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Highlights: 

 We define and formulate the concept of parking search routes (PSR) accounting 

for parking probabilities. 

 We propose a queuing model to compute endogenous parking probabilities 

accounting for PSRs and search times. 

 We define and formulate the stochastic user equilibrium (SUE) assignment with 

equilibrated PSRs (PSR-SUE). 

 We propose a method for PSR choice set generation, and a solution algorithm to 

solve the PSR-SUE problem. 

 We demonstrate the PSR-SUE model properties, and analyze the model 

application to a real-life setting. 

 
Abstract: 

In this paper we define and formulate the concept of parking search routes (PSR) 

where a driver visits a sequence of parking locations until the first vacant parking spot 

is found and in doing so may account for (expected) parking probabilities. From there 

we define and formulate the stochastic user equilibrium (SUE) traffic assignment in 

which no driver, by unilaterally changing its PSR, can lower its perceived expected 

generalized costs. Recognizing the interdependency between PSR flows, travel times 

and parking probabilities, we propose a queuing model in order to compute 

endogenous parking probabilities accounting for these factors as well as maximum 

admissible search times. To solve the SUE assignment with equilibrated PSR we 

propose a solution algorithm, including a method for PSR choice set generation. The 

model is implemented and applied both to a number of experimental cases to verify its 

properties and to a real-life setting to illustrate its usefulness in parking-related 

studies. 
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1. Introduction 

Parking is an essential component in every car trip especially in the urban context, 

and as such has been studied regarding, for example, how it affects mode choice, 

location accessibility, and network performance due to cruising traffic. In particular 

considering cruising traffic, various studies have quantified this with estimates of 

about 30% of the urban traffic flows being cruising traffic (e.g., Shoup, 2006, and Van 

Ommeren et al., 2012) and of about 30-50% of the travel time within the city being 

spent on searching for a parking spot (e.g., Bonsall and Palmer, 2004, and Tang et al., 

2014). 

Apart from the sheer amount of cruising traffic, parking in the urban context is also 

an interesting topic for research due to fast developments nowadays in the parking 

system. Currently in the Netherlands, at the majority of municipalities, on-street paid 

parking is regulated by registration of the car number plate, instead of the traditional 

pay-and-display system where a parking ticket is bought. The main reason for 

implementing this payment system is that it enables automated parking control, using 

a special control car with mounted automatic number plate recognition camera that is 

connected with the back office system to check for any non-registered parked cars. 

This online payment system has led to the introduction of several smartphone 

applications where users no longer need to pay in advance for a pre-specified amount 

of parking time, but simply register their car upon arrival at a parking location and 

subsequently unregister upon departure, thus only paying for the parking time actually 

used. Given that parked cars are now registered, this means that there is real-time 

information on the occupancy at parking locations. This information was already 

available for off-street parking, but only displayed at roadside panels that are typically 

located at motorway exits and along the urban ring road for purposes of parking route 

guidance. Now with information on on-street parking occupancies as well and with 

smartphone applications, this parking occupancy information may soon become 

available to drivers everywhere and in real-time. Furthermore, this may enable 

parking reservation in advance, which is not yet available for public parking space, 

but a few of the Dutch smartphone applications do already offer this service for 

private parking space offered by, for example, companies and hotels. 

Earlier studies on parking location choices of drivers show that this predominantly 

depends on the factors of access time to parking location, parking costs, walking 

distance to final destination, and a number of socio-economic characteristics of the 

driver. In a recent stated preference survey by the authors (Chaniotakis and Pel, 2015) 

we show that uncertain parking availability ranks as second most important factor in 

determining drivers’ parking location decisions, and is only dominated by parking 

cost. This is relevant because the parking availability and associated search time is 

evidently precisely what will be affected by the aforementioned new technologies, 

while the other factors will remain mostly unaffected. Furthermore, earlier studies on 

parking information and guidance systems show that the effects hereof are rather 

limited  when  the  parking  information  provided  via  roadside  panels  tended  to  be 
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outdated and unreliable, especially in more congested circumstances (see e.g., 

Waterson et al., 2001, and Geng and Cassandras, 2012). 

In this paper we propose a model for the dynamic traffic assignment problem that 

incorporates drivers’ parking search routes in a way that allows to simulate the effects 

of uncertain parking availability and parking reservation, and thus enables evaluating 

various parking information technologies and policies. According to Martens and 

Benenson (2008) this model would be classified as a spatially explicit parking model, 

as opposed to a spatially implicit model that only considers parking location without 

accounting for the traffic network effects (as e.g. proposed by Liu et al., 2016 to 

analyze the effects of parking pricing and regulation on departure time choices in the 

morning commute). Considering spatially explicit parking models, various approaches 

have been proposed in the literature. For example, a number of simulation models 

have been proposed to describe parking traffic, in particular the on-street search 

process where drivers cruise in a myopic semi-random manner searching for a vacant 

parking spot (e.g., Kaplan and Bekhor, 2011, Van der Waerden, 2012, and Guo et al., 

2013). Along a similar line of reasoning, a number of agent-based simulation models 

have been appended with decision rules for parking choices (e.g., Benenson et al., 

2008, and Waraich and Axhausen, 2012)). Boyles et al. (2014) model strategic 

parking routes within the cell transmission model by incorporating parking search 

policies defined in terms of Markov decision processes. Bifulco (1993) solves the 

stochastic user equilibrium assignment where route costs include parking search costs 

that are approximated as a function of parking occupancy. Lam et al. (2006) solve the 

traffic assignment problem with departure time and parking location choice where 

parking availability is approximated via a BPR-like cost function. Li et al. (2008) 

solve the traffic assignment problem under the assumption of time-dependent Normal- 

distributed uncertain travel times and parking search times in order to investigate the 

impact on network reliability. Leurent and Boujnah (2014) solve the static user 

equilibrium assignment with route and parking location choice, where drivers divert 

to other parking locations when not being able to find a vacant parking spot, such that 

parking search routes emerge. All of these studies in one way or another account for 

uncertain parking availability and the parking search process, while the majority of 

parking models (used to study e.g., parking pricing and regulation) would typically 

model parking availability as deterministic. 

In this paper we propose a model that distinguishes itself particularly in two ways. 

First, our model has a clear theoretical foundation where parking search route choice 

follows Random Utility Maximization choice theory, and the (stochastic) user 

equilibrium assignment with equilibrated parking search routes is a generalization of 

the Wardrop equilibrium concept. Second, the rigorous model formulation includes 

the interdependencies between parking search route flows, travel times, and parking 

probabilities. As such, the model adheres to general requirements for (traffic 

assignment) planning models. 

The contributions of the paper are: (1) we define and formulate the concept of 
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parking search routes (PSR) accounting for parking probabilities; (2) we propose a 

queuing model to compute endogenous parking probabilities accounting for PSRs and 

search times; (3) we define and formulate the stochastic user equilibrium (SUE) 

assignment with equilibrated PSRs (PSR-SUE); (4) we propose a method for PSR 

choice set generation, and a solution algorithm to solve the PSR-SUE problem; (5) we 

demonstrate the PSR-SUE model properties, and analyze the model application to a 

real-life setting. 

The paper is structured as follows. In Section 2 we define and formulate parking 

search routes and the stochastic user equilibrium assignment with equilibrated parking 

search routes, as well as propose a solution algorithm for this problem. In Section 3 

the model is applied to several test cases, and discussed with respect to model 

properties and some illustrative parking scenarios. In Section 4 we draw conclusions. 

 

2. PSR-SUE model formulation 

 

2.1 Equilibrated parking search routes 

Recall that we are interested in drivers’ parking locations and search routes. To this 

end, we propose the following definition. 

 

Definition 1. Parking search route (PSR). A parking search route is a route starting 

at the driver's origin and sequentially connecting a number of parking locations – 

which can be either (off street) parking facilities or (on street) parking areas. Hence a 

PSR consists of a sequence of route segments, where each segment connects a 

consecutive pair of parking locations, apart from the first segment that starts at the 

origin and ends at the first parking location to be visited. This way, a driver will 

follow a PSR and visit these parking locations until the first vacant parking spot is 

found (and the remainder of the PSR is aborted). ! 

 

The concept of a parking search route is illustrated in Fig. 1. An example is shown 

of a parking search route that consists of three route segments, starts at the origin, and 

sequentially connects three parking locations that all lie in the proximity of the 

destination. 
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Fig. 1. Example of a parking search route (PSR) for an origin (green dot on the left) and a 

destination (blue dot in the middle). The PSR consists of three route segments (highlighted), 

which start at the origin and sequentially connect three parking locations. 

 
This definition of a parking search route (PSR) allows us to define the stochastic 

user equilibrium (SUE) traffic assignment with equilibrated parking search routes. We 

propose the following definition. 

 

Definition 2. Stochastic user equilibrium traffic assignment with equilibrated 

parking search routes (PSR-SUE). The stochastic user equilibrium traffic 

assignment with equilibrated parking search routes is the traffic flow assignment in 

which no driver, by unilaterally changing its PSR, can lower its perceived expected 

generalized costs. ! 

 

Note that following the definition of a PSR the latter generalized costs naturally 

take into account (uncertain) parking availabilities. Hence, drivers, upon selecting 

their PSR, respond to expected probabilities of parking availability at the various 

parking locations. The PSR-SUE assignment is thus flexible enough to capture the 

typical urban setting nowadays, where drivers only know the average (day-to-day) 

probabilities of parking availability at the various parking locations (but are unaware 

of the actual (current day) availability status), as well as capture the situation in which 

a parking information or reservation system is employed, where these ‘probabilities’ 

would be (close to) binary. 

Next, we formulate and solve the SUE with equilibrated PSR problem. 

 

2.2 PSR-SUE problem formulation 

Flow assignment 

In line with the definition of the PSR-SUE problem, the PSR-SUE conditions    can 
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!" 

!" 

!" 

be formulated as follows. 

 

Definition 3. PSR-SUE conditions. Under the PSR-SUE assignment, for any origin- 

destination flow, the expected perceived generalized costs for all used PSR are equal, 

and greater than or equal to the expected perceived generalized costs for any unused 

PSR. ! 

 
Let 𝐟 ≡   𝑓!   !∈𝐏   

denote the vector of all PSR flows, such that 𝑓!   denotes the flow 
on a specific parking search route 𝑝 ∈ 𝐏 ≡   𝑃!"   , where 𝑃!"  is the PSR choice set for origin-destination pair   𝑟, 𝑠  . Let 𝑐!   𝐟   denote the perceived generalized costs. Then the PSR flow vector 𝐟 is a PSR-SUE solution if it satisfies the following definition. 

Definition 4. PSR-SUE problem. The parking search route flow vector 𝐟 is  a PSR- 
SUE solution if and only if 

 

 

 
s.t. 

 

 

 

 

where 

𝑓!  > ∆𝐹!"  ⇒ 𝑐!  = 𝑐∗  , ∀𝑝 ∈ 𝑃, (1) 

𝑓!  = 0 ⇒ 𝑐!  + 𝜃!! ln ∆𝐹!"  ≥ 𝑐∗  , ∀𝑝 ∈ 𝑃, (2) 

∆𝐹!"  ≥ 0, ∀ 𝑟, 𝑠 , (3) 

!∈!!"  
𝑓!  = 𝐹!", ∀  𝑟, 𝑠  , (4) 

𝑝 ∈ 𝑃  𝑓!  < 0 ∨ 0 < 𝑓!  < ∆𝐹!"     = ∅, (5) 

𝑐∗   = min !∈!!" 𝑐! , (6) 

𝑐!  = 𝑐!   𝐟   + 𝜃!! ln 𝑓!, (7) 

such  that  𝑐!   is  the  stochastic  equilibrium  PSR  cost,  and  𝑐!   𝐟    is  the  deterministic 
equilibrium PSR cost. ! 

 Conditions (1) and (2) formalize the PSR-SUE conditions given in Definition 3. 
Constraint (3) ensures relevant PSR flows above the threshold ∆𝐹!". This threshold, 
which is to be specified by the modeler, should be non-negative, and is often set to 

zero. However, especially for the case of a SUE assignment, a positive value may be 

preferable for computational reasons to avoid dealing with negligibly  small route 

flows (see also the discussion in Watling et al. (2015)). Constraint (4) ensures that   all 

travel demand for origin-destination pair 𝑟, 𝑠 is assigned to a parking search route. 
Constraint (5) is a generalization of the non-negative flow constraint, and here also 

excludes non-zero flows below the threshold. Equation (6) defines the minimum 

perceived generalized costs for all PSRs for an origin-destination pair. Equation (7) 
defines the perceived generalized costs for a specific PSR, where 𝜃 denotes the logit scale parameter, such that if 𝜃 → ∞ then parking search route choice is  completely 
deterministic. 

The PSR-SUE formulation given by Equations (1)-(7) relates to the multinomial 

logit choice model that does not account for possible correlation in any factors apart 

from those specified in the generalized cost function. If necessary, the latter can be 
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incorporated by adjusting Equations (2) and (7) accordingly. 

Generalized costs 
Next,  without  loss  of  generality,  let  𝑐!   𝐟 be  composed  of  the  expected  

utility associated with parking at one of the locations along the parking search route, 
and the 
expected  utility  associated  with  driving  along  the  various  route  segments      that 

 
constitute  the  parking  search  route.  Let  𝑉!   𝐟    denote  the  utility  associated  with parking at parking location 𝜋, and let 𝑝  𝑖    denote the ith  parking location for PSR p. Let  𝑉!   𝐟    denote  the  utility  associated  with  driving  along  route  segment  𝛿,  and 

𝑝  𝑖  , 𝑝 𝑗 denote the route segment(s) connecting the ith  and jth  parking locations for 
PSR p. The generalized cost for PSR p is then determined as, 

𝑐!   𝐟   = 

!!!! 

!!! 

!!!!! 

!!! 
1 − 𝜓!  ! ∙   −𝑉!  !!!  ,!  !     𝐟   − 𝑉!  !     𝐟   ∙ 𝜓!  ! + 

!!!! 

 

(8) 

!!! 1 − 𝜓!  ! ∙ Λ, 
where 𝐼!   denotes the total number of parking locations included in p, and where 𝜓! denotes  the  probability  of  finding  a  vacant  parking  spot  at  location  𝜋,  with  𝜓!  ! defined as 0, and where 𝑝  0   is defined as the origin r of the PSR such that 𝑉!  !  ,!  ! 

denotes the utility of the route segment from the origin to the first parking location. 

Equation (8) thus consists of the sum of two terms. The first term describes, summed 

for all subsequent parking locations, the probability of arriving at this parking location 

(which equals the probability of not finding a vacant spot at any of the previous 

parking locations, and is thus given by the product of the complements of the parking 

probabilities at the previous locations) multiplied with the negative of the expected 

utility of driving to that parking location, and with the negative of the expected utility 

of parking multiplied with the probability of parking at that location. The second term 

in Equation (8) captures the costs of not finding a vacant parking spot at any of the 

considered parking locations, and is thus given by the product of the complements of 

the parking probabilities for all locations in p multiplied with the associated costs 

hereof denoted by Λ (which for modeling convenience can be set to any high value). 
Hence, the second term captures drivers’ tendency towards a PSR that overall gives  a 

sufficiently high probability of successfully finding a parking spot. 

For sake of parsimony, and considering that we are predominantly interested in 

parking characteristics, in this paper we assume the utility associated with a specific 

route segment to be determined as, 

𝑉!   𝐟   = 𝛽!  ∙ 𝜏!, (9) 

where  𝜏!    denotes  the  travel  time  of  the  route  segment,  and  𝛽!    is  the  travel  time 
parameter. Travel times can be computed using any network loading model, e.g., a 

microsimulation traffic model as used in the model application in this paper (with as 

input the traffic flow vector consistent with the PSR-SUE problem defined by 

Equations (1)-(7)). Equation (9) can easily by extended to include other utility 

attributes, such as travel costs and travel time reliability. 
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!  ! 

The utility associated with a specific parking location has been derived in an earlier 

study by the authors (Chaniotakis and Pel, 2015) and is determined as, 
! ! 

𝑉!   𝐟   = 𝛽!  ∙ 𝛾!  + 𝛽!  ∙ 𝜔!  + 𝛽!  ∙ 𝜇!  + 𝛽!!  ∙ 𝜓!  + 𝛽!!  ∙ 𝜓! , (10) 
! ! 

where 𝛾! , 𝜔!, 𝜇!, 𝜓!   and 𝜓! denote respectively: the parking cost, walking  distance 

from parking location to destination s, the parking type distinguishing on-street   curb- 

side parking and off-street parking (garages), the probability of parking availability 

upon arrival at the parking location, and the probability of parking availability   within 

a maximum admissible search time denoted by 𝜎. Parking costs, walking distances, 
and parking types are exogenous, while parking probabilities are endogenous as  these depend on the chosen parking search routes. Parking probabilities are determined   via 

 
a queuing model presented next. The parameters 𝛽!, 𝛽!, 𝛽!, 𝛽!!   and 𝛽!!   relate to 
their  corresponding  attributes.  These  parameters,  together  with  𝛽!   in  Equation  (9), 
have been estimated in (Chaniotakis and Pel, 2015) using a stated choice   experiment 

within the context of drivers’ choosing a single parking location. 

The parking probabilities in Equation (8) represent the probability of finding a 
! 

vacant parking spot at that location. Hence, 𝜓!  in Equation (8) is equivalent to 𝜓!   in 
Equation (10). Chaniotakis and Pel (2015) found that drivers’ are, on average,  willing 

to spend 8 minutes searching for a parking spot before abandoning the location and 

continuing to a next parking location. This average search time is used here for sake 

of parsimony, however the findings by Chaniotakis and Pel (2015) suggest that search 

times  might  differ  according  to  parking  type.  The  latter  can  be  incorporated  by 

adjusting Equation (10) accordingly, such that 𝜎 → 𝜎  𝜇!   . 
Parking probabilities 

We propose a queuing model to determine the probability of finding a vacant 

parking spot after a certain amount of search time 𝜎, where no search time (i.e., 𝜎 = 

0) yields the probability upon arrival. The appropriate queuing model is  characterized 
by: the arrival process, the service mechanism, and the queue discipline. 

 
The arrival process is endogenous. Let 𝑎!   𝑘, 𝑘 + 𝜅   denote the expected number of drivers that arrive at parking location 𝜋 during the period  𝑘, 𝑘 + 𝜅  . Then, 

𝑎!   𝑘, 𝑘 + 𝜅   = !∈𝐏 𝑓!  ∙ 
!!!! 

!!! 

!!!!! 

!!! 1 − 𝜓!
 ∙ 𝜂!,!  !  ,!, 

where 𝜂!,!  !  ,!  = 

1 if 𝜋 = 𝑝  𝑖 ∧  𝜏!,!  !    +   𝑖 − 1   ∙ 𝜎 ∈   𝑘, 𝑘 + 𝜅  
.
 

0 otherwise 

(11) 

That is, the expected number of arrivals at a parking location is given by the sum of 

all PSR flows multiplied with their respective probabilities that drivers arrive at that 

parking location within that time interval, where the latter probabilities are given by 

the probability of not finding a vacant spot at any of the previous parking locations 

multiplied with 𝜂!,!  !  ,!  which is 1 only when the time interval of interest includes the 
arrival time of drivers’ following PSR p, where the latter is given by the route travel 

time towards location 𝜋 plus the sum of the search times 𝜎 spent at previously visited 
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parking locations. 
Note that departure times are omitted for sake of clarity in the notation (i.e., the 

current notation is consistent when all drivers depart at 𝑘 = 0). If necessary, departure 
times can be incorporated into the model formulation by the following adjustments: 
define p as departure time specific, ensure in Equation (11) that in the condition for 

 
𝜂!,!  !  ,!  = 1  the departure time is added to the travel and search time, and define in Equations (1)-(7) the PSR set 𝑃!"  and the demand 𝐹!"  both as departure time specific. 

The service mechanism of a specific parking location is exogenous. It entails the 

number of available servers and the service time (distribution). The former equals the 

number of parking spots at that location, while the latter equals the (distribution of) 

parking duration. 

The queue discipline at a specific parking location is exogenous. It entails the 

queue priority and queuing behavior. The queue priority may either follow a first- 

come first-served rule (which seems appropriate for off-street parking) or a random 

process (which seems appropriate for on-street parking). The queuing behavior here 

includes reneging where drivers will decide to leave the queue after the maximum 

admissible search time has passed. 

The resulting parking queuing model can be classified as G/G/c/{FCFS, SIRO}, 

where c equals the parking capacity at the parking location. This type of queuing 

model has no closed-form expression for the probability of being served (i.e., the 

complement of the probability of reneging) and hence needs to be approximated 

numerically (see Barrer, 1957 for first-come first-served (FCFS) priority; see 

Movaghar, 1998 for service in random order (SIRO) priority). Here we approximate 

the parking probabilities for any given parking location through simulation. 

Considering a parking location, the parking probability at any specific arrival time 

and for any specific search time can be computed using the cumulative curves of 

arrivals entering the system and departures exiting the system. These cumulative 

curves are output of the simulation run of the queuing model. More specifically, let 

𝐴 𝑘 denote the cumulative arrivals at the tail of the queue until time k, and let 𝐷  𝑘 
denote the cumulative departures both from the queue due to reneging and from the 

servers (after being served) until time k. For the following, consider Fig. 2. 
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, 

 

 
 

Fig. 2. Illustration of computation of expected search time using cumulative curves of arrivals 

and departures. 

 Under FCFS priority, we can look at the ‘priority queue’ that a (virtual) driver d 
would encounter when arriving at time k, which equals 𝑞 𝑘 = 𝐴 𝑘   − 𝑐 − 𝐷 𝑘 , 
where  c  is  the  number  of  servers  (i.e.,  the parking  capacity).  This  priority queue 
represents the drivers who have priority over driver d regarding being served (as we 

are considering FCFS). After time 𝜎, this queue will have dissolved by an amount of 

𝐷 𝑘 + 𝜎 − 𝐷  𝑘  . Thus parking probabilities under FCFS are computed as, 

𝜓!   𝑘   = Pr  𝐴  𝑘   − 𝑐 ≥ 𝐷  𝑘 + 𝜎 . (12) Note  that  this  holds  under  the  condition  that  any  departure  during   𝑘, 𝑘 + 𝜎    is  a 
departure from the priority queue, and not a departure from the complementary  queue 

that may have accumulated after the arrival of driver d. It is easy to see that this 

always holds, since no driver in the complementary queue can have passed their 

maximum search time (as 𝑘∗ + 𝜎 > 𝑘 + 𝜎, ∀𝑘∗ > 𝑘), nor can have been served  (as 
there is FCFS priority). 

Under SIRO priority, we need to look at the probability that a (virtual) driver d 
 
arriving at time k would at any time during 𝑘, 𝑘 + 𝜎 be randomly  selected to be served. To this end, let 𝑆 𝑘 denote the cumulative curve of the number of drivers that are (being) served until time k (which is also output of the simulation run of the 

 
queuing  model).  During  any  small  interval  𝑥, 𝑥 + 𝑑𝑥  , the  additional number of drivers that can be served is 𝑆 𝑥 + 𝑑𝑥 − 𝑆  𝑥 , while the drivers waiting to be served is 𝑞 𝑥 = max 0, 𝐴 𝑥 − 𝑐 − 𝐷  𝑥    . Hence the probability of driver d being selected is  min   1,  𝑆 𝑥 + 𝑑𝑥 − 𝑆 𝑥 /𝑞  𝑥 .  Thus  parking  probabilities  under  SIRO  are 
computed as, 

𝜓!   𝑘   = 1 − 
!!! 

ln 1 − 𝜉 𝑑𝑥 
! 

where 𝜉 = min 1, 
   ! !!!" !! !   

!"#  !,!  !  !!!!  ! 

(13) 
. 
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In case of FCFS priority and a deterministic arrival and departure process, then the 

parking probabilities are binary. In case of SIRO priority, or when these processes are 

stochastic, then the parking probabilities are true probabilities. For the stochastic case, 

these probabilities can be constructed using multiple simulation runs in a Monte Carlo 

fashion. This is done in the following example. 

To demonstrate the parking queuing model, Fig. 3 shows an example of the time- 

varying parking probability as a function of the maximum admissible search time. 

These probabilities are derived by simulating the queuing model for the conditions  at 

a specific parking location. For this example we considered a 10-hour period with the 

following conditions: 

 (Arrival process.) The arrival process is Poisson distributed with hourly rates given 

as 90, 108, 108, 138, 120, 108, 90, 48, 24, 6 vehicles per hour. 

 (Service mechanism.) The number of servers (i.e. the parking capacity) is 250. The 

parking duration is Exponential distributed with mean 150 minutes (such that the 

departure process is Poisson distributed). 

 (Queuing discipline.) The queue priority is FCFS. The queue behavior includes 

reneging when the maximum search time has passed, where the model is run for 

various search times up to 10 minutes, 𝜎 ∈   0,10 . 
Note that in this example the arrival process and service mechanism both include a 

stochastic component. We therefore run 3000 simulations (of the full 10 hour period) 

with different random seeds and compute the expected parking probabilities shown in 

Fig. 3 by averaging the parking probabilities computed in the individual simulation 

runs using Equation (12). 
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!" !" 

!!! 

Fig. 3. Example of the time-varying parking probability as a function of the maximum 

admissible search time. Parking probabilities are derived from 3000 simulation runs of the 

parking queuing model. 

 
2.3 PSR-SUE solution method 

To solve the PSR-SUE problem we propose an algorithm based on the PSR-SUE 

definition and conditions, given by Definitions (2, 3). The basic notion of the 

algorithm is to iteratively reassign traffic flows on any used PSR towards any PSR 

with lower perceived generalized costs. Across iterations, the convergence towards 

stochastic user equilibrium is checked via a gap function based on the PSR-SUE 

problem, given by Definition (4). The following relative gap function, adapted from 

Bliemer et al. (2014), will reach zero upon convergence towards an SUE: 

    (!,!)    !∈!!" !!  !! !!!"   

𝜀 = 

, 

!,! !!"!!" 
!! 

(14) 

where 𝜙!"  = min!∈!!"    
𝑐!   𝐟   + 𝜃 ln  max  Δ𝐹!" , 𝑓! , 

and where 𝑐!  is the perceived generalized costs, which under the earlier assumption 
of logit based PSR choice behavior is defined as 𝑐!  = 𝑐!   𝐟   + 𝜃!! ln 𝑓!, and where 𝜙!" 

denotes the minimum perceived generalized costs against which the gap function is 
defined. Recall that the PSR-SUE assignment includes the constraint on any  non-zero 

 
flow being no less than threshold ∆𝐹!" . Therefore, 𝜙!"   is the minimum   of  the PSR costs on any used route or the PSR costs that would be experienced by a flow of ∆𝐹!" 
on any currently unused route. (Note that the latter check is omitted from the   original 
definition in (Bliemer et al., 2014), where instead they define a threshold-dependent 

route set 𝑃!  ⊆ 𝑃 from which they exclude any route with 

𝑓!  = 0 ⇒ 𝑐!  ≤ min!∈!!"    
𝑐! and 𝑓!  = Δ𝐹!"  ⇒ 𝑐!  > min!∈!!"    

𝑐!   . However, that 
approach leads to both appending and pruning the route choice set while solving the 

assignment problem. This is no needed with our definition of 𝜙!".) 
The  proposed  algorithm  contains  three  sub-problems,  namely  the  logit  choice 

model to determine PSR flows, the network loading model to determine travel times, 

and the parking queuing model to determine parking probabilities. Note the  following 

interdependencies  between  the  PSR  flow  vector  𝐟 ≡   𝑓!   ,  the  travel  time  vector 

𝛕 ≡   𝜏!   , and the parking probability vector 𝛙 ≡   𝜓!   : 
 (Logit choice model.) The PSR flows depend on the PSR costs, which are a function  of  the  travel  times  and  the  parking  probabilities,  computed        using 

Equations (1)-(2), (7)-(10). Thus, 𝐟 = 𝐟  𝛕, 𝛙  . 
 (Network loading model.) The travel times depend on the traffic flows, which are a 

function of the PSR flows and the parking probabilities, where the probability for a 

flow to traverse a route segment   𝑝  𝑖  , 𝑝 𝑗 is computed as 

𝛕 = 𝛕  𝐟, 𝛙  . 
!!!  1 − 𝜓!  !  . Thus, 

 (Parking queuing model.) The parking probabilities depend on the arrival processes 
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!" 

at the parking locations, which are a function of the PSR flows and the travel 

times, computed using Equation (11). Thus, 𝛙 = 𝛙  𝐟, 𝛕  . 

We  propose  to  resolve  these  interdependencies  in  any  intermediate  iteration  𝛼  in  a forward updating fashion by assuming 𝐟𝜶  = 𝐟𝜶   𝛕𝜶!𝟏, 𝛙𝜶!𝟏   , 𝛕𝜶  = 𝛕𝜶   𝐟𝜶, 𝛙𝜶!𝟏   , and 𝛙𝜶  = 𝛙𝜶   𝐟𝜶, 𝛕𝜶   . This way consistency is guaranteed upon convergence, due to the fact that then 𝛕𝜶  = 𝛕𝜶!𝟏  and 𝛙𝜶  = 𝛙𝜶!𝟏. 
We propose the following solution algorithm for the PSR-SUE problem, which 

uses as input an explicit PSR choice set 𝐏 ≡ 𝑃!" . The way in which we propose to 
generate this PSR choice set and possibly extend it during Step 6  is 
discussed 

hereafter. 

 
Algorithm 1. PSR-SUE solution algorithm. 

 
Input: PSR choice sets 𝐏 ≡ 𝑃!" , travel demand 𝐅 ≡ 𝐹!" , network characteristics, parking characteristics, and choice parameters 𝛃, 𝜃, 𝜎 . 
Step 0:   Initialize. Assume initial (null) flow assignment 𝐟!  = 0. Assume initial (free- flow)   travel   times   𝛕𝟎  = 𝛕  𝐟 = 0  .   Assume   initial   (sufficient)   parking probabilities 𝛙!  = 1. Set 𝛼 ≔ 1. 

Step 1:   Compute logit choice model. Compute the intermediate PSR flows 𝐟!   using 
the multinomial logit model using the PSR costs given by Equations (7)-(10), 

with travel times given by 𝛕!!!  and parking probabilities given by 𝛙!!!. 

Step 2:   Update  PSR  flows.  Compute  the  new  averaged  PSR  flows  as  𝐟!  = 𝐟!!!  + 

𝛼!!   𝐟!  − 𝐟!!!   , for a given 𝜆 ∈   0,1  . 

Step 3:   Compute  network  loading  model.  Compute  the  travel  times  𝛕!   using  any network loading model, with travel demand given by 𝐟!  and probabilities of being absorbed by parking locations given by 𝛙!!!. 
Step 4: Compute parking queuing model. Simulate the queuing model G/G/c/{FCFS, 

SIRO}, with the arrival processes given by Equation (11), the travel  demand 
given  by  𝐟!    and  the  travel  times  given  by  𝛕!.  Compute  the  parking probabilities 𝛙!  using Equation (12) or (13). Step 5:   Update PSR costs. Compute the new PSR costs given by Equations  (7)-(10), 

with travel times given by 𝛕!  and parking probabilities given by 𝛙!. 
Step 6:  (optional) Update PSR choice set. If necessary, for each origin-destination 

pair, append the choice set with any PSR 𝑞 whose stochastic equilibrium cost 
is not larger than the current minimum perceived generalized costs within the 

PSR choice set, i.e. if 𝑐!   𝐟
!     + 𝜃!! ln ∆𝐹!"  ≤ min!∈! 𝑐!   . 

Step 7:   Check convergence. Compute the relative gap 𝜀!   using Equation (14). If 𝜀! 
is  smaller  than  a  pre-determined  threshold,  then  stop.  Otherwise,        set 

𝛼 ≔ 𝛼 + 1 and return to Step 1. 

Note that in Step 2, 𝜆 = 1 for traditional MSA, while 𝜆 < 1 results in  larger step sizes 
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Φ 1 − Φ 
!   !! 

! 

! 
!!! 

and may lead to accelerated convergence (see e.g., Taale and Pel, 2015). ! 

 
PSR choice set generation 

The proposed solution algorithm uses as input an explicit PSR choice set which 

thus needs to be pre-generated, and possibly extended during the assignment, as we 

will discuss later. Recall that a PSR according to Definition 1 is constructed of a 

sequence of route segments between pairs of consecutive parking locations. 

Alternative PSRs therefore will differ with respect to the parking locations included, 

the order in which these are included, and the route segments used between parking 

locations. We propose to exploit this understanding to generate a PSR choice set in a 

tractable stepwise procedure. 

We can also exploit a feature of parking search routes that follows from Definition 

1 and Equations (7)-(10), namely: 

 
Proposition 1. For sufficiently large 𝛬, any parking search routes 𝑝 and 𝑝∗  for 
which holds  that  𝑝 ⊆ 𝑝∗   will  have  costs  such  that  𝑐!   𝒇   ≥ 𝑐!∗    𝒇  .  Therefore  appending  a 
parking search route with additional route segments will not increase its PSR cost. 
Proof. Given that 𝑝 is a subset of 𝑝∗, we can rewrite 𝑝∗  ≡   𝑝,   𝑝∗   𝐼!   , 𝑝∗   𝐼!

∗ 
. Or, in words, PSR 𝑝∗  is the set of 𝑝 and the route segments in 𝑝∗  between the last parking 

location in 𝑝, which is 𝑝∗   𝐼!   , and the last parking location in 𝑝∗, which is 𝑝∗   𝐼!
∗    

. Together with Equation (5) this gives, 

𝑐!   𝐟   ≥ 𝑐!∗    𝐟  , 
!! !! !! !!∗ !! !!∗ 

Υ!  + Φ! · Λ ≥ Υ! + Υ!!!!  + Φ! ∙ Φ!!!!  ∙ Λ, 
!! !!∗ 

! !!!! 

Λ ≥ Υ
!!∗    

, 

! 

where Υ!  = 
!!! 

!!! 

!!!!! 

!!! 1 − 𝜓!  ! ∙   −𝑉!  !!!  ,!  !     𝐟   − 𝑉!  !     𝐟   ∙ 𝜓!  !     , 

and Φ
!  

= 
!! !!∗ !!!   1 − 𝜓!  !     . 

Note that the term Φ! 1 − Φ!!!! ∈   0,1  , however, this term can only by zero when 
!! !!∗ !! 

Φ!    = 0 or Φ!!!!  = 1. Note that Φ! 

!!∗ 

= 0 if and only if there exists a 𝜓!  !    = 1 with 
!!∗ 

𝑖 ∈   1, 𝐼!   , and therefore Υ!!!!  = 0. Note that Φ!!!!  = 1 if and only if 𝜓!  !    = 0 for 
!!∗ !! !!∗ 

all 𝑖 ∈   𝐼!!!, 𝐼!∗   , and therefore Υ!!!!  = 0. Hence, we have that if Φ! 1 − Φ!!!!    = 
!!∗ !! !!∗ !!∗ 

0, then Υ!!!!  = 0, and if Φ! 1 − Φ!!!! ∈   0, 1  , then Υ!!!!  is typically negative or 

small. Therefore when Λ is sufficiently large, any increase in costs due to visiting 
additional parking locations will be lower than the decrease in costs due to a lower 

probability (i.e., penalty) of not finding a parking spot at all. This concludes the proof. 
! 

Proposition 1 states that there is no need to generate any PSR 𝑝 that is a subset of 
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! 1 − 𝜓 

another PSR already included in the choice set, i.e. 𝑝 ⊆ 𝑝∗  ∈ 𝐏. 
The proof of Proposition 1 also shows the following property of a PSR: 

 

Corollary  1.  Any  parking  search  routes  𝑝  and  𝑝∗   for  which  holds  that  𝑝 ⊆ 𝑝∗   and where 𝑝  includes a parking location for which 𝜓!  !    = 1, are equivalent. Therefore 
appending a parking search route with additional route segments beyond a parking 

location with parking probability equal to 1 is irrelevant. 
 

Proof. If 𝜓!  !    = 1 for any 𝑖 ∈   1, 𝐼!   , then Φ!   = 
!!∗ 

!!! 

!!! ! ! = 0. Therefore, as 

shown by the Proof of Proposition 1 Υ!!!!  = 0, due to the fact that the parking search 

route will be certainly aborted at parking location 𝑝  𝑖    and thus    any following route 
segments will never be used. This concludes the proof. ! 

 
We propose the following PSR choice set generation algorithm. 

 
Algorithm 2. PSR choice set generation algorithm. 
Step 1:  Generate parking location set. Select the set of parking locations 𝜋 !  

that do not exceed a non-compensatory level for any of the exogenous 
attributes in 

Equation (10) (e.g., locations within a maximum walking distance to the 

destination). 

Step 2:   Generate parking sequence set. For all pairs of parking locations   𝜋∗, 𝜋   ⊆ 
𝜋 ! compute their shortest distance. Generate the k-shortest sequences   𝛑 !, where each sequence is a permutation that contains all locations in   𝜋 ! (thus 

excluding  incomplete  sequences  by  Proposition  1),  thereby     prioritizing 

sequences that are efficiently ordered. 
Step 3:   Generate  route  segment  sets.  Generate  the  constrained  k-shortest   routes 

𝛿   !∗,!     between  all  consecutive  pairs  of  parking  locations   𝜋∗, 𝜋   ⊆   𝛑  !, 
with  bounded  costs  compared  to  the  shortest  route  (see  Fiorenzo-Catalano 
and Van der Zijpp, 2001). 

Step 4: Compose PSR master choice set. Generate the PSR master choice set  
𝑃!" using the constrained k-shortest route method by concatenating  
alternative 
route segments from Step 3 for the parking sequences from Step 2. 

 
Note that in Step 2 if 𝜋 !   is sufficiently small, then this entails full  enumeration when 𝜋 ! ! ≤ 𝑘. Note that in Step 3 although in most cases full enumeration will not 
be  feasible,  these  route  segment  sets  can  be  relatively  rich  given  that  we      are 

generating routes that are confined within a small part of the network between pairs of 

parking locations. ! 

 

Algorithm 2 generates the PSR choice set for a specific origin-destination pair, and 

hence needs to be executed per origin-destination pair. Nevertheless it is still rather 

efficient, because earlier computations can be reused. The route segment sets 

generated in Step 3 are specific to a pair of consecutive parking locations, and thus 
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can be used in any parking sequence. And the parking sequence set in Step 2 is 

specific to a parking location set, which in turn is specific to a destination, and thus 

can be used for any origin-destination pair with this destination. For an efficient 

implementation of the PSR choice set generation algorithm all of these sets can be 

computed and stored in a lazy fashion. 

Watling et al. (2015) discuss several disadvantages of using a pre-generated master 

choice set. We would like to argue that these disadvantages are avoided in cases 

where the master choice set can be generated using a deterministic method (ensuring 

repeatability) based on exogenous variables (ensuring consistency). Nevertheless, the 

proposed PSR choice set generation method involves sampling, and therefore the pre- 

generated master choice set might need to be dynamically extended during the 

iterative assignment procedure. This is done in Step 6 in Algorithm 1, where basically 

Step 4 of Algorithm 2 is repeated with updated costs. 

 

3. Model experiments and application 

 

In the following section we first run several experiments on synthetic networks that 

are specifically constructed to demonstrate the properties of the proposed PSR-SUE 

assignment model. Here we focus on verifying the flows and costs of parking search 

routes, parking probabilities under equilibrium, and model convergence. Afterwards, 

we apply the model to a real-life setting of the Dutch city of Assen. In the model 

application we embed the PSR-SUE assignment model within a simulation framework 

to include aspects of background traffic, traffic signal control, rerouting behavior due 

to traffic information, and a myopic search process for on-street parking. We discuss 

some basic scenario analysis regarding parking search behavior. 

 

3.1 Experiments 

Example I 

Consider the network shown in Fig. 4 with 1 origin-destination pair and 2 parking 

locations. The travel demand is 400 vehicles. Both parking locations share the 

following characteristics: 400 meters walking distance to destination, off-street 

parking, and a parking capacity of 200. The parking locations differ only according to 

parking cost, where P1 is €2.30 and P2 is €3.00. For simplicity, the travel time is 

calculated using the standard BPR-function, such that the travel time from the  origin 

to either of the parking locations is approx. 15 minutes, and between the parking 

locations is approx. 5 minutes. 
Solving the PSR-SUE for Example I yields the results shown in Table 1. For a 

relative gap of 𝜀 ≤ 1 e-3 the assignment converges within 10 iterations. As expected, 
PSR (P1, P2) has a higher flow than PSR (P2, P1), because P1 is preferred over P2 as 

it has lower parking cost. Due to this flow assignment, the parking probability at P1 

drops below 1. Under equilibrated parking search routes, the probability of finding a 

parking spot at P1 is about 0.73-0.89. That is, 226-273 vehicles follow PSR (P1, P2) 

while P1 has 200 capacity. When parking search route choice is more deterministic 
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(i.e., the logit scale parameter is set to a larger value), then more drivers choose PSR 

(P1, P2) as it has lower (deterministic) costs, and therefore the parking probability at 

P1 is lower in this case. 

 
 

 
 

Fig. 4. Synthetic network with 1 origin-destination pair and 2 parking locations, indicated as 

P1 and P2. 

 
Table 1. PSR-SUE model results for Example I. 

Logit scale parameter (𝜽) = 1 
PSR (p) deterministic equil. 

∗ stochastic equil. equilibrium relative gap 

PSR cost (𝑐! 𝐟  ) PSR cost (𝑐!   𝐟  ) flow (𝑓!) (𝜀) 

(P1, P2) 0.463 5.884 226.00 
 

(P2, P1) 0.734 5.893 174.00 

Logit scale parameter (𝜽) = 40 

6.98 e-4 

PSR (p) deterministic equil. 

PSR cost (𝑐!   𝐟  ) 

stochastic equil. 

PSR cost (𝑐!   𝐟  ) 

equilibrium 

flow (𝑓!) 

relative gap 

(𝜀) 

(P1, P2) 0.714 0.855 273.00 
 

(P2, P1) 0.734 0.855 127.00 
1.71 e-4 

 
 

 

 

Example II 

Consider the network shown in Fig. 5 with 1 origin-destination pair and 3 parking 

locations. The travel demand is 400 vehicles. All parking locations are at 400 meters 

walking distance to the destination and provide off-street parking. The parking 

locations differ according to parking capacity and parking cost. These values are for 

P1: 150 capacity and €3.00 cost, for P2: 50 capacity and €2.00 cost, and for P3: 100 

capacity and €2.00 cost. Once again the BPR-function is used for travel times, which 

are approx. 15 minutes from origin to P1 or P2, approx. 12 minutes from origin to  P3, 
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and approx. 4 minutes between parking locations. 
Solving the PSR-SUE for Example II yields the results shown in Table 2. For a 

relative gap of 𝜀 ≤ 1 e-3 the assignment converges within 15 iterations. As mentioned 
before, the endogenous  parking  probabilities  depend  on  the  arrival  flows  at  the 

parking locations, which in turn depend both directly on the parking probabilities (at 

previous parking locations along the PSR) and on the PSR flows, while the PSR flows 

depend (through the choice model) on the parking probabilities. Interestingly, under 

equilibrated PSR-SUE conditions, the ranking among all PSRs follows the  preference 
P3 (with intermediate parking probability 𝜓!  = 0.73 and low cost €2), then P1 (with high parking probability 𝜓!  = 1.0 and high cost €3), and lastly P2 (with low parking probability 𝜓!  = 0.46 and low cost €2). Note in the arrivals at the parking locations that for any PSR where P2 or P3 is preceded by P1 that there is no arrival flow. This 

is due to the fact that the parking probability at P1 is 𝜓!  = 1.0. 

Similar as shown in Example I, setting the logit scale parameter 𝜃 to a higher value 
produces more deterministic PSR choice behavior and hence assigns more flows to 

those PSRs with lower deterministic costs. In this example, at P3 that would lead to 

more arrivals and hence a lower parking probability, while at P2 that would lead to 

less arrivals and hence a higher parking probability. 

 
 

 
 

Fig. 5. Synthetic network with 1 origin-destination pair and 3 parking locations, indicated as 

P1, P2 and P3. 

Table 2. PSR-SUE model results for Example II, for logit scale parameter 𝜃 = 1. 

PSR (p) deterministic equil. 
∗ stochastic equil. equilibrium relative gap 

PSR cost (𝑐! 𝐟  ) PSR cost (𝑐!   𝐟  ) flow (𝑓!) (𝜀) 
(P1,P2,P3) 0.404 4.270 47.74  

(P1,P3,P2) 0.404 4.270 47.74  
3.27 e-4 

(P2,P1,P3) 0.478 4.270 44.34  

(P2,P3,P1) 0.370 4.270 49.38  
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(P3,P1,P2) 0.239 4.270 56.32 

(P3,P2,P1) 0.272 4.270 54.48 

 

PSR (p) arrivals at P1 arrivals at P2 arrivals at P3 

(P1,P2,P3) 47.74 0.00 0.00 

(P1,P3,P2) 47.74 0.00 0.00 

(P2,P1,P3) 23.92 44.34 0.00 

(P2,P3,P1) 7.25 49.38 26.64 

(P3,P1,P2) 15.34 0.00 56.32 

(P3,P2,P1) 8.00 14.83 54.48 

total arrivals 150.00 108.55 137.44 

parking 

probability (𝜓) 

 

1.00 
 

0.46 
 

0.73 

 

 

Example III 

For the third example, consider the Assen network shown in Fig. 6 where we select 

7 origin-destination pairs and 6 parking locations. Here we look at the dynamic case 

and simulate the PSR-SUE flows for a time horizon of 90 minutes. The total travel 

demand is approx. 3400 vehicles and follows a ‘peak period’ profile gradually 

increasing from 0 to 3200 vehicles per hour within [0 min, 60 min], and  then 

gradually decreasing again back to 2400 vehicles per hour within [60 min, 90 min]. 

Furthermore, we look at the situation in which the total parking capacity is 

insufficient, with a total capacity of 3256. Note that in the previous examples the total 

travel demand does not exceed the total parking capacity and therefore there will be at 

least one parking location with parking probability 1. Then Proposition 2 states that 

all PSRs yield successful parking and thus the value of Λ in Equation (5) is  irrelevant. 
In Example III this is no longer the case. 

Apart from parking location P22 which has free parking, all other locations have 

parking cost of €1.70. All parking locations are off-street parking. Walking distances 

to the destinations are measured on the map and are between 200 and 1400 meters. 

And parking capacities vary between 250 and 840. 

Travel times are calculated using a simple dynamic network loading model without 

consideration for spillback. Solving the PSR-SUE flow assignment for Example III 

requires generating about 120 PSRs. The number of iterations for convergence to an 
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acceptable relative gap is approx. 80. This appears as a rather slow convergence, but 

this is solely due to the later time periods with high arrival flows and low parking 

probabilities at parking locations, when (some) PSRs do not guarantee finding a 

parking spot. For earlier time periods where parking probabilities do not deviate 

(much) from 1, very few iterations are needed. Table 3 shows the dynamic parking 

flows, which seem plausible. Parking location P22, which offers free parking, fills up 

quickest. The other parking locations fill up at a similar pace, which is explainable 

from the fact that their characteristics do not differ much. Parking locations P10, P13 

and P14 have below average capacity and are full before the end of the simulated time 

horizon, where P13 has the lowest capacity and fills up slightly quicker than the other 

two locations. Parking locations P9 and P15 are slightly farther away from the city 

center and have the largest capacities, and hence fill up last. It is generally observed 

that once a parking location has a very low parking probability (or is full) then those 

PSRs with that parking location as one of their first locations to be visited are quickly 

abandoned due to high expected costs. 

 
 

 
 

Fig. 6. Assen network with 6 parking locations, indicated as P9, P10, P13, P14, P15, and P22. 

 
Table 3. PSR-SUE model results for Example III. 

 
 

time 

period 

parking flows during time period 

 

[min] P9 P10 P13 P14 P15 P22 

0-15 28 29 28 29 30 104 

15-30 41 42 43 43 42 161 
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30-45 71 71 69 70 71 237 

45-60 143 151 111 143 145 98 

60-75 266 167 0 (full) 79 279 0 (full) 

75-90 191 0 (full) 0 (full) 0 (full) 274 0 (full) 

 

 

3.2 Application 

To demonstrate the practical applicability of the proposed model it is applied to the 

real-life setting of the city of Assen in the Netherlands. The network is shown in  Fig. 

6 (and includes another 5 parking locations in the vicinity of the city center). The case 

study considers 296 origin-destination pairs with travel demand, and a 2-hour demand 

matrix following a more or less triangular profile with in total about 4000 vehicles 

that intend to park somewhere in the vicinity of the city center, and in total about 

11500 vehicles that have destinations throughout the city but do not make use of the 

parking locations (i.e. background traffic). The road network includes 11 parking 

destinations with capacity between 85 and 840 that in total provide a parking capacity 

of 3256. Parking costs vary between free parking and €2.00 per hour. We consider 

the case of parking for shopping and accordingly assume that parking  durations 

follow a Uniform distribution between 30 and 90 minutes. We would like to 

emphasize that in this case study the traffic network and parking facilities including 

their characteristics do represent the actual situation in Assen, however that the travel 

demand and parking durations have been assumed in a way that the authors trust is 

realistic, but not necessarily representative. 

For this case setting, the PSR-SUE flow assignment is solved using Algorithm 1, 

where PSR choice sets are generated using Algorithm 2 and as network loading model 

we use the microsimulation traffic flow model called ITS modeler. ITS modeler is an 

application that runs within Paramics and is developed by TNO, which provides an 

advanced modeling framework for impact assessment studies of intelligent transport 

systems applications (for more information see Tideman and Van Noort 2013). TNO 

provided also the Assen road network that in earlier projects has been calibrated with 

respect to driving, network, and traffic control parameters. As we are dealing here 

with a discrete microsimulation model in combination with a probabilistic PSR choice 

model, travel times are computed by averaging over 10 simulation runs with different 

random seeds. 

Overall, the dynamics of the parking search routes, traffic flows, and occupancies 

of parking locations appear plausible. Here we report the parking search times for a 

few illustrative scenarios, given in Table 4. For reference we include a base scenario 

considering the case as described above. 

First the effect of parking reservation is tested. As expected, users of a parking 
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reservation system will experience a lower parking search time since they are now 

guaranteed of not having to visit more than 1 parking location. In the simulation the 

mean travel time of users is reduced by about 13% compared to the reference case. 

The effect that this has on the travel times of the other drivers not using the parking 

reservation system is much smaller and depends on the penetration rate. With a low 

penetration rate of 20% users the mean travel time for non-users very slightly 

increases, by about 1%, mostly due to the extra competition for the now fewer parking 

spots that need to be shared among the non-users. However, with a higher penetration 

rate of 40% users the mean travel time for non-users slightly decreases, by about 2%, 

due to the reduced parking search traffic between parking locations. The latter reason 

also causes lower variability of travel times for all drivers in all situations. 

Second the effect of on-street parking is tested. To this end, we add neighborhoods 

with on-street parking capacity as parking ‘locations’ in our PSR-SUE model, and to 

model the on-street search process for a parking spot within such a neighborhood we 

adopt the myopic random search proposed by Kaplan and Bekhor (2011). This way, a 

PSR connects neighborhoods, within such a neighborhood this random search process 

is followed, and a driver continues to the next neighborhood (i.e. parking location) in 

case of not finding a vacant parking spot within the maximum admissible search time. 

In the simulation drivers opting for on-street parking experience a much higher travel 

time, of about 162-178% more than in the reference case, as well as a much higher 

standard deviation of travel time. This is largely due to the fact that the search process 

for on-street parking is less efficient. Note that, unlike the case for off-street parking, 

for on-street parking it is possible that drivers do not find a vacant parking spot within 

the allotted search time even though the parking location is not full (yet). At the same 

time, the mean travel time for off-street parking is about 7-11% lower (and the travel 

time variability is lower) compared to the reference case, because a share of the 

drivers are now no longer using the off-street parking capacity. 

 
Table 4. PSR-SUE model results for Assen application. 

 
 

scenario individual travel time: 

mean (std. dev.) 
 

 

Base scenario: only off-street parking 

 all 9:41 (4:54) 
 

 

Effect of parking reservation system: 

- for 80% non-user and 20% user 

 non-user 

 user 

- for 60% non-user and 40% user 

 

 

 
9:46 (4:48) 

8:27 (3:08) 
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 non-user 

 user 

9:30 (4:44) 

8:26 (4:44) 
 

 

Effect of on-street search process: 

- for 95% off-street and 5% on-street parking 

 off-street parkers 

 on-street parkers 

- for 85% off-street and 15% on-street parking 

 off-street parkers 

 on-street parkers 

 

 

 
9:00 (4:01) 

25:25 (18:41) 

 
 

8:39 (3:16) 

26:53 (19:30) 
 

 

 

 

4. Conclusion 

In this paper we define and formulate the concept of parking search routes where a 

driver visits a sequence of parking locations until the first vacant parking spot is found 

and in doing so may account for (expected) parking probabilities. From there we 

define and formulate the stochastic user equilibrium traffic assignment in which no 

driver, by unilaterally changing its PSR, can lower its perceived expected generalized 

costs. Recognizing the interdependency between PSR flows, travel times and parking 

probabilities, we propose a queuing model in order to compute endogenous parking 

probabilities accounting for these factors as well as maximum admissible  search 

times. To solve the PSR-SUE model we propose a solution algorithm, including a 

method for PSR choice set generation. 

The model is implemented and applied both to a number of experimental cases to 

verify its properties and to a real-life setting to illustrate its usefulness in parking- 

related studies. These analyses relate mostly to the situation in which parking 

occupancies are fairly high. Particularly under those circumstances, there are 

conflicting interests from a network performance perspective. On the one hand, high 

parking occupancies are beneficial to ensure that parking locations are operating 

economically. On the other hand, low parking occupancies ensure limited parking 

search traffic. The PSR-SUE model proposed in this paper enables evaluating this 

trade-off under various policy scenarios and priorities. 

The proposed PSR-SUE model yields plausible results for the various examples 

and application, yet we would like to point out one remaining issue that may require 

further research. The choice model adopted here for PSR flows is based on the 

multinomial logit model and as such assumes that attribute preferences are 

homogenous among drivers and that alternatives are uncorrelated in their unobserved 

utility. The current literature on parking location choice behavior does not provide 

strong evidence that these assumptions are too restrictive; also considering that the 

most important endogenous factors such as travel times and parking probabilities   are 
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explicitly included in the observed utility. Nevertheless, whether these assumptions 

are also justified for the case of parking search route choice behavior may be a subject 

for further research. 
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