Kelton
[93]:

• Static versus dynamic simulation models: as the name suggests, static simulation models
represent a system at a specific time or a system in which time plays no role. On the contrary, a
dynamic simulation model represents a system that evolves over time.

• Deterministic versus stochastic simulation models: a simulation model which does not
contain any probabilistic components can be classified as a deterministic model. However, many
systems are modelled with random or probabilistic components, giving rise to stochastic simulation
models.

• Continuous versus discrete simulation models: a continuous system is characterised by
state variables which change continuously as time evolves. On the other hand, discrete systems
have state variables which change instantaneously at separate points in time. It has been noted
that a discrete model is not always used to model a discrete system.

Given the described simulation model dimensions, any simulation model for a cool chain system may be
described as a dynamic, stochastic and discrete model. Undoubtedly, a cool chain can be considered as
a dynamic system, since freight progresses throughout the chain and environmental conditions evolve
as time passes. Furthermore, given the complexity of a cool chain, deterministic modelling is rarely
possible for such a system and most queuing and inventory systems are modelled stochastically [93].
Finally, depending on the research objective, a cool chain can be either modelled in a discrete or contin-
uous manner. For example, a study focusing on intrinsic fresh or pharma product quality degradation
may adopt a continuous simulation modelling approach. However, from a logistics perspective, the
movements of and interactions with freight can be considered as a discrete system. Although tempera-
ture does evolve naturally and continuously, temperature sensors discretise temperature measurements
which are then usually logged at fixed intervals. Therefore, a cool chain has been considered a discrete
system. Two frequently applied simulation modelling techniques have been further discussed in the
following sections.

2.5.1. Agent-Based Modelling and Simulation
In recent years, Multi-Agent Systems (MAS) have received increased attention in the literature. MAS
consist of autonomous entities known as agents [96]. Agents are able to collaboratively solve tasks
through an inherent ability to learn and make autonomous decisions. This ability arises from the fact
that agents use the interactions with neighbouring agents or with the environment to learn new contexts
and actions [96]. By using its respective knowledge, each agent is able to decide and perform an action
on the environment to solve a task. It is this flexibility that makes MAS suitable for solving problems
in a variety of disciplines including computer science and electrical engineering [97].

The concept of MAS has been applied to the basic structure of simulation models in order to obtain
Agent-Based Modelling and Simulation (ABMS) [98]. In ABMS, active components or decision makers
are conceptualised as agents, which are consequently modelled and implemented using agent concepts.
Such concepts include for instance explicit goals which drive agent behaviour, the ability to learn and
adapt and the environment in which it is situated [99]. The key idea of ABMS hinges on the notion that
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a global phenomenon can be generated from the actions and interactions of the MAS [98]. Therefore,
Klügl and Bazzan [98] have mentioned that ABMS has been found especially suitable for the analysis
of complex adaptive systems and emergent phenomena in social sciences, traffic, biology and others.
Furthermore, it has been mentioned that ABMS is able to provide an improved understanding of real-
world systems in which the representation or modelling of many individuals is important and for which
the individuals have autonomous behaviours [100].

2.5.2. Discrete Event Simulation
Similar to the description of a discrete system, Discrete Event Simulation (DES) concerns the mod-
elling of a system as it evolves over time through a representation in which the state variables change
instantaneously at distinct points in time [93]. The discrete points in time are defined by the moments
an event occurs, where an event has been defined as an instantaneous occurrence which may change the
state of the system. Given the dynamic yet discrete nature of the modelling approach, a suitable time
advancement mechanism is necessary. Time in a DES, which could be in any defined unit such as hours
or minutes, is recorded and represented by the simulation clock. In order to advance the simulation
clock, a next-event time advance approach has usually been applied. In essence, the simulation clock is
advanced to the discrete point in time at which the next event occurs, based on the simulation event
list or calendar. Generally, a DES is run until all events on the event list have been handled or a
specific stopping condition has been satisfied. Each DES model contains an executive routine for the
management of the event calendar and simulation clock, which ultimately arranges the sequencing of
events and drives the simulation [101]. Once the next event becomes scheduled and consecutively active,
control is transferred to the appropriate routine. Such an operation routine may be an event, activity
or process and depends on a so-called world view [102]. Three world views have been distinguished for
DES modelling [101]:

• Event scheduling: each type of event has a corresponding event routine, which is scheduled on
the event calendar by the executive routine.

• Activity scanning: a simulation contains a list of activities, each defined by two events; the start
event and the completion event. Moreover, each activity contains test conditions and actions. The
executive routine scans the activities for satisfied time and test conditions and executes the actions
of the first selectable activity.

• Process interaction: the worldview focuses on the flow of entities through a model. The process
interaction strategy views systems as sets of concurrent, interacting processes. Furthermore, a
process class describes the behaviour of each class of entities during its lifetime throughout the
simulation, for example, freight entities flowing through a cool chain process. The executive
routine uses a calendar to keep track of forthcoming tasks. Additionally, the state in which the
process was last suspended is recorded.

Since a logistics system such as the cool chain contains flowing entities, i.e. freight, the process inter-
action simulation strategy is highly suitable and has thus been chosen. An additional advantage is the
fact that a process interaction program structure maintains a closer relation to the model structure and
consequently a modelled cool chain.

Regarding production and logistics systems, DES is in fact the most used simulation technique [103].
Similarly, Kaiblinger and Woschank [92] have noted that for production logistics processes, DES is
most often used since it is also the state-of-the-art for simulating production logistics systems. Fur-
thermore, Siebers et al. [100] have noted that DES is useful for problems which consist of queuing
systems or complex networks of queues where many of the applications occur in manufacturing and
service industries. Since a cool chain can be seen as a complex logistical queuing network, DES has
been deemed as an appropriate simulation modelling technique. Moreover, Kaiblinger and Woschank
[92] have found that, in the context of production logistics, DES is most often used in order to create
a virtual model for the development of a DT. With regards to the implementation of a DES, several
options are available: manually programming a DES using a programming language such as Python
or using a software package to develop a simulation model. In principle, software packages provide an
intuitive way of developing models through user interfaces, ultimately with the potential of providing
faster model development times. However, compared to manual programming, software packages have
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been found to be limited in terms of modelling flexibility. Therefore, in order to model a cool chain
and implement the DT improvement concept, manual programming has been recognised as a preferred
option. The DT concept has been further introduced in the following section.

2.6. The Digital Twin concept
The definition of a DT has been specified by Schluse and Rossmann [104] as a virtual representation
of a real-world subject or a real-world object which contains models of its data, functionality and
communication interfaces. Similarly, Nguyen et al. [105] have noted that a DT refers to the digital
representation of non-living and living physical objects and have even stated that it has soon become
one of the key technological enablers in the new era of the digital economy and society. In comparison to
Schluse and Rossmann [104] however, Nguyen et al. [105] have noted an essential characteristic of a DT:
the capabilities to generate virtual instances and control the changes of a physical object in real-time.
A more complete definition of a DT adopted by Hofmann and Branding [106] is that of a virtual and
computerised counterpart of a physical system, used to simulate it, exploiting real-time synchronisation
of data [107]. Furthermore, Hofmann and Branding [106] have distinguished three stages of integration
of a DT, depending on the degree of automation of the data flow between the physical and digital object,
which has been visualised in Figure 2.7.
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Figure 2.7: The three stages of Digital Twin integration depending on the automation of data flow, adapted from [107]

A digital model can be understood as a digital representation connected through a manual data flow,
which infers that state changes do not have a direct impact on the physical system and vice versa. A
digital shadow extends the concept of a digital model through an automated data flow from the physical
to the digital system. Finally, a DT may then be considered as containing an automatic data flow in
both directions. Coelho, Relvas, and Barbosa-Póvoa [108] have summarised the characteristics of a DT
into six dimensions:

1. The physical entity: the studied physical existence which could be an activity process, device
or product.

2. The virtual system: models intended to reproduce physical characteristics such as geometries,
physics, rules and behaviours such that it is possible to replicate physical entities conveniently
and reliably [109]. The virtual system consequently interacts with the physical system through
control commands. Besides, it can provide improved policies to the service system module.

3. The service system: the system which integrates different service systems, such as a WMS.
4. the data integration: different types of data may be utilised in a DT system, Furthermore,

with regard to integration, the origin of data is also variable. For example, data may be obtained
directly from the physical system, whereas other data can be integrated from the virtual or service
systems.

5. The decision support system: a decision support system has been noted as an important
dimension of a DT. This is due to the fact that it enables the interaction of the decision-maker
with the digital system as a whole. In principle, a decision support system receives information
from the virtual simulation model and allows the decision-maker to interact with the system in
real time.

6. The connections between the systems: finally, connections can also be considered highly
relevant for a DT. Indeed, Tao and Zhang [109] have mentioned the fact that all dimensions
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are interconnected and interact with each other in real-time enabling a DT to be consistent and
optimised iteratively.

From the delineated six dimensions of a DT, it has become evident that a DT may constitute more
than an exact digital representation of a system. In fact, Ait-Alla et al. [23] have stated the assumption
that a DT should add additional functionality besides a virtual representation and have thus proposed
a suitable methodology for DT development studies typically done by means of simulation, containing
three different systems: the physical system, the Physical Twin (PT) and the DT. The methodology
has been visualised in Figure 2.8.
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Figure 2.8: DT development study approach, adapted from Ait-Alla et al. [23]

As the name suggests, the physical system describes the system existing in the real world. Conse-
quently, the Physical Twin constitutes a simulation model of the real-world system. In principle, the
simulation model must not extend the functionalities of the real-world counterpart. Rather, the logic
and physical properties of the physical system should be replicated to a sufficient degree for testing
the indented functionalities of the DT and the PT can thus be considered as an intermediate model
which separates the virtual representation from the actual DT model. Therefore, the Physical Twin
could be considered analogous to the digital model referred to by Hofmann and Branding [106] and
Kritzinger et al. [107]. Finally, Ait-Alla et al. [23] have described the DT as the digital representation
of the physical system which, in contrast to the PT, adds additional and desired functionalities not
covered by the physical system. Therefore, with regard to the six dimensions of a DT, several parallels
have been found. Logically, the first dimension of the physical entity relates to the physical system as
seen in Figure 2.8. Furthermore, the virtual system dimension has been recognised as the PT, while
the actual DT can be considered as the additional functionality offered by a decision support system
implemented into the digital system. The remaining dimensions have been found to be related to the
respective interconnections between the physical system and the digital system.

Consequently, considering the current state of the art, a DT can be considered as a digital system which
constitutes a virtual copy of a real physical system, including automatic data connections. However,
from a development point of view, such a digital system may be built up from the PT part and the
additional functionality offered by the DT. Consequently, a DT can then be defined as the additional
functionality offered in the digital system, which interacts with the PT system representation. Following
the presented definition, a DT may constitute different functionalities ranging from product quality
prediction to decision-making support. Furthermore, the presented definition of a DT as an additional
functionality which interacts with the PT in a digital system infers the fact that the DT cannot function
without the PT model. Certainly, it has been argued that the intended and requested functionalities
from a DT cannot be successfully utilised without a modelled virtual representation of the physical
system: the PT. In conclusion, a DT has been defined as the additional functionalities offered by the
digital system through interactions with the PT model representation of the physical system, while
utilising automatic data connections. The definition of a DT has been visualised in Figure 2.9.
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Figure 2.9: Digital Twin (DT) definition proposed in this study

In literature, the concept of a DT has received increasingly received attention. Tao et al. [110] and
Ait-Alla et al. [23] have mentioned several benefits of DT application in supply chain management such
as the possibility for remote and instant monitoring of operations and proactive risk and disruptions
mitigation through timely decision making. However, the focus of applications of DTs has mainly been
on manufacturing and according to Haße et al. [57], more research is needed with regards to logistics.
Several studies have applied the DT concept to different fields. For example, Verdouw et al. [111]
have applied a DT concept in order to advance smart farming through increased virtualisation. Hauge
et al. [112] have developed a DT test bed in production logistics which utilises real-time location data.
Stan, Borangiu, and Răileanu [113] have developed data-driven DTs for improved design and logistics
control of product distribution by optimising palletising schedules, controlled with situational awareness
and resource health monitoring. Furthermore, Hofmann and Branding [106] have developed a DT for
truck dispatching operator assistance in port operations, which enables the determination of optimal
dispatching policies using simulation-based performance forecasts. Based on the three stages of DT
integration in Figure 2.7, a model may only be truly classified as a DT in the case of automatic data
flow between the real system and the virtual model. However, as indicated by the work of Hofmann
and Branding [106], the data flow from the DT into the real system is not always considered to be
necessarily automatic. In this case, the DT may receive information from the real-world system, which
is then utilised for additional functionalities such as improved decision-making support. Similarly,
Coelho, Relvas, and Barbosa-Póvoa [108] have developed a DT module which receives information
from the simulation and allows a decision-maker to interact with the system in real-time. Therefore,
although a true DT may not be accomplished in this work with regards to the presented definition
and dimensions, it does provide a first step towards the improvement of the pharmaceutical air freight
cool chain by means of improved decision-making through a DT concept. The improvement has been
quantified through the application in a case study, for which an introduction has been provided in the
following section.

2.7. Case study company overview
One of the players in the air freight industry which might benefit from improving cool chain management
through the application of the DT concept is KLM Cargo. Since a case study has been performed at
this company, a brief introduction and overview have been provided as a background for the case study
described in Chapter 3.
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2.7.1. Facts and Figures
KLM has been founded in 1919 and is the oldest airline still operating under its original name today.
KLM is headquartered in Amstelveen while its hub is situated at the nearby Amsterdam Schiphol
Airport, typically referred to as Schiphol (SPL). KLM contains three core activities; passengers, cargo
and engineering & maintenance. As of 2004, KLM has been merged with Air France to form the Air
France-KLM Group. Together, the airlines fly to 318 destinations in 118 countries. A complete overview
of the overall company structure has been provided in Figure 2.10. Due to the merger of Air France
and KLM into the Air France-KLM Group, the respective cargo divisions have also been merged into
Air France KLM Martinair Cargo (AFKLMP Cargo). KLM can be considered as a typical combination
carrier which utilises remaining aircraft capacity with the transportation of freight. KLM Cargo is
the GHA which arranges the air cargo transportation through the acceptance of bookings for flight,
feeding of freight towards the hub and the storage, handling and preparation of freight. Therefore, the
actual air transportation of cargo is performed by KLM. As of 2008, Martinair Holland N.V. has been
incorporated into the Air France-KLM Group and from 2011 it has been transformed into an all-cargo
carrier operating out of SPL. Although operations are still performed by Martinair, the airline can be
considered as the all-cargo carrier of KLM. Furthermore, the handling of freight for this carrier has
been contracted out to a separate GHA called Menzies. In 2017, the Air France-KLM Group was the
ninth largest cargo carrier with a total cargo traffic of 8,583 Freight Tonne Kilometre (FTK), of which
4,843 FTK has been contributed by KLM.

Figure 2.10: Company structure overview, adapted from Hensens [114]

From SPL, both KLM and Martinair serve an extensive worldwide network. Although subject to change,
the combined network has been shown in Figure 2.11, highlighting the KLM and Martinair network
in blue and red respectively. Since the operations of Martinair are not a part of the scope of this
work, it has not been considered any further. In principle, the KLM network configuration is driven by
the passenger side of the business where flight frequency might differ as well depending on the season.
Besides the network shown in Figure 2.11, the network of Air France may be utilised as well which
is operated from the Paris Charles-de-Gaulle (CDG) hub. It should be noted that the KLM network
shown in Figure 2.11 only depicts the air freight destinations for Intercontinental (ICA) destinations.
This is due to the fact that all inbound and outbound freight to and from European destinations is
transported by trucks towards or from SPL.
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Figure 2.11: The operational network of KLM and Martinair out of SPL

2.7.2. The pharma variation
KLM Cargo arranges the air transportation of many varieties of cargo. However, only the pharmaceuti-
cal cargo variation has been considered as indicated in Chapter 1. In general, pharmaceutical shipments
can be considered to be the most valuable from a business perspective as well as a shipment perspective.
In fact, from the total AFKLMP Cargo revenue, roughly 25% can be accredited to pharmaceutical ship-
ments. Furthermore, pharmaceutical shipments can be characterised by significant individual shipment
values. On the one hand, the business value of pharmaceutical shipments advocates this segment as one
of the most important areas of growth for KLM Cargo. On the other hand, regulations, high shipment
values and the inherent sensitivity of such products necessitate the need for adequate care throughout
the air freight logistics chain. Therefore, specialised products have been dedicated to pharmaceutical
shipments, which can be seen in Table 2.2.

Solution
Category Vaccines Closed Cool

Chain Solutions
Controlled Cool
Chain Solutions

Product Customised Covid
Vaccines

Pharma Active
Container

Pharma Passive
Container

Pharma Hybrid
Container

Pharma Control
+2+8

Pharma Control
+15+25

Pharma Control
+2+25

SHC SHL ACT ACE PIP COL CRT ERT
Product Code c55-59 s/c52 s/c52 s/c54 s/c51 s/c53 s/c50

Temperature Range Depending on
requirements -20 °C +20 °C 0 °C +30 °C Depending on

supplier +2 °C +8 °C +15 °C +25 °C +2 °C +25 °C

Specifications Depending on
requirements Dry ice operated Electric Hybrid

Table 2.2: Pharma product group solutions

Referring to Table 2.2, three solution categories have been devised for the pharma variation: vaccines,
closed cool chain solutions and controlled cool chain solutions. The latter two contain several different
cool chain products for pharma offered by AFKLMP Cargo. Each pharma product has a dedicated
Special Handling Code (SHC), which is used as an indicator for the specific requirements of a shipment.
As an example, the COL indication on a shipment provides the specific temperature range required
for safe handling: +2°C to +8°C. The product code a shipment has been booked with, determines the
associated SHC.

Closed cool chain solutions
The closed cool chain solutions provide the possibility for customers to ship highly sensitive and valuable
products without a break in the cool chain by use of an active, passive or hybrid container, also referred
to as an active Unit Load Device (ULD). The active product is comprised of ULDs operating with
dry-ice, the passive product is served by electrically powered ULDs while the hybrid product deploys
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ULDs with a combined operating principle regarding the latter two. The benefit of the closed solution
is the elimination of cool chain breaks since the shipment is in a controlled environment at all times
throughout the logistics chain. Although such shipments are therefore under the strictest temperature
control, special care is required in terms of temperature, battery and dry ice readings and or operational
checks. Furthermore, the high cost of the closed cool chain solutions limits the application to each
pharma shipment. The closed cool chain solutions have not been further considered since it does not
fit the scope of the research project.

Controlled cool chain solutions
The controlled cool chain solutions include three temperature ranges in which shipments must be main-
tained at the warehouse, during air transportation and trucking. The first pharma control product is
indicated by the SHC COL and specifies an allowed temperature range of +2°C to +8°C. The second
control product is indicated by CRT with an allowable room temperature range of +15°C to +25°C.
Finally, the third control product has been annotated with ERT, indicating an allowable extended room
temperature range of +2°C to +25°C. Even though specific infrastructure such as cool storage has been
arranged for COL and CRT shipments, tarmac and warehouse handling operations may temporarily
expose shipments to ambient temperatures both at the hub as well as at the origin and destination.
Therefore, shipments transported using any of these solutions are primarily exposed to ambient envi-
ronmental conditions during cool chain breaks.

Vaccines
Recently, a new vaccine solution has been constructed in reaction to the SARS-CoV-2 outbreak in
order to specifically serve the global Covid vaccination distribution campaigns. The temperature range
and specifications of vaccine shipments highly depend on the type of packaging or ULDs used by the
manufacturers, and are therefore case dependent.

2.8. Literature synthesis
In this chapter, a broad survey of cool chain management has been provided in which a general overview
of air freight and its actors has first been provided. Then, imperative considerations for cool chain
management have been discussed, from which it has become apparent that information extraction
and improved decision-making may provide a suitable method for cool chain management improvement.
Especially with regard to information extraction, it has been recognised that missing data is a frequently
occurring issue in industry. Therefore, the different available methods for missing data imputation have
been discussed. Thereafter, a novel performance indicator for the operational quality of a cool chain has
been derived through an adaptation of the OEE metric: the OCCE. Subsequently, the different available
modelling techniques for studying a system have been discussed, from which the DES technique has
been chosen as most suitable for a logistics system such as a cool chain. Consequently, the DT concept
which has been chosen to be utilised as the cool chain operational quality improvement method has
been introduced. Furthermore, the DT development methodology has been introduced which consists
out of the PT virtualisation model and the DT module. However, given the fact that this research
has not been aimed at pharmaceutical cool chains in general, the chapter has been finalised through
the introduction of KLM Cargo, at which the case study has been performed. Therefore, following the
general description of cool chain management, in the following chapter the research has been narrowed
down through a thorough description of the studied research object; the pharmaceutical air freight cool
chain process at KLM Cargo.



3
KLM Cargo case description

In the following chapter, the KLM Cargo case description has been described in order to provide a
sufficient process understanding while highlighting the current situation. Firstly, a brief overview of
the Schiphol hub has been provided in Section 3.1, after which the studied process has been described
in Section 3.2. Consequently, the encountered infrastructure and equipment in the studied cool chain
process have been elaborated on in Section 3.3. Then, with a sufficient process description in mind, the
system evaluation practices have been discussed in Section 3.4, by considering the data collection and
used KPIs at KLM Cargo. The chapter has been finalised with a synthesis of the previously described
findings in Section 3.5 in order to provide an answer to the following research question:

2 What is the current state of a pharmaceutical air freight cool chain process, based on
an applied case study?

3.1. The Schiphol hub
AFKLMP Cargo operates from two distinct hubs: CDG and SPL. Only the latter hub is the base of
operations for KLM Cargo and has therefore been further discussed. The hub at SPL provides several
intermodal connections, which have been summarised in Figure 3.1.

KLM Cargo 
Hub

Domestic  
Customer

Domestic  
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KLM Cargo 
Hub

European  
Outstation

European 
Outstation

Export

Import

Transit  
Inbound

Transit 
Outbound

Air TransitKLM Cargo 
Hub 

KLM Cargo 
Hub

KLM Cargo 
Hub

External party KLM (Cargo) Contracted party

Figure 3.1: Intermodal connections and shipment flows at the KLM Cargo hub

24



3.1. The Schiphol hub 25

In specific, there are four types of connections, of which two are intermodal; truck to truck, truck
to aircraft, aircraft to truck and aircraft to aircraft. Combined, the four transportation connections
serve three main shipment flows; import, export and transit. Referring to Figure 3.1, the transit flow
can be divided into three flows; transit inbound, transit outbound and air transit. In principle, all
European KLM Cargo destinations are serviced at outstations via trucks by contracted parties. Air
transit shipments remain within the airport premises and are handled in order to continue the respective
itinerary on a connecting flight. Furthermore, import shipments arrive at the Schiphol hub and are
transported to a destination within the Netherlands. Finally, export shipments originate within the
Netherlands and are accepted at the hub to be transported towards a European or ICA destination.
Given the presented research scope in Section 1.4, only the transit outbound truck to aircraft flow has
been considered.

Besides the different shipment flows, the handling at the hub is also influenced by the type of shipment
configuration. The following freight configurations can be encountered:

• Loose freight includes shipments that are accepted at KLM Cargo which have not been prepared
for flight by building it on a ULD. As an example, loose freight includes deliveries of loose boxes
or wooden pallets, also referred to as skids.

• Mixed-ULD (M-ULD) is a freight configuration that contains multiple shipments built onto
a ULD typically with differing destinations. A M-ULD has to be broken down after which the
individual shipments are handled further at the hub and finally built up again on a ULD for flight.

• Through-ULD (T-ULD) is a shipment or combination of shipments which is already built on
a ULD with one destination and is thus ready for flight. Therefore, a T-ULD does not require
further handling apart from possible (cool) storage and transportation to the aircraft. Whenever
a T-ULD has additional capacity left, shipments with the same destination might be added onto
the ULD. However, this has not been considered in this research.

• Active, Passive and Hybrid containers are used for pharmaceutical shipments by certain
customers choosing the closed cool chain solution. Such shipments are placed into the active,
passive or hybrid ULDs by the shipper and thus only require limited handling by KLM Cargo.
Nonetheless, such shipments should be monitored on for instance battery or dry-ice levels in order
to ensure the correct transportation conditions.

With regards to the scope, only T-ULDs have been considered. Therefore, the remaining freight con-
figurations have not been further discussed. A spatial overview of the three freight buildings at SPL
for the specified flow and freight configuration has been provided in Figure 3.2. Cargo enters through
freight building three and proceeds through the Pallet Container Handling System (PCHS), which is
situated throughout freight buildings two and three. A more detailed overview of the PCHS system
has been provided in Section 3.2. The cool cell which has been incorporated into the scope is situated
in freight building one, which is accessed from the air side. Furthermore, in front of freight building
two and three are multiple air side lanes, at which cargo is placed awaiting transportation towards the
aircraft.

Airside

Landside

FB 1
FB 2 FB 3

Transit  
Outbound

MTD

PCHS

Airside lanes

ICA Departure

KC01

Figure 3.2: Spatial overview of the three KLM Cargo freight buildings at SPL
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3.2. Process description
For the transit outbound T-ULD flow, the process of transporting freight can be divided into three
parts; feed, handle and distribute. The feeding constitutes the road transportation of T-ULDs from
the European outstations towards the hub at SPL. The handling is performed at the hub and includes
the unloading, storage and movement of the freight. Finally, cargo is distributed throughout the KLM
network by aircraft. Although some issues may arise during trucking or flight, in principle pharmaceu-
tical freight is transported according to the correct conditions. Therefore, from a pharma cool chain
perspective, this work has been focused on the handling at the hub, since this part contains the most
significant cool chain breaks and thus constitutes to any environmental exposure most significantly.
The corresponding process map has been shown in Figure 3.3.

European outstations SPL Hub

HandleFeed

N PCHS PCHS out

Ramp ride

PCHS PCHS out Transport
KC01

Transport

Air side lane Flight

Distribute

Flight

Trucking

Loading

Y

Arrival

DEP < 8h?
SHC?
Weather alarm?

FB 3 MTD
Unloading

PCHS in Cool storage?

Late arrival

Figure 3.3: Process map for transit outbound T-ULD handling at the SPL hub

Considering the flow chart shown in Figure 3.3, it has been clarified what actually flows through this
process. In the airfreight industry, a shipment which has been booked at an airline such as KLM in
this case, is represented by the Air Waybill (AWB). The AWB is a contract of carriage between the
shipper and the carrier which includes detailed information regarding the colli. As an example, an
AWB might indicate that the shipment is comprised of ten boxes, the number of colli, which are to
be transported under a specific product code, which provides necessary information on the required
temperature range. Each booked shipment consisting possibly out of multiple colli, receives a unique
AWB with the corresponding product code and thus SHC. However, since one pallet ULD may be able
to hold more than one AWB, it is possible that one ULD may be holding multiple AWBs. Vice versa,
the colli of one AWB may be distributed over several ULDs. The decomposition of shipments has been
visualised in the schematic shown in Figure 3.4. For clarity, the terms shipment and AWB and freight
unit and ULD may have respectively been used interchangeably throughout this work.

AWB AWB

Colli, SHC Colli, SHC

ULD ULD

Monitoring

Freight unit

Cool Chain

Figure 3.4: Decomposition of shipments flowing through the system
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It has been noted that in the case of multiple AWBs sharing one ULD or freight unit, the SHC should be
equal for both shipments. Furthermore, the individual colli which make up a shipment are not traceable
throughout the KLM Cargo cool chain. Any monitoring which is performed is only performed on AWB
level, to which unique ULDs may be coupled. Finally, the freight units are the actual physical units
flowing through the system as shown by Figure 3.3.

The analysed process is initiated upon arrival of a truck at the hub and completed once a flight departs,
which is also referred to as the off-blocks time or the time an aircraft is pushed back from the gate
for departure. In between, the process has been roughly divided into four parts: arrival, PCHS, cool
storage and ramp ride and loading. Throughout these processes, there are several hand-overs from
department to department responsible for the freight. Upon arrival of the freight, the Import & Export
department arranges the unloading of the trucks and the entrance into the PCHS. Then, once the
freight has entered the PCHS, the ULDs are handed over to the Transport department, which controls
the movements of the freight until loading into the aircraft. The Freight Control Center is part of the
Transport department and plans and arranges all movements of ULDs within the PCHS. Finally, after
delivery to the aircraft on the ramp, the freight is handed over from Transport to Ground Services,
which is not part of KLM Cargo.

3.2.1. Arrival
As determined in the research scope, the studied flow contains only freight that is accepted at European
outstations and fed towards the hub for further processing and distribution. Besides, only the T-ULD
configuration has been considered. Therefore, each freight unit arriving into the considered system is
comprised of a ULD which is in principle checked and configured for flight. The road feeding trucks
from European origins are operated as flights and thus have a Scheduled Time of Arrival (STA). Since
the arrival time of trucks might differ due to traffic jams or technical breakdowns, the Actual Time of
Arrival (ATA) at the hub has been taken as the moment when freight enters the system. After the
arrival of a truck, it typically needs to wait before unloading can commence. When required, a truck
trailer is in principle fitted with a cooling system which is able to provide the necessary temperature
setting for the T-ULDs which are on board. Each truck can contain four to six ULDs, which may or
may not be bound for the same connecting flight. Once possible, the truck docks at the Moving Truck
Door (MTD), which contains a transport vehicle which is able to unload one full ULD at a time. In the
case of a late arrival, which is at the latest six hours before the Scheduled Time of Departure (STD),
the ULD is not entered into the PCHS system. Instead, it is placed onto a dolly and driven by a tractor
towards the air side lanes to await further transportation towards the aircraft.

3.2.2. PCHS handling
After the arrival process, each T-ULD enters the PCHS; the automatic storage and retrieval system for
pallets and or containers. Upon entry of a ULD after the MTD, it is handled almost fully automatically
through a series of elevators, Automated Guided Vehicle (AGV), turning tables and conveyor belts.
The system is situated above the warehouse floors of freight buildings two and three and it is, therefore,
possible for ULDs to traverse the buildings from landside to airside without significant interruptions.
Upon entry of the PCHS, a decision is made for each pharma T-ULD whether to place it in cool storage
or not, depending on three business rules:

• DEP < 8 hours: the commercial promise to shippers is a maximum exposure time to environ-
mental conditions of eight hours while a shipment is handled at the hub. Therefore, any shipment
with a transit time of less than eight hours is not placed in cool storage.

• SHC: In the case that a shipment has a transit time exceeding eight hours, it is only placed in
cool storage in the case of a SHC COL or CRT, indicating the respective required temperature
range and thus cool storage.

• Weather alarm: in the case that a weather alarm is issued when the ambient temperature
exceeds 18 °C or is below 5 °C, shipments with SHC ERT are stored in the CRT cool storage
when the transit time exceeds eight hours.

Any shipment which is not placed into cool storage according to the previously described business rules
is temporarily stored in the PCHS system, awaiting the departure of its respective connecting flight. In
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principle, the described business ruling for cool storage has thus been considered of static nature, since
the respective decision does not depend on the current system state in terms of for example encountered
temperatures throughout the process.

3.2.3. Cool storage
In the case that a shipment requires cool storage, it is removed from the PCHS at the air side and
transported towards freight building one, at which the cool storage for T-ULDs is situated, also referred
to as KC01. The cool storage exists out of two environmental zones; one for COL shipments and the
other for CRT and ERT shipments in the case of a weather alarm. In principle, storage and warehousing
is not the core business of KLM Cargo. However, in order to reduce cool chain breaks, especially in the
case of freight with long transit times at the hub, cool storage is used in an attempt to reduce freight
exposure to ambient environmental conditions.

3.2.4. Ramp ride and loading
Before the transportation towards the aircraft, or ramp ride can take place, a shipment is removed from
storage in either KC01 or the PCHS. Since each ULD is taken from storage individually, it is firstly
placed at the so-called airside lanes, shown in Figure 3.2. These lanes act as a buffer to collect and
place ULDs booked on the same flight on so-called dollies, before being transported by a pulling tractor
towards the aircraft. The air side lanes are situated in front of freight building two and three and are
fully exposed to ambient environmental conditions. At maximum, a tractor can pull five dollies during
a ramp ride. Once the tractor arrives at the departure gate, the ULDs are handed over to Ground
Services, which arranges the loading of the aircraft. During loading, ULDs may experience prolonged
exposure to ambient temperature and the aircraft cargo hold is not conditioned until the engines are
running after off-blocks time.

3.3. Infrastructure and equipment
In this section, an overview has been provided of the respective cool chain infrastructure and equipment
for the given case study, along with relevant technical details.

3.3.1. ULDs
Although a significant number of ULDs are used in the air freight industry, for the studied T-ULD flow
primarily two types are used; the P6P-PMC and P1P-PAG pallets. The ULDs have been shown in
Figure 3.5.

P6P-PMC P1P-PAG

Figure 3.5: ULD types
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The ULDs are comprised of reinforced metal sheets on which cargo is built and stacked, at the outstations
in the case of T-ULDs. The freight is secured onto the pallets by means of netting, which is attached to
the edges of the ULDs. Given the significant size and weight of these freight units, specialised equipment
is utilised in order to handle them.

3.3.2. MTD
The MTD is an Electric Transport Vehicle (ETV) operated by two persons and is capable of unloading
one ULD at a time. On the land side of the freight building, an open door is situated at which an
incoming truck is able to dock. After docking, ULDs are rolled out of the trailer onto the MTD one by
one for further processing. As mentioned before, depending on the arrival time of the freight, ULDs are
either entered into the PCHS system through an automatic lift or are placed on dollies for transportation
to the air side lanes in the case of a late arrival. In principle, the time it takes to unload and process
one ULD is roughly 7.5 minutes.

3.3.3. PCHS
The PCHS is the automatic storage and retrieval system which spans both freight building two and
three. The system provides 1,749 temporary storage places for ULDs awaiting transportation towards
the aircraft, as well as the transportation throughout the freight buildings. In principle, movements are
automatically coordinated by the system, although personnel is able to intervene manually. On average,
it takes up to 15 minutes for a ULD to enter the PCHS system. Upon entrance into the system, the
decision-making for cool storage is performed by the WMS Chain, according to the indicated business
rules. Furthermore, the system is able to retrieve a ULD from a storage position and place it outside in
an average of 5 to 10 minutes. Since ULDs which do not go into cool storage are stored in the PCHS,
removal should be performed in time in order to transport it on time towards the aircraft. The time of
removal is determined by the system according to the master flight table, which contains all scheduled
flights, the days on which they depart as well as the STD. An example overview of a flight shown in
the master flight table has been provided in Figure 3.6.

Figure 3.6: Example screen of the master flight table

An operational rule depicts that a ULD is removed from the system at 5 hours before STD, or V-5
hours. The times indicated in the master flight table are fixed. However, if necessary, personnel is able
to alter the removal time in the current flight table.
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3.3.4. KC01
The cool storage for T-ULDs, or KC01, has a cool room for CRT and ERT ULDs and a cold room for
COL ULDs. The set point for the cool room is set at 20 °C while the set point for the cold room is
set at 5 °C. Although small fluctuations in temperature may occur, in principle the control system of
the storage rooms ensures the correct storage temperature at all times. The CRT cool room provides a
total maximum capacity of 33 ULDs, whereas the COL cold room provides a maximum storage capacity
of 42 ULDs. However, it should be pointed out that this is a maximum capacity, which is also utilised
for fresh ULDs, besides the pharmaceutical freight. Furthermore, different ULD flows such as aircraft-
aircraft transfers may require cool storage at KC01. Therefore, data analysis has been performed and
discussed in Section 4.1 in order to adjust the storage capacities to the research scope. As mentioned
in Section 1.2, KC01 is characterised by capacity constraints. Moreover, the cool storage contains only
one entry and exit point for ULDs which is serviced by a single ETV, shown in Figure 3.7.

Figure 3.7: The ETV storing or retrieving a ULD in KC01

The limited speed of the ETV together with the single point of entry and exit provide an additional
challenge in providing the required care for pharma ULDs. The ETV is able to process around 6 ULDs
per hour, which results in an average processing time of 10 minutes per ULD. Operationally, the rule has
been set that ULDs exiting KC01 have priority over ULDs entering the cool storage. Ideally, ULDs are
removed at the earliest three hours before the STD in order to limit any exposure to ambient conditions
while allowing for timely handling. However, given the significant processing time of the ETV, the
removal time may be more than three hours before STD in order to ensure all outbound ULDs are
removed on time.

3.3.5. Transporter
For any freight movements around the three freight buildings at the hub, specialised transporters are
used at KLM Cargo, shown in Figure 3.8. A transporter can handle a single ULD at a time by loading
to or unloading it from roller beds situated at the entrance and exit positions at both the PCHS as
well as KC01. Furthermore, transporters are used to place ULDs on the dollies which are used for the
ramp ride towards the aircraft. For transportation to and from KC01, there is always one dedicated
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transporter at the hub. For other movements, such as from the PCHS exit to a dolly on an airside lane,
usually in total five transporters are scheduled. Similarly to the KC01 storage capacity, however, these
transporters are also used for any other ULD and flow.

Figure 3.8: Transporter vehicle at KLM Cargo

3.3.6. Tractor
Tractors are used at KLM Cargo for the ramp rides to and from aircraft, as well as the movement from
the MTD to an airside lane in the case of a late arrival. In total, there are on average 30 tractors
available at the hub. Each tractor has a maximum towing capacity of five dollies, which are the carts
on which ULDs are transported during ramp rides.

3.4. Performance management
Throughout the studied system, data is generated, collected and used to determine the system perfor-
mance by means of KPIs. In the following subsections, firstly the data collection has been discussed
after which the relevant KPIs in use at KLM Cargo has been considered.

3.4.1. Data capture
One of the main sources of operational data at KLM Cargo is from the WMS Chain. In principle, Chain
is the system which provides the main coordination of the hub operations. As an example, the system
provides personnel with transportation tasks of freight. Moreover, the system automatically collects
vast amounts of data for each AWB on a ULD level for the given scope. An example of collected
data includes for instance time stamps at certain locations of a specific ULD in the system. Moreover,
crucial information such as the corresponding AWB number and SHC is also recorded. Despite the
automatic data collection, manual adjustments can be made by personnel in the case that any data is
not correctly registered. Furthermore, some data is manually entered into the system upon completion
of a process step. Throughout the studied system, there are multiple points at which timestamps have
been recorded for each individual ULD. An overview of the timestamps has been shown in Figure 3.9.
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Figure 3.9: Timestamp measurement points

Timestamps are not recorded at the beginning and end of each processing step. As an example, although
the ATA is recorded for each truck and thus ULD, the moment at which the truck docks at the MTD is
not recorded. Similarly, the time at which unloading by the MTD commences is not recorded. Therefore,
the total time of the arrival process until a ULD enters the PCHS, includes the processing time of the
MTD. Moreover, regarding the loading process, only the time at which a ramp ride has ended is known.
However, since it can be assumed that a ULD is situated in ambient environmental conditions until
departure, it is not necessary to utilise the loading time with regard to temperature exposure.

Besides the process timestamps, temperature sensors have been installed throughout freight buildings
two and three. The sensors and the corresponding temperature readings are connected to and shown
on the online ATAL web platform. Currently, the ULDs at KLM Cargo have not been fitted with
smart tags or Internet of Things devices in order to extract environmental data from the immediate
surroundings of the cargo. Therefore, the exact conditions in which freight is handled are only known
to a certain degree. However, the temperature data available from this system is not utilised in terms
of decision-making with regard to cool storage.

3.4.2. Key Performance Indicators
At KLM Cargo, a range of KPIs are applied in order to measure the operational quality of the freight
processes. Similarly, for the presented case study, multiple KPIs have been specified. Generally speaking,
the operational quality of the KLM Cargo cool chain is twofold. On the one hand, pharmaceutical freight
must be handled in time in order to be flown according to the schedule or booking. On the other hand,
as readily discussed, the freight should be handled under the indicated temperature conditions as much
as possible. The KPIs which are used at KLM Cargo have been further discussed separately.

Handling deadlines
In general, the timeliness of cargo handling has been represented through several handling deadlines,
which are specific times at which a ULD is supposed to be at a given place within the process. For the
given scope, there are three handling deadlines:

• Handling deadline 1: ULD received on time into the MTD process. On time has been further
defined as the minimum connection time plus 60 minutes landside time, where the minimum
connection time is 300 minutes before STD. Therefore, handling deadline 1 is met when a ULD
is received into the MTD at the latest six hours before STD.

• Handling deadline 2: ULD handed over on time from MTD to Transport. On time has been
specified as the minimum connection time plus 60 minutes landside time plus 30 minutes processing
time for the MTD, where the minimum connection time is 270 minutes. Consequently, a ULD is
handed over on time to Transport when it is done at the latest six hours before STD.

• Handling deadline 3: ULD handed over on time from Transport to Ground Services. A ULD
is handed over on time to Groud Services at the latest 80 minutes before STD. The deadline thus
ensures sufficient time for loading the freight onto the aircraft before the respective scheduled
departure time.

Each deadline is boolean in nature since a deadline is either met, indicated by OK, or not which is
indicated by NOT OK. Although a missed deadline does not necessarily mean that a ULD will miss
its connecting flight at the hub, it does indicate a deviation from the required handling as set by
management.
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Cool chain deadlines
Similarly to the handling deadlines, three deadlines have been formulated specifically for the cool chain.
Similar to the handling deadlines, the cool chain deadline KPIs are boolean in nature. The deadlines
have been elaborated on in further detail:

• Cool chain deadline 1: a ULD enters the PCHS within 120 minutes after ATA.
• Cool chain deadline 2: ULDs with a transit time of more than or equal to eight hours enter

KC01 within 180 minutes after ATA.
• Cool chain deadline 3: a ULD which has been stored in KC01 is removed no longer than 180

minutes before STD.

Flown as Planned
Although the deadlines provide an insight into the handling process, a ULD with its corresponding
AWB(s) may still be flown on the booked flight. Therefore, especially with the shipper in mind, the
KPI Flown As Planned (FAP) has been used in order to indicate the degree to which the freight is
flown on time. In specific, FAP has been determined as the ratio of AWBs which have been flown
on the booked flight to the total number of AWBs. Since there is a significant range of reasons for
a ULD to miss the scheduled flight, an appropriate scope should be set with regard to the performed
research. As an example, a technical fault in an aircraft may negatively influence the FAP KPI, yet has
not been taken into account. The assumptions which have been made have been further discussed in
Section 4.2.4.

Time Out of Refrigeration
The Time out of Refrigeration (TOR) is used as a metric in order to quantify the operational quality
with regards to the temperature aspect. The TOR specifies the time a ULD was not in a dedicated
cool storage facility, in this case, KC01. In other words, the TOR can be determined by subtracting
the time in refrigeration from the total processing time at the hub. KLM Cargo strives for a maximum
TOR of eight hours, which is also the commercial promise to customers. Contrary to the deadlines, the
TOR is measured on AWB or shipment level since one AWB may be distributed over multiple ULDs.
Therefore, if one of the corresponding ULDs has a TOR of more than eight hours, the corresponding
AWB is considered NOT OK in terms of TOR. It should be noted that currently, KLM Cargo is not
able to steer the operational processes through the TOR metric. Therefore, it is solely recorded for
performance measurement. Moreover, a more general notion of TOR can be defined as the amount
of time that a product is outside of the specified temperature range according to the product code
and SHC. Nonetheless, such information is currently not captured at KLM Cargo through the direct
monitoring of ULDs or the digitisation of such information from other data sources. Therefore, there
is no insight into the actual exposure of pharma T-ULDs, besides the time spent outside of KC01.

Cool storage availability
Given the KC01 capacity constraints, it has been deemed imperative to maintain a proper overview
of the availability of the cool storage facility. At KLM Cargo, the number of ULDs stored in KC01 is
recorded and displayed in a dashboard shown in Figure 3.10.

Figure 3.10: KC01 capacity dashboard
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Besides the dashboard, which primarily provides insight into the historical storage capacity, personnel
has access to information on the amount of ULDs stored in KC01 at a given time. However, there is
no metric used in order to quantify the availability of the facility for further decision-making, which is
primarily done ad hoc through operator experience.

3.5. Case study synthesis
The research object has been described in this chapter by considering a general overview of the airport
hub and the studied cool chain process. Then, the infrastructure and equipment have been separately
discussed, where most importantly significant capacity constraints for the KC01 cool storage facility
have been noted. However, the business ruling in place for the determination of cool storage can be
considered static, not taking into account for instance the temperature in another suitable storage
location such as the PCHS. Besides, the current performance management has been discussed in terms
of data capture and KPIs. With regard to data capture, it has been noted that although significant
amounts of data are theoretically captured in the system, this data is not used directly with respect
to real-time decision-making. Additionally, a significant number of KPIs are used in order to assess
the performance of the system. However, the described KPIs do not provide a coherent overview of
the operational quality of the system as a whole. Besides, there is no KPI in place which captures the
temperature exposure on a ULD level. Consequently, it has thus been concluded that currently, the
system is under strain from cool storage capacity restrictions, while data and information extraction is
not utilised in improved decision-making for increased operational quality. Therefore, the studied and
presented cool chain system may benefit from the application of the techniques and methods introduced
in Chapter 2. However, in order to apply the DT improvement concept to alleviate the encountered
complications, the required modelling has first been developed in the following chapter.



4
Model development

In the following chapter, the model development has been discussed by firstly considering the collection,
handling and analysis of relevant data in Section 4.1. Thereafter, an outline of the model structure
has been provided in Section 4.2. The chapter has been built up to provide an answer to the following
research question:

3 How can a pharmaceutical air freight cool chain be modelled?

4.1. Data analysis
The first step of developing a simulation model in order to carry out a research project is the collection,
handling and analysis of data. Firstly, any data which is relevant to the research subject should be
collected. Consequently, the collected data should be handled in order to deal with missing or incorrect
entries. Furthermore, the collected data should be prepared for usage in the model development. Finally,
the collected and handled data can be analysed and utilised in the model development. Each step has
been further clarified in the following subsections.

4.1.1. Data collection
For the analysis of the presented case study and thus the analysis of the research object, relevant data
has been collected. In specific, historical data has been gathered from the WMS Chain. The department
of Performance Management has provided a cool chain database with historical entries spanning from
January 1st 2021 to January 1st 2022. In order to consider only entries relevant to the case study,
the data set has been filtered in order to contain only the pharma T-ULDs during the indicated time
frame. Each row in the data set contains information about the shipment, route information and process
timestamps, as shown in Figure 4.1. From the data set, two respective data sets have been created from
the parameters of the cool chain data set; an input data set and an analysis data set. As the name
suggests, the input data set has been used as model input, whereas the analysis data set has been used
in order to derive the modelling parameters.

35
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Cool chain data set

Shipment information

Route information

Process timestamps

Input data set

Label    Example

Product_code S51

AWB_Origin BCN

AWB_Destination GRU

SHC COL

ULD_In PMC23246

Flight_In KL8680

Flight_Out KL0791

Actual_In 2021-01-01 04:08:00

Sched_Out 2021-01-03 09:55:00

Number of AWBs 2

AWBs [7441760762 7441760773]

Analysis data set

Label    Example

Freight_Unit 07441760762PMC23246

SHC COL

Sched_In 2021-01-01 03:30:00

Actual_In 2021-01-01 04:08:00

Sched_Out 2021-01-03 09:55:00

Actual_Out 2021-01-03 09:54:00

Cool_In 2021-01-01 06:40:00

Cool_Out 2021-01-03 03:00:00

PCHS_In 2021-01-01 04:28:00

PCHS_Out 2021-01-01 06:20:00

RR_Start_In 2021-01-01 06:25:00

RR_End_In 2021-01-01 06:28:00

pu_lane_dt 2021-01-03 03:28:00

RR_Start_Out 2021-01-03 07:47:00

RR_End_Out 2021-01-03 07:59:00

Figure 4.1: Process related data set description

With regards to temperature, data has been collected from within KLM Cargo as well as from a publicly
accessible source. For temperature readings within the warehouse, historical data from the ATAL
temperature sensors system has been collected. Readings from a weather station at Schiphol of the
Koninklijk Nederlands Meteorologisch Instituut have been collected for ambient or outside temperatures.
The latter data set provided hourly temperature readings, which was the reason for also extracting
warehouse temperature measurements on an hourly basis. Both data sources have been combined into
a single temperature database that spans the same time period as the operational data. The combined
temperature data set can be seen in Figure 4.2. For illustration purposes, only readings of one sensor
have been shown. Furthermore, the label T represents the ambient temperature and all readings are
shown in °C.

Temperature data set

Temperature reading sensor #datetime T

2021-05-20 15:00:00 18.78 14.2

2021-05-20 16:00:00 18.893 14.2

2021-05-20 17:00:00 18.749 13.1

Figure 4.2: Temperature data set description
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4.1.2. Data handling and preparation
As mentioned in Section 2.3, data sets in industry are typically subject to missing data. The issue of
missing data has also been encountered in the cool chain data set and the temperature data set. The
handling and preparation for each data set have been further elaborated on separately.

Cool chain data set
Given the occasional manual input and adjustments in the data coming from the Chain system, the
reliability of the data is not optimal. Therefore, erroneous entries were expected in the data set. In
fact, it has been observed that the quality of the cool chain data set is poor, which has been deemed as
an area of improvement for KLM Cargo. Indeed, several issues have been found, mainly related to the
process timestamps. Besides missing entries, negative process duration times have been encountered. It
should be noted that the cool chain data set should contain missing values in the case that a ULD has
not gone into cool storage, since in this case Cool_In and Cool_out have not been recorded. In order
to prepare the data set for utilisation, several steps have been taken:

1. Duplicate entries: as a first step, the overall data set has been checked for duplicate entries.
Since each AWB shipment may be comprised of multiple ULDs, duplicate entries with regards to
the AWB number were expected. However, duplicate rows with equal AWB and ULD codes have
been found. Such duplicate rows have been removed in order to ensure that the data set only
contains unique entries.

2. Processing times: corresponding to the chronological order of processing steps and timestamps,
the processing times for each part in the system have been assessed. Consequently, several pro-
cessing times with negative or excessive duration have been found. Furthermore, this step also
revealed missing time steps. Moreover, during the processing times verification, it has been found
that the data set contained multiple DateTime data formats, leading to incorrect conclusions.
After this issue has been addressed, the processing times have been assessed again.

3. Missing and incorrect entries: the obtained missing and incorrect time stamps have been
further investigated. In the case that a missing or incorrect entry could not be resolved manually
by considering similar shipments, the respective data entry has been omitted. Likewise, incorrect
time stamps have been removed before the analysis of the data.

As a result of the data handling and preparation steps, a complete cool chain data set for the specific
scope has been obtained. The overall data set has been structured on AWB level with the corresponding
ULDs. However, for the input data set, it has been deemed more suitable to structure it based on ULD
level, since the ULDs are the actual physical objects flowing through the cool chain. Therefore, a
transformation has been performed while removing data entries which are not relevant to the model
input data set. A schematic overview of the transformation has been shown in Figure 4.3. It should be
noted that not all relevant parameters in the data sets have been shown in this visualisation.

Analysis data set

Freight_Unit

07441760762PMC23246

AWB_Number

07441760762

07441760763 07441760763PMC23246

Product_code 

S51

S51

Input data set

AWBsULD_In

PMC23246 [7441760762 7441760773]

Product_code 

S51

Figure 4.3: Transformation applied for the creation of a model input data set
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After the data handling and preparation, the analysis data set contained a total of 4,937 unique rows,
whereas the input data set contains 3,912 unique ULDs. The latter data set is smaller in size since a
significant amount of AWBs share a ULD with a different shipment, or more correctly AWB number.

Temperature data set
In contrary to the missing values in the cool chain data set, the temperature data set contains mea-
surement samples of a continuous variable, namely temperature. Therefore, in principle any missing
value is erroneous. In order to provide insight into the missingness of the temperature data set, the
missing data pattern has been visualised in Figure 4.4. The visualisation provides an overview of the
temperature data set with as columns the different sensors and the total number of rows up to 8833,
the total data set size. Therefore, each blank spot in the visualisation represents a missing data entry
in the respective column in the respective row. It has been noted that for the case study, sensors 22,
24, and 71 have been used for the PCHS exit area, storage area and entrance area respectively.

Figure 4.4: Missing data pattern of the temperature data set

Referring to the missing data patterns and mechanisms discussed in Section 2.3, from Figure 4.4 it
can be concluded that the data set includes both a general missing data pattern as well as a line
pattern where all sensors are missing values. Furthermore, in accordance with the responsible party at
KLM Cargo, it has been concluded that the missing values have occurred due to sensor breakdowns
or lost data transmissions. Therefore, since the missingness is only related to external causes and the
measurements of other sensors have no influence on the blank values, the missing data can be considered
MCAR.

Since the temperature data concerns a time series, simply removing entries is not possible. Therefore,
data imputation has been performed in order to handle the missing temperature measurements. In
principle, manual data imputation using statistical means such as mean imputation is unsuitable due
to the relatively long periods of missing values in the time series data set, as seen in Figure 4.4. Besides,
neural network-based methods have been deemed too complex for the given research scope due to the
required hyperparameter tuning. Therefore, model-based data imputation has been applied. Since EM
imputation requires a significant data set size [115], i.e. typically around 500,000 data samples [116],
the kNN data imputation method has been chosen. Furthermore, kNN missing data imputation is
more suitable for medium-size data sets and the data requirements are more flexible [117]. For the
kNN imputation method, a choice has to be made for the number of neighbours k, which practically
entails the number of other data values which are used in order to estimate a missing value. From the
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literature, it has been found that k = 3 is a reasonable choice for proper missing value estimation while
reducing the risk of impairing the variability of the data set [118]. The kNN imputation algorithm is
readily available from the sklearn python package and has been used in order to impute the missing
values shown in Figure 4.4. After imputation, the temperature data set did not contain any missing
values.

4.1.3. Analysis
The cool chain analysis data set has been used in order to perform several analyses with the aim to
derive system parameters for the development of the model. The analyses have been further discussed
separately.

Freight characteristics
In order to provide a basic overview of the truck-aircraft flow, several characteristics have been analysed
from the cool chain data set. In Figure 4.5, an overview has been provided on the general characteristics
of the freight. For more than half of the recorded ULDs, the required temperature SHC is CRT, as
seen in Figure 4.5a. Furthermore, only 17 % of the ULDs has the SHC ERT. Therefore, the majority
of ULDs, or 83 %, is subject to strict temperature conditions. Regarding Figure 4.5b, the majority of
ULDs were stored in KC01 in 2021. This can be attributed to the significant portion of COL and CRT
ULDs, as well as significantly long transit times at the hub.

(a) Proportion of SHC on ULD level (b) Proportion of ULDs that were stored in KC01

Figure 4.5: Truck-aircraft transit flow analysis

Indeed, it has been concluded that most ULDs have a significantly long transit time, which can be seen
in Figure 4.6. In fact, roughly only 20% of all the recorded ULDs in the data set has a transit time of 8
hours or less. Therefore, long transit times of freight have been recognised as a significant contribution
to the overall capacity constraints of KC01. However, the reduction of transit times has been considered
out of scope for the given research project.
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Figure 4.6: Histogram and cumulative distribution function of ULD transit times

KC01 storage capacity
As mentioned in Section 3.3, cool storage KC01 has a total capacity of 42 COL and 33 CRT and ERT
ULDs. Since KC01 is not solely used for pharmaceutical shipments, the storage capacities have been
adjusted in order to reflect the research scope. Since the filtered cool chain data set only contains
pharmaceutical shipments, the unfiltered data set has been used in order to derive the capacities. In
principle, a distinction has been made between fresh and pharma shipments as well as the respective
flows at the hub. The resulting shipment type and flow splits have been visualised in Figure 4.7, where
the relevant type and flow for the research scope have been indicated with a light blue colour. It can
be observed that over 2021, 11% of all COL T-ULDs contained pharmaceuticals, while for CRT all
T-ULDs were registered as pharma. Furthermore, for both COL and CRT T-ULDs, the majority of
T-ULDs belonged to the studied truck to flight flow at 87% and 84% respectively.

The capacity for each temperature zone in KC01 has been adjusted through the multiplication of the
total capacities by the obtained percentages of the relevant shipment types and flows. Therefore, the
resulting effective capacity of the COL storage room is 42 × 0.11 × 0.87 ≈ 4 ULDs. Similarly, the
effective capacity of the CRT storage room is 33×1×0.84 ≈ 28 ULDs. After consultation with the cool
chain manager at KLM Cargo, it has been decided to consider on average a slightly higher capacity for
the COL storage. This is due to two reasons;

1. Part of the fresh ULDs is handled and stored at a different facility at Schiphol.
2. Due to the capacity constraint regarding KC01, pharma ULDs occasionally receive priority over

fresh ULDs in the COL storage.

Therefore, the effective capacity of the COL storage room in KC01 has been assumed at 6 ULDs while
the effective capacity of the CRT storage room has been kept at 28 ULDs.
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(a) COL shipment type (b) COL shipment flow

(c) CRT shipment type (d) CRT shipment flow

Figure 4.7: T-ULD shipment type and flow over 2021 for COL and CRT respectively

Processing times distributions
The primary use of the analysis data set was the extraction of statistical distributions for the various
processing steps in the case study cool chain. The derived distributions serve to represent the variabil-
ity in the different processing steps in order to properly represent the real-world system. The required
statistical distributions have been obtained through the Python fitter package, where the most appli-
cable distribution has been selected based on the minimum squared errors. By means of the statistical
distributions, processing times can be drawn in the DES model according to the observed data. For
each required processing step, the fitted distributions and respective parameters have been summarised
in Table 4.1.

Process Distribution Parameters
Arrival Gompertz c = 14.29 loc = 5.96 scale = 432.81
PCHS removal Johnson’s SU a = −2.14 b = 1.44 loc = −217.37 scale = 60.18
PCHS in to KC01 in Johnon’s SB a = 1.11 b = 1.04 loc = 12.35 scale = 351.41
Transport KC01 Cauchy loc = 2.50 scale = 0.90
KC01 removal Generalised Hyperbolic p = 2.01 a = 0.00035 b = 0.00018 loc = −5.03 scale = 0.0086
PCHS to airside lane Lomax c = 9.63 loc = 1.00 scale = 39.26
Airside lane Inverse Weibull c = 1.38 loc = −3.77 scale = 14.55
Ramp ride Generalised Hyperbolic p = −1.47 a = 1.12 b = 1.10 loc = 10.57 scale = 5.60

Table 4.1: Derived process distributions
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In contrast to the other processes, the distributions which have been derived for PCHS and KC01
removal do not represent the average time a ULD spends in either storage facility. Instead, the derived
distributions, which have been visualised in Figure 4.8, represent the difference between the removal
time rules and the actual time of removal. As mentioned in Section 3.3, the standard removal times
from the PCHS and KC01 are 5 and three 3 before STD respectively. Consequently, the distributions
shown in Figure 4.8 indicate the variance from the standard removal times as seen in the cool chain
data set. As an example, for both Figure 4.8a and Figure 4.8b, 0 minutes indicates the frequency of
ULDs removed at the standard removal time. Besides, a time difference of +60 minutes indicates that a
ULD has been removed from storage an hour in advance of the standard removal time. Finally, a time
difference of −60 minutes indicates that a ULD has been removed an hour later than the standard time
of removal. Therefore, regarding Figure 4.8a, most ULDs are typically removed earlier than or before
the standard 3 hours for KC01. Regarding Figure 4.8b, the opposite has been observed where ULDs
are usually removed later than the standard 5 hours before STD for the PCHS.

(a) KC01 removal time difference distribution (b) PCHS removal time difference distribution

Figure 4.8: Fitted distributions for the storage removal times

Current performance
From the cool chain data set, the current performance of the KLM Cargo cool chain has been determined
on the basis of seven KPIs, as shown in Table 4.2. The current performance on these KPIs have
been considered as the input for the validation of the PT model, which has been further discussed in
Section 4.2. Each deadline has been computed on ULD level. Furthermore, for ULDs which have not
been stored in KC01, the TOR has been calculated similarly and thus represents the total time spent
at the hub. Regarding cool chain deadline 3 in Table 4.2, the data matches the observed pattern in
Figure 4.8a; the majority of ULDs are removed more than 3 hours before STD, which is also indicated
by a low score of 17.23% on this deadline.

Cool chain deadlines Handling deadlines TOR [%]1 [%] 2 [%] 3 [%] 1 [%] 2 [%] 3 [%]
Truck-aircraft pharma 96.86 61.86 17.23 92.74 92.28 84.02 52.02

Table 4.2: Current performance based on cool chain data set

4.2. Physical Twin
The presented research in this report has been accomplished by manually programming a DES model
in Python 3.9 compiled in the scientific Python development environment Spyder, by use of the salabim
package for Python. The programming code can be observed in Appendix B.1. The model development
and implementation have been performed on a Lenovo ThinkPad L490 with an Intel(R) Core(TM) i5-
8365U CPU running at 1.60 GHz using a 64-bit architecture and 16.0 GB of RAM. Following the DT
development approach introduced by Ait-Alla et al. [23] and discussed in Section 2.6, the DES model
which has been developed provides a virtual representation of the studied system: the PT. The primary
aim of the so-called PT has thus been to replicate the physical system behaviour. The replication has
been achieved by the programming of the system and business logic while capturing the system variance
with the presented distributions. In order to measure the performance of the replicated physical system,
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the proposed OCCE performance evaluation with the applied KPIs has first been discussed. The PT
has been further elaborated on by first considering a conceptual overview of the model, after which the
simulation objects have been further discussed. Since any model is a simplification and abstraction of
reality, the assumptions which have been made for the development of the model have been discussed
in order to finalise the section. However, firstly a nomenclature has been provided with the variables
that have been used for the remainder of the paper.

Nomenclature
CCOL Total capacity of the KC01 COL storage room

CCRT Total capacity of the KC01 CRT storage room

F Set of multiplication factors for the sensitivity analysis

I The set of availability measurements

n Number of simulation runs

qcol Current quantity of stored ULDs in the KC01 COL storage room

qcrt Current quantity of stored ULDs in the KC01 CRT storage room

RA Average cool storage availability of the KC01 storage facility

RA,COL Cool storage availability rate of the KC01 COL storage room

RA,CRT Cool storage availability rate of the KC01 CRT storage room

RKC01 Standard KC01 storage removal time rule

ROTP On time performance rate

RPCHS Standard PCHS storage removal time rule

RTA Temperature adherence rate

RTT Cool storage transit time business rule

S Total quantity of handled AWBs

se Number of AWBs with all ULDs having an exposure less than eight hours

smf Quantity of AWBs with a ULD that missed the flight

4.2.1. Performance evaluation
The OCCE framework which has been proposed in Section 2.4 has formed the basis for the performance
evaluation of the developed model and also serves as the metric to provide a quantitative answer to the
main research question. Since the metric has been comprised of three rates, each rate has been further
discussed separately.

Cool storage availability
The cool storage availability rate provides an insight into the availability of cool storage infrastructure
with regard to the respective capacity which is typically constrained. The availability has been consid-
ered as the ratio of residual capacity and total capacity for the given cool storage area, or more formally:

RA,COL =
CCOL − qcol

CCOL
(4.1a)

RA,CRT =
CCRT − qcrt

CCRT
(4.1b)

RA =

∑I
i=0 RA,COL

|I| +
∑I

i=0 RA,CRT

|I|

2
(4.1c)
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The availability rates in Equation 4.1a and Equation 4.1b provide only the cool storage availability of the
respective room at the time of measurement. The availability of either storage room can thus be used in
the presented form for cool storage decision-making. However, for model output derivation, an average
availability score over the total simulation run time is taken. Consequently, the average of RA,COL and
RA,CRT is taken in order to obtain the average cool storage availability shown in Equation 4.1c.

On time performance
The timeliness of a cool chain may be represented by the on time performance rate. In the presented
case study, the timeliness of the cool chain process has been represented through the FAP KPI. The
FAP indicator is measured on shipment AWB level, which consequently means that an AWB has not
been flown on time if any of its corresponding ULDs have missed the flight. Therefore, the on-time
performance can be measured as the fraction of AWBs which have ULDs that missed the corresponding
flight connection and the total amount of handled AWB, or more formally:

ROTP = 1− smf

S
(4.2)

Temperature adherence
The temperature adherence rate represents the accordance to the required environmental conditions
of freight in a cool chain. Although KLM Cargo currently measures the TOR, the KPI has not been
considered adequate since the actual environmental conditions have not been considered apart from
the time spent in cool storage. Therefore, it has been decided to consider the exposure as a measure
for temperature adherence, where the exposure has been defined as the total time a ULD has spent
outside of the required temperature range. The notion of exposure has been visualised in Figure 4.9. In
principle, any temperature within the specified temperature range of the pharma freight is acceptable
and does not contribute to harmful exposure. In other words, exposure of freight is recorded as soon as
the ambient temperature surrounding the ULD is outside of the Lower Temperature Bound (LTB) or
Upper Temperature Bound (UTB). In this way, the exposure can be calculated as the total time between
recorded timestamps where the temperature was above the UTB or below the LTB. Currently, KLM
Cargo does not possess ULDs with integrated temperature sensors. Therefore, the ATAL warehouse
sensors and ambient temperature database have been used as data sources. Although the accuracy
of these sources is limited compared to integrated devices, the method of quantifying temperature
adherence is the same. It has also been noted that realistically, temperature changes would happen less
discretely, as indicated by the striped lines in Figure 4.9. Therefore, the time at which the temperature
has exceeded either the UTB or the LTB would be earlier than the timestamp recorded in the developed
model. Therefore, it has been acknowledged that the accuracy in this respect could be improved by
either integrated temperature sensors or an increase in temperature logging frequency.
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Figure 4.9: A visualisation of the notion of exposure in a cool chain
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Similarly to the on time performance, the temperature adherence has been measured on AWB level. At
the hub, a maximum exposure of 8 hours has been deemed acceptable and is agreed upon by shippers.
The maximum exposure of 8 hours also acts as the reasoning behind the cool storage rule with a transit
time of more than 8 hours. Therefore, an AWB has an acceptable exposure if the exposure of all
corresponding ULDs is below 8 hours, resulting in the following formal definition:

RTA =
se
S

(4.3)

OCCE
Each rate which has been described previously has been combined into the overarching performance
metric for the studied cool chain; the OCCE which has been visualised in Figure 4.10. In principle, the
proposed performance metric for a cool chain provides a flexible method for capturing the performance
of a cool chain as a whole. For the presented case study, three lower level KPIs have been used to
represent the three rates of the OCCE, while providing an overall performance score.

OCCE

Cool Storage
Availability

On Time
Performance

Temperature
Adherence

Average availability FAP Exposure

Figure 4.10: The OCCE metric scheme for model performance evaluation

The presented scheme in Equation 2.2 has been used as model output for performance evaluation. As
discussed in Section 2.4, the OCCE metric is obtained through the multiplication of the three underlying
rates:

OCCE = RA ×ROTP ×RTA (4.4)

4.2.2. Conceptual model
The proposed conceptual research model has been shown in Figure 4.11. In line with the proposed
DT definition and development methodology discussed in Section 2.6, the proposed system has been
characterised through the physical system and digital system. The physical system contains the real
system, i.e. cool chain, which is situated in a given environment. Furthermore, decision-makers are
actively interacting with the physical system with regards to cool storage decisions and ULD trans-
portation. Although a DT has been characterised by an automatic data flow between the digital and
physical systems, the research has been limited to the digital system; more specifically the PT and
DT. The connections between the physical and digital systems have thus been represented by a dashed
arrow. The data sets which have been described in Section 4.1, have been indicated in Figure 4.11
and form the input of the PT; the DES model. The DT has consequently been proposed as the part
of the digital system which offers additional functionality to the PT in the form of a decision support
module. It should be noted that the decision support module has been further discussed in Chapter 6.
In this chapter, the development of the physical twin has been described, along with the verification
and validation of this simulation model in Chapter 5.
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Figure 4.11: Conceptual research model

From Figure 4.11, a more in-depth overview of the digital system has been shown in Figure 4.12, where
an emphasis has been placed on the PT model for the current chapter. Given the research scope, the
input of the PT model is historical data input files on ULD arrivals as well as warehouse and ambient
temperatures as described in Section 4.1. The resulting output of the simulation model includes the
individual OCCE rates as well as the overall metric which can be calculated from it.

Phyisical Twin

Input

Output

Digital Twin
Decision support module

ULD truck arrival data

Temperature data

Average cool storage availability

On Time Performance (FAP)

Temperature adherence
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Figure 4.12: The PT model in the digital system
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In the current situation reflected by the PT, the decision-making with regards to storage of ULDs in
KC01 is done solely on the basis of the introduced business ruling described in Section 3.2. The current
decision-making process based on the business rules has been visualised in Figure 4.13. Depending on
the product code of a T-ULD and thus its corresponding SHC, the static business rules are applied which
determine whether a T-ULD is placed in cool storage or not. Therefore, the input data, as indicated
by the striped arrows, include primarily the SHCs of each individual T-ULD. Besides, in order to verify
whether the storage is full, the previously assigned ULDs which are still in transit towards the storage
facility should be taken into account.

COL, CRT

ERT
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N

DEP < 8h.?

N

Y

Assigned ULDs

Store in KC01
Y

N

KC01 full?

Terminate
decision
making

Store in PCHS5℃ ≤ T ≤ 18℃?

Figure 4.13: Current cool storage decision-making flow chart based on static business ruling

From the digital system shown in Figure 4.12, a more in-depth visualisation of the PT has been shown
in Figure 4.14. The overview provides a flow chart of the PT process and thus the activities which
are performed in the DES model. The actual entities which flow through the model are the T-ULDs,
which arrive into the cool chain according to the input data set. Depending on the characteristics of
the freight and thus the T-ULD, the freight unit follows a certain path throughout the cool chain which
depends mainly on whether it is a late arrival or receives cool storage or not. Furthermore, from the
temperature data set, ambient outside, as well as warehouse temperature, has been extracted, which
is pushed hourly to the relevant locations in the process. As an example, the outside temperature is
updated hourly according to the historical input data. The so-called building blocks of the DES model
have been further discussed in Section 4.2.3.



4.2. Physical Twin 48

Arrival process: 
waiting &
unloading 

Enter PCHS 

ULD truck  
arrival data set

Temperature 
dataset

No

Yes

Late  
arrival?

Yes

No

Cool  
storage?

PCHS

Decision support
module

Exit PCHS 

Transport 

Enter KC01

KC01

Enter PCHS 

Exit KC01 

PCHS

Exit PCHS 

Transport 
Airside 
lane

Transport 

Ramp Ride Loading 

KPI calculation

Controller

Physical Twin

Figure 4.14: PT model flow chart

4.2.3. Simulation objects
In Table 4.3, a description and main characteristics have been summarised of each simulation object
which has been programmed in order to develop the DES physical twin. By means of the salabim
package, a DES model can be programmed using objects and resources. Objects may either be active
or passive, where an active object contains a pre-defined process and a passive object can be seen
as a data component. Although technically, the transporters and tractors are resources used in the
cool chain process, these components have been modelled as active objects for increased programming
flexibility. The InputGenerator and TempGenerator objects can be considered as a special type of object;
a generator. Both generators create the input of the DES model according to the input data set files.
The remainder of objects have been programmed in order to provide the correct interaction with other
objects such that the ULDs flow through the process according to the actual physical system behaviour.
Furthermore, the storage spaces such as KC01 and the PCHS have been modelled as queues in which
the FreightUnits are placed and consequently removed. In order to regulate the cool storage and execute
storage retrieval in general, two objects have been programmed. Firstly, the decision support module
has been programmed as a distinct object which decides whether ULDs are placed in cool storage or
not. For the PT, which replicates the actual physical system, the decision-making process has been
modelled according to Figure 4.13. Consequently, this object can be altered according to function as
the proposed decision support module, or DT. Finally, the controller object functions as a simplified
WMS which orders ULDs to be removed from either the PCHS or KC01 storage facility. Similarly
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to the decision module, in the current situation, the controller utilises the standard removal rules in
combination with the derived distributions for the time of removal of ULDs.

Real entity Simulation object Description Main characteristics

- InputGenerator Generates ULDs according to
the input data set Input data set

- TempGenerator
Generates and updates the hourly
temperatures according to the
temperature data set

Temperature data set

AWB AirWaybill
Is linked to the corresponding ULDs
for temperature adherence and
OTP calculations

Corresponding ULDs

ULD FreightUnit Entity which is generated, flows through
the system and is finally terminated

STD, transit time,
SHC, temperature range

WMS Controller Assigns removal time from storage to
FreightUnit

Removal time rules,
removal time distributions

Truck TruckArrival Imitate the arrival and unloading of
FreightUnit Arrival and unloading distribution

- DecisionModule Determine whether FreightUnit is stored in
KC01 according to the business rules Cool storage business rules

PCHS PCHSEntrance Accepts entering FreightUnit and places it
in storage

PCHS storage, temperature zones,
processing time

PCHSExit Removes FreightUnit from storage PCHS storage, temperature zones,
processing time

KC01 KC01 Provides cool storage for FreightUnit
according to SHC

COL storage, CRT storage,
ETV processing time,
temperature set points

Transporter Transporter Transportation of a single ULD to
the airside lanes and KC01 Transport time distribution

Tractor Tractor Transportation of late arrivals to airside
lanes and ramp rides to the aircraft

Ride duration,
ramp ride distribution

Air side lanes Air side lanes Buffer lanes on air side in front of
the warehouse Queuing time distribution

Table 4.3: Description and main characteristics of the DES model objects



4.3. Model development synthesis 50

4.2.4. Model assumptions
In order to develop a DES model within an acceptable time frame for this research project, several
assumptions have had to be made. The assumptions have been further elaborated and classified into
general assumptions and assumptions related to the infrastructure and equipment for the presented
case study.

General
1. With regard to the environmental conditions, only temperature has been taken into account in

this study. Although humidity and light exposure may especially affect freight outside, it has not
been regarded for the sake of modelling simplification.

2. The temperature exposure has been assumed to be a cumulative time during which the tempera-
ture surrounding the freight was above the respective UTB or below the LTB.

3. T-ULDs which are classified as late arrivals are not entered into the PCHS and are instead
transported towards the airside lanes.

4. Although there are a significant number of factors influencing the FAP KPI, any external factors
have not been taken into account. Therefore, the FAP metric only captures ULDs which did
not make the connecting flight due to excessive processing times as obtained from the model
processing time distributions.

Infrastructure and equipment
1. It has been assumed that there are two transporters available for the transportation of T-ULDs

from the PCHS exit to the airside lanes.
2. The total number of available tractors in the system has been assumed at 5 units. Although a

larger quantity of tractors is available each day in the physical system, the total number has been
reduced in order to reflect the maximum pulling capacity of five dollies which are also used by
other freight types and configurations.

3. It has been assumed that the ramp ride time of a tractor back towards the warehouse is equal to
the time it took to get to the aircraft.

4. It has been assumed that it takes five minutes for late arrival T-ULDs to be transported to the
airside lanes by a tractor.

5. It has been assumed that the ULD removal rate of the ETV in KC01 is equal to six per hour, or
ten minutes per ULD.

6. The temperature set points of KC01 have been assumed to be perfectly constant. In other words,
it has been assumed that the cool storage facility has a reliability of 100%.

7. It has been assumed in accordance with the physical system that outbound ULDs from KC01
always have priority over inbound ULDs into KC01.

8. The respective input temperature for the entrance, storage and exit parts of the PCHS has been
assumed to be uniform over each respective part. Therefore, for example, it has been assumed
that the input temperature data for the PCHS storage area is uniform over the whole storage
area. In the physical system, the temperature has known to be varying from different areas even
within the same part of the system. Nonetheless, this has not been taken into account in the case
study.

4.3. Model development synthesis
In this chapter, the required modelling for the improvement methodology has been described and
constructed by first considering the necessary data collection, handling and analysis of the studied
system. It has additionally been noted that during this stage, the data quality has been found to be
poor. Then, in order to obtain a virtualisation of the physical system, the PT model has been described
through the introduction of the implemented OCCE metric, the conceptual improvement model as well
as the objects from which the DES model has been built. However, before the implementation of the
DT concept and thus the complete implementation of the digital system, it has been deemed necessary
to prove whether the developed PT model is indeed correct and can be used for the completion of the
research. Therefore, in the following chapter, model verification and validation have been performed.



5
Verification and validation

As part of model development, in the following chapter, a discussion has first been provided on a
convergence analysis of the simulation model output. Consequently, the verification and validation of
the DES model has been discussed in Section 5.2. Furthermore, in order to study the sensitivity of the
simulation model to data input and process parameters, a sensitivity analysis has been performed and
discussed in Section 5.3. Finally, an answer has been constructed to the following research question:

4 To what extent does the developed model effectively represent the research object, in
terms of verification and validation??

In order to guide and clarify the structure of the following chapter, an experimental research plan for
the verification and validation has been provided in Figure 5.1.
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Figure 5.1: Experimental research plan for model verification and validation
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As seen in Figure 5.1, the initial step which has been performed is a convergence analysis with the
goal of finding the required number of simulation runs n in order to account for the stochastic nature
of the DES model. Then, several iterations of the research plan have been performed consisting of
qualitative verification, followed by quantitative verification and validation. The qualitative verification
has been performed using the trace log, animation screen and model parameters. For the quantitative
verification, several tests with corresponding hypotheses have been defined by means of changing model
parameters. In the case that either verification step was not successful, alterations have either been
made in terms of programming, input data or the specified verification test hypotheses. Finally, the
model validation has been performed using historical data. The experimental plan has been finalised
with a sensitivity analysis. The aim of the experimental research plan for verification and validation was
to reveal any model errors as well as validate the model performance. Therefore, referring to Figure 5.1,
in the case that the verification tests have not been passed, validation results have been collected
nonetheless in order to specify the model validation during that specific iteration. Consequently, it
can be studied whether any changes made to the model had an influence on the model validation as
well. Each respective aspect and iteration of the experimental plan has been further elaborated in the
following sections.

5.1. Convergence analysis
In order to study the convergence of the PT model output, i.e. the OCCE and the individual rates, the
number of simulation runs n has been increased while averaging the resulting KPI rates. In principle,
the convergence analysis has been used in order to study the convergence of the model while taking into
account the computational expenses of repeating simulation runs for a total of n times. The resulting
model convergence has been plotted and is shown in Figure 5.2. For an increasing number of runs
until n = 30, the rates and corresponding OCCE have been plotted along with the ±1% limits of each
KPI at n = 30. In principle, it has been expected that the variation in KPI values should decrease
with an increase of n. However, an increase in simulation runs comes at the expense of increased
computational time. A single simulation run has been recorded at roughly 90 seconds. Therefore, for
each additional run, the computational time is extended by one and a half minutes. For the convergence
analysis, this has been found to be a limiting factor for the maximum number of n. For n = 30, the
computational time has been estimated at

∑30
1 n×90

3600 ≈ 11.5 hours. The computational time necessary
for an incremental number of simulation repetitions n has been shown in Figure 5.3.

Figure 5.2: Physical Twin model convergence analysis for a total of n = 30 runs
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Figure 5.3: Computational time for n repeated simulation runs

From Figure 5.2, several conclusions have been drawn. Firstly, it has been observed that the variability
of the individual OCCE rates RA, ROTP and RTA is limited. As an example, it can be seen that the
value of RA remains within 61.0% and 61.5%, well within the ±1% range of the value at n = 30. The
latter has also been found for ROTP . Similarly, the variations in RTA swiftly remain within the ±1%
range. Since the OCCE metric is the result of a multiplication of the three rates, the value is more
sensitive to variations. Nonetheless, the OCCE value remains well within the ±1% range at n = 30 while
the percentile fluctuations have been found to be limited. Based on the convergence of the three rates
as well as the OCCE metric and the computational time, it has been concluded that n = 20 simulation
runs are sufficient. At n = 20 repetitions the variation has been limited while the computational time
has been deemed acceptable at under an hour.

5.2. Model verification and validation
As shown in Figure 5.1, following the convergence analysis, several iterations of model verification and
validation have been performed. For clarity, a definition from the literature has first been discussed
for verification and validation respectively. A formal definition of model verification has been stated
as ”ensuring that the computer program of the computerised model with its solution method and the
computer program’s implementation are correct” [119]. In other words, model verification is aimed at
answering the following question: is the model right?. Right in this sense has been understood as the
degree to which the model implementation meets the specification. Verification can be approached both
qualitatively by manually examining the behaviour of the model or quantitatively by examining the
model output against specified expectations. Similar to model verification, Sargent [119] has stated the
formal definition of model validation as the “substantiation that a computerised model within its domain
of applicability possesses a satisfactory range of accuracy consistent with the intended application of the
model”. Therefore, the process of model validation has been aimed at answering the question; is it the
right model?. Effectively, a validated model should specify whether the developed model is an accurate
representation of the real system. It should be noted that, although qualitative verification has been
performed each iteration, it has not been discussed after the first iteration. This is due to the fact that
each time the same approach has been used as in the first iteration and only a failure of qualitative
verification would have been worth mentioning at this point. Furthermore, despite the fact that the
validation results have been collected each iteration, it has only been shown if any changes have been
observed after subsequent iterations For clarity, the respective methods of qualitative and quantitative
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verification and validation have been further described below. Afterwards, with a clear definition and
approach of verification and validation, each respective iteration of the experimental plan has been
further discussed.

Qualitative verification
Besides during model verification, qualitative verification has been thoroughly used throughout the
development of the DES model in order to expose any logic and programming errors early on in the
development process. The primary qualitative verification method which has been used is by means of
event tracing. The salabim package offers the possibility to extract a trace log from a simulation run
in which events can be printed. The trace log has then been used to check event order, causal relations
and event times in order to examine whether the simulated process is in line with the physical system
counterpart. A part of the trace log has been shown in Figure 5.4.

Figure 5.4: Simulation trace log output

From left to right, the trace log has been built up with three columns. The first column shows the
timestamp at which the DES model performs an event including for which model object. The second
column shows either a simulation object which is currently active or it shows an activity assigned to
that object. Finally, the third column indicates either an action such as leaving a process queue or it
shows when a current object is scheduled for a future event. As an example, starting from the top,
it can be seen that on 2021-01-01 at 05:17:00 a truck arrived according to the input data set, which
contains the T-ULD with serial number PMC73557. The truck and thus T-ULD wait according to a
sample drawn from the arrival and loading distribution, after which the T-ULD is scheduled as the
next occurring event in this case. In a similar manner, the trace log can be used to trace individual
ULDs while recording all process events and timestamps. Furthermore, an **INFO** line has been
programmed indicating the SHC of the T-ULD, the serial number and the decision whether it is placed
in cool storage or not. Such information has aided the qualitative verification by means of the simulation
trace log.

Similarly to the trace log, salabim provides a built-in method for simulation model animation which
can be used to animate and thus examine the model behaviour. In specific, the animation screen aids
in verifying whether the T-ULDs logically follow the processing steps and do not take any impossible
routes. For reference, the animation screen has been shown in Figure 5.5. The information shown on
the animation screen has been manually selected. This information includes the T-ULDs with their
corresponding serial numbers and the current position in the cool chain such as the PCHS or KC01,
the number of T-ULDs currently in either cool storage rooms and for instance a process metric such
as total processing time. The animation screen visualises the DES model as it evolves in time and has
thus provided a means to qualitatively verify the model behaviour as it is run.
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Figure 5.5: Simulation model animation screen

Finally, the model has further been qualitatively verified by considering the model output parameters.
As an example, it has been checked that the number of ULDs going into the system is equal to the
number of handled ULDs. Consequently, it can be concluded that all ULDs fully flow through the cool
chain system in a correct manner as verified through the trace log and animation screen.

Quantitative verification
In order to provide quantitative verification of the PT model, a base model run has been performed
with default simulation settings in accordance with the presented case study. To verify whether the
model is right and follows expected behaviour, several verification tests have been defined by changing
simulation parameters after which certain hypotheses for model behaviour have been summarised. If
the model KPIs reflect the expected behaviour in a test, the model can be said to have a Pass on
that test. Once a Pass has been scored on each test, it has been assumed that the model has been
quantitatively verified. In the case that a Fail has been obtained, it has been attempted to alleviate the
issue and improve the model. Logically, the verification and validation in general is thus an iterative
process. The base scenario parameters which have been used in the verification tests have been shown
in Table 5.1 and the corresponding values reflect the presented case study.

Parameters Description Values
CCOL, CCRT KC01 storage capacities CCOL = 6, CCRT = 28

RTT
Cool storage transit time
business rule RTT = 8 hours

RPCHS , RKC01 Storage removal time rules RPCHS = 5 hours, RKC01 = 3 hours

Table 5.1: PT model base scenario parameters

Correspondingly to the base parameters shown, the resulting scores of the OCCE metric averaged over
n = 20 runs have been obtained in order to compare the verification test results with the predefined
hypothesis. The results of the base simulation runs have therefore been shown in the hypotheses. It
has been noted that in the case that any modifications to the input data or programming have been
made, the base scenario has been re-run before the start of a new verification and validation iteration.
Each hypothesis has been formed by considering what should happen to the model output KPIs when
a specific parameter has been changed. Each test has been further discussed below;

1. Doubling of capacities: with a doubling of the capacity of the KC01 cool storage rooms, it has
been anticipated that logically the availability rate should increase since the availability of cool
storage is directly related to the capacity of the facility. Furthermore, since with a doubling of
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the capacity the number of T-ULDs which have been cool stored increases, it has been expected
that the on time performance decreases. This is due to the fact that storing a T-ULD in KC01
required additional processing steps with the ETV being a bottleneck in the cool storage facility.
Therefore, there is an increased chance that a T-ULD may not be handled on time in order to
make the connecting flight. Finally, the temperature adherence rate has been expected to increase
since more T-ULDs could be stored in KC01.

2. Halving of capacities: it has been expected that compared to the doubling of the capacities,
the halving of the capacities has the opposite effect on each OCCE rate following the same logic;
a decrease in availability, an increase in on time performance and a decrease of the temperature
adherence.

3. Doubling of cool storage business rule: for a doubling of the cool storage transit time business
rule from 8 hours to 16 hours, it has been anticipated that in principle less T-ULDs are stored
in KC01 given the histogram of T-ULD transit times shown in Section 4.1.3. Consequently, it
has been expected that the availability rate would increase, the on time performance rate would
increase and the temperature adherence would decrease.

4. Halving of cool storage business rule: a halving of the cool storage business rule to 4 hours
should result in more T-ULDs being stored in KC01 since similarly but opposite to test 3, T-ULDs
with a shorter transit time than 8 hours should now also be stored in cool storage. Consequently,
a decreased availability and on time performance rate has been anticipated. However, despite the
expectation that more T-ULDs receive cool storage, it has been expected that the temperature
adherence slightly decreases as well. This is due to the fact that although the storage rule has
been reduced to 4 hours, the temperature adherence is still measured against an allowed exposure
of 8 hours. Therefore, as an example, a T-ULD with a transit time less than 8 hours may compete
with a T-ULD with a transit time longer than 8 hours for storage in KC01.

5. Halving of standard removal times: by halving the standard removal time rules to 2.5 and 1.5
hours for the PCHS and KC01 respectively, T-ULDs should remain in storage for longer and are
thus subject to a larger chance of missing the connecting flight while experiencing less exposure.
Therefore, a decrease in the availability and on time performance rate has been expected while
an increase in temperature adherence has been anticipated.

6. Doubling of standard removal times: opposite to test 5, a doubling of the removal times to
10 and 6 hours respectively should result in shorter storage times and thus a lower chance of a
missed flight and a higher chance of exceeding the allowable exposure. Consequently, the opposite
hypothesis has been formulated compared to test 5.

Validation
Similarly to the quantitative model verification, the model validation results have been averaged over
n = 20 simulation runs in order to account for the stochastic nature of the model. For the PT validation,
performance validation has been performed, in which KPI scores have been derived from the historical
cool chain data set and compared to the KPI scores obtained from the simulation model. Ideally,
performance validation is performed by comparing the model output KPIs against the values obtained
from real-world data. However, since the developed OCCE metric is a novel performance measure, it
was not possible to derive the three rates from the historic data set. Nonetheless, the handling and
cool chain deadlines and the TOR metric have been extracted from the cool chain data set as well as
collected from the PT.

5.2.1. First iteration
With regard to the qualitative verification, the model reflected the expected behaviour in line with
the presented case study. Therefore, in terms of qualitative verification, the model has passed. The
initial verification tests, hypotheses and results have been shown in Table 5.2. As shown, the first four
verification tests have failed, thus indicating the necessity for improving the model. In specific, for test
one, the ROTP was not below the base scenario value. For tests two and three, the ROTP also failed the
test since it was not exceeding the base scenario value, which was expected. Finally, for test four, the
RA was not below the respective base scenario value. In line with the experimental plan in Figure 5.1,
not all tests have been passed which led to an investigation into the cause; programming error, input
data or the test hypotheses.
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Test Description Hypothesis Result Conclusion

1 CCOL = 12, CCRT = 56
RA > 63.04%
ROTP < 94.34%
RTA > 88.50%

RA = 76.33%
ROTP = 94.60%
RTA = 93.06%

Fail

2 CCOL = 3, CCRT = 14
RA < 63.04%
ROTP > 94.34%
RTA < 88.50%

RA = 51.50%
ROTP = 94.23%
RTA = 80.54%

Fail

3 RTT = 16 hours
RA > 63.04%
ROTP > 94.34%
RTA < 88.50%

RA = 63.76%
ROTP = 94.23%
RTA = 80.45%

Fail

4 RTT = 4 hours
RA < 63.04%
ROTP < 94.34%
RTA < 88.50%

RA = 63.13%
ROTP = 93.84%
RTA = 88.43%

Fail

5 RPCHS = 2.5 hours,
RKC01 = 1.5 hours

RA < 63.04%
ROTP < 94.34%
RTA > 88.50%

RA = 61.74%
ROTP = 69.62%
RTA = 89.49%

Pass

6 RPCHS = 10 hours,
RKC01 = 6 hours

RA > 63.04%
ROTP > 94.34%
RTA < 88.50%

RA = 65.69%
ROTP = 97.95%
RTA = 74.78%

Pass

Table 5.2: Initial averaged verification results over n = 20 runs

Upon re-evaluation of the PT simulation model, it had become evident that an improvement was
necessary in the handling logic of T-ULDs in the case that KC01 storage was full. Therefore, at this
point, the cause has been attributed to the model programming. In principle, although the static
business ruling for cool storage is in fact in use in the physical system, cool chain operators may have
the option to shift around ULDs in the case that KC01 storage capacity utilisation is at a maximum.
Until this point in time, this had not been taken into account for the modelling of the PT. Therefore,
in an attempt to improve the model behaviour, this dynamic has been incorporated into the current
decision-making by assuming that ULDs may be removed in order to make space on the merit of which
ULD has the earliest STD. In other words, if an incoming T-ULD should be placed in cool storage
according to the business ruling and the storage is full, then the T-ULD with the earliest departure
time is removed in order to make space. The latter logic has been visualised in an updated flow chart
in Figure 5.6
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Figure 5.6: Improved cool storage decision-making flow chart based on static business ruling
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In order to provide an insight into the model performance at this moment, the initial validation results
have been shown in Table 5.3. It can be seen that apart from cool chain deadlines two and three, the
percentile deviation from the KPIs obtained from the cool chain data set is limited. In essence, the
initial validation results have provided an indication that the Physical Twin appears to be pessimistic
with regards to how quickly T-ULDs enter KC01 after arrival (cool chain deadline 2), and optimistic
with regards to whether T-ULDs are removed from KC01 no longer than three hours before STD (cool
chain deadline 3).

KPI Data [%] Physical Twin [%] Difference
Cool chain deadline 1 96.86 95.03 −1.89%
Cool chain deadline 2 61.86 41.25 −33.32%
Cool chain deadline 3 17.23 25.90 +50.32%
Handling deadline 1 92.74 94.22 +1.60%
Handling deadline 2 92.28 93.25 +0.55%
Handling deadline 3 84.02 89.80 +6.88%
TOR 52.02 52.27 +0.48%

Table 5.3: Initial validation results over n = 20 runs

5.2.2. Second iteration
In accordance with the experimental verification and validation plan, the base scenario has been run
again given a model programming alteration. This has been reflected in the hypothesis values in
Table 5.4 with respect to Table 5.2. The verification tests have likewise been performed again, which
has been summarised in Table 5.4. Although an improvement has been made with regard to test one,
three verification test failures have remained. Despite the expectation of an increase of ROTP with
test two, the on time performance has actually remained equal. Similarly, in test three the ROTP was
actually less instead of more than the base scenario rate. Finally, in test four, the RA was in fact more
than what was expected compared to the availability in the base scenario.

Test Description Hypothesis Result Conclusion

1 CCOL = 12, CCRT = 56
RA > 61.13%
ROTP < 95.89%
RTA > 86.06%

RA = 76.38%
ROTP = 95.46%
RTA = 90.98%

Pass

2 CCOL = 3, CCRT = 14
RA < 61.13%
ROTP > 95.89%
RTA < 86.06%

RA = 48.14%
ROTP = 95.89%
RTA = 77.48%

Fail

3 RTT = 16 hours
RA > 61.13%
ROTP > 95.89%
RTA < 86.06%

RA = 61.74%
ROTP = 95.21%
RTA = 78.12%

Fail

4 RTT = 4 hours
RA < 61.13%
ROTP < 95.89%
RTA < 86.06%

RA = 61.67%
ROTP = 95.57%
RTA = 85.98%

Fail

5 RPCHS = 2.5 hours,
RKC01 = 1.5 hours

RA < 61.13%
ROTP < 95.89%
RTA > 86.06%

RA = 59.32%
ROTP = 75.87%
RTA = 88.53%

Pass

6 RPCHS = 10 hours,
RKC01 = 6 hours

RA > 61.13%
ROTP > 95.89%
RTA < 86.06%

RA = 65.05%
ROTP = 98.29%
RTA = 66.66%

Pass

Table 5.4: Second iteration averaged verification results over n = 20 runs
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In principle, at this point it had been assumed that no programming faults remained in the DES model.
Therefore, either the input data or the hypotheses required a revision. In order to test whether the
cause was due to the input data, several processing time distributions were altered in order to verify
whether this had a significant effect on the model output. However, it has been found that this effect
was limited and therefore it has been concluded at this point that the hypotheses required alteration.

The validation results have been collected again with the second verification round and have been
shown in Table 5.5. In comparison with the initial validation results, it has been concluded that in
principle the degree of model validation has slightly improved with regards to cool chain deadline
3 where the percentile difference between the data and model output has decreased from 50.32% to
47.41%. Nonetheless, a percentile difference of 47.41 points has still been deemed significant. For
cool chain deadline 2 no significant improvement has been made. It has been concluded that the
significant difference between these two deadlines originates from the fact that the performance could
be significantly affected by fresh T-ULDs which are also stored and retrieved from KC01. Besides, it
has been concluded that poor data quality could have affected the validation results. Therefore, the
respective optimism and pessimism of the model with regard to these cool chain deadlines have remained
for future research while the model has been concluded to be partly validated. At the same time, the
fact that the model has been partly validated has been recognised as a research limitation.

KPI Data [%] Physical Twin [%] Difference
Cool chain deadline 1 96.86 95.13 −1.79%
Cool chain deadline 2 61.86 41.60 −32.75%
Cool chain deadline 3 17.23 25.40 +47.41%
Handling deadline 1 92.74 93.99 +1.35%
Handling deadline 2 92.28 93.25 +1.05%
Handling deadline 3 84.02 89.67 +6.72%
TOR 52.02 51.74 −0.54%

Table 5.5: Second iteration validation results over n = 20 runs

5.2.3. Third iteration
The result of the second iteration had been concluded as an alteration of the hypotheses. Therefore, the
base scenario has not been re-evaluated since the model data and programming has not been altered.
In specific, after consultation with relevant stakeholders, the following hypothesis changes have been
made:

• RA: For test 4, it has been assumed that the availability remains approximately equal with a
halving of the transit time rule. This is due to the fact that, as known from the transit time
histogram presented in Section 4.1.3, there is a limited amount of T-ULDs with a transit time
shorter or equal to four hours. Therefore, the additional number of ULDs which would require
cool storage is limited. For clarity, however, for test 3 the latter is not the case. With a doubling of
the transit time rule, it is known from the transit time histogram that there is in fact a significant
number of ULDs that no longer receive cool storage, thus leading to an increase of the average
availability.

• ROTP : For tests 1, 2, 3 and 4 it has now been assumed that the on time performance remains
approximately equal to the base scenario, with the exception of tests 5 and 6. The alteration
with regards to on time performance is more in line with reality since the cool storage capacities
and transit time rule should in principle not significantly influence whether a ULD makes the
connecting flight or not.

• RTA: For test 4, it has been assumed that the temperature adherence remains approximately
equal. This is due to the fact that stored T-ULDs with a short transit time are swapped with
T-ULDs which have a longer transit time. Furthermore, despite the transit time rule change
in tests 3 and 4, the temperature adherence is measured against an allowable exposure of eight
hours. Therefore, in contrary to test 3, the effect of halving the transit time rule to four hours on
temperature adherence has been expected to be limited.
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It should be added that when referring to a test result being approximately equal to the base scenario
hypothesis value, it has been assumed that the test result should be within ±1% of the hypothesis
value. This is due to the fact that it has been observed in Section 5.1 that small variations in model
output may remain with n = 20 simulation runs. The resulting verification tests and results for the
third iteration have been summarised in Table 5.6. Contrary to expectation, a single verification test
failure has remained; test 3. With the assumed limit of ±1% for a test value to be approximate to the
hypothesis, it had to be concluded that the result of test 3 was in fact at + 1% and thus not significantly
larger as expected. Consequently, test 3 has failed.

Test Description Hypothesis Result Conclusion

1 CCOL = 12, CCRT = 56
RA > 61.13%
ROTP ≈ 95.89%
RTA > 86.06%

RA = 76.38%
ROTP = 95.46%
RTA = 90.98%

Pass

2 CCOL = 3, CCRT = 14
RA < 61.13%
ROTP ≈ 95.89%
RTA < 86.06%

RA = 48.14%
ROTP = 95.89%
RTA = 77.48%

Pass

3 RTT = 16 hours
RA > 61.13%
ROTP ≈ 95.89%
RTA < 86.06%

RA = 61.74%
ROTP = 95.21%
RTA = 78.12%

Fail

4 RTT = 4 hours
RA ≈ 61.13%
ROTP ≈ 95.89%
RTA ≈ 86.06%

RA = 61.67%
ROTP = 95.57%
RTA = 85.98%

Pass

5 RPCHS = 2.5 hours,
RKC01 = 1.5 hours

RA < 61.13%
ROTP < 95.89%
RTA > 86.06%

RA = 59.32%
ROTP = 75.87%
RTA = 88.53%

Pass

6 RPCHS = 10 hours,
RKC01 = 6 hours

RA > 61.13%
ROTP > 95.89%
RTA < 86.06%

RA = 65.05%
ROTP = 98.29%
RTA = 66.66%

Pass

Table 5.6: Third iteration averaged verification results over n = 20 runs

Upon further investigation, it has been concluded that the issue should have arisen from the calculation
of the availability rate. Therefore, a fourth and final iteration has been performed. Furthermore, since
for the third iteration only the hypotheses have been altered, the validation results have not been
presented again since it would be a repetition of Table 5.5.

5.2.4. Fourth iteration
For the fourth and final iteration, a programming alteration has been performed. As mentioned in the
previous iteration, it had been expected that the issue arose in the calculation of RA. Although no
programming error has been found, it has been found that not enough data was generated during a
simulation run for the availability metric. Since RA is an average quantity, the amount of data points, or
individual availability measurements taken during a simulation run, had a limiting effect on the response
of the availability rate on an increase of T-ULDs stored in KC01 during test 3. Therefore, apart from
extracting an availability data point when a T-ULDs is going in or out of KC01, the availability is now
also captured whenever the decision module is activated. Therefore, the extent to which RA captures the
average availability has now been improved. It has been noted that with this programming alteration,
only a small addition has been made with regards to KPI data capture, instead of altering any model
logic. Nonetheless, the base scenario has been run again in order to reflect the new model alteration,
especially with regard to the availability rate. The resulting verification tests and results have been
shown in Table 5.7.
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Test Description Hypothesis Result Conclusion

1 CCOL = 12, CCRT = 56
RA > 64.68%
ROTP ≈ 95.68%
RTA > 85.95%

RA = 79.63%
ROTP = 95.50%
RTA = 90.87%

Pass

2 CCOL = 3, CCRT = 14
RA < 64.68%
ROTP ≈ 95.68%
RTA < 85.95%

RA = 48.83%
ROTP = 95.83%
RTA = 77.58%

Pass

3 RTT = 16 hours
RA > 64.68%
ROTP ≈ 95.68%
RTA < 85.95%

RA = 66.75%
ROTP = 95.23%
RTA = 78.35%

Pass

4 RTT = 4 hours
RA ≈ 64.68%
ROTP ≈ 95.68%
RTA ≈ 85.95%

RA = 64.61%
ROTP = 95.30%
RTA = 85.70%

Pass

5 RPCHS = 2.5 hours,
RKC01 = 1.5 hours

RA < 64.68%
ROTP < 95.68%
RTA > 85.95%

RA = 62.76%
ROTP = 75.53%
RTA = 88.59%

Pass

6 RPCHS = 10 hours,
RKC01 = 6 hours

RA > 64.68%
ROTP > 95.68%
RTA < 85.95%

RA = 69.12%
ROTP = 98.35%
RTA = 66.39%

Pass

Table 5.7: Fourth iteration averaged verification results over n = 20 runs

With regards to test 3, which failed the quantitative verification in iteration three, a pass has now been
obtained. With the addition of increased availability data capture, the rate is now able to reflect the
expected changes when doubling the transit time rule. Therefore, in terms of quantitative verification,
the PT model has now been deemed verified. For the third and fourth iterations, no programming
alterations have been made which have had an influence on the model validation. Therefore, the PT
model has remained partly validated as indicated in the second iteration in Table 5.5.

5.3. Sensitivity analysis
As indicated in the experimental plan, the final step after verification and validation is a sensitivity
analysis. This analysis has been performed in order to study the robustness of the developed DES
model. In other words, a sensitivity analysis has been performed in order to investigate the sensitivity
of the model with respect to changes in both input data as well as model parameters.

5.3.1. Model parameters
In order to study the model sensitivity to changes in the simulation parameters CCOL, CCRT , RTT ,
RPCHS and RKC01, each parameter has been in- and decreased from its base value. The multiplication
has been done through a set of multiplication factors; F = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75]. In
essence, the PT simulation model has been run seven times while averaging the results over n = 20
runs, while individually multiplying the respective parameters. Therefore, the effect of changing a
single parameter on the model output has been studied. It has been noted that for the cool storage
capacity, CCOL and CCRT have both been multiplied by the set F at the same time in order to
study the model sensitivity to an overall change in cool storage capacity. The latter has also been
done for studying the overall sensitivity to the standard storage removal times RPCHS and RKC01.
Furthermore, since the COL and CRT cool storage capacities are integers, CCOL and CCRT have both
been rounded up after each multiplication. The resulting output of the sensitivity analysis has been
summarised graphically, indicating the change in model output as the parameters have been subjected
to an incremental multiplication factor. Furthermore, the correlation coefficients between the individual
rates and the OCCE metric have been determined. The results of the sensitivity analysis have been
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further discussed below.

The result for the sensitivity analysis of the cool storage capacities CCOL and CCRT has been shown
in Figure 5.7. The response of each individual OCCE rate as well as the metric itself has been plotted
against the multiplication factor increase described by F . In line with the altered verification test
hypotheses, it has been found that ROTP is not sensitive to a change in cool storage capacities, indicated
by the nearly horizontal profile in Figure 5.7. For the temperature adherence rate RTA, the sensitivity
has been found to be most prominent when lowering the storage capacities. This is due to the fact
that with reduced capacities, the temperature adherence should logically drop since less ULDs are able
to receive the required cool storage in order to meet an allowable exposure time. As the capacities
have been increased, however, the slope of RTA has flattened. The flattening occurs since T-ULDs
may still exceed the allowable exposure time when not stored in KC01 according to the static business
ruling. As an example, excessive ramp time in ambient conditions may result in an exposure excursion
of the ULDs. Finally, the sensitivity of RA approaches a linear profile as expected from the incremental
increase of CCOL and CCRT . Given the formulation of the availability rate, with an increase in cool
storage capacity, the availability should likewise increase as well. However, the profile does show a
decreasing slope with an increasing cool storage capacity. This has been attributed to the fact that
although capacity has increased, the number of ULDs which have been stored has not increased linearly,
since the input data has not been altered. Therefore, the RA curve has been observed to flatten towards
higher cool storage capacities.

Figure 5.7: Sensitivity analysis of CCOL, CCRT using n = 20 runs

The result for the sensitivity analysis of the standard storage removal times RPCHS and RKC01 has
been shown in Figure 5.8. It has become evident that as expected from the quantitative verification, the
ROTP is fairly sensitive. This is in line with expectations since a respectively late removal from either
storage facility should increase the risk of ULDs missing the connecting flight given the consecutive
processing steps before departure. Furthermore, it has been observed that ROTP approaches 100%
as the multiplication factor increases, yet does not fully reach it. The apparent asymptotic nature
has been attributed to the fact that although late removal from storage should indeed increase the
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on time performance, it has still been expected that a number of ULDs miss the connecting flight
due to other reasons besides the storage removal time. With regards to RA, a slight linear sensitivity
has been observed. As the standard removal times are effectively made earlier as compared to the
STD of a T-ULD by means of the multiplication factor set F , the availability is expected to increase
since the ULDs spend a shorter time in the cool storage. Considering the RTA, it is evident that the
temperature adherence is reduced when ULDs are removed from storage increasingly longer before STD.
The individual effect of the different rates has also been visualised, where the ROTP appears to be quite
strongly correlated to the OCCE metric, especially for the lower multiplication factors. For higher
multiplication factors it appears that the RTA has a more profound influence on the OCCE rate.

Figure 5.8: Sensitivity analysis of RPCHS , RKC01 using n = 20 runs

The result for the sensitivity analysis of the transit time business ruling RTT has been shown in Fig-
ure 5.9. On a general note, it has been observed that the model output sensitivity to an incremental
increase of RTT is limited. In line with what has been found during the verification and validation iter-
ations, ROTP has been found to not be sensitive to changes in RTT , which is in line with expectations
from the actual physical system. RTA also appears rather insensitive, although it does show a slight
linear increase with an increase of the multiplication factor of RTT of over 1.00. The increase has been
expected since with a reduction in the amount of T-ULDs stored in KC01 by an increase of RTT , the
availability should also increase. Finally, for RTA the most significant sensitivity has been observed.
From a multiplication factor of 1.00 and onwards, a significant reduction in temperature adherence is
seen. This reduction is as expected since T-ULDs with a transit time of longer than the eight hours of
maximum allowable exposure, do not receive cool storage as RTT has been increased. On the contrary,
with a reduction of RTT , the temperature adherence does not increase for the two reasons also covered
during the model verification; temperature adherence is still measured against an allowable eight hours
and the number of T-ULDs with a transit time shorter than eight hours is limited. Given the fact
that RTA exhibits the strongest sensitivity in this analysis, it can also be seen that the OCCE is most
strongly affected by temperature adherence.
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Figure 5.9: Sensitivity analysis of RTT using n = 20 runs

In order to study the influence of the respective rates on the OCCE metric in each sensitivity analysis,
the Pearson correlation coefficients have been obtained by means of a built-in function in the Pandas
package for Python. With the applied function, the linear correlation coefficient is scored between -1 and
1, where -1 indicates a strong negative correlation, +1 strong positive correlation and 0 no correlation.
Furthermore, a negative correlation exists when an increase in the one variable is associated with a
decrease in the other variable and vice versa. A positive correlation exists when an increase in one
variable is associated with an increase in the other variable, or when a decrease is associated with a
respective decrease. It has been noted that only the coefficients have been shown of the rates for which
a strong correlation has been found since moderate or weak correlation cannot be explained through
the sensitivity analysis visualisations.

In Table 5.8, the obtained coefficients have been summarised.The correlation coefficients which have
been found for the sensitivity analysis of CCOL and CCRT indicate that RA and RTA have most
strongly influenced the OCCE score with a respective coefficient of 1.00 and 0.98. Therefore, both rates
are strongly positively correlated, which can be clearly seen in Figure 5.7 since the curves have a similar
shape as the OCCE metric. Similarly, for the analysis of the standard storage removal times RPCHS

and RKC01, a strong positive correlation has been found for the on time performance rate, which is also
seen in Figure 5.8. Consequently, it has been found that ROTP has had the most significant influence
on the OCCE. Finally, for the RTT sensitivity analysis, a strong positive correlation coefficient has been
obtained for RTA, while a strong negative correlation has been found for RA, indicating that the OCCE
was most strongly influenced by RA and RTA.

CCOL, CCRT RPCHS, RKC01 RTT

Rates RA RTA ROTP RA RTA

Correlation coefficient OCCE 1.00 0.98 0.96 -0.98 1.00

Table 5.8: Correlation coefficients between the individual rates and the OCCE metric for each parameter sensitivity
analysis
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5.3.2. Model input data
Similarly to the model parameters, the temperature input data set has been altered incrementally. In
specific, the temperature data set has been incremented uniformly by a specific amount of °C. For
example, for +5°C, all temperature data points have been increased by 5 °C. The increments have been
ranged from −20°C to +20°C in steps of 5°C, where 0°C represents the model output for the actual
temperature input data set. The resulting sensitivity analysis data has been visualised in Figure 5.10.
As expected, the sensitivity of RTA has been found to be most significant with regard to changes in the
temperature input data. Furthermore, a parabola-shaped curve has been observed which confirms the
expectation that both very low as well as very high temperatures should affect temperature adherence.
It has also been recognised that although the temperature increments are significant, the model response
in terms of RTA is relatively moderate. This is due to the fact that temperature adherence is a measure
which is based on exposure time, therefore not accounting for the factual temperature deviation from
the specified range. Although less sensitive, the same behaviour has been observed for RA. The effect
is limited however due to the static business ruling for cool storage. Therefore, only ERT T-ULDs have
attributed to the slight decreases of the availability rate on either side of the unaltered temperature data
set since ERT shipments receive cool storage depending also on the weather alarm. Since the weather
alarm is issued below 5°C and at or above 18°C, the weather alarm is more prominently issued for
more significant temperature data increments. Nonetheless, this effect only influences ERT shipments
and thus limits the sensitivity of RA. Finally, in line with expectations, ROTP has been found to be
insensitive to changes in the input temperature data.

Figure 5.10: Sensitivity analysis of the temperature input data using n = 20 runs

Furthermore, the Pearson correlation coefficients for the temperature input data sensitivity analysis
have been obtained and summarised in Table 5.9. It has been concluded that RTA, followed by RA

has
had the most influence on the overall OCCE metric score.

Temperature input data
Rates RA RTA

Correlation coefficient OCCE 0.97 1.00

Table 5.9: Correlation coefficients between the individual rates and the OCCE metric for the temperature data
sensitivity analysis
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5.4. Verification and validation synthesis
In this chapter, an experimental plan has been introduced in order to verify and validate the developed
PT model in Chapter 4. As an initial step, the model convergence in terms of the OCCE rate has been
studied in order to verify convergence as well as determine an acceptable number of simulation repeti-
tions for model output collection. Consequently, four iterations of qualitative verification, quantitative
verification and validation have been performed in order to assure that the model is right and it is the
right model for the studied system. Throughout the iterations, several adjustments have been made to
the developed model, after which the model has been declared to be verified. Furthermore, sensitivity
analyses have been performed on certain key simulation parameters and the temperature input data
set in order to verify the sensitivity of the model to changes in input parameters and data. Overall,
the sensitivity of the model has been deemed acceptable and in line with expectations. However, in
terms of validation, the model has only been considered partly validated. This has been attributed to
the poor data quality as well as the set research scope with respect to the collected cool chain data
set. Nonetheless, the PT model has been deemed fit for use for the implementation of the proposed
DT improvement concept and the collection of the results, which has been addressed in the following
chapter.



6
Model implementation

Following the verification and validation of the PT simulation model, in the following chapter, the DT
improvement concept has first been discussed in Section 6.1. Consequently, the resulting model output
has been presented and discussed in Section 6.2. Finally, an answer has been provided to the following
research questions:

5 How can the improved decision-making be implemented?
6 Which insights can be derived from the developed model?

6.1. Decision support module
For the model implementation, the whole digital system has now been considered, consisting of the PT
with the addition of the DT. The digital system has been visualised in Figure 6.1. In the process of
replicating the actual cool chain behaviour by the PT, data is generated which consequently can be
used by the DT part of the digital system. This data includes the current COL and CRT cool storage
availability, the cumulative exposure of the individual ULDs, the temperature at different points in the
system and the time until departure. As indicated in the conceptual model in Figure 4.11, the proposed
cool chain management improvement has been materialised in the form of the DT; a decision support
module. As opposed to the static business rules deployed in the cool storage decision-making process,
such a decision support module has been envisioned to be able to improve the decision-making based on
real-world and digitised data provided by the PT and physical system data extraction. The interaction
between the PT model and DT as visualised in Figure 6.1 is comprised of the exchange of system and
ULD level data. This information is then utilised in the DT, after which cool storage decisions are
determined and fed back to the PT. By enabling the DT and thus the decision support module, changes
are inferred in the PT model, for which the resulting output can be gathered while quantifying possible
improvements by means of the OCCE metric.

67
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Figure 6.1: Schematic overview of the proposed digital system

Among other purposes, the input temperature data in the PT has allowed the generation of exposure
plots for each T-ULD which went through the system. An example has been given for three ULDs with
the three respective SHCs in Figure 6.2. Throughout the process, temperatures have been logged with a
corresponding timestamp and stored for each ULD, which enables the visualisation of the temperature
profile throughout the handling process, as well as the determination of the cumulative exposure at
a specific time. Given the typically long transit times of ULDs, rapidly changing temperature spikes
may occur for instance as a ULD is briefly outside while being transported to KC01. Nonetheless,
the exposure plots may provide a useful method for the monitoring of temperature-sensitive freight.
Furthermore, as seen in Figure 6.2c, this specific ERT T-ULD has been stored in the CRT cool storage
room since the ambient temperature was above 18°C. However, from the temperature profile, it could
be concluded that storage in the PCHS would have sufficed since the recorded temperature would have
likely remained within the designated UTB and LTB. It has also been noted that the straight horizontal
segments in the temperature profiles represent the time spent in cool storage at the specified temperature
set points. Although realistically variations in temperature would still occur, for this research it has
been assumed that the temperature remains constant in the cool storage facility.
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(a) Exposure of a COL T-ULD

(b) Exposure of a CRT T-ULD

(c) Exposure of an ERT T-ULD

Figure 6.2: ULD exposure plots extracted from the PT simulation model



6.1. Decision support module 70

Apart from the exposure data, other relevant information is extracted from the PT and fed into the DT.
A functional overview of the DT decision support module has been provided in Figure 6.3, where the
arrows indicate the functional relations. Similar to the PT, the DT has also been manually programmed
in Python, for which the code can be seen in Appendix B.2. It has been implemented in a separate
module, which is imported into the main PT program.

Digital Twin

Decision ruling

Storage control

Exposure
prediction

Temperature
prediction

Data extraction

Physical Twin input

Figure 6.3: Functional components of the proposed DT decision support module

In principle, the DT has been built up from four primary functional components, which have been
further described:

• Decision ruling: the dynamic ruling for the cool storage decision has been implemented in this
component. The decision ruling component ultimately returns the storage decisions which are fed
back to the PT. However, before the determination of the decision, the other components have
been utilised.

• Exposure prediction: the predicted exposure of a T-ULD has been taken as the basis for
dynamic decision-making. In essence, this component predicts the expected exposure when storing
the ULD in KC01 or the PCHS. Depending on the predicted exposure, the storage decision is
consequently made.

• Temperature prediction: in order to determine the predicted exposure, the temperature pre-
diction component provides the expected ambient and PCHS temperatures. Therefore, this com-
ponent can be compared to having accurate temperature forecasts for ambient temperatures and
a temperature prediction functionality for the PCHS temperature based on historical data, along
with the current temperatures in the system.

• Storage control: finally, in the case that the best decision is to store a ULD in KC01 while there is
insufficient cool storage availability, the storage control component determines whether to remove
a ULD from storage in order to make room for the new ULD. This has been implemented based on
the selection of the ULD in cool storage with the earliest STD and the lowest cumulative exposure.
Consequently, in order to determine the storage decision, the predicted exposure component is
used in order to estimate which choice would lead to the lowest overall exposure for both ULDs.
In the case that a ULD has been selected to be removed from cool storage, the decision ruling
component feeds back both the decision for the new ULD as well as the ULD which is to be
removed.

The described process of interaction between the different components has been further visualised in a
flow chart, as seen in Figure 6.4. The data input, as well as exchange between the different functional
components in the DT, has been indicated by the striped arrows whereas the solid arrows indicate the
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decision-making logic flow. Furthermore, the parts in the process where the cool storage and removal
decisions are made have been annotated in light blue.
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Figure 6.4: DT dynamic decision making flow chart

Ultimately, by enabling the DT module, the static business ruling has been replaced by dynamic decision
support which determines the cool storage decisions based on the actual system state as well as the
cumulative exposure of the T-ULDs. Since an actual implementation of the proposed digital system
into the physical system has not been accomplished in this research, further recommendations for
implementation have been provided in Section 7.2. Firstly, however, the results from the developed
model have been collected, presented and discussed in the following section.

6.2. Results
As previously described, the PT output includes the proposed OCCE operational quality metric along
with the respective rates from which it has been built up. The case study, as presented in Chapter 3
and verified and partly validated in Chapter 5, has been used as the baseline scenario with which the
proposed DT concept has been compared. Firstly, the general results for the total simulation duration
of one year have been described. Consequently, the model output and performance comparison has also
been studied for three seasons of interest throughout the studied year.

6.2.1. General results
The general results include the digital system output as collected for the whole simulation duration of
one year with n = 20 repetitions and have been summarised in Table 6.1. For each individual rate
as well as the OCCE, the results have been shown for the baseline scenario and the scenario in which
the DT has been implemented. Furthermore, the difference in performance between baseline and DT
implementation has been shown. Moreover, although not included in the OCCE metric, the average
exposure per ULD has also been extracted in order to provide additional insights into the effect of the
DT implementation.

KPI RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [hh:mm:ss]
Baseline 54.70 74.66 64.68 95.68 85.95 53.19 04:10:41
DT implementation 55.21 80.34 67.87 95.04 85.59 55.21 04:05:32
Difference +0.93% +7.61% +4.93% -0.67% -0.42% +3.80% -2.05%

Table 6.1: Physical twin model output results with the DT implementation for the full simulation duration averaged
over n = 20 runs

From Table 6.1, several observations have been made. In general, the OCCE has increased by 3.80%,
which has been achieved through an increase of RA of 4.93%. Moreover, it has been found that through
the DT implementation, primarily the RA,CRT has contributed to the overall cool storage availability
increase. This can be attributed to the fact that CRT and ERT T-ULDs are in general more suitable
for PCHS storage with regards to the acceptable temperature range. Besides the availability, it has
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been observed that both ROTP and RTA have slightly decreased by 0.67% and 0.42% respectively. In
principle, any decrease in either rate has been deemed as unwanted given the costliness of pharmaceutical
air freight. However, given the minor variance observed in the convergence analysis up to n = 30
runs for both rates, the decreases have been considered insignificant. Finally, it has been concluded
that the average T-ULD exposure has been slightly decreased through the implementation of the DT
improvement concept.

Apart from the model output, the number of ULDs stored in KC01 throughout the simulation duration
of one year has been shown for a single run in Figure 6.5. By comparing Figure 6.5a with Figure 6.5b, it
has been observed that in line with the availability results, the primary influence in terms of cool storage
decisions have been made on the CRT cool storage room. The most significant impact has been observed
between 2021-07 and 2021-09, where the number of stored T-ULDs has been significantly decreased while
maintaining a roughly equal temperature adherence and slightly decreased average exposure. With
regards to the COL storage room, no significant changes can be observed from Figure 6.5. This has
been attributed to the fact that the COL temperature range between 2°C and 8°C is more stringent
while the temperature in the PCHS is generally more suitable for CRT and ERT T-ULDs.

(a) Disabled DT module (b) Enabled DT module

Figure 6.5: Number of ULDs stored over the total duration of a single simulation run

In order to highlight the effect of the DT implementation, the exposure plot of an ERT T-ULD has
been shown in Figure 6.6 with and without the decision support module enabled. From Figure 6.6b it
can be seen that the ULD was indeed suitable for PCHS storage, leading to no exposure throughout the
processing time. Therefore, the ULD has been correctly handled well within the respective UTB and
LTB without utilising any additional resources such as cool storage as well as additional movements to
and from the facility. Additionally, with respect to cool chain monitoring, the digitisation of the studied
system has shown that the possibility exists to utilise currently available system data into temperature
profile plots for each unique T-ULD. Such temperature plots would enable enhanced insight into the
exposure endured by individual ULDs throughout the cool chain and could potentially be used for
alerting functionalities with respect to the maximum allowable exposure.
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(a) Disabled DT module

(b) Enabled DT module

Figure 6.6: Comparison of an ERT T-ULD temperature profile with and without DT implementation
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6.2.2. Winter results
In a similar manner, the results have been obtained for the initial winter period of the first three months
of the year with n = 20 repetitions. The resulting scores have been summarised in Table 6.2.

KPI RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [hh:mm:ss]
Baseline 57.04 80.35 68.54 96.37 87.84 58.02 04:34:40
DT implementation 57.89 81.48 69.29 95.64 87.77 58.16 04:32:35
Difference +1.50% +1.41% +1.09% -0.76% -0.08% +0.24% -0.76%

Table 6.2: Physical twin model output results with the DT implementation for the winter period averaged over n = 20
runs

From Table 6.2, it has been observed that the relative contribution to the overall availability increase
is approximately equal for both COL and CRT for the winter period at the beginning of the year. The
significant contribution from RA,CRT has likely decreased given the fact that the PCHS temperature in
this period is more likely to be unsuitable for CRT storage. Furthermore, ROTP has been observed to
slightly decrease for this period while RTA has remained approximately equal. Additionally, the average
exposure has slightly decreased following the DT implementation. Finally, it has been concluded that
the OCCE metric has only been slightly increased in the winter period. The limited impact on the cool
storage has also been observed in Figure 6.7, where there is no clear difference between Figure 6.7a and
Figure 6.7b respectively.

(a) Disabled DT module (b) Enabled DT module

Figure 6.7: Number of ULDs stored during winter of a single simulation run

6.2.3. Spring and Summer results
In principle, the spring and most importantly summer periods can be considered as the most critical
periods during the year for a pharmaceutical air freight cool chain. For this period, the results which
have been gathered over n = 20 runs have been summarised in Table 6.3.

KPI RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [hh:mm:ss]
Baseline 51.84 72.38 62.22 95.62 85.76 51.02 03:52:59
DT implementation 52.61 80.88 66.78 94.98 85.58 54.28 03:49:00
Difference + 1.49% + 11.74% + 7.33% - 0.67% - 0.21% + 6.39% - 1.71%

Table 6.3: Physical twin model output results with the DT implementation for the spring and summer period averaged
over n = 20 runs

As expected, a significant increase of RA has been observed in the spring and summer period, which has
been mostly caused by a significant increase in RA,CRT of 11.74%. Therefore, a significant amount of
CRT and ERT T-ULDs can safely be stored in the PCHS during a critical period. Furthermore, a slight
decrease has been found again for ROTP and RTA while the OCCE has significantly increased due to
the cool storage availability increase. Finally, the average exposure has been found to be decreased. In
Figure 6.8, the significant effect on RA,CRT can evidently be seen through the comparison of Figure 6.8a
and Figure 6.8b. Interestingly, it appears that the most significant impact has been made between 2021-
07 and 2021-09.
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(a) Disabled DT module (b) Enabled DT module

Figure 6.8: Number of ULDs stored during spring and summer of a single simulation run

6.2.4. Autumn and Winter results
Finally, the results have been gathered for the subsequent autumn and winter period and have been
summarised in Table 6.2.

KPI RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [hh:mm:ss]
Baseline 60.87 75.72 68.45 96.16 87.82 57.80 04:30:46
DT implementation 61.28 78.27 69.90 95.36 87.80 58.53 04:24:25
Difference +0.67% +3.37% +2.12% -0.83% -0.02% +1.26% -2.35%

Table 6.4: Physical twin model output results with the DT implementation for the fall and winter period averaged over
n = 20 runs

Compared to the winter period at the beginning of the year, the contribution of RA,CRT to the overall
availability increase has been found to be slightly larger at 3.37%. Similarly to the other periods, the
ROTP has slightly decreased while RTA has remained approximately equal, resulting in a slight increase
of the OCCE. Finally, the average exposure has been decreased by 2.35%. As expected from the gathered
data shown in Table 6.4, no significant impact on the number of ULDs stored has been found in the
visualisation in Figure 6.9. Nonetheless, comparing Figure 6.9a and Figure 6.9b respectively, a slight
decrease of T-ULDs stored in the CRT room can be observed especially a the beginning of autumn, up
to the beginning of 2021-10.

(a) Disabled DT module (b) Enabled DT module

Figure 6.9: Number of ULDs stored during autumn and winter of a single simulation run
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6.2.5. OCCE performance differences
In order to provide an overview of the obtained differences with respect to the baseline scenario, the
differences have been summarised for the general case as well as the different accentuated seasons and
can be seen in Table 6.5.

RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [%]
General +0.93 +7.61 +4.93 -0.67 -0.42 +3.80 -2.05
Winter +1.50 +1.41 +1.09 -0.76 -0.08 +0.24 -0.76
Spring - Summer +1.49 +11.74 +7.33 -0.67 -0.21 +6.39 -1.71
Autumn - Winter +0.67 +3.37 +2.21 -0.83 -0.02 +1.26 -2.35

Table 6.5: PT model including the DT module output differences compared to the baseline scenario for the different
periods throughout the year

Several findings have been gathered from the resulting overview in Table 6.5. Firstly, in general, it has
been found that the operational quality of the studied cool chain can be improved through the utilisation
of actual system data such as temperature in order to replace the static business ruling used for cool
storage decisions towards more dynamic business ruling based on the expected exposure of each ULD.
The improvement has primarily been obtained through the improvement of the cool storage availability,
especially for the CRT cool room. In fact, this improvement has been found to be most significant
in one of the critical periods of the year for an air freight pharmaceutical cool chain: spring and
more importantly summer. In effect, the increased availability could either be utilised for an increased
freight volume or be used to possibly store COL freight if the cool storage facility could be arranged
flexibly with respect to temperature. With regards to the COL storage room, it has been found that
the availability has increased more significantly in the first winter, spring and summer periods. More
generally, it has been found that fewer resources in terms of cool chain equipment would be required
while maintaining roughly an equal temperature adherence and decreasing the average ULD exposure.
Secondly, it has been observed that the ROTP has shown a decrease across all specified periods. In
principle, the magnitude of the decrease in the on time performance has been deemed insignificant due
to the observation of variance in this rate in the convergence analysis. Nonetheless, it has been noted as
a recommendation for further research and a possible point of improvement. Thirdly, similarly to the
on time performance, RTA has been found to slightly decrease. However, the magnitude has been found
to be limited, especially for the autumn and winter periods. Furthermore, a slight variance has been
observed for the temperature adherence in the convergence analysis for n > 20. Finally, given the fact
that the availability increase for CRT is most significant during spring and summer and for COL during
the first winter period, it could indicate the possibility to implement flexible cool storage capacities
which could facilitate multiple temperature zones throughout the year. As an example, cool storage
capacity for CRT and ERT freight during summer could be reduced in order to provide additional COL
cool storage capacity. However, it has been concluded that additional research would be required in
order to adequately determine and or control flexible cool storage capacities, as well as a control scheme
for suitable PCHS storage locations. Nonetheless, the developed cool chain improvement methodology
has provided the required modelling groundwork for such research.

6.2.6. Results synthesis
In this chapter, the actual DT part of the proposed digital system for cool chain operational quality
improvement has been introduced and implemented by connecting it to the PT model. Consequently,
the results have been gathered by comparing the performance of the baseline case study system to the
performance with the implemented DT concept. In the following and final chapter, a final conclusion
has been given along with recommendations for further research.



7
Research conclusion

In this final chapter, firstly the research conclusion has been discussed by considering the answers to
the sub-questions in Section 7.1 in order to provide an answer to the main research question:

To what extent can the pharmaceutical cool chain operational quality be improved through
the development of a real-time decision-making methodology?

Consequently, in Section 7.2, recommendations for further research have been provided in order to high-
light the steps to be taken towards the actual implementation of the proposed cool chain improvement
methodology.

7.1. Conclusion
In the following and final section, an answer has been formulated to the research questions which have
guided the carrying out of this research project.

1. Considering the state of the art, how can cool chain management be improved?

It has been acknowledged that information extraction and improved decision-making may provide a
suitable method for cool chain management, where the DT concept has been recognised as a suitable
method. First, however, a discussion has been given on missing data imputation, which is typically re-
quired during the investigation of industry data. Then, in order to quantify any cool chain management
improvements, the OEE methodology has been adapted into the proposed novel OCCE operational qual-
ity metric. Consequently, the different available modelling techniques have been studied in order to
select an appropriate method for the presented research project. In line with the findings from the cool
chain management literature survey, the DT concept has been introduced, defined and finally presented
as the proposed improvement method. Therefore, considering the state of the art, the DT concept has
been chosen as an appropriate method for cool chain management improvement.

2 What is the current state of a pharmaceutical air freight cool chain process, based on
an applied case study?

It has been found that a multitude of different KPIs are in use. However, the lack of a single metric
which encompasses the operational quality of a part of a cool chain or the system as a whole such as
the proposed OCCE metric has been acknowledged. Furthermore, the decision to store freight in cool
storage is dependent on the static business ruling which may not be optimal considering the current
environmental conditions, despite significant constraints on cool storage capacities. Besides, it has been
recognised that although there is a significant data capture from for instance the WMS in use, the
data has not been utilised in the monitoring of freight conditions such as exposure. Therefore, there
are significant steps which can be taken in terms of the digitisation of the cool chain process in the
air freight industry. In conclusion, it has thus been noted that pharmaceutical air freight cool chains
remain highly suitable for the digitisation of processes for further performance improvements.

3 How can a pharmaceutical air freight cool chain be modelled?

77
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It has been concluded that a pharmaceutical air freight cool chain can be modelled by means of DES.
Furthermore, the importance of data collection and handling has been underlined with respect to
ultimately the model quality as well as the required time and effort necessary to obtain an adequate
model input in terms of data.

4 To what extent does the developed model effectively represent the cool chain process,
in terms of verification and validation?

With respect to the verification, the model has been considered to be verified after four iterations
of the experimental plan, during which several changes have been made to the modelling as well as
the verification hypotheses. With regard to model validation, the model has been considered to be
partly validated since an acceptable percentile difference between the data set and model output has
not been obtained for two cool chain deadline KPIs. Consequently, the model has been acknowledged
to be pessimistic with regard to the timeliness of ULDs entering KC01 and optimistic in terms of the
standard removal time from KC01. In conclusion, the developed model thus represents the cool chain
process in terms of verification and partly represents the process in terms of validation.

5 How can the decision-making be implemented?
6 Which insights can be derived from the developed model?

In conclusion, the improved decision-making has been implemented through the programming of a
separate module which has been imported into the PT model. Furthermore, it has been found that
during spring and summer, significant improvements can be made with respect to the CRT storage room
through the dynamic business ruling scheme in the DT module. Besides, flexible cool storage capacities
have been recognised as a potential improvement and area of interest for future cool chain systems since
the availability improvement appears to be season dependent. In other words, the additional availability
obtained for the CRT room could potentially be utilised for COL freight. In addition, it has been found
to be possible to reduce the average exposure of ULDs in the cool chain system.

To what extent can the pharmaceutical cool chain operational quality be improved through
the development of a real-time decision-making methodology?

With regard to the cool chain operational quality as quantified through the OCCE metric, it has been
found that in general over the studied period of a year an improvement of 3.80% can be made. However,
during the critical spring and summer periods, the operational quality can be improved by 6.39%,
largely attributed to the increase of CRT cool storage availability. For the first winter and fall and
winter periods, slight OCCE improvements have been found with respectively 0.24% and 1.26%. It has
also been found that the proposed improvement method has not been able to provide an improvement
with respect to on time performance and temperature adherence, although the respective decreases
of 0.67% and 0.42 % could be considered insignificant taking into account the performed convergence
analysis. In conclusion, a quantifiable improvement of the pharmaceutical cool chain operational quality
has been obtained through the developed methodology.

7.2. Recommendations for further research
With regard to the convergence analysis, it has been observed that for the on time performance and
temperature adherence, slight variations remained in the PT model output. Therefore, the relative
variance in these rates has been noted as a point of improvement in terms of the DES modelling.
Following the convergence analysis, verification and validation have been performed for the physical twin
model. However, only partial validation has unfortunately been achieved, which has been acknowledged
as a limitation of the performed research. The partial validation has resulted in a respective pessimism
with regard to the time it takes for T-ULDs to be stored in KC01 after arrival, and an optimism with
regards to the timeliness of removal from cool storage three hours before departure.

Although it has been found that the proposed improvement method by means of the digital system is
able to improve the cool chain operational quality, the actual implementation into a cool chain should
also be considered. In general, further research has been recommended with regard to the integration
and or connection of the proposed digital system with the systems in use in the respective cool chain.
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As an example, for the presented case study this entails that data should automatically be drawn
from relevant data sources such as the WMS Chain and in the future CargoBus, as well as the ATAL
temperature sensor network. However, especially with regards to the poor data quality as well as the
missing data which has been encountered throughout the research project, further research has also been
recommended for the issue of reliable data collection and sensor redundancy. In general, Coelho, Relvas,
and Barbosa-Póvoa [108] have mentioned that companies should invest heavily in the improvement of
infrastructure and systems, especially in the installation of sensors for real-time data collection. It has
been argued that only then it is possible to represent reliable real-time simulation models. This is due
to the fact that the digital system requires accurate and real-time data in order to mirror the functions,
behaviour and state in near real-time of a physical system, as described by Kaiblinger and Woschank [92].
The authors have additionally mentioned the fact that a system such as the proposed digital system can
be used to predict future states, evaluate different scenarios or parameters and ultimately be used to
optimise the physical system. Although this research project has provided a first step, further research
has been recommended into the usage of the proposed system in order to actually control and possibly
optimise the cool chain. Along with the automatic extraction of system data, any decision-making
input should likewise be fed back into the physical system. The feeding of input from the digital system
towards the physical system has been classified into two stages; intermediate feedback and automatic
feedback. Intermediate feedback has been formulated as the extraction of information from the digital
system by a human operator which infers and or carries out any possible changes into the physical
system. Automatic feedback has been considered as direct and automatic input from the digital system
into the physical system. The latter is generally the goal with regards to the digitisation of processes
and with respect to the presented case study would entail the connection of the digital system onto the
WMS in which the business ruling has been implemented. Therefore, with regard to the six dimensions
of a DT mentioned in Section 2.6, further research has been recommended into the service system, data
integration and the connections between the systems.

Furthermore, since the PT model provides a virtual representation of the studied cool chain, it has
been recognised at KLM Cargo that the developed PT can be utilised for what-if scenario analyses.
As an example, changes in storage capacities and system configurations can be analysed through adap-
tations of the PT simulation model. Besides, future research could be focused on the improvement
and optimisation of the decision support system algorithm, or DT in this case, in order to study to
which extent the on time performance and temperature adherence can also be improved. Besides, in
this research project, only temperature has been considered as an influential factor and constraint for
the quality of pharmaceutical freight. Although the temperature has indeed been recognised as the
major constraint in a cool chain [120], while packaging provides primary protection against humidity,
light exposure may influence the quality of the freight, especially on the ramp. Therefore, also with
regard to the availability of data throughout the cool chain, further research has been recommended for
the utilisation of external data sources and information and the usage thereof. An example previously
mentioned includes the sharing of technical details with regard to the packaging material in order to
obtain virtual models of the actual freight. It has been hypothesised that information on the thermal
conductivity of such packaging would allow for the modelling of the actual pharmaceutical products
and their respective conditions, based on the ambient environmental conditions. However, the testing
of this hypothesis has been recommended for further research in a dedicated project.
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Abstract—The demand for accurate and effective cool chains
has been expected to increase, especially for pharmaceuticals
in the air freight industry. However, several problems and
challenges remain such as cool chain breaks and cool storage
capacity constraints while there are rarely routine systems in
place for consistent insight into the operational quality of such
systems. Besides, the concept of a DT has received increasing
attention in the literature, while a multitude of applications
have been found in fresh cool chains. Therefore, the DT concept
has been applied to a pharmaceutical cool chain for operational
quality improvement. Firstly, a novel operational quality metric
has been proposed: the OCCE. Consequently, a cool chain
at KLM Cargo has been studied and modelled by means of
the DES technique in order to derive a virtual representation.
Consequently, the DT concept has been applied through the
implementation of a decision support module for cool storage
decision-making. The model implementation has shown that
the cool chain operational quality has been improved while the
average exposure of freight has decreased.

Index Terms—Digital Twin, Cool Chain, OEE, DES, Deci-
sion Support, Decision-making, Monitoring, Operational Qual-
ity Management

I. INTRODUCTION
A. Research background

THE air freight logistics industry has become an
increasingly important part of the modern global

economy [1]. Annually, airlines transport over 52 million
metric tons of cargo with a value equivalent to $6.8
trillion [2]. Even though air freight shipments may account
for less than 1% of global trade by volume, the total
value accounts for 35% of all global shipments [3]. A
demand increase has been anticipated for certain specialist
products such as pharmaceuticals, cut flowers and medical
diagnostic devices [1], which are distributed through the
so-called cool chain. A cool chain includes all steps
and facilities for storing, handling and transportation
of perishable products, for which controlled temperature
conditions must be maintained [4] and is thus also aimed
at preserving the quality of products throughout the
chain [5]. Especially pharmaceutical shipments impose
significant risks in terms of consumer health whenever
product quality has been affected throughout the cool
chain [6]. Furthermore, the reliance on and demand for a
temperature-controlled cool chain for the pharmaceutical
∗MSc. Multi-Machine Engineering - Delft University of Technology
†Faculty of 3mE — Marine and Transport Technology
‡Air France KLM Martinair Cargo

industry is actively driven by the increasing sensitivity of
pharmaceutical products to environmental conditions [7],
[8]. In general, cool chain management is critical due to the
high costs and significant shipment values of pharmaceu-
ticals. However, several problems and challenges remain.
Firstly, especially in the air freight industry, a network
may contain many handovers of shipments that in prin-
ciple constitute to breaks in the cool chain during which
the risk of temperature excursions significantly increases.
Furthermore, there are rarely routine systems in place to
provide consistent insight into cool chain performance and
enable day-to-day performance management [9].

B. Problem definition
One actor within the air freight industry facing cool

chain challenges is KLM Cargo. With tightening regula-
tions [10] and a decreasing market share, the urgency for
operational quality improvement has arisen. In essence, the
operational quality of a cool chain has been defined as the
performance of the system with respect to certain criteria
or service levels, in line with the definition for transport
logistics quality [11]. In other words, operational quality
has been understood as the effectiveness of the system.
A contributing factor which has a significant impact on
the operational quality is capacity constrained cool stor-
age. Furthermore, decision-making is usually performed
through static business ruling while there are no insights
into the state of the freight and the cool chain as a
whole. Therefore, improved decision-making may provide
an opportunity to improve the cool chain with the given
infrastructure and thus the problem definition has been
stated as follows:

“Currently, there is no capability in place for real-
time decision-making in order to improve the cool chain
operational quality based on the actual system state with
the existing infrastructure.”

C. Research objective
Based on the described problem definition, the goal of

the research has been formulated as follows:
”The research project has been aimed at the develop-

ment of a real-time decision-making methodology in order
to improve the operational quality of the pharmaceutical
cool chain.”



2

The goal of decision-making improvement entails the
aim of utilising process and environmental data in order
to determine, support and possibly improve the decision-
making with regard to the cool storage of pharmaceutical
freight. On the one hand, cool storage provides a benefit
to the handled freight with regard to the environmental
conditions and cool chain breaks. On the other hand,
cool storage facilities are typically constrained with regard
to capacity. Therefore, this paper has been aimed at
quantifying the potential improvement of cool chains, by
answering the following research question:

”To what extent can the pharmaceutical cool chain
operational quality be improved through the development
of a real-time decision-making methodology?”

D. Scope
In order to ensure the feasibility of the performed

research, the scope with respect to the performed case
study has been limited to warehouse handling at KLM
Cargo. Besides, only pharmaceutical shipments have been
considered which are handled in a truck-to-aircraft transit
flow. Finally, with regard to the DT concept, automatic
data connections to and from the physical system have
not been realised.

E. Methodology
In order to answer the main research question and

obtain the research goal, several methodologies have been
used. Firstly, the Overall Equipment Effectiveness (OEE)
methodology has been adapted into a novel effectiveness
metric for the operational quality of a cool chain. Secondly,
for the frequently occurring issue of missing data in
industry, k-Nearest-Neighbour (kNN) data imputation has
been utilised in order to deal with missing data entries.
Then, a manually programmed Discrete Event Simulation
(DES) model has been used in order to obtain a virtual
representation of the studied system. DES has been chosen
since it is the most used and state-of-the-art technique for
logistics systems simulation [12]. Finally, the DT concept
has been adopted in order to develop a real-time decision-
making methodology for pharmaceutical cool chains since
it has received little attention in the literature, in contrast
to fresh cool chain studies [13]–[18]. In specific, a DT devel-
opment methodology introduced by [19] has been used as
the basis for the development of the improvement method.
Consequently, the contribution of this research project
has been recognised as an extension of the application of
the DT concept into the domain of the pharmaceutical
air freight cool chain in order to improve the operational
quality by means of real-time decision-making.

II. STATE OF THE ART
A. Cool chain management

A wide range of cool chain disruptions and challenges
can be encountered, which generally can be associated
with three failure categories [20]. Firstly, a disruption of

material flow is typically attributed to a lack of infrastruc-
ture or equipment, or the failure thereof. Furthermore, a
lack of the ability to extract useful information from the
cool chain may lead to information gaps, which increase
the difficulty to assess the performance of the system.
Finally, there may in general be a failure of decision
making or lack of operational support available. This could
be attributed to both a lack of information available or
the inability to utilise available data for improved decision
making. Improving capacity is generally not a viable
option for any short term improvements since apart from
significant investments, the lead time and procurement
of cool chain equipment may take up to two years [9].
Nonetheless, capacity constraints have been recognised
as a typically encountered problem in practice [21], [22].
Therefore, regarding the information and decisions layers,
it has been noted that one of the main research directions
is to ensure the integrity of the cool chain and its precise
control [23]. Significant efforts have been spent on the
improvement of cool chains, especially in the information
and decisions domain. For example, attempts have been
made to model and improve shelf life based decision-
making in fresh cool chains [24]–[29]. However, such
methods of improvement are not easily transferred to the
pharmaceutical cool chain given the limited information
sharing on packaging and product characteristics between
cool chain partners. In general, cool chain managers are
interested in decision-making support in order to monitor
and recognise disruptions in real time while being able to
determine the required actions to deal with such situations
[30]–[33]. Some researches have pointed out a trend in
supply chain management towards a Digital Twin (DT),
i.e. computerised models which represent a physical object
in real time [34]–[38]. It has been recognised that a DT can
offer considerable potential especially in logistics [39], [40]
and virtualisation within supply chains is an important
topic in research [41].

B. Performance evaluation
In order to assess the operational quality of a system

such as a cool chain, certain performance indicators are
required. The Overall Equipment Effectiveness (OEE)
indicator has been introduced within the Total Productive
Maintenance conceptual framework [42]. In principle, OEE
is a metric which can be used to measure the effectiveness
of production equipment and how effectively a manufac-
turing operation is realised [43]. The original definition of
OEE has been expressed as a percentage resulting from
the multiplication of three rates:

OEE = Availability · Performance · Quality (1)

where each measure has been defined as:
• Availability: the actual time used versus the planned

time;
• Performance: the actual production versus the stan-

dard during the actual time used in production;
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• Quality: the number of faulty products produced in
comparison to the total number produced.

Although the OEE is computed in percentages, time
is the central metric unit for the respective sub-measures
[44]. Besides production systems, the OEE methodology
has been applied to other fields as well [45]–[47] while it has
been found to be applied in a multitude of DT studies [48].
Therefore, the OEE method has similarly been adopted
into an effectiveness metric for a cool chain: the Overall
Cool Chain Effectiveness (OCCE), which has been defined
as follows:

OCCE = RA ·ROTP ·RTA (2)

where RA is the cool storage availability rate, ROTP is
the on time performance rate and RTA the temperature
adherence rate. Each rate has been further elaborated on:

• Cool storage availability: this rate refers to the utilisa-
tion of cool storage facilities. Since the unavailability
of cool storage facilities is common, the availability
rate indicates to which extent a cool chain provides
availability of required infrastructure.

• On time performance: in principle, the operational
quality of a cool chain can be seen as twofold; on
the one hand timeliness and on the other the extent
to which freight is handled according to the required
environmental conditions. The on time performance
provides an indication to which extent the timeliness
of a cool chain is as per requested.

• Temperature adherence: this rate provides an indica-
tion to which extent freight is handled according to
environmental specification by the shipper.

C. Digital Twin
The definition of a DT has been specified as a virtual

representation of a real world subject or a real world
object which contains models of its data, functionality
and communication interfaces [49]. Besides an essential
characteristic of a DT has been noted as the capability
to generate virtual instances and control the changes of
a physical object in real-time [50]. The definition has
been extended by considering the exploitation of real-
time synchronisation of data [51]. Three stages of DT
integration have been distinguished based on the degree
of automation of data flows [52], seen in Figure 1.

Virtual
Model

Physical
system

Digital
system

Physical
system

Digital
system

Physical
system

Digital Model Digital Shadow Digital Twin

Digital
system

Physical
system

Fig. 1. The three stages of Digital Twin integration depending on
the automation of data flow, adapted from [51]

Therefore, a DT may then be considered as containing
an automatic data flow to and from the physical system.
Besides, the assumption that a DT should add additional

functionality besides a virtual representation has been
stated [19], which has been summarised in a development
methodology seen in Figure 2.

Physical system

Digital system

Physical Twin Digital Twin

Physical system behaviour
replication

Additional and desired
functionalities

Simulation

Fig. 2. DT development study approach, adapted from [19]

The physical system in this case is comprised of the
cool chain, which is represented in a simulation model by
the Physical Twin (PT) while the DT offers additional
functionalities through for instance decision-making sup-
port. Therefore, a DT has been defined in this work as
the additional functionalities offered by the digital system
through interactions with the PT model representation
of the physical system, while utilising automatic data
connections. In the literature, the concept of a DT has
received increasingly received attention, where the main
focus has been on manufacturing while more research has
been suggested for the application in logistics [39]. Several
benefits have been noted in supply chains [19], [53], while
the concept has been applied in different fields [52], [54]–
[56] as well as fresh cool chains.

III. CASE STUDY DESCRIPTION
In order to apply the DT concept for improved decision-

making in a cool chain, a case study at KLM Cargo
has been performed. The studied system encompasses
a pharmaceutical air freight cool chain with handling
facilities located at the Schiphol hub. The facility handles
pharmaceutical freight classified according to three Special
Handling Codes (SHC): COL for 2 to 8 °C, CRT for 15
to 25 °C and ERT for 2 to 25 °C.

A. Process description
The studied process at KLM Cargo is comprised of a

truck-to-aircraft pharmaceutical freight flow, consisting
out of the so-called Through-ULD (T-ULD). T-ULDs
are Unit Load Devices (ULDs) which have already been
built up with freight and are thus ready for flight upon
arrival at the warehouse. Therefore, the processing steps
for T-ULDs mainly consist out of temporary storage and
transportation on the airport premises. An overview of
the studied process has been shown in Fig. Figure 3. The
units flowing through the system are the T-ULDs which
may contain a single Air WayBill (AWB), or shipment, or
may share the ULD with other AWBs bound for the same
destination. Besides, a single AWB may be comprised of
multiple T-ULDs. The process can be roughly divided
in arrival, Pallet Container Handling System (PCHS)
handling, cool storage and ramp ride and loading. Upon
arrival of a truck, it docks at the warehouse where the T-
ULDs are offloaded by means of the Moving Truck Door
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Fig. 3. Process map for transit outbound T-ULD handling at the KLM Cargo hub

(MTD). Consequently, the ULDs enter the PCHS, which is
an automated storage and retrieval system. Based on static
business rules, it is then determined by the Warehouse
Management System (WMS) whether the T-ULD should
remain in the PCHS or receive cool storage. The following
business rules are in use:

• DEP < 8: any shipment with a transit time less than
eight hours is not placed in cool storage.

• SHC: if the transit time exceeds eight hours, only
COL an CRT T-ULDs receive cool storage.

• Weather alarm: in the case that a weather alarm is
issued when the ambient temperature exceeds 18 °C
or is below 5 °C, shipments with SHC ERT are stored
in the CRT cool storage when the transit time exceeds
eight hours.

The cool storage facility, also named KC01, contains two
rooms with a set-point of 5 °C and 20 °C for COL and
CRT respectively. Through a data analysis, the capacity
of KC01 has been assumed at 6 T-ULDs for the COL
room and 28 T-ULDs for the CRT room for the specified
research scope. With respect to cool chain breaks, cool
storage is usually the best option. However, the capacity
of KC01 is significantly constrained, necessitating the need
for the static cool storage business ruling. With regard to
removal from storage, the standard removal time before
Scheduled Time of Departure (STD) from the PCHS is five
hours and from KC01 three hours. After removal, T-ULDs
are placed in a buffer outside before being transported
towards the aircraft.

B. Performance management
Throughout the studied system, data is generated,

collected and used to determine the system performance
by means of Key Performance Indicators (KPIs). In terms
of general handling, the following deadlines have been
defined:

• Handling deadline 1: T-ULD received into the MTD
process 360 minutes before STD.

• Handling deadline 2: T-ULD handed over from MTD
to Transport 360 minutes before STD.

• Handling deadline 3: T-ULD handed over from Trans-
port to Ground Services 80 minutes before STD.

Similarly, the following cool chain deadlines have been
defined:

• Cool chain deadline 1: a T-ULD enters the PCHS
within 120 minutes after arrival.

• Cool chain deadline 2: T-ULDs with a transit time of
more than or equal to eight hours enter KC01 within
180 minutes after arrival.

• Cool chain deadline 3: a T-ULD stored in KC01 is
removed no longer than 180 minutes before STD.

Furthermore, the timeliness of the system is measured
according to the Flown As Planned (FAP) KPI, which
indicates whether a ULD has been flown on its booked
flight. The temperature aspect is currently measured by
the Time Out of Refrigeration (TOR), which is a measure
of the total time spent at the hub versus the time spent
in cool storage. Consequently, in the studied system, cool
storage capacity issues have been encountered along with
a lack of an overall cool chain effectiveness metric which
incorporates the temperature exposure of T-ULDs.

IV. MODELLING
An overview of the proposed conceptual model has been

shown in Figure 4. The model consists of the studied
physical system along with a proposed digital system
consisting out of the PT DES model and DT decision
support module.

Physical system

Cool chain

Digital system

WMS,
Booking
system

Sensors

Digital Twin
Decision support module

Physical Twin

Decision maker

Environment

Business ruling

Fig. 4. Conceptual research model

The mathematical symbols which have been used
throughout the remainder of this paper have been sum-
marised below:
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CCOL Total capacity of the KC01 COL storage
room

CCRT Total capacity of the KC01 CRT storage
room

I The set of availability measurements
n Number of simulation runs
qcol Current quantity of stored ULDs in the KC01

COL storage room
qcrt Current quantity of stored ULDs in the KC01

CRT storage room
RA Average cool storage availability of the KC01

storage facility
RA,COL Cool storage availability rate of the KC01

COL storage room
RA,CRT Cool storage availability rate of the KC01

CRT storage room
RKC01 Standard KC01 storage removal time rule
ROTP On time performance rate
RPCHS Standard PCHS storage removal time rule
RTA Temperature adherence rate
RTT Cool storage transit time business rule
S Total quantity of handled AWBs
se Number of AWBs with all ULDs having an

exposure less than eight hours
smf Quantity of AWBs with a ULD that missed

the flight

A. Model development
Through the collection, handling and analysis of process

data covering a period from 01-01-2021 until 01-01-2022,
two input data sets for the PT model have been obtained:
a T-ULD input data set and a temperature input data
set. Furthermore, the processing time distributions have
been derived for the development of the PT DES model
representation of the studied system, which has been
manually programmed in Python. Therefore, through the
input data set, the flow of T-ULDs through the process
has been simulated, including real-world temperature data
in the various parts of the system. The OCCE metric
has been applied for the PT model output, including the
following rates:

RA,COL =
CCOL − qcol

CCOL
(3)

RA,CRT =
CCRT − qcrt

CCRT
(4)

RA =

∑I
i=0 RA,COL

|I| +
∑I

i=0 RA,CRT

|I|

2
(5)

ROTP = 1− smf

S
(6)

RTA =
se
S

(7)

Exposure in this case has been noted as the cumulative
time during which a T-ULD is situated in an environment
outside of its respective allowable temperature range,
where the maximum allowable exposure per ULD has been
set at 8 hours at KLM Cargo.

Fig. 5. Physical Twin model convergence analysis for a total of
n = 30 runs

B. Verification and validation
A model convergence analysis has been performed in

order to study the convergence of the PT model output,
as seen in Figure 5. From the convergence analysis,
n = 20 has been deemed acceptable with respect to
the computational time required for n > 20. In order to
determine whether the PT model is right and if it is the
right model, verification and validation have respectively
iteratively been performed [57]. The model has been
concluded to be verified, while only partial validation has
been obtained by means of historical performance data.

C. Model implementation
The DT concept has been manually programmed in

Python as a separate module which has been loaded into
the PT model, forming the digital system as seen in
Figure 6. From the PT model, relevant information such as
cool storage availability, T-ULD exposure, temperature in
the system and the STD. This information is then utilised
in the DT decision support module in order to determine
real-time whether the current ULD needs cool storage

Phyisical Twin

Input

Output

Digital Twin
Decision support module

Temperature

STD

Cool storage availability

Exposure

Storage decisions

ULD truck arrival data

Temperature data

Average cool storage availability

On Time Performance (FAP)

Temperature adherence

OCCE

Fig. 6. Schematic overview of the proposed digital system
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TABLE I
Model output results for the full simulation duration averaged over n = 20 runs

KPI RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [hh:mm:ss]
Baseline 54.70 74.66 64.68 95.68 85.95 53.19 04:10:41
DT implementation 55.21 80.34 67.87 95.04 85.59 55.21 04:05:32
Difference +0.93% +7.61% +4.93% -0.67% -0.42% +3.80% -2.05%

TABLE II
Model output differences compared to the baseline scenario for the different periods throughout the year

RA,COL [%] RA,CRT [%] RA [%] ROTP [%] RTA [%] OCCE [%] Average exposure [%]
General +0.93 +7.61 +4.93 -0.67 -0.42 +3.80 -2.05
Winter +1.50 +1.41 +1.09 -0.76 -0.08 +0.24 -0.76
Spring - Summer +1.49 +11.74 +7.33 -0.67 -0.21 +6.39 -1.71
Autumn - Winter +0.67 +3.37 +2.21 -0.83 -0.02 +1.26 -2.35

based on the expected exposure in the cool chain. In the
case that the expected exposure for PCHS storage is less
than or equal to the exposure with KC01 cool storage,
then the decision to store in the PCHS is fed back to
the PT model. In the case that a T-ULD should receive
cool storage and there is insufficient availability, the DT
module determines whether to remove a ULD based on
expected exposure in order to make space. The resulting
changes on the PT model during a simulation run are
reflected in the OCCE KPIs which have been compared
to the baseline case study system.

V. RESULTS
The resulting model output for the baseline scenario

and implemented DT module has been summarised in
Table I for a total of n = 20 runs over the whole
simulation duration of one year. Furthermore, the results
for different periods of interest during the year have been
extracted in a similar way, which has been summarised
in Table II. In general, it has been observed that the
OCCE and thus operational quality of the cool chain has
improved by 3.80% through the implemented DT concept.
The improvement has largely been obtained through the
improvement of the CRT cool storage availability. Besides,
the average T-ULD exposure has been reduced by 2.05%.
Considering the different periods, it has been observed
that the CRT availability increase is most prominent
during spring and summer, which is typically a criti-
cal period. Furthermore, the on time performance and
temperature adherence have slightly decreased, which has
been attributed to the variance observed of these rates in
the convergence analysis for n > 20.

VI. CONCLUSION AND RECOMMENDATIONS
In conclusion, this paper has introduced a novel metric

for the effectiveness of a cool chain as a whole. Fur-
thermore, the application of the DT concept has been
extended to a pharmaceutical cool chain through a case
study at KLM Cargo. It has been found that through the
implementation of the proposed digital system including a
DT decision-support module has been able to improve the
operational quality of the cool chain as quantified by the

OCCE. Therefore, it has been deemed possible to instate
a quantifiable operational quality improvement in phar-
maceutical cool chains through the joint implementation
of the OCCE metric with the DT concept for real-time
decision-making.

Although it has been found that the proposed improve-
ment method by means of the digital system is able to
improve the cool chain operational quality, the actual
implementation into a cool chain should also be consid-
ered. In general, further research has been recommended
with regards to the integration and or connection of the
proposed digital system with the systems in use in the
respective cool chain such as the WMS and temperature
sensor networks. Besides, the connection to the physical
system should likewise be considered for future research.
Furthermore, the improvement and optimisation of the
decision support system algorithm can be studied in order
to determine to which extent the on time performance and
temperature adherence can also be improved. With regard
to the availability of data throughout the cool chain,
further research has been recommended for the utilisation
of external data sources and information and the usage
thereof. It has been hypothesised that information on the
thermal conductivity of pharmaceutical freight packaging
would allow for the modelling of the actual pharmaceutical
products and their respective conditions, based on the
ambient environmental conditions. However, the testing of
this hypothesis has been recommended for further research
in a dedicated project.
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B
Python programming code

B.1. Physical Twin
1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jun 23 16:00:33 2022
4

5 @author: klm92970 - Jorrit Sijtsma - 5349664
6 """
7 """--- Import Packages ---"""
8 from datetime import datetime, timedelta
9 import salabim as sim

10 import numpy as np
11 import scipy.stats as st
12 import pandas as pd
13 from tqdm import tqdm
14 import matplotlib.pyplot as plt
15 import warnings
16 from Digital_Twin import DynamicBusinessRuling
17

18

19 """--- Simulation settings ---"""
20 EnableDigitalTwin = False
21 Animate = False
22 ExtractExposures = True #Extracts

exposure of each ULD in a .txt; does affect performance significantly
23 input_dataset = "C://Users//klm92970/OneDrive - Air France KLM/Data/INPUT_DATA_SPRING_SUMMER.

txt"
24 tempinput_dataset = "C://Users//klm92970/OneDrive - Air France KLM/Data/TEMPINPUT_DATA.txt"
25 n = 20

#Number of simulation runs
26

27 RandomSeed = True
28 Suppress_trace_linenumbers = True
29 warnings.filterwarnings(action='ignore', category=FutureWarning)

#Remove FutureWarning about append to reduce output clutter
30 """--- Simulation Parameters ---"""
31 CommercialTTime = timedelta(hours=8)
32

33 MinConnectionTimeMTDToTransport = 270 #minutes
34 MinConnectionTimeMTD = 300 #minutes
35 LandSideTime = 60 #minutes
36 ProcessTimeMTDPCHSIn = 30 #minutes
37

38 PCHSRemoval = 300 #minutes
39 KC01Removal = 180 #minutes
40

41 NrTransportersKC01 = 1
42 NrTransportersPCHS = 2
43 NrTractors = 5
44

95
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45

46 COLsetpoint = 5
47 CRTsetpoint = 20
48

49 COLCapacity = 6
50 CRTCapacity = 28
51

52 TPTList = []
53

54

55 MissedFlight = []
56 WasCoolStored = []
57 WasSwapped = []
58

59 """--- Useful Functions ---"""
60 if RandomSeed: #Assign a

random seed if switch is set to True
61 randomseed = '*'
62 else:
63 randomseed = None
64

65 dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
66

67 def detNewUTBLTB(newProdCode: str):
68 if newProdCode == 'S53' or newProdCode == 'C53':
69 newUTB = 25
70 newLTB = 15
71 elif newProdCode == 'S51' or newProdCode == 'C51':
72 newUTB = 8
73 newLTB = 2
74 else:
75 newUTB = 25
76 newLTB = 2
77 return newUTB, newLTB
78

79 def detExposure(ExposureTime, ExposureTemp, UTB, LTB, ULDname):
80 Exposure = pd.DataFrame(
81 {'Timestamp': ExposureTime,
82 'Temperature': ExposureTemp,
83 'UTB': UTB,
84 'LTB': LTB,
85 'TimeDelta': timedelta(hours = 0),
86 'AMT': 0,
87 'ExposureDegHr': 0,
88 'ULD': ULDname})
89

90 Exposure['Timestamp'] = Exposure['Timestamp'].dt.round("S")
91

92 for i in range(len(Exposure.index)-1):
93 if Exposure['Temperature'].loc[i] > UTB or Exposure['Temperature'].loc[i] < LTB:
94 Exposure.iloc[i+1,4] = Exposure.iloc[i+1,0] - Exposure.iloc[i,0]
95 if Exposure['Temperature'].loc[i] > UTB:
96 Exposure.iloc[i+1,5] = (abs(Exposure.iloc[i,1] - Exposure.iloc[i,2]) + abs(

Exposure.iloc[i+1,1] - Exposure.iloc[i+1,2]))/2
97 Exposure.iloc[i+1,6] = Exposure.iloc[i+1,5] * float(((Exposure.iloc[i+1,4]).

total_seconds()/3600))
98 elif Exposure['Temperature'].loc[i] < LTB:
99 Exposure.iloc[i+1,5] = (abs(Exposure.iloc[i,1] - Exposure.iloc[i,3]) + abs(

Exposure.iloc[i+1,1] - Exposure.iloc[i+1,3]))/2
100 Exposure.iloc[i+1,6] = Exposure.iloc[i+1,5] * float(((Exposure.iloc[i+1,4]).

total_seconds()/3600))
101 TotalExposure = Exposure['TimeDelta'].sum(axis=0)
102

103 if ExtractExposures == True:
104 directory = "C://Users//klm92970/OneDrive - Air France KLM/Python/Exposures/Summer/"
105 filename = str(ULDname) + '_' + str(UTB) + ".txt"
106 filepath = directory + filename
107 Exposure.to_csv(filepath)
108 return TotalExposure
109

110 def detHandlingDeadline1(STD, PCHS_In, ConnectionTime, LandSideTime):



B.1. Physical Twin 97

111 if (STD - (env.t_to_datetime(PCHS_In) - timedelta(minutes = 20))) > timedelta(minutes = (
ConnectionTime + LandSideTime)):

112 Deadline = 'OK'
113 else:
114 Deadline = 'NOT OK'
115 return Deadline
116

117 def detHandlingDeadline2(STD, PCHS_In, ConnectionTime, LandSideTime, ProcessTime):
118 if (STD - env.t_to_datetime(PCHS_In)) > timedelta(minutes = (ConnectionTime +

LandSideTime + ProcessTime)):
119 Deadline = 'OK'
120 else:
121 Deadline = 'NOT OK'
122 return Deadline
123

124 def detHandlingDeadline3(STD, CurrentTime):
125 if STD - CurrentTime > timedelta(minutes = 80):
126 Deadline = 'OK'
127 else:
128 Deadline = 'NOT OK'
129 return Deadline
130

131 def detCCDeadline1(PCHS_In, ATA):
132 if (env.t_to_datetime(PCHS_In) - ATA) < timedelta(hours = 2):
133 Deadline = 'OK'
134 else:
135 Deadline = 'NOT OK'
136 return Deadline
137

138 def detCCDeadline2(Cool_In, ATA):
139 if (env.t_to_datetime(Cool_In) - ATA) < timedelta(hours = 3):
140 Deadline = 'OK'
141 else:
142 Deadline = 'NOT OK'
143 return Deadline
144

145 def detCCDeadline3(STD, Cool_Out):
146 if STD - env.t_to_datetime(Cool_Out) <= timedelta(minutes = KC01Removal):
147 Deadline = 'OK'
148 else:
149 Deadline = 'NOT OK'
150 return Deadline
151

152 def detAirsideLaneTime(DepartureTime):
153 AirsideDistributionTime = Airsidelane_waiting_distr.sample()
154 WaitingTime = AirsideDistributionTime
155 return abs(WaitingTime)
156

157 def detRRTime(DepartureTime):
158 RRDistributionTime = RR_distr.sample()
159 RRTime = RRDistributionTime
160 return abs(RRTime)
161

162 def detPCHSRemoval(DepartureTime,PCHSRemoval):
163 if env.t_to_datetime(env.now()) < DepartureTime - timedelta(minutes = PCHSRemoval):
164 PCHSdistr = PCHSout_distr.sample()
165

166 while env.t_to_datetime(env.now()) >= DepartureTime - (timedelta(minutes =
PCHSRemoval) - (timedelta(minutes = PCHSdistr))) or env.t_to_datetime(env.now()) >=
DepartureTime - (timedelta(minutes = PCHSRemoval) + abs(timedelta(minutes = PCHSdistr))):

167 PCHSdistr = PCHSout_distr.sample()
168

169 if PCHSdistr > 0:
170 PCHSRemovalTime = env.datetime_to_t((DepartureTime - timedelta(minutes =

PCHSRemoval) - timedelta(minutes = PCHSdistr)))
171 else:
172 PCHSRemovalTime = env.datetime_to_t((DepartureTime - timedelta(minutes =

PCHSRemoval) + abs(timedelta(minutes = PCHSdistr))))
173 else:
174 PCHSRemovalTime = env.now()
175
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176 return PCHSRemovalTime
177

178 def detKC01Removal(DepartureTime,KC01Removal):
179 if env.t_to_datetime(env.now()) < DepartureTime - timedelta(minutes = KC01Removal):
180 KC01distr = KC01out_distr.sample()
181

182 while env.t_to_datetime(env.now()) >= DepartureTime - (timedelta(minutes =
KC01Removal) - (timedelta(minutes = KC01distr))) or env.t_to_datetime(env.now()) >=
DepartureTime - (timedelta(minutes = KC01Removal) + abs(timedelta(minutes = KC01distr))):

183 KC01distr = KC01out_distr.sample()
184

185 if KC01distr > 0:
186 KC01RemovalTime = env.datetime_to_t((DepartureTime - timedelta(minutes =

KC01Removal) - timedelta(minutes = KC01distr)))
187 else:
188 KC01RemovalTime = env.datetime_to_t((DepartureTime - timedelta(minutes =

KC01Removal) + abs(timedelta(minutes = KC01distr))))
189 else:
190 KC01RemovalTime = env.now()
191

192 return KC01RemovalTime
193

194

195 def detFlightOutSchedule(data):
196 """
197 Function to generate schedule of departing flights
198 with corresponding freight units assigned to these
199 flights + departure dates.
200 """
201 input_df = pd.read_csv(data, sep=",",parse_dates=['Sched_Out', 'Actual_In'], date_parser=

dateparse)
202 FlightOutSchedule = input_df[['Flight_Out','Sched_Out', 'ULD_In']]
203 FlightOutSchedule = FlightOutSchedule.groupby(['Flight_Out','Sched_Out'])['ULD_In'].

unique().reset_index()
204 FlightOutSchedule = FlightOutSchedule.sort_values(by='Sched_Out', ascending=True)
205 FlightOutSchedule.reset_index(inplace = True, drop = True)
206 FlightOutSchedule.insert(0, 'Group_ID', range(0, len(FlightOutSchedule)))
207 return FlightOutSchedule
208

209

210 def detNextDepGroups(schedule):
211 CurrentDay = env.t_to_datetime(env.now()).date()
212 NextRows = schedule[schedule['Sched_Out'].dt.date == CurrentDay]
213 NextGroups = NextRows['Group_ID']
214 return NextGroups
215

216 def detAvgTimedelta(data):
217 total_duration = timedelta(0)
218 for td in data:
219 total_duration += td
220 AverageExposure = (total_duration / len(data))
221 return AverageExposure
222

223 def detCurrentlyStored(COL,CRT):
224 COLstored = []
225 CRTstored = []
226 for uld in COL:
227 COLstored.append(uld)
228 for uld in CRT:
229 CRTstored.append(uld)
230

231 CurrentlyStoredCOL = pd.DataFrame(
232 {'ULD': COLstored,
233 'SHC': '',
234 'Exposure': timedelta(minutes = 0),
235 'STD': ''})
236 CurrentlyStoredCRT = pd.DataFrame(
237 {'ULD': CRTstored,
238 'SHC': '',
239 'Exposure': timedelta(minutes = 0),
240 'STD': ''})
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241

242 for uld in CurrentlyStoredCOL['ULD']:
243 index_label = CurrentlyStoredCOL.index[CurrentlyStoredCOL['ULD'] == uld]
244 # if pd.isna(uld) == False:
245 CurrentlyStoredCOL.loc[index_label, 'SHC'] = uld.SHC
246 CurExposure = detExposure(uld.ExposureTime, uld.ExposureTemp, uld.UTB, uld.LTB, uld.

name())
247 CurrentlyStoredCOL.loc[index_label, 'Exposure'] = CurExposure
248 CurrentlyStoredCOL.loc[index_label, 'STD'] = uld.STD
249 CurrentlyStoredCOL['STD'] = pd.to_datetime(CurrentlyStoredCOL['STD'])
250

251 for uld in CurrentlyStoredCRT['ULD']:
252 index_label = CurrentlyStoredCRT.index[CurrentlyStoredCRT['ULD'] == uld]
253 # if pd.isna(uld) == False:
254 CurrentlyStoredCRT.loc[index_label, 'SHC'] = uld.SHC
255 CurExposure = detExposure(uld.ExposureTime, uld.ExposureTemp, uld.UTB, uld.LTB, uld.

name())
256 CurrentlyStoredCRT.loc[index_label, 'Exposure'] = CurExposure
257 CurrentlyStoredCRT.loc[index_label, 'STD'] = uld.STD
258 CurrentlyStoredCRT['STD'] = pd.to_datetime(CurrentlyStoredCRT['STD'])
259

260 return CurrentlyStoredCOL, CurrentlyStoredCRT
261

262

263 """--- CLASS Definitions ---"""
264 #Generating model input according to input data file
265 class InputGenerator (sim.Component): #ULDs are generated

according to ATA at the hub.
266 def process(self):
267 df = pd.read_csv(input_dataset, sep=",",parse_dates=['Sched_Out', 'Actual_In'],

date_parser=dateparse)
268 AWBList = []
269 for index, row in df.iterrows():
270 newATA = row['Actual_In']
271 newSTD = row['Sched_Out']
272 newSHC = row['SHC']
273 newProdCode = row['Product_Code']
274 newUTB, newLTB = detNewUTBLTB(newProdCode)
275 newULDCode = row['ULD_In']
276 newFlightIn = row['Flight_In']
277 newFlightOut = row['Flight_Out']
278 AWBstring = row['AWBs']
279 newAWB = np.fromstring(AWBstring[1:-1], sep=' ')
280

281 #Hold until a new shipment is created according to Actual_In in the input data
282 yield self.hold(till=env.datetime_to_t(newATA))
283 newFreightUnit = FreightUnit(env=self.env, SHC = newSHC, ProdCode = newProdCode,

UTB = newUTB, LTB = newLTB, ATA = newATA, TransitTime = None, STD = newSTD,ULDCode =
newULDCode,

284 Flight_Out = newFlightOut, ExposureTime = [],
ExposureTemp = [], Exposure = None, TPT = None, TIR = None, Status = None,

285 CoolStorage = None, Actual_Out = None, PCHS_In =
None, Cool_In = None, Cool_Out = None, CCDeadline1 = None, CCDeadline2 = None,

286 CCDeadline3 = None, HDeadline1 = None, HDeadline2 =
None, HDeadline3 = None)

287 newFreightUnit.name(newULDCode)
288 newFreightUnit.enter(truckarrival.EntranceQueue)
289 newFreightUnit.enter(AllFreightUnits)
290 newFreightUnit.enter(FreightUnitsInProcess)
291

292 #For each line, extract the indicated AWBs, generate an instance and add the
corresponding ULD number to it.

293 #In the case of multiple AWBs on 1 ULD, the same ULD code is added to each AWB.
294 for i in range(len(newAWB)):
295 newAWBNumber = str(int(newAWB[i]))
296

297 if newAWBNumber not in AWBList:
298 newAirWayBill = AirWayBill(env=self.env,AWBNumber = newAWBNumber, ULDCode

= [], myULDs = [])
299 newAirWayBill.name(newAWBNumber)
300 newAirWayBill.ULDCode.append(newULDCode)
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301 AWBList.append(newAirWayBill.name())
302 newAirWayBill.enter(AllAWBs)
303 #In the case of multiple ULDs for 1 AWB, a list of corresponding ULD codes is

generated.
304 elif newAWBNumber in AWBList:
305 for i in AllAWBs:
306 if i.name() == newAWBNumber:
307 AWBtochange = i
308 AWBtochange.ULDCode.append(newULDCode)
309 AWBtochange.activate()
310

311 #Extract the next Flight In from the dataset
312 if index + 1 < df.shape[0]: # Check if index+1 does not exceed dataframe size
313 next_line = df.iloc[[index + 1]]
314 next_line = next_line.squeeze(axis=0)
315 nextFlightIn = next_line['Flight_In']
316 nextATA = next_line['Actual_In']
317 #Activate truckarrival for the last incoming ULD
318 elif index + 1 == df.shape[0]:
319 truckarrival.activate()
320

321 # Check whether the Flightin is not equal to the next line
322 if (((nextFlightIn != newFlightIn) and (nextATA != newATA)) or ((nextFlightIn ==

newFlightIn) and (nextATA != newATA))):
323 truckarrival.activate()
324

325 class TempGenerator(sim.Component):
326 def setup(self, AmbientTemperature = None, PCHSTemperature = None, PCHSInTemperature =

None, PCHSOutTemperature = None):
327 self.AmbientTemperature = AmbientTemperature
328 self.PCHSTemperature = PCHSTemperature
329 self.PCHSInTemperature = PCHSInTemperature
330 self.PCHSOutTemperature = PCHSOutTemperature
331 def process(self):
332 temp_df = pd.read_csv(tempinput_dataset, sep=",",parse_dates=['datetime'],

date_parser=dateparse)
333 for index, row in temp_df.iterrows():
334 newDateTime = row['datetime']
335

336 yield self.hold(till = env.datetime_to_t(newDateTime))
337

338 #Push current ambient temperature to all relevant ULDs (not in PCHS or KC01)
339 self.AmbientTemperature = row['T']
340 env.print_trace('***INFO***','Amb temp update:',str(self.AmbientTemperature))
341 env.print_trace('***INFO***','PCHS temp update:',str(self.PCHSTemperature))
342 self.PCHSInTemperature = row['[71]']
343 self.PCHSOutTemperature = row['[22]']
344 self.PCHSTemperature = row['[24]']
345

346

347

348 for uld in FreightUnitsInProcess:
349 if uld in AmbientConditions:
350 uld.ExposureTemp.append(self.AmbientTemperature)
351 uld.ExposureTime.append(newDateTime)
352 elif uld in storage_PCHS:
353 uld.ExposureTemp.append(self.PCHSTemperature)
354 uld.ExposureTime.append(newDateTime)
355

356

357 class AirWayBill(sim.Component):
358 def setup(self, AWBNumber, ULDCode, myULDs, myTOR = [], myExposure = [], myMissedFlights

= []):
359 self.AWBNumber = AWBNumber
360 self.ULDCode = ULDCode
361 self.myULDs = myULDs
362 self.myTOR = myTOR
363 self.myExposure = myExposure
364 self.myMissedFlights = myMissedFlights
365 def process(self):
366 while True:
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367 #Extract ULD instances to connect to AWB
368 for i in self.ULDCode:
369 for j in AllFreightUnits:
370 if i == j.name() and j not in self.myULDs:
371 self.myULDs.append(j)
372 yield self.passivate()
373

374 class FreightUnit(sim.Component):
375 def setup(self, SHC, ProdCode, UTB, LTB, ATA, TransitTime, STD, ULDCode, Flight_Out,

ExposureTime,
376 ExposureTemp, Exposure, TPT, TIR, Status, CoolStorage, Actual_Out, PCHS_In,

Cool_In, Cool_Out, CCDeadline1,
377 CCDeadline2, CCDeadline3, HDeadline1, HDeadline2, HDeadline3):
378 self.SHC = SHC
379 self.ProdCode = ProdCode
380 self.UTB = UTB
381 self.LTB = LTB
382 self.TransitTime = TransitTime
383 self.STD = STD
384 self.ULDCode = ULDCode
385 self.Flight_Out = Flight_Out
386 self.Status = Status
387 self.CoolStorage = CoolStorage
388 self.ATA = ATA
389 self.Actual_Out = Actual_Out
390 self.PCHS_In = PCHS_In
391 self.Cool_In = Cool_In
392 self.Cool_Out = Cool_Out
393 self.ExposureTime = ExposureTime
394 self.ExposureTemp = ExposureTemp
395 self.Exposure = Exposure
396 self.TPT = TPT
397 self.TIR = TIR
398 self.CCDeadline1 = CCDeadline1
399 self.CCDeadline2 = CCDeadline2
400 self.CCDeadline3 = CCDeadline3
401 self.HDeadline1 = HDeadline1
402 self.HDeadline2 = HDeadline2
403 self.HDeadline3 = HDeadline3
404 #for each freight unit, record the TOR, total processing time,
405 #whether processing deadlines are met (both cool chain and handovers), and whether

exposure is OK or NOT OK
406

407 #Total processing time (TPT) = Actual Out - Actual In
408 #Exposure = Total time outside of SHC temp range
409

410 #Cool Chain - OK / NOT OK:
411 #1* ULDs into PCHS within 2 hrs after ARR --> PCHS_In & Actual_In
412 #2* ULDs (lead time > 8hrs) to KC01 within 3 hrs after ARR --> Cool_In & Actual_In &

CoolStorage
413 #3* ULDs (lead time > 8hrs) removed from KC01 no longer than 3 hrs before STD -->

Cool_Out & STD & CoolStorage
414

415 #Handling deadlines:
416 #1* Shipments received on time into MTD process (Transit flow: min connection time +

60 mins Landside time, min connection time: EUR - ICA = 300 mins before departure
baseline)

417 #2* Shipments on time handed over from MTD to Transport (min connection times + 60
min landside time + 30 min (process time MTD --> PCHS IN), min connection time: EUR - ICA
= 270 mins before departure baseline)

418 #3* Shipments on time handed over from Transport to GS (80 mins before baseline
departure)

419

420 def animation_objects(self, id):
421 '''
422 the way the component is determined by the id, specified in AnimateQueue
423 'text' means just the name
424 any other value represents the colour
425 '''
426 if id == 'text':
427 ao0 = sim.AnimateText(text=self.name(), textcolor='fg', text_anchor='nw')
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428 return 0, 16, ao0
429 else:
430 ao0 = sim.AnimateRectangle((-20, 0, 70, 20),
431 text=self.name(), fillcolor=id, textcolor='white', arg=self)
432 return 95, 0, ao0
433

434 def process(self):
435 if self.STD - env.t_to_datetime(env.now()) < timedelta(hours = 6): #min

connection time + 60 min landside time = 360 min / 6 hours
436 self.CoolStorage = 'DirectToAirside'
437

438 ###### Passivate until activation by TruckArrival ######
439 yield self.passivate()
440 self.TransitTime = self.STD - env.t_to_datetime(env.now())
441

442 ###### Verify if not late arrival ######
443 if self.CoolStorage != 'DirectToAirside':
444 self.enter(decisionmodule.DecisionMakingQueue)
445 if decisionmodule.ispassive():
446 decisionmodule.activate()
447 yield self.passivate()
448 env.print_trace('**INFO**',FreightUnit.name(self),'CoolStorage:',self.CoolStorage,

self.SHC)
449

450 if self.CoolStorage == 'DirectToAirside':
451 env.print_trace('**INFO**',FreightUnit.name(self),'Late Arrival:',self.

CoolStorage)
452

453 ###### Calculate deadlines ######
454 self.HDeadline1 = detHandlingDeadline1(self.STD, (env.datetime_to_t(env.

t_to_datetime(env.now()) + timedelta(minutes = 20))), MinConnectionTimeMTD , LandSideTime)
#Handling Deadline 1

455

456

457 self.HDeadline2 = detHandlingDeadline2(self.STD, env.now(),
MinConnectionTimeMTDToTransport , LandSideTime, ProcessTimeMTDPCHSIn) #Handling Deadline
2

458

459

460 self.ExposureTemp.append(tempgenerator.PCHSInTemperature)
461 self.ExposureTime.append(env.t_to_datetime(env.now()))
462

463 ###### Request tractor ######
464 while len(AvailableTractorsQueue) == 0:
465 yield self.standby()
466 myTractor = AvailableTractorsQueue.pop()
467 myTractor.FUtoRR = self
468 myTractor.activate()
469 yield self.passivate()
470

471 ###### Buffer at air side lane ######
472 self.enter(AirsideLaneQueue)
473 WaitingTime = detAirsideLaneTime(self.STD)
474 yield self.hold(WaitingTime)
475 self.leave(AirsideLaneQueue)
476

477 ###### Request tractor for ramp ride ######
478 self.CoolStorage = '' # Reset status

for correct tractor ride
479 while len(AvailableTractorsQueue) == 0:
480 yield self.standby()
481 myTractor = AvailableTractorsQueue.pop()
482 myTractor.FUtoRR = self
483 myTractor.activate()
484 yield self.passivate()
485 self.CoolStorage = 'DirectToAirside'
486

487 self.HDeadline3 = detHandlingDeadline3(self.STD,env.t_to_datetime(env.now()))
#Handling Deadline 3

488

489
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490 ###### Waiting and loading until departure ######
491 if env.t_to_datetime(env.now()) > self.STD:
492 MissedFlight.append(self)
493 else:
494 yield self.hold(till = env.datetime_to_t(self.STD))
495

496 self.ExposureTemp.append(tempgenerator.AmbientTemperature)
497 self.ExposureTime.append(env.t_to_datetime(env.now()))
498

499 self.leave(AmbientConditions)
500 self.leave(FreightUnitsInProcess)
501 self.Actual_Out = env.now()
502

503 self.TPT = env.t_to_datetime(self.Actual_Out) - self.ATA
504 TPTList.append((self.TPT).total_seconds()/3600)
505 TPTMonitor.tally((self.TPT).total_seconds()/3600)
506 env.print_trace('**TPT**',FreightUnit.name(self),str(self.TPT))
507

508 self.TIR = timedelta(minutes=0) # No Cool Chain resources --> no cool storage.
509 env.print_trace('**TIR**',FreightUnit.name(self),str(self.TIR))
510

511 self.enter(HandledFreightUnits)
512

513 self.Exposure = detExposure(self.ExposureTime,self.ExposureTemp,self.UTB,self.LTB
,self.name())

514 env.print_trace('**Exposure*',FreightUnit.name(self),str(self.Exposure))
515

516

517 else:
518 ###### Enter PCHS ######
519 self.enter(pchsentrance.pchs_in_queue)
520 if pchsentrance.ispassive():
521 pchsentrance.activate()
522 yield self.passivate()
523

524 ###### Calculate deadlines ######
525 self.HDeadline1 = detHandlingDeadline1(self.STD, self.PCHS_In,

MinConnectionTimeMTD , LandSideTime) #Handling Deadline 1
526

527 self.HDeadline2 = detHandlingDeadline2(self.STD, self.PCHS_In,
MinConnectionTimeMTDToTransport , LandSideTime, ProcessTimeMTDPCHSIn) #Handling Deadline
2

528

529 self.CCDeadline1 = detCCDeadline1(self.PCHS_In, self.ATA) #Cool Chain Deadline
1

530

531 ##### Stored in PCHS until removal ######
532 self.enter(controller.ControllerQueue)
533 if controller.ispassive():
534 controller.activate()
535 yield self.passivate()
536

537

538

539 ###### Remove from PCHS storage ######
540 self.enter(pchsexit.PCHSExitQueue)
541 if pchsexit.ispassive():
542 pchsexit.activate()
543 yield self.passivate()
544

545 if self.CoolStorage == 'Yes':
546 ###### Request transporter to KC01 ######
547 self.Status = 'In'
548 while len(AvailableTransportersQueueKC01) == 0:
549 yield self.standby()
550 myTransporter = AvailableTransportersQueueKC01.pop()
551 myTransporter.FUtotransport = self
552 myTransporter.activate()
553 yield self.passivate()
554

555 ###### Enter KC01 ######
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556 self.enter(kc01.KC01ToDo)
557 if kc01.ispassive():
558 kc01.activate()
559 yield self.passivate()
560

561 ###### Calculate deadline ######
562 self.CCDeadline2 = detCCDeadline2(self.Cool_In, self.ATA)
563

564

565 ###### Stored in KC01 until removal ######
566 self.enter(controller.ControllerQueue)
567 if controller.ispassive():
568 controller.activate()
569 yield self.passivate()
570

571 ###### Remove from KC01 storage ######
572 self.Status = 'Out'
573 kc01.KC01ToDo.add_sorted(self,1) # Priority for

outgoing ULDs KC01
574 if kc01.ispassive():
575 kc01.activate()
576 yield self.passivate()
577

578 ###### Calculate deadline ######
579 self.CCDeadline3 = detCCDeadline3(self.STD, self.Cool_Out)
580 env.print_trace(self.name(),str(self.STD - env.t_to_datetime(self.Cool_Out)))
581

582 ###### Request transporter to air side lane ######
583 while len(AvailableTransportersQueueKC01) == 0:
584 yield self.standby()
585 myTransporter = AvailableTransportersQueueKC01.pop()
586 myTransporter.FUtotransport = self
587 myTransporter.activate()
588 yield self.passivate()
589

590 elif self.CoolStorage == 'No':
591 ###### Request transporter to air side lane ######
592 while len(AvailableTransportersQueuePCHS) == 0:
593 yield self.standby()
594 self.Status = 'PCHS'
595 myTransporter = AvailableTransportersQueuePCHS.pop()
596 myTransporter.FUtotransport = self
597 myTransporter.activate()
598 yield self.passivate()
599

600 ###### Buffer at air side lane ######
601 self.enter(AirsideLaneQueue)
602 WaitingTime = detAirsideLaneTime(self.STD)
603 yield self.hold(WaitingTime)
604 self.leave(AirsideLaneQueue)
605

606 ###### Request tractor for ramp ride ######
607 while len(AvailableTractorsQueue) == 0:
608 yield self.standby()
609 myTractor = AvailableTractorsQueue.pop()
610 myTractor.FUtoRR = self
611 myTractor.activate()
612 yield self.passivate()
613

614 ###### Calculate deadline ######
615 self.HDeadline3 = detHandlingDeadline3(self.STD,env.t_to_datetime(env.now()))

#Handling Deadline 3
616

617 if env.t_to_datetime(env.now()) > self.STD:
618 env.print_trace('!!!ALERT!!!',str(self.name()),'MISSED FLIGHT')
619 MissedFlight.append(self)
620 else:
621 yield self.hold(till = env.datetime_to_t(self.STD))
622

623 self.ExposureTemp.append(tempgenerator.AmbientTemperature)
624 self.ExposureTime.append(env.t_to_datetime(env.now()))
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625

626

627 self.leave(AmbientConditions)
628 self.leave(FreightUnitsInProcess)
629 self.Actual_Out = env.now()
630

631 self.TPT = env.t_to_datetime(self.Actual_Out) - self.ATA
632 TPTList.append((self.TPT).total_seconds()/3600)
633 TPTMonitor.tally((self.TPT).total_seconds()/3600)
634 env.print_trace('**TPT**',FreightUnit.name(self),str(self.TPT))
635

636 if self.CoolStorage == 'No':
637 self.TIR = timedelta(minutes=0)
638 else:
639 self.TIR = env.t_to_datetime(self.Cool_Out) - env.t_to_datetime(self.Cool_In)
640 env.print_trace('**TIR**',FreightUnit.name(self),str(self.TIR))
641

642 self.enter(HandledFreightUnits)
643

644 self.Exposure = detExposure(self.ExposureTime,self.ExposureTemp,self.UTB,self.LTB
,self.name())

645 env.print_trace('**Exposure*',FreightUnit.name(self),str(self.Exposure))
646

647

648 class Controller(sim.Component):
649 def setup(self, FlightOutSchedule = detFlightOutSchedule(input_dataset), myULDs = [],

myDepGroups = []):
650 self.FlightOutSchedule = FlightOutSchedule
651 self.myULDs = myULDs
652 self.myDepGroups = myDepGroups
653

654 self.ActiveDEPGroups = sim.Queue('Currently active DEP Groups')
655 self.ControllerQueue = sim.Queue('ULDs requesting removal time')
656 def process(self):
657 while True:
658 while len(self.ControllerQueue) == 0:
659 yield self.passivate()
660

661 ULDToAssign = self.ControllerQueue.pop()
662

663 ###### Request: PCHS removal time ######
664 if ULDToAssign in storage_PCHS:
665

666 if ULDToAssign.CoolStorage == 'No':
667 RemovalTime = detPCHSRemoval(ULDToAssign.STD, PCHSRemoval)
668 ULDToAssign.hold(till = RemovalTime)
669

670 elif ULDToAssign.CoolStorage == 'Yes':
671 RemovalTime = PCHSin_KC01in_distr.sample()
672 ULDToAssign.hold(till = env.datetime_to_t(env.t_to_datetime(env.now()

) + timedelta (minutes = RemovalTime)))
673

674 ###### Request: KC01 removal time ######
675 elif ULDToAssign in storage_KC01_COL:
676 if ULDToAssign.CoolStorage == 'PharmaSwap' and ULDToAssign.Status != 'Out':
677 ULDToAssign.activate() #Remove now
678 elif ULDToAssign.CoolStorage == 'PharmaSwap' and ULDToAssign.Status == 'Out':
679 continue
680 else:
681 RemovalTime = detKC01Removal(ULDToAssign.STD, KC01Removal)
682 ULDToAssign.hold(till = RemovalTime)
683

684 elif ULDToAssign in storage_KC01_CRT:
685 if ULDToAssign.CoolStorage == 'PharmaSwap' and ULDToAssign.Status != 'Out':
686 ULDToAssign.activate() #Remove now
687 elif ULDToAssign.CoolStorage == 'PharmaSwap' and ULDToAssign.Status == 'Out':
688 continue
689 else:
690 RemovalTime = detKC01Removal(ULDToAssign.STD, KC01Removal)
691 ULDToAssign.hold(till = RemovalTime)
692
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693 elif ULDToAssign.CoolStorage == 'Out':
694 continue
695

696

697 class TruckArrival(sim.Component):
698 def setup(self, myULDs = []):
699 self.EntranceQueue = sim.Queue('Shipment Arrival Queue')
700 self.myULDs = myULDs
701 def process(self):
702 while True:
703 while len(self.EntranceQueue) == 0:
704 yield self.passivate()
705

706 LateArrivals = []
707 #select all ULDs arriving on the same truck
708 for i in self.EntranceQueue:
709 ULDToAppend = i
710 LateArrivals.append(i.CoolStorage)
711 self.myULDs.append(ULDToAppend)
712 self.EntranceQueue.remove(i)
713

714 if 'DirectToAirside' in LateArrivals:
715 WaitingTime = 15
716 else:
717 #Generate waiting time according to distribution for all selected ULDs
718 WaitingTime = Arrival_distr.sample()
719

720 #Assign waiting + unloading time to ULDs
721 for i in self.myULDs:
722 i.hold(WaitingTime)
723

724 self.myULDs.clear()
725 LateArrivals.clear()
726

727 class DecisionModule(sim.Component): # Transittime,
SHC & weather alarm in the base / current situation

728 def setup(self, COLPrevElement = [], CRTPrevElement = []):
729 self.DecisionMakingQueue = sim.Queue('Apply Business Ruling queue')
730 self.COLAssigned = sim.Queue('ULDs assigned to COL storage')
731 self.CRTAssigned = sim.Queue('ULDs assigned to CRT storage')
732 self.COLPrevElement = COLPrevElement
733 self.CRTPrevElement = CRTPrevElement
734 def process(self):
735 if EnableDigitalTwin == False:
736 while True:
737 while len(self.DecisionMakingQueue) == 0:
738 yield self.passivate()
739

740

741 #Verify whether storage is full each time upon activation
742 if len(storage_KC01_COL) + len(self.COLAssigned) >= COLCapacity:
743 COLStorageFull.set(value = True)
744 env.print_trace('**!!!**','COL storage full!')
745 env.print_trace(str(len(storage_KC01_COL)))
746

747

748 if len(storage_KC01_CRT) + len(self.CRTAssigned) >= CRTCapacity:
749 CRTStorageFull.set(value = True)
750 env.print_trace('**!!!**','CRT storage full!')
751 env.print_trace(str(len(storage_KC01_CRT)))
752

753 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability': ((
COLCapacity - len(storage_KC01_COL)) / COLCapacity),'#Stored': len(storage_KC01_COL)}]

754 kc01.COLAvailability = kc01.COLAvailability.append(new_entry, ignore_index =
True)

755

756 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability': ((
CRTCapacity - len(storage_KC01_CRT)) / CRTCapacity), '#Stored': len(storage_KC01_CRT)}]

757 kc01.CRTAvailability = kc01.CRTAvailability.append(new_entry, ignore_index =
True)

758
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759

760 # select freightunit for decision making
761 myFreightUnit = self.DecisionMakingQueue.pop()
762

763 # Assign CoolStorage status based on business ruling
764 if myFreightUnit.SHC == 'COL':
765 if myFreightUnit.TransitTime > CommercialTTime:
766 if COLStorageFull.get() == False:
767 myFreightUnit.CoolStorage = 'Yes'
768 self.COLAssigned.append(myFreightUnit)
769 #If KC01 is full, swap with a ULD which departs sooner
770 #Check if storage is actually full (instead of only assigned ULDs):
771 elif COLStorageFull.get() == True and len(storage_KC01_COL) != 0:
772 env.print_trace('**!!!**','Unable to store',str(myFreightUnit),

myFreightUnit.SHC)
773 #Find the ULD in storage with earliest STD
774 min_ele = storage_KC01_COL[0]
775 for i in storage_KC01_COL:
776 if i in self.COLPrevElement:
777 if i == min_ele:
778 min_ele = storage_KC01_COL.successor(i)
779 continue
780

781 if i.STD < min_ele.STD:
782 min_ele = i
783 #Check whether there is actually a ULD to swap with
784 if min_ele == None or myFreightUnit.STD <= min_ele.STD:
785 myFreightUnit.CoolStorage = 'No'
786 #In the case that there is a ULD to swap
787 elif myFreightUnit.STD > min_ele.STD:
788 myFreightUnit.CoolStorage = 'Yes'
789 self.COLAssigned.append(myFreightUnit)
790 env.print_trace('**!!!**','','removing to make space',min_ele

.name())
791 min_ele.CoolStorage = 'PharmaSwap'
792 min_ele.enter(controller.ControllerQueue)
793 WasSwapped.append(min_ele)
794 if controller.ispassive():
795 controller.activate()
796 #Add the ULD to swap to the list of ULDs which are chosen to

swap
797 if min_ele not in self.COLPrevElement:
798 self.COLPrevElement.append(min_ele)
799 #No swapping of ULDs in the case that storage is full but only

because the maximum of ULDs to KC01 has already been assigned
800 else:
801 myFreightUnit.CoolStorage = 'No'
802 else:
803 myFreightUnit.CoolStorage = 'No'
804

805

806 elif myFreightUnit.SHC == 'CRT':
807 if myFreightUnit.TransitTime > CommercialTTime:
808 if CRTStorageFull.get() == False:
809 myFreightUnit.CoolStorage = 'Yes'
810 self.CRTAssigned.append(myFreightUnit)
811 elif CRTStorageFull.get() == True and len(storage_KC01_CRT) != 0:
812 env.print_trace('**!!!**','Unable to store',str(myFreightUnit),

myFreightUnit.SHC)
813

814 min_ele = storage_KC01_CRT[0]
815 for i in storage_KC01_CRT:
816 if i in self.CRTPrevElement:
817 if i == min_ele:
818 min_ele = storage_KC01_CRT.successor(i)
819 continue
820

821 if i.STD < min_ele.STD:
822 min_ele = i
823

824 if min_ele == None or myFreightUnit.STD <= min_ele.STD:
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825 myFreightUnit.CoolStorage = 'No'
826

827 elif myFreightUnit.STD > min_ele.STD:
828 myFreightUnit.CoolStorage = 'Yes'
829 self.CRTAssigned.append(myFreightUnit)
830 env.print_trace('**!!!**','','removing to make space',min_ele

.name())
831 min_ele.CoolStorage = 'PharmaSwap'
832 min_ele.enter(controller.ControllerQueue)
833 WasSwapped.append(min_ele)
834 if controller.ispassive():
835 controller.activate()
836 if min_ele not in self.CRTPrevElement:
837 self.CRTPrevElement.append(min_ele)
838 else:
839 myFreightUnit.CoolStorage = 'No'
840 else:
841 myFreightUnit.CoolStorage = 'No'
842

843 elif myFreightUnit.SHC == 'ERT':
844 if tempgenerator.AmbientTemperature < 5 or tempgenerator.

AmbientTemperature >= 18: #In case of weather alarm: ERT is stored in KC01 CRT!
845 if myFreightUnit.TransitTime > CommercialTTime:
846 if CRTStorageFull.get() == False:
847

848 myFreightUnit.CoolStorage = 'Yes'
849 self.CRTAssigned.append(myFreightUnit)
850 elif CRTStorageFull.get() == True and len(storage_KC01_CRT) != 0:
851 env.print_trace('**!!!**','Unable to store',str(myFreightUnit

),myFreightUnit.SHC)
852

853 min_ele = storage_KC01_CRT[0]
854 for i in storage_KC01_CRT:
855 if i in self.CRTPrevElement:
856 if i == min_ele:
857 min_ele = storage_KC01_CRT.successor(i)
858 continue
859

860 if i.STD < min_ele.STD:
861 min_ele = i
862

863 if min_ele == None or myFreightUnit.STD <= min_ele.STD:
864 myFreightUnit.CoolStorage = 'No'
865

866 elif myFreightUnit.STD > min_ele.STD:
867 myFreightUnit.CoolStorage = 'Yes'
868 self.CRTAssigned.append(myFreightUnit)
869 env.print_trace('**!!!**','','removing to make space',

min_ele.name())
870 min_ele.CoolStorage = 'PharmaSwap'
871 min_ele.enter(controller.ControllerQueue)
872 WasSwapped.append(min_ele)
873 if controller.ispassive():
874 controller.activate()
875 if min_ele not in self.CRTPrevElement:
876 self.CRTPrevElement.append(min_ele)
877 else:
878 myFreightUnit.CoolStorage = 'No'
879 else:
880 myFreightUnit.CoolStorage = 'No'
881 else:
882 myFreightUnit.CoolStorage = 'No'
883

884 myFreightUnit.activate()
885

886 if EnableDigitalTwin == True:
887 while True:
888 while len(self.DecisionMakingQueue) == 0:
889 yield self.passivate()
890 #Verify whether storage is full each time upon activation
891 if len(storage_KC01_COL) + len(self.COLAssigned) >= COLCapacity:
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892 COLStorageFull.set(value = True)
893 env.print_trace('**!!!**','COL storage full!')
894 env.print_trace(str(len(storage_KC01_COL)))
895

896

897 if len(storage_KC01_CRT) + len(self.CRTAssigned) >= CRTCapacity:
898 CRTStorageFull.set(value = True)
899 env.print_trace('**!!!**','CRT storage full!')
900 env.print_trace(str(len(storage_KC01_CRT)))
901

902 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability': ((
COLCapacity - len(storage_KC01_COL)) / COLCapacity),'#Stored': len(storage_KC01_COL)}]

903 kc01.COLAvailability = kc01.COLAvailability.append(new_entry, ignore_index =
True)

904

905 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability': ((
CRTCapacity - len(storage_KC01_CRT)) / CRTCapacity), '#Stored': len(storage_KC01_CRT)}]

906 kc01.CRTAvailability = kc01.CRTAvailability.append(new_entry, ignore_index =
True)

907

908 # select freightunit for decision making
909 myFreightUnit = self.DecisionMakingQueue.pop()
910

911 #Determine current exposure + time + stored ULD characteristics
912 myFreightUnit.ExposureTemp.append(tempgenerator.PCHSInTemperature)
913 myFreightUnit.ExposureTime.append(env.t_to_datetime(env.now()))
914 CurrentULDExposure = detExposure(myFreightUnit.ExposureTime,myFreightUnit.

ExposureTemp,myFreightUnit.UTB,myFreightUnit.LTB,myFreightUnit.name())
915 CurrentTime = env.t_to_datetime(env.now())
916 COLStored, CRTStored = detCurrentlyStored(storage_KC01_COL, storage_KC01_CRT)
917 myFreightUnit.CoolStorage, ULDToRemove = DynamicBusinessRuling(CurrentTime,

CurrentULDExposure, myFreightUnit.SHC, myFreightUnit.UTB, myFreightUnit.LTB,
918 tempgenerator.

AmbientTemperature, tempgenerator.PCHSTemperature, myFreightUnit.STD,
919 COLStored, CRTStored, len(

self.COLAssigned), len(self.CRTAssigned), self.COLPrevElement, self.CRTPrevElement)
920

921

922 if myFreightUnit.CoolStorage == 'Yes':
923 if myFreightUnit.SHC == 'COL':
924 self.COLAssigned.append(myFreightUnit)
925 if myFreightUnit.SHC == 'CRT' or myFreightUnit.SHC == 'ERT':
926 self.CRTAssigned.append(myFreightUnit)
927

928 if ULDToRemove != '':
929 if ULDToRemove.SHC == 'COL':
930 env.print_trace('**!!!**','','removing to make space',ULDToRemove.name

())
931 ULDToRemove.CoolStorage = 'PharmaSwap'
932 ULDToRemove.enter(controller.ControllerQueue)
933 WasSwapped.append(ULDToRemove)
934 if controller.ispassive():
935 controller.activate()
936 if ULDToRemove not in self.COLPrevElement:
937 self.COLPrevElement.append(ULDToRemove)
938 elif ULDToRemove.SHC == 'CRT' or ULDToRemove.SHC == 'ERT':
939 env.print_trace('**!!!**','','removing to make space',ULDToRemove.name

())
940 ULDToRemove.CoolStorage = 'PharmaSwap'
941 ULDToRemove.enter(controller.ControllerQueue)
942 WasSwapped.append(ULDToRemove)
943 if controller.ispassive():
944 controller.activate()
945 if ULDToRemove not in self.CRTPrevElement:
946 self.CRTPrevElement.append(ULDToRemove)
947

948 myFreightUnit.activate()
949

950

951 class PCHSentrance(sim.Component):
952 def setup(self):
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953 self.pchs_in_queue = sim.Queue('PCHS Entrance Queue')
954 def process(self):
955 while True:
956 while len(self.pchs_in_queue) == 0:
957 yield self.passivate()
958

959 FreightUnitIn = self.pchs_in_queue.pop()
960 FreightUnitIn.ExposureTemp.append(tempgenerator.PCHSInTemperature)
961 FreightUnitIn.ExposureTime.append(env.t_to_datetime(env.now()))
962 yield self.hold(15)
963 storage_PCHS.add(FreightUnitIn)
964 FreightUnitIn.PCHS_In = FreightUnitIn.enter_time(storage_PCHS)
965 FreightUnitIn.ExposureTemp.append(tempgenerator.PCHSTemperature) #
966 FreightUnitIn.ExposureTime.append(env.t_to_datetime(env.now()))
967 FreightUnitIn.activate()
968

969 class PCHSexit(sim.Component):
970 def setup(self):
971 self.PCHSExitQueue = sim.Queue ('PCHS exit queue')
972 def process(self):
973 while True:
974 while len(self.PCHSExitQueue) == 0:
975 yield self.passivate()
976

977 FreightUnitOut = self.PCHSExitQueue.pop()
978 FreightUnitOut.leave(storage_PCHS)
979 yield self.hold(15)
980 FreightUnitOut.ExposureTemp.append(tempgenerator.PCHSOutTemperature)
981 FreightUnitOut.ExposureTime.append(env.t_to_datetime(env.now()))
982 FreightUnitOut.enter(AmbientConditions)
983 FreightUnitOut.activate()
984

985

986 class KC01(sim.Component): # retrieval of 6 - 8 ULDs
per hour max. Fresh not taken into account, so 6 is chosen.

987 def setup(self, COLTemp, CRTTemp, COLAvailability = pd.DataFrame(columns = ['Timestamp','
Availability','#Stored']), CRTAvailability = pd.DataFrame(columns = ['Timestamp','
Availability','#Stored'])):

988 self.KC01ToDo = sim.Queue('KC01 processing queue')
989 self.COLTemp = COLTemp
990 self.CRTTemp = CRTTemp
991 self.COLAvailability = COLAvailability
992 self.CRTAvailability = CRTAvailability
993

994 def process(self):
995 while True:
996 while len(self.KC01ToDo) == 0:
997 yield self.passivate()
998

999 FirstFreightUnit = self.KC01ToDo.pop()
1000 env.print_trace('**INFO**',FirstFreightUnit.name(),FirstFreightUnit.SHC,

FirstFreightUnit.Status)
1001

1002

1003 if ETVbusy.get() == False: #check if ETV KC01
is available

1004

1005 if FirstFreightUnit.Status == 'In':
1006 FirstFreightUnit.leave(AmbientConditions)
1007 ETVbusy.set(value = True)
1008 if FirstFreightUnit.SHC == 'COL':
1009 yield self.hold(10)
1010 storage_KC01_COL.add(FirstFreightUnit)
1011 FirstFreightUnit.leave(decisionmodule.COLAssigned)
1012 FirstFreightUnit.Cool_In = FirstFreightUnit.enter_time(

storage_KC01_COL)
1013 FirstFreightUnit.ExposureTemp.append(self.COLTemp)
1014 FirstFreightUnit.ExposureTime.append(env.t_to_datetime(

FirstFreightUnit.Cool_In))
1015 FirstFreightUnit.activate()
1016



B.1. Physical Twin 111

1017 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability
': ((COLCapacity - len(storage_KC01_COL)) / COLCapacity),'#Stored': len(storage_KC01_COL)
}]

1018 self.COLAvailability = self.COLAvailability.append(new_entry,
ignore_index = True)

1019

1020

1021

1022 elif FirstFreightUnit.SHC == 'CRT' or FirstFreightUnit.SHC == 'ERT':
1023 yield self.hold(10)
1024 storage_KC01_CRT.add(FirstFreightUnit)
1025 FirstFreightUnit.leave(decisionmodule.CRTAssigned)
1026 FirstFreightUnit.Cool_In = FirstFreightUnit.enter_time(

storage_KC01_CRT)
1027 FirstFreightUnit.ExposureTemp.append(self.CRTTemp)
1028 FirstFreightUnit.ExposureTime.append(env.t_to_datetime(

FirstFreightUnit.Cool_In))
1029 FirstFreightUnit.activate()
1030

1031 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability
': ((CRTCapacity - len(storage_KC01_CRT)) / CRTCapacity),'#Stored': len(storage_KC01_CRT)
}]

1032 self.CRTAvailability = self.CRTAvailability.append(new_entry,
ignore_index = True)

1033

1034

1035 elif FirstFreightUnit.Status == 'Out':
1036 ETVbusy.set(value = True)
1037 if FirstFreightUnit.SHC == 'COL':
1038 FirstFreightUnit.ExposureTemp.append(self.COLTemp)
1039 FirstFreightUnit.ExposureTime.append(env.t_to_datetime(env.now()))
1040 yield self.hold(10)
1041 FirstFreightUnit.leave(storage_KC01_COL)
1042 FirstFreightUnit.Cool_Out = env.now()
1043 WasCoolStored.append(FirstFreightUnit)
1044 FirstFreightUnit.activate()
1045

1046 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability
': ((COLCapacity - len(storage_KC01_COL)) / COLCapacity),'#Stored': len(storage_KC01_COL)
}]

1047 self.COLAvailability = self.COLAvailability.append(new_entry,
ignore_index = True)

1048

1049 if FirstFreightUnit in decisionmodule.COLPrevElement:
1050 decisionmodule.COLPrevElement.remove(FirstFreightUnit)
1051

1052

1053 if len(storage_KC01_COL) + len(decisionmodule.COLAssigned) >=
COLCapacity:

1054 COLStorageFull.set(value = True)
1055 env.print_trace('**!!!**','COL storage full!')
1056 env.print_trace(str(len(storage_KC01_COL)))
1057

1058 else:
1059 COLStorageFull.set(value = False)
1060

1061

1062 elif FirstFreightUnit.SHC == 'CRT' or FirstFreightUnit.SHC == 'ERT':
1063 FirstFreightUnit.ExposureTemp.append(self.CRTTemp)
1064 FirstFreightUnit.ExposureTime.append(env.t_to_datetime(env.now()))
1065 yield self.hold(10)
1066 FirstFreightUnit.leave(storage_KC01_CRT)
1067 FirstFreightUnit.Cool_Out = env.now()
1068 WasCoolStored.append(FirstFreightUnit)
1069 FirstFreightUnit.activate()
1070

1071 new_entry = [{'Timestamp': env.t_to_datetime(env.now()),'Availability
': ((CRTCapacity - len(storage_KC01_CRT)) / CRTCapacity), '#Stored': len(storage_KC01_CRT
)}]

1072 self.CRTAvailability = self.CRTAvailability.append(new_entry,
ignore_index = True)
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1073

1074 if FirstFreightUnit in decisionmodule.CRTPrevElement:
1075 decisionmodule.CRTPrevElement.remove(FirstFreightUnit)
1076

1077

1078 if len(storage_KC01_CRT) + len(decisionmodule.CRTAssigned) >=
CRTCapacity:

1079 CRTStorageFull.set(value = True)
1080 env.print_trace('**!!!**','CRT storage full!')
1081 env.print_trace(str(len(storage_KC01_CRT)))
1082

1083 else:
1084 CRTStorageFull.set(value = False)
1085

1086

1087 FirstFreightUnit.enter(AmbientConditions)
1088

1089 ETVbusy.set(value=False)
1090

1091

1092 class Transporter(sim.Component):
1093 def setup(self, FUtotransport = None):
1094 self.FUtotransport = FUtotransport
1095 def process(self):
1096 while True:
1097 yield self.passivate()
1098 self.FUtotransport.ExposureTemp.append(tempgenerator.AmbientTemperature)
1099 self.FUtotransport.ExposureTime.append(env.t_to_datetime(env.now()))
1100 if self.FUtotransport.Status == 'PCHS':
1101 PCHSExitToAirsideLane = PCHS_airsidelane_distr.sample()
1102 yield self.hold(PCHSExitToAirsideLane)
1103 self.FUtotransport.activate()
1104 self.enter(AvailableTransportersQueuePCHS)
1105 elif self.FUtotransport.Status == 'In':
1106 TransportToFromKC01 = Transport_KC01_distr.sample()
1107 yield self.hold(TransportToFromKC01)
1108 self.FUtotransport.activate()
1109 self.enter(AvailableTransportersQueueKC01)
1110 elif self.FUtotransport.Status == 'Out':
1111 TransportToFromKC01 = Transport_KC01_distr.sample()
1112 yield self.hold(TransportToFromKC01)
1113 self.FUtotransport.activate()
1114 self.enter(AvailableTransportersQueueKC01)
1115

1116

1117 class Tractor(sim.Component):
1118 def setup(self, FUtoRR = None):
1119 self.FUtoRR = FUtoRR
1120 def process(self):
1121 while True:
1122 yield self.passivate
1123

1124 if self.FUtoRR.CoolStorage == 'DirectToAirside': # Check the type of
ride

1125 self.FUtoRR.enter(AmbientConditions)
1126 self.FUtoRR.ExposureTemp.append(tempgenerator.AmbientTemperature)
1127 self.FUtoRR.ExposureTime.append(env.t_to_datetime(env.now()))
1128 yield self.hold(5)
1129 self.FUtoRR.ExposureTemp.append(tempgenerator.AmbientTemperature)
1130 self.FUtoRR.ExposureTime.append(env.t_to_datetime(env.now()))
1131 self.FUtoRR.activate()
1132 self.enter(AvailableTractorsQueue)
1133 else:
1134 self.FUtoRR.ExposureTemp.append(tempgenerator.AmbientTemperature)
1135 self.FUtoRR.ExposureTime.append(env.t_to_datetime(env.now()))
1136 RRTime = detRRTime(self.FUtoRR.STD)
1137 yield self.hold(RRTime)
1138 self.FUtoRR.ExposureTemp.append(tempgenerator.AmbientTemperature)
1139 self.FUtoRR.ExposureTime.append(env.t_to_datetime(env.now()))
1140 self.FUtoRR.activate()
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1141 yield self.hold (RRTime) # Back
from aircraft. Same time assumed

1142 self.enter(AvailableTractorsQueue)
1143

1144

1145 R_A = np.zeros (n)
1146 R_OTP = np.zeros (n)
1147 R_TA = np.zeros (n)
1148 OCCE = np.zeros (n)
1149

1150 No_stored = np.zeros (n)
1151 No_swapped = np.zeros (n)
1152

1153 AvgExposure = list([timedelta(hours = 0)] * n)
1154

1155 for l in tqdm (range(n), desc = "Simulating runs..."):
1156 """--- INITIALIZATION ---"""
1157 MissedFlight.clear()
1158 WasCoolStored.clear()
1159 WasSwapped.clear()
1160 with open('trace_log.txt','w') as out:
1161 env = sim.Environment (time_unit = 'minutes', datetime0 = datetime(2021,1,1),

random_seed = randomseed, trace=out)
1162 env.suppress_trace_linenumbers(Suppress_trace_linenumbers)
1163

1164 inputgenerator = InputGenerator()
1165 tempgenerator = TempGenerator()
1166 pchsentrance = PCHSentrance()
1167 truckarrival = TruckArrival()
1168 decisionmodule = DecisionModule()
1169 controller = Controller()
1170 kc01 = KC01(COLTemp = COLsetpoint, CRTTemp = CRTsetpoint)
1171 pchsexit = PCHSexit()
1172

1173

1174 """--- STATE Definitions ---"""
1175 ETVbusy = sim.State('ETV busy')
1176 COLStorageFull = sim.State('COL storage full')
1177 CRTStorageFull = sim.State('CRT storage full')
1178

1179

1180 """--- QUEUE Definitions ---"""
1181 AllFreightUnits = sim.Queue('All ULDs')
1182 FreightUnitsInProcess = sim.Queue('ULDs in process')
1183 AllAWBs = sim.Queue('All AWBs')
1184

1185 storage_PCHS = sim.Queue('PCHS Storage')
1186 storage_KC01_COL = sim.Queue('KC01 COL Storage', capacity = COLCapacity)
1187 storage_KC01_CRT = sim.Queue('KC01 CRT Storage', capacity = CRTCapacity)
1188 HandledFreightUnits = sim.Queue('Handled ULDs')
1189 entrancequeue = sim.Queue('Entrance Queue')
1190

1191 AirsideLaneQueue = sim.Queue('Airside lane buffer')
1192

1193 AmbientConditions = sim.Queue('ULDs in ambient environmental conditions')
1194

1195 AvailableTransportersQueueKC01 = sim.Queue('Available transporters KC01')
1196 AvailableTransportersQueuePCHS = sim.Queue('Available transporters PCHS')
1197 AvailableTractorsQueue = sim.Queue('Available tractors')
1198

1199 """--- RESOURCE Definitions ---"""
1200 Transporters = []
1201 for _ in range(NrTransportersKC01):
1202 transporter = Transporter()
1203 Transporters.append(transporter)
1204 transporter.enter(AvailableTransportersQueueKC01)
1205

1206 for _ in range(NrTransportersPCHS):
1207 transporter = Transporter()
1208 Transporters.append(transporter)
1209 transporter.enter(AvailableTransportersQueuePCHS)
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1210

1211 Tractors = []
1212 for _ in range(NrTractors):
1213 tractor = Tractor()
1214 Tractors.append(tractor)
1215 tractor.enter(AvailableTractorsQueue)
1216

1217 """--- DISTRIBUTIONS ---"""
1218 Arrival_distr = sim.External(st.gompertz, c = 14.290598889851587, loc =

5.963957271109827, scale = 432.8146589131147, time_unit='minutes')
1219 PCHSout_distr = sim.External(st.johnsonsu, a = -2.1373583494519592, b =

1.4436374905636349, loc = -217.36932520697655, scale = 60.17754370345297, time_unit='
minutes')

1220 PCHSin_KC01in_distr = sim.External(st.johnsonsb, a= 1.1054284233387612,b=
1.043704671177156,loc= 12.352580355238649,scale= 351.4011122382053, time_unit='minutes')

1221 Transport_KC01_distr = sim.Bounded(sim.External(st.cauchy, loc = 2.5005167413440166,
scale = 0.8991652479295638, time_unit='minutes'), lowerbound = 1, upperbound = 20)

1222 KC01out_distr = sim.External(st.genhyperbolic,p = 1.1177338177432359, a =
0.5137061998096379, b = 0.29790506020349944, loc = 0.04838179962329987, scale =
16.51203203870395, time_unit='minutes' )

1223 PCHS_airsidelane_distr = sim.Bounded(sim.External(st.lomax, c = 9.62742531642483, loc
= 0.9999999999999927, scale = 39.256570439859004, time_unit='minutes'), lowerbound = 0,
upperbound = 60)

1224 Airsidelane_waiting_distr = sim.External(st.invweibull, c = 1.3816423074229707, loc =
-3.767827670671733, scale = 14.553388700326352, time_unit='minutes')

1225 RR_distr = sim.External(st.genhyperbolic, p = -1.4669768102035186, a =
1.115297290476859, b = 1.0908143212514227, loc = 10.573959407968177, scale =
5.6019559650236, time_unit='minutes')

1226

1227

1228 """--- MONITORS ---"""
1229 TPTMonitor = sim.Monitor('Total Processing Time')
1230

1231 """--- ANIMATION ---"""
1232 env.background_color('30%gray')
1233

1234 sim.AnimateQueue(FreightUnitsInProcess , x=100, y=550, title='ULDs in Cool Chain',
direction='e', id='green')

1235 sim.AnimateQueue(storage_PCHS, x=100, y=400, title='ULDs in PCHS', direction='e', id=
'red')

1236 sim.AnimateQueue(storage_KC01_COL, x=100, y=250, title='ULDs in KC01 COL', direction=
'e', id='blue')

1237 sim.AnimateQueue(storage_KC01_CRT, x=100, y=100, title='ULDs in KC01 CRT', direction=
'e', id='blue')

1238

1239 sim.AnimateMonitor(storage_KC01_COL.length, x=500, y=550, width=300, height=100,
horizontal_scale=5, vertical_scale=5)

1240 sim.AnimateMonitor(storage_KC01_CRT.length, x=500, y=400, width=300, height=100,
horizontal_scale=5, vertical_scale=5)

1241 sim.AnimateText(text=lambda: TPTMonitor.print_statistics(as_str=True), x=500, y=300,
text_anchor='nw', font='narrow', fontsize=9)

1242

1243

1244

1245 env.animate(Animate)
1246 env.modelname('Cool chain Digital Twin development study')
1247

1248 """--- RUN MODEL ---"""
1249 env.run ()
1250

1251

1252 """--- PRINT RESULTS ---"""
1253 #Collecting results ULD level
1254 ULDRows = []
1255 ULDPerformance = pd.DataFrame(columns = ['ULD_In','CC1','CC2','CC3','H1','H2','H3','

TempAdherence'])
1256 for uld in HandledFreightUnits:
1257 newRow = {'ULD_In':uld.name(),'CC1':uld.CCDeadline1,'CC2':uld.CCDeadline2,'CC3':

uld.CCDeadline3,
1258 'H1':uld.HDeadline1,'H2':uld.HDeadline2,'H3':uld.HDeadline3,'

TempAdherence':uld.Exposure}
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1259 ULDRows.append(newRow)
1260 ULDPerformance = ULDPerformance.append(ULDRows, ignore_index = True)
1261

1262

1263 AllExposures = []
1264 #Collecting results AWB level
1265 for awb in AllAWBs:
1266 # TORULDs = []
1267 ExposureULDs = []
1268 MissedFlightULDs = []
1269 for i in awb.myULDs:
1270 # TORULDs.append((i.TPT - i.TIR))
1271 ExposureULDs.append(i.Exposure)
1272 if i in MissedFlight:
1273 MissedFlightULDs.append('YES')
1274 elif i not in MissedFlight:
1275 MissedFlightULDs.append('NO')
1276

1277 if 'YES' in MissedFlightULDs:
1278 awb.myMissedFlights = 'NOT OK'
1279 else:
1280 awb.myMissedFlights = 'OK'
1281

1282 # if max(TORULDs) > timedelta(hours = 8): #If max of all ULDs for a
given AWB is below the commercial promise, then all other ULDs are also OK

1283 # awb.myTOR = 'NOT OK'
1284 # else:
1285 # awb.myTOR = 'OK'
1286

1287 if max(ExposureULDs) > timedelta(hours = 8):
1288 awb.myExposure = 'NOT OK'
1289 else:
1290 awb.myExposure = 'OK'
1291 AllExposures += ExposureULDs
1292 # TORULDs.clear()
1293 ExposureULDs.clear()
1294 MissedFlightULDs.clear()
1295

1296 AvgExposure[l] = detAvgTimedelta(AllExposures)
1297

1298 # TORAdherence = []
1299 ExposureAdherence = []
1300 OTP_FAP = []
1301 for awb in AllAWBs:
1302 OTP_FAP.append(awb.myMissedFlights)
1303 # TORAdherence.append(awb.myTOR)
1304 ExposureAdherence.append(awb.myExposure)
1305

1306 #Calculating Availability
1307 Overall_Availability_COL = kc01.COLAvailability['Availability'].mean()
1308 Overall_Availability_CRT = kc01.CRTAvailability['Availability'].mean()
1309 R_A[l] = (Overall_Availability_COL + Overall_Availability_CRT) / 2
1310

1311

1312 #Calculating OTP
1313 #>ULD level
1314 # CD1_total = (ULDPerformance['CC1'].value_counts()['OK']) / (ULDPerformance['CC1'].

value_counts()['OK'] + ULDPerformance['CC1'].value_counts()['NOT OK'])
1315 # CD2_total = (ULDPerformance['CC2'].value_counts()['OK']) / (ULDPerformance['CC2'].

value_counts()['OK'] + ULDPerformance['CC2'].value_counts()['NOT OK'])
1316 # CD3_total = (ULDPerformance['CC3'].value_counts()['OK']) / (ULDPerformance['CC3'].

value_counts()['OK'] + ULDPerformance['CC3'].value_counts()['NOT OK'])
1317

1318 # HD1_total = (ULDPerformance['H1'].value_counts()['OK']) / len(HandledFreightUnits)
1319 # HD2_total = (ULDPerformance['H2'].value_counts()['OK']) / len(HandledFreightUnits)
1320 # HD3_total = (ULDPerformance['H3'].value_counts()['OK']) / len(HandledFreightUnits)
1321

1322

1323 #Calculating Temp Adherence
1324 #>AWB level
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1325 # Overall_TORAdherence = TORAdherence.count('OK') / (TORAdherence.count('OK') +
TORAdherence.count('NOT OK'))

1326 R_TA[l] = ExposureAdherence.count('OK') / (ExposureAdherence.count('OK') +
ExposureAdherence.count('NOT OK'))

1327

1328 #>AWB level
1329 FractionMissedFlights = OTP_FAP.count('NOT OK') / len(AllAWBs)
1330

1331 R_OTP[l] = 1 - FractionMissedFlights
1332

1333

1334 #Calculating OCCE
1335 OCCE[l] = (R_A[l] * R_OTP[l] * R_TA[l])*100.00
1336

1337 No_stored[l] = len(WasCoolStored)
1338 No_swapped[l] = len(WasSwapped)
1339

1340 R_A_avg = np.sum(R_A) / n
1341 R_OTP_avg = np.sum(R_OTP) / n
1342 R_TA_avg = np.sum(R_TA) / n
1343 OCCE_avg = np.sum(OCCE) / n
1344

1345 No_stored_avg = np.sum(No_stored) / n
1346 No_swapped_avg = np.sum(No_swapped) / n
1347

1348 OverallAvgExposure = np.sum(AvgExposure) / n
1349

1350 if n > 1:
1351 if EnableDigitalTwin == True:
1352 title = 'RESULTS - Multiple runs - DT Enabled'
1353 else:
1354 title = 'RESULTS - Multiple runs - DT Disabled'
1355 # deadlines = 'Deadlines'
1356 availability = 'Cool storage availability'
1357 otp = 'OTP (FAP)'
1358 ta = 'Temperature Adherence'
1359 occe = 'OCCE'
1360

1361 print('\n')
1362 print(title.center(100,'%'))
1363 print('\n')
1364 # print(deadlines.center(100,'-'))
1365 # print('Score per deadline over all ULDs:')
1366 # print('CC Deadline 1:', "{:0.4f}".format(CD1_total))
1367 # print('CC Deadline 2:', "{:0.4f}".format(CD2_total))
1368 # print('CC Deadline 3:', "{:0.4f}".format(CD3_total))
1369 # print('Handling Deadline 1:', "{:0.4f}".format(HD1_total))
1370 # print('Handling Deadline 2:', "{:0.4f}".format(HD2_total))
1371 # print('Handling Deadline 3:', "{:0.4f}".format(HD3_total))
1372 # print('\n')
1373 print(availability.center(100,'-'))
1374 print('Availability COL:',"{:0.4f}".format(Overall_Availability_COL))
1375 print('Availability CRT:',"{:0.4f}".format(Overall_Availability_CRT))
1376 print('Availability:', "{:0.4f}".format(R_A_avg))
1377 print('\n')
1378 print(otp.center(100,'-'))
1379 print('Missed flights:',"{:0.4f}%".format(FractionMissedFlights*100))
1380 print('FAP:', "{:0.4f}".format(R_OTP_avg))
1381 print('\n')
1382 print(ta.center(100,'-'))
1383 # print('Current quality measure (TOR vs. Commercial promise):')
1384 # print('TOR Adherence:', "{:0.4f}".format(Overall_TORAdherence))
1385 # print('\n')
1386 print('Utilising ambient and warehouse temp for exposure (Exposure vs. Commercial promise

):')
1387 print('Exposure Adherence:', "{:0.4f}".format(R_TA_avg))
1388 print('Average exposure:', OverallAvgExposure)
1389 print('\n')
1390 print(occe.center(100,'-'))
1391 print('OCCE = Cool storage availability x OTP x Temperature adherence')
1392 print('OCCE:', "{:0.2f}%".format(OCCE_avg))
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1393 else:
1394 if EnableDigitalTwin == True:
1395 title = 'RESULTS - Single run - DT Enabled'
1396 else:
1397 title = 'RESULTS - Single run - DT Disabled'
1398 deadlines = 'Deadlines'
1399 availability = 'Cool storage availability'
1400 otp = 'OTP (FAP)'
1401 ta = 'Temperature Adherence'
1402 occe = 'OCCE'
1403

1404 print('\n')
1405 print(title.center(100,'%'))
1406 print('\n')
1407 # print(deadlines.center(100,'-'))
1408 # print('Score per deadline over all ULDs:')
1409 # print('CC Deadline 1:', "{:0.4f}".format(CD1_total))
1410 # print('CC Deadline 2:', "{:0.4f}".format(CD2_total))
1411 # print('CC Deadline 3:', "{:0.4f}".format(CD3_total))
1412 # print('Handling Deadline 1:', "{:0.4f}".format(HD1_total))
1413 # print('Handling Deadline 2:', "{:0.4f}".format(HD2_total))
1414 # print('Handling Deadline 3:', "{:0.4f}".format(HD3_total))
1415 # print('\n')
1416 print(availability.center(100,'-'))
1417 print('Availability COL:',"{:0.4f}".format(Overall_Availability_COL))
1418 print('Availability CRT:',"{:0.4f}".format(Overall_Availability_CRT))
1419 print('Availability:', "{:0.4f}".format(R_A_avg))
1420 print('\n')
1421 print(otp.center(100,'-'))
1422 print('Missed flights:',"{:0.4f}%".format(FractionMissedFlights*100))
1423 print('FAP:', "{:0.4f}".format(R_OTP_avg))
1424 print('\n')
1425 print(ta.center(100,'-'))
1426 # print('Current quality measure (TOR vs. Commercial promise):')
1427 # print('TOR Adherence:', "{:0.4f}".format(Overall_TORAdherence))
1428 # print('\n')
1429 print('Utilising ambient and warehouse temp for exposure (Exposure vs. Commercial promise

):')
1430 print('Exposure Adherence:', "{:0.4f}".format(R_TA_avg))
1431 print('Average exposure:', OverallAvgExposure)
1432 print('\n')
1433 print(occe.center(100,'-'))
1434 print('OCCE = Cool storage availability x OTP x Temperature adherence')
1435 print('OCCE:', "{:0.2f}%".format(OCCE_avg))
1436

1437

1438 x_col = kc01.COLAvailability['Timestamp']
1439 y_col = kc01.COLAvailability['#Stored']
1440

1441 x_crt = kc01.CRTAvailability['Timestamp']
1442 y_crt = kc01.CRTAvailability['#Stored']
1443

1444

1445 fig, [ax1, ax2] = plt.subplots(2)
1446

1447

1448 if EnableDigitalTwin == True:
1449 fig.suptitle('DT Enabled')
1450 else:
1451 fig.suptitle('DT disabled')
1452 ax1.plot(x_col,y_col, label = 'COL', color = (0,0.6314,0.8706), lw = 0.9)
1453 ax1.axhline(y = COLCapacity, color = (0.4863,0.4980,0.4902))
1454

1455

1456 ax2.plot(x_crt,y_crt, label = 'CRT', color = (0,0.1921,0.2706), lw = 0.9)
1457 ax2.axhline(y = CRTCapacity, color = (0.4863,0.4980,0.4902), label = r'$C_{COL}C_{CRT}$')
1458

1459 plt.rcParams["figure.figsize"] = [12.00, 6]
1460

1461 fig.supxlabel(r'Timestamp [-]')
1462 fig.supylabel('Number of ULDs stored [-]')
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1463 plt.rcParams["figure.figsize"] = [10.00, 6]
1464 plt.figlegend(bbox_to_anchor=(1.02, 0.5), loc='center right', borderaxespad=0)
1465

1466 plt.show()

B.2. Digital Twin
1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jan 3 20:24:14 2023
4

5 @author: klm92970 - Jorrit Sijtsma - 5349664
6 """
7 """--- Import Packages ---"""
8 from datetime import datetime, timedelta
9 # import numpy as np

10 import pandas as pd
11 import scipy.stats as st
12

13 """--- Data ---"""
14 tempinput_dataset = "C://Users//klm92970/OneDrive - Air France KLM/Data/TEMPINPUT_DATA.txt"
15 dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
16 temp_data = pd.read_csv(tempinput_dataset, sep=",",parse_dates=['datetime'], date_parser=

dateparse)
17

18 """--- Distributions ---"""
19 meanFromPCHS = st.johnsonsu( a = -2.1373583494519592, b = 1.4436374905636349, loc =

-217.36932520697655, scale = 60.17754370345297).mean()
20 meanWaitPCHS = st.johnsonsb( a= 1.1054284233387612,b= 1.043704671177156,loc=

12.352580355238649,scale= 351.4011122382053).mean()
21 meanToCool = 3
22 meanFromCool = st.genhyperbolic( p = 1.1177338177432359, a = 0.5137061998096379, b =

0.29790506020349944, loc = 0.04838179962329987, scale = 16.51203203870395).mean()
23

24 """--- Model Parameters ---"""
25 COLCapacity = 6
26 CRTCapacity = 28
27

28 def DynamicBusinessRuling(CurrentTime, Exposure, SHC, UTB, LTB, AmbientTemp, PCHSTemp, STD,
COLStored, CRTStored, COLAssigned, CRTAssigned, COLPrevElement, CRTPrevElement):

29 """
30 Function which encodes the dyanmic business ruling algorithm
31 Inputs: Time, ULD characteristics, Exposure, Ambient + PCHS temperature data, STD, Cool

storage availability + already assigned ULDs
32 Output: Cool storage decision (FreightUnit.CoolStorage), cool storage removal
33 """
34 ULDstatus = 'New'
35 # Estimate total exposure for both options
36 STD_stored = ''
37 Exposure_stored = ''
38 SHC_stored = ''
39

40

41 # Determine the best action based on the minimum exposure
42 if SHC == 'COL':
43 ExposureKC01, ExposurePCHS = PredictedExposure(Exposure, CurrentTime, UTB, LTB,

AmbientTemp, PCHSTemp, STD, ULDstatus, STD_stored, Exposure_stored, SHC_stored)
44 CurrentAvailability = (COLCapacity - (len(COLStored) + COLAssigned)) / COLCapacity
45 if CurrentAvailability >= (1/COLCapacity):
46 if ExposurePCHS == timedelta(hours = 0):
47 Decision = 'No'
48 ULDtoremove = ''
49 elif ExposureKC01 <= ExposurePCHS:
50 Decision = 'Yes'
51 ULDtoremove = ''
52 elif ExposureKC01 > ExposurePCHS:
53 Decision = 'No'
54 ULDtoremove = ''
55 elif CurrentAvailability < (1/COLCapacity):
56 if ExposurePCHS == timedelta(hours = 0):
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57 Decision = 'No'
58 ULDtoremove = ''
59 elif ExposureKC01 <= ExposurePCHS:
60 Decision, ULDtoremove = StorageControl(Exposure, SHC, COLStored, CRTStored,

CurrentTime, UTB, LTB, AmbientTemp, PCHSTemp, STD, COLPrevElement, CRTPrevElement)
61 elif ExposureKC01 > ExposurePCHS:
62 Decision = 'No'
63 ULDtoremove = ''
64

65

66 elif SHC == 'CRT' or SHC == 'ERT':
67 ExposureKC01, ExposurePCHS = PredictedExposure(Exposure, CurrentTime, UTB, LTB,

AmbientTemp, PCHSTemp, STD, ULDstatus, STD_stored, Exposure_stored, SHC_stored)
68 CurrentAvailability = (CRTCapacity - (len(CRTStored) + CRTAssigned)) / CRTCapacity
69 if CurrentAvailability >= (1/CRTCapacity):
70 if ExposurePCHS == timedelta(hours = 0):
71 Decision = 'No'
72 ULDtoremove = ''
73 elif ExposureKC01 <= ExposurePCHS:
74 Decision = 'Yes'
75 ULDtoremove = ''
76 elif ExposureKC01 > ExposurePCHS:
77 Decision = 'No'
78 ULDtoremove = ''
79 elif CurrentAvailability < (1/CRTCapacity):
80 if ExposurePCHS == timedelta(hours = 0):
81 Decision = 'No'
82 ULDtoremove = ''
83 elif ExposureKC01 <= ExposurePCHS:
84 Decision, ULDtoremove = StorageControl(Exposure, SHC, COLStored, CRTStored,

CurrentTime, UTB, LTB, AmbientTemp, PCHSTemp, STD, COLPrevElement, CRTPrevElement)
85 elif ExposureKC01 > ExposurePCHS:
86 Decision = 'No'
87 ULDtoremove = ''
88

89

90 return Decision, ULDtoremove
91

92

93 def StorageControl(Exposure, SHC, COLStored, CRTStored, CurrentTime, UTB, LTB, AmbientTemp,
PCHSTemp, STD, COLPrevElement, CRTPrevElement):

94 """
95 Function which determines the ULD to remove when necessary
96 Inputs:
97 Output: ULD to remove from storage (if appliccable)
98 """
99 ULDstatus = 'Storage'

100 if SHC == 'COL':
101 if len(COLStored) == 0:
102 Decision = 'No'
103 ULDtoremove = ''
104 return Decision, ULDtoremove
105 if len(COLPrevElement) == 0:
106 min_STD_idx = COLStored["STD"].min()
107 min_STD_mask = COLStored["STD"].isin([min_STD_idx])
108 min_STD_rows = COLStored[min_STD_mask]
109 min_exposure_idx = min_STD_rows["Exposure"].idxmin()
110 else:
111 mask = list(map(lambda x: not x, COLStored["ULD"].isin(COLPrevElement)))
112 COLStored_filtered = COLStored[mask]
113 if len(COLStored_filtered) == 0:
114 Decision = 'No'
115 ULDtoremove = ''
116 return Decision, ULDtoremove
117 min_STD_idx = COLStored_filtered["STD"].min()
118 min_STD_mask = COLStored_filtered["STD"].isin([min_STD_idx])
119 min_STD_rows = COLStored_filtered[min_STD_mask]
120 min_exposure_idx = min_STD_rows["Exposure"].idxmin()
121

122

123 STD_stored = COLStored.loc[min_exposure_idx, "STD"]
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124 Exposure_stored = COLStored.loc[min_exposure_idx, "Exposure"]
125 SHC_stored = COLStored.loc[min_exposure_idx, "SHC"]
126

127 elif SHC == 'CRT' or SHC == 'ERT':
128 if len(CRTStored) == 0:
129 Decision = 'No'
130 ULDtoremove = ''
131 return Decision, ULDtoremove
132 if len(CRTPrevElement) == 0:
133 min_STD_idx = CRTStored["STD"].min()
134 min_STD_mask = CRTStored["STD"].isin([min_STD_idx])
135 min_STD_rows = CRTStored[min_STD_mask]
136 min_exposure_idx = min_STD_rows["Exposure"].idxmin()
137 else:
138 mask = list(map(lambda x: not x, CRTStored["ULD"].isin(CRTPrevElement)))
139 CRTStored_filtered = CRTStored[mask]
140 if len(CRTStored_filtered) == 0:
141 Decision = 'No'
142 ULDtoremove = ''
143 return Decision, ULDtoremove
144 min_STD_idx = CRTStored_filtered["STD"].min()
145 min_STD_mask = CRTStored_filtered["STD"].isin([min_STD_idx])
146 min_STD_rows = CRTStored_filtered[min_STD_mask]
147 min_exposure_idx = min_STD_rows["Exposure"].idxmin()
148

149 STD_stored = CRTStored.loc[min_exposure_idx, "STD"]
150 Exposure_stored = CRTStored.loc[min_exposure_idx, "Exposure"]
151 SHC_stored = CRTStored.loc[min_exposure_idx, "SHC"]
152

153 Removal, NoRemoval = PredictedExposure(Exposure, CurrentTime, UTB, LTB, AmbientTemp,
PCHSTemp, STD, ULDstatus, STD_stored, Exposure_stored, SHC_stored)

154

155 if Removal > NoRemoval:
156 Decision = 'No'
157 ULDtoremove = ''
158 elif Removal < NoRemoval:
159 Decision = 'Yes'
160 if SHC == 'COL':
161 ULDtoremove = COLStored.loc[min_exposure_idx, "ULD"]
162 elif SHC == 'CRT' or SHC == 'ERT':
163 ULDtoremove = CRTStored.loc[min_exposure_idx, "ULD"]
164 elif Removal == NoRemoval:
165 Decision = 'No'
166 ULDtoremove = ''
167 return Decision, ULDtoremove
168

169 def PredictedExposure(CurrentExposure, CurrentTime, UTB, LTB, AmbientTemp, PCHSTemp, STD,
ULDstatus, STD_stored, Exposure_stored, SHC_stored):

170 """
171 Function which calculates the predicted exposure
172 Inputs:
173 Output: predicted exposure
174 """
175

176 #NewULD
177 if ULDstatus == 'New':
178 AmbPrediction, PCHSPrediction = PredictedTemp(temp_data, CurrentTime, STD)
179 PCHSwait = CurrentTime + timedelta(minutes = meanFromPCHS)
180 PCHSremoval = STD - timedelta(minutes = (300 + meanFromPCHS))
181 KC01removal = STD - timedelta(minutes = (180 + meanFromCool))
182 #Calculate exposure over each period (currentime is head of list, STD is tail of list

)
183 pchs_wait_idx = ReturnTimeIndex(temp_data, PCHSwait)
184 kc01_removal_idx = ReturnTimeIndex(temp_data, KC01removal)
185 pchs_removal_idx = ReturnTimeIndex(temp_data, PCHSremoval)
186 WaitPCHS = PCHSPrediction.loc[:pchs_wait_idx+1, '[24]']
187 FromKC01 = AmbPrediction.loc[kc01_removal_idx+1:, 'T']
188 FromPCHS = AmbPrediction.loc[pchs_removal_idx+1:, 'T']
189 InPCHS = PCHSPrediction.loc[:pchs_removal_idx -1,'[24]']
190 WaitPCHSExposure = timedelta(hours = 0)
191 for value in WaitPCHS:
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192 if value >= UTB:
193 WaitPCHSExposure += timedelta(hours = 1)
194 elif value <= LTB:
195 WaitPCHSExposure += timedelta(hours = 1)
196 FromKC01Exposure = timedelta(hours = 0)
197 for value in FromKC01:
198 if value >= UTB:
199 FromKC01Exposure += timedelta(hours = 1)
200 elif value <= LTB:
201 FromKC01Exposure += timedelta(hours = 1)
202

203 #STAYINPCHS:
204 FromPCHSExposure = timedelta(hours = 0)
205 for value in FromPCHS:
206 if value >= UTB:
207 FromPCHSExposure += timedelta(hours = 1)
208 elif value <= LTB:
209 FromPCHSExposure += timedelta(hours = 1)
210 InPCHSExposure = timedelta(hours = 0)
211 for value in InPCHS:
212 if value >= UTB:
213 InPCHSExposure += timedelta(hours = 1)
214 elif value <= LTB:
215 InPCHSExposure += timedelta(hours = 1)
216

217 ExposureKC01 = CurrentExposure + WaitPCHSExposure + FromKC01Exposure
218 ExposurePCHS = CurrentExposure + InPCHSExposure + FromPCHSExposure
219 return ExposureKC01, ExposurePCHS
220

221 elif ULDstatus == 'Storage':
222 AmbPrediction, PCHSPrediction = PredictedTemp(temp_data, CurrentTime, STD)
223 AmbPredictionStored , PCHSPredictionStored = PredictedTemp(temp_data, CurrentTime,

STD_stored)
224

225 PCHSwait = CurrentTime + timedelta(minutes = meanFromPCHS)
226 PCHSremoval = STD - timedelta(minutes = (300 + meanFromPCHS))
227 KC01removal = STD - timedelta(minutes = (180 + meanFromCool))
228 KC01removal_stored = STD_stored - timedelta(minutes = (180 + meanFromCool))
229 KC01removal_stored_early = CurrentTime
230 #Calculate exposure over each period (currentime is head of list, STD is tail of list

)
231 pchs_wait_idx = ReturnTimeIndex(temp_data, PCHSwait)
232 kc01_removal_idx = ReturnTimeIndex(temp_data, KC01removal)
233 kc01stored_removal_idx = ReturnTimeIndex(temp_data, KC01removal_stored)
234 kc01stored_removal_early_idx = ReturnTimeIndex(temp_data, KC01removal_stored_early)
235 pchs_removal_idx = ReturnTimeIndex(temp_data, PCHSremoval)
236 WaitPCHS = PCHSPrediction.loc[:pchs_wait_idx+1, '[24]']
237 FromKC01 = AmbPrediction.loc[kc01_removal_idx+1:, 'T']
238 FromKC01Stored = AmbPrediction.loc[kc01stored_removal_idx+1:, 'T']
239 FromKC01StoredEarly = AmbPrediction.loc[kc01stored_removal_early_idx+1:, 'T']
240 FromPCHS = AmbPrediction.loc[pchs_removal_idx+1:, 'T']
241 InPCHS = PCHSPrediction.loc[:pchs_removal_idx -1,'[24]']
242

243 WaitPCHSExposure = timedelta(hours = 0)
244 for value in WaitPCHS:
245 if value >= UTB:
246 WaitPCHSExposure += timedelta(hours = 1)
247 elif value <= LTB:
248 WaitPCHSExposure += timedelta(hours = 1)
249

250 FromKC01Exposure = timedelta(hours = 0)
251 for value in FromKC01:
252 if value >= UTB:
253 FromKC01Exposure += timedelta(hours = 1)
254 elif value <= LTB:
255 FromKC01Exposure += timedelta(hours = 1)
256

257 if SHC_stored == 'COL':
258 UTB_stored = 8
259 LTB_stored = 2
260
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261 FromKC01StoredExposure = timedelta(hours = 0)
262 for value in FromKC01Stored:
263 if value >= UTB_stored:
264 FromKC01StoredExposure += timedelta(hours = 1)
265 elif value <= LTB_stored:
266 FromKC01StoredExposure += timedelta(hours = 1)
267 FromKC01StoredEarlyExposure = timedelta(hours = 0)
268 for value in FromKC01StoredEarly:
269 if value >= UTB_stored:
270 FromKC01StoredEarlyExposure += timedelta(hours = 1)
271 elif value <= LTB_stored:
272 FromKC01StoredEarlyExposure += timedelta(hours = 1)
273

274 elif SHC_stored == 'CRT':
275 UTB_stored = 25
276 LTB_stored = 15
277

278 FromKC01StoredExposure = timedelta(hours = 0)
279 for value in FromKC01Stored:
280 if value >= UTB_stored:
281 FromKC01StoredExposure += timedelta(hours = 1)
282 elif value <= LTB_stored:
283 FromKC01StoredExposure += timedelta(hours = 1)
284 FromKC01StoredEarlyExposure = timedelta(hours = 0)
285 for value in FromKC01StoredEarly:
286 if value >= UTB_stored:
287 FromKC01StoredEarlyExposure += timedelta(hours = 1)
288 elif value <= LTB_stored:
289 FromKC01StoredEarlyExposure += timedelta(hours = 1)
290

291 elif SHC_stored == 'ERT':
292 UTB_stored = 25
293 LTB_stored = 2
294

295 FromKC01StoredExposure = timedelta(hours = 0)
296 for value in FromKC01Stored:
297 if value >= UTB_stored:
298 FromKC01StoredExposure += timedelta(hours = 1)
299 elif value <= LTB_stored:
300 FromKC01StoredExposure += timedelta(hours = 1)
301 FromKC01StoredEarlyExposure = timedelta(hours = 0)
302 for value in FromKC01StoredEarly:
303 if value >= UTB_stored:
304 FromKC01StoredEarlyExposure += timedelta(hours = 1)
305 elif value <= LTB_stored:
306 FromKC01StoredEarlyExposure += timedelta(hours = 1)
307

308 #STAYINPCHS:
309 FromPCHSExposure = timedelta(hours = 0)
310 for value in FromPCHS:
311 if value >= UTB:
312 FromPCHSExposure += timedelta(hours = 1)
313 elif value <= LTB:
314 FromPCHSExposure += timedelta(hours = 1)
315 InPCHSExposure = timedelta(hours = 0)
316 for value in InPCHS:
317 if value >= UTB:
318 InPCHSExposure += timedelta(hours = 1)
319 elif value <= LTB:
320 InPCHSExposure += timedelta(hours = 1)
321

322 ExposureRemoval = (CurrentExposure + WaitPCHSExposure + FromKC01Exposure) + (
Exposure_stored + FromKC01StoredEarlyExposure)

323 ExposureNoRemoval = (CurrentExposure +InPCHSExposure + FromPCHSExposure) + (
Exposure_stored + FromKC01StoredExposure)

324 return ExposureRemoval, ExposureNoRemoval
325

326 def PredictedTemp(data, CurrentTime, STD):
327 time_diff = pd.DataFrame()
328 time_diff['time_diff_curr'] = abs((pd.to_datetime(data['datetime']) - CurrentTime))
329 time_diff['time_diff_STD'] = abs((pd.to_datetime(data['datetime']) - STD))
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330 curr_time_idx = time_diff['time_diff_curr'].idxmin()
331 max_time_idx = time_diff['time_diff_STD'].idxmin()
332

333

334 ambcolumns = ['datetime', 'T']
335 pchscolumns = ['datetime','[24]']
336 AmbTempPrediction = data.iloc[curr_time_idx:max_time_idx][ambcolumns]
337 PCHSTempPrediction = data.iloc[curr_time_idx:max_time_idx][pchscolumns]
338

339 return AmbTempPrediction, PCHSTempPrediction
340

341 def ReturnTimeIndex(data, timestamp):
342 difference = pd.DataFrame()
343 difference['time_diff'] = abs((pd.to_datetime(data['datetime']) - timestamp))
344 index = difference['time_diff'].idxmin()
345 return index



B.2. Digital Twin 124


	Preface
	Executive summary
	List of Figures
	List of Tables
	Introduction
	Research background
	Problem definition
	Research goal
	Research scope
	Research questions
	Research methodology

	Current state of the art of cool chain management
	The air freight industry
	Cool chain management
	Missing data imputation
	Missing data patterns and mechanisms
	Imputation methods

	System evaluation
	Modelling techniques
	Agent-Based Modelling and Simulation
	Discrete Event Simulation

	The Digital Twin concept
	Case study company overview
	Facts and Figures
	The pharma variation

	Literature synthesis

	KLM Cargo case description
	The Schiphol hub
	Process description
	Arrival
	PCHS handling
	Cool storage
	Ramp ride and loading

	Infrastructure and equipment
	ULDs
	MTD
	PCHS
	KC01
	Transporter
	Tractor

	Performance management
	Data capture
	Key Performance Indicators

	Case study synthesis

	Model development
	Data analysis
	Data collection
	Data handling and preparation
	Analysis

	Physical Twin
	Performance evaluation
	Conceptual model
	Simulation objects
	Model assumptions

	Model development synthesis

	Verification and validation
	Convergence analysis
	Model verification and validation
	First iteration
	Second iteration
	Third iteration
	Fourth iteration

	Sensitivity analysis
	Model parameters
	Model input data

	Verification and validation synthesis

	Model implementation
	Decision support module
	Results
	General results
	Winter results
	Spring and Summer results
	Autumn and Winter results
	OCCE performance differences
	Results synthesis


	Research conclusion
	Conclusion
	Recommendations for further research

	References
	Scientific research paper
	Python programming code
	Physical Twin
	Digital Twin


