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Highlights:

e We define and formulate the concept of parking search routes (PSR) accounting
for parking probabilities.

e We propose a queuing model to compute endogenous parking probabilities
accounting for PSRs and search times.

e We define and formulate the stochastic user equilibrium (SUE) assignment with
equilibrated PSRs (PSR-SUE).

e We propose a method for PSR choice set generation, and a solution algorithm to
solve the PSR-SUE problem.

e We demonstrate the PSR-SUE model properties, and analyze the model
application to a real-life setting.

Abstract:

In this paper we define and formulate the concept of parking search routes (PSR)
where a driver visits a sequence of parking locations until the first vacant parking spot
is found and in doing so may account for (expected) parking probabilities. From there
we define and formulate the stochastic user equilibrium (SUE) traffic assignment in
which no driver, by unilaterally changing its PSR, can lower its perceived expected
generalized costs. Recognizing the interdependency between PSR flows, travel times
and parking probabilities, we propose a queuing model in order to compute
endogenous parking probabilities accounting for these factors as well as maximum
admissible search times. To solve the SUE assignment with equilibrated PSR we
propose a solution algorithm, including a method for PSR choice set generation. The
model is implemented and applied both to a number of experimental cases to verify its
properties and to a real-life setting to illustrate its usefulness in parking-related
studies.
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1. Introduction

Parking is an essential component in every car trip especially in the urban context,
and as such has been studied regarding, for example, how it affects mode choice,
location accessibility, and network performance due to cruising traffic. In particular
considering cruising traffic, various studies have quantified this with estimates of
about 30% of the urban traffic flows being cruising traffic (e.g., Shoup, 2006, and Van
Ommeren et al., 2012) and of about 30-50% of the travel time within the city being
spent on searching for a parking spot (e.g., Bonsall and Palmer, 2004, and Tang et al.,
2014).

Apart from the sheer amount of cruising traffic, parking in the urban context is also
an interesting topic for research due to fast developments nowadays in the parking
system. Currently in the Netherlands, at the majority of municipalities, on-street paid
parking is regulated by registration of the car number plate, instead of the traditional
pay-and-display system where a parking ticket is bought. The main reason for
implementing this payment system is that it enables automated parking control, using
a special control car with mounted automatic number plate recognition camera that is
connected with the back office system to check for any non-registered parked cars.
This online payment system has led to the introduction of several smartphone
applications where users no longer need to pay in advance for a pre-specified amount
of parking time, but simply register their car upon arrival at a parking location and
subsequently unregister upon departure, thus only paying for the parking time actually
used. Given that parked cars are now registered, this means that there is real-time
information on the occupancy at parking locations. This information was already
available for off-street parking, but only displayed at roadside panels that are typically
located at motorway exits and along the urban ring road for purposes of parking route
guidance. Now with information on on-street parking occupancies as well and with
smartphone applications, this parking occupancy information may soon become
available to drivers everywhere and in real-time. Furthermore, this may enable
parking reservation in advance, which is not yet available for public parking space,
but a few of the Dutch smartphone applications do already offer this service for
private parking space offered by, for example, companies and hotels.

Earlier studies on parking location choices of drivers show that this predominantly
depends on the factors of access time to parking location, parking costs, walking
distance to final destination, and a number of socio-economic characteristics of the
driver. In a recent stated preference survey by the authors (Chaniotakis and Pel, 2015)
we show that uncertain parking availability ranks as second most important factor in
determining drivers’ parking location decisions, and is only dominated by parking
cost. This is relevant because the parking availability and associated search time is
evidently precisely what will be affected by the aforementioned new technologies,
while the other factors will remain mostly unaffected. Furthermore, earlier studies on
parking information and guidance systems show that the effects hereof are rather
limited when the parking information provided via roadside panels tended to be



outdated and unreliable, especially in more congested circumstances (see e.g.,
Waterson et al., 2001, and Geng and Cassandras, 2012).

In this paper we propose a model for the dynamic traffic assignment problem that
incorporates drivers’ parking search routes in a way that allows to simulate the effects
of uncertain parking availability and parking reservation, and thus enables evaluating
various parking information technologies and policies. According to Martens and
Benenson (2008) this model would be classified as a spatially explicit parking model,
as opposed to a spatially implicit model that only considers parking location without
accounting for the traffic network effects (as e.g. proposed by Liu et al., 2016 to
analyze the effects of parking pricing and regulation on departure time choices in the
morning commute). Considering spatially explicit parking models, various approaches
have been proposed in the literature. For example, a number of simulation models
have been proposed to describe parking traffic, in particular the on-street search
process where drivers cruise in a myopic semi-random manner searching for a vacant
parking spot (e.g., Kaplan and Bekhor, 2011, Van der Waerden, 2012, and Guo et al.,
2013). Along a similar line of reasoning, a number of agent-based simulation models
have been appended with decision rules for parking choices (e.g., Benenson et al.,
2008, and Waraich and Axhausen, 2012)). Boyles et al. (2014) model strategic
parking routes within the cell transmission model by incorporating parking search
policies defined in terms of Markov decision processes. Bifulco (1993) solves the
stochastic user equilibrium assignment where route costs include parking search costs
that are approximated as a function of parking occupancy. Lam et al. (2006) solve the
traffic assignment problem with departure time and parking location choice where
parking availability is approximated via a BPR-like cost function. Li et al. (2008)
solve the traffic assignment problem under the assumption of time-dependent Normal-
distributed uncertain travel times and parking search times in order to investigate the
impact on network reliability. Leurent and Boujnah (2014) solve the static user
equilibrium assignment with route and parking location choice, where drivers divert
to other parking locations when not being able to find a vacant parking spot, such that
parking search routes emerge. All of these studies in one way or another account for
uncertain parking availability and the parking search process, while the majority of
parking models (used to study e.g., parking pricing and regulation) would typically
model parking availability as deterministic.

In this paper we propose a model that distinguishes itself particularly in two ways.
First, our model has a clear theoretical foundation where parking search route choice
follows Random Utility Maximization choice theory, and the (stochastic) user
equilibrium assignment with equilibrated parking search routes is a generalization of
the Wardrop equilibrium concept. Second, the rigorous model formulation includes
the interdependencies between parking search route flows, travel times, and parking
probabilities. As such, the model adheres to general requirements for (traffic
assignment) planning models.

The contributions of the paper are: (1) we define and formulate the concept of



parking search routes (PSR) accounting for parking probabilities; (2) we propose a
queuing model to compute endogenous parking probabilities accounting for PSRs and
search times; (3) we define and formulate the stochastic user equilibrium (SUE)
assignment with equilibrated PSRs (PSR-SUE); (4) we propose a method for PSR
choice set generation, and a solution algorithm to solve the PSR-SUE problem; (5) we
demonstrate the PSR-SUE model properties, and analyze the model application to a
real-life setting.

The paper is structured as follows. In Section 2 we define and formulate parking
search routes and the stochastic user equilibrium assignment with equilibrated parking
search routes, as well as propose a solution algorithm for this problem. In Section 3
the model is applied to several test cases, and discussed with respect to model
properties and some illustrative parking scenarios. In Section 4 we draw conclusions.

2. PSR-SUE model formulation

2.1 Equilibrated parking search routes

Recall that we are interested in drivers’ parking locations and search routes. To this
end, we propose the following definition.

Definition 1. Parking search route (PSR). A parking search route is a route starting
at the driver's origin and sequentially connecting a number of parking locations —
which can be either (off street) parking facilities or (on street) parking areas. Hence a
PSR consists of a sequence of route segments, where each segment connects a
consecutive pair of parking locations, apart from the first segment that starts at the
origin and ends at the first parking location to be visited. This way, a driver will
follow a PSR and visit these parking locations until the first vacant parking spot is
found (and the remainder of the PSR is aborted). 1

The concept of a parking search route is illustrated in Fig. 1. An example is shown
of a parking search route that consists of three route segments, starts at the origin, and
sequentially connects three parking locations that all lie in the proximity of the
destination.
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Fig. 1. Example of a parking search route (PSR) for an origin (green dot on the left) and a

destination (blue dot in the middle). The PSR consists of three route segments (highlighted),
which start at the origin and sequentially connect three parking locations.

This definition of a parking search route (PSR) allows us to define the stochastic
user equilibrium (SUE) traffic assignment with equilibrated parking search routes. We
propose the following definition.

Definition 2. Stochastic user equilibrium traffic assignment with equilibrated
parking search routes (PSR-SUE). The stochastic user equilibrium traffic
assignment with equilibrated parking search routes is the traffic flow assignment in
which no driver, by unilaterally changing its PSR, can lower its perceived expected
generalized costs. 1

Note that following the definition of a PSR the latter generalized costs naturally
take into account (uncertain) parking availabilities. Hence, drivers, upon selecting
their PSR, respond to expected probabilities of parking availability at the various
parking locations. The PSR-SUE assignment is thus flexible enough to capture the
typical urban setting nowadays, where drivers only know the average (day-to-day)
probabilities of parking availability at the various parking locations (but are unaware
of the actual (current day) availability status), as well as capture the situation in which
a parking information or reservation system is employed, where these ‘probabilities’
would be (close to) binary.

Next, we formulate and solve the SUE with equilibrated PSR problem.

2.2 PSR-SUE problem formulation
Flow assignment

In line with the definition of the PSR-SUE problem, the PSR-SUE conditions can



be formulated as follows.

Definition 3. PSR-SUE conditions. Under the PSR-SUE assignment, for any origin-
destination flow, the expected perceived generalized costs for all used PSR are equal,
and greater than or equal to the expected perceived generalized costs for any unused
PSR. 1

G T R

Definition 4. PSR-SUK problem. TRe)parking search route flow vector f is a PSR-
SUE solution if and only if

fi >AF- = ¢ = e:‘, Vp € P, (1)
9 fi=0=ci +0" InAR- =c*', VpeP, @)
h AFpy =0, VvV, s) 3)
Yren. fr = B, Y(1,5), (4)

L }
where PEP fi<O0VO<fi <AFR» =0, (5)
&t = minter-16, ) (6)
a=ca®+0"nf, @)

such that ¢, is the stochastic equilibrium PSR cost, and c, (f) is the deterministic
equilibrium PSR cost.!

Conditions (1) and (2) formalize the PSR-SUE conditions given in Definition 3.
Constraint (3) ensures relevant PSR flows above the threshold AF,. This threshold,
which is to be specified by the modeler, should be non-negative, and is often set to

zero. However, especially for the case of a SUE assignment, a positive value may be
preferable for computational reasons to avoid dealing with negligibly small route
flows (see also the discussion in Watling et al. (2015)). Constraint (4) ensures that all

travel demand for origin-destination pair r,(s is)assigned to a parking, search route.
Constraint (5) is a generalization of the non-negative flow constraint, and here also

excludes non-zero flows below the threshold. Equation (6) defines the minimum
perceived generalized costs for all PSRs for an arigin-destination pair. Equation (7)
defipasaihprresselrch apneliged costhEar apRRtf e AreR riterefbidenatediindrait
deterministic.

The PSR-SUE formulation given by Equations (1)-(7) relates to the multinomial
logit choice model that does not account for possible correlation in any factors apart
from those specified in the generalized cost function. If necessary, the latter can be



incorporated by adjusting Equations (2) and (7) accordingly.
Generalized costs

_Next, without loss of generality, let ¢, f be composed of the expected
utlllt%tassomated with parking at one of the logations along the parking search route,

398e fed utility associated with driving along the various route segments  that

PRARH KBk R G Bt Wittt VRS R S

Pp(i), p(' denote the route segment(s) ggnnecting the i™ and j™ parking locations for
SR p.(‘l'{ne generalized cost for PSR p is then determined as,

1rrny 8
[1 - l/)!(!)] : [_V!(! ' !),!(!)(f) - V!(!)(f) ) l/)!(!)] + ( )

1

)
( C!(f) :)Z!” [1

1t

m L .(,)] _
M S M g e
denotes the utility of the route segment from the origin to the first parking Iocatiqn)
Equation (8) thus consists(of)the sum of two terms. The first term describes, summe

for all subsequent parking locations, the probability of arriving at this parking location
(which equals the probability of not finding a vacant spot at any of the previous
parking locations, and is thus given by the product of the complements of the parking
probabilities at the previous locations) multiplied with the negative of the expected
utility of driving to that parking location, and with the negative of the expected utility
of parking multiplied with the probability of parking at that location. The second term
in Equation (8) captures the costs of not finding a vacant parking spot at any of the
considered parking locations, and is thus given by the product of the complements of
the parking probabilities for all locations in p multiplied with the associated costs

hereof denoted by A (which for modeling convenience can be set to any high value).
Hence, the second term captures drivers’ tendency towards a PSR that overall gives ‘a

sufficiently high probability of successfully finding a parking spot.

For sake of parsimony, and considering that we are predominantly interested in
parking characteristics, in this paper we assume the utility associated with a specific
route segment to be determined as,

Vy f) = B - Ty, 9)

where 7, denotes the travel time of the route segment, and g, is the travel time
parameter. Travel times can be computed using any network loading model, e.g., a

microsimulation traffic model as used in the model application in this paper (with as
input the traffic flow vector consistent with the PSR-SUE problem defined by
Equations (1)-(7)). Equation (9) can easily by extended to include other utility
attributes, such as travel costs and travel time reliability.



The utility associated with a specific parking location has been derived in an earlier
study by the authors (Chaniotakis and Pel, 2015) and is determined as,

V!(f):ﬁ!'!)/!+5!'w!+,3!'M!"‘ﬁ!!'l/J!"‘,B!!'l/J!, (10)

where y,, w,, s, ¥, and yp, denote respectively: the parking cost, walking distance

from parking location to destination s, the parking type distinguishing on-street curb-

side parking and off-street parking (garages), the probability of parking availability

upon arrival at the parking location, and the probability of parking availability within

a maximum admissible search time denoted by o. Parking costs, walking distances,

ARSI IR RADELR PAPRATP a6 RBE B RIQO TR IR e S AFPERA R Aa NERg
et APOEl Y ARSI Ll PAANELES Rogdimerlink s, A dipdalARdP

have been estimated in (Chaniotakis and Pel, 2015) using a stated choice experiment
within the context of drivers’ choosing a single parking location.
The parking probabilities in Equation (8) represent the probability of finding a

vacant parking spot at that location. Hence, y, in Equation (8) is equivalent to ¥, in
Equation (10). Chaniotakis and Pel (2015) found that drivers’ are, on average, willing

to spend 8 minutes searching for a parking spot before abandoning the location and
continuing to a next parking location. This average search time is used here for sake
of parsimony, however the findings by Chaniotakis and Pel (2015) suggest that search
times might differ according to parking type. The latter can be incorporated by

)
adjusting Equation (10) accordingly, such that o - o u, .
Parking probabilities
We propose a queuing model to determine the probability of finding a vacant

parking spot after a certain amount of search time o, where no search time (i.e., 0 =

B R D R AP S L e AR SR S RO GBS ORI, characterized

of ditferdriMat RFAGESEHD&MARGaBRHEORST Qurfhd theppfititP iR theexpecipd pumber

try 11l .
1 —41!'(!( 'U!,!(!))!v

ay(k,k+x)y=Trer S Fiyy [y
{1 ifr = p(i) A T!'!(![-i- (i - 11'0‘ € (k,k +K>. (12)
)

where n!,!(!),: =0 otherwise
That is, the expected number of arrivals at a parking location is given by the sum of
all PSR flows multiplied with their respective probabilities that drivers arrive at that
parking location within that time interval, where the latter probabilities are given by
the probability of not finding a vacant spot at any of the previous parking locations

mu_Itizflied with 17, ,’, which is 1 only when the time interval of interest includes the
arrival time of drivers” following PSR p, where the latter is given by the route travel

time towards location m plus the sum of the search times o spent at previously visited



parking locations.

Note that departure times are omitted for sake of clarity_in the notationd(i.e., the
current notatiqon is consmtaent whﬁln all dééYefrs depart at k = E Fecessary,_ etparture
I re

ke f
LR SRR B DA e R Moo Lt D S
Meyatiors (18 AP ER RS A QRS BBt SERERAHORe B dpiierity

The service mechanism of a specific parking location is exogenous. It entails the
number of available servers and the service time (distribution). The former equals the
number of parking spots at that location, while the latter equals the (distribution of)
parking duration.

The queue discipline at a specific parking location is exogenous. It entails the
queue priority and queuing behavior. The queue priority may either follow a first-
come first-served rule (which seems appropriate for off-street parking) or a random
process (which seems appropriate for on-street parking). The queuing behavior here
includes reneging where drivers will decide to leave the queue after the maximum
admissible search time has passed.

The resulting parking queuing model can be classified as G/G/c/{FCFS, SIRO},
where ¢ equals the parking capacity at the parking location. This type of queuing
model has no closed-form expression for the probability of being served (i.e., the
complement of the probability of reneging) and hence needs to be approximated
numerically (see Barrer, 1957 for first-come first-served (FCFS) priority; see
Movaghar, 1998 for service in random order (SIRO) priority). Here we approximate
the parking probabilities for any given parking location through simulation.

Considering a parking location, the parking probability at any specific arrival time
and for any specific search time can be computed using the cumulative curves of
arrivals entering the system and departures exiting the system. These cumulative
curves are output of the simulation run of the queuing model. More specifically, let

A(k t).ienote the cumulative arrivals at the tail of the queue until time k, and let D k )
denote the cumulative departures both from the queue due to reneging and from the

servers (after being served) until time k. For the following, consider Fig. 2.
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Fig. 2. lllustration of computation of expected search time using cumulative curves of arrivals
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Under FCFS priority, we can look_ at the pr1or1ty queue that a (V|rtual) drlver d

would encounter when arrrvrn at ti e K, whrc ke quals cé Th
rep?er:geﬁtssthe Ve Wh hg Srro ty bve BAVEPS C@B F&X}j ber@ Qé'r%!&y (gsLteLf

are considering FCFS). After time o, this queue will have dissolved by an amount of
D& + o >~ D k )Thus parking probabilities under FCFS are computed as,

nder the .condj |on1’ltn&khn= l?jre(ogﬁtlé}e dur>nD i +ij) Note that this holds
Heparture from t ne pr|or|tty qaeue, and nota éegarﬁjre the complementary queue
that may have accumulated after the arrival of driver d. It is easy t0 see that this
always holds, since no driver in the complementary queue can have passed their
maximum search time (as k* + o > k + g, Vk* > k), nor can have been served (as

there is FCFS priority).
Under SIRO priority, we need to look at the probability that a (virtual) driver d

SEEVARSTRY) (D Vi a0 e WRFCHENAL e S G5t SRARREToRP | B S euR
RS ée%*?@tﬁ‘r@% %%%%ﬁwmmgﬁn@%%&% %

computed as,

) Ky _<1 1n[1 §qx
{ % ] ( )% !{!!!"\!!(h’ (13)
Where = min{l =0 }
{ O ()}

"grrprrrn

10



In case of FCFS priority and a deterministic arrival and departure process, then the
parking probabilities are binary. In case of SIRO priority, or when these processes are
stochastic, then the parking probabilities are true probabilities. For the stochastic case,
these probabilities can be constructed using multiple simulation runs in a Monte Carlo
fashion. This is done in the following example.

To demonstrate the parking queuing model, Fig. 3 shows an example of the time-
varying parking probability as a function of the maximum admissible search time.
These probabilities are derived by simulating the queuing model for the conditions at
a specific parking location. For this example we considered a 10-hour period with the
following conditions:

e (Arrival process.) The arrival process is Poisson distributed with hourly rates given
as 90, 108, 108, 138, 120, 108, 90, 48, 24, 6 vehicles per hour.

e (Service mechanism.) The number of servers (i.e. the parking capacity) is 250. The
parking duration is Exponential distributed with mean 150 minutes (such that the
departure process is Poisson distributed).

e (Queuing discipline.) The queue priority is FCFS. The queue behavior includes
reneging when the maximum search time has passed, where the model is run for

[ ]
various search times up to 10 minutes, c € 0,10 . _ _
Note that in this example the arrival process and service mechanism both include a

stochastic component. We therefore run 3000 simulations (of the full 10 hour period)
with different random seeds and compute the expected parking probabilities shown in
Fig. 3 by averaging the parking probabilities computed in the individual simulation
runs using Equation (12).

5

B

&

e
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Fig. 3. Example of the time-varying parking probability as a function of the maximum
admissible search time. Parking probabilities are derived from 3000 simulation runs of the
parking queuing model.

2.3 PSR-SUE solution method

To solve the PSR-SUE problem we propose an algorithm based on the PSR-SUE
definition and conditions, given by Definitions (2, 3). The basic notion of the
algorithm is to iteratively reassign traffic flows on any used PSR towards any PSR
with lower perceived generalized costs. Across iterations, the convergence towards
stochastic user equilibrium is checked via a gap function based on the PSR-SUE
problem, given by Definition (4). The following relative gap function, adapted from
Bliemer et al. (2014), will reach zero upon convergence towards an SUE:

(L orery Ly e
€= ItY !’"!!",, (14)

O, [
aﬂ?@}@l};&xs%u B é'?s?evsghieﬂsrﬁ'gzemesa hich %r.‘de éeearleyﬁsaHept'on
dennies. hecTinimpmCRssreiveraaneralizssh Sost AL IS RS SaR TURGHOL S

Hol BriRgorealRptean She RIS R TRIE iR Would e dRjiiiuntd B the
AN H TR BN AP LY Qe SRS Rkt FlakEH TS R Ueth ALerB e SEIRIERL

route  set P|,’,§P',, from  which they exclude any route with

=0=c¢y < miny and f, = AF» = ¢y > miny . However, that

gpproach leads to both appendlng and pruning the'route cﬁmce Set while solving the

assignment problem. This is no needed with our definition of ¢,.)
The proposed algorithm contains three sub-problems, namely the logit choice

model to determine PSR flows, the network loading model to determine travel times,
and the parking queuing model to determine parking probabilities. Note the following
interdependencies between the PSR flow vector f = p‘! ] the travel time vector

[ ] [ ]
T = 71, ,and the parking probability vector ¢ = 1, :

* HRGioFECHElL M infesRaHE VRGN SETaBRIGRIS HMSIHEL 2 using

Equations (1)-(2), (7)-(10). Thus, f = f(‘t, 1|J).

e (Network loading model.) The travel times depend on the traffic flows, which are a
function of the PSR flows and the parking probabilities, where the probability for a

flow to traverse a route segment (p(i), p(j)) is computed as [T, , 0

‘t=‘t(f,l|1). Y"1 -y, . Thus,

e (Parking queuing model.) The parking probabilities depend on the arrival processes

12



at the parking locations, which are a function of the PSR flows and the travel

times, computed using Equation (11). Thus, ¢ = Y (f, T).

I engies. e any dntermediateateratiom o in a

%g@ b gﬁ}geﬁiﬁfgﬁ ?é(?ns_s %@q;dﬁglfaggteéy upon’rgonVet?ger?cé,tqgﬁe td the
gh 5 QCthé llo olation algorithm for the PSR-SUE problem, which
uses as input an explicit PSR choice set P = Py. The way 1n which we propose to

giesr(l:eurgstgd his PSR’ choice set and p035|bly[ext]end it during Step 6 is

hereafter.
Algorithm 1. PSR-SUE solution algorithm.

Input: PSRy iGhAIER 58t Risies Pandt SemantbErsF by network characteristics,
S "R ASSHRR

Step 1: Compute logit choice mo eI.(Com Elte the intermediate PSR flows f' usin
P t%e ngulteino%iaf Iog?t moéjel using ﬁ1e PSR costs g?ven %y Equations (7)-?10 :

with travel times given by ©* **' and parking probabilities given by y***.
Step 2: Update PSR flows. Compute the new averaged PSR flows as f' = f**!
at'[f* —fH'], foragiven 2 € [0,1]
St 3: oM SRR ORI S SR B P P
Step 4: Compute parking queuing model. Simulate the queuing model G/G/c/{FCFS,
SIRQO}, with the arrival processes given by Equation (11), the travel demand

Step 5: BNSARMiS waNsHR R he IS s Y oiten SOERUE e P3rRg

with travel times given by t* and parking probabilities given by *.
Step 6: (optional) Update PSR choice set. If necessary, for each origin-destination

+

pair, append the choice set with any PSR g whose stochastic equilibrium cost
Is not larger than the current minimum perceived generalized costs within the

PSR choice set, i.e. if c, €)1 9t n AF+ < minyey !"{5,}.

1

Step 7: Check convergence. Compute the relative ' using Equation (14). If &'
P % smaller than a pre-determined tLreshoan ﬁ1en stgp. %Jt%erwée,) i‘et

a:=a + 1and return to Step 1.

Note that in Step 2, A = 1 for traditional MSA, while A < 1 results in larger step sizes

13



and may lead to accelerated convergence (see e.g., Taale and Pel, 2015). 1

PSR choice set generation

The proposed solution algorithm uses as input an explicit PSR choice set which
thus needs to be pre-generated, and possibly extended during the assignment, as we
will discuss later. Recall that a PSR according to Definition 1 is constructed of a
sequence of route segments between pairs of consecutive parking locations.
Alternative PSRs therefore will differ with respect to the parking locations included,
the order in which these are included, and the route segments used between parking
locations. We propose to exploit this understanding to generate a PSR choice set in a
tractable stepwise procedure.

We can also exploit a feature of parking search routes that follows from Definition
1 and Equations (7)-(10), namely:

grg@ﬁ(ﬁﬁ@ea&rf% sufficiEninlRoR @R drtiiRgSegrcluroute p andmidy

arki earc ute. with add |o’na1 route se will not ncreaeltsl? «COSt.

%@@wgmhgﬁ |bﬁ11(53§ﬁ%g ére as %ﬁﬁ%’]ocatl ’?)Pr? p Whl IZRJ[;E‘;{“%
. . 'c.(f)'> Cy (f) ]
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and @, =]‘[’”[1_ ()].

I Ly
Notethatthetermd> [1 — d), 0’ [0 1] however, this term can only by zero when

CD! =0or CD, v+ = 1. Note that tD = 0 if and only if there exists a ¥, () = 1 with
Tyx Tyx
€ [1,1!], and therefore Y, ,, = 0. Note that @, ,, =1 if and onIy if Y, ﬁ_)? 0 for

LR

alli € [I!!.,I. ] and therefore Y, "= = 0. Hence, we have that if ®, [1 — d), ,,] =

! 1
Tk I

0, then Y, =0, and if @, [1—d>, ,,] < ] , then Yy is typically negative or

small. Therefore when A is sufficiently Iar%e any increase in costs due to visiting
additional parking locations will be lower than the decrease in costs due to a lower

E)I‘Obablh'[y (i.e., penalty) of not finding a parking spot at all. This concludes the proof.

Proposition 1 states that there is no need to generate any PSR p that is a subset of
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appending a parking search route with additional route segments beyond a parking
location with parking probability equal to 1 is irreleVant.

Proof. If y o) = 1forany i € [L, 1], t'hen ¢, = H...[l ~¥,0l = 0. Therefore, as

shown by the Proof of Proposition 1 Y!'"” = 0, due to the fact that the parking search
)

route will be certainly aborted at parking location p {{ Jand thus any following route
segments will never be used. This concludes the proof.:

'L

We propose the following PSR choice set generation algorithm.

Algorithm 2. PSR choice set generation algorithm.

Step 1: Generate parking location set. Select the set of parking locations m ,
gt]ﬁ‘tigl?t gsoitnexceed a non-compensatory level for any of the exogepous

Equation (10) (e.g., locations within a maximum walking distance to the
destination).
Step 2: Generate parking sequence set. For all pairs of parking locations 7", §

@@28@5&!’{%&% BT ARG AR ARG KIS RS ACS ¢ ™5

excluding incomplete sequences by Proposition 1), thereby  pricyitizing

sequences that are efficiently ordered. _
Step 3: Generate route segment séts. Generate the constrained k-shortest routes
& 1«1 between all consecutive pairs of {Jarkmg locations ©*,m C

g\ﬁiwa%uggre%fggtsz&gﬁpared to the shortest route (see Fioienzo-Fata{lrél?!d

Step 4: Compose PSR master choice set. Generate the PSR master choice set
Ppusing the constrained k-shortest route method by concatenating

alternative .
route segments from Step 3 for the parking sequences from Step 2.

Niehain Spen2 if |y is Ui pivsmath ghen it R S bases ful
be feaﬁib]el these route segment sets can be relatively rich given that we are
generating routes that are confined within a small part of the network between pairs of

parking locations.

Algorithm 2 generates the PSR choice set for a specific origin-destination pair, and
hence needs to be executed per origin-destination pair. Nevertheless it is still rather
efficient, because earlier computations can be reused. The route segment sets
generated in Step 3 are specific to a pair of consecutive parking locations, and thus
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can be used in any parking sequence. And the parking sequence set in Step 2 is
specific to a parking location set, which in turn is specific to a destination, and thus
can be used for any origin-destination pair with this destination. For an efficient
implementation of the PSR choice set generation algorithm all of these sets can be
computed and stored in a lazy fashion.

Watling et al. (2015) discuss several disadvantages of using a pre-generated master
choice set. We would like to argue that these disadvantages are avoided in cases
where the master choice set can be generated using a deterministic method (ensuring
repeatability) based on exogenous variables (ensuring consistency). Nevertheless, the
proposed PSR choice set generation method involves sampling, and therefore the pre-
generated master choice set might need to be dynamically extended during the
iterative assignment procedure. This is done in Step 6 in Algorithm 1, where basically
Step 4 of Algorithm 2 is repeated with updated costs.

3. Model experiments and application

In the following section we first run several experiments on synthetic networks that
are specifically constructed to demonstrate the properties of the proposed PSR-SUE
assignment model. Here we focus on verifying the flows and costs of parking search
routes, parking probabilities under equilibrium, and model convergence. Afterwards,
we apply the model to a real-life setting of the Dutch city of Assen. In the model
application we embed the PSR-SUE assignment model within a simulation framework
to include aspects of background traffic, traffic signal control, rerouting behavior due
to traffic information, and a myopic search process for on-street parking. We discuss
some basic scenario analysis regarding parking search behavior.

3.1 Experiments
Example |

Consider the network shown in Fig. 4 with 1 origin-destination pair and 2 parking
locations. The travel demand is 400 vehicles. Both parking locations share the
following characteristics: 400 meters walking distance to destination, off-street
parking, and a parking capacity of 200. The parking locations differ only according to
parking cost, where P1 is €2.30 and P2 is €3.00. For simplicity, the travel time is
calculated using the standard BPR-function, such that the travel time from the origin
to either of the parking locations is approx. 15 minutes, and between the parking

locations is approx. 5 minutes.
Solving the PSR-SUE for Example | yields the results shown in Table 1. For a

SRS 3 e Y. B (BB BIGFRALALAR AR I SV 2
it has lower parking cost. Due to this flow assignment, the parking probability at P1
drops below 1. Under equilibrated parking search routes, the probability of finding a
parking spot at P1 is about 0.73-0.89. That is, 226-273 vehicles follow PSR (P1, P2)
while P1 has 200 capacity. When parking search route choice is more deterministic
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(i.e., the logit scale parameter is set to a larger value), then more drivers choose PSR
(P1, P2) as it has lower (deterministic) costs, and therefore the parking probability at
P1 is lower in this case.

Pl

origin \\ destination

@ O

P2

Fig. 4. Synthetic network with 1 origin-destination pair and 2 parking locations, indicated as
P1 and P2.

Table 1. PSR-SUE model results for Example I.

Logit scale parameter (@) =1
PSR (p) deterministic equil.

stochastic equil. equilibrium relative gap
() )
(P1, P2) 0.463 5.884 226.00
6.98 e-4
(P2, P1) 0.734 5.893 174.00
Logit scale parameter (8) = 40
PSR (p) deterministic equil.  stochastic equil. equilibrium relative gap
() ()
PSR cost (¢, f) PSR cost (¢, f)  flow (fy) (&)
(P1, P2) 0.714 0.855 273.00
1.71e-4
(P2, P1) 0.734 0.855 127.00

Example 11

Consider the network shown in Fig. 5 with 1 origin-destination pair and 3 parking
locations. The travel demand is 400 vehicles. All parking locations are at 400 meters
walking distance to the destination and provide off-street parking. The parking
locations differ according to parking capacity and parking cost. These values are for
P1: 150 capacity and €3.00 cost, for P2: 50 capacity and €2.00 cost, and for P3: 100
capacity and €2.00 cost. Once again the BPR-function is used for travel times, which
are approx. 15 minutes from origin to P1 or P2, approx. 12 minutes from origin to P3,
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and approx. 4 minutes between parking locations.

Solving the PSR-SUE for Example 1l yields the results shown in Table 2. For a
[)el tive ﬂap ofe < 1e-3 thlt(e_asa aneBt converges within JhS |terat|ops As mentl%ned
efore, the endogenous parking gro abilities d&pend on the arrival flows at the

parking locations, which in turn depend both directly on the parking probabilities (at
previous parking locations along the PSR) and on the PSR flows, while the PSR flows
depend (through the choice model) on the parking probabilities. Interestingly, under
equilibrated PSR-SUE conditions, the ranking among all PSRs follows the preference

el R R A Rt
is due to the fact that the parking probability at P1 is ¢, = 1.0.

Similar as shown in Example 1, setting the logit scale parameter 6 to a higher value
produces more deterministic PSR choice behavior and hence assigns more flows to

those PSRs with lower deterministic costs. In this example, at P3 that would lead to
more arrivals and hence a lower parking probability, while at P2 that would lead to
less arrivals and hence a higher parking probability.

origin destination

O

Fig. 5. Synthetic network with 1 origin-destination pair and 3 parking locations, indicated as
P1, P2 and P3.

Table 2. PSR-SUE model results for Example Il, for logit scale parameter 8 = 1.
PSR (p) deterministic equil.

stochastic equil. equilibrium relative gap
" 0) )
(P1,p2,p3) PSRCOgldGa £)  PSRegshig f)  flowghy, (€)
(P1,P3,P2) 0.404 4.270 47.74
3.27e-4
(P2,P1,P3) 0.478 4.270 44.34
(P2,P3,P1) 0.370 4.270 49.38
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(P3,P1,P2) 0.239 4.270 56.32

(P3,P2,P1) 0.272 4.270 54.48
PSR (p) arrivals at P1 arrivals at P2 arrivals at P3
(P1,P2,P3) 47.74 0.00 0.00
(P1,P3,P2) 47.74 0.00 0.00
(P2,P1,P3) 23.92 44.34 0.00
(P2,P3,P1) 7.25 49.38 26.64
(P3,P1,P2) 15.34 0.00 56.32
(P3,P2,P1) 8.00 14.83 54.48
total arrivals 150.00 108.55 137.44
parking

1.00 0.46 0.73

probability (y)

Example 111

For the third example, consider the Assen network shown in Fig. 6 where we select
7 origin-destination pairs and 6 parking locations. Here we look at the dynamic case
and simulate the PSR-SUE flows for a time horizon of 90 minutes. The total travel
demand is approx. 3400 vehicles and follows a ‘peak period’ profile gradually
increasing from O to 3200 vehicles per hour within [0 min, 60 min], and then
gradually decreasing again back to 2400 vehicles per hour within [60 min, 90 min].
Furthermore, we look at the situation in which the total parking capacity is
insufficient, with a total capacity of 3256. Note that in the previous examples the total
travel demand does not exceed the total parking capacity and therefore there will be at
least one parking location with parking probability 1. Then Proposition 2 states that

all PSRs yield successful parking and thus the value of A in Equation (5) is irrelevant.
In Example 111 this is no longer the case.

Apart from parking location P22 which has free parking, all other locations have
parking cost of €1.70. All parking locations are off-street parking. Walking distances
to the destinations are measured on the map and are between 200 and 1400 meters.
And parking capacities vary between 250 and 840.

Travel times are calculated using a simple dynamic network loading model without
consideration for spillback. Solving the PSR-SUE flow assignment for Example 111
requires generating about 120 PSRs. The number of iterations for convergence to an
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acceptable relative gap is approx. 80. This appears as a rather slow convergence, but
this is solely due to the later time periods with high arrival flows and low parking
probabilities at parking locations, when (some) PSRs do not guarantee finding a
parking spot. For earlier time periods where parking probabilities do not deviate
(much) from 1, very few iterations are needed. Table 3 shows the dynamic parking
flows, which seem plausible. Parking location P22, which offers free parking, fills up
quickest. The other parking locations fill up at a similar pace, which is explainable
from the fact that their characteristics do not differ much. Parking locations P10, P13
and P14 have below average capacity and are full before the end of the simulated time
horizon, where P13 has the lowest capacity and fills up slightly quicker than the other
two locations. Parking locations P9 and P15 are slightly farther away from the city
center and have the largest capacities, and hence fill up last. It is generally observed
that once a parking location has a very low parking probability (or is full) then those
PSRs with that parking location as one of their first locations to be visited are quickly
abandoned due to high expected costs.

Fig. 6. Assen network with 6 parking locations, indicated as P9, P10, P13, P14, P15, and P22.

Table 3. PSR-SUE model results for Example 1.

time parking flows during time period
period
[min] P9 P10 P13 P14 P15 P22
0-15 28 29 28 29 30 104
15-30 41 42 43 43 42 161
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30-45 71 71 69 70 71 237

45-60 143 151 111 143 145 08
60-75 266 167 0 (full) 79 279 0 (full)
75-90 191 O(full)  O(full) O (full) 274 0 (full)

3.2  Application

To demonstrate the practical applicability of the proposed model it is applied to the
real-life setting of the city of Assen in the Netherlands. The network is shown in Fig.
6 (and includes another 5 parking locations in the vicinity of the city center). The case
study considers 296 origin-destination pairs with travel demand, and a 2-hour demand
matrix following a more or less triangular profile with in total about 4000 vehicles
that intend to park somewhere in the vicinity of the city center, and in total about
11500 vehicles that have destinations throughout the city but do not make use of the
parking locations (i.e. background traffic). The road network includes 11 parking
destinations with capacity between 85 and 840 that in total provide a parking capacity
of 3256. Parking costs vary between free parking and €2.00 per hour. We consider
the case of parking for shopping and accordingly assume that parking durations
follow a Uniform distribution between 30 and 90 minutes. We would like to
emphasize that in this case study the traffic network and parking facilities including
their characteristics do represent the actual situation in Assen, however that the travel
demand and parking durations have been assumed in a way that the authors trust is
realistic, but not necessarily representative.

For this case setting, the PSR-SUE flow assignment is solved using Algorithm 1,
where PSR choice sets are generated using Algorithm 2 and as network loading model
we use the microsimulation traffic flow model called ITS modeler. ITS modeler is an
application that runs within Paramics and is developed by TNO, which provides an
advanced modeling framework for impact assessment studies of intelligent transport
systems applications (for more information see Tideman and Van Noort 2013). TNO
provided also the Assen road network that in earlier projects has been calibrated with
respect to driving, network, and traffic control parameters. As we are dealing here
with a discrete microsimulation model in combination with a probabilistic PSR choice
model, travel times are computed by averaging over 10 simulation runs with different
random seeds.

Overall, the dynamics of the parking search routes, traffic flows, and occupancies
of parking locations appear plausible. Here we report the parking search times for a
few illustrative scenarios, given in Table 4. For reference we include a base scenario
considering the case as described above.

First the effect of parking reservation is tested. As expected, users of a parking
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reservation system will experience a lower parking search time since they are now
guaranteed of not having to visit more than 1 parking location. In the simulation the
mean travel time of users is reduced by about 13% compared to the reference case.
The effect that this has on the travel times of the other drivers not using the parking
reservation system is much smaller and depends on the penetration rate. With a low
penetration rate of 20% users the mean travel time for non-users very slightly
increases, by about 1%, mostly due to the extra competition for the now fewer parking
spots that need to be shared among the non-users. However, with a higher penetration
rate of 40% users the mean travel time for non-users slightly decreases, by about 2%,
due to the reduced parking search traffic between parking locations. The latter reason
also causes lower variability of travel times for all drivers in all situations.

Second the effect of on-street parking is tested. To this end, we add neighborhoods
with on-street parking capacity as parking ‘locations’ in our PSR-SUE model, and to
model the on-street search process for a parking spot within such a neighborhood we
adopt the myopic random search proposed by Kaplan and Bekhor (2011). This way, a
PSR connects neighborhoods, within such a neighborhood this random search process
is followed, and a driver continues to the next neighborhood (i.e. parking location) in
case of not finding a vacant parking spot within the maximum admissible search time.
In the simulation drivers opting for on-street parking experience a much higher travel
time, of about 162-178% more than in the reference case, as well as a much higher
standard deviation of travel time. This is largely due to the fact that the search process
for on-street parking is less efficient. Note that, unlike the case for off-street parking,
for on-street parking it is possible that drivers do not find a vacant parking spot within
the allotted search time even though the parking location is not full (yet). At the same
time, the mean travel time for off-street parking is about 7-11% lower (and the travel
time variability is lower) compared to the reference case, because a share of the
drivers are now no longer using the off-street parking capacity.

Table 4. PSR-SUE model results for Assenapplication.

scenario individual travel time:
mean (std. dev.)

Base scenario: only off-street parking
o all 9:41 (4:54)

Effect of parking reservation system:
- for 80% non-user and 20% user
e non-user 9:46 (4:48)
e user 8:27 (3:08)

- for 60% non-user and 40% user
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e non-user 9:30 (4:44)
e user 8:26 (4:44)

Effect of on-street search process:
- for 95% off-street and 5% on-street parking

e off-street parkers 9:00 (4:01)

e on-street parkers 25:25 (18:41)
- for 85% off-street and 15% on-street parking

e off-street parkers 8:39 (3:16)

e on-street parkers 26:53 (19:30)

4. Conclusion

In this paper we define and formulate the concept of parking search routes where a
driver visits a sequence of parking locations until the first vacant parking spot is found
and in doing so may account for (expected) parking probabilities. From there we
define and formulate the stochastic user equilibrium traffic assignment in which no
driver, by unilaterally changing its PSR, can lower its perceived expected generalized
costs. Recognizing the interdependency between PSR flows, travel times and parking
probabilities, we propose a queuing model in order to compute endogenous parking
probabilities accounting for these factors as well as maximum admissible search
times. To solve the PSR-SUE model we propose a solution algorithm, including a
method for PSR choice set generation.

The model is implemented and applied both to a number of experimental cases to
verify its properties and to a real-life setting to illustrate its usefulness in parking-
related studies. These analyses relate mostly to the situation in which parking
occupancies are fairly high. Particularly under those circumstances, there are
conflicting interests from a network performance perspective. On the one hand, high
parking occupancies are beneficial to ensure that parking locations are operating
economically. On the other hand, low parking occupancies ensure limited parking
search traffic. The PSR-SUE model proposed in this paper enables evaluating this
trade-off under various policy scenarios and priorities.

The proposed PSR-SUE model yields plausible results for the various examples
and application, yet we would like to point out one remaining issue that may require
further research. The choice model adopted here for PSR flows is based on the
multinomial logit model and as such assumes that attribute preferences are
homogenous among drivers and that alternatives are uncorrelated in their unobserved
utility. The current literature on parking location choice behavior does not provide
strong evidence that these assumptions are too restrictive; also considering that the
most important endogenous factors such as travel times and parking probabilities are
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explicitly included in the observed utility. Nevertheless, whether these assumptions
are also justified for the case of parking search route choice behavior may be a subject
for further research.
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