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SUMMARY

Modeling the mechanical behavior of high-performance materials often requires ac-
counting for interactions occurring at a lower scale than the one of interest. This scale
transition can be addressed in many ways, with different levels of fidelity and compu-
tational effort. Naturally, a trade-off exists between these two aspects, and no single
method — analytical, numerical or computational — perfectly balances them. Among
the high-fidelity options to model complex materials (e.g., composite laminate and con-
crete) is the concurrent multiscale analysis, or simply FE2.

In FE2, two distinct scales, e.g. macro and micro, are solved iteratively. At the mi-
croscale, the material geometry is explicitly described by the so-called Representative
Volume Element (RVE), where relatively simple constitutive models describe its con-
stituents. At the macroscale, an RVE is coupled to each integration point, and homog-
enization operators downscale strains and upscale stresses, removing the need for a
(macroscopic) constitutive model. However, this generality is associated with high, often
prohibitive, computational costs. The limited scalability of FE2 hinders its adoption in
solving real-life engineering problems, driving the need for acceleration strategies that
retain the generality of the multiscale framework.

In the last decade, machine learning-based techniques emerged as a popular alterna-
tive to reduce computational costs in these simulations. The use of a surrogate model
to replace the RVE altogether is arguably the most popular one. Nevertheless, critical is-
sues in data-driven surrogate models remain unsolved and are particularly evident when
modelling history-dependent materials. Among them are the data-hungry nature, lim-
ited extrapolation capabilities and lack of interpretability.

To address these issues, we introduce a novel class of neural networks (NNs): the
Physically Recurrent Neural Networks (PRNNs). The idea is to preserve the knowledge
built into constitutive models by embedding them in an encoder-decoder NN architec-
ture with several links to the computational homogenization framework. This hybrid
approach, which is non-intrusive and unbound to a specific material model, seeks to
combine the benefits of purely data-driven models with those of classical physics-based
models.

Starting with a composite micromodel with elastic inclusions and elastoplastic matrix,
we demonstrate how training data requirements can be dramatically reduced compared
to standard state-of-the-art approaches, with speed-ups over four orders of magnitude
compared to FE2. Then, we illustrate how architectural design choices not only improve
interpretability but also push training requirements towards a new lower bound. Next,
we incorporate cohesive zone models to model microscopic debonding. In later chap-
ters, we shift to a 3D finite strain setting and adapt the method to handle hyperelasticity
and elasto-viscoplasticity. The final chapter focuses on a real-life scientific application,
followed by closing remarks, contributions and future research directions.
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SAMENVATTING

Het modelleren van het mechanische gedrag van hoogwaardige materialen vereist vaak
om een aanpak die interacties van een kleinere schaal meeneemt dan de schaal van inte-
resse. Deze schaalovergang kan op verschillende manieren worden overbrugd, met ver-
schillende niveaus van nauwkeurigheid en rekenkundige inspanning. Er bestaat geen
enkele methode — analytisch, numeriek of computationeel — die deze afweging perfect
balanceert. Een van de meest nauwkeurige opties om complexe materialen (bijv. com-
posietlaminaat en beton) te modelleren is de gelijktijdige multischaalanalyse, kortweg
FE2.

Bij FE2 worden twee aparte schalen, bijvoorbeeld macro en micro, iteratief opgelost.
Op microschaal wordt de materiaalgeometrie expliciet beschreven door het zogeheten
Representatief Volume Element (RVE), waarbij relatief eenvoudige constitutieve model-
len de individuele materialen beschrijven. Op macroschaal wordt aan elk integratiepunt
een RVE gekoppeld; homogenisatie-operatoren schalen vervormingen naar de micro-
schaal en spanningen naar de macroschaal, ter vervanging van een macroscopisch con-
stitutief model. Deze algemeenheid gaat echter gepaard met hoge, vaak onhaalbare, re-
kenkosten. De beperkte schaalbaarheid van FE2 belemmert de toepassing ervan bij het
oplossen van reële technische problemen, wat een behoefte geeft aan versnellingsstra-
tegieën die de algemeniteit van het meerschalige kader behouden.

In het laatste decennium zijn op machine learning gebaseerde technieken naar voren
gekomen als een populaire manier om de rekenkosten in dergelijke simulaties te ver-
minderen. De meest populaire methode is wellicht het gebruik van een surrogaatmodel
ter vervanging van het RVE. Desalniettemin blijven kritieke problemen bij op data ge-
baseerde surrogaatmodellen onopgelost, die met name duidelijk zijn bij het modelleren
van geschiedenisafhankelijke materialen. Tot deze problemen behoren onder andere
de benodigdheid van veel trainingsdata, beperkte extrapolatiecapaciteit en gebrek aan
interpreteerbaarheid.

Om deze kwesties aan te pakken introduceren we een nieuwe klasse neural networks
(NNs): de Physically Recurrent Neural Networks (PRNNs). Het idee is om de kennis die in
constitutieve modellen zit ingebouwd te behouden door deze in een encoder-decoder
NN-architectuur op te nemen, met meerdere koppelingen aan computationele homo-
genisatie. Deze hybride aanpak, die niet-intrusief is en niet gebonden aan een specifiek
materieel model, probeert de voordelen van volledig op data gebaseerde modellen te
combineren met die van klassieke op fysica gebaseerde modellen.

Beginnend met een composiet micromodel met elastische vezels en een elastoplasti-
sche matrix, tonen we aan hoe de benodigde trainingsdata dramatisch kan worden te-
ruggebracht vergeleken met standaard state-of-the-art benaderingen, met snelheidsver-
beteringen van meer dan vier ordegroottes ten opzichte van FE2. Vervolgens verhelderen
we hoe ontwerpkeuzes in de architectuur niet alleen de interpreteerbaarheid verbeteren,
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maar ook de ondergrens van de trainingsvereisten verlegt. Daarna nemen we cohesieve-
zonemodellen mee om microscopische onthechting te modelleren. In latere hoofdstuk-
ken schakelen we over naar een 3D-formulering met eindige vervormingen en passen
we de methode aan om hyperelasticiteit en elastoviscoplasticiteit aan te kunnen. Het
slothoofdstuk richt zich op een praktijkgerichte wetenschappelijke toepassing, gevolgd
door afsluitende opmerkingen, bijdragen en toekomstige onderzoeksrichtingen.
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INTRODUCTION

On a given day, a given circumstance...
you think you have a limit.

And you then go for this limit
and you touch this limit,

and you think, “Okay, this is the limit."
As soon as you touch this limit,

something happens
and you suddenly can go a little bit further.

Ayrton Senna
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In many engineering applications, understanding how phenomena at smaller scales
affect the overall structural behaviour at larger scales is essential. Central to this is the
faithful characterization of the material employed in structural components. This stage
is vital to ensure safe and reliable designs — as prescribed in regulations — and repre-
sents a doorway to more efficient designs. With advances in the manufacturing of highly
tailorable materials, such as fibre-reinforced polymer (FRP) composites, metamateri-
als and engineered cementitious composites, detailed knowledge of the material and
its microstructure is key to unlocking their full potential. For that, experimental char-
acterization alone is not enough. Computational models are crucial for deepening our
understanding of material behavior and for enabling predictive simulations in complex
applications.

In the aerospace industry, for example, FRP composites are commonly employed in
manufacturing aircraft and launch vehicles due to their exceptional strength-to-weight
ratio [1]. In civil engineering, the most widely used material in the world, concrete, is
another example of a composite [2]. In both domains, the materials can be described
at different levels of observation [3, 4]. Going from macro to micro (and beyond) allows
complex phenomena, such as fibre-matrix debonding, matrix cracking, delamination,
and aggregate bridging that inherently occur at different length scales, to be captured
more accurately without resorting to empirical relations that rely on oversimplified as-
sumptions.

Figure 1.1: Fiber-reinforced composite models across the scales.

To illustrate the different scales of observation in heterogeneous materials, consider
the example illustrated in Fig. 1.1. Accurately modeling these interactions is a challenge
in itself, one that has been in demand for decades now. In that regard, some meth-
ods trade flexibility for efficiency, while others offer generality at the cost of increased
computational effort. Examples of highly efficient approaches to predict the average -
or homogenized - response of heterogeneous materials are mean-field homogenization
schemes (e.g. Mori-Tanaka [5] and Self-Consistent method) based on Eshelby’s solution
[6]. The limitations in this case regard geometric features of inclusions, volume fraction,
stress localization and material nonlinearity [7].

Another alternative lies with models based on numerical homogenization [8–11], where
the homogenized constitutive behavior is defined through a set of parameters that need
to be calibrated based on experiments or numerical simulations at smaller scales. While
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fast, the balance between the number of parameters, data availability, and ability to pre-
dict general loading conditions is not trivial. Some of these models can be seriously lim-
ited if certain assumptions and interactions are not considered. An example of that can
be found in [9], where a study on a recently developed homogenized orthotropic plastic-
ity model for FRP composites quantified the loss of accuracy due to necessary simplifi-
cations such as ignoring the influence of stress in the fibre direction on the plasticity and
use of a constant plastic Poisson ratio.

At the opposite end in terms of efficiency are multiscale methods, particularly FE2[12].
In this case, two scales (macro and micro) that exchange information are considered and
solved iteratively. The main difference from regular Finite Element (FE) is that no ex-
plicit constitutive model relating strains to stresses at the macroscale exists. Instead, a
micromodel is embedded at each integration point of the macroscale mesh, and its ho-
mogenized response is used to compute the macroscopic behavior. The micromodel, in
turn, consists of another FE mesh that describes the geometry of the heterogeneous ma-
terial. At the lower scale, phenomena such as orthotropic behaviour, (visco-)plasticity,
ageing, damage, and strain/stress localization can be more easily incorporated, making
FE2 a compelling choice for modelling complex materials.

Figure 1.2: Example of FE2 computational cost for a 2D dogbone problem.

This generality, however, is associated with extreme computational cost, even for sim-
ple academic examples. A full-order FE2 simulation requires solving numerous local
FE problems at every time increment, quickly becoming intractable for large-scale and
time-dependent analyses. To give the reader a sense of time, consider the 2D dogbone
problem illustrated in Fig. 1.2. Details on the implementation and CPU settings are dis-
cussed later in Chapter 2; here we focus on the wall-clock time vs number of elements
comparison depicted on the right-hand side of Fig. 1.2. Even for coarse meshes and
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a relatively small macroscopic domain, the multiscale simulation already spans hours,
between 6 and 13 in this example, and can quickly reach days as the macromesh is re-
fined. Such limited scalability has created an urgency to develop acceleration strategies
that preserve the generality of the multiscale framework with improved computational
efficiency.

Several methods have been proposed to tackle this computational bottleneck, with
varying degrees of success in terms of accuracy, generality, and efficiency [13]. Examples
include parallel computing [14, 15], Fast Fourier Transform methods [16, 17], clustering-
based methods [18–20] and Reduced Order Modeling (ROM) [21–26]. In addition to
these, a dominant strategy with rapid adoption in the material modelling community
is the use of surrogate models. In this approach, the micromodel is replaced altogether
with a surrogate model, which at a significantly lower computational cost plays the role
of the homogenized constitutive law. Thus eliminating the main bottleneck of the frame-
work.

The surrogate model usually consists of a data-driven model trained on snapshots
of the micromodel being replaced. Or, in the case of history-dependent materials, se-
quences of snapshots. In such cases, Recurrent Neural Networks (RNN) and their more
complex variations (e.g. Long-Short Term (LSTM) and Gated-Recurrent Unit (GRU)) are
the standard approaches [27–34]. The versatility of these models in adapting to a wide
variety of constitutive behaviours with little to no changes in their architecture, in com-
bination with the streamlined strategy of replacing the micromodel, has granted these
models the leading choice in the field.

Despite their extensive use in the literature, three vital issues remain unresolved in the
context of material modelling:

• Firstly, although the hidden state in RNNs and the internal variables in a physics-
based constitutive model play a similar role, the network mechanism is still re-
garded as a black-box. Insights into any latent physical patterns learned by the
network are thus far limited to simple settings (e.g., homogeneous material in 1D
problems [35, 36]);

• Secondly, RNNs have a limited ability to extrapolate. This issue is usually tackled
with ever larger training sets and intricate design of experiments;

• However, even in 1D or 2D problems, a large variety of loading/unloading cases
is required to cover similar paths and patterns encountered in actual microscale
simulations, which exposes the third issue: the data-hungry nature of RNNs.

Many surrogate models have been proposed to tackle some of these issues. Examples
include Gaussian Processes (GPs) [37–39], Deep Neural Networks [40–42], Graph Neu-
ral Networks [43], Transformers [44, 45], Convolution Neural Networks [46], and frame-
works that incorporate some of these methods with MOR techniques [23, 47–52]. While
these models demonstrate powerful approximation capabilities and account for a vari-
ety of aspects in their formulations (e.g. uncertainty quantification and different micro-
model geometries), as data-driven approaches, they usually rely on extensive training
datasets and struggle to generalize to unseen loading cases. Amid these developments,
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a particular trend gained traction in recent years: introducing physics knowledge into
machine learning-based models.

Propelled by the success of Physics-Informed Neural Networks (PINNs) as partial dif-
ferential equation solvers [53], the idea of enriching the loss function with extra terms to
enforce physics constraints has quickly found its way into the material modelling com-
munity. First, in applications dealing with homogeneous and elastoplastic materials [54,
55], then in more general formulations for strain-rate independent inelastic materials
[56]. So-called Thermodynamics-based Artificial Neural Networks (TANNs) [56], for ex-
ample, incorporate thermodynamic constraints in their architecture through the com-
putation of numerical derivatives of the network with respect to its inputs. Specifically,
the derivatives of the free-energy and their relation with stress, dissipation rate and in-
ternal state variables (e.g. displacement field and internal force). A follow-up work ex-
tended TANNs to deal with heterogeneous materials [57], where the key contribution is
related to the automatic identification of a reduced set of internal variables at the level
of the micromodel through the use of autoencoders.

Although the PINN-inspired approaches offer improved extrapolation properties and
reduced training set size requirements compared to black-box NNs, softly enforcing con-
straints through the loss function cannot guarantee their fulfillment in unseen loading
scenarios in the online phase. This is further discussed in [58], where a comparative
study is carried out considering three basic classes of NNs: black-box NNs, NNs enforc-
ing physics in a weak form and NNs enforcing physics in a strong form. The latter class
of NNs hard-code physics via custom NN architectures to ensure that the constraint is
fulfilled in any loading condition. In this new paradigm, Input Convex Neural Networks
(ICNNs) and automatic differentiation are key tools employed in energy-based formula-
tions (instead of the usual strain-stress direct mapping) from which stresses and other
quantities can be derived [59–61].

Another aspect explored in this new wave of physics-enhanced networks is symmetry
properties, particularly material frame indifference and material symmetries [62, 63].
For example, the special structure proposed in [62], named Symmetric Positive Defi-
nite Neural Networks (SPD-NNs), embeds symmetry and positive definiteness directly
into the architecture used to predict the tangent stiffness matrix. This improves stability
and robustness, two vital features when integrating the model within numerical solvers.
However, as with any NN-based model, SPD-NNs only work on test data that does not
deviate much from the training data.

More recently, so-called Physics-Augmented Neural Networks (PANNs) [64–67] and
Constitutive Artificial Neural Networks (CANNs) [68, 69] have also gained traction in
the literature. These approaches differ in their philosophy and levels of interpretabil-
ity, but both are designed to automatically fulfil common kinematical, thermodynamical
and material objectivity constraints, with special concern for polyconvexity to improve
numerical stability. CANNs, in particular, aim at interpretable networks for automated
model discovery. This is addressed through the combination of sparsity and special-
ized activation functions that mimic known constitutive models, in contrast to the gen-
eral (convex) functions employed in PANNs. A downside of both of these highly-tailored
architectures is the difficulty of extending them to history-dependent materials. Up to
now, PANNs and CANNs remain specialized to a narrow range of constitutive behaviour
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(e.g. hyperelastic or viscoelastic materials).

In parallel with CANNs, the authors in [70] introduced a new approach, known as
EUCLID, for the automated discovery of isotropic hyperelastic constitutive laws. The
novel approach does not need stress data and builds interpretable models by promoting
regularization techniques that induce the selection of a reduced number of models from
a “library” of material models. Since then, EUCLID has been extended to deal with a
generalized library of models [71], including inelasticity, and has been incorporated into
a Bayesian framework for uncertainty quantification [72]. Beyond these milestones, the
applicability and scalability of the method to handle heterogeneous materials remains
an open challenge.

Two other noteworthy and unique strategies to accelerate multiscale simulations are
the hyper-reduction via empirical cubature method (ECM) [73] and Deep Material Net-
works (DMNs) [74]. A common thread in these works is the incorporation of consti-
tutive models directly into their formulation. In the ECM, two stages of reduction are
performed. In the first stage, the number of degrees of freedom of the micromodel is re-
duced using Proper Orthogonal Decomposition (POD). In the second, a reduced subset
of integration points in this micromodel is selected to integrate the internal force vector
and tangent stiffness matrix with modified (and positive) weights as accurately as possi-
ble. This set of points is obtained by solving a series of combinatorial optimization prob-
lems. In combination with the reduction in the solution space brought by POD, the ECM
yields significant speed-ups in the online phase [49, 75]. The method has also been suc-
cessfully extended to deal with geometrically parametrized domains in computational
homogenization applications [76, 77].

On the other hand, ECM relies on a heuristic selection of the integration points, which
can result in a suboptimal selection. Furthermore, the increase in POD modes is typically
followed by an increase in the number of points, straining the offline training phase and
progressively compromising the gains in the online phase. This is partially addressed
in [78], where a two-stage strategy further reduces the initial subset found by ECM by
enforcing sparsification. Essentially, the sparsification algorithm drives small weights to
zero and readjusts the position and weights of the remaining points accordingly. Though
increased accuracy and efficiency are achieved with fewer integration points, the con-
sideration of a further reduction stage escalates the complexity of an already intricate
model, especially given its intrusive nature (i.e. changes in the FE solver are needed) [76,
79].

In DMNs, a binary-tree network architecture leverages analytical homogenization to
combine building blocks made of constitutive models to learn an equivalent topology
of the micromodel [74]. They excel in extrapolating from linear elastic data to nonlinear
and history-dependent behaviour, but training and online evaluation are not straightfor-
ward. These two stages involve different input spaces, and an iterative Newton-Raphson
scheme is required for the prediction stage. Nevertheless, DMNs represent a powerful
framework for multiscale material modeling. Since their introduction, several exten-
sions have been proposed [80, 81], with a recent review providing an overview of present
developments and future directions in improving the method for broader applications
in multiscale modeling [82]. To put DMNs into perspective with some of the meth-
ods discussed so far, consider the spectrum in Fig. 1.3, where a variety of models are
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roughly ranked in terms of physics embedding, ranging from black-box models to the
full-order micromodel. The strengths and limitations of these methods are further dis-
cussed throughout the chapters where they are most relevant.

Figure 1.3: Spectrum of methods to model the constitutive behavior of heterogeneous
materials.

Despite this broad spectrum of available models, as of yet, no single strategy has emerged
as a definite solution. While each model shows promise in specific applications, their
shortcomings hinder their applicability in multiscale settings to solve real-world prob-
lems. Some models struggle with the training complexity of millions of parameters and
the critical scaling of computational memory space required for offline and online phases
as the sequence length increases [44, 45]. Others are unsuitable for multiscale simula-
tions, as they have either been tailored to a specific constitutive behaviour or tested in a
rather restricted design space. Several lack robustness under extrapolation or require in-
trusive integration within numerical solvers. Even physics-aware architectures, though
more consistent, interpretable and less data-hungry than conventional NNs, remain tai-
lored to specific classes of materials, relying on hand-crafted features.

Based on this background, we delimit the scope and the aim of this thesis in Sec-
tion 1.1, followed by the outline in Section 1.2, where a brief description of the key as-
pects and contributions of each chapter is summarized.

1.1. SCOPE AND AIM
This thesis presents a novel class of neural networks, the Physically Recurrent Neural
Networks (PRNNs), for accelerating the multiscale simulation of complex materials. The
core idea of PRNNs is to preserve the knowledge built-in on constitutive models by em-
bedding them in an encoder-decoder architecture. This hybrid approach aims to recon-
cile the benefits of purely data-driven models with decades-old classical physics models
to address the main challenges discussed in the previous section.

The method is tested in a variety of micromechanical and FE2 scenarios for a wide
range of constitutive behaviours and has been proven to be a robust alternative of prac-
tical utility in a real-life scientific application with experimental data for validation. Al-
though we have limited the numerical examples to composite micromodels, PRNNs are
envisioned to be general, and their application to other complex materials is expected to
be both promising and within reach. This positions the present work as the cornerstone
towards a broader range of applications.
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As we explore the foundations, capabilities and limitations of this network in several
applications involving path and time-dependent heterogeneous materials, the following
research question is posed:

To what extent embedding classical material models in data-driven models can benefit
the building of more robust, accurate and interpretable surrogate models for accelerating

the multiscale simulations of complex materials?

1.2. THESIS OUTLINE

Figure 1.4: Chapters organization.

The remainder of this thesis is organized as follows:

• In Chapter 2, the foundations of PRNNs are laid, including two multiscale applica-
tions to demonstrate the efficiency, accuracy and robustness of the network. Three
different constitutive models are explored in this chapter: linear and nonlinear
elastic, and elastoplastic models;

• In Chapter 3, based on the same micromodel and constitutive models as Chap-
ter 2, we shift our focus to the impact of changes in the architecture of the network
on aspects such as interpretability and accuracy. We demonstrate how the new
physically motivated constraints improve generalization and help push training
requirements to a new lower bound;
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• In Chapter 4, the first key extension to PRNNs is discussed: the inclusion of dam-
age models to capture microscale debonding of composite materials. For that pur-
pose, we present the necessary modifications to the network’s architecture to ac-
commodate the new inputs (displacement jumps) and outputs (damage variable
and tractions) and to integrate them with the remaining (bulk) constitutive models
studied so far;

• In Chapter 5, the second key extension of PRNNs is presented. This time, we ex-
pand the model applicability to deal with rate and path-dependent 3D problems
in a finite strain framework. In the numerical applications, the Eindhoven Glassy
Polymer (EGP) model - an advanced elasto-viscoplastic material model for poly-
mers - is assigned to one of the constituents of the micromodel.

• In Chapter 6, the PRNN presented in Chapter 5 is employed in a real-life scientific
application. The goal is to reproduce a set of experiments through a surrogate-
based multiscale approach to model constant strain-rate and creep on unidirec-
tional thermoplastic composites under off-axis loading.

Finally, the main remarks of this work and its impact, including ongoing collabora-
tions, are presented in Chapter 7, along with promising future research directions.
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2
EMBEDDING CONSTITUTIVE

MODELS IN DATA-DRIVEN MODELS

In this chapter, Physically Recurrent Neural Networks (PRNNs) are presented for the first
time. PRNNs build on the flexibility and high-tailorability of NNs to integrate constitu-
tive models into an encoder-decoder network architecture with several links with the
computational homogenization procedure. The proposed approach is unbound to a
specific class of constitutive model, is non-intrusive, and can be readily incorporated
into multiscale frameworks.

These features are demonstrated in a set of numerical examples based on a composite
micromodel made of elastic fibers embedded in an elastoplastic matrix. The network’s
performance in predicting the homogenized response of this micromodel is evaluated
in two stages. The first stage dives into a series of challenging scenarios for conventional
surrogate models and a thorough comparison with a state-of-the-art Recurrent Neural
Network (RNN). In the second stage, the robustness of the PRNN is tested on two multi-
scale problems, where aspects such as speed-up and robustness are also assessed.

For coherence with the remaining parts of this thesis, some figures were updated, the
introduction shortened and two new equations were introduced in Section 2.2.2 with re-
spect to the published source material:

M. A. Maia, I. B. C. M. Rocha, P. Kerfriden, and F. P. van der Meer. “Physically recurrent
neural networks for path-dependent heterogeneous materials: Embedding constitutive
models in a data-driven surrogate”. Computer Methods in Applied Mechanics and Engi-
neering 407 (2023), 115934. DOI: https://doi.org/10.1016/j.cma.2023.115934

https://doi.org/https://doi.org/10.1016/j.cma.2023.115934
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2.1. INTRODUCTION
As discussed in Chapter 1, while surrogate models gained popularity in accelerating mul-
tiscale simulations of complex materials, four key challenges continue to hinder their
reliable and widespread adoption in real-world applications. First is the black-box na-
ture of purely data-driven models, which restricts interpretability and explainability, cre-
ating opaqueness in understanding and enforcing physically consistent behavior. Sec-
ond, the limited ability to extrapolate undermines the robustness of surrogate models in
practical applications, where unseen loading scenarios are common. This is addressed
by ever-larger training data sets, highlighting the third issue: the data-hungry nature
of many data-driven models. Among them are Recurrent Neural Networks (RNNs), the
most popular approach for dealing with path-dependent behavior as they can naturally
handle sequential data. Lastly, although a recent effort has been made to carefully in-
corporate physics laws in NNs through high-tailorable architectures that fulfill several
physics-related requirements by construction (e.g., CANNs and PANNs), extending and
generalizing these models to complex material behaviors remains a big challenge.

In this chapter, we introduce a new class of neural networks, the Physically Recurrent
Neural Networks (PRNNs), to address these issues. In this first contribution, the ap-
plications are focused on path-dependent materials and accelerating concurrent finite
element simulations. In Section 2.2 the FE2 method is presented, followed by a brief
discussion on how RNNs work in Section 2.3, while in Section 2.4, the main features of
the novel neural network are described. In Section 2.5, the Design of Experiments and
methodology adopted for the comparative study shown in Section 2.6 is described. In
this study, the performance of the proposed network is compared to an RNN for a single-
scale problem. In Section 2.7, the novel approach is integrated into an FE2 framework
and tested in two applications for robustness and accuracy. In Section 2.8, the network
is tested for other combinations of material models to illustrate its flexibility. Finally,
conclusions are presented in Section 2.9.

2.2. CONCURRENT MULTISCALE ANALYSIS
Let Ω define the macroscopic domain being modeled. To find the internal stresses and
displacement field of such body in absence of body forces, a boundary value problem
that satisfies the following equilibrium equations is defined as

div(σΩ) = 0 (2.1)

where div(·) is the divergence operator andσΩ is the macroscopic stress, which depends
on the macroscopic displacement field uΩ (for simplicity, this dependence is omitted).
The governing equations are subjected to the boundary conditions

σΩ n = tΓf on Γf uΩ = uΓu on Γu (2.2)

where n is the normal to the surface Γf and uΓu and tΓf represent a set of Dirichlet and
Neumann boundary conditions acting on the body surface such that Γu∩Γf =; as illus-
trated in Fig. 2.1a. To relate strains and stresses, a constitutive model DΩ is required:

σΩ =DΩ (εΩ,αΩ) (2.3)
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where αΩ are history variables that account for path-dependency and εΩ is the macro-
scopic strain defined under small displacement assumptions as

εΩ = 1

2

(
∇uΩ+ (∇uΩ)T

)
. (2.4)

In the concurrent multiscale approach, the model DΩ is not directly formulated but is
instead obtained by nesting a lower scale finite element model to each integration point.
In that scale, the microscopic structure of complex materials can be explicitly modeled
using simpler constitutive models for each of the components. Further discussion on
how to solve the microscopic problem and link both scales is shown in Sections 2.2.1
and 2.2.2.

w

(a) Schematic representation of FE2

0

2

1
x

y

Master edges

Slave edges

Prescribed values

Fixed corner

(b) Controlling nodes of RVE

Figure 2.1: Scheme of FE2 framework and definition of the boundary value problem on
RVE.

To solve the boundary value problem at the macroscale, the Finite Element (FE) method
is employed to discretize the domain Ω into a number of elements connected by nodes
with N degrees of freedom. The global equilibrium is solved iteratively in its discretised
weak form

r = fΓ− fΩ(uΩ) = 0 (2.5)

where r ∈ RN is a residual vector that goes to zero when equilibrium is reached, fΓ ∈ RN

is the global external vector that represents the Neumann boundary conditions and fΩ ∈
RN is the global internal force vector given by a volume integral

fΩ =
ne

A
e=1

∫
Ωe

BT
e σ

Ω(uΩe ) dΩ (2.6)

where A is an assembly operator that takes into account the connectivities between the
elements and the global system and Be is a matrix with the spatial derivatives of the
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shape functions used to interpolate nodal displacements of element e. Finally, an itera-
tive procedure is adopted to solve Eq. (2.5) for the macroscopic displacement field

∆uΩ = uΩn −uΩo =−K−1
o ro (2.7)

where the subscripts o and n refer to old and new analysis increments, respectively and
K ∈RN×N is the global tangent stiffness matrix given by

K =
ne

A
e=1

∫
Ωe

BT
e DΩ

e (uΩe ) Be dΩ, (2.8)

and DΩ is the constitutive tangent matrix, discussed in Section 2.2.2.
The key difference to a classical FE simulation lies in the embedding of another FE

model in the macroscopic integration points. Here, to obtain the internal forces in Eq. (2.6)
and the tangent stiffness matrix in Eq. (2.8) for a single integration point of the macroscale,
one needs to run an entire FE model instead of a single evaluation of a homogeneous
material model. This is the most computationally expensive part of the framework and
is where the proposed network aims to tackle. The approach here is to replace the so-
lution to the microscopic problem (discussed in Section 2.2.1) with a surrogate model,
specifically a neural network. The homogenization procedure required to upscale the
responses to the macroscale is discussed in Section 2.2.2.

2.2.1. MICROSCOPIC SCALE

Let ω be a Representative Volume Element (RVE) of the microscopic material features
whose behavior is to be upscaled. Assuming that the principle of separation of scales
(i.e. Ω≫ω) holds, the two scales can be linked by enforcing

uω = εΩxω+ ũ (2.9)

where the linear displacement field is the result of the imposed macroscopic strains εΩ

and the fluctuation field ũ is the result of microscopic inhomogeneities. The principle
of separation of scales implies the strain averaging theorem that states that the macro-
scopic strains are considered uniform over the RVE domain

εΩ(xΩ) = 1

|ω|
∫
ω
εω(xω) dω (2.10)

where εω is the microscopic strain tensor. Therefore, the microscopic displacement field
in Eq. (2.9) can only satisfy Eq. (2.10) if the fluctuation displacement field vanishes at the
RVE boundary when upscaling quantities. An additional requirement on the fluctation
field having zero resultant work at the boundaries arises from the Hill-Mandel princi-
ple. Both requirements are met using Periodic Boundary Conditions (PBC) to represent
the behavior of a macroscopic bulk material point. Fig. 2.1b illustrates the node groups
and boundary edges needed to implement the PBC. In Section 2.5, the generation of
ε-σ paths for the training of the surrogate models is obtained by setting a user-defined
function to set the prescribed displacements u1 and u2, corresponding to the controlling
nodes shown in Fig. 2.1b.
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Finally, keeping the hypothesis of small strains, the stress equilibrium problem is de-
scribed as

∇σω = 0 σω =Dω (εω,αω) εω = 1

2

(
∇uω+ (∇uω)T

)
(2.11)

where uω is the microscopic displacement field andσω and εω are the microscopic stress
and strain tensors, respectively. An analogous procedure to the one detailed in Sec-
tion 2.2 is used to find the microscopic displacement field (subjected to the periodic
boundary conditions). Note that at this scale, regular physics-based material models
Dω (e.g. elastoplasticity, viscoelasticity, etc.) are employed to represent the constitutive
behavior of the homogeneous material of the discretized elements.

2.2.2. HOMOGENIZATION PROCEDURE

After convergence of the microscopic displacement field uω, the upscaling procedure is
performed based on the Hill-Mandel principle. The principle postulates that the varia-
tion of the macroscopic stress power must equal the variation of volume average of the
microscopic power over the RVE. Formulated in terms of virtual work, it reads

1

|ω|
∫
ω
σω : δεωdω=σΩ : δεΩ. (2.12)

Considering the definition in Eq. (2.9) and the microscopic strain expression in Eq. (2.11),
as well as the use of PBC, the left-hand side of Eq. (2.12) can be rewritten as

1

|ω|
∫
ω
σω : δ

(
εΩ+ ε̃)dω

= 1

|ω|
∫
ω
σω : δεΩ︸︷︷︸

Constant over RVE

dω+ 1

|ω|
∫
ω
σω : ε̃dω︸ ︷︷ ︸

Vanishes with PBC

=
(

1

|ω|
∫
ω
σωdω

)
: δεΩ

(2.13)

where ε̃ corresponds to the microscopic fluctuation strain field. Comparing the last ex-
pression in Eq. (2.13) to the right-hand side of Eq. (2.12), we recognize the homogenized
stress as

σΩ = 1

|ω|
∫
ω
σωdω. (2.14)

In practice, we use the divergence theorem to transform the volume integral to a surface
integral over the RVE transverse boundaries. As for the macroscopic constitutive tangent
stiffnes matrix DΩ, a probing operator P is applied on the global microscopic tangent
stiffness matrix Kω without the need to invert it as proposed by Nguyen et al. [1].

2.3. RECURRENT NEURAL NETWORKS
In this section, a brief overview of the working mechanisms of Recurrent Neural Net-
works is presented. Although part of this chapter is dedicated to comparing them with
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the novel approach, here the idea is to use well-known concepts from ANNs and RNNs
to illustrate features of the proposed network in the following sections.

As a starting point, consider a conventional feed-forward neural network to surrogate
the nonlinear constitutive relationship of a path-independent material given by the fol-
lowing parametric regression model:

σ̂Ω =F (εΩ,W,b) (2.15)

where W and b are weights and biases calibrated through a fitting procedure based on
observations of the actual microscopic model. During training, the strains are fed to
the first neural layer (input layer) and values are propagated until the final layer (output
layer) to give the predicted stresses σ̂Ω. These are in turn compared to the ground truth
value according to a loss function. Based on that, the model parameters are adjusted so
that the error between the predicted stresses and the actual stresses is minimized

W,b = argmin W b
∑

i ∈ X
∥ σΩi (εΩi )− σ̂Ωi (εΩi ,W,b) ∥2 (2.16)

where X ∈Rnε×N is a snapshot matrix with N pairs of εΩ-σΩ obtained from microscopic
simulations. This setting is the most straight-forward way to map pairs of macroscopic
strains and stresses but does not offer good generalization properties once path-dependency
is introduced. In that case, one way to overcome the lack of history information is to ex-
tend their feature space with e.g. previous (incremental) strains and/or stresses [2, 3].

As an alternative, RNNs offer additional parameters (i.e. the hidden state) and mech-
anisms (i.e. the gates that control the flow of information being propagated) to learn
history information from sequential data in an implicit way. These parameters describe
the evolution of the so-called hidden state and can encapsulate information from previ-
ous iterations without the need to introduce history variables in the feature space. In a
regular RNN, the outputs and hidden state are given by

ht = φ(W1vt +Ws ht−1 +bs )

σ̂t = φ(W2ht +b2)
(2.17)

where φ(·) is an activation function, Ws and bs are the additional model parameters
(compared to conventional feed-forward neural networks), vt are the current neuron
values coming from the last layer and ht and ht−1 are current and previous states, respec-
tively. This arrangement allows the network to learn how stress evolves for a sequence
of strains instead of building a regression model from independent stress-strain pairs
and is illustrated in Fig. 2.2a. However, in practice, the efficiency of RNNs are impeded
by vanishing gradient problems and are not suitable for long-term history dependent
problems.

To overcome that, more sophisticated architectures (more popularly known as cells)
have been proposed. Among the most popular ones are the Gated Recurrent Unit (GRU)
and the Long-Short Term Memory (LSTM), illustrated in Figs. 2.2b and 2.2c, respectively.
The internal mechanisms, also known as gates, used to control the flow of information
passing from one state to another are represented by the colored circles. For each gate,
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additional parameters need to be learned by the network in a way that the element-
wise application of the sigmoid (red circles) or tanh (purple circles) functions can wisely
retain what should be preserved and what can be forgotten in a long sequence.

Despite best efforts, these architectures are still vulnerable to overfitting, compro-
mising their ability to generalize well to new data. Potential solutions to prevent this
phenomenon include regularization techniques such as L2 penalty, early stopping and
dropout. In this chapter, a special type of dropout proposed by Kingma, Salimans, and
Welling [4] is used in combination with a GRU architecture is considered to perform the
comparison with the proposed network. In this Bayesian GRU, the regular dropout with
continuous noise (i.e. Gaussian dropout) is reinterpreted as a variational method that
allows optimal dropout rates to be inferred from the data as opposed to it being fixed
and defined in advance as usual. This circumvents the need for a validation set during
model selection. For more details, the interested reader is referred to [4].

ht

vt

ht -1

(a) Classical Recurrent cell

ht

vt

ht -1

1-

(b) Gated Recurrent Unit (GRU) cell

ct -1

ht

ct 

vt

ht -1

(c) Long-Short Term Memory
(LSTM) cell

Figure 2.2: Different architectures for recurrent cells: red circles correspond to the
element-wise application of the sigmoid function, while purple circles cor-
respond to the tanh function.

2.4. PHYSICALLY RECURRENT NEURAL NETWORKS
This section presents the neural network proposed to capture path-dependent behavior
of heterogeneous microscopic models. The core task of the network is to learn how the
macroscopic strain εΩ can be dehomogenized into a small set of representative material
points and how their responses can be combined to obtain the homogenized macro-
scopic stresses σΩ. For this, the parametric regression model R illustrated in Fig. 2.3
is proposed: a combination of a data-driven encoder, a material layer with embedded
physics-based material models and a data-driven decoder. Each of these components
are discussed in detail in Sections 2.4.1 to 2.4.3, respectively. Finally, the training process
is described in Section 2.4.4 and the use of this network as constitutive model in FE2

frameworks is discussed in Section 2.4.5.

2.4.1. ENCODER

The encoder consists of all parameters that convert the macroscopic strain from the in-
put layer to the values used as input of the material layer, which corresponds to the grey
lines in Fig. 2.3. Since these values are the inputs of actual material models that are
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Figure 2.3: The proposed architecture.

later combined by the decoder into the prediction of the macroscopic stresses, we inter-
pret the role of the encoder as being the microscopic periodic boundary-value problem
(BVP) solved with FE, only at a much lower computational cost. On the other hand, no
information on the displacement field of the micromodel is retrieved by the network as
the encoder is learned based exclusively on snapshots of macroscopic stresses. This un-
derstanding is depicted in Fig. 2.4 by the grey curved line linking the strains from the
macroscopic scale and the fictitious strains seen by the material points in the network.

Microscopic BVP

Encoder Material layer Decoder

Homogenization

Figure 2.4: Interpretation of the proposed network with respect to a full-order solution.

As for the architecture, an arbitrary number of layers and units (with conventional
activation functions as illustrated in Fig. 2.3) can be used. In case regular dense layers
are employed, the neuron states (ai−1) from the previous layer i -1 are propagated to the
following layer i according to

vi = Wi ai−1 +bi ai = φ(vi ), (2.18)

where Wi ∈ Rni×ni−1 is a weight matrix and b is a bias term with ni being the number of
neurons of layer i , and φ is an activation function applied in an element-wise manner
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to the neuron values of i to introduce nonlinearity into the network. In the particular
case where the dense layer is either the input or the output layers, no activation function
is applied and v0 is set to εΩ. This results in a0 = v0 = εΩ. Popular activation functions
include the sigmoid, tanh and ReLU.

In the present investigation, the main network architecture considered for the numer-
ical applications consists of three layers: input, material and output layers. This results
in an encoder with linear relationship between macroscopic strains and local strains, as
no activation function is applied to the input layer. It is worth stressing that this archi-
tecture does not yield path-dependent local strain paths, in contrast to the actual RVE
where the strain distribution will generally be path-dependent. However, the homog-
enized response is path-dependent, through the history variables in the material layer.
The effect of introducing path-dependency to the encoder is discussed in Appendix.

2.4.2. MATERIAL LAYER

The material layer is responsible for introducing explicitly the same physics-based ma-
terial models used in the RVE that the network will be a surrogate for. To properly incor-
porate them and take full advantage of its outputs, important changes on how neurons
are evaluated compared to regular dense layers are proposed. First, instead of introduc-
ing nonlinearity in a element-wise manner with a scalar-to-scalar activation function,
neurons are grouped in m sets of the size of the input layer (see colored boxes in Fig. 2.3)
and then evaluated as a subgroup. Each subgroup is referred to as a fictitious material
point and its size is equal to the length of the strain vector (i.e. length 3 for the present
investigation in two dimensions). In this arrangement, each neuron of the subgroup j
represents one component of the strain vector ε j , as illustrated in Fig. 2.5a.

(a) Fictitious material point j (b) Material cell

Figure 2.5: Schemes of (a) fictitious material point and its view as (b) as a cell.

Supposing the micromodel contains n material models Dω
1 , . . . Dω

n , several combi-
nations of them can be employed in the material layer. The choice on which material
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models should be used to evaluate the fictitious material points depends on the types of
non-linearity embedded in each of these models. For simplicity, we choose to illustrate
the network with a general material model Dω for all fictitious material points. Such
model can take the form of any of the n material models Dω

i with known material prop-
erties used in the micromodel. Here, Dω takes as input the current strain εt ∈ Rnε and
the internal variables from previous time stepαt−1 ∈RnIntVar , where nIntVar is the number
of internal variables of the material model. With that, the model is used to evaluate cur-
rent stress state σt ∈ Rnϵ and updated internal variables αt . These quantities motivated
the tailor-made architecture of the proposed layer.

To store the internal variables used as input/output of the material model, an auxil-
iary vector h j ∈ RnIntVar referred as history vector is defined. In the particular case of a
subgroup with a material model with no internal variables (e.g. linear elastic model), h j

does not exist since nIntVar = 0. For the first time step, the history vector is initialized
as zero for all m subgroups. As information reaches the material layer and the material
model is called, three outputs are made available: the stresses σt

j , the updated internal

variables αt
j and the tangent stiffness matrix Dt

j ∈ Rnε×ε. In this layer, only the stresses

are propagated forward. To do this, each stress component is associated to a unit of the
subgroup, as illustrated in Fig. 2.5a. Then, the updated internal variables αt are stored
in ht

j so that when new strains εt+1
j are fed to the fictitious material point, the material

model is aware of its own history so far, making the ε-σ path of each subgroup unique.
This architecture is illustrated in Fig. 2.5b. For the sake of notation clarity, from now on
we omit the time index t when referring to current values.

Note that h j is not learned through a set of parameters, but obtained as an automatic
output of the (path-dependent) material model employed in subgroup j . This works as
the physical memory of the network as it stores the history variables that describe a given
fictitious material point. Using internal variables obtained directly from the material
models is where the proposed approach crucially differs from purely data-driven RNNs.
This is further discussed in Section 2.4.6, where we assess how this network compares
to other methods in the literature. It is also worth mentioning that since no data from
the microscale has been collected and imposed in the network, the paths seen by the
fictitious material points do not need to hold any similarity with actual integration points
of the microscopic model.

Using standard machine learning notation, the material layer propagates previous
neuron states (ak−1) and applies the material model Dω as follows

vk = Wk ak−1 +bk ⇒ ak ,h =Dω(vk ,ht−1) (2.19)

where Wk ∈ Rnk×nk−1 is the weight matrix connecting layers k-1 and k, bk ∈ Rnk is a bias
term. In addition, vk are the neuron values (correspond to the concatenated vector of
all microscopic strains ε j ), ht−1 and h are history-related term (correspond to concate-
nated vector of all internal variablesαt−1

j ) resulting from the material models with path-

dependent behavior from past and current time step and ak are the current neuron states
(correspond to the concatenated vector of all microscopic stresses σ j ).
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CHOICE OF CONSTITUTIVE MODEL

A general guideline on how to select the constitutive models used for evaluating the fic-
titious material points is to employ all different sources of nonlinearity with their re-
spective known material properties in the material layer. To illustrate that, consider the
micromodel used in Sections Sections 2.6 and 2.7, a composite microstructure with two
material models: a linear elastic model Dω

2 to describe the fibers and an elastoplastic
model with isotropic hardening Dω

1 to describe the matrix. The latter starts as linear-
elastic and evolves into the plastic regime once the yield stress is reached. Motivated by
that, only model Dω

1 is employed in all fictitious material points since the network still
can make any of the subgroups to behave linear elastically by passing small strains to the
material model and subsequently scaling the stresses to give a significant elastic contri-
bution through the decoder. This is illustrated in Section 2.7.1 in a numerical example,
where the response of all fictitious material points are shown for a single macroscopic
point.

However, if instead of a linear elastic model, a nonlinear elastic model was used to de-
scribe the fibers, the network would not perform optimally. In that case, although the
elastoplastic model does introduce nonlinearity to the network, the (nonlinear) contri-
bution from the fibers is no longer embedded in that model. Furthermore, if the non-
linear elastic model was the one chosen to evaluate all subgroups, the network would
essentially become a feed-forward one with no history information taken into account
(explicitly or implicitly), losing the ability to predict elastic unloading. For such a micro-
model, both material models would need to be considered.

Another interesting case is that of a micromodel with two elastoplastic phases with
different material properties. This time, depending on the contrast of the material prop-
erties, a single material model with a fixed set of properties coming from one of the two
phases might be enough to reproduce the homogenized response of the micromodel.
While both cases are illustrated in Section 2.8, naturally, far more complex arrangements
than the ones discussed here are found in practice. This is also true for the potential ex-
tensions to the current approach. In the last scenario, for instance, making the material
properties of each fictitious material point a trainable feature might be advantageous.
This could also be a valuable feature when dealing with experimental data or with a mi-
cromodel with continuously varying material properties. Addressing these extensions is
object of ongoing research.

2.4.3. DECODER

The decoder consists of all parameters that convert the outputs from the material layer
to the predicted macroscopic stress σ̂Ω in the output layer, which corresponds to the
brown lines in Fig. 2.3. Similar to the encoder, an arbitrary number of conventional lay-
ers and units can be employed. In the full-order solution, after convergence of the micro-
scopic BVP, the macroscopic stresses are obtained by the volume average of microscopic
stresses over the entire RVE. In the network, since the solution of the microscopic BVP
is replaced by the encoder and the microscopic material points in the RVE are replaced
by the few fictitious material points, the decoder is then analogous to the homogeniza-
tion operator that transforms local stresses to macroscopic stresses, as illustrated by the
brown curved line in Fig. 2.4.
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In the present work, we use a single dense layer (output) with linear activation and
physics-motivated modifications to perform the task. With this, all the nonlinearity of
the network arises from the models in the material layer. As discussed previously, the de-
coder can be understood as the averaging operator in a multiscale approach and with the
chosen architecture (dense-material-dense), the weights of the output layer can be seen
as the relative contribution of each fictitious material point to the macroscopic stress.
Based on that, a constraint on the positivity of the weights of the output layer is con-
sidered. For that, a softplus function ρ(·) is applied element-wise on the weights matrix
before computing the neuron values of the last layer

vl = ρ(Wl ) al−1 +bl (2.20)

where bl is set to zero and al−1 corresponds to the stresses coming from the material
layer. This procedure guarantees that, after the transformation, weights will always be
positive.

2.4.4. TRAINING

The goal of the training phase is to minimize a loss function given by

ℓavg. = 1

N

N∑
i=1

1

2
∥ σΩ(εΩi )− σ̂Ω(εΩi ) ∥2 (2.21)

where N is the number of snapshots. Based on it, a Stochastic Gradient Descent (SGD)
optimization algorithm is used to update the trainable parameters W and b

Wn = Wo −A
( 1

B

B∑
i=1

ÇLi

ÇW

)
bn = bo −A

( 1

B

B∑
i=1

ÇLi

Çb

) (2.22)

where Li is the loss of the i -th sample, o indicates current values, n indicates updated
values and B is the size of the sample mini-batch used in the update. Finally the A oper-
ator depends on the solver. In this case, the Adam optimizer [5] is used.

To compute the gradients appearing in Eq. (2.22), backpropagation in time is em-
ployed in a similar fashion as done to RNNs: based on the network state (v and a) after
computing each training curve with n pairs of σ−ε, the chain rule is used to propagate
the derivative of the loss functions starting from the output layer and progressively mov-
ing back through the network and through time. Commonly, this process is dealt with
by automatic differentiation, but we present the expressions to allow for integrating the
network directly into existing FE software. For this, two auxiliary quantities are defined.
The first is defined for each layer and helps propagating the error through the network
di ∈Rni . Starting from the output layer l , it is defined as

dl =
ÇL

Çal
= σ̂Ω−σΩ. (2.23)
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Next, the effect of the activation function is taken into account as

d̄i = di ⊙ Çφ(vi )

Çv
(2.24)

where ⊙ represents the Hadamard product. After that, it is possible to compute the gra-
dients of the trainable parameters:

ÇL

ÇWi
= d̄i aT

i−1
ÇL

Çbi
= d̄i . (2.25)

Finally, the values d of the previous layer (the next layer to be backpropagated) can be
computed as

di−1 = WT
i d̄i , (2.26)

and the algorithm moves to Eq. (2.24) for layer i -1.
When reaching the material layer, recall that the internal variables are stored in h and

used for keeping track of the evolution of the internal variable through time. For that
reason, a second auxiliary quantity is introduced and Eq. (2.24) is replaced by

d̄i = di ⊙ Çai

Çvi
+dt+1

h ⊙ Çh

Çvi
(2.27)

where the first term concerns the derivatives of stresses with respect to strains, the sec-
ond term concerns the derivatives of the current internal variables with respect to strains
and dh ∈Rni is given by

dh = di ⊙ Çai

Çh
+dt+1

h ⊙ Çh

Çht−1 . (2.28)

Note that the derivatives of the stresses with respect to the strains of material point
j are an output of the material model: the tangent stiffness matrix D j . The remaining
derivatives in Eqs. (2.27) and (2.28) are evaluated using central finite differences. Natu-
rally, computing gradients with other methods would also be possible. For instance, if
the material model used in the network supports automatic differentation, storing the
internal variables in h for backpropagation can be bypassed as the derivatives are auto-
matically obtained in this approach.

Finally, to obtain the gradients of the trainable parameters including the history-depen-
dence coming from the material layer and compute the values d of the previous layer,
we consider Eq. (2.27) instead of Eq. (2.24) in the expressions shown in Eq. (2.25) and
Eq. (2.26), respectively.

2.4.5. USE AS CONSTITUTIVE MODEL

To make new stress predictions, the macroscopic strain εΩ is fed to the input layer and
a complete forward pass is performed. The final activated neuron values of the output
layer give the predicted stress. To obtain the macroscopic consistent tangent stiffness
matrix DΩ, a complete backward pass is required:

DΩ = Çσ̂Ω

ÇεΩ
= Çal

Çv0
= J, (2.29)
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which is obtained with a backward pass through the network

Ji = Ji+1Iφ

i Wi with Jl+1 = I (2.30)

where Iφ

i is a matrix whose diagonal contains the derivatives of the activation function
with respect to the neuron values v

Iφ

i = diag(
Çφ(vi )

Çv
), (2.31)

except for the material layer. In that case, such matrix is full and consists of the concate-
nation of the tangent stiffness matrix of all fictitious material points. It is worth mention-
ing that despite the linear dependency on the tangent stiffness matrices of the material
models, the Jacobian matrix of the network does not inherit their spectral properties.

2.4.6. ANALOGIES TO OTHER METHODS

In this section, the parallels between features of the proposed network and related works
in the literature are briefly discussed. One possible analogy comes from hyper-reduced-
order models [6]. With the architecture chosen for the present investigation, both meth-
ods work on a reduced number of material points with modified (integration) weights.
However, in the network, these points are only fictitious and learned by the encoder
based on snapshots of the homogenized stresses. Moreover, each stress component is
associated with a different weight. By contrast, the material points in the hyper-reduction
approach exist in the microscopic model and a single modified integration weight of
each material point selected is used to compute all its stress/internal force components.

Following the discussion on the encoder, it is worth highlighting how this feature would
be framed with respect to asymptotic homogenization schemes such as Mori-Tanaka [7].
In this type of solution, the microscopic problem is also not solved explicitly and only
average fields are calculated. Relying on the equivalent inclusion idea and on Eshelby’s
solution [8], the strain concentration tensor is obtained analytically and yields the full
solution of the microcopisc model as it correlates the average field of the phases in the
micromodel with its average field. In our network, although the macroscopic stresses
are also obtained by relating macroscopic and (fictitious) microscopic strains through
an encoder, here no average field is calculated for each of the phases. Indeed, not every
phase needs to be included in the material layer and multiple strain paths for the same
phase are considered. Furthermore, while Mori-Tanaka is accurate for moderate volume
fractions of the inclusions, such restriction is not present in our method.

Compared to PINNs, in which physical constraints are explicitly included in the loss
function, here, most physical constraints are naturally taken care of by the physics-based
material models directly embedded in the material layer. The proposed approach is also
more general as it can be directly used for arbitrary material models and is not particu-
larly tailored to a single type of model (e.g. elastoplastic behavior [9, 10]). As an added
benefit, our model selection procedure makes physical sense: we add more material
points or material models to the network.

Another noteworthy strategy with relevant analogies to our method is the DMN [11].
In this approach, the contribution of a few material points evaluated using the classi-
cal constitutive models in the RVE is also employed to make predictions in the online
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phase. On the same reasoning as discussed in Section 2.4.2, since the inputs come di-
rectly from actual material models, path-dependency is captured naturally. However,
the main concept and architecture of DMNs are different from the ones explored here.
In the offline phase, the goal of the DMN is to find a topological representation of the
RVE with fewer degrees of freedom (i.e. material points) based only on the elastic stiff-
ness matrices of the different material phases that compose the original micromodel.
For the online phase, the feature space is increased to include residual stresses of the
micromodel components, and an iterative procedure is implemented. The authors com-
pare the incremental strains of the material points at the beginning of the iteration with
the one obtained by a de-homogenization process that backpropagates the macroscopic
incremental strain from the output layer to the bottom layer (i.e. input layer). Upon
convergence, the set of internal variables of each material point at the bottom layer is
therefore updated.

In the present work, the feature space is the same in both phases and no iterative pro-
cedure is employed in the forward pass, which simplifies implementation and reduces
even further the number of material model calls. Here, the strain path each fictitious
material point follows is simply described by the encoder and not all phases need to be
included in the network. The homogenized stresses and tangent stiffness are obtained in
a single forward and backward pass, respectively. Furthermore, the backpropagation in
our approach is considerably simpler than the DMN. Although the use of homogeniza-
tion (and de-homogenization) operations in the DMN assigns physical interpretation to
the model, it also makes training a rather intricate process.

Finally, to draw a parallel with LSTMs, one might understand h as the cell state c, but
instead of using bijective and smooth functions such as the sigmoid and tanh functions
to describe the evolution of the material response, the material model itself is directly
employed. This bypasses the need to learn new parameters to regulate the flow of infor-
mation kept or forgotten throughout time (see Fig. 2.2b) and has important implications
for the training process. The most important one is the ability to mirror physical behav-
iors such as elastic unloading/reloading without ever seeing the pattern during training,
a stark contrast with LSTMs and GRUs that usually require extensive training sets with
multiple cycles of loading and reloading at different strain levels with different step sizes.
The physical interpretation of the nonlinearity is directly embedded in the network. In
the numerical examples of this chapter, the nonlinearity is due to plasticity, but other
effects such as hyperelasticity, visco-plasticity, stiffness degradation, or any combina-
tion thereof, could be embedded by adapting the constitutive model that is used in the
material layer.

2.5. DESIGN OF EXPERIMENTS

One critical aspect of the training and testing of surrogate models is the formulation of
a sampling plan. Typically, a uniform distribution of the sampling points is desirable,
but that task becomes more complex when path-dependent behavior is present. In this
case, pairs of strains and stresses are collected and processed as sequences, which leads
to potentially infinite-dimensional parameter spaces.

Two strategies are considered for generating the loading paths for training, validat-
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ing and testing. In the first approach, proportional loading paths are generated, which
means that the stress ratio between the components is constant. Here, the sequence of
strains is created based on two features: the loading function λ(∆ε, t ) and the loading
direction given by the unit vector n, where ∆ε is the step size and t is the current time
step. For each time step, n is multiplied by the scalar-valued loading function λ creating
a new set of strains, which is in turn applied at the controlling nodes of the microscopic
model.

For monotonic loading, the loading function is as depicted in Fig. 2.7a. The values in
the unit vector can come from prior knowledge of the material as illustrated in Fig. 2.6b,
in which only fundamental cases such as uniaxial strain, pure shear, and biaxial cases are
considered, or from random distributions as represented by the purple line Fig. 2.6a. In
the present work, the random directions are obtained by sampling values from nε inde-
pendent Gaussian distributions (X ∼N (0,1)) and subsequently normalizing the vectors.
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Figure 2.6: 3D stress-time view of different types of loading paths investigated in this
study.

Despite the simplicity in creating such paths, RNNs trained exclusively on monotonic
cannot predict cyclic responses. Thus, to create non-monotonic sequences, a linear
piecewise function as the one depicted in Fig. 2.7b is used. Note that even though the
loading function is changed, the unit vector is kept constant for the entire strain se-
quence, yielding proportional loading. However, to cover the entire space of possible
cyclic responses, a large (and a priori unknown) number of curves comprehending dif-
ferent unloading points with different duration of unloading/reloading and step sizes is
necessary. For this study, that matter is first handled in a simplified way by only sampling
two different cycles of unloading/reloading.
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Finally, in a more general approach, a second strategy to create the ε-σ paths is con-
sidered: the random walks. These are typically defined by sampling random strain incre-
ments with random loading directions for each time step, resulting in non-proportional
loading. In this chapter, random walks are created by associating the prescribed strains
to independent Gaussian Processes (GPs) with X ∼ N (µ, σ2) and covariance function
given by

k(xp ,xq ) =σ2
f exp

(
− 1

2ℓ2 ∥xp −xq∥2
)

(2.32)

where xp and xq are the time step indices of the strain sequence being sampled,σ2
f is the

variance and ℓ is a length scale. In this setting, the lengthscale controls the smoothness
of the strain path and the variance controls how large the step size can be for each pre-
scribed degree of freedom of the controlling nodes. Similar approaches were employed
by Mozaffar et al. [12] and Logarzo, Capuano, and Rimoli [13].

Algorithm 1: Generation of random loading path using GPs

Input : lengthscale ℓ, variance σ2
f , number of strain components Ncomponents,

number of time steps Nsteps

Output: macroscopic strains Dε and macroscopic stresses Dσ

1 initialize datasets: Dε←∅, Dσ←∅
2 for i ∈ [1,2, ..., Ncomponents] do
3 initialize input and output datasets for GPi : XGPi ← 0, YGPi ← 0
4 initialize GPi : GPi ← initGP( XGPi ,YGPi ,ℓ,σ2

f )

5 for t ∈ [1,2, ..., Nsteps] do
6 initialize current macroscopic strain: εcurrent ←∅
7 for i ∈ [1,2, ..., Ncomponents] do
8 sample from posterior distribution: εi ← GPi ::samplePosterior ( t )
9 add value to strain vector: εcurrent ← εcurrent ∪εi

10 solve micromechanical BVP: σcurrent ← fullModel::materialUpdate (
εcurrent )

11 if convergence then
12 store equilibrium solution of micromodel: fullModel::storeSolution(

)
13 add macroscopic strains and stresses to dataset: Dε←Dε∪εcurrent,

Dσ←Dσ∪σcurrent

14 for i ∈ [1,2, ..., Ncomponents] do
15 add time step and current strain to dataset of GPi : XGPi ← XGPi ∪ t ,

YGPi ← YGPi ∪εi

16 update GPi with new data: GPi ::update ( XGPi , YGPi )
17 return (Dε, Dσ)

The details of the present implementation are given in Algorithm 1. Note that instead
of drawing the entire strain sequence for a given component, we sample it step by step
and update the GP dataset before sampling again. This strategy results in the same strain
sequence given a fixed random seed throughout the steps, but in this way the GPs can
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also be used in applications where the number of loading steps is changed on-the-fly.
Following the work of Logarzo, Capuano, and Rimoli [13], we define the mean of all GPs
to be zero and include t = 0 and εi = 0 as a prior. In addition to that, references to
fullModel (i.e. the full-order microscopic model) in Algorithm 1 are kept as minimal and
general as possible. One example of loading path resulting from Algorithm 1 is illustrated
in Fig. 2.6a.

Both strategies generate ε-σ curves containing 60 time steps, unless stated otherwise.
To summarize the types of loading studied in the following sections:

• Type I: monotononic and proportional loading paths with a priori known direc-
tions. The 18 directions used to train the proposed network are illustrated in Fig. 2.6b
and include uniaxial strains, pure shear, biaxial cases and biaxial with shear cases.

• Type II: monotonic and proportional loading paths randomly spread across the
design space. The loading directions are generated randomly and the loading
function is as shown in Fig. 2.7a.

• Type III: non-monotonic and proportional loading paths randomly spread across
the design space. Again, the loading directions are random, but the loading func-
tion is now given by Fig. 2.7b and includes one cycle of unloading;

• Type IV: Variations to Type III:

– Type IVa: same loading directions as the test set of Type III, but unload-
ing/reloading takes place at a different point in time as shown in Fig. 2.7c;

– Type IVb: same loading directions as the test set of Type III, but time step is
10 × smaller. Thus, to reach the same norm as the original curve in Type II,
600 time steps are evaluated, as depicted in Fig. 2.7d;

• Type V: non-monotonic and non-proportional loading paths randomly spread across
the design space. A GP-based path described by Eq. (2.32) is illustrated in Fig. 2.6a.
Fig. 2.7e ilustrates the strain paths of each component using this approach with
lengthscale ℓ= 20 and σ f = 1.0×10−3.

2.6. ASSESSING THE NETWORK PERFORMANCE
In this section, the performance of the proposed network is compared to a state-of-
the-art RNN trained on different training dataset sizes and methods to sample the de-
sign space. The comparison is done for a single micromodel. Specifically, four scenar-
ios are investigated: (i) predicting unloading/reloading behavior from monotonic data,
(ii) predicting unloading/reloading behavior from non-monotonic data, (iii) predicting
unseen patterns from non-monotonic data, and (iv) training with non-monotonic and
non-proportional loading paths. In the first three scenarios, our network is trained ex-
clusively on the fundamental loading cases of Type I (18 curves), while the training of the
RNN is an open question to be addressed in the following sections.

From now on, the network proposed in this chapter will be referred to as Physically
Recurrent Neural Network, or simply PRNN. The PRNN was trained for 80000 epochs,
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Figure 2.7: Proportional and non-proportional loading functions

while the RNN was trained for 60000 epochs with an early stopping criterion, which con-
sists of interrupting training if the best validation loss so far is not improved over 5000
epochs. The Adam optimizer is used in all cases with batch size of 9 and default param-
eters suggested by Kingma and Ba [5], with the exception of the learning rate of 0.01 for
the RNNs. The layer sizes are chosen through model selection to provide optimal results
and fair comparison with our approach to the best of our knowledge. The methodology
adopted is briefly described in Section 2.6.1.
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The microscopic model consists of an RVE with 36 elastic fibers (volume fraction =
0.6) with properties E = 74000 MPa and ν = 0.2 embedded in an elastoplastic matrix with
isotropic hardening. The geometry and the mesh with 7048 elements are depicted in
Fig. 2.8. The elastoplastic matrix is modeled using the von Mises yield criterion with
properties E = 3130 MPa, ν = 0.3 and yield stress given by

σy = 64.8−33.6 exp(−εp
eq/0.003407) (2.33)

where εp
eq is the equivalent plastic strain defined as

ε
p
eq =

√
2

3
εp : εp, (2.34)

and εp is the plastic strain. Plane stress conditions are assumed.

Figure 2.8: Geometry and mesh discretization of microscopic model adopted in this
chapter.

In the following section, a grid-search strategy is employed to choose the best archi-
tecture for the networks. The goal is to find the optimum architecture before heading to
the testing sections. For that, different architectures and weight initializations are con-
sidered to mitigate the effect of randomness.

2.6.1. MODEL SELECTION

For the PRNN, three types of architectures are considered. First, networks with input,
material and output layers are considered. Then, models with a hidden layer activated
with the tanh function before the material layer are investigated. Finally, networks with
two hidden layers in the encoder are considered. Note that this is not an exhaustive
search as many other architectures are possible and suitable for both the encoder and
decoder. In this study, the size of the hidden layers in the encoder are pre-defined (either
90 or 180 units) and the size of the material layer is variable.

Another important remark is that, in this case, only the elastoplastic model is used in
the network so that the size of the material layer is the only variable in the model selec-
tion. Recall that the network still can make a subgroup to behave elastically by passing
small strains to the material model. The training and the validation sets, DPRNN and
VPRNN, consist of 18 Type I curves and 54 Type II curves, respectively. Fig. 2.9 shows the
boxplots with the average validation error of each run alongside the mean error value
over different architectures.
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Figure 2.9: Absolute error of PRNNs trained on DPRNN = {18 Type I curves} over valida-
tion set VPRNN = {54 Type II curves}. Letters I, H, M and O refer to the input,
hidden, material and output layers, respectively.

In all cases, the networks with 6 units (i.e. two fictitious material points) performed
best. Furthermore, despite the larger variance in models without hidden layers other
than the material layer itself, the best networks of this type are as accurate as the ones
with one or two hidden layers with significantly fewer parameters (see lower bounds
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in the boxplots). Another concern in using overly complex models in this particular
case is the difficulty to assess the accuracy of the tangent stiffness matrix for use in
FE2applications without probing the model in numerical applications or explicitly in-
cluding it in the formulation (e.g. through the loss function). In that light, we opt for the
most parsimonious architecture - the one with a single material layer between the input
and output layers - for the rest of the chapter as it led to more robust stresses and tangent
stiffness matrix predictions in both single-scale tests and multiscale applications.

For simplicity, the architecture of the Bayesian RNN is composed of an input layer, a
single GRU cell and an output (dense) layer. Again, weights and biases are randomized
in each initialization, the training set (DRNN) consists of the fixed set of 18 Type I curves,
90 Type II curves randomly chosen from a pool of 1800 curves, and 90 Type III curves also
randomly chosen from a pool of 1800 curves, amounting to 198 loading paths. That way,
all types of curves used for training in the following sections are covered. Fig. 2.10 shows
the boxplot with the average training error of each run alongside the mean error value
of all runs represented by the x marker. In this study, it is found that the GRU with 128
hidden variables performs best. In this case, no validation set is needed to determine the
best dropout rate as the type of RNN used in this investigation infers it from the training
data by default (see Section 2.3).
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Figure 2.10: Training error for RNNs trained on DRNN = {18 Type I curves, 90 Type II and
90 Type III curves}.

2.6.2. PREDICTING UNLOADING/RELOADING FROM MONOTONIC DATA

In this section, the training process of the RNNs on Type II curves (i.e. without unload-
ing) is reported. The first test set consists of 100 Type II curves. Fig. 2.11 shows the
average error of the RNNs over the test set compared to the best (blue triangle), worst
(upside-down blue triangle), and average error (blue circle) found by the PRNNs. Note
that the secondary axis starts with 18 curves, this is because the known directions used
for training the PRNNs are also a fixed set in the training of the RNNs. The training of the
RNNs is stopped with 288 curves. At that stage, a similar level of accuracy between the
PRNNs and the RNNs is obtained (although with a training set 16 times larger) and the
addition of new curves only yields a marginal gain in accuracy.
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Figure 2.11: Absolute error over monotonic test set TII = {100 Type II curves} for RNNs
trained on Types I and II and PRNNs on 18 Type I curves.

Next, a new test set with 100 Type III curves is evaluated by the same networks trained
on the 288 monotonic curves. This time, the RNN fails to capture unloading and the ad-
dition of more monotonic data is ineffective, as shown in Fig. 2.12a. This outcome is not
new to the literature and it is not surprising that RNNs need to see unloading behavior
during training in order to be able to describe it. However, in contrast to the RNNs, the
PRNNs provide the same level of accuracy for the test sets with and without unloading,
even when not exposed to unloading data during training. In Fig. 2.12b a single repre-
sentative case from test set TIII is plotted using the best RNN and PRNN. Both networks
show good agreement with the reference solution until unloading starts (a feature not
covered during training), but only the PRNN is capable of capturing the elastic unload-
ing/reloading.

2.6.3. PREDICTING UNLOADING/RELOADING BEHAVIOR FROM

NON-MONOTONIC DATA

Following the conclusions of Section 2.6.2, the training set of the RNN is expanded to
include curves with the same unloading behavior as the one observed in the test set
TIII. The 288 monotonic curves of Types I and II from the previous section are combined
with an increasing number of non-monotonic curves of Type III. This time, with the right
features included in the training set, Fig. 2.13 shows a monotonic decrease of the average
error for the RNN on TIII curves. However, the performance of the RNN only meets the
one obtained by the PRNN with around 32 times more data.

2.6.4. PREDICTING UNSEEN PATTERNS FROM NON-MONOTONIC DATA

In this section, three additional test sets are considered for the RNN trained on Types I, II
and III and the PRNN trained on Type I only. The goal is to test the ability of the networks
to predict the macroscopic stress with patterns different from those seen during training.

First, we consider a test set with 100 unseen curves of Type IVa, which consists of pro-
portional curves in random directions with a different predefined unloading/reloading



2.6. ASSESSING THE NETWORK PERFORMANCE 43

0 288 864
Number of additional Type II curves in RNN

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Ab
s.

 e
rr

or
 [M

Pa
]

RNNAverage
RNNBest
RNNWorst

288 576 1152
Total number of curves in RNN

PRNNBest

PRNNAverage

PRNNWorst

(a) Absolute error over test set TIII = {100 Type III curves} for
RNNs trained on Types I and II and PRNNs on Type I only
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Figure 2.12: Absolute error over non-monotonic test set TIII for RNNs and PRNNs trained
only on 18 Type I curves and representative case.
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Figure 2.13: Absolute error over non-monotonic test set TIII = {100 Type III curves} for
RNNs trained on Types I, II and II and PRNNs on 18 Type I curves.

behavior than that of Type III. The average error for that set is shown in Fig. 2.14a. Here,
the 576 curves from the previous section are no longer enough to provide good accuracy
when predicting a different unloading/reloading. By adding more Type III curves to the
training set of the RNN, the average error decreases from 6.4 MPa to around 4.0 MPa
but no significant gain in the accuracy is observed when the total number of curves is
larger than 864 curves. Based on that, a representative case from test set TIVa is shown in
Fig. 2.14b. Despite the relative low error from both networks, note that the RNN looses
performance once unloading starts while the PRNN continues to show good agreement
throughout the entire loading path.

For the next scenario, a test set with 100 Type IVb curves are considered. These curves
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(a) Absolute error over test set TIVa = {100 Type IVa curves}
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Figure 2.14: Absolute error over non-monotonic test set TIVa = {100 Type IVa curves} for
RNNs trained on Types I, II and II and PRNNs on 18 Type I curves and rep-
resentative case.

have the same unloading/reloading behavior as Type III, but with a 10× smaller time
step. Fig. 2.15a illustrates the average error of 10 networks over that test set and again, it
is clear that the addition of new curves with patterns different from the exact one being
tested is not beneficial to the RNN. Again, the PRNN provides good accuracy. Essen-
tially, the PRNN is only as sensitive to step size as the material models embedded in it.
Fig. 2.15b illustrates the networks’ predictions for a curve in the test set TIVb.

As a final test, a set of 100 Type V curves, which corresponds to non-proportional and
non-monotonic paths, is considered. This type of curve combines the two previous fea-
tures: different step sizes and different unloading/reloading locations. Fig. 2.16a shows
the average error for additional non-monotonic curves in the training of the RNNs. It
is clear that the RNN completely fails to capture non-proportional paths (lowest error
around 32 MPa) and that the addition of more data with features different than those
being tested is a waste of resources. Although in different levels, a similar trend of loss
of accuracy is also observed in the PRNNs, where the best, average and worse perfor-
mances result in errors around 8.9 MPa, 17.0 MPa and 11.2 MPa respectively. Fig. 2.16b
illustrates the different order of error between the PRNN and the RNN on a representa-
tive case from test set TV.

2.6.5. TRAINING ON NON-MONOTONIC AND NON-PROPORTIONAL

LOADING

In this section, both networks are trained on the most generic set of curves, i.e. random
non-monotonic and non-proportional curves of Type V. In addition to that, we trained
the PRNNs on the known and proportional loading cases for comparison purposes. In
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(a) Absolute error over test set TIVb = {100 Type IVb curves}
for RNNs trained on Types I, II and III and PRNNs on Type
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Figure 2.15: Absolute error over different step size test set TIVb = {100 Type IVb curves}
for RNNs trained on Types I, II and III and PRNNs on 18 Type I curves and
representative case.
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Figure 2.16: Absolute error over non-proportional and non-monotonic test set TV = {100
Type V curves} for RNNs trained on Types I, II and III and PRNNs on 18 Type
I curves and representative case.

that case, the size of the material layer is kept at 6 units and three training dataset sizes
are considered. First, only the pure uniaxial cases are included, which yields 6 loading
cases. Then, the 4 biaxial cases are added to the previous training dataset, resulting in
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10 loading cases. And finally, we add the 8 cases with biaxial and shear loading, which
amounts to the 18 fundamental paths shown in Fig. 2.6b.

When training both networks on non-proportional paths a new model selection pro-
cedure was carried out to determine the optimum size of the material layer and the GRU
cell, respectively. In this preliminary study, 10 different weights initialization are con-
sidered again. For training the RNNs and the PRNNs, 2304 and 198 Type V curves are
used, respectively. Figs. 2.17a and 2.17b show the boxplot with the average error of each
run alongside the mean error value. In this case, the networks with 18 units (which cor-
responds to six fictitious material points) performed better. For the Bayesian RNN, the
GRUs with 128 hidden variables continue to provide the best performance. Therefore,
this architecture is the one used in the comparison presented below.
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(a) Validation error for PRNNs trained on DPRNN =
{198 Type V curves} andVPRNN = {54 Type V curves}
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Figure 2.17: Model selection of PRNN and RNN for non-monotonic and non-
proportional loading.

This time, all test sets discussed in Sections 2.6.2 to 2.6.4 are used again to assess the
accuracy of the networks with the new sampling strategy. Figs. 2.18a-2.18e show the
best, worst and average error for the cases studied so far in order. Based on this study, a
few important insights are worth mentioning: after a certain point (around 576 curves),
the RNNs reach an optimum level of accuracy and the addition of new curves no longer
boosts predictions for proportional loading cases (TII, TIII, TIVa and TIVb). This is in line
with the behavior observed in the previous sections, in which the RNNs would only per-
form well when trained with the same features as in the test set. And more importantly,
changing the sampling strategy also showed to have limited effect on improving their
performance. Granted, increasing even further the number of curves used for training
as well as the complexity of the RNN might help in that task. However, the point stands
that with the PRNN, this is not necessary. Note that for the same training set sizes, the
PRNN with either the known or the random curves performs better than using the RNNs.

Finally, when choosing between known and random curves for training the PRNN, the
latter shows comparable errors with the first when predicting proportional loading, but
is significantly more accurate (see detail in Fig. 2.18e) for non-proportional loading. For
that reason, the PRNN trained on Type V is chosen to illustrate the network’s capacity
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in the following FE2 examples. On average, the accuracy of the PRNN reaches a plateau
around 36 curves. From that point on, the benefit of adding new data is limited.
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(a) Test set TII = {100 Type II curves}
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(b) Test set TIII = {100 Type III curves}
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(c) Test set TIVa = {100 Type IVa curves}
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(d) Test set TIVb
= {100 Type IVb curves}
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Figure 2.18: Absolute error of networks trained on different sampling strategies and dif-
ferent test sets.
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2.7. FE2 APPLICATIONS

In this section, the PRNN trained with 36 non-proportional and non-monotonic Type V
curves and lowest test error for test set TV in Section 2.6.5 is employed as the constitu-
tive model in two numerical examples. Results obtained with the PRNN as constitutive
model are compared against results obtained with full FE2 with the same micromodel
that the network was trained to be a surrogate for. Both types of analysis are performed
with an in-house Finite Element code using the open-source Jem/Jive C++ numerical
analysis library [14].

At the macroscale, an arc-length method with an adaptive-stepping scheme [15] is
adopted to tackle potential convergence issues. This way, if a loading step does not con-
verge with the given (full) step size, a reduction factor is applied to it until the loading
step converges or until a maximum number of reductions in the initial step has been
reached, terminating the analysis.

All simulations, including the PRNN training, were executed on a single core of a Xeon
E5-2630V4 processor on a cluster node with 128 GB RAM running CentOS 7.

2.7.1. TAPERED BAR

The first example consists in a tapered composite specimen with length of 128 mm and
height of 8 mm loaded in transverse tension. In this setting, the 36-fiber RVE model used
to train the networks in the previous sections is embedded at each integration point of
the macroscale. The geometry and the boundary conditions are shown in Fig. 2.19a. The
FE2 problem is solved for 110 load steps with unloading according to the function shown
in Fig. 2.19b. At this point, the macroscopic response is already in the plastic regime.

The strain field at the end of the analysis is shown in Fig. 2.20a along with the location
of one macroscopic integration point. This point is used to illustrate the state of the
PRNN throughout the time steps. Recall that the network used in this section consists
of 18 units (i.e. 6 fictitious material points). Thus, each row in Fig. 2.20b corresponds
to a fictitious material point, each with its own stress path and internal variables (even
though only one of them is plotted).

In this case, each component of the macroscopic response (i.e. homogenized stresses)
is simply the linear combination of the local stresses of the 6 material models. It can
be observed that the two macroscopic responses are in excellent agreement, with minor
deviations in stress components with low magnitude. This is only visualized for a single
point, but it is emphasized that in this multiscale problem, agreement in the evolution
of the stresses in a single integration point indicates that the whole problem is solved
accurately. Moreover, the equivalent plastic deformation of each material point is plot-
ted in the last column. Note that despite the plastic response of the RVE after time step
20, three of the fictitious material points of the network (m1, m2 and m6) remain in the
elastic regime.

The accuracy of the PRNN is further assessed by inspecting the load-displacement
curve at the top edge of the bar. Fig. 2.21a shows the load-displacement curve using
the full-order solution and the network’s response for different macroscopic mesh dis-
cretizations. For the refinement studied so far (∆Ωelem = 8mm), it is clear that the pro-
posed network can capture accurately the entire nonlinear response, albeit with minor
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Figure 2.19: Tapered bar FE2 example with (a) geometry and boundary conditions and
(b) loading function.

deviations when the tapered bar changes from tension to compression and then back
again to tension.

Next, the global accuracy of the method is verified. Since the surrogate model is not
as accurate as the full-order model, a different equilibrium solution at a certain time
step affects the equilibrium in the following loading steps, leading to accumulated error
and diverging ε-σ paths. In this case, since no reduction in the step size was observed
at any moment, the simple average error between the PRNN prediction and the full-
order solution is calculated for each time step averaged over all integrations points at the
macroscale, as illustrated in Fig. 2.21b. For most of the simulation, the average absolute
error in the predictions remains below 1 MPa with two peaks around 4 MPa and 6 MPa
when the loading is reversed, following the trends observed in Fig. 2.21a. For reference,
the lowest error of the network for test set TV is plotted.

For the purpose of assessing the efficiency of the network in accelerating the FE2 sim-
ulations, three different levels of mesh refinement of the tapered bar are taken into ac-
count, being the coarses the one shown in Fig. 2.19. Table 2.1 summarizes the wall-
clock time spent in the analysis of the different discretizations, as well as the speed-up



50 2. EMBEDDING CONSTITUTIVE MODELS IN DATA-DRIVEN MODELS

F

x

y

1

(a) Strain field
at the end of
the analysis

0 20 40 60 80100
-20.0

-10.0

0.0

10.0

m
1

σx [MPa]

0 20 40 60 80100

-0.8

-0.4

0.0

0.4

σy [MPa]

0 20 40 60 80100
-12.0

-6.0

0.0

6.0

12.0

σxy [MPa]

0 20 40 60 80 100

-0.0500

-0.0250

0.0000

0.0250

0.0500

εpeq [-]

0 20 40 60 80100
-2.0

-1.0

0.0

1.0

2.0

m
2

0 20 40 60 80100
-6.0

-3.0

0.0

3.0

6.0

0 20 40 60 80100
-0.8
-0.4
0.0
0.4
0.8

0 20 40 60 80 100

-0.0500

-0.0250

0.0000

0.0250

0.0500

0 20 40 60 80100

-12.0
-6.0
0.0
6.0

12.0

m
3

0 20 40 60 80100

-15.0

0.0

15.0

0 20 40 60 80100

-30.0
-15.0

0.0
15.0
30.0

0 20 40 60 80 100

0.0000

0.0150

0.0300

0.0450

0 20 40 60 80100

-20.0

0.0

20.0

m
4

0 20 40 60 80100
-4.0
-2.0
0.0
2.0
4.0

0 20 40 60 80100
-5.0

-2.5

0.0

2.5

5.0

0 20 40 60 80 100

0.0000

0.0001

0.0002

0.0002

0.0003

0 20 40 60 80100

-20.0

-10.0

0.0

10.0

20.0

m
5

0 20 40 60 80100

-20.0
-10.0

0.0
10.0
20.0

0 20 40 60 80100
-12.0

-6.0

0.0

6.0

12.0

0 20 40 60 80 100

0.0000

0.0004

0.0008

0.0012

0 20 40 60 80100

-5.0

-2.5

0.0

2.5

5.0

m
6

0 20 40 60 80100
-3.0

-1.5

0.0

1.5

3.0

0 20 40 60 80100

-1.6

-0.8

0.0

0.8

0 20 40 60 80 100

Time step [-]

-0.0500

-0.0250

0.0000

0.0250

0.0500

0 20 40 60 80100

Time step [-]

-0.1
0.0
0.1
0.2
0.3

M
a
cr

o

0 20 40 60 80100

Time step [-]

-40.0

-20.0

0.0

20.0

40.0

0 20 40 60 80100

Time step [-]

-0.1

-0.1

-0.0

0.0

J2 model

PRNNFE2

FE2

(b) Latent space view for integration point 1

Figure 2.20: Strain field using the PRNN on the left and detailed view of latent space of
PRNN for a single macroscopic integration point on the right.

in comparison to the full-order solution. For the mesh used to illustrate this section
(∆Ωelem = 8 mm), replacing the solution of the BVP of the micromodel with the network
led to a speed-up over 26000 with the accuracy reported in Fig. 2.21b. Considering the
offline costs, the training time is still lower than that of using the full-order solution with
134 macroscopic elements, which is a very modest number of elements for a multiscale
problem.

Since the network is trained to replace the solution of the microscopic model, no addi-
tional training is required for the analysis of more complex cases where the macroscale
problems require more elements and time steps. Hence, in general, higher speed-ups
should be achieved with denser meshes. However, in this particular problem, this is not
always the case. An increase from the coarsest to the intermediary mesh is observed,
but no gain is achieved when refining even further. In that case, the reduction in per-
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Figure 2.21: Tapered bar FE2 example with (a) load-displacement curve with the full-
order solution and best PRNN and (b) average error of PRNN’s predictions
at each time step of the analysis with ∆Ωelem = 8 mm.

Table 2.1: Computational cost for different mesh discretizations and efficiency of net-
work in FE2 approach.

Macroscale element size (∆Ωelem) [mm] 8 4 2
Number of elements at the macroscale 64 134 454

Online
FE2 wall-clock time [s] 21574 47644 178800
PRNNFE2 wall-clock time [s] 0.81 1.55 8.41
Speed-upa [-] 26560 30746 21526

Offline
Av. wall-clock time per curve (dataset gen.) [s] 265b N/A N/A
Av. training time (excl. dataset gen.) [s] 38045b N/A N/A

aEvaluated as FE2 wall-clock time/PRNNFE2 wall-clock time and averaged over 5 runs
bOne-off cost regardless of macroscopic mesh discretization

formance due to the higher number of iterations caused by the necessity of adaptively
reducing the step size in order to ensure convergence. In contrast, the full-order solution
was more numerically stable for this mesh density and the adaptive-stepping scheme
was not triggered.

As the mesh is refined and strain localization takes place (see the red region in Fig. 2.20a),
even higher strain levels are achieved, pushing the network to make predictions in unex-
plored regions during training, as illustrated in Fig. 2.22. Note that the network is already
making far-reaching predictions in the coarsest discretization, although in a less exten-
sive way. In the mesh with ∆Ωelem = 8 mm, the maximum strain does not exceed 0.2,

while ∆Ωelem = 2 mm leads to strains higher than 0.3. In spite of these complicating as-
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Figure 2.22: Joint distribution of strains from the training set of the best PRNN and strain
distribution obtained by PRNNFE2 for the tapered bar problem with differ-
ent macroscopic mesh discretizations.

pects, it is worth mentioning this is still a significant speed-up. Moreover, a far less severe
effect on the global accuracy is observed, as illustrated by the almost overlapping load-
displacement curves in Fig. 2.21a. In that sense, the adaptive-stepping scheme plays an
important role to help overcome convergence issues.

2.7.2. PLATE WITH MULTIPLE HOLES

As a final example, a composite plate with multiple cutouts with geometry and bound-
ary and loading conditions as illustrated in Fig. 2.23 is studied. Again, an FE2 approach is
employed to solve the problem for the same microscopic model with which all the net-
works in Section 2.6 were trained for. This time, no unloading is imposed and 150 load
steps with ∆s = 5.0×10−3 are considered. The load-displacement curve at the right edge
of the plate is plotted in Fig. 2.24a using both the full-order solution and the network.
Again, good agreement is observed between the macroscopic responses. The slight in-
accuracy between those are quantified in Fig. 2.24b, in which the average absolute error
of the component with the highest magnitudes (σx) is around 1 MPa for almost the entire
simulation.

The displacement field at the end of the analysis is shown in Fig. 2.25a, where the
location of five macroscopic integration points are marked for further inspection. The
stress paths for each of these points are illustrated in Fig. 2.25b, where the full-order
solution and the network prediction are plotted in black and gray, respectively. Note
how the stress paths are non-proportional even for the relatively simple loading condi-
tion observed in the macroscale. The integration point on the edge of one of the cutouts,
namely point 4, is also the one with the highest stress magnitude and the closest to a uni-
axial state in the x direction while the other points experience multiaxial loading more
strongly.

In terms of efficiency, the solution using the network is around 26705 times faster than
the full-order solution, which took approximately 258780 s (around 72 h). The order of
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Figure 2.24: Plate with cutouts: (a) load-displacement curve and (b) average error of
PRNN’s predictions at each time step of the analysis.

magnitude in the speed-up is similar to that obtained in the tapered bar problem. Al-
though no additional offline costs are incurred because the network has been trained
before for the same microscopic model and it does not depend on the macroscopic prob-
lem at hand, it is worth stressing that the runtime of the full-order solution exceeds the
sum of the online and offline costs of the PRNN.

Finally, this example shows that the network can capture multiaxial stress states and
non-proportional loading as obtained in FE2 simulations accurately. No convergence
issues were encountered in the PRNNFE2 simulation which points to the smoothness of
the predictions that is not always guaranteed with surrogate models (see e.g. RNN curves
in Fig. 2.16b).
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(a) Displacement field at the end of the analysis with PRNN and
selection of integration points for inspection

(b) Stress-time view of macroscopic integra-
tion points. Full-order solution in black
and network’s prediction in green

Figure 2.25: Plate with cutouts: (a) displacement field at the end of the analysis and (b)
selected integration points shown in stress-time view.

2.8. EXTENDED EXPERIMENTS
In this section, two additional studies are carried out to demonstrate the flexibility of the
proposed approach to handle various types of material models with different levels of
complexity, as well as to help identify potential pitfalls when choosing the architecture
and the design of experiments. In both scenarios, the same RVE geometry presented in
Sections 2.6 and 2.7 is used.

2.8.1. TWO ELASTOPLASTIC PHASES WITH DIFFERENT MATERIAL

PROPERTIES

In this study, plane stress conditions are kept, but both matrix and fibers are now de-
scribed by the elastoplastic model with the von Mises yield criterion and isotropic hard-
ening with the equivalent plastic strain given by Eq. (2.36) and material properties as
described in Table 2.2.

Table 2.2: Material properties of RVE modeled by two elastoplastic models.

E [MPa] ν [-] σy [MPa]

Constitutive model of matrix Dω
1 3130 0.37 64.8−33.6exp−εp

eq/0.003407

Constitutive model of fibers Dω
2 2130 0.25 77.76−33.6exp−εp

eq/0.003407

For training the networks, we follow the steps discussed in Section 2.6, in which the
initial training set comprises 18 Type I curves and the validation set consists of 54 Type II
curves. The architecture of the networks consists of an input layer, a material layer with
all fictitious material points evaluated by the constitutive model Dω

1 and an output layer.
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Again, 10 initializations and four different layer sizes are considered. Fig. 2.26 shows the
boxplots with the average validation error of each run. We select the architecture with
three units (or one fictitious material point) and assess its performance on test sets TIII

and TV with 100 curves of Types III and V each respectively. The lowest average error
for both test sets are around 0.63 MPa and 3.13 MPa, respectively. Fig. 2.27 illustrates
the accuracy of the network on a representative case from each of the test sets. Note
that despite the increase in the average error over non-monotonic and non-proportional
curves, the network is still capable of capturing relatively well its global trend.
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Figure 2.26: Absolute error for PRNNs trained on DPRNN = {18 Type I curves} over valida-
tion set VPRNN = {54 Type II curves} for RVE with two elastoplastic phases.
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Figure 2.27: Performance of the best PRNNs trained on 18 Type I curves over different
test sets for RVE with two elastoplastic phases.
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2.8.2. ELASTOPLASTIC AND NONLINEAR ELASTIC PHASES WITH THE SAME

MATERIAL PROPERTIES

In this study, a more complex elastoplastic model is considered: the material model pro-
posed by Melro et al. [16]. For the sake of brevity, the details of the implementation are
spared and the reader is referred to [16, 17] for further clarification. This model uses a
pressure-dependent yield criterion:

f (σ,σc,σt) = 6J2 +2I1(σc −σt)−2σcσt (2.35)

where I1 and J2 are stress invariants and σc and σt are compressive and tensile yield
stress, both defined as general hardening functions of the equivalent plastic strain ε

p
eq

with increment given by

∆ε
p
eq =

√
1

1+2ν2
p
∆εp :∆εp (2.36)

where νp is the plastic Poisson’s ratio, related to the non-associative flow rule. Plane
strain conditions are assumed.

Based on this constitutive model, we concoct a modified version for which the up-
dated internal variables calculated within the return mapping scheme are not stored at
the end of every time step. This way, although dictated by a strictly identical harden-
ing law and yielding criterion, no history-dependence is carried from one loading step
to another, resulting in a material that behaves elastically in the sense that the loading
and unloading follow the same path. This artificial material model allows us to illustrate
unique scenarios that challenge the applicability of the proposed network.

For this study, the elastoplastic model by Melro et al. [16] Dω
1 is used to describe the

matrix and our modified nonlinear elastic version Dω
2 to describe the fibers. The same

material properties are adopted for both constitutive models, with E = 3130 MPa, ν =
0.37, νp = 0.32 and the two hardening laws in Eq. (2.35) given by

σt = 64.8−33.6 exp(−εp
eq/0.003407)

σc = 1.2
(
64.8−33.6exp(−εp

eq/0.003407)
). (2.37)

Three different PRNN models are considered. First, the training and validation sets
consist of 18 Type I curves and 54 Type II curves, respectively. The architecture consists
of an input layer, a material layer containing two fictitious material points evaluated us-
ing the constitutive model Dω

1 and an output layer. In the second model, the training
set consists of 18 Type V curves and 54 Type V curves are used for validation. Recall that
these curves are non-proportional and non-monotonic loading paths generated by GPs.
The architecture in the first model is kept. Finally, in the third option, we train and vali-
date with the same amount and type of data as in the second model, but the architecture
is changed. This time, we evaluate one fictitious material point with Dω

1 and the other
with Dω

2 . Five different initializations are considered for each model. Fig. 2.28 shows the
performance of the best PRNNs using the different strategies on a representative case
from test set TIII which comprises 100 Type III curves.

The model with only Dω
1 trained on Type I curves does very well in describing the

monotonic behavior. Because both materials present in the micromodel have the same
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monotonic response, a single material model in the network is sufficient for describing
the monotonic behavior. However, upon unloading, the network is only able to repro-
duce the secant unloading behavior embedded in Dω

1 and fails to capture the contribu-
tion from the nonlinear elastic unloading of Dω

2 . Furthermore, in this particular com-
bination of constitutive models and under mononotonic loading, the response of the
micromodel is essentially the same as that of a homogenenous material. This empha-
sizes the point that the success we have had so far in capturing unloading accurately
after training only on monotonic data came from the fact that the material points in the
network included representative assumptions on the unloading behavior.
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Figure 2.28: Representative ε-σ curves from test set TIII using the best PRNN trained on
different training sets and constitutive models.

Training the PRNN with Type V curves does not improve the performance. On the
contrary, the model loses accuracy even for the monotonic part. By minimizing the error
of the entire loading path, which now includes multiple unloading cycles, the fitting ends
up as a compromise between the loading and unloading behavior. Finally, it is observed
that the network with both materials included in the material layer captures the mixed
unloading behavior much better, although this does come at a cost concerning how well
the monotonic part is described. Results can probably be improved by including more
material points of one or both types and increasing the amount of training data.

2.9. CONCLUSION

In this chapter, a novel network with embedded physics-based constitutive models is
proposed as surrogate model for the behavior of path-dependent materials in FE2 sim-
ulations. The central idea is to address common problems in modeling path-dependent
materials using black-box models (e.g. unique mapping between input and output and
limited extrapolation abilities) by taking a step back and reintroducing physics into the
network in a way that requires very little extra coding effort with respect to existing FE2
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frameworks. This is done by employing the same material models used for the micro-
scopic level as part of one of the layers of the network.

To accommodate this non-standard neural layer the following changes with respect
to standard neural network architectures are proposed. First, neurons are assembled in
groups of the size of the number of strain/stress components of the problem. These are
referred to as fictitious material points. Secondly, to take advantage of all the information
coming from the physics-based material model, we store the updated internal variables
used to fully describe the state of the fictitious material point in an auxiliary vector. With
that, when new strain values are fed, the material point will start from the last stored
internal variables. As a consequence, each subgroup follows a unique path without the
need to increase the feature space with extra history variables.

The properties and assumptions made by the physics-based constitutive model are
inherited by the network and play a major role in reducing the amount of data required
to mirror physical and complex behaviors such as elastic unloading/reloading. Here,
the decomposition of the strain in elastic and plastic parts is an assumption built in
the material model used to describe the nonlinear microscopic material phase and is
also observed in the network when the local stresses of the fictitious material points
are evaluated. This simple but highly-flexible arrangement allows the network to cap-
ture arbitrary unloading behaviors with only monotonic data, a stark contrast with other
popular models such as RNNs. The PRNN inherits from FE2 the idea that complex be-
havior of heterogeneous materials can be accurately described by letting simpler con-
stitutive models that represent the microscopic constituents interact. The difference is
that the interaction between the constituents is not based on micromechanics directly
but learned from data obtained from micromodel simulations.

Based on that, an extensive numerical comparison involving a state-of-the-art black-
box model, namely a Bayesian Recurrent Neural Network (referred to in this chapter as
RNN), was carried out in order to elucidate the abilities of the proposed network (re-
ferred to as PRNN). First, we trained both networks only on 18 monotonic curves with
known directions and proportional loading in a similar fashion as done to calibrate clas-
sical mesomodels. Such strategy led to poor performance when trying to predict other
random directions from the RNN, but good accuracy from our method (Fig. 2.11). Fol-
lowing that conclusion, the size of the RNN’s training dataset was sequentially increased
until the addition of more data did not result in significant gains in accuracy. At that
stage, the PRNN performed with the same level of accuracy but with a factor of 16 times
less data.

Next, both networks were used to predict non-monotonic loading. For that scenario,
the PRNN showed the same level of accuracy as before with the same minimal training
dataset (Fig. 2.12a). Such outstanding result is not observed in the RNNs, which again
required a larger training set. This time, non-monotonic loading curves were added un-
til the RNN’s accuracy could no longer be significantly improved. As a result, a 32 times
larger training dataset in comparison to the one used to train our network was necessary.
Furthermore, while our network continues to perform well in all the scenarios tested so
far, two other situations exposed the pitfalls of RNNs: (i) when trying to predict unload-
ing in a different location than the one seen in training (Fig. 2.14a) and (ii) when the step
size was modified (Fig. 2.15a). This is typically tackled by sampling different unloading
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behaviors with different step sizes, leading to the choice of arbitrarily long sequences.
However, we showed that this is a trivial scenario for the PRNN. The network is only as
sensitive to step size as the material models it includes.

In the last test, both networks were used to predict non-proportional and non-mono-
tonic paths and neither succeeded, although they failed at very different levels. While
the lowest error of the RNN was around 32 MPa, the best PRNN led to an error around
9 MPa error (Fig. 2.16a). Based on that, a second approach to generate the dataset was
considered. Random strain paths were generated from Gaussian Processes priors, which
produces non-proportional and non-monotonic loading as opposed to the proportional
loading previously considered for training. This time, the size of the training dataset
and the type of loading was also a variable for the PRNN. It was found that training the
PRNN on random non-proportional and non-monotonic curves yields higher accuracy
than training with known, proportional, and monotonic curves for all loading scenar-
ios (Fig. 2.18). Although training with known directions is appealing, having a network
that provides lower errors and consistent performance with random directions is also
interesting. Ultimately, the PRNN consistently outperformed the RNN with 64 times less
data.

After ensuring the PRNN capacity in several challenging scenarios for black-box mod-
els, one of the networks trained on non-proportional and non-monotonic curves was
chosen to surrogate the microscopic model in a set of two FE2 examples. The first ex-
ample concerned a tapered bar in transverse tension and was used to illustrate how the
different material models in the PRNN behave for a single macroscopic integration point
(Fig. 2.19). For different discretizations, speed-ups between 21000 and 31000 were ob-
tained for the online phase (Table 2.1). Such substantial efficiency gain is explained from
the dramatically reduced number of material model calls and the bypassing of solving
the nonlinear microscopic system of equations for macroscopic stress evaluation for a
single load step of each macroscopic integration point.

In the last example, a similar order of magnitude of speed-up was observed and the ac-
curacy of the PRNN was illustrated by comparing the ε-σ paths of different macroscopic
integration points of a plate with multiple cutouts subjected to tension (Fig. 2.25b). For
the analyzed cases, the time needed for a single FE2 analysis exceeded the total offline
and online time for the PRNN analysis, even though the selected problems had a very
modest number of macroscopic elements. Moreover, performing subsequent macroscale
analysis with the same material would not require any additional offline training and
would therefore leverage the complete speed-up of four orders of magnitude.

Finally, two additional studies were carried out to further demonstrate the flexibility of
the proposed approach in handling various types of material models with different levels
of complexity. In the first study, an elastoplastic model with different material proper-
ties was used to describe the two phases of a micromodel, while in the second a more
complex elastoplastic model and a nonlinear elastic phase were considered to describe
the constituents. For the first part, results followed the trend in which an accurate model
can be obtained by training with monotonic data only and a single model in the network.
In the second study, results illustrate potential pitfalls in not including both sources of
nonlinearity and how to address the issue to obtain an accurate and robust surrogate
model.
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APPENDIX. ENCODER WITH EXPLICIT PATH-DEPENDENCY
In this section, a different architecture for the encoder is presented. Here, the strains in
each of the subgroups ε j in the material layer are calculated based on the macroscopic
strain εΩ and on the internal variables stored in the previous time step αt−1

j . For that

purpose, a new set of weights is introduced in the network to learn howαt−1
j relates with

the local strains ε j . This formulation is depicted in Fig. 2.29, where an extended version
of Fig. 2.5b is used to illustrate the new connections. The purple arrow represents the
new set of weights, while the blue refers to the parameters that take into account the
macroscopic strain (as originally proposed in Section 2.4) and the black lines represent
the flow of inputs and outputs of the constitutive model.

Figure 2.29: PRNN cell with local strains in the fictitious material point j now depend on
the last internal variables state.

In the particular case where the architecture consists of input, material and output lay-
ers and no biases are considered, the current values used as strains input in the subgroup
j can be defined as

ε j = W j
1 ε

Ω
t +H j αt−1

j (2.38)

where W1 ∈ Rn1×n0 is the weight matrix connecting the material layer of of size n1 to
the input layer of size n0, H ∈ Rn1× IntVar is the additional weight matrix connecting the
material layer to the internal variables from the previous time step and αt−1 is the con-
catenation of all internal variables in the material layer. In Eq. (2.38), j is used to refer
to the part of the matrix (or vector) concerning the connections in the j -th subgroup. A
more general approach is to make the local strains dependent on the internal variables
of all subgroups. In that case, the additional weight matrix H has size Rn1× m·IntVar and
Eq. (2.38) simplifies to

ε j = W1 ε
Ω
t +Hαt−1. (2.39)

To compute the gradients of the weights H, we follow the procedure and notation de-
scribed in Section 2.4.4, but instead of multiplying the values d̄i by the activations of the
previous layer (or next layer to be backpropagated), which correspond to the strains in-
put, one must multiply these values by the history vector from the previous time step
(which corresponds toαt−1):

ÇL

ÇH
= d̄i hT

t−1 (2.40)
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where d̄i is defined in Eq. (2.27). In addition to that, an extra term must be included in
Eq. (2.28), H d̄i , to account for the new connections illustrated by the purple arrow in
Fig. 2.29.

In both alternatives, the explicit introduction of the internal variables to the encoder
makes the distribution of the macroscopic strain path-dependent. At this point, it is
worth stressing that the proposal in Section 2.4 does now show this feature, but does
take path-dependency into account in an implicit way by storing the internal variables
updated by the material models. The contribution from the path-dependent internal
variables also has a role in the tuning of the parameters in the encoder through the back-
propagation process (see Eq. (2.27) and Eq. (2.28)).

To assess the effect of introducing this feature in the network, we use the same RVE
geometry, material models, material properties, and plane stress conditions as in Sec-
tion 2.6 and Section 2.7. Following the study in Section 2.6.4 where the network is trained
with Type V curves and the architecture consists of an input layer, a single material layer
with six fictitious material points and an output layer. Fig. 2.30 shows the performance of
the PRNNs on different test sets with non-monotonic loading paths. In both scenarios,
the uncertainty bounds over the size of the training set are wider for the case in which the
internal variables of all fictitious material points are taken into account to evaluate the
strains in each of the subgroups. This is an expected behavior since more parameters
need to be tuned by the network in comparison to the methodology proposed in Sec-
tion 2.4. This difference is reduced if subgroup j takes into account only its own internal
variables to evaluate the local strains (see orange curves).

However, as the size of the training set increases, the uncertainty bounds become nar-
rower and the new architectures outperform the simpler case by a small margin before
all three methods converge to a similar error level. On that note, it is still unclear whether
this gain is worth the increased amount of data or how these networks perform in FE2

problems. Both topics are open for discussion in future research work. For the present
work, results indicate that the absence of an explicit path-dependent encoder is not im-
peditive to the performance of the network.
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3
EXPLORING THE LATENT SPACE IN

THE LOW-DATA REGIME

In this chapter, we shift focus to the interpretability of PRNNs and the effect of different
decoder architectures on the latent space. Particular emphasis is given to a new weight
normalization constraint, which acts as a regularization technique and enables robust
training in the low-data regime. A brief visual exploration illustrates how these changes
impact the latent space, and how the fictitious stress can align with the true state of
the RVE without explicit training. Reaping the benefits of a meaningful latent space, a
case study illustrates how information from the microscopic level can be retrieved and
incorporated into a multi-task approach that does not require extra parameters or larger
training sets.
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3.1. INTRODUCTION
Building on the developments presented in Chapter 2, this chapter further discusses
the interpretability of a specific component of PRNNs, the decoder, and how it can be
tailored to build accurate models with limited training data. While these networks can
employ an arbitrary multilayer perceptron for both the encoder and decoder, here we
consider a linear relationship. We also adopt the same Representative Volume Element
(RVE), constitutive models and material properties as presented in Chapter 2, and only
embed elastoplastic models in the material layer. This choice simplifies the model se-
lection study and allows us to visualize and interpret more easily how variations on the
decoder impact aspects such as interpretability, accuracy, and training requirements.

In this chapter, we are particularly focused on the low-data regime. This scenario re-
flects a practical constraint and consists of a stronger test of model generalization. Gen-
erating large datasets for training purely data-driven models, especially recurrent archi-
tectures, can quickly become a computational bottleneck when factoring in the cost
of high-fidelity simulations. Strategies such as data augmentation [1] and combining
multi-fidelity data [2] alleviate the issue, but the need remains for developing models in-
herently robust with low training requirements. While PRNNs already show strong per-
formance in this setting, they can benefit from further improvements. In Chapter 2, we
showed how 18 monotonic paths in basic loading directions (e.g. uniaxial strain, pure
shear, and biaxial cases) were enough to capture unseen unloading/reloading behav-
ior accurately. Here, we investigate how architectural design choices can help push this
number to a new lower bound without compromising accuracy.

Robustness in the low-data regime is especially valuable when training on experimen-
tal data, helping avoid (additional) time-consuming and costly testing campaigns. Data-
efficient models can also be more easily integrated into frameworks where the surrogate
is trained on-the-fly as more data/information on the micromodel becomes available.
Beyond accuracy, the changes in the decoder are evaluated on their impact on the latent
space, specifically on how fictitious quantities relate to the true microscopic ones. We
then select a relevant microscopic measure to compare with its fictitious counterpart
without explicitly training to approximate it. This sets the stage for incorporating the
microscopic quantity of interest into a multi-task approach.

The different decoder connectivities are presented in Section 3.2, followed by an ac-
curacy assessment in the low-data regime in Section 3.3. Then, a brief illustration of the
link between the latent space of the PRNN and the microscopic quantities is presented
in Section 3.4. In Section 3.5, a case study illustrates to what extent macroscopic and
microscopic quantities can be learned simultaneously without compromising perfor-
mance. Finally, the main conclusions of the chapter are summarized in Section 3.6.

3.2. TOWARDS SPARSITY AND INTERPRETABILITY
In this section, different variations of the decoder architecture are investigated. We start
with the basic dense layer design from Chapter 2, in which all stress components from
a material point connect to all homogenized stress components. Next, we remove the
cross-component connections, allowing only matching components to contribute to the
homogenized stress. Finally, we impose that all stress components from a material point
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Figure 3.1: Connectivities of decoder investigated in this chapter.

share the same weight. These three options are hereafter referred to as “Dense”, “Com-
ponent” and “Point”, respectively, and are illustrated in Fig. 3.1. Their predictions can be
summarized as follows

Dense: σ̂Ωi =
m∑

j=1

∑
k

wσ̂Ωi −σk, j
σk, j i = xx, yy, xy k = xx, yy, xy

Component: σ̂Ωi =
m∑

j=1
wσ̂Ωi −σi , j

σi , j i = xx, yy, xy

Point: σ̂Ωi =
m∑

j=1
wσ̂Ω−σ j

σi , j i = xx, yy, xy

(3.1)

where the absolute function is applied to the weights wσ̂Ωi −σ(·) of all architectures to en-

sure positivity.
In addition to these changes in the connectivity, we also investigate the addition of a

normalization on the sum of the weights connecting to each component i of the homog-
enized stress: 

Dense:
∑m

j=1

∑
k

wσ̂Ωi −σk, j
= 1.0

Component:
∑m

j=1 wσ̂Ωi −σi , j
= 1.0

Point:
∑m

j=1 wσ̂Ω−σ j
= 1.0.

(3.2)

The idea is to reinforce the parallel with Eq. (2.14), where the weights used for the numer-
ical integration are strictly positive, with their sum totaling the volume of the RVE. For
the same number of material points, we thus move gradually from a flexible (Dense) to
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a more rigid (Point) architecture. In the following sections, we illustrate how these varia-
tions affect the network in terms of training requirements, accuracy, and interpretability.

Before assesing their performance, we visualize the decoder architectures discussed
previously through the lens of squarified treemaps. Details on model selection are omit-
ted for now but can be found in Section 3.3, where these variations are assessed in terms
of accuracy. Here we consider networks trained on 5 loading paths randomly selected
from a pool of 1000 non-proportional and non-monotonic paths, referred to as GP-based
paths.

(a) Dense decoder with 4 material points: full connectivity between output and material layer allows high
expressivity

(b) Component decoder with 10 material points: sparse connectivity removes cross-component contributions

(c) Point decoder with 10 material points: to reflect the computational homogenization of the micromodel
full-field solution, shared weights per material point are imposed to compute σ̂Ω

Figure 3.2: Representation of weights from Dense, Component and Point decoders.

In the treemaps, each rectangle represents a connection used to compute a given com-
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ponent of the homogenized stress σ̂Ωi . Specifically, the area of each rectangle is propor-
tional to the magnitude of the corresponding weight, not to be confused with the mag-
nitude of the stress computed by the constitutive model. In Fig. 3.2a, we illustrate the
decoder weights of a PRNN with Dense decoder and four material points. Due to the full
connectivity between the output and material layer, all stress components from the four
material points are used when computing σ̂Ωi , resulting in a treemap with 12 rectangles.
In each treemap, different contributions from the same material point can be seen, high-
lighting the high flexibility of this option. This flexibility, however, deviates from the true
homogenization process. While the size of the rectangles related to cross-components
do not necessarily imply they have the highest contribution in the approximate homog-
enized stress, in the RVE, cross-component stress responses do not contribute at all.

The second alternative, shown in Fig. 3.2b, removes the cross-contribution from fic-
titious stress components that do not match the predicted homogenized stress com-
ponent, resulting in a design with less flexibility, but with better interpretability and a
closer link to the underlying physical pattern being learned. Note that in this case, be-
cause weights are still defined per component and per material point, in some cases, a
material point that has close to no contribution in one component can have a signifi-
cant contribution in another (e.g., see the weights associated with material point 3 in
Fig. 3.2b).

Lastly, in Fig. 3.2c, we plot the treemaps for a PRNN with 10 material points using a de-
coder with connections defined per point. As a result, the representation of the weights
considered for each component of the homogenized stress is precisely the same. This
layout is closest to the homogenization procedure, where integration weights are as-
signed per material point, not per component. This is the least flexible architecture but
the most interpretable one. In all cases, if the sum of the areas in each treemap amounts
to 1, we have the normalized version of the decoder.

3.3. ASSESSING ACCURACY

In this study, several PRNNs are trained over different material layer sizes ranging from
2 to 30 fictitious material points and training set sizes ranging from 1 to 5 curves. For
each combination, 10 initializations are considered, and in each one, the training set
is randomly drawn from a pool of 1000 curves. The data generation procedure follows
the approach discussed in Section 2.5, with GP-based paths being the preferred choice
due to their higher complexity. Fixed validation VGP and test TGP sets consisting of 150
GP-based paths each are considered for training and assessing the network in terms of
accuracy.

The Adam algorithm is used to optimize the network’s parameters with two stopping
criteria. The first is a maximum number of epochs, set to 8000, and the second is an
early stopping criterion which interrupts the training if there is no improvement on the
validation loss for 400 consecutive epochs. The batch size is set to 1 path, while the
remaining optimization parameters are Pytorch’s defaults. The training and validation
losses are calculated using the Mean Squared Error (MSE), while model performance on
the test set is assessed using the Mean Absolute Error (MAE) and its relative counterpart
(RMAE) for more interpretable measures of accuracy.
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Finally, following the idea that the decoder weights represent a homogenization oper-
ator, we modify the initialization of this set of parameters to:

1) draw weights from an uniform distribution between 0 and 1;

2) normalizing weights connecting to σ̂Ωi , wσ̂Ωi −(·), to sum to 1.

Note that this procedure normalizes the decoder weights only at the start of the training
procedure. For unnormalized decoders, these weights are free to change and to sum
to arbitrary (positive) values as epochs evolve, while for normalized decoders, the sum-
to-one instruction is a constraint fulfilled at all times. In the following, we start with
the unnormalized and then move to the normalized decoders to disentangle potential
accuracy gains stemming from two distinct aspects: sparsity and weight normalization.

3.3.1. UNNORMALIZED DECODERS

In Fig. 3.3, we plot the average errors of the trained networks over the test set TGP for all
combinations of material layer and training set sizes. Each colored surface corresponds
to a different decoder architecture, and each vertice of a surface corresponds to the av-
erage error of the different initializations. One observation from this plot concerns the
marked difficulty to generalize from limited data, illustrated by the steep growth of errors
as the number of training curves decreases.
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Figure 3.3: Average errors of PRNN trained on different decoders, training set sizes and
material layer sizes over test set TGP.

For one training curve in particular, Fig. 3.4 shows that given enough epochs, the net-
works eventually fine-tune their predictions over training, which often compromises
their generalization on unseen data. To avoid this (potential) overfitting, we employed
an early stopping strategy by halting training and selecting the model at the historical
lowest validation set, as highlighted by the blue and red curves in Figs. 3.4a and 3.4b, re-
spectively. Still, the amount of data is insufficient for the network to reliably extract any
pattern, resulting in consistently high validation errors.
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Figure 3.4: Training and validation losses from different initializations of PRNNs with
Dense decoder trained on 1 curve and two material layer sizes.

As the decoder connectivity is reduced - from Dense to Component to Point — the
network incorporates stronger inductive biases, more closely mirroring the RVE homog-
enization. This comes at the cost of flexibility, but it also leads to improved generaliza-
tion. In Fig. 3.3, the surfaces associated to the sparse decoders, Component and Point,
are virtually always below the one associated to the Dense architecture. For more de-
tailed comparison, we plot in Fig. 3.5 the relative errors of the three architectures over
the training set sizes considered. The networks trained on a single curve show large vari-
ance for all decoder variations, ranging from 13% to errors beyond 100%. With smaller
networks (2-6 fictitious mat. points), however, the addition of more curves to the train-
ing set result in a significant accuracy gain and large variance reduction, consistently
reaching the 10% mark with 4 training curves. Finally, with 5 curves, the accuracy of the
three decoders converge towards the same level.

To illustrate the impact of the different connectivities on the latent space and predic-
tion, we plot in Fig. 3.6 the local stresses and their decoded contributions to the ho-
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Figure 3.5: Relative error over TGP for different material layer sizes and training set sizes,
with solid lines referring to the average performances.

mogenized stresses for two networks on a representative test path from TGP. Each row
corresponds to a fictitious material point, while the last row corresponds to the homoge-
nized stresses. To the right of the local stresses of each point, we illustrate the squarified
treemaps representing the decoder weights per component. Although both models have
virtually the same accuracy, these plots help elucidate how local stresses contribute dif-
ferently to the homogenized stress. For example, in Fig. 3.6a, point m3 contributes to
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Figure 3.6: Prediction and latent space of PRNNs trained on 5 curves with different de-
coder types and 4 material points on representative curve from TGP.
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the x and x y components but is almost absent to y . With the Point decoder, this kind of
adjustment is not possible since the weight is shared across all components of a point.

Overall, although sparse architectures improve performance in the low-data regime,
training on limited data, defined here as 1-2 curves, remains a challenge. To address
that, we explore in the following section the role of the weight normalization, presented
in Section 3.2, in improving generalization and reducing even further training require-
ments.

3.3.2. NORMALIZED DECODERS

Given the difficulty of generalizing from limited datasets, we now explore how a weight
constraint can improve the performance of the network. This constraint (see Eq. (3.2)) is
inspired by the interpretation of decoder weights as volume contributions in the homog-
enization, and we begin by comparing the PRNNs with Dense and Component decoders.
Fig. 3.7 shows the relative errors over the test set TGP for two training set sizes. A general
remark is that the normalized decoders generally show superior performance across all
combinations of model complexity and training set size. Most remarkably, they benefit
from the inclusion of more material points while generalizing well (i.e. error below 10%)
with training sets as small as two curves, a stark contrast to the unnormalized decoders.

Figure 3.7: Effect of normalization on Dense and Component decoders in terms of rela-
tive errors over test set TGP for different training set and material layer sizes.

Another positive outcome brought by the normalization is the reduced variance. When
training with small sets, the randomly selected training paths might cover distinct parts
of the design space (compression and tension) or wander around a narrow portion of
it. With large decoder weights, the model becomes overly sensitive to these variations.
Normalization mitigates this effect by limiting the influence of any single material point,
promoting more stable and consistent outputs across different training sets.

To illustrate the matter, we consider the best PRNN trained on one and two paths with
30 material points from Fig. 3.7. The training and testing paths of each are shown in
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Fig. 3.8a. Despite covering distinct regions of the design space, the model trained on
a single curve already produces smooth homogenized stresses, though with high bias,
as illustrated in Fig. 3.8b. As the training set increases to two curves, the error drops
from 20% to 12%. A final remark from Fig. 3.7 is that no clear distinction can be made
between the two normalized decoders. While their unnormalized counterparts showed
discernible differences in performance under limited data and/or larger material layers,
the regularized versions show improved and similar accuracy levels.

(a) Strain view of paths used to train and test networks PRNN1 and PRNN2 with 30 material points

(b) Stress-strain curve of testing path in dark grey shown in Fig. 3.8a using PRNN1 and PRNN2

Figure 3.8: Training and test paths for 2 PRNNs with Normalized component decoder
and 30 material points trained on 1 and 2 curves.

Next, we move to the Point architecture. In this case, Fig. 3.9 shows a more nuanced
conclusion. With a very strong inductive bias, the Normalized point architecture reaches
errors as low as 13% with a training set consisting of a single curve, proving to be, on
average, the best option in this extreme scenario. However, as more training data is con-
sidered, the gain in accuracy is small and reaches a plateau around 4-5 curves with 12%,
while the remaining options surpass it, including its unnormalized counterpart, with er-
rors below 5%.
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Figure 3.9: Relative error over TGP for different combinations of material layer sizes and
training set sizes using Point and normalized decoders, with solid lines refer-
ring to the average performances.

To better understand why normalization is less effective with the Point decoder, we
plot in Fig. 3.10 the relative training and validation errors for the smallest and largest
training set sizes considered so far for both the normalized and unnormalized versions.
As the number of training curves increases, with the Point decoder, both training and



78 3. EXPLORING THE LATENT SPACE IN THE LOW-DATA REGIME

validation errors decrease. In the normalized counterpart, while the validation errors
decrease with more data, the training error increases slightly, with a plateau around
10%, indicating underfitting. However, adding more material points has minimal effect,
suggesting that despite the relatively strong performance with only one training curve,
weight normalization ends up overconstraining the architecture. In short, the same in-
ductive bias that enables robust training on limited data also causes learning to saturate
as more data becomes available.

Figure 3.10: Relative error over training and validation sets for PRNNs using Point de-
coder with and without normalization.

Finally, we briefly illustrate how the choice of enforcing the decoder weights sum to 1.0
compares with other alternatives for the Normalized component and Normalized point.
As the performance of the Normalized component was very similar to the Normalized
dense one, we expect the same conclusions to hold. For this study, we consider three
additional scenarios where the weights per component are normalized to sum to 0.1, 2.0
and 5.0. Fig. 3.11 shows the accuracy of the network in each case. In the Normalized
component case, none of the alternatives match the performance of the one explored
in this section previously where weights sum to 1. Our choice naturally aligns with the
physical interpretation of the decoder as a volume-weighted homogenization. Further-
more, unlike common regularization strategies based on penalty parameters, such as L1
or L2, no additional hyper-parameter is introduced.

For the Normalized point decoder, however, loosening the sum of the weights to higher
values shows a positive effect for large networks (30 points) and training sets (4-5 curves),
as shown in Fig. 3.11b. Nevertheless, the gain in accuracy is only as good as the version
without constraint, while the original sum to 1 version remains the best option with lim-
ited data.
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3.4. A VISUAL EXPLORATION OF THE LATENT SPACE

Previously, the effect of the different decoders was illustrated in terms of accuracy. In this
section, we illustrate their impact in the latent space variables, shedding light on how the
weight normalization constraint and sparsity work through a series of visualizations on
representative (test) loading paths.

Recall that our latent space is composed of strains, learned by the encoder, and stresses
and internal variables, obtained from the embedded constitutive models. All networks
used to illustrate this section were trained on 5 curves and have 30 fictitious material
points. Specifically, the networks with the lowest relative test error among the different
initializations were selected.

(a) Normalized component

(b) Normalized point

Figure 3.11: Relative error for PRNNs using Normalized component and Normalized
point decoders with different sum constraints for fixed material layer sizes.
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3.4.1. FICTITIOUS VS MICROSCOPIC STRESSES

Firstly, we compare the distribution of the fictitious stresses obtained in the material
layer with the true full-field stress distribution of the micromodel for the different de-
coder architectures explored in the previous section. Fig. 3.12 shows the histogram com-
parison for an unseen GP-based curve. To allow a side-by-side comparison, we plot 4
time steps out of the 60 considered for the component with the highest magnitude only.
Each row corresponds to the snapshots of a specific type of decoder and is color-coded
accordingly.

In Fig. 3.12, only the distribution from the Normalized component shows a visually
good match with the true stress distribution in the matrix, while the unnormalized al-
ternatives show a more uniform distribution centered around zero across all time steps.
This is reflected in Fig. 3.13, where we plot the mean matrix stress at each time step for
the three stress components. Note that the Normalized point also captures the mean
matrix stress well, but its accuracy in predicting the homogenized stress, our training
target, is somewhat limited, as discussed in Section 3.3.2.

Other metrics could be used to estimate the distance between the two distributions
(true and fictitious). The Wasserstein distance, for example, provides more nuanced in-
sights into the distribution differences, going beyond pointwise comparisons or aggre-
gate errors. For simplicity and practicality, however, we focus on the following two mea-
sures: the mean and the maximum stress. For this application, these metrics already
capture key aspects of the mismatch without introducing additional computational and
interpretability burdens. Fig. 3.14 shows the relative errors for the mean and maximum
stresses over the test set TGP for the different decoders.

Without normalization (left), all decoders struggle to capture either the mean or the
maximum, stabilizing at high errors. With normalization (right), errors in the mean
reach lower values, with best performances as low as 10%. For the maximum stress, how-
ever, only the Normalized component shows a marked improvement, with errors below
20% in the best-case scenario, while the other alternatives remain comparable. These
results indicate that normalization is crucial for aligning the fictitious distribution more
closely with the true one, but it is not sufficient on its own. The best match between the
distributions comes from the Normalized component, an architecture that introduces
some structure regarding cross-component stress contributions, unlike the Normalized
dense, but still has enough flexibility to allow weights to vary per component, unlike the
Normalized point.

Finally, it is worth mentioning that although we started our comparison directly with
the matrix phase only, we included in Appendix a comparison on the similarity of the
fictitious stresses with the full micromodel response. Based on the lowest error, the ficti-
tious distributions are indeed closer to the matrix phase than to the full micromodel.
This agreement is expected, given the dominance of the matrix in the current setup.
However, for more intricate micromodels (e.g., a richer mix of constitutive behaviors
and/or several phases), such clear alignment should be carefully examined.

3.4.2. FICTITIOUS VS MICROSCOPIC INTERNAL VARIABLES

Next, we investigate the similarity between the fictitious and the true internal variables
of the micromodel. This time, we narrowed our study to four decoder types: Dense, Nor-
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Figure 3.12: Histogram distributions from the stresses computed in the matrix phase of
the micromodel vs the stresses obtained from the fictitious material points
of PRNNs with different decoder architectures (color-coded) at several time
steps of an unseen GP-based loading path.
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Figure 3.13: Mean matrix stress using different decoder architectures for unseen and rep-
resentative GP-based path from Fig. 3.12.

Figure 3.14: Relative error over TGP of fictitious stresses with different decoders com-
pared to true microscopic stress distribution over matrix phase.
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malized Dense, Normalized component, and Normalized point. The first one is used
as a baseline reference (no sparsifying structure or weights sum constraint). The test-
ing loading path used for illustration purposes consists of a proportional loading path,
specifically uniform stretch in the x-direction with free deformation of the y-direction.

Figure 3.15: Distribution of plastic strains and equivalent plastic strain for PRNNs with
different decoders on proportional loading path.

Fig. 3.15 shows two types of histograms: on the left, the distribution of one of the
components of the plastic strain tensor, and on the right, the distribution of equivalent
plastic strain. Again, the pattern from the network with the Dense decoder produces a
distribution roughly centered around zero, while the architectures with sparsity and nor-
malization follow the one-sided true distributions, though with limited accuracy. When
it comes to the equivalent plastic strains, however, all alternatives show only positive
values, a consequence of using constitutive models grounded in physics laws.

While the tailored changes in the decoder help align the fictitious and true distribu-
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Figure 3.16: Relative error between mean fictitious plastic strains and mean microscopic
plastic strains (matrix phase only) for PRNNs with different decoders on pro-
portional loading path.

tions of plastic strain, Fig. 3.16 shows that the overall match remains significantly poorer
than the stress comparison in Section 3.4.1. This is expected since the networks are
trained only on homogenized stress snapshots and only embed the matrix constitutive
model, lacking the richer microstructural details present in the full RVE.

3.5. FROM SINGLE TO DOUBLE-TASK BASED ON THE LATENT

SPACE
Building on the findings in Section 3.4 regarding the similarity between the fictitious
and the microscopic distributions, we now explore how this knowledge can be leveraged
to predict not only homogenized quantities, but also relevant microscale information.
In particular, we are interested in predicting the maximum hydrostatic stresses in the
matrix, as these have been recently linked to macroscopic failure [3, 4].

While the PRNN cannot predict failure directly, by establishing a threshold maximum
stress one could, for instance, transition to a failure state (e.g., by inserting cohesive seg-
ments), switch to another surrogate model, or revert back to a full-order micromodel at
the corresponding macroscopic integration point. To obtain the maximum hydrostatic
stress in the matrix without modifying the current architecture, we add the following
steps to the forward pass at each time step:

1) with the stresses computed by material model, compute the hydrostatic stress for
each fictitious material point;

2) from the pool of hydrostatic stresses, select the maximum.

Our first test scenario employs the same networks considered in the previous sections
- trained to predict σ̂Ω - to now predict our new quantity of interest σωhydro,max. For this,
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we consider the test set TGP with 150 curves, and refer to the maximum hydrostatic stress
values as T max.

GP when predicting the “Maximum” task (short for the maximum hydro-

static stress in the matrix) and T avg.
GP when predicting the “Average” task (short for the

homogenized stresses).
We focus on one specific decoder architecture, the Normalized component, which

showed the lowest error between the maximum fictitious stress and the maximum mi-
croscopic stress over the matrix phase in Section 3.4.1. The performance over the av-
erage task was discussed in detail in Section 3.3, where we showed that with as few as
two curves, relative errors in predicting the homogenized stresses remained consistently
around 10% or below across all material layer sizes tested.

For the unseen Maximum task, Fig. 3.17 shows that relative errors plateau around 30%
for training sets with two curves. With more training data (4-5 curves), the average er-
ror decreases to around 24%, with the best performance at approximately 16%. While
these results show some correlation between the fictitious and true maximum hydro-
static stresses without training, the accuracy remains insufficient. Therefore, in the next
section, we explicitly add the maximum hydrostatic matrix stress as a supervised target.

Figure 3.17: Test set errors of PRNN with Normalized component decoder over the un-
seen task of predicting the maximum hydrostatic matrix stress.

3.5.1. INCORPORATING MAXIMUM HYDROSTATIC STRESS DATA

In this section, we investigate a double-task approach to predict the homogenized stress
tensor and the maximum hydrostatic stress over the matrix phase. For that, two alterna-
tives were investigated: a joint and a sequential learning approach. In the joint learning
approach, we compute an additional loss term related to the maximum task and add it
to the term related to the average task as follows

ℓdouble = ℓavg. + 1

N

N∑
i=1

1

2
∥ σωhydro,max(εΩi )− σ̂ωhydro,max(εΩi ) ∥2

︸ ︷︷ ︸
ℓmax.

(3.3)
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where ℓavg. is the loss function shown in Eq. (2.21). In this case, both encoder and de-
coder are trained with information from both tasks. In the sequential approach, encoder
and decoder are instead trained separately. First, we train the encoder of the PRNN to
learn the Maximum task. Since no trainable decoder is needed for that, in the second
stage, the decoder is trained to learn the Average task while keeping the learned encoder
from the Maximum task intact. The two learning schemes are illustrated in Fig. 3.18. In
the sequential approach, switching the order of the tasks is not possible, since training
for the Average task encompasses both encoder and decoder.

Figure 3.18: Joint vs sequential learning for double-task model.

Fig. 3.19a shows the errors of the two approaches on both tasks. On the Maximum task,
there is only a slight gain in jointly learning the two tasks. However, in the second stage
of the sequential approach, where the Average task is evaluated, the networks trained
jointly show significantly lower errors. Recall that, in the second stage, only the decoder
is trainable, limiting the expressivity of the network - especially considering the con-
straints introduced by the sparsification and weight normalization. The joint learning
approach is therefore the preferred approach considering both tasks. To further assess
the effectiveness of this strategy, we compare its performance to that of training network
independently for each task.

3.5.2. DOUBLE-TASK VS SINGLE-TASKS

In this section, we refer to the joint learning approach discussed in the previous section
as “Double” and compare its performance with the two single-task counterparts (ℓmax.

and ℓavg.) to assess the benefits and shortcoming of that strategy. For that purpose, we
use the networks trained to learn the Maximum task at the first stage of the sequential
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approach shown in Section 3.5.1, here referred to as Single (max.), while the networks
trained to learn the homogenized stresses shown in Section 3.3 are referred to as Single
(avg.).

In Fig. 3.20a, we plot the 3D landscape of the errors for different training sets and ma-
terial layer sizes on the Average task. For smaller networks (e.g., 2 and 4 material points),
the difference between the single-task and double-task approaches is substantial across
all training set sizes. For larger networks, this difference is minimal, and the two sur-
faces are virtually overlapping. Overall, jointly trained networks tend to trade off their
accuracy on the Average task to capture the Maximum task better. Once the network
is large enough to capture the complexity of both tasks, this trade-off vanishes, and the
performance across both objectives becomes comparable to or better than that of the
single-task counterparts.

On the Maximum task, we observe the opposite trend in Fig. 3.20b. This time, the
double-task approach yields a more accurate prediction, whereas the networks explic-
itly trained to predict the maximum hydrostatic stress exhibit slightly higher errors. This
suggests that the Maximum task benefits from the additional information on the ho-
mogenized stresses, which is particularly useful for bringing the stresses from the latent
space closer to the RVE stress distribution. The total error from the two single tasks is
summed and shown in Fig. 3.20c for two training set sizes, 2 and 5 curves. With 10 ma-
terial points and 5 training curves, the total error for both tasks can go as low as 6 MPa.
In terms of relative errors, this translates to a 7-10% error in each task, as illustrated in
Fig. 3.21.

Next, we select the PRNN with the lowest error from the double-task approach to vi-
sualize the latent space for one loading path from the test set TGP. In Fig. 3.22a, we show
the hydrostatic stress evolution throughout 60 time steps for each one of the 8 fictitious
material points and highlight only the parts where they are maximum. The combination
of these parts is plotted in Fig. 3.22b against the true maximum hydrostatic stress from
the micromodel.
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Figure 3.19: Comparison of PRNNs trained on 5 curves adopting joint vs sequential
learning on Maximum and Average tasks over test set TGP.
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Figure 3.20: Test set errors of PRNNs trained for single and double-task and joint learn-
ing with limited data sets over the homogenized stress and maximum mi-
croscopic hydrostatic stress.

3.6. CONCLUSIONS
In this chapter, different decoder variations for PRNNs with linear encoder and decoder
were analyzed, focusing on the impact of weight normalization and sparsity on accuracy
and interpretability. We illustrated how the latent space of these networks closely mir-
rors the RVE state without explicit supervision. Drawing on the physical analogy to RVE
volumes, we introduced a constraint that interprets decoder weights as relative volume
contributions from fictitious material points. This normalization not only improves in-
terpretability but also enhances robustness and accuracy and is particularly important
when training with limited data.
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Figure 3.21: Relative error for Maximum and Average tasks of PRNN trained on both ho-
mogenized and maximum stress data.

We showed that as few as two training curves are sufficient to consistently achieve ho-
mogenized stress prediction errors of around or below 10%, depending on the decoder
architecture. While effective in most cases, this constraint can become overly restrictive
in configurations where weights are shared per point, thereby limiting flexibility. Beyond
the accuracy and robustness gains, normalization serves as a regularizer, eliminating the
need for hyperparameter tuning. It also helped align the fictitious stress distribution
with the distribution from the RVE, especially given the sparsification. In contrast to
other architectures, sparser architectures enable us to disentangle and visualize effects
more easily.

Finally, we demonstrated how a meaningful latent space enables the retrieval of rel-
evant microscopic quantities. In the study case discussed in this chapter, leveraging
quantities from the latent space and incorporating them into a joint learning strategy to
predict both homogenized and microscopic quantities introduced no additional param-
eters or architectural complexity. The findings in this chapter emphasize how decoder
constraints, sparsity, and physically inspired design choices can improve performance
in terms of accuracy and interpretability.

APPENDIX. MATRIX VS FULL MICROMODEL
Fig. 3.23 shows the relative error between the mean and maximum stresses from the
fictitious material points of PRNNs with different decoders trained on 5 curves and the
true microscopic stresses over two domains: matrix phase only and full micromodel.
For both metrics, the difference between the fictitious and the true stresses grows as the
networks gains complexity and plateaus around 10%, with the match with the matrix
phase quantities being the best overall.
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(a) Normalized component - Mean stresses (b) Normalized component - Maximum stresses

(c) Normalized point - Mean stresses (d) Normalized point - Maximum stresses

Figure 3.23: Relative error of fictitious stresses from normalized and sparse decoders
trained on 5 curves compared to true microscopic stresses over matrix phase
and full micromodel.
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4
DAMAGE MODELS TO CAPTURE

DEBONDING AT MICROSCALE

In the previous chapters, PRNNs have been studied in the context of bulk homogeniza-
tion. This chapter marks our first step towards a formulation that includes damage mod-
els into the micromodel. With composite materials in mind, we simulate fiber-matrix
interface debonding using interface elements. As a result of the diffuse damage, stiffness
degradation is present without macroscopic softening. In the network, this increased
complexity brings up new challenges that prompt a series of changes to the original ar-
chitecture in Chapter 2 to better integrate the new cohesive zone models used to de-
scribe the constitutive relations at the interface elements with the remaining (bulk) con-
stitutive models studied thus far.

For coherence with the remaining parts of this thesis, some figures were updated and the
introduction was shortened with respect to the published source material:
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“Physically Recurrent Neural Networks for computational homogenization of composite
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(2025), 105668. ISSN: 0997-7538. DOI: https://doi.org/10.1016/j.euromechsol.
2025.105668
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4.1. INTRODUCTION

Much of the recent literature on surrogate modeling focuses on predicting (hyper)elastic
or elastoplastic behavior. Surrogate modeling for damage and fracture mechanics appli-
cations is a much less explored field. For such cases, some of the critical limitations in
conventional surrogate models have only recently started to be unveiled and addressed.
For example, Wang and Sun [1] used deep reinforcement learning techniques to cre-
ate traction-separation laws, but did not apply the model in a multiscale setting. In the
works of Liu [2, 3], a deep material network (DMN) was developed, which describes the
RVE with a network built up from physics-based building blocks.

In [2], debonding effects in the RVE were captured using adaptable cohesive building
blocks within the network. In a multi-stage training strategy, one of the phases from
the DMN trained for the bulk material is enriched with the interface interaction learned
from a second DMN built on top of cohesive building blocks. As a result, the accuracy
of the final network is somewhat limited by the original bulk DMN. In [3], this method
was extended to localization problems using a cell-division scheme, which overcame the
difficulties of selecting the proper RVE size. While these networks excel in extrapolating
from linear elastic data to nonlinear and path-dependent behavior, training and online
evaluation are not straightforward. These two stages involve different input spaces, and
an iterative Newton-Raphson scheme is required for the online stage [2, 3]. Further, a
probabilistic machine learning approach using Bayesian regression was proposed in [4]
and also applied to active learning of traction-separation relations in a multiscale set-
ting, but this approach was not made suitable for capturing unloading behavior.

In fracture mechanics problems, the computational cost involved with FE (without
a multiscale framework) can likewise be prohibitive. A noteworthy approach to deal
with that is proposed in [5], where a domain separation strategy is employed to focus
the computational power on the fracture region, which requires most of the attention.
The domain separation strategy can also be used in multiscale settings, as proposed by
Oliver et al. [6]. To further reduce the number of sampling points, it is combined with an-
other key technique based on model order reduction, specifically the Reduced Optimal
Quadrature (ROQ). However, these methods are highly dependent on snapshots, and the
complexity of the problem increases with nonlinear and path-dependent materials.

In this chapter, we build on the PRNN developments in Chapter 2, where we incor-
porate knowledge of classical constitutive modeling into a neural network for the bulk
homogenization of path-dependent heterogeneous materials. Here, we present a key
extension to that framework to account for microscale damage. The study is restricted
to diffuse damage in the form of microscale debonding in composite materials. The aim
is to describe the stiffness degradation resulting from diffuse damage without the occur-
rence of macroscopic softening.

A brief discussion on FE2 is presented in Section 4.2, this time focusing on the con-
siderations needed to account for interface elements, followed by a short introduction
to PRNNs. In Section 4.3, the details on the data generation for training and testing the
networks are illustrated. In Section 4.4, the performance of the existing PRNN on cases
with stiffness degradation is tested, motivating the development of new architectures
introduced in Section 4.5 and assessed in Section 4.6. Finally, Section 4.7 presents the
main conclusions of this study.
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4.2. THEORETICAL BACKGROUND
In the following sections, the foundational aspects of the methods used in this chapter
are discussed. This includes an overview of the FE2 method and the homogenization
procedure, as well as the main features and limitations of the existing PRNN.

4.2.1. THE FE2 METHOD

Computational homogenization with the FE2 method allows for capturing the response
of composite materials, for cases where it is difficult to do that on the macroscale due to
the complex interaction between nonlinear constituents and microstructural geometry.
In this approach, the structure is discretized as a homogeneous macrostructure, where a
heterogeneous micromodel is nested into each macroscopic integration point of it [7–9].
The micromodel is assumed to be a representative volume element (RVE). The macro-
scopic strain values are downscaled as boundary conditions for the micromodel, where
the microscopic boundary value problem (BVP) is solved. The microscopic stress values
obtained from the BVP are then upscaled back to the macromodel after a homogeniza-
tion operation. This bypasses the need for any assumptions on the constitutive relation
at the macroscale.

The schematics of the FE2 method is shown in Fig. 4.1. The macroscopic solid domain
is denoted by Ω, and the surfaces where the Dirichlet and Neumann boundary condi-
tions are applied are denoted as ΓΩu and ΓΩf , respectively. Here, we simulate damage

at the fiber-matrix interface, which precludes global softening of the micromodel and
avoids the need for inserting a discontinuity on the macroscale. The discontinuity in the
microscopic domain is denoted by Γωd . At the fracture surface, the two opposite sides of
the crack are differentiated by a + and a − sign.

w

Figure 4.1: FE2 framework with detailed zoom on interface element.

The displacement field in the micromodel with domain denoted asω is approximated
for the boundary conditions imposed from the macroscale with a finite element dis-
cretization of the RVE geometry. The macroscale strain εΩ is considered to be constant
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over the volume aside from a periodic microscale fluctuation field due to the assumption
of separation of scales. Nonlinearity in the microscale problem comes from the consti-
tutive models Dω and T ω:

σω,α=Dω
(
εω,αt−1) (4.1)

tωd ,d = T ω
(�uω�,d t−1) , (4.2)

whereσω is the microscale stress obtained from the microscale strain εω and the internal
variablesα, and tωd is the cohesive traction computed from the displacement jump �uω�
and internal variable d .

After the computation of the full-order solution at the microscale, the resulting stress
field is homogenized and returned to the macroscale model. For the accurate coupling
between the two scales, the energy between them must be consistent. This micro-to-
macro scale transition is usually derived from the Hill-Mandel condition [10], which pos-
tulates that the volume average of the variation of work performed on the RVE must be
equal to the variation of local work on the macroscale. Based on this condition and on
the principle of separation of scales, one can use the superimposition of a microscopic
fluctuation field to the homogeneous strain at the microscale, along with the use of pe-
riodic boundary conditions so that the average work of the microfluctuations vanish, to
obtain the following expression of the homogenized stress

σΩ = 1

|ω|
∫
ω
σωdω. (4.3)

To solve the macroscale problem stress update, a nonlinear finite element solution pro-
cedure (e.g. based on the Newton-Raphson method) is needed, making the cost of solv-
ing the microscale BVP at each integration point and every macroscale iteration pro-
hibitive for practical applications.

4.2.2. PHYSICALLY RECURRENT NEURAL NETWORK

To tackle the issues related to the black-box nature of neural networks, Physically Recur-
rent Neural Networks (PRNNs) introduce a new way of embedding knowledge on the
physics of a system in a surrogate model. Unlike in PINNs, where the physical con-
straints of the problem are incorporated in the loss function [11], in PRNNs the actual
material models used in the full-order microscopic BVP are implemented in the hidden
layer of the network such that their state variables introduce a physics-based recurrency.
Fig. 4.2a displays the PRNN in general terms for the case with two constitutive models
on the microscale, D1 and D2.

The architecture consists of an input layer, a material layer, and an output layer. The
macroscale strains εΩ at the integration points of the macrostructure are the inputs to
this network. In two dimensions assuming small strains, this corresponds to 3 input
values. These macroscale strains are passed through an encoder, which is a single dense
layer with linear activations. This encoder converts the macroscale strains to a set of
values we interpret as fictitious microscopic strains, or local strains, which corresponds
to the macro- to micro-scale transition in the FE2 method. These local strains ε are given
by

ε= W1ε
Ω+b1 (4.4)
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(a) PRNN architecture (b) Fictitious material point in material
layer

Figure 4.2: Architecture of PRNN with only bulk models.

where W1 are the weights connecting the input layer to the material layer and b1 is
the bias associated with the encoder. There are no residual stresses considered, which
means that there is a zero stress state for when no strain is applied to the microstructure.
Therefore, the network should also predict zero stresses when the strain inputs are zeros.
This is achieved by setting the bias term b1 = 0.

These local strains are passed through the material layer, which provides the essence
of the physically recurrent neural network. The material layer consists of cells, each with
three inputs and three outputs, and possibly internal variables, representing a fictitious
integration point. In these points, a classical constitutive model Dω converts the local
strains ε to local stressesσ. This constitutive model is the exact same model that is used
to compute the stress in the integration points of the full-order micromodel. The num-
ber of fictitious material points in the layer is a model hyperparameter to be tweaked via
model selection.

History dependence is naturally included in the PRNN by storing the internal variables
α of each material point, which for example in plasticity can be plastic deformation,
as they are computed in the assigned constitutive model. Therefore, path-dependency
does not need to be learned from data. This stands in contrast with regular recurrent
neural networks, where the evolution of history variables is also learned through addi-
tional learnable parameters and standard activation functions (e.g. with LSTM or GRU
cells). The operation in the fictitious material point j at time t is shown in Fig. 4.2b and
can be described by

σt
j ,αt

j =Dω(εt
j ,αt−1

j ). (4.5)

After the local stresses are computed in the material layer, a decoder is applied to these
values. In the particular architecture shown in Fig. 4.2a, the decoder consists of a dense



4.3. DATA GENERATION 99

layer with a SoftPlus activation function applied on the weights.This is done to represent
the homogenization process through numerical integration, in which weights are strictly
positive. Therefore, the macroscale stress output of the network is obtained by

σ̂Ω =φsp(W2)σ+b2 (4.6)

where W2 are the weights connecting the material layer to the output layer, and b2 is
the bias associated with the decoder. This bias term is again set to zero to ensure zero
macroscale stresses for zero local stress values. Essentially, the network is tasked to learn
how to best combine the response of a small number of material points into a represen-
tative macroscale response.

During training, the following loss function is minimized:

L = 1

N

N∑
t=1

||σΩ(εΩt )− σ̂Ω(εΩt )||2 (4.7)

where N is the number of stress-strain pairs in the dataset andσΩ(εΩt ) is the target value,
which in this case is obtained from full-order micromodel simulations followed by aver-
aging stresses over the microscopic volume. Predicting the stress response in PRNNs
consists of a simple forward pass, making them computationally efficient in the online
phase and alleviating the computational bottleneck of multiscale modeling. This is one
of the main differences compared to DMNs, where the online-phase is computationally
heavier due to its iterative nature. Additionally, PRNNs offer a more flexible alternative
by implementing the consitutive models directly into the network structure.

Because of the history variables α, back-propagation in time becomes necessary and
stress/strain pairs are grouped in paths (time series). Data and gradient handling is
therefore analogous to when training RNNs, with the key difference being that mem-
ory in PRNNs is physical and interpretable. It is worth emphasizing that if the material
model is implemented with automatic differentiation support, gradients are handled au-
tomatically through general-use packages such as pytorch and tensorflow. Otherwise, a
detailed implementation of how to incorporate these using finite differences is given in
Chapter 2.

In the full-order micromodel used in Chapter 2, J2 plasticity was used for the matrix
and a linear elasticity model for the fibers. In the previous study, the PRNN was able
to find a solution with only the elastoplastic model (i.e. the constitutive model used to
describe the matrix) in the material layer with no loss of accuracy. The expected linear
elastic behavior in the fibers is reproduced in elastoplastic material points when small
enough strain values are passed by the encoder and stresses are amplified in the decoder,
making one or more matrix material points effectively work as if they were linear elastic
fiber points.

4.3. DATA GENERATION
To generate the data for assessing the PRNN’s performance when predicting microscale
damage, a micromodel with cohesive elements at the fiber-matrix interface is consid-
ered. This section introduces the micromodel used to create the training and test datasets
and the different loading conditions that are considered.
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4.3.1. FULL-ORDER MICROMODEL

The FE model of the microscale is shown in Fig. 4.3 and consists of 25 periodically ar-
ranged fibers with diameter of 5µm embedded in a matrix to result in a fiber volume
fraction of 0.6. This single RVE is ussed to generate all datasets in this study. There are
two bulk constitutive models: a plasticity model for the matrix, and a linear elastic model
for the fibers. The geometry, mesh, and bulk material properties in the RVE are kept as
in Chapter 2 and Chapter 3 except that zero-thickness interface elements are positioned
at the fiber-matrix interfaces. Limiting damage to the fiber-matrix interface means that
no global failure can take place. Tractions at the interface elements are computed from
displacement jumps with the bilinear cohesive zone model (CZM) by Turon et al. [12].

Figure 4.3: Full-order micromodel adopted in this chapter.

For the CZM properties, we use equal normal and shear strengths τ0
n = τ0

s = 60 MPa,
mode I and mode II fracture energy GIc = 0.874kJm−2, GIIc = 1.717kJm−2, mode inter-
action parameter η= 1, and penalty stiffness K = 5 ·107Nmm−3. Plane stress conditions
are assumed for the micromodel.

4.3.2. LOAD PATH GENERATION

To generate data for training and testing of the network, the micromodel is subjected to
different loading paths using periodic boundary conditions. The datasets can be sepa-
rated into two categories: proportional and non-proportional loading.
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PROPORTIONAL LOADING

For proportional loading, we use a modified arc-length algorithm to enforce the direc-
tions of the applied stress, as described in [13]. In this method, the proportionality of
the stress response is enforced by considering a constant load vector with increments
defined in terms of displacement magnitude, specifically the sum of the unsigned ap-
plied displacements. For this study, the increments are fixed at ∆s = 1.67× 10−3 mm.
The loading directions are categorized as either fundamental or random. The funda-
mental directions contain 18 common loading cases often used for traditional material
model calibration, shown in red in Fig. 4.4a, and include pure tension, compression,
shear, biaxial tension, and combinations thereof. On the other hand, the random direc-
tions are obtained by sampling three values, each corresponding to a component of the
load vector, from a normal distribution N (0,1) and normalizing them to a unit vector,
with examples shown in black in Fig. 4.4a.

(a) Proportional loading path directions (b) Non-proportional loading paths

Figure 4.4: Types of loading paths considered in this chapter.

In this study, only non-monotonic loading is considered. During non-monotonic load-
ing, the direction in which the step size is kept fixed, but unloading takes place at differ-
ent loading steps for a predefined amount of time. The loading functions that define the
relation between t and the magnitude of loading for non-monotonic cases considered
in this chapter are shown in Fig. 4.5. In the arc-length formulation, this corresponds to
the imposed value for the unsigned sum of the displacements at the controlling nodes.

NON-PROPORTIONAL LOADING

To create more diverse loading scenarios, non-proportional and non-monotonic loading
paths are generated. Both the direction of loading and the step size are varied at each
time step. This is achieved by sampling the strains from Gaussian Processes (GPs). Each
strain component is drawn from an independent multivariate normal distribution given
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(a) Function with one unloading cycle
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(b) Function with two unloading cycles

Figure 4.5: Loading functions used to generate proportional non-monotonic loading
curves.

by
X ∼N (µ,Σ) (4.8)

where X represents a vector containing the strain values at the different time steps, µ
is the mean vector that specifies the expected value of strains, and Σ is the covariance
matrix. The covariance matrix Σ describes the relationships between the samples in
each of the components. The covariance function between two time steps i and j is
given by

Σi j = k(xi , x j ) =σ2
f exp

(
− 1

2ℓ2 ||xi −x j ||2
)

, (4.9)

with σ2
f being the variance that determines the step size and ℓ being the length scale

that controls the smoothness of the generated path. With increased variance σ2
f the

strains are able to attain larger values, and with increased length scale the path becomes
smoother. Values σ2

f = 0.0001667 and ℓ = 200 are adopted. A subset of the load paths

generated by GPs is shown in Fig. 4.4b, with one path highlighted in red for clarity. We
also show in Fig. 4.6a the corresponding strain paths for the highlighted loading path
and the corresponding stress-strain curves obtained from the full-order micromodel in
Fig. 4.6b.

4.4. PERFORMANCE OF PRNN WITH BULK MODEL ONLY
This section investigates whether the PRNN as proposed in Chapter 2 is able to capture
stiffness degradation due to microscale damage. The architecture consists of one input
layer, one material layer with bulk integration points only, and one output layer, as de-
picted in Fig. 4.7. All bulk material points embed a J2 plasticity model to convert 2D local
strains to 2D local stresses.

In Chapter 2, the network could find a way to make elastoplastic material points re-
produce linear elasticity by appropriately scaling encoder and decoder weights. In the
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Figure 4.6: Example of non-proportional GP-based loading path.

Figure 4.7: PRNN with elastoplastic model only.

following, we demonstrate how such an approach does not work for distributed damage.
To highlight this inability to learn as clearly as possible, the networks here are trained
and tested on the same curves. Specifically, the non-monotonic, proportional dataset
with one cycle of unloading in the 18 fundamental directions is used. Networks with
different material sizes are trained by adding bulk points to the network until the mean
value of the Mean Squared Errors (MSEs) no longer decreases with additional points.
The training MSE across the different material layer sizes is shown in Fig. 4.8, with 10
networks with different initializations per size plotted as blue dots and the purple line
representing the mean value for each material layer size. The best performing network
with 7 fictitious material points and a training MSE of 4.61 MPa is selected for further
examination.

The prediction of the network on two fundamental loading scenarios is shown in Fig. 4.9:
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Figure 4.8: Training error for PRNN trained on 18 fundamental curves with one cycle of
unloading.

uniaxial tension and biaxial tension with shear. The network provides a somewhat accu-
rate prediction on the monotonic region of the curve, however, the model is unable to re-
produce the unloading/reloading region. The PRNN starts to predict unloading with the
initial, linear elastic stiffness following the assumptions embedded in the J2 model, and
predicts erratically afterwards. This highlights the limitation of the PRNN for describing
stiffness degradation in its original design. The network encodes plasticity through the
presence of a plasticity model in the material layer. This design gave the network a good
bias in Chapter 2, when it could predict unloading behavior in plasticity without seeing
it during training. Here, however, the bias is too strong as it prevents the network from
describing the stiffness loss that is present in the micromodel.

This observation is in line with the core idea of the PRNN to include a representation
of all relevant physics by embedding the constitutive models from the micromodel in
the network. This idea is violated by not including the cohesive zone model in the net-
work. Therefore, the following sections focus on the implementation of the cohesive
zone model within the PRNN framework, along with evaluation of the proposed archi-
tectures.

4.5. EXTENDING THE NETWORK WITH COHESIVE MATERIAL

POINTS
As shown in Section 4.4, the physically recurrent neural network cannot accurately pre-
dict the effect of debonding at the fiber-matrix interface without including all sources
of nonlinearity present in the RVE. Therefore, the cohesive zone model from the full-
order micro-model has to be implemented in the PRNN as well. This section details the
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(a) Uniaxial load case (b) Biaxial load case with shear

Figure 4.9: Prediction of PRNN trained with 18 fundamental curves with one cycle of un-
loading on training curves.

network configurations considered in this study for implementing the CZM within the
PRNN framework.

4.5.1. COHESIVE POINTS IN THE EXISTING MATERIAL LAYER

The first design option retains the architecture proposed in Chapter 2 as much as possi-
ble. In this design, referred from now on as PRNN1, there is one material layer containing
bulk and cohesive fictitious points. The network is illustrated in Fig. 4.10a with bulk and
cohesive points, represented in blue and pink, respectively. The cohesive points relate
the local displacement jump vector, with normal and shear components, to a local trac-
tion vector, as illustrated in Fig. 4.10b. Similar to the bulk points, the cohesive points also
store internal variables to account for history, in this case the damage variable defined
as the ratio between dissipated energy and critical energy release rate [14].

4.5.2. COHESIVE POINTS IN SEPARATE LAYER

Instead of having both types of models in the same layer, we also investigate architec-
tures with two material layers: a cohesive and a bulk material layer, each with embedded
models, as illustrated in Fig. 4.11. The two architectures considered here consist of one
input layer that receives macroscopic strain, two material layers containing the nonlin-
ear models, and one output layer yielding the macro-scale stress predictions. The state
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(a) PRNN1 architecture (b) Fictitious cohesive material point j

Figure 4.10: Architecture with bulk and CZM in the same material layer (PRNN1) and
detail of fictitious cohesive point j .

variables of the cohesive points are densely connected to the bulk points together with
the macroscopic strains. To illustrate the connectivity of the layers, Fig. 4.11 highlights
how one cohesive point and one bulk point are linked to each other, as well as to the
input and output.

Rather than using the output traction values of the cohesive points, damage is used
as input to the bulk points. Damage, the internal variable stored in the cohesive points,
either increases or remains the same in case of unloading, providing a more monotonic
influence on the overall response. This damage variable modifies the local strain value
received by the bulk points, resulting in adjusted local stress values for the same level of
macroscopic strain. The irreversibility of damage gives rise to a decrease in stiffness dur-
ing unloading. This design ensures that only the bulk points contribute directly to the
stress homogenization procedure, unlike in the architecture described in Section 4.5.1,
where tractions rising from the cohesive points are directly connected to the output
through the decoder layer. This is more consistent with the homogenization procedure
in FE2, where cohesive tractions do not contribute directly to the macroscopic stress (cf.
Eq. (4.3)).

Two ways of connecting the damage variable from the cohesive points to the local
strain at the bulk points are considered. The first method follows a more conventional
approach, which involves densely connecting the damage values to the bulk points:

ε= Wd ·d+Wεb ·εΩ (4.10)

where Wd and Wεb are the weight matrices connecting the damage values d from all the
cohesive points and the macroscale strain, respectively, to the local strain values of the
bulk points. The network with this approach will be referred to as PRNN2 from now on.

In the second method, referred to as PRNN3 from now on, the damage variables are
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Figure 4.11: Novel architecture PRNN2 and PRNN3 with damage as input to bulk point.

used to modify the amplitude of the local strain input to the bulk points. This is achieved
by multiplying the local strain input piece-wise by the term φsp(1 + Wd · d)), which is
forced to attain positive values by applying a SoftPlus activation function (φsp(·))

ε=φsp(1+Wd ·d)⊙ (Wεb ·εΩ). (4.11)

4.6. PERFORMANCE OF PRNN WITH COHESIVE MODEL
In this section, we assess the performance of the PRNNs with the architectures proposed
in Section 4.5. The model selection process is presented by analyzing their performance
across different training sets and material layer sizes. We evaluate and compare the
PRNNs’ ability to accurately capture the homogenized response, taking into account mi-
croscale damage, under various loading scenarios.

4.6.1. MODEL SELECTION

First we perform model selection for the size of the material layer. For that purpose,
networks are trained on 192 GP-based curves (non-monotonic and non-proportional
loading) with varying numbers of bulk and cohesive points. The ratio of bulk to cohesive
points is kept constant and equal to 4, mirroring the ratio of matrix to cohesive elements
in the RVE. The size of the material layer ranges from a minimum configuration of four
bulk and one cohesive points to 80 bulk and 20 cohesive points. Figs. 4.12a and 4.12c
show the MSE on a validation set with 200 GP-based curves for 10 different initializa-
tions in each material layer size, for all three architectures considered in this chapter.



108 4. DAMAGE MODELS TO CAPTURE DEBONDING AT MICROSCALE

Networks with lowest validation MSE are selected for optimal performance, while pri-
oritizing small networks to avoid overfitting. For PRNN1, networks with 4 bulk points
and 1 cohesive point are selected, while for PRNN2 a combination with 28 bulk points
and 7 cohesive points is needed. Finally, for PRNN3, 16 bulk and 4 cohesive points are
selected. The observation that the validation error increases for increasing network sizes
of PRNN1 points at the tendency of this architecture to overfit.

(a) PRNN1 (b) PRNN2

(c) PRNN3

Figure 4.12: Validation error for PRNN1, PRNN2 and PRNN3 trained on 192 GP curves
each.

The selected networks are then trained on different training set sizes, ranging from 4 to
192 GP-based curves (non-monotonic and non-proportional loading). Fig. 4.13 displays
the MSE on a validation set with 200 GP-based curves across the various training data
sizes for the selected material layer sizes of the three architectures studied in this chapter.
The solid lines in the figure represent the mean MSE values for each PRNN at different
training data sizes. For the first architecture (PRNN1), a training set size of 96 paths is
selected. The plateau in Fig. 4.13 indicates that the network in this configuration has
reached the limit of its representational power and is too rigid to capture the underlying
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physical behavior.
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Figure 4.13: Validation MSE for the PRNNs considered across various training data sizes.

On the other hand, PRNN2 and PRNN3 can represent a broader range of material non-
linearity and therefore can reach lower MSE values as dataset size is further increased.
Therefore, 192 curves are selected for the latest two architectures. The lowest validation
error corresponding to these networks is 11.40 MPa, 5.74 MPa, and 5.89 MPa, achieved
with training times of 10, 60, and 20 h respectively.

4.6.2. PREDICTING MICRO-SCALE DAMAGE

The selected networks are tested on two different datasets: one containing 54 curves
from the non-monotonic, non-proportional dataset (the same loading type used for
training and validation but in different directions), and another with 54 curves from the
random, non-monotonic, and proportional dataset with one cycle of unloading with.
The average MSE values on these two test sets are presented in Table 4.1 for each net-
work. It is observed that for the non-monotonic non-proportional test curves, PRNN2

and PRNN3 both outperform PRNN1, with a small difference in accuracy between the
two. However, when testing on curves of the proportional type, PRNN3 offers significant
additional accuracy over PRNN2.

To illustrate the meaning of these numbers, in the remainder of this section, we com-
pare the performance of the three networks in more detail with stress predictions on
individual curves, each time picking representative curves with MSE close to the average
MSE from Table 4.1.

First, we illustrate in Fig. 4.14 the performance of PRNN1 and PRNN2. Note how the
predictions of PRNN1 on GP-based curves follow the overall trend but with significantly
less accuracy compared to PRNN2 (Fig. 4.14a). This observation aligns well with the
results shown in Fig. 4.13, where the validation set is also comprised of GP-based curves,
emphasizing the significant decrease in validation error when the cohesive points are
implemented in a separate layer from the bulk points.
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Table 4.1: Average MSE values for the two test datasets, in MPa

Test set PRNN1 PRNN2 PRNN3

Non-monotonic, non-proportional 11.63 5.72 6.03
Non-monotonic, proportional 7.45 5.56 3.40

(a) Predictions on GP-based curve (b) Predictions on curve with one cycle of unloading

Figure 4.14: Prediction of PRNN1 and PRNN2 on representative test curves.

The difference between PRNN1 and PRNN2 predictions becomes more pronounced
when tested on the non-monotonic, proportional dataset. As shown in Fig. 4.14b, PRNN1

predicts poorly. The network not only fails to capture the decrease in stiffness dur-
ing unloading but also loses accuracy in the monotonic part. It is observed that with
PRNN1 there is a preference towards networks with fewer cohesive points. Moreover,
small weights connect the normal component of these cohesive points with the output,
which is likely due to the large traction values output from the cohesive points in com-
pression. These factors indicate that the network avoids utilizing the cohesive points
implemented in the material layer, resulting in unloading with the initial linear stiffness.

Besides the improved accuracy on the test sets, as shown in Table 4.1, PRNN2 shows
another advantage. Unloading occurs with a different slope than the initial linear phase
(Fig. 4.14b), indicating that the network is able to account for the effect of microscale
damage. However, a new problem arises: reloading follows a different path than unload-
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(a) Input to the y-component of the bulk point

(b) Response of the bulk point

Figure 4.15: Behavior of one of the bulk points of PRNN2 when predicting on a represen-
tative curve from the non-monotonic, propotional test set.

ing. Given the interpretable nature of PRNNs, this phenomenon can be investigated by
closely examining the input to one of the bulk points.

Fig. 4.15a illustrates the εxx component of a particular fictitious bulk material point
and its two contributions, one that follows directly from the macroscopic strain (Wεb ·εεεΩ)
and the other that follows from the damage variables from all the cohesive points (Wd·d).
Globally, the micromodel is unloading from time step 25, a trend represented by the
weighted sum of the global strain values. Meanwhile, the weighted sum of damage is
larger than the weighted sum of the global strain and has an opposite sign. Therefore,
the final sum used as input to the bulk point prevents the point to follow the global un-
loading trend (from t = 25 to t = 35). Instead, the bulk point continues to load while the
macroscopic strain is subjected to unloading and only starts unloading once the macro-
scopic strain is at the reloading branch (from t = 35 to t = 45). This mismatch between
the loading phases leads to further evolution of plastic strain during the macroscopic
unloading, as shown in Fig. 4.15b, and causes the undesired change in slopes during
unloading and reloading.

When damage is used as an amplifier rather than being simply densely connected to
the bulk points, no significant difference in validation errors is found (Fig. 4.13). This is
reflected on the prediction of PRNN2 and PRNN3 on a representative GP-based curve in
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Fig. 4.16a. However, robustness improves significantly when predicting on curves from
the non-monotonic, proportional set. Fig. 4.16b clearly shows that unloading/reloading
now takes place along the same path and with a different slope than the initial linear
phase, effectively capturing the effect of microscale damage.

To further demonstrate the network’s predictive capabilities, Fig. 4.17 shows the pre-
diction of PRNN3 on a curve from a test set containing non-monotonic, proportional
curves with two cycles of unloading. The evolution of damage over time is evident as the
slope of the unloading-reloading phase gradually decreases as the loading continues.

(a) GP curve (b) Curve with one cycle of unloading

Figure 4.16: Prediction of PRNN2 and PRNN3 on representative test curves.

4.7. CONCLUSIONS
In this chapter, we have proposed an extension to a recently proposed surrogate model,
namely the Physically Recurrent Neural Network (PRNN), to account for the complex
combination of plasticity and microscale damage. The PRNN’s excellent ability to pre-
dict elastoplastic behavior motivated this study into its use as a surrogate model in a
more challenging context where both plasticity and damage are present. Constitutive
relations from the full-order micromodel are directly implemented into the hidden layer
of the PRNN, creating a direct link to the micromodel. Path-dependency naturally arises
from the material models in the network, resulting in accurate predictions with a signif-
icantly smaller training dataset compared to networks without physical interpretation.
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Figure 4.17: Prediction of PRNN3 on a representative curve with two cycles of unloading.

As a first step to use the PRNN framework for microscale damage, a preliminary study
was conducted using the network in its original form with bulk material points only. It
was demonstrated that the original PRNN could not describe stiffness degradation, even
when trying to overfit on a small set of training curves. These results align well with the
general guideline in Section 2.4.2 that all types of nonlinearities present in the RVE need
to be included in the network, justifying the need for an extended PRNN architecture
that integrates a cohesive zone model.

Next, three architectures of the PRNN with bulk and cohesive points were proposed. In
the first design, PRNN1, cohesive points with the CZM were incorporated into the same
material layer of the PRNN as the plasticity model. Two material layers were used in the
second and third design with the cohesive points implemented in a separate cohesive
layer from the bulk material layer. Together with the global strain, the internal variable of
the cohesive points, damage, was then used as input to the bulk points. This connection
was defined in two different ways, either in a conventional way with a dense connection
(PRNN2) or by using the damage as an amplifier to the local strain of the bulk points
(PRNN3).

Afterwards, the performance of the proposed PRNNs was evaluated. The three net-
works were trained with data from non-monotonic, non-proportional (GP-based) curves
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and tested on the same type of curves, and on proportional, non-monotonic curves with
one cycle of unloading.

When tested on GP-based curves, the results showed that while all three networks fol-
lowed the general trend of the curves, PRNN2 and PRNN3 performed with significantly
higher accuracy than PRNN1. Additionally, PRNN1 failed to accurately capture the loss of
stiffness due to damage evolution when predicting on the non-monotonic, proportional
dataset. Specifically, it unloaded with the initial linear stiffness, which is due to the net-
work’s preference towards not utilizing the cohesive points effectively. This limitation
can be explained by the network’s layout: when the cohesive points are implemented
in the material layer together with the bulk points, the stress output of the network is
given by a linear combination of both stresses coming from the bulk models and trac-
tions coming from cohesive zone models. This layout of the PRNN1 does not resemble
the physics of the full-order solution, where only the bulk points contribute to the stress
homogenization.

On the other hand, the modified architectures with the damage input to the bulk
points did not have this problem. Adjusting the local strain by the damage input allowed
for a modified tangent stiffness matrix able to capture the decrease in stiffness during
unloading. This highlights the significance of designing the network’s architecture with
the knowledge of the underlying material behavior to achieve more accurate predictions.

When tested on non-monotonic, proportional curves with one cycle of unloading,
PRNN3 outperformed PRNN2. It was observed that with a simple linear dense connec-
tion between the damage and bulk points, unloading and reloading occurred along dif-
ferent paths: while the RVE was unloading on the global scale, some bulk points in the
network experienced further loading. This phenomenon occurred because the weighted
sum of damage caused the input to the bulk point to have an opposite sign, leading these
points to undergo further loading instead of unloading. This caused further plastic strain
development during macroscopic unloading and led to the different slopes during un-
loading and reloading. The issue with the different unloading/reloading path was miti-
gated when damage was used as an amplifier in PRNN3. This method ensured that the
fictitious bulk points follow the global trend of unloading/reloading.

Lastly, PRNN3 was tested on non-monotonic, proportional curves with two cycles of
unloading. The network provided accurate predictions in this case as well, demonstrat-
ing a progressively decreasing stiffness in successive unloading/reloading phases. This
significant result highlights the network’s capability to capture damage evolution over
time, and further reinforces that the PRNN with modifications to its architecture is ca-
pable of representing microscale damage.
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5
ANISOTROPIC VISCOPLASTIC 3D
MODELS UNDER FINITE STRAINS

Previously on Chapter 2, PRNNS were demonstrated to work for micromodels with rate-
independent plasticity in 2D problems, capturing loading-unloading behavior without
seeing it during training. In this chapter, their applicability is extended to capture time-
dependent material behavior. For this purpose, we consider micromodels where the
matrix is described by the Eindhoven Glassy Polymer (EGP) model, an advanced elasto-
viscoplastic material model for polymers. However, since the constitutive models con-
sidered in this chapter are built on top of a 3D finite strain framework, including the EGP,
a new architecture suitable for this setting is required. We show how these new and non-
trivial features are incorporated into the network and demonstrate that the benefits of
the PRNN approach successfully transfer to a much more complex class of constitutive
models.

Apart from the shortened introduction and the addition of an appendix with details of
the updated Lagrangian formulation, this chapter was integrally extracted from the fol-
lowing publication:

M. A. Maia, I. B. C. M. Rocha, D. Kovačević, and F. P. van der Meer. “Physically recurrent
neural network for rate and path-dependent heterogeneous materials in a finite strain
framework”. Mechanics of Materials 198 (2024), 105145. DOI: https://doi.org/10.
1016/j.mechmat.2024.105145

https://doi.org/https://doi.org/10.1016/j.mechmat.2024.105145
https://doi.org/https://doi.org/10.1016/j.mechmat.2024.105145
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5.1. INTRODUCTION

As discussed in Chapter 1 and Chapter 2, in applications involving path-dependent ma-
terials, variations of Recurrent Neural Networks (RNN) are the most popular choice of
surrogate model. However, other strategies built on Gaussian Processes (GPs) and di-
mensionality reduction techniques (e.g. Proper Orthogonal Decomposition (POD) and
Hyper-reduction methods) have also showed potential for reducing the computational
costs [1–4]. A pressing issue common in purely data-driven models is their limited ability
to extrapolate. This is usually tackled with ever larger training sets and intricate design
of experiments that aim to uniformly/densely cover the space of strain paths. A com-
plicating aspect is the curse of dimensionality. Recent works [5, 6] illustrate the hurdles
with predicting loading types different from the ones used for training, particularly with
RNNs, and how to overcome them with transfer learning strategies.

Another challenge of NNs lies in their black-box nature. One way to address this is
to incorporate physics knowledge into the model. Guided by this philosophy, Physics-
Informed Neural Networks (PINNs) are likely the most prominent example. Although
these networks have been initially designed to solve partial differential equations, the
idea of enriching the loss function with extra terms to enforce physics constraints has
quickly found its way into the material modeling community [7, 8]. Another way to
leverage physical consistency in NNs is to encode the physical knowledge directly in the
architecture design [9–11].

Moving away from the recurrency mechanisms in RNNs, transformers rely on self-
attention mechanisms to extract correlations among the elements within a sequence.
These models have shown improved performance in comparison to other state-of-the-
art methods in capturing long-range dependencies in language processing problems
[12], but have only recently been applied in the computional homogenization field to
predict the response of composite materials with elastoplastic behavior [13, 14]. Beyond
the positive assessment in terms of accuracy, a common thread in these works encom-
pass the need of very large datasets (ranging from dozens to hundreds of thousands of
curves), the difficulty of training models with millions of parameters and the critical scal-
ing of computational memory space required for both the offline and online phases as
the sequence length increases.

When dealing with materials with time-dependency, as it is the case in this chapter, the
extra dimensionality related to strain-rate sensitivity adds a new depth to the problem.
For clarity, we distinguish time or rate-dependency from path-dependency as the former
refers to behavior that is dependent on the duration and speed of the loading, while the
latter refers to behavior dependent on the loading sequence and history. In a broader
sense, both are framed as history-dependent. In some works, the strain-rate [15] and/or
the time increment [16] have been explicitly included in the feature space. In others, a
fixed time increment is considered [17, 18].

In [19], a forward Euler discretization was employed to make the stress prediction in-
dependent from the time discretization using two feed-forward NNs. The first model
learns the rate of change of a set of internal variables learned from the data based on the
current strain and the previous set of internal variables, while the second predicts the
stress based on the current strain and the internal variables learned by the first NN. In a
follow-up work [20], the authors explore how iterated learning can help improve the ac-
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curacy of these models in multiscale applications through the inclusion of strain-stress
curves extracted from a macroscopic problem of interest, as well as their transferability
to other problems.

In [21], a framework based on the dual potential function to describe rate-dependent
viscoplastic flow response in metals. The authors take advantage of input-convex NNs to
enforce thermodynamic consistency and leverage automatic differentation to compute
gradients of the output with respect to the inputs, which are used for solving the implicit
time-stepping algorithm employed in their elasto-viscoplastic model. Nevertheless, the
method is not suitable for FE simulations yet as arbitrary loading and boundary condi-
tions can take place and only uniaxial deformations were considered.

In all of these works, to train a surrogate for rate-dependence the training data needs
to account not only for a good coverage of strains but also strain-rates. To deal with
time-dependency in a more seamless manner, we propose to expand the applicability
of PRNNs. Previously, the PRNN was demonstrated to work for micromodels with rate-
independent plasticity, capturing loading-unloading behavior without seeing it during
training. It is anticipated that the same approach can capture rate-dependence. In this
paper, we apply the PRNN approach to micromodels where the polymer matrix is de-
scribed with the Eindhoven Glassy Polymer (EGP) model, an advanced elasto-viscoplastic
material model. For this purpose, the following features are added with respect to Chap-
ter 2: 1) time-dependent material behavior, 2) a finite strain formulation, and 3) gener-
alization to 3D space.

A brief description of the microscale analysis based on a finite strain formulation is
presented in Section 5.2. In the following, the main changes with respect to the design
in Chapter 2, designed and tested for small strains, are discussed in Section 5.3. In Sec-
tion 5.4, the design of experiments considered for training and testing the network is
described, while the numerical applications are organized in two sections. Firstly, in Sec-
tion 5.5, the accuracy of the network is assessed in a set of numerical experiments over
a range of loading scenario based on different training strategies (monotonic vs non-
mononotic paths). This chapter is complemented by a brief runtime comparison in Sec-
tion 5.6 to illustrate the speedup potential of these models. Secondly, in Section 5.7, the
network directly replaces the micromodel in the solution of three equilibrium problems,
including different strain-rates to cyclic loading and relaxation. Finally, in Section 5.8,
the main conclusions from this chapter are presented.

5.2. MICROSCALE ANALYSIS

This chapter focuses on the homogenized behavior of a RVE of a microscopic material
with both path and time-dependency. For notation purposes, the superscripts Ω and ω
refer to the homogenized (macroscopic) and microscopic quantities, respectively. Let
ω denote the RVE domain and consider that periodic boundary conditions (PBC) are
applied to simulate the behaviour of a macroscopic bulk material point, as depicted in
Fig. 5.1a. In the absence of body forces, the updated Lagrangian formulation, illustrated
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in Fig. 5.1b, can be defined by the weak statement of equilibrium:∫
ω

BTσ dω︸ ︷︷ ︸
fint

−
∫
Γu

NTtp dΓ︸ ︷︷ ︸
fext

= 0 (5.1)

where N is a matrix with the shape functions used to interpolate the nodal displacements
a, B is the strain-displacement matrix with the gradients of the shape functions with re-
spect to the current coordinates x, σ is the Cauchy stress, tp are the tractions prescribed
on the boundary of the domain Γf.

(a) Boundary conditions of periodic mi-
cromodel ω with constrained dofs to
avoid rigid-body motion

Γu

Γf

Γu

Γf

Γu

Γf

(b) Initial (undeformed), previously converged (reference)
and updated configurations

Figure 5.1: Micromodel and scheme of configurations used in the updated Lagrangian
framework.

With the domain discretized in a Finite Element (FE) mesh, the displacements at the
nodal values, known as the degrees of freedom (DOF), are used to describe the displace-
ment field of the micromodel u = Na. In this method, Eq. (5.1) is solved iteratively as

r = fint − fext = 0 (5.2)

where r is the residual vector that vanishes once equilibrium is reached. The iterative
procedure involves linearization of fint with respect to the DOF vector. In the geometri-
cally nonlinear formulation, this linearization requires accounting for the dependence of
B from Eq. (5.1) on the displacements through a geometric contribution to the stiffness
matrix.

The stress in Eq. (5.1) is related to the deformations with a constitutive model Cω,
which, in general, can be described by

σ,α= Cω (F,αt−1,∆t ) (5.3)

where α and αt−1 are the history variables that account for path and rate-dependency
at the current and previous time step, ∆t is the time increment and F is the deformation
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gradient
F = I+∇u (5.4)

where ∇u represents the gradient of the microscopic displacements. Since the deforma-
tion gradient is calculated with respect to the initial configuration, its increment can also
be easily computed from the current and previous deformation states

∆F = FF−1
t−1. (5.5)

For rate-dependent materials, the stress depends on ∆F as well as F, which can be
achieved with Eq. (5.3) if Ft−1 is included in the material history α. Upon convergence,
the homogenized stresses can be averaged out by integrating the microscopic stresses
over the volume ω:

σΩ = 1

|ω |
∫
ω
σdω. (5.6)

For completeness, we refer the interested reader on the computational homogeniza-
tion using the updated Lagrangian formulation to Appendix A. In that material, we cover
the transformations among configurations, present a brief proof of the Hill-Mandel con-
dition at the updated configuration, and discuss the homogenized quantities used for
equilibrium and material modelling in this work, including the choices made for the
neural network discussed in the following.

5.2.1. CONSTITUTIVE MODELS

In this chapter, we consider a composite micromodel made of unidirectional fibers em-
bedded in a matrix material. To describe the constitutive behavior of the matrix, the
EGP model is used, while for the fibers, a hyperelastic transversely isotropic model is as-
signed. These consist of the same choices adopted in [22], where a thorough validation
of the material models was carried out for a carbon/PEEK composite material. Here, we
only highlight the main aspects of their formulation and focus on how to incorporate
them in a PRNN.

The fiber constitutive law is based on the one developed by Bonet and Burton [23] with
slight modifications [22]. The constitutive model derives from the strain energy density
function and can be split into two components, an isotropic part with a neo-Hookean
potential and a transversely isotropic part, with both depending on the right Cauchy-
Green deformation tensor

C = FTF. (5.7)

The EGP model for the matrix material consists of a rate and path-dependent elasto-
viscoplastic, isotropic, 3D constitutive law. In this model, no explicit yield surface is
needed since an Eyring-based viscosity function evolves with the stress applied, leading
to the viscoplastic flow of the material. The Cauchy stress calculated by the EGP is com-
posed of three contributions: hydrostatic, hardening and driving stress. While the first
two parts are defined in more simple terms as they do not depend on the internal vari-
ables, in the third part, where viscoplasticity is introduced, a further decomposition can
be considered. In this case, the multiple contributions to the driving stress correspond to
different molecular (relaxation) processes. Each relaxation process is represented with
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a series of Maxwell models (modes) connected in parallel, with a shear modulus in the
elastic spring and a stress-dependent viscosity in the dashpot. Here, a single relaxation
process is considered and represented with 1 mode.

ω ω
ω

Figure 5.2: Right polar decomposition on deformation gradient F resulting in the stretch
and rotation tensors U and R, respectively

For any of the models discussed so far, a helpful tool to deal with the high-dimensionality
of the deformation gradient is the polar decomposition theorem. The theorem states
that any deformation gradient F can be uniquely decomposed into the product of two
other tensors: a symmetric one U and an orthogonal one R, as F = RU. These two ten-
sors have physical interpretations and are closely related to the principle of material ob-
jectivity or material frame indifference. In short, the symmetric tensor represents the
deformation (i.e. stretches and shear) and the orthogonal tensor represents a rigid body
rotation. When applied in this sequence, the final configuration obtained is the same as
the one obtained if the deformation gradient was applied directly.

The particular order of stretch and rotation is known as right polar decomposition
and is illustrated in Fig. 5.2. From these interpretations and considering the principle
of material frame indifference, which states the material response is independent of the
observer, one can rewrite stresses as

σU,α= Cω (U,αt−1,∆t ) (5.8)

σF = R σU RT (5.9)

where σU are the unrotated stresses and σF are the stresses in the original frame of ref-
erence.

5.3. PHYSICALLY RECURRENT NEURAL NETWORK
In this section, we present the new architecture of the Physically Recurrent Neural Net-
work (PRNN) to be used in a 3D finite strain framework for micromodels with path and
rate-dependent behavior. Having the network in Chapter 2 as the starting point, we high-
light and motivate the main changes in comparison to the 2D formulation. In that work,
a NN composed of a data-driven encoder, a material layer with embedded physics-based
material models and a data-driven decoder is proposed. The data-driven parts learn
how the homogenized strain can be dehomogenized and distributed among a small set
of fictitious material points and how the stress obtained in these material points can be
homogenized again, respectively. With the same core idea, we propose a set of modifi-
cations to extend such model to the current application.
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Before diving into the details of the novel architecture, training aspects and its use as
a constitutive model, we highlight an important change in its input with respect to the
2D formulation in Chapter 2. Here, the surrogate is trained to learn the mapping from
stretch (path) to unrotated stress (Eq. (5.8)) and let it be embedded between decompo-
sition and rotation operations to recover the stress in the original frame, as illustrated
in Fig. 5.3, instead of mapping deformation gradient to rotated stress directly. With this,
the dimensionality of the feature space of the PRNN is reduced from 9 to 6 independent
components, alleviating the sampling effort required for training.

Figure 5.3: Use of PRNN in a general full-order solution setting with FΩ and σ̂ΩF as input
and output, respectively.

5.3.1. ENCODER

The encoder comprises all parameters and operations that convert the homogenized
stretch tensor into local fictitious deformation gradients. In the general PRNN architec-
ture illustrated in Fig. 5.4, these correspond to the blue connections. In Chapter 2, the
encoder consisted of an arbitrary number of hidden layers fully connected, while in this
development a custom layer is proposed to ensure that physical constraints related to
the definition of the strain measure are met. Two challenges arise from working with
the deformation gradient instead of the small strain vector. Firstly, with the deformation
gradient or the stretch, the undeformed state corresponds to the identity and not a null
tensor.

In a regular dense layer, if a given set of weights W were to be applied on the unde-
formed stretch tensor (i.e. UΩ = I), the resulting matrix WUΩ would be different from
the identity and therefore generate stresses when it should not. To address that, we need
to make a few changes to the encoder, starting with the way we treat the input. Now, in-
stead of applying weights to transform a vector with dimension 6, we work on the actual
tensor UΩ that is 3×3. Note that this is only a reshaping operation, and no additional
features are needed to fill the tensor.

With that, the weights connecting UΩ to the inputs of the material layer can be ap-
plied in a similar fashion to the fictitious material points, in groups, to generate the de-
formation gradients used in that layer. In this case, for each point, a 3×3 weight matrix
is needed. Another important change to ensure the zero stress-state comes from the



5.3. PHYSICALLY RECURRENT NEURAL NETWORK 125

3 x 3

3 x 3 ...

3 x 3

3 x 3

3 x 3

Figure 5.4: New architecture of PRNN for finite strain framework.

definition of the deformation gradient (see Eq. (5.24)). Based on that, we subtract the
identity matrix from the homogenized stretch tensor and only then apply the weights to
the remaining values. After that transformation, we add the identity back and obtain the
final deformation gradient.

Secondly, because the deformation gradient determinant represents the change in vol-
ume from the undeformed to the current configuration, the local deformation gradients
learned by the network should have strictly positive determinants. One way to avoid
negative determinants consists in ensuring that the determinant of the weight matrices
applied on UΩ−I to obtain the fictitious local deformation gradients are always positive.
This is done by imposing a structured weight matrix W j originated from a Cholesky de-
composition for each subgroup j . The determinant of the decomposed triangular matri-
ces simplifies to the multiplication of their diagonal elements, so positivity is therefore
ensured by applying a softplus function to those diagonal entries. In this case, only 6
learnable parameters are associated to each fictitious material point. The scheme in
Fig. 5.5 summarizes how the local strain of one fictitious material point is obtained after
the proposed changes.

5.3.2. MATERIAL LAYER

This layer contains the embedded physics-based constitutive models, arranged into a
series of fictitious integration (material) points. Because a material model is not a scalar-
valued function like typical activation functions (e.g. sigmoid, tanh, relu, etc.), a special
architecture is required. In that sense, an important change compared to Chapter 2 is the
way neurons are interpreted. Here, we group them together in m subgroups, each con-
sisting of a tensor with the same order tensor and dimensions as the deformation gradi-
ent in the input layer (3 × 3 for the present investigation in three dimensions), whereas
in Chapter 2 the subgroups consists of vectors of length 3, representing the strain vector
in 2D. In this arrangement, each subgroup corresponds to one fictitious material point.
The basic idea is that the values reaching the subgroup can be seen as a local defor-
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x x

3 x 3 3 x 3 3 x 3

3 x 3
=

3 x 3

+ I

Figure 5.5: Encoder architecture applied to obtain the local strain of a fictitious material
point j based on the input UΩ.

mation learned by the encoder, which will then be evaluated by one of the constitutive
models used in the full-order solution with the same material properties.

Once a given constitutive model with its respective material properties is assigned to
the subgroup j , say Cωj , the next step is to use it to obtain the stresses and the updated in-

ternal variables (if any). These internal variables are present in rate and path-dependent
material models and are the core of the physics-based memory of the proposed network.
However, rate and path-independent constitutive models can also be used in the mate-
rial layer without further adaptations. A brief discussion on the choice of the constitutive
models used in this layer follows at the end of the section.

Consider that Cωj takes as input the deformation gradient F, the internal variables from

previous time stepαt−1 and the increment of time ∆t . In the first time step, the internal
variables of all material points are properly initialized based on the undeformed state
α0

j . In every time step, the current stresses σ and updated internal variables α of each

subgroup are obtained. These variables are preserved in each subgroup so that in the
following load step, when a new F is fed to the material point, the history of the material
can be updated accordingly. A representation of this workflow is shown in Fig. 5.6. Note
that the “flattening" operation transforming the 3×3 tensor into a vector with only the 6
independent components, is analogous to the reshaping operation used at the encoder.
This condensation does not imply in loss of information since the Cauchy stress tensor
is symmetric.

An important aspect illustrated in Fig. 5.6 is that no additional time-related features
or trainable parameters are needed to learn the time-dependence. The network learns
the strain distribution over the fictitious material points through the encoder, which
works the same for all constitutive models. The time increment ∆t is passed to the
rate-dependent material as additional input, but it has the same value for all mate-
rial points as would be done in the micromodel simulation. By directly employing the
same material models and properties considered in the micromodel with internal vari-
ables that naturally follow physics-based assumptions, we can capture the rate and path-
dependent behavior in a more straightforward way. With RNNs, the mechanisms behind
the evolution of internal variables need to be learnt from the data.

Finally, the user is left with the choice of which constitutive model to employ in the ma-
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Figure 5.6: Scheme of fictitious material points unrolled in time, each colored box cor-
responding to a different constitutive model. From top to bottom: path-
dependent, path and rate-dependent, and path and rate-independent con-
stitutive models.

terial points. Our recommendation is to employ all nonlinear constitutive models used
in the micromodel with their respective known material properties. To illustrate that,
consider the composite micromodel studied in the numerical examples of this chapter,
in which an orthotropic hyperelastic model is used to describe the fibers and an elasto-
viscoplastic model for the matrix. Since both models include nonlinearity in their for-
mulations, we include both types in the material layer. In addition to that, in the present
case, each model has distinctive behavior in terms of path and rate-dependence, which
emphasizes the importance of both in the network. This topic is further discussed in
Section 2.4.4 along with other training aspects and model selection procedure, includ-
ing the definition of the proportion of the constitutive models in this layer.
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5.3.3. DECODER

The decoder comprises all network parameters that work on the outputs of the material
layer to obtain the homogenized stresses σ̂Ω. Note that because the outputs of the mate-
rial layer consist of the stresses from the fictitious material points, the role of the decoder
parameters is well aligned with the actual full-order solution. In the micromodel, once
the full-field of stresses is obtained, the homogenized stresses are obtained by averaging
the stresses over the entire domain. Here, instead of integrating the field with hundreds
or thousands of integration points, only a few fictitious material points contribute to
the homogenized response where the relative contributions of each fictitious point are
learnt from data.

For that purpose, an arbitrary number of neurons and layers can be used. In this study,
in particular, for a more direct analogy with the homogenization process, a single dense
layer with linear activation and physics-motivated modifications is considered. In this
way, the weights of the output layer reflect the relative contribution of each of the ma-
terial points to the predicted homogenized response. In the actual micromodel, weights
come from a numerical integration scheme and are strictly positive. To reflect that, an
absolute function ρ (·) is applied element-wise on the weights of the decoder Wd. For the
present architecture (see Fig. 5.4), it then follows that the predicted homogenized stress
is given by

σ̂Ω = ρ (Wd) a (5.10)

where a corresponds to the concatenation of local stresses from the material points.

3 x 3

3 x 3 ...

3 x 3

3 x 3

3 x 3

Figure 5.7: PRNN with sparse decoder.

In addition to that, we also investigate the use of a sparsification approach, where in-
stead of having a regular dense layer that connects all components of the local stress
tensor to the predicted homogenized stress, only the component-wise contributions are
taken into account, as illustrated in Fig. 5.7. For instance, only the stressesσxy from each
of the subgroups are weighted in for obtaining σ̂Ωxy. This sparsification also brings the
decoder closer to the actual homogenization procedure, in which stresses are averaged
component-wise.
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5.3.4. TRAINING ASPECTS AND ERROR METRICS

The goal of the optimization procedure is to minimize a loss function that quantifies
how close the network’s prediction are from the actual solution. Here, the standard loss
function based on the mean square error (MSE) is used:

L = 1

Ntrain

Ntrain∑
t=1

1

2

∥∥vec(σΩt )−vec
(
σ̂Ωt

(
UΩ

t ,W,Wd
))∥∥2

(5.11)

where Ntrain is the number of loading paths used for training, W and Wd are the network
parameters for the encoder and decoder, respectively, and vec(·) corresponds to the Voigt
representation of the homogenized stress tensor, which consists of 6 components in the
3D case (i.e. the “flattening" mentioned in the previous sections). From that, one can
compute the gradients of the loss function with respect to the trainable parameters using
a backpropagation procedure and then update those accordingly, for which we use the
Adam optimizer [24].

The backpropagation here follows the same methodology as in Chapter 2. Note that
the gradients of the parameters in the decoder can be obtained based on the conven-
tional backpropagation procedure, but for the ones in the encoder, backpropagation
through time is needed. This is a vital aspect of the training and stems from the path-
dependency of the material models embedded in the material layer. For completeness,
we include the expression for computing the gradients of the weights in the encoder at
time step t for a given loading path:
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(5.12)

where W j corresponds to the weights associated to the material point j . The gradients
related to the internal variables are evaluated using central finite differences. However,
if the material models are implemented with automatic differentation support (e.g. Py-
Torch and TensorFlow), these gradients and dependencies can be automatically taken
into account with tools such as Autograd and GradientTape, as done with off-the-shelf
RNNs.

A potential issue in training with Eq. (5.11) is the large variations of values across the
multiple outputs due to the orthotropy of the composite material with high stiffness con-
trast. In such scenario, one component can disproportionately dominate over the oth-
ers, leading to unstabilities in the training process and overall poor performance. To
mitigate that, each component of σΩ is normalized to [-1, 1] as follows

σΩ(·)norm = 2

(
σΩ(·) −minσΩ(·)

maxσΩ(·) −minσΩ(·)

)
−1 (5.13)

where max refers to the maximum absolute homogenized stress values of the compo-
nent (·) in the training data and min is the negative of that value. The symmetric bounds
in each of the components ensures that the zero-stress state from the material points
will be reflected in the homogenized stress. Furthermore, to preserve the role of the de-
coder as the homogenization-like step, the normalization in Eq. (5.13) is also applied to
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the local stresses from the fictitious material points. This ensures that all material point
stresses are within the same range expected at the output layer. Lastly, no normaliza-
tion is considered for the inputs, since the range of the features are similar and, more
importantly, are compatible with the range expected by the models in the material layer.

For the model selection and performance assessment, we consider two error metrics:

Absolute error :
1

Npaths

Npaths∑
i=1

1

Lpath

Lpath∑
t=1

∥∥vec(σΩt )−vec(σ̂Ωt )
∥∥

Relative error :
1

Npaths

Npaths∑
i=1

1

Lpath

Lpath∑
t=1

∥∥vec(σΩt )−vec(σ̂Ωt )
∥∥∥∥vec(σΩt )+ε∥∥

(5.14)

where Npaths refers to the number of loading paths in the validation/test sets, Lpath is
the length of each path and ε is a stabilizing term with the same dimensions as vec(σΩt )
filled with 10−8 used to avoid division by zero.

To reduce the number of hyper-parameters to be tuned and keep the model selection
as simple and straightforward as possible, we define a minibatch as 2 paths, the stopping
criterion as the maximum number of epochs (1000 ) and use the recommend default set-
tings from [24] in the Adam optimizer, including its standard learning rate decay update
per iteration. When training the network, the validation set is evaluated every 50 epochs,
and the best set of parameters is updated only if the current error is lower than the histor-
ical lowest validation error, thus mitigating the risk of overfitting. Further details on the
model selection procedure, including the definition of the material layer size, the type of
decoder (dense or sparse), and the size of the training set, are presented in Section 5.5.

When choosing which constitutive models to assign to the fictitious material points,
we follow the idea of including all sources of non-linearity. In this case, both the fiber
and the matrix constitutive models qualify. At this point, it is worth highlighting another
aspect that makes having both models in the network important. Although the fiber
constitutive model adopted in this chapter only shows non-linearity at very large strains,
in our case, it is also the one introducing the transversal isotropy in the micromodel
and has distinct behavior from the matrix in terms of path and rate-dependency. Those
unique characteristics need to be present in the network so that the encoder and decoder
can leverage them into the homogenized stress response.

Related to that is the definition of how many of the fictitious material points are as-
signed to each of the models. This proportion itself is a hyper-parameter, but to reduce
the amount of variables in the upcoming studies, we define a fixed splitting ratio. The
hyperelastic and elasto-viscoplastic models correspond to 25 % and 75 % of the mate-
rial points, respectively, rounding the number of hyperelastic models up when the total
number of points is even but not divisible by 4. The higher proportion of points associ-
ated to the elasto-viscoplastic model is rooted in the fact that this is the most complex
constitutive model in the micromodel, from which we expect higher expressibility. Fur-
thermore, it is also a model with internal variables, 24 per point to be precise, which ef-
fectively work as the physics-based memory of the network. Thus, we expect to achieve
good performance with smaller networks (i.e. more parsimonious PRNNs) compared to
splitting ratios that favor hyperelastic models. Other than the difference in the material
layer size itself, we expect no significant changes in the overall accuracy of the network
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granted model selection has been performed correctly.

Finally, we highlight that the choice of constitutive models, regardless of history-depen-
dence, and their splitting ratio in the material layer do not affect the total number of
trainable parameters in the network. For the dense decoder architecture depicted in

5.3.5. USE AS CONSTITUTIVE MODEL

For incorporating the present network as a constitutive model in a microscale analysis
that takes as input the homogenized deformation gradient (FΩ) and the increment of
time (∆t ) and outputs homogenized stresses σ̂ΩF , a few additional steps are introduced.
First, the polar decomposition theorem is applied on the deformation gradient in order
to obtain the rotation RΩ and the stretch tensors UΩ. Once the stretch tensor is obtained
and the increment of time is known, the network is used to predict the unrotated stresses
σ̂ΩU in a forward pass. The rotation tensor is then used to transform the predicted unro-
tated stresses back into the rotated system.

Obtaining the tangent stiffness matrix is not as straightforward. In this framework, the
jacobian of the network is only one part of the tangent stiffness matrix expression for the
entire mapping between rotated stresses and the deformation gradient

Çσ̂ΩF
ÇFΩ

= Çσ̂ΩF

Çσ̂ΩU

Çσ̂ΩU

ÇUΩ

ÇUΩ

ÇFΩ
+ Çσ̂ΩF
ÇRΩ

ÇRΩ

ÇFΩ
(5.15)

where the partial derivatives of the homogenized rotation and stretch tensors with re-
spect to the homogenized deformation gradient are given by the expressions derived by
Chen and Wheeler [25] and Çσ̂ΩU/ÇUΩ is given by performing a complete backward pass
through the network. Moreover, the partial derivative of the stresses with respect to the
unrotated stresses is given by

Çσ̂ΩF

Çσ̂ΩU
= RΩ⊗RΩ (5.16)

where ⊗ represents the Kronecker product between two second-order tensors of di-
mensions nrank ×nrank, resulting in a second-order tensor of dimensions nrank nrank ×
nrank nrank. Finally, the partial derivative of the stresses with respect to the rotation ten-
sor are evaluated as

Çσ̂ΩF
ÇRΩ

= P̄ (I⊗ σ̂ΩU RΩT
)+ (I⊗RΩ σ̂ΩU) P (5.17)

where P̄ and P are two permutation matrices given by

P̄ =∑
i , j

Ei j ⊗Ei j

P =∑
i , j

Ei j ⊗E j i
(5.18)

with Ei j being a null matrix except for the unit value at Ei , j .



132 5. ANISOTROPIC VISCOPLASTIC 3D MODELS UNDER FINITE STRAINS

5.4. DATA GENERATION

In general, surrogate models need to be trained with an extensive amount of data cover-
ing several types of loading. This is because it is virtually impossible to have fine control
over what types of loading the micromodel will experience upfront even in the simplest
scenarios. Therefore, to investigate how well the proposed network can generalize to
unseen scenarios, a variety of loading functions and methods for generating the loading
paths are considered.

First, we define the geometry and the discretization of the micromodel. In this case,
the same composite RVE used in [22], and illustrated in Fig. 5.8, with 9 fibers embedded
in a matrix material is adopted. The material models and properties assigned to each of
the phases also follow from that work with a minor change in one of the material prop-
erties of the matrix. The reinforcements are assumed to be carbon fibers and can be
described by the hyperelastic, transversely isotropic material model developed by [23].
For the matrix, the elasto-viscoplastic EGP model is considered with the relaxation spec-
trum now consisting of one mode (the first). Both of these models are briefly discussed
in Section 5.2.1, but for further details on their implementation and numerical valida-
tion in the 3D finite strain framework, the reader is directed to the reference paper [22].

Figure 5.8: Geometry and mesh discretization of micromodel used to generate the data.

To generate the data, two strategies are devised, one producing proportional loading
paths, and the other non-proportional loading paths. We use the first type to train and
test the network, while the second is reserved for testing only. By proportional we refer
to curves in which the loading direction is fixed. For this, we adopt the arc-length formu-
lation with indirect displacement control derived in [26], in which a constant unit load
vector is considered and the additional constraint consists in the unsigned sum of the
controlled displacements. For stress measures based on the undeformed state, that also
entails a constant stress ratio.

For creating proportional paths, three main ingredients are needed: the loading direc-
tion n, the loading function λ and the time increment ∆t . Previously in Chapter 2, basic
load cases (e.g. uniaxial and biaxial tension and compression, transverse and longitu-
dinal shear, etc.) were used for training PRNNs subjected to general stress states. Here,
due to the increased problem dimensionality, we train with a more general approach of
random loading directions. For each path, the unit load vector is obtained by sampling
values from 6 independent Gaussian distributions (X ∼N (0,1)) and normalizing them
to a unit vector, one for each prescribed corner displacement. As for the time increment,
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we set it to ∆t = 1s for all time steps. Fixing the time increments allows for a straight-
forward assessment of the ability of the network to extrapolate to unseen strain-rates.

Figure 5.9: Scheme of loading types considered in this chapter, with colored types being
used for training and testing, while remaining are for testing.

The last ingredient to create the proportional curves is the loading function λ. We
use the two loading functions depicted in Figs. 5.10a and 5.10b as pre-defined mono-
tonic and non-monotonic curves, respectively. Although useful for testing, this non-
monotonic set is not as valuable for training since all curves follow the same unload-
ing/reloading behavior. An alternative with more unloading variety is to sample λ from
a Gaussian Process (GP) with X ∼N (µ, σ2) and covariance function given by

k(xp ,xq ) =σ2
f exp

(
− 1

2ℓ2 ∥xp −xq∥2
)

(5.19)

where xp and xq are the time step indices of the sequence of loading function values, σ2
f

is the variance and ℓ is the length scale. These hyper-parameters control the smoothness
and how large the unsign sum of the controlled displacements can be, and are tuned to
obtain smooth loading functions, as the ones illustrated in Fig. 5.10c.
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Figure 5.10: Loading functions used to create proportional loading paths.
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To create a more diverse set in terms of strain-rate compared to the curves using a sin-
gle pre-defined loading function, for the proportional GP-based curves, the time incre-
ment of each path is drawn from a bounded uniform distribution ∆t ∼U (0.01s,100s).

Fig. 5.9 shows a summary of the three loading types discussed so far ordered by their
level of complexity. In this chapter, we train with two of them, namely monotonic curves
(in blue) and proportional GP-based curves (in brown). For testing, we take a step further
and generate non-proportional and non-monotonic paths. These are the most complex
paths considered and also employ GPs in their formulation. To create these curves, first
we switch to a displacement control method and follow a similar procedure as the one
employed in Chapter 2. Here, we sample the displacements at the controlling nodes
from 6 independent GPs, allowing unloading/reloading to take place at different times
across the components of the homogenized deformation gradient. This is illustrated in
the bottom right plot of Fig. 5.9, where independent u(·)–t functions are plotted for the
different components.

For reference, all the types of loading paths studied in the following section are listed
below in ascending order of complexity:

• Type I: proportional and monotonic loading path. The direction n is generated
randomly, the loading function λ is as illustrated in Fig. 5.10a with step size ∆λ =
1× 10−4 mm, and ∆t = 1s. In the following sections, data sets using this type of
path carry the subscript “mono”;

• Type II: proportional and monotonic loading path with same loading function and
step size as Type I, but different strain-rate. Data sets with this type of path carry
the subscript “mono" and two variations of superscript, “faster” and “slower”. To
generate those, ∆t = 0.01s and ∆t = 100s are used, respectively;

• Type III: proportional and non-monotonic loading path with fixed unloading/relo-
ading behavior λ as illustrated in Fig. 5.10b with ∆λ = 1 × 10−4 mm, and ∆t =
1s. Data sets with this type of path have the subscript “unl” and the superscript
“fixed”;

• Type IV: proportional and non-monotonic loading path with loading function given
by a GP with variable step size, and ∆t ∼U (0.01s,100s). In this case, each loading
path follows a different unloading/reloading function. Fig. 5.10c illustrates some
of the loading functions generated by this approach with ℓ= 30 and σ2

f = 1×10−5

as the hyper-parameters of the GP. Data sets with this type of path have the sub-
script “unl” and the superscript “prop. GP”;

• Type V: non-proportional and non-monotonic loading path with GPs to describe
the displacements, and ∆t ∼U (0.01s,100s). Each controlled displacement in the
micromodel is assigned to an independent GP, from which we sample smooth and
random functions with variable step size. In this case, the hyper-parameters of
the GPs are ℓ = 30 and σ2

f = 2.5 · 10−7, with the exception of the variance of the

GP associated to the displacement in the fiber direction, which is 10 times smaller
than the others to prevent excessively high stress values that can dominate the
homogenized stress state. Data sets with this type of path have the subscript “unl”
and the superscript “non-prop GP”.
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5.5. NUMERICAL EXPERIMENTS
In this section, the accuracy of the network is assessed in a set of numerical experiments.
The goal is to illustrate the extrapolation properties of the method given the different
training strategies. The test cases cover loading directions and strain-rates different from
those seen in training, as well as complex unloading/reloading cases. Since we are focus-
ing on the network’s accuracy only, the following sections deal with the stretch and the
unrotated stresses as their inputs and outputs, respectively.
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Figure 5.11: Envelope of highest and lowest absolute validation error from 10 PRNNs
trained on Dmono = {144 monotonic curves} over validation set Vmono = {100
monotonic curves} with different material layer sizes and decoder architec-
tures.

5.5.1. MODEL SELECTION

First, two preliminary studies are carried out for model selection. The first one is used
to choose between sparse and dense decoders (see Section 5.3.3), while the second is
focused on defining the material layer size. The comparison is carried out with varying
size of the material layer each time considering the largest training set with monotonic
loading paths. For each combination of decoder architecture and material layer size,
10 random initializations of the PRNN are considered. In each of them, the training set
Dmono consists of 100 monotonic curves randomly selected from a pool of 1000 curves
of the same type (Type I). For validation, a fixed set Vmono with 100 monotonic curves
is considered. In Fig. 5.11, the colored areas correspond to the envelope with the high-
est and lowest absolute errors for each combination, along with the average errors rep-
resented by the solid lines with markers. In all cases, we emphasize that the reported
errors over validation and test sets correspond to the network parameters associated to
the historical best performance during training, as discussed in Section 2.4.4. A marked
difference in accuracy between the two types of decoder for all range of material layer
size over Vmono is observed. Therefore, in the remainder of this paper, all networks have
a sparse decoder.
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The second model selection step is focused on finding an optimal size for the material
layer. For this purpose, the material layer size is varied considering a range of different
training set sizes. Note that at this stage there is no direct comparison between the two
training strategies since their training and validation are of matching types. Similarly to
the plot in Fig. 5.11, in Fig. 5.12 we show the envelope of best and worst performances,
along with the average absolute errors over the validation set V(·), which this time con-
sists of either monotonic or proportional GP-based curves. In the following sections,
we use the PRNNs with material layer size of 8 for both cases, which corresponds to the
point where errors are either the lowest among all training sets or have negligible differ-
ence with respect to larger layer sizes.

5.5.2. MONOTONIC LOADING

As first test scenario, we consider a test set Tmono consisting of 100 monotonic curves in
random and unseen directions (type I). We evaluate the networks trained on monotonic
(type I) and GP-based paths (type IV) over that test set for different training set sizes.
Fig. 5.13a shows the lowest absolute and relative errors for both strategies, along with
the envelope of absolute errors from 10 initializations. As more data is considered, the
error bounds shrink and an optimal training set size can be identified around 72 curves.
Although the difference in the lowest errors is still significant, 6.2 MPa (5.4 %) vs 7.6 MPa
(6.3 %), more data translates into marginal gain to both. In the breakdown of the error
per component in Fig. 5.13b, the largest differences in the accuracy are in theσΩyy andσΩzz
components. The overall performance gap between the two training strategies in this
scenario is expected since we are testing on the same loading behavior used to generate
the training data of one of the strategies. Another aspect to be considered is the fact that
the proportional GP-based curves reach lower strain ranges compared to the monotonic
paths for the same number of time steps and step size.

To illustrate the difference in performance, we select a curve from Tmono with an abso-
lute error close to the best performances from both training strategies. In this case, the
prediction error on the curve shown in Fig. 5.14 is around 5.5 MPa and 7.2 MPa for the
networks trained on monotonic and proportional GP-based curves, respectively. Note
that the accuracy loss stands out more in the components with lower stress magnitude
such as σΩxx and σΩzz. An explanation for that comes from the choice of the loss function,
the mean squared error. Recall that although normalization of the outputs is considered
to balance the difference between stress magnitudes among the components, the MSE
remains an absolute metric error. As such, values on the higher end of the normalized
range can still dominate the loss, leading to a better fit. Neverthess, satisfatory agree-
ment is observed in the remaining components with the network trained on monotonic
data, while the network trained on proportional GP-based curves shows more significant
errors.

5.5.3. MONOTONIC LOADING WITH DIFFERENT STRAIN-RATES

Next, we test the ability of the PRNN to capture rate-dependency. For that, two new test
sets are considered, Tslower and Tfaster, with 100 curves each again in unseen directions
(type II). In the first one, the time increment ∆t is set to be 100 times larger than the
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Figure 5.12: Envelope of highest and lowest errors in logarithmic scale from 10 initializa-
tions of PRNNs trained on different types of loading and material layer sizes
over validation set V(·). Solid lines with markers correspond to the average
validation errors.

reference one (1 s) used for generating the monotonic curves for training, and in the
second, the time increment is 100 times smaller. The best performances from the 10
PRNNs trained on different types and numbers of curves are summarized in Table 5.1.
Again, the slight advantage of the networks trained on monotonic curves is expected
since the loading function in both test sets remains monotonic and reaches similar strain
levels. As a result, networks trained with proportional GP-based curves show greater
benefit from larger sets, as was the case in the previous assessment. Similarly, since the
gain is still relatively small compared to doubling the training set size, we continue the
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Figure 5.14: Best PRNNs trained on monotonic and GP-based curves on representative
curve from test set Tmono.
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analysis with the smaller set for both types.
To illustrate the rate-dependent behavior, we use the best networks over each of the

test sets and select a representative curve from them to visualize the effect of the differ-
ent strain-rates (see Fig. 5.15). This is an important milestone of this contribution, espe-
cially considering that these strain rates are far from the reference values considered to
generate the monotonic curves. The rate dependency in this case is a natural outcome
of the elastoviscoplastic model used in the material layer. Encoding rate-dependence in
the material layer allows for reproducing this effect without training for it. This is most
evident from the error values reported in Table 5.1, where the test errors are of similar
magnitude for test sets with unseen strain-rates as for the test set with the same strain
rate as used for the training data. In contrast to modern RNNs, our latent variables have
physical interpretation, and, more importantly, evolve according to the same physics-
based assumptions considered in the micromodel.

Table 5.1: Summary of lowest absolute errors from 10 PRNNs trained on different types
of curves over test sets Tmono, Tfaster and Tslower.

Training loading type Monotonic Prop. GP
Training set size 72 144 72 144

Abs. error over Tmono [MPa] 6.2 6.1 7.6 6.6
Abs. error over Tfaster [MPa] 6.6 6.5 7.5 6.7

Abs. error over Tslower [MPa] 5.7 5.5 7.1 6.2

5.5.4. UNLOADING/RELOADING BEHAVIOUR

In this section, three types of unloading/reloading paths are tested with data sets from
type III, IV and V. In all cases, every scenario is assessed based on a test set with 100
curves. Networks trained with both training strategies (based on type I and type IV
curves) are evaluated.

PREDEFINED UNLOADING/RELOADING FUNCTION

Table 5.2 presents the lowest error from 10 networks over the test set of proportional
curves with pre-defined unloading T fixed

unl (type III). It can be observed that both train-
ing strategies lead to similar performances. Note that although the networks trained on
proportional GP-based curves can still benefit from a larger training set, we continue
the experiments with 72 curves as the gain in accuracy from doubling the training set
is minimal. It is also interesting how the networks trained on monotonic paths are still
slightly more accurate than the ones that have been trained with unloading. We see this
as a result of two subtle advantages: (i) a loading/unloading test function much similar
to the monotonic loading paths, especially the first half of the curves in T fixed

unl , than to
the arbitrary unloading in the proportional GP-based curves and (ii) the time increment
in the test curves are the same as the ones in the monotonic curves.

While these aspects help elucidate the similar performances, they do not express their
significance. These networks have never seen any sort of unloading in training but are
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Figure 5.15: Performance of PRNNs trained on monotonic and proportional GP-based
curves on test sets with strain-rates 100 times slower and 100 times faster
than the one used to create the monotonic training data.

still quite capable of extrapolating to such behavior, correctly accounting for the effect
of the plastic deformation. This corroborates the findings in Chapter 2, where a path-
dependent material model in the material layer allowed path-dependency to arise natu-
rally. Here, we verify that the method is general and can be extended to account for other
non-linearities and time dependencies. Fig. 5.16 shows the predictions on a curve from
T fixed

unl with representative errors using the best performing network. Note how close the
predictions are to each other and the good agreement with respect to the micromodel
solution.

Table 5.2: Summary of lowest absolute errors from 10 PRNNs trained on different types
of curves over test set T fixed

unl .

Training loading type Monotonic Prop. GP
Training set size 72 144 72 144

Abs. error over T fixed
unl [MPa] 6.7 6.8 7.0 6.5

PROPORTIONAL AND RANDOM UNLOADING/RELOADING

In this experiment, the test setT prop. GP
unl is used to represent loading paths with unloading-

reloading taking place at random times. These curves consist of the same type of loading
used in one of the training strategies, which is similar to the situation discussed in Sec-
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Figure 5.16: Best PRNNs trained on monotonic and proportional GP-based curves on
representative curve from test set T fixed

unl .

tion 5.5.2. Naturally, this results in lower test errors compared to the networks trained
on monotonic loading paths, as shown in Table 5.3. To illustrate the best performance

among the 10 networks considered for each strategy, we select a curve T prop. GP
unl with er-

rors close to the average lowest absolute error (see Fig. 5.17a), along with the errors per
component (see Fig. 5.17b).

Table 5.3: Summary of lowest absolute and relative errors from 10 PRNNs trained on dif-

ferent types of curves over test sets T prop. GP
unl and T non–prop. GP

unl .

Training loading type Monotonic Prop. GP
Training set size 72 144 72 144

Abs. (and rel.) error over T prop. GP
unl [MPa] (%) 3.2 (8.1) 3.4 (7.8) 2.7 (5.6) 2.6 (5.1)

Abs. (and rel.) error over T non–prop. GP
unl [MPa] (%) 11.5 (3.4) 12.2 (3.6) 11.0 (3.1) 10.9 (3.0)

NON-PROPORTIONAL AND RANDOM UNLOADING/RELOADING

For the last part of the experiments on the accuracy of the network, the test setT non–prop. GP
unl

is considered. Curves from this set have more complex unloading behavior and signif-

icantly higher stress levels compared to the proportional paths in T prop. GP
unl . This time,

the slight gain in accuracy shown in Table 5.3 from training with the proportional non-
monotonic data is examined along with the relative errors. This way, we verify that al-



142 5. ANISOTROPIC VISCOPLASTIC 3D MODELS UNDER FINITE STRAINS

0.990 0.996 1.002

UΩ
xx [-]

-24

-16

-8

0

8

σ
Ω x
x

[M
P

a]

0.000 0.002 0.004

UΩ
xy [-]

-4

0

4

8

12

σ
Ω x
y

[M
P

a]

0.000 0.002 0.004

UΩ
xz [-]

-5

0

5

10

15

σ
Ω x
z

[M
P

a]

1.000 1.008 1.016

UΩ
yy [-]

-20

0

20

40

60

σ
Ω y
y

[M
P

a]

0.000 0.004 0.008

UΩ
yz [-]

-10

0

10

20

30

40

σ
Ω y
z

[M
P

a]

Micro PRNN ‖Dmono‖ = 72 curves PRNN ‖Dprop. GP‖ = 72 curves

1.000 1.000 1.000

UΩ
zz [-]

-6

0

6

12

18

σ
Ω zz

[M
P

a]
(a) Proportional GP-based curve from test set T prop. GP

unl

0 1 2 3 4 5 6

Abs. error over T prop.GP
unl [MPa]

σΩ
xx

σΩ
xy

σΩ
xz

σΩ
yy

σΩ
yz

σΩ
zz

S
tr

es
s

co
m

p
on

en
ts

[-
]

D72 mono
D72 prop. GP

(b) Error per component over

T prop. GP
unl

1.005 1.020 1.035

UΩ
xx [-]

-60

-30

0

30

60

σ
Ω x
x

[M
P

a]

-0.030 -0.015 0.000

UΩ
xy [-]

-75

-60

-45

-30

-15

0

σ
Ω x
y

[M
P

a]

-0.006 0.000 0.006

UΩ
xz [-]

-30

-15

0

15

σ
Ω x
z

[M
P

a]

0.960 0.980 1.000

UΩ
yy [-]

-160

-120

-80

-40

0

σ
Ω y
y

[M
P

a]

-0.016 -0.008 0.000

UΩ
yz [-]

-40

-20

0

20

σ
Ω y
z

[M
P

a]

Micro PRNN ‖Dmono‖ = 72 curves PRNN ‖Dprop. GP‖ = 72 curves

0.984 0.990 0.996

UΩ
zz [-]

-800

-600

-400

-200

0

σ
Ω zz

[M
P

a]

(c) Non-proportional GP-based curve from test set T non–prop. GP
unl

0 1 2 3 4 5 6

Abs. error over T non–prop. GP
unl [MPa]

σΩ
xx

σΩ
xy

σΩ
xz

σΩ
yy

σΩ
yz

σΩ
zz

S
tr

es
s

co
m

p
on

en
ts

[-
]

D72 mono
D72 prop. GP

(d) Error per component over

T non–prop. GP
unl

Figure 5.17: Best PRNNs trained on monotonic and GP-based curves on representative
curves from two different test sets with random unloading/reloading.

though the absolute test errors have increased, the performances remain consistent with
the values seen so far (below 10 %) in terms of relative errors.

In Fig. 5.17c, a representative curve from T non–prop. GP
unl illustrates the best performance

of both strategies over this set. The difficulty in predicting the lowest magnitude stress (in
this case, σ̂Ωxz) becomes more evident, as well as the variety of unloading, which this time
is different in each of the components. While some components go through unloading
(e.g. σ̂Ωxx and σ̂Ωxy), others are monotonically increasing (e.g. σ̂Ωzz) and reaching high stress
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levels, which are naturally followed by higher absolute errors per component as seen in
Fig. 5.17d.

An additional curve from T non–prop. GP
unl is selected and shown in Fig. 5.18 to highlight

another aspect not yet discussed, the orthotropic behavior of the micromodel. Note that
the unloading in the z-direction follows the same stress-strain path as the loading, indi-
cating that the elastic fiber is acting as the main load-bearing component. In contrast,
the shear stress in y z follows unloading in a different branch due to the development of
plastic strains in the matrix.
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Figure 5.18: Orthotropic behavior of selected components in loading path from

T non–prop. GP
unl illustrated with stress-time and stress-strain views.

Finally, although training with monotonic curves showed consistent and relatively ac-
curate responses in most scenarios, the random and smooth type of loading paths ex-
plored in the previous and the current section are deemed to be more general and better
representative of arbitrary functions. In both cases, training with 72 proportional GP-
based curves has shown better performance and is therefore used to assess the network’s
capabilities in Section 5.7, where the network is used as a material model in several ap-
plications.

5.6. RUNTIME COMPARISON
In this section, we perform a runtime comparison to assess the speed-up of the proposed
approach in terms of the homogenized stress evaluation. For that purpose, we con-
tinue with the loading type investigated in Section 5.5.4 (type V), and select one model
from the 10 initializations trained on 72 proportional GP-based curves to represent the
best overall performance. Here, we use the network with the lowest error over T prop. GP

unl .

The choice could also have been based on T non–prop. GP
unl , but in favor of simplicity, in a

case where the experiments presented in Section 5.5 are not carried out, choosing from

T prop. GP
unl implies a simpler model selection based on a single type of loading.
In this chapter, all simulations, including the data generation and training procedure

for the network, were executed on a single core of a Xeon E5-2630V4 processor on a clus-
ter node with 128 GB RAM running CentOS 7. Because we are interested in the final
homogenized stress σΩF , we include in the PRNN runtime, the time spent in the trans-
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Figure 5.19: Breakdown of simulation runtime using the micromodel and the PRNN av-
eraged over 150 type V loading paths.

formations to bring the predicted homogenized stress back to the original frame, as il-
lustrated in Fig. 5.3. For this comparison, we use as input the converged strain path and
time increments from the micromodel simulations. The micromodel mesh is shown in
fig. 5.8 and consists of wedge elements integrated with 2 points in the thickness direc-
tion, comprising 4992 integration points and 7860 degrees of freedom.

Averaging over the results from 150 simulations, we break down the runtime from the
full-order model in the three main parts depicted in Fig. 5.19. With the micromodel,
roughly 30 % of the simulation is spent evaluating the constitutive models at the integra-
tion points, around 15% goes to the assembly of the global stiffness matrix and internal
force vector and more than half of the total time is spent solving the system, totaling 186
seconds. In contrast, the network needs only 0.08 s to compute the homogenized stress
state, which results in a speed-up of three orders of magnitude when compared to the
full-order solution.

In terms of offline costs, we show the average times of the two main tasks involved in
the training of the networks Table 5.4. First, the time needed to generate a full path of
stretches and unrotated stresses, including the polar decomposition and rotation opera-
tions; and second, the time spent on training the PRNNs with 8 fictitious material points
and 72 proportional GP-based curves itself. It is worth mentioning that, regardless of the
offline costs, this section presents only an estimate of the actual speed-up. In the general
case, the speed-up depends on several other aspects, such as the robustness of the tan-
gent stiffness matrix, the complexity of the loading case, and the size of the micromodel.
In multiscale settings, the gain can be higher since the cost associated with an iteration
at the macroscale builds on a much higher execution time when using the micromodel
compared to the network, exceeding the sum of the online evaluation and offline costs.
To illustrate the potential to achieve higher speed-ups, we include an additional runtime
comparison in the last application of Section 5.7.

5.7. APPLICATIONS

In this section, the PRNN trained to surrogate the constitutive behavior of the micro-
model in Section 5.5 is tested in applications in which its robustness also plays a role
in obtaining the equilibrium path. By robustness, we understand the ability of the net-
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Table 5.4: Computational offline costs averaged over 1100 training and validation pro-
portional GP-based curves and 10 PRNNs.

Stress-strain curve Training

Av. wall-clock time 3.92 min 20.34 h

work to provide not only accurate stress predictions, as verified in Section 5.5, but also
a tangent stiffness matrix that is stable enough for tracing an equilibrium path as close
as possible to the one obtained by solving the micromodel. Previously, the entire strain
path and time increments obtained from converged micromodel simulations were used
as input. Here, the network is directly employed as the material model and therefore the
stress prediction at each time step affects the following stress/strain state. In this case,
lack of smoothness of the surrogate output may lead the iterative procedure to venture
outside the training domain, potentially giving rise to divergence from the true solution.

For all applications in this section, we use the network with the lowest error onT prop. GP
unl .

This time, to simulate its performance as a surrogate model to the micromodel, the net-
work is embedded in a FE mesh that consists of a single 8 node hexahedral element with
the same dimensions as the micromodel and one integration point with constitutive re-
sponse given by the PRNN, as illustrated in Fig. 5.20. To process the deformation gradi-
ent FΩ into a simpler input space for the network (i.e. UΩ) and obtain the stresses in their
original frame of reference (σ̂ΩF ) using RΩ, we use the scheme in Fig. 5.3. For better read-
ability, we drop the subscript, and refer to the final stresses simply as σ̂Ω. Furthermore,
for both the micromodel and the hexahedral element, in addition to the constrained dis-
placements to avoid rigid body motion (see Fig. 5.1a), periodic boundary conditions are
applied.

Figure 5.20: Micromodel and PRNN meshes used in the applications.

In the first application, we test the ability of the model to reproduce the stress relax-
ation phenomenon. In the second, we deal with cyclic loading and in the last applica-
tion, the network is embedded in the general nonlinear framework developed in [22] to
account for off-axis and constant strain-rate loading conditions. For the latter, we also
include speed-up measurements to illustrate how aspects such as step size and tangent
stiffness smoothness can play a role in increasing or decreasing the speed-up compared
to the study in Section 5.6.
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5.7.1. RELAXATION

In this study, a loading function to reproduce the stress relaxation phenomenon is de-
vised. For that, the micromodel and the PRNN are loaded until a given strain level is
reached εΩ0 at t = t0, when the stress level is σΩ0 . After that, the strain is held constant,
while a gradual stress reduction takes place. For that, we use the arc-length control intro-
duced in Section 5.4 and control the stretching in the x-direction, leaving the remaining
directions free to deform.
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(a) Homogenized stress-time response of micromodel and
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Figure 5.21: Homogenized stress-time response of micromodel and PRNN subjected to
uniaxial stretch in x until t = 160 s, when the strain is held constant until the
end of the simulation t = 500 s. On the right, the full-field of stresses of the
micromodel for the start and end of the constant strain loading (in red).

In this example, the micromodel and the homogeneous hexahedral element are loaded
with ∥∆uc∥ = 5×10−6 mm and ∆t = 1s until t0 = 160s, when the strain level at that point
is held constant until the total time of 500 s is reached and the analysis is terminated, as
depicted in the lower plot of Fig. 5.21a. In the upper plot, despite the mismatch in the
stress before the start of the constant strain plateau, where the maximum error reaches
11.9 MPa (9%), the overall stress-time response of the micromodel is in relatively good
agreement with the network’s prediction, with an average error of 6 MPa (5 %). While
this case represents a challenging scenario for even modern RNNs due to the long strain
repetition, the expected stress decaying behaviour in the prediction comes as an inher-
ent outcome of using a material model that incorporates a spectrum of relaxation times
in the material layer. To illustrate the slight difference in the stress state at the begin-
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ning and end of the constant strain plateau, we show in Fig. 5.21b two snapshots of the
full-field solution.

5.7.2. CYCLIC LOADING

To assess the network’s performance on cyclic loading, we continue with the arc-length
method and same boundary conditions as the previous application but now the uniaxial
stretch at time t is described as

FΩ
xx = 1+ 6×10−3

l
sin

(
2π

1000
t

)
(5.20)

where t is the time step index and l = 0.021mm is the side length of the micromodel.
20 cycles are considered, each consisting of 1000 steps with ∆t = 1s. Fig. 5.22a shows
the stress-strain curve for the entire loading history. The network reproduces the reverse
plasticity and the hysteresis behavior in the cyclic response. Because Eq. (5.20) consists
of a symmetric loading with constant peak and valley strains, a slow stress decay over
the cycles takes place. This asymptotic relaxation process can be observed in the inset
in Fig. 5.22a and is of similar nature to the one discussed in Section 5.7.1. Overall, good
agreement is found between the PRNN and the micromodel solution. This is further as-
sessed by unrolling the stress-strain response in time and extracting the peak and valley
quantities.

First, the peak strain values from the diagonal components not controlled by the arc-
length are plotted in Fig. 5.22b. In this case, the strain path obtained by the network
remains close to the true solution and only minor deviations are observed in the Fyy

component. Naturally, different loading conditions lead to different levels of accuracy of
the strain paths due to the indirect displacement control equation considered here. As
for the stresses, the envelopes of maximum and minimum values for the entire loading
history are shown in Fig. 5.23. In each, the highest absolute error is marked by double
arrows, along with the corresponding relative error. Both absolute and relative errors are
within the range of errors obtained in previous sections.

5.7.3. CONSTANT STRAIN-RATE UNDER OFF-AXIS LOADING

For the last application, a dedicated strain-rate based arc-length formulation is used to
reproduce the response of unidirectional composites subjected to off-axis loading [22].
In this formulation, two coordinate systems are needed: the global (x and y axes) and the
local (1, 2 and 3 axes), as depicted in Fig. 5.24. In the global coordinate system, the initial
fiber orientation with respect to the y-axis is defined according to a given off-axis angle
χ. The micromodel is then subjected to constant strain-rate (ε̇yy) under uniaxial stress
conditions. With that, equivalent homogenized deformation and stress states need to be
derived in the local frame, and the transformations between global and local coordinate
systems are taken care by the custom arc-length model.

For this study, we embed the network in the local frame, with the time increment ∆t
and the homogenized deformation gradient F as input and the homogenized stressσ as
the output. In Fig. 5.24c, we show the three relevant configurations in this framework.
In the simulation, due to the applied loading, the micromodel edge 0–1 tied to the local
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Figure 5.22: Stress-strain response of micromodel and PRNN subjected to uniaxial cyclic
loading.

0 500 1000 1500 2000 2500 3000

-120

-80

-40

0

40

80

120

σ
Ω x
x

[M
P

a] Time [s]

1 5 10 15 20

Cycle [-]

112

114

116

118

120

122

124

126

P
ea

k
σ

Ω x
x

[M
P

a]

8.7%

PRNN Micro

1 5 10 15 20

Cycle [-]

-140

-138

-136

-134

-132

-130

V
al

le
y
σ

Ω x
x

[M
P

a]

5.8%

Figure 5.23: Evolution of maximum and minimum stresses for all cycles with double ar-
rows marking the relative error corresponding to the highest absolute differ-
ence between the micromodel and PRNN subjected to uniaxial cyclic load-
ing.

axis e1 should rotate with an angle φ with respect to the initial configuration (from “a"
to “b"), going from the initial angle θ0 to a new angle θ1 = θ0 +φ. However, to avoid
rigid-body rotation of the RVE, the controlling node 1 is fixed in the shearing direction,
but the angle φ is implicitly taken into account through the constraint equation and the
unit force vector of the arc-length model. For that reason, configuration “c", in which e1

is always aligned to the initial fiber orientation, is used to evaluate φ.
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(a) Global and local coordinate systems

(b) Micromodel in the local system

(c) Reorientation of micromodel due to ap-
plied loading ε̇yy

Figure 5.24: Global and local coordinate systems with imposed strain-rate ε̇yy on y di-
rection and off-axis angle χ and reorientation of micromodel due to applied
loading ε̇yy from initial angle θ0 to θ1 = θ0 +φ based on the deformed state
[22].

In the local frame, the homogenized deformation gradient F is given by:

F =
F 11 F 12 0

0 F 22 0
0 0 F 33

 . (5.21)

To ensure the global constant strain rate condition, a special constraint equation g de-
rived by equating the homogenized deformation gradient component in the global frame
Fyy to the value imposed from the input is considered

g = F 11 sin(θ0)sin(θ1)+F 22 cos(θ0)cos(θ1)+F 12 cos(θ0)sin(θ1)︸ ︷︷ ︸
Fyy calculated from micromodel

− exp(εt−1
yy + ε̇yy∆t︸ ︷︷ ︸

Fyy imposed from input

) = 0

(5.22)
where εt−1

yy is the total strain in the global loading direction from the last converged time
step. Another vital part of the framework is related to the update on the unit force vector
applied at the controlling nodes. In this case, the geometrically nonlinear effect on the
unit force vector comes not only from the change in configuration “a" to “c" but also
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from the change in orientation of the micromodel thatφ introduces. Finally, to relate the
stresses from both frames, one can use the load factorλ from the arc-length formulation,
which is equivalent to the σyy stress component in the global frame, to transform it to
the local frame:

σ=σyy

 sin2(θ1) cos(θ1) sin(θ1) 0
cos(θ1) sin(θ1) cos2(θ1) 0

0 0 0

=
σ11 σ12 0
σ21 σ22 0

0 0 0

 . (5.23)

In this contribution, we particularise the framework to χ = 45◦ and strain-rates ε̇yy =
[10−5 s−1,10−4 s−1,10−3 s−1], resulting in three simulations in total. For more details on
the formulation and derivation of the expressions presented in this section, the reader is
referred to [22]. Starting with the global stress-strain response, results in Fig. 5.25 show
satisfactory agreement with the full-order solution. This is yet another verification of the
capability of the network to handle rate-dependency. We also inspect in Fig. 5.26 the
evolution of separate pairs of stress and deformation gradient components in the local
frame. It is emphasized, that in this simulation, none of these stress and strain compo-
nents is directly controlled since there is a nonlinear relation where the evolution of the
load in local frame depends on the computed deformation, except for the σ̄33 which is
kept at zero. It is observed that all deformation and stress components computed with
the PRNN remain close to those coming from the micromodel.
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Figure 5.25: Global stress-strain curve from off-axis composite with χ= 45◦ and different
strain-rates ε̇yy. Solid and dashed lines refer to the micromodel solution and
the PRNN prediction, respectively.

A final assessment is made in terms of speed-up. This time, because an adaptive
stepping scheme is used, the termination criterion (maximum norm) can be reached
with a different number of macroscopic steps depending on the tangent stiffness ma-
trix. For that reason, in Table 5.5, in addition to the breakdown of the total simulation
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Figure 5.26: Stress and deformation in the local system for χ = 45◦ and ε̇yy = 10−4 s−1.
Solid and dashed lines refer to the micromodel solution and the PRNN pre-
diction, respectively.

time into the three tasks shown in Fig. 5.19 and the speed-up, we also show the number
of steps. With less iterations, speed-ups range from 2900 to 4000, which is significantly
higher than the one obtained in Section 5.6 (≈ 2200), where neither the adaptive step-
ping scheme nor the network’s tangent and predictions are used to define the next step
in tracing the equilibrium path. Other aspects, such as macroscopic mesh density and
algorithmic parameters, can also influence the speed-up and the relative times of each
task with respect to the total time. In this particular case with a single macroscopic el-
ement, using the PRNN as the homogenized constitutive model means that most of the
time is dedicated to evaluating the network. With that, we demonstrate the potential of
the proposed approach as a robust and efficient model in a practical application.

Table 5.5: Breakdown of simulation time and speed-up for different strain-rates ε̇yy and
χ= 45◦, each averaged over 10 simulations.

ε̇yy [s−1] 10−5 10−4 10−3

Type of analysis Micro PRNN Micro PRNN Micro PRNN

Nsteps [-] 293 95 290 95 279 65
Stress evaluation [s] (%) 165 (15) .222 (59) 160 (15) .219 (59) 160 (14) .168 (60)

Stiff. and int. force assemble [s] (%) 91.6 (8) .0117 (3) 89.4 (8) .0116 (3) 91.4 (8) .00875 (3)
System solve + overhead [s] (%) 843 (77) .142 (38) 843 (77) .142 (38) 872 (78) .105 (37)

Total simulation time [s] 1099 .375 1092 .373 1123 .282
Speed-up [-] 2929 2932 3980
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5.8. CONCLUDING REMARKS

A novel Physically Recurrent Neural Network (PRNN) architecture has been developed to
accelerate the microscale analysis of path and rate-dependent heterogeneous materials.
The formulation follows the core idea in Chapter 2, where the homogenized response of
a micromodel is obtained by a network with constitutive models embedded in one of its
layers. In this material layer, we have fictitious material points with the same constitutive
models and properties as used in the micromodel. The values passed from encoder to
the material layer are interpreted as (fictitious) local strains, which are input to the con-
stitutive model assigned to the material points, yielding (fictitious) local stresses. These
local stresses are subsequently transformed by a decoder to obtain the homogenized
stress.

What distinguishes the present methodology from the state-of-the-art surrogate mod-
els, particularly the ones based on RNNs, is the strong physics-based assumptions built
into the model. Here, history-dependency is a natural outcome of the embedded mate-
rial models. This is because, in addition to the local stress, the material model assigned
to a fictitious material point is also in charge of updating its own internal variables (if
any), which are stored from one time step to another. Therefore, PRNNs naturally inherit
rich memory mechanisms from the constitutive models, bypassing the need to learn
these latent dynamics from data.

While the concept of having few fictitious material points representing the homoge-
nized response of a micromodel remains at the core of the method, a new architecture
is required to extend the applicability of the network to 3D problems in a finite strain
framework. Among the key changes compared to Chapter 2 are the use of the polar de-
composition theorem and the principle of material objectivity. With the former, the de-
formation gradient can be uniquely decomposed into two tensors, namely stretch and
rotation. The network is then used to learn the mapping between stretch and unrotated
stress, from which the stress in the global coordinate frame is retrieved using the princi-
ple of material objectivity.

For the numerical examples, we considered a unidirectional composite micromodel
with rate-dependent plasticity in the matrix and hyperelasticity in the fibers. Two differ-
ent training strategies (monotonic vs non-monotonic) were considered. When creating
the monotonic curves, a single value of time increment was considered so that we could
clearly illustrate the exceptional ability of the network to extrapolate to strain rates far
from the ones seen during training. We have also tested the performance of the net-
work on curves with increasingly complex unloading behavior. In this case, although the
networks trained on monotonic data could capture unloading behavior and performed
well in most of the considered scenarios, training on non-monotonic curves led to better
performance overall. Comparing the number of curves of the network selected for the
numerical applications with previous developments, now we need twice as many curves
to train a PRNN that is twice as big. This linear scaling should not be expected given the
exponential increase nature from the curse of dimensionality, yet we can still achieve it.

In Section 5.7, we shifted our focus to applications where the PRNN is directly replac-
ing the micromodel in the solution of the equilibrium problem. In the first application,
we demonstrated that the network can reproduce relaxation, which can be a difficult be-
havior to capture with RNNs due to the long repetition of the input (i.e. constant strain).
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In our case, since the constitutive models in the network have such behavior in their for-
mulation, the homogenized response also reflected it robustly. In the second example,
cyclic loading was considered, again showing the ability of the network to extrapolate to
loading conditions and direction different than those trained for. For the last applica-
tion, the special arc-length formulation proposed in [22] to account for off-axis loading
and constant strain-rate conditions was employed. We particularised the framework to
one off-axis angle and three different strain-rates and showed good agreement with the
actual micromodel for a case where the network and its tangent are used to compute the
solution of a nonlinear problem.

To assess the network’s potential to accelerate micromodel simulations, we investi-
gated two scenarios. Firstly, the network was used to predict stresses based on the con-
verged strain paths from 150 micromodel simulations, leading to a stress evaluation 2200
times faster compared to the full-order model. Then, we assessed the speed-up on a
problem in which the PRNN was directly involved in tracing the solution. In that case,
the constant strain-rate application was used as a reference. It was observed that the
lower number of steps needed when using the PRNN as the material model led to speed-
ups even higher, between 2900 and 4000 for the different strain-rates. In summary, the
proposed network provides an efficient model that can describe the rate-dependent, or-
thotropic response of thermoplastic composites in large deformations. Trained on data
generated with a micromodel, the PRNN response remains close to that of the micro-
model for a wide range of loading scenarios, including those outside the training range.

APPENDIX A. COMPUTATIONAL HOMOGENIZATION WITH

UPDATED LAGRANGIAN FORMULATION
In this section, the finite strains formulation briefly presented in Section 5.2 is further
detailed, with a focus on the coupling between the macro- and microscopic levels. For fi-
nite strains, the two main formulations are the total Lagrangian and updated Lagrangian.
They are based on three configurations: the undeformed configuration t0, and the be-
ginning tstart and the end tend of the time step t . In the total Lagrangian, the refer-
ence configuration in which mechanical equilibrium is calculated is fixed and consists
of the undeformed configuration, that is tstart = t0. On the other hand, in the updated
Lagrangian, the reference configuration is continuously updated after each time incre-
ment, so that the end of the previous time step is the reference for the current one (i.e.,
tstart = (t −1)end). A common strain measure used in both formulations is the defor-
mation gradient F(·)

t0→tend
, either as primary, or auxiliary strain measure, which can be

defined as
F(·)

t0→(⋆) =∇∇∇(·)
X x(·)

(⋆)

=∇∇∇(·)
X

(
X(·) +u(·)

t0→(⋆)

)
=∇∇∇(·)

X X(·) +∇∇∇(·)
X u(·)

t0→(⋆)

= I+∇∇∇(·)
X u(·)

t0→(⋆)

(5.24)

where ∇∇∇ is the gradient operator, X refers to the material coordinates (i.e. undeformed
configuration), x refers to the spatial coordinates, given by the sum of X and ut0→(⋆),
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which correspond to the displacements from t0 to (⋆), with (⋆) referring to either tstart

or tend, and (·) referring to any of the two scales considered in this work, macro (Ω) and
micro (ω).

Similar to the homogenization theory applied to small strains, we start by employing
the averaging relations. We define the macroscopic deformation gradient tensor as

FΩt0→(⋆) =
1

V0

∫
V0

Fωt0→(⋆) dV0 (5.25)

where V0 refers to the volume of the RVE at the undeformed configuration t0. In the total
Lagrangian formulation, such configuration is used as reference to derivatives, equilib-
rium and averaging of quantities from micro-to-macro, with the work conjugated stress-
strain measures being the macroscopic first Piola-Kirchhoff PΩ

tend,t0
, calculated at tend

and expressed at the undeformed configuration t0, and the macroscopic deformation
gradient FΩt0→tend

, respectively.
In this chapter, however, we adopt the updated Lagrangian formulation. The two for-

mulations are equivalent, and can be obtained one from another, with the only fun-
damental difference being the configuration of reference. In the updated Lagrangian,
equilibrium is based on the updated configuration (i.e. tend), and therefore we employ
the Cauchy stress σ(·)

tend
. Similarly to the averaging operation in Eq. (5.25), we define the

macroscopic Cauchy stress tensor as

σΩtend
≡ 1

v

∫
v
σωtend

dv (5.26)

where v is the volume at tend. Both equations are based on the so-called Hill-Mandel
principle, which requires that the macroscopic volume average of variation of work per-
formed on the RVE is equal to the local variation of work on the macroscale. Formu-
lated in terms of work conjugated stress-strain quantities in the current configuration,
the Hill-Mandel principle can be expressed as

1

v

∫
v
δεωtstart→tend

: σωtend
dv = δεΩtstart→tend

: σΩtend
(5.27)

where δε(·)
tstart→tend

is a virtual strain given by

δε(·)
tstart→tend

=
(
∇∇∇x(·)

tstart
δu(·)

tstart→tend

)
sym

= 1

2

((
∇∇∇x(·)

tstart
δu(·)

tstart→tend

)
+

(
∇∇∇x(·)

tstart
δu(·)

tstart→tend

)T
) (5.28)

whereδu(·)
tstart→tend

is the virtual displacement associated withδε(·)
tstart→tend

. Note that Eq. (5.28)
is similar to the strain tensor in small strains, but here the derivatives are taken with re-
spect to the spatial coordinates at configuration tstart, instead of the material coordinates
at configuration t0.
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Considering that the principle of separation of scales holds, the microscopic displace-
ments can be additively split as

δuωtstart→tend
=

(
∇∇∇xΩtstart

δuΩtstart→tend

)
xωtstart

+ δũωtstart→tend
(5.29)

where the first term is linearly related to the macroscopic displacements and the sec-
ond term corresponds to a fluctuation field caused by the microscopic inhomogeneities.
Thus, replacing Eq. (5.29) in Eq. (5.27) and using the fact that the Cauchy stress tensor is
symmetric, we obtain

1

v

∫
v

(
∇∇∇xωtstart

((
∇∇∇xΩtstart

δuΩtstart→tend

)
xωtstart

+ δũωtstart→tend

))
sym

: σωtend
dv

= 1

v

∫
v
∇∇∇xΩtstart

δuΩtstart→tend︸ ︷︷ ︸
constant over v

: σωdv

︸ ︷︷ ︸
Term A

+ 1

v

∫
v
∇∇∇xωtstart

ũωtstart→tend
: σωtend

dv︸ ︷︷ ︸
Term B vanishes with PBC

. (5.30)

Rearranging Term A in Eq. (5.30) by removing the constant term out of the integral, we
obtain

∇∇∇xΩtstart
δuΩtstart→tend

:
1

v

∫
v
σωtend

dv︸ ︷︷ ︸
σΩas defined in Eq. (5.26)

=∇∇∇xΩtstart
δuΩtstart→tend

: σΩtend
.

(5.31)

On the right-hand side of Eq. (5.27), we use again the fact that the Cauchy stress tensor
is symmetric to arrive at (

∇∇∇xΩtstart
δuΩtstart→tend

)
sym

: σΩ

=∇∇∇xΩtstart
δuΩtstart→tend

: σΩtend

(5.32)

which is exactly the same expression as Eq. (5.31) derived from the variation of micro-
scopic work, fulfilling the Hill-Mandel condition.

It is worth mentioning that strains and stresses can be retrieved from other configura-
tions, such as the standard relation connecting Cauchy and first Piola-Kirchhoff

σωtend
=

Fωt0→tend
Pωtend,t0

det(Fωt0→tend
)

(5.33)

where Pωtend,t0
is the microscopic first Piola-Kirchhoff stress tensor calculated at tend ex-

pressed at the undeformed configuration t0. This relation always holds at the local (mi-
croscopic) level. Nevertheless, when used to compute volume averages, the non-linear
nature of the transformations, in general, makes results differ from the ones obtained
based on the macroscopic counterparts [27, 28]. In other words, the following alterna-
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tives would not match in the general case

1

v

∫
v
σωtend

dv ̸=

(
1

V0

∫
V0

Fωt0→tend
dV0

)
:

(
1

V0

∫
V0

Pωtend,t0
dV0

)

det

(
1

V0

∫
V0

Fωt0→tend
dV0

) . (5.34)

A recent study by de Souza Neto and Feijóo [29] clarified that the inequality in Eq. (5.34)
is only verified in the specific case where Uniform Boundary Conditions are adopted to
model the RVE. In any case, the choice of the primary strain-stress measure needs to be
done carefully, taking into account aspects such as convenience of the implementation,
experimental results and work-conjugacy.

We emphasize that while the overall procedure is incremental, the constitutive mod-
eling response of the materials is formulated in terms of the total deformation gradient
(F(·)

t0→tend
), which can be promptly retrieved from ∆F(·)

t0→tend
using F(·)

t0→tstart
, known from

the previous time step
F(·)

t0→tend
=∆F(·)

tstart→tend
F(·)

t0→tstart
. (5.35)

As discussed in Section 5.2.1, in case of rate-dependency, such as the EGP model, both
the total and the increment of deformation gradient are needed. For convenience, the
PRNN was designed to take the total deformation gradient as its input for two reasons: 1)
FΩt0→tend

is the state measure required to compute the consistent tangent stiffness matrix
and 2) it conveniently contains all necessary kinematic information, as the increment of
deformation gradient required for advancing the rate-dependent internal state variables
can be easily derived from the current and previous total states.
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6
BRIDGING EXPERIMENTS AND

MULTISCALE SIMULATIONS

In the final contribution of this thesis, the developments in Chapter 5 are employed
to bridge constant strain-rate and creep experiments on unidirectional thermoplastic
composites under off-axis loading and multiscale simulations. Previously, these exper-
iments were modeled as single-scale micromechanical simulations under the assump-
tion of macroscopic homogeneity [4, 5]. However, simulations with low-off axis angles
showed significant discrepancies with the experiments, leading to the hypothesis that
the mismatch was caused by macroscopic inhomogeneity. Testing this hypothesis would
require a multiscale approach, which is computationally prohibitive in this case, leaving
the matter unresolved until now.

With PRNNs, the multiscale problem can be reformulated as a surrogate-based multi-
scale problem, where the network is used to predict the homogenized response of the
micromodel. With this, we contribute to a better understanding of the experiments by
testing the hypotheses raised in [4] and [5]. Additionally, we explore new features of
the PRNN for transfer learning in terms of material properties extrapolation, promoting
more efficient training. Finally, this chapter showcases the robustness of the network to
obtain macroscopic convergence with an implicit solver through a series of simulations.

Apart from the shortened introduction, this chapter was integrally extracted from the
following source material:

M. A. Maia, I. B. C. M. Rocha, D. Kovačević, and F. P. van der Meer. Surrogate-based mul-
tiscale analysis of experiments on thermoplastic composites under off-axis loading. 2025.
arXiv: 2501.10193 [math.NA]. URL: https://arxiv.org/abs/2501.10193

https://arxiv.org/abs/2501.10193
https://arxiv.org/abs/2501.10193
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6.1. INTRODUCTION

Our starting point in this chapter is the experiments and contributions in [1–3]. In those
works, constant strain-rate and creep experiments were modeled at the microscale un-
der the assumption that macroscale variations are negligible. In [1], the authors laid
the foundations of a custom framework based on a single-scale micromodel simulation
with special boundary conditions to emulate a uniaxial stress state in the global frame for
a unidirectional fiber-reinforced composite (FRC) with rate-dependent response under
arbitrary off-axis loading. Later, the formulation was expanded to include failure analy-
sis for constant strain-rate [2], constant stress [3] and cyclic loading [4]. The micromodel-
based formulation was able to accurately reproduce the experimental results in most
cases, with the exception of small off-axis angle scenarios, in which a significant differ-
ence was observed already prior to failure. A possible reason for the mismatch is that the
stress state in the specimen is not uniform on the macroscale. However, testing this hy-
pothesis with the same high-fidelity micromodel would require a concurrent multiscale
approach (FE2), which is computationally intractable in this case. Now with the PRNN
developed in Chapter 5, a surrogate-based multiscale analysis comes within reach.

It is worth mentioning that other studies have highlighted similar challenges when
modeling off-axis experiments through full-order microscale simulations and/or FE sim-
ulations. Wan et al. [5] pointed to the difficulty of running tests and reproducing off-axis
specimens with fibre angles smaller than 45◦ using a single micromechanical model.
The strain inhomogeneity matter was discussed in [6] through the lens of the Digital
Image Correlation method. In that work, however, the authors focused on the charac-
terization of the material for different experimental setups, leaving out details on the
computational modeling. Recently, another alternative to FE2 was proposed in [7]. The
authors developed a mesoscopic extension of the elasto-viscoplastic model used in [2]
with anisotropic pressure-dependent behavior to model the experiments at a coupon-
level, capturing the off-axis strain inhomogeneities efficiently. In more complex archi-
tectures, such as braided [8] and woven [9] composites, studies investigating the failure
mechanisms have modeled off-axis experiments as multiscale problems. In [8], FE2 was
shown to outperform direct numerical simulations, but the reported CPU times grew
exponentially with mesh refinement at the macroscale, even with the small number of
integration points (2–6) and no history-dependence.

Hierarchical modeling has also been explored for modeling FRCs under off-axis load-
ing [10–13], with examples including stress amplifications factors computed from pre-
defined reference points in the RVE [10, 11] and the use of asymptotic homogenization
to compute homogenized coefficients from a simplified RVE with linear viscoelastic ma-
trix to reproduce creep experiments with transverse fibers [12]. These approaches are
computationally efficient, as the factors/coefficients are computed only once (or a few
times); however, their validity is tied to the specific microstructural states sampled of-
fline, making their extensions to the scenario explored here (models with rate- and path-
dependent behavior) challenging.

As for the research line based on surrogate modeling followed in this thesis, several
applications have been proposed in the past few years for both unidirectional [5, 6, 14–
20] and woven composites [13, 21–23]. Although part of these works validate numerical
simulations with experimental data [5, 13, 14, 16, 21–24], only few works deal with off-
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axis loading [5, 16, 22, 23], and these neglect strain-rate effects.
In this chapter, with the PRNN proposed in Chapter 5 as a microscale surrogate, we

can now model the off-axis constant strain-rate and creep experiments from [2, 3] as
a surrogate-based multiscale problem. The key novelty of this work lies in applying
the network to solve an engineering problem that would be computationally intractable
with FE2, while accounting for complex material behavior using elasto-viscoplastic isotropic
and hyperelastic transversely isotropic models. This approach allows direct evaluation
of the macroscopic strain and stress variability hypotheses from [2, 3], making it possible
to illustrate when macroscopic uniformity assumptions hold or fail, providing insights
for future material testing and design. We also discuss a new PRNN transfer learning fea-
ture that takes advantage of the embedded constitutive models in the network to avoid
(re-)training when going from one RVE with a given set of material properties to another
RVE with the same geometry and constitutive models but different properties.

In the following, we discuss the test setup and methods in Section 6.2. Then, we as-
sess the performance of the surrogate-based approach on a selection of experiments in
Sections 6.3 and 6.4, showcasing the robustness of the network for multiscale analysis.
Finally, we draw the main conclusions of this chapter in Section 6.5.

6.2. METHODS

(a) Geometry with dimen-
sions in mm

(b) Setup used for creep test-
ing [3, 25]

Figure 6.1: Schematic representation of UD carbon/PEEK composite system specimen
and creep testing setup.

In this section, we outline the most relevant aspects of the experimental and numerical
setups used to obtain the strain-stress response of a thermoplastic composite system
over different off-axis angles, strain-rates and stress levels.
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6.2.1. EXPERIMENTAL SETUP

Coupons were made of carbon fiber reinforced unidirectional tapes and PEEK matrix
with fiber volume fraction of 0.4. The geometry of the coupons manufactured for the
constant strain-rate experiments is illustrated in Fig. 6.1a, where θ0 is the off-axis an-
gle. The numerical counterpart models only the gauge length, which is 120 mm for the
constant strain rate experiments. In these tests, the crosshead speeds were kept con-
stant corresponding to strain-rates ranging between 10−6 s−1 and 10−3 s−1. To record the
stress-strain relationship, clip-on expensometers were used. Crosshead displacements
were converted to engineering strain, while the resulting force was used to compute the
engineering stress. For the creep experiments, the gauge length was 100 mm for the off-
axis angles 90◦ and 45◦, and 120 mm for the smaller angles 30◦ and 15◦. In these experi-
ments, constant force was applied on the coupon, from which the engineering stress was
calculated and the crosshead displacements gave the engineering strain. Further details
on the experiments setup can be found in [2, 3], that is based on [25].

6.2.2. MULTISCALE PROBLEM FORMULATION

To replicate the experiments discussed in the previous section, a concurrent multiscale
approach (FE2) can be used. In this case, the macroscopic domainΩ is discretized into a
FE mesh, with a periodic representative volume element (RVE)ω nested to each integra-
tion point. The RVE consists of another FE model that characterises the heterogeneous
material at a length scale significantly lower than the macroscopic one.

Γu

Γf

Figure 6.2: Scheme of concurrent multiscale framework with two scales (macro Ω and
micro ω) for composite material with off-axis loading.

In this chapter, the updated Lagrangian (UL) formulation is adopted [26]. As discussed
in Appendix A of Chapter 5, this means that the incremental equilibrium problem is
solved using the work-conjugate pair of Cauchy stress and the spatial gradient of the
displacement increment from the reference to the updated configuration, while the con-
stitutive model is formulated in terms of the total deformation gradient.

At the microscale, regular constitutive models can be assigned to each of the phases.
To solve the micromodel problem, periodic boundary conditions based on the macro-
scopic deformation gradient FΩ are employed. Further, if the local coordinate system of
the RVE, in which fiber direction is always parallel to e1, is not aligned with the global
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one, we relate the two coordinate systems through a transformation matrix:

Q0 (θ0) =
 cos(90◦−θ0) sin(90◦−θ0) 0
−sin(90◦−θ0) cos(90◦−θ0) 0

0 0 1

 (6.1)

where θ0 marks the angle between the y-axis and the fiber direction, as depicted in
Fig. 6.2. This matrix allows FΩ to be transformed from the global to the local coordinate
system using the standard change of basis of second-order tensors [26]:

FΩL = Q0FΩQT
0 (6.2)

where the subscript “L” refers to the local coordinate system. Once the microscopic
problem has converged, a computational homogenization procedure is performed to
bridge the two scales:

σΩL (xΩ) = 1

|ω|
∫
ω
σω(xω)dω (6.3)

where xΩ and xω are the spatial coordinates of the material points at the micro and
macroscales in the updated configuration tend. Similarly, to transform the stress from
the local to the global coordinate system, we use

σΩ = QT
0σ

Ω
L Q0. (6.4)

The formulation is completed with the definition of the macroscopic constitutive tan-
gent DΩ. For that, automatic differentiation, perturbation methods based on finite dif-
ferences or condensation procedures can be used depending on the memory allocation
and computational efficiency requirements [27, 28]. In this chapter, our reference solu-
tions are experiments and we do not perform the full-order FE2 due to the exceedingly
high computational cost. The main bottleneck, in this case, comes from the coupling
between the two equilibrium problems, where the solution of the macroscopic displace-
ment field defines the boundary condition for the RVEs, which in turn provide the miss-
ing homogenized constitutive model, requiring iterative solves of a large number of mi-
croscopic FE problems. In Section 6.2.4 we elaborate on the alternatives to this approach
explored here.

6.2.3. CONSTITUTIVE MODELS

In this section, we discuss the two constitutive models used in the composite RVE adopted
for the applications. These are the same models as in Chapter 5 and reference works [1–
3], and we therefore skip their derivation and only summarize their main features and
the novelties explored in this chapter. The first constitutive model is a hyperelastic trans-
versely isotropic model based on the formulation by [29] with slight modifications from
[1], which is assigned to the fibers and is referred to as Cωfiber. To describe this model,
five elastic constants are needed: the Young’s modulus in the preferential stiffness direc-
tion and in the plane of isotropy, the shear modulus and the Poisson’s ratio in the plane
perpendicular to the isotropic plane and the Poisson’s ratio in the plane of isotropy.

For the matrix, we use the Eindhoven Glassy Polymer (EGP), a rate and path-dependent
elasto-viscoplastic model, here referred to as Cωmatrix. The Cauchy stress from this model
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consists of three contributions. The first is a hydrostatic one, which is hyperelastic, and
depends on the bulk modulus κ as

σh = κ (J −1) I (6.5)

where J is the determinant of the deformation gradient. The second contribution is a
hardening part that represents polymer chain reorientation, and depends on the hard-
ening modulus Gr as

σr =GrB̃d (6.6)

where B̃d is the deviatoric part of the isochoric left Cauchy-Green deformation tensor.
Finally, the third contribution of the EGP comes from the driving stress, which is the

rate and path-dependent component. This component is given by the sum of an ar-
bitrary number of Maxwell elements, also known as modes, connected in parallel. The
main benefit of a multi-mode formulation is the higher flexibility of the model in fitting
the pre-yield response [30]. With EGP, multiple relaxation processes can also be consid-
ered to represent the thermorheologically complex behavior of the material [31]. For two
processes, say α and β, the driving stress can be further split into two contributions as

σs =σs,α+σs,β

=
a∑

i=1
σs,α,i +

b∑
j=1
σs,β, j

=
a∑

i=1
Gα,i B̃d

e,α,i +
b∑

j=1
Gβ, j B̃d

e,β, j

(6.7)

where Gx,k is the shear modulus, B̃d
e,x,k is the deviatoric part of the isochoric elastic left

Cauchy-Green deformation tensor, with k referring to the mode, x to the process, and a
and b are the total number of modes considered in the processes α and β, respectively.

We highlight that the EGP modes are not standard linear Maxwell elements. In each
dashpot k, B̃d

ex,k is calculated by integrating an evolution equation in which the following
constitutive relation is introduced to define the rate of plastic deformation as a non-
Newtonian flow rule

Dp,x,k = σsx,k

2ηx,k (τs,x ,T, p,Sx ,η0x,k ,τ0x ,λx )
(6.8)

where ηx,k is the viscosity function that depends on the equivalent stress applied τs,x =√
1/2σs,x :σs,x , the temperature T , the hydrostatic pressure p, the thermodynamic state

parameter Sx , which accounts for two competing mechanisms (physical aging and me-
chanical rejuvenation), and given initial viscosity η0x,k , characteristic shear stress τ0x

and pressure dependency parameter λx . This also means no explicit yield function is as-
sumed. As a result, plastic flow is always present, but its magnitude depends strongly
on the (highly nonlinear) viscosity. It is worth mentioning that we use the common
spring–dashpot analogy only as a mechanical representation of the elastic and rate-
dependent mechanisms, but the dashpot strain in EGP represents practically irreversible,
stress-induced plastic flow.
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Figure 6.3: Stress-strain curves using Cωmatrix with different number of modes fromµε̇matrix
and µcreep

matrix considering uniaxial loading with δxx = 5×10−5 mm and ∆t = 1s.
Arrows on the element (gray box) are degrees of freedom that are either con-
strained (square tip) or free (triangular tip).

In this study, we adopt the same set of material properties obtained in [2, 3], where
the authors used the experiments reproduced in this work for calibration. We use the
symbolµ(·)

(⋆) to refer to the properties of a given material, where (⋆) is either the matrix or
the fiber, and (·) refers to constant strain-rate (ε̇) or creep experiments. For the constant
strain-rate case, 1 process and 16 modes were needed for the best fit with experiments,



6.2. METHODS 169

while for creep, 2 processes and 8 modes were enough, from which 1 mode belongs to α
and 7 to β. For illustrative purposes, we plot in Fig. 6.3 the response of a single material
point under uniaxial loading with Cωmatrix as the constitutive model and different number
of modes. Note how in both scenarios, although the pre-yield regime response changes
significantly with more modes, the post-yield response (plastic regime) is the same. This
originates from the model definition where the equivalent plastic strain is computed
based on equivalent stress associated with the mode of highest viscosity (i.e. longest
relaxation time). With the modes in descending order of magnitude of viscosity, that
always corresponds to the first one.

6.2.4. ALTERNATIVES TO A FULL MULTISCALE FORMULATION

In Fig. 6.4, we illustrate two alternatives to a full multiscale formulation: the single-
scale micromechanical approach proposed in [1–3], and our contribution, the surrogate-
based multiscale approach. The single-scale model consists in a custom constant strain-
rate arclength [2]. Although highly efficient and accurate in many scenarios, the assump-
tions made to simplify the entire specimen macroscopic domain to a single macroscopic
point restrict its validity to uniform macroscopic fields. This limitation motivates the
use of a surrogate-based multiscale approach, which allows macroscopic variability and
avoids the prohibitive cost of a full multiscale simulation.

Figure 6.4: Alternative approaches to replace full multiscale problem (left) for model-
ing composites under off-axis loading: single-scale micromechanical simu-
lation with special boundary conditions (center) and surrogate-based mul-
tiscale problem where PRNN replaces the micromodel to solve the macro-
scopic problem (right).

We emphasize that the single-scale micromodel approach is used here only as a refer-
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ence to (i) help identify the impact of the macroscopic variability in the surrogate-based
multiscale simulations in improving the fit with experiments, and to (ii) examine the
hypothesis in [2, 3] regarding the mismatch at lower off-axis angles. As mentioned in
Section 6.2.3, we also adopt the same material parameters calibrated with the single-
scale approach for consistency. This way, differences in the results between the two ap-
proaches cannot be attributed to different parameter identification strategies. Other cal-
ibration strategies that included the surrogate-based multiscale approach in their frame-
work could in principle be employed, but they fall outside the scope of the present con-
tribution.

A slight change was implemented with respect to the equations shown in the original
formulations for the constant strain-rate case due to the different choice of strain and
stress measures [1, 2]. This change was motivated by the type of quantities reported in
the experiments. Instead of imposing a constant true strain-rate to achieve a uniaxial
true (Cauchy) stress, here we impose, at the global frame, a constant engineering strain-
rate (ε̇eng

yy ) to achieve uniaxial engineering stress (σeng
yy ) using

ε
eng
yy,t = εeng

yy,t−1 + ε̇
eng
yy ∆t (6.9)

where εeng
yy,t and ε

eng
yy,t−1 are the engineering strains applied at the current and previous

time steps at the global frame, respectively.
For modeling creep, the authors in [3] incorporated the use of engineering strains and

stresses in their formulation. The new model was adapted from their previous develop-
ments, with the main changes regarding the inclusion of the creep stress in the external
force components for a force-controlled analysis and the consideration of the following
condition to emulate the loading observed in the experiments:

σ
eng
yy,t = min

(
σ

eng
yy,t−1 + σ̇

eng
yy ∆t ,σmax

yy

)
(6.10)

where σ̇eng
yy is the engineering stress-rate at the loading phase before reaching the maxi-

mum (constant) stress level σmax
yy .

Although we do not discuss the micromodel-based formulations in detail, it is worth
mentioning an important aspect we will later contrast with the surrogate-based simu-
lations: the (potential) reorientation of the microstructure during the loading process,
represented by the angle φ in Fig. 6.4. This reorientation leads to the reduction of the
initial off-axis angle, creating a stiffening effect as the fibers try to align with the global
loading direction y , and is especially evident in cases with lower off-axis angles, where
even small angle variations can lead to significantly different stress states. The proce-
dure to compute this angle is detailed in [2, 3], and depends on a series of transforma-
tions between frames of the deformation gradient (see Fig. 6.4). Here we highlight that,
in the experiments, these rotations vary across the coupon, as they are constrained by
the presence of the clamps of the testing machine.

6.2.5. PHYSICALLY RECURRENT NEURAL NETWORK (PRNN)
In contrast to the aforementioned microscale-based approach, we replace the RVE with a
PRNN trained on stress-strain snapshots (see Fig. 6.4). We summarize in Algorithm 2 the
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main coordinate system transformations needed to handle global and local frames when
evaluating the homogenized stress response and the chain rule used for computing the
macroscopic tangent stiffness matrix.

Algorithm 2: Evaluation of macroscopic integration point using the PRNN

Input : homogenized deformation gradient at global frame FΩ, time increment
∆t , initial off-axis angle θ0

Output: homogenized stress σ̂Ω, tangent stiffness matrix DΩ

1 compute transformation matrix Q0 according to Eq. (6.1) based on θ0

2 transform strain from global to local frame: FΩL ← Q0FΩQT
0

3 perform polar decomposition on strain: RΩ
L ,UΩ

L ← polarDecomposition(FΩL )

4 apply PRNN to stretch tensor: σ̂ΩU,DΩ
U ← PRNN(UΩ

L ,∆t )

5 retrieve stress in the original coordinate system at the local frame: σ̂ΩL ← RT
Lσ̂

Ω
URΩ

L
6 transform stress from local to global frame: σ̂Ω← QT

0 σ̂
Ω
L Q0

7 compute tangent stiffness matrix: DΩ← Çσ̂Ω

Çσ̂ΩL

(
Çσ̂ΩL
Çσ̂ΩU

Çσ̂ΩU
ÇUΩ

L

ÇUΩ
L

ÇFΩL
+ Çσ̂ΩL

ÇRΩ
L

ÇRΩ
L

ÇFΩL

)
ÇFΩL
ÇFΩ

8 return (σ̂Ω, DΩ)

For details on implementation, training aspects or architectural choices, the reader
is directed to Chapter 5. Here, we highlight the main features of the network. In the
PRNN, we preserve the constitutive models used in the micromodel, as well as their ma-
terial properties, and embed them in an encoder-decoder architecture, as illustrated in
Fig. 6.5a. Through the encoder, we learn a set of values that we interpret as the local
strain of fictitious microscopic material points. Then, the constitutive model associated
to each point is used to compute stresses and, in case of a history-dependent model,
updated internal variables. Storing the internal variables from one time step to another,
as illustrated in Fig. 6.5b for a rate and path-dependent model Cωj , allows history depen-

dence to arise naturally. Compared to the full-order model, the encoder learns a task
analogous to the solution of the original microscale equilibrium problem, and the de-
coder corresponds to a stress homogenization operation.

Having constitutive models in the network also raises a few constraints that regular
NNs do not need to meet. For example, since the output of our encoder are deformation
gradients, these must have positive determinant. For that purpose, and taking into ac-
count the zero strain-stress state (UΩ = I → σ̂ΩL = 0), we propose to constrain the weights
from the encoder to be a symmetric matrix per material point. This arrangement avoids
negative determinants and only requires 6 learnable parameters per material point. For
the decoder, we employ a sparse architecture, in which only the matching stress compo-
nents contribute to the macroscopic stress. Therefore, including encoder and decoder,
each material point is associated with 12 learnable parameters.

As for the constitutive model itself, both models present in the RVE, Cωmatrix and Cωfiber,
are embedded in the material layer. The splitting ratio between them is a hyper-para-
meter, but here we follow with the proportion from Chapter 5: the hyperelastic and
elasto-viscoplastic models correspond to 25 % and 75 % of the material points, respec-
tively, rounding the number of hyperelastic models up when the total number of points
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(a) Compact representation of PRNN (b) Fictitious material point with history-dependent consti-
tutive model unrolled in time

Figure 6.5: Architecture of PRNN and fictitious material point unrolled in time.

is even but not divisible by 4.

6.2.6. TRANSFER LEARNING

In this section, we take a step further and explore how one can leverage the design
choices in the material layer of a PRNN to transfer from one set of material properties
(µA) to another (µB). For this particular work, the goal is to use the networks trained in
Chapter 5, which were then used to predict the homogenized response of an RVE with
constitutive models Cωfiber and single-mode Cωmatrix, to now predict the response of the
same RVE considering a multi-mode Cωmatrix.

The solution to that if a regular data-driven surrogate model was used would involve
either training from scratch with the full 16 modes data or use some transfer learning
strategy, such as warm start. In both cases, additional computational effort would be
necessary to (re)train the surrogates with different properties. Here, because material
properties in the constitutive model are embedded in the material layer, we can keep
the network trained on a single mode from the previous chapter and simply update the
material properties in the network without any retraining. This scheme is illustrated in
Fig. 6.6 with the models used in this work, but the approach is general and applicable
to other constitutive models. The ability to extrapolate to different material properties
in the online phase is yet another benefit of having an explainable function in the latent
space.

For PRNNs, in particular, another reason for extrapolating from the single-mode net-
works comes from the fact that each mode in Cωmatrix is associated to 15 internal variables,
therefore to account for a full relaxation spectrum with 16 modes, a total of 240 inter-
nal variables would be needed per material point evaluated by this constitutive model.
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Figure 6.6: From training with micromodel with a set of properties µA
(·) to extrapolating

to micromodel with set of properties µB
(·) without retraining.

Such large sum of internal variables combined with the use of finite differences to com-
pute the derivatives related to the backpropagation in time would slow down training
significantly, as well as the time for obtaining the training loading paths.

6.3. CONSTANT STRAIN-RATE EXPERIMENTS

In this section, we apply the transfer learning approach in Section 6.2.6 to go from a
PRNN with single-mode Cωmatrix model to a multi-mode one, and present the results ob-
tained with the PRNN-based approach to the multiscale problem, from now on referred
to as “FEPRNN”, for modeling constant strain-rate experiments. The mesh adopted for
these simulations is shown in Fig. 6.4, and consists of 576 (linear) wedge elements inte-
grated with 1 point, with the PRNN discussed in Section 6.3.1 as the homogenized con-
stitutive model.

To simulate the loading and boundary conditions of the experiments, we employ a
displacement controlled analysis, with the displacements in all three directions being
constrained at the bottom and top surfaces of the coupon, except for the y direction
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at the top, where the specimen is pulled at a constant engineering strain-rate. We em-
ploy the adaptive stepping scheme from [32] to deal with potential convergence issues,
using time increments between 0.1 s and 100 s, and compare results with the experimen-
tal stress-strain curves for a range of off-axis angles and strain-rates. In most cases, the
micromodel response, referred as to “Micro” in the plots, with and without the fiber ro-
tation update φ, is also plotted for reference. In addition to that, we include a brief study
on the use of oblique end-tabs as a possible adaptation to the experiments for a more
uniform strain distribution.

6.3.1. FROM SINGLE TO MULTI-MODE PRNN
To assess the performance of the networks from Chapter 5 trained with single-mode
properties in extrapolating to the RVE with the full relaxation spectrum µε̇matrix, we con-
sider the networks trained on the largest training set from that work, that is, 144 propor-
tional curves with loading/unloading/reloading based on Gaussian Process (GP), from
now on referred to as GP-based paths, with 8 material points in total (from which 6 are
evaluated by Cωmatrix and 2 by Cωfiber).

In this particular application, the update in the material properties offers a further
possibility for maximizing efficiency. Instead of considering the full relaxation spectrum
at once, we investigate a gradual mode addition in the online phase. The idea comes
from the fact that the latest modes have increasingly small contributions to the elastic
regime, as illustrated in Fig. 6.3, and could, in principle, be left out from the PRNN with-
out loss of accuracy, leading to an even faster model evaluation.

For this task, we select the best network over test set T1, which consists of 150 curves
with the same loading type and material properties as the ones used for training. This
loading type is deemed to be representative of various loading conditions as each curve
has a different loading/unloading/reloading behavior, as well as time step size, in an
unseen direction. Then, on a new test set T16 with 150 curves generated using the 16
modes in Cωmatrix, we assess the accuracy of the chosen network by updating the material
properties considering a gradual addition of modes in the fictitious material points eval-
uated by Cωmatrix, as shown in Fig. 6.7. Clearly, as modes are added, accuracy is increased,
reaching the lowest error around 9 modes with relative error of 5.9 %.

6.3.2. COMPARISON WITH EXPERIMENTAL RESULTS

Previously, we had an indicative of the smallest number of modes needed in the PRNN
for accurately extrapolating to an RVE with 16 modes in the matrix, which is the ref-
erence in the micromodel-based approach in [2]. Here, we follow a similar exercise in
terms of gradually increasing the number of modes, this time comparing the surrogate-
based approach directly with the experiments for a final decision. For this, we select
the experiment with θ0 = 90◦ and ε̇

eng
yy = 10−4 s−1. With the fibers perpendicular to the

loading direction, the matrix becomes the primary load-bearing component, making
the contribution of each mode more pronounced in the overall homogenized response,
and therefore the ideal case for assessing the extrapolation capabilities of the network
trained on the first mode only. Fig. 6.8 shows the stress-strain curves and the relative
mean error of the stresses predicted by the FEPRNN in comparison to the experiments.
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Figure 6.7: Accuracy of PRNN trained on 144 proportional GP-based curves and a single
mode over test set T16 considering different number of modes in the fictitious
material points evaluated by Cωmatrix.

These errors are calculated by evaluating the surrogate-based multiscale response at the
strain values from the experiment, using linear interpolation between the two nearest
pairs of strain-stress values when needed according to

Relative mean error:
1

nε̇
exp

nε̇exp∑
i=1

|σeng
yy,FEPRNN(εeng

yy,exp,i )−σeng
yy,exp(εeng

yy,exp,i )|
|σeng

yy,exp(εeng
yy,exp,i )| , (6.11)

where nε̇
exp is the number of pairs of strain-stress available in the experiment. Note in

Fig. 6.8a how the stress-strain curves change only slightly with five or more modes, with
relative errors between 5 % and 9 %. Based on that, for the remainder of this section, we
use five modes in all FEPRNN constant strain-rate simulations, as this represents a good
balance between accuracy and efficiency.

Next, we investigate the worst case scenario in [2], namely off-axis angle θ0 = 15◦
and strain-rate ε̇eng

yy = 10−4 s−1. In Fig. 6.9a, despite the slight mismatch around ϵ
eng
yy =

0.01, the FEPRNN response closely follows the experiment in the remaining parts of the
curve, resulting in a relative mean error of 5.4 %. An overview of how the FEPRNN and
micromodel-based solutions (with and without the reorientation angleφ) compare with
the experiment for different off-axis angles is shown in Fig. 6.9b. It becomes clear how
the reorientation can impact heavily the final response depending on the initial off-axis
angle, and how, for most cases, the FEPRNN response shows better agreement with the
experiments than the micromodel-based solution, except for θ0 = 90◦. With fibers per-
pendicular to the loading direction, the matrix is the primary load-bearing component,
making the contribution from each mode more pronounced, while the network (trained
on the first mode only) relies on extrapolation to predict the multi-mode response. At
the same time, at lower stress magnitudes, the FEPRNN can be slightly less accurate due
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to our choice of loss function, namely the mean squared error, during training. Nev-
ertheless, the overall agreement remains satisfactory, with mean relative error of 8.2 %.
The relative mean errors of the 30◦ and 45◦ cases are 3.8 % and 2.9 %, respectively.

Although the micromodel-based results are not new, it is only now possible to verify
1) how well the reorientation angle computed from that solution matches with the aver-
age angle computed from the PRNN-based simulation and 2) how well the assumption
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Figure 6.8: Stress-strain curves for off-axis angle 90◦ and ε̇eng
yy = 10−4 s−1 obtained by the

micromodel-based solution (16 modes) and the FEPRNN with different num-
ber of modes in the fictitious material points evaluated by Cωmatrix compared
to experiment.
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Figure 6.9: Stress-strain curve for ε̇eng
yy = 10−4 s−1 using different methods and boundary

conditions for multiple off-axis angles.

of macroscopic homogeneity holds. For this end, we show in Fig. 6.10 the full field of
strains in the loading direction for different off-axis angles. Note how the variation in
the macroscopic strain becomes larger as the off-axis angle θ0 decreases. Clearly, the
assumption behind the micromechanical analysis, that the specimen is in a macroscop-
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ically uniform state, becomes increasingly inaccurate as θ0 decreases.

Figure 6.10: Macroscopic strains from FEPRNN simulations for ε̇eng
yy = 10−4 s−1 and dif-

ferent off-axis angles.

To further illustrate the problem, we calculate the reorientation angle φ at each of the
macroscopic integration points with the surrogate-based multiscale approach. For this,
we make a parallel with the deformation states in Fig. 6.4 and imagine that there is an

equivalent shape of F̂Ω, whose side 0−1 is not moving in direction 2, and therefore F
Ω
21 =

0. From that condition, the angle φ can be expressed as

φ= arctan(F̂Ω
21/F̂Ω

11) (6.12)

where F̂Ω
21 and F̂Ω

11 are components of the deformation gradient in the local frame (see
Eq. (6.2)). Based on this expression, we compute the simple average of φ over the entire
macroscopic domain for the off-axis angles 45◦ and 15◦ and compare it with the one cal-
culated by the custom arclength model, as shown in Fig. 6.11. In addition to the average,
the envelope corresponding to the highest and lowest angles over the entire specimen
are plotted (the pink shaded areas). Note how the angle variation is dramatically higher
in the 15◦ case. For both angles, the highest values are located at the center of the speci-
men (see Fig. 6.11c) and the lowest ones, close to zero, near the grips, where movement
is restricted.

In the θ0 = 45◦ case, the mean reorientation angle follows remarkably well the angle
computed from the arclength model, which is also translated in the good visual agree-
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ment seen in Fig. 6.9. For the 15◦ composite, the envelope of the angle φ becomes in-
creasingly larger and the single micromodel loses representativeness for the average re-
sponse of the specimen, more strongly in the averaged stress-strain curve of fig. 6.9a
than in the mean orientation angle in fig. 6.11b.
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Figure 6.11: Reorientation angle for different initial off-axis angles for constant strain-
rate experiment with ε̇

eng
yy = 10−4 s−1. Shaded areas in a) and b) represent

the envelope of maximum and minimum values over the entire macroscopic
domain, while solid lines correspond to the average.

In addition to that, the multiscale simulations showed the presence of shear stresses,
suggesting that the boundary conditions in the experiments are not only far from the
assumptions in the arclength model, but also from its own initial goal, a uniaxial tensile
test. Finally, we illustrate the generality of the framework with two other strain rates for
the 30◦ case: 10−3 s−1 and 10−5 s−1. Fig. 6.12 shows the good match of the two engineer-
ing stress-strain curves obtained using the PRNN as the constitutive model with respect
to the experimental curves. In both cases, the maximum error is around 5 %, at the last
time step.
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yy .

6.3.3. INVESTIGATION INTO ALTERNATIVE SETUPS

With an efficient multiscale framework, we can also investigate the influence of the spec-
imen geometry and boundary conditions on the response, which could be interesting in
case one seeks to calibrate material models based on engineering stresses and strains
coming directly from test frame readings. First, we analyze an alternative geometry with
oblique end-tabs. The tab design proposed by Sun and Ilsup [33] is illustrated in Fig. 6.13,
with β given by

β= acot(−S16/S11) (6.13)

where S16 and S11 are the compliance coefficients with respect to the global coordinate
system. For linear elasticity, this design ensures a macroscopically homogeneous stress
states under uniaxial loading. In the nonlinear case, the compliance coefficients change
from one time step to another, but we adopt the values obtained at the undeformed
configuration with 5 modes, resulting in β= 32◦.

To illustrate the effectiveness of the oblique end-tabs in creating a nearly uniform
stress-state, we proceed with the most challenging case explored so far: off-axis angle
of 15◦ and strain-rate of 10−4 s−1. For comparison, we plot the stress-strain curves for
σ

eng
yy and σ

eng
xy for the two types of end-tabs in Fig. 6.14. Note that the oblique design

effectively reduces the shear to almost zero, which also results in a lower engineering
stress level in the loading direction (axial).

Another way to minimize the rise of shear stresses is to allow the specimen to move
laterally. Fig. 6.15 shows the comparison between the different types of end-tabs and
boundary conditions with respect to the experiments. For the oblique design, allowing
for lateral movement has little to no impact on the outcome since the shear stress mea-
sured at the top surface and across the entire coupon was already limited (see Fig. 6.14).
In contrast, with the straight end-tabs, allowing lateral movement reduces the engineer-
ing stress by about 10 %. These relative differences can be further explained by analysing
the strain/stress distributions of each setup.
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Figure 6.13: Alternative coupon geometry with oblique-end tabs.
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Figure 6.14: Stress-strain curves for θ0 = 15◦ and ε̇eng
yy = 10−4 s−1 using straight vs oblique

end-tabs.

We plot in Fig. 6.16 the macroscopic stress distributions from least to most uniform at
ε

eng
yy = 0.03. Note the stress concentration near the corners of the specimen, the higher

stress band formed in the diagonal of the coupon, which is aligned with the fiber di-
rection, and the slight in-plane bending in the simulations with straight end-tabs. Al-
though stress concentration is reduced when allowing lateral movement, the material
near the edge of the straight end-tabs still experiences geometric discontinuity, and the
fully constrained lower surface continues to limit Poisson’s contraction. As a result, the
Straight + Lateral alternative behaves as an intermediate case between the Straight and
the oblique end-tabs configurations in terms of stress uniformity. The use of oblique
end-tabs alone seems to almost eliminate any stress concentration, proving an efficient
method to achieve uniform distributions even in the presence of material non-linearity.
The slight bend at the top right corner of the Oblique + Lateral coupon stems from al-
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Figure 6.15: Stress-strain curves for different end-tab designs and boundary conditions
for θ0 = 15◦ and ε̇eng

yy = 10−4 s−1.

lowing lateral movement at the top surface, while displacements at the bottom surface
are fully constrained.

(a) Axial stress (b) Shear stress

Figure 6.16: Full field of stresses predicted by FEPRNN at the same strain level (εeng
yy =

0.03) on specimen with straight and oblique end-tabs with and without lat-
eral movement allowed for θ0 = 15◦ and ε̇eng

yy = 10−4 s−1.
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Next, similar to the reorientation angle analysis in Fig. 6.11, we compute the ratio be-
tween shear and axial stress at each integration point of the macroscopic domain for all
setups. Fig. 6.17 shows the average, maximum, and minimum values obtained. Lower
average values with narrow variance bounds are desirable to approach a uniform uni-
axial stress state. In this study, all three alternatives to the Straight setup lead to lower
average ratios, but only those with oblique end-tabs do not exhibit a surge in maximum
ratios as loading progresses. We illustrate in Fig. 6.17b the regions causing the spikes at
the strain levels marked in Fig. 6.17a. These consist of the areas near the fully constrained
grips, close to the corners that undergo strain/stress localization.
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Figure 6.17: Absolute ratio between shear and axial stresses predicted by FEPRNN for
simulations with different end-tabs geometry and boundary conditions for
θ0 = 15◦ and ε̇eng

yy = 10−4 s−1.

The trends discussed in this section are in line with other studies [33–37] based on
ply-level properties and/or based on DIC with similar end-tab geometries and loading
fixtures. These works discuss the over- or underestimation of elastic properties in terms
of the error between the apparent and actual axial modulus. The actual modulus is com-
puted from known unidirectional properties, while the apparent modulus is based on
the average stress over the central area of the specimen. In general, setups with straight-
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end tabs, smaller off-axis angles, and lower aspect ratios lead to the highest errors due to
the extensional-shear coupling effects that result in highly inhomogeneous strain/stress
fields, here illustrated by the left-most coupon in Fig. 6.16.

In [36], the authors proposed a new test framework with rotating grips in combination
with straight end-tabs that produces virtually the same stress distributions and apparent
modulus compared to those measured with oblique end-tabs and fixed grips. The lateral
and rotational capabilities of the fixture allowed the specimen to realign freely during
axial loading, reducing the stress concentrations otherwise induced by the straight end-
tabs. In our simulations, the Straight + Lateral configuration similarly reduces inhomo-
geneity, although not as effectively. The rotating devices, however, require careful setup
to allow free rotation without introducing additional constraints or measurement errors.

6.4. CREEP EXPERIMENTS

In this section, we follow the same structure as in the previous study, but adapt it to the
creep experiments. We employ the adaptive stepping scheme [32] with larger bounds
for the time increments (∆t = [0.001s,300s]) as the creep simulations are significantly
longer and more complex. They include sharp changes in strain-rate between loading
and constant stress phases and wide variation within the latter. The boundary condi-
tions in Section 6.3 are kept the same, except that instead of imposing a constant strain-
rate on the top surface of the specimen, we use a force-controlled algorithm to load it
according to Eq. (6.10).

This represents a harder test of the PRNN’s capabilities, since the network was trained
using a single randomly sampled time increment per loading path, while creep simu-
lations span several orders of magnitude both in terms of total and time increments,
and include distinct loading phases never seen during training. Using smooth GP-based
paths is a Design of Experiments strategy we have explored in Chapter 5 to avoid biasing
the network toward any particular loading scenario, while keeping sufficient variability
for generalization to unseen loading behavior.

6.4.1. FROM ONE RELAXATION SPECTRUM TO ANOTHER

In [3], a new relaxation spectrum for Cωmatrix with a total of 2 processes and 8 modes was
calibrated directly on the creep experiments. In these experiments, no extensometer was
used, therefore measurements implicitly take into account the compliance effect of the
machine grips. This effect can be considerable depending on the off-axis angle. In ad-
dition to that, the shear modulus G12 was changed from 45 MPa to 5 MPa for Cωfiber [3].
Apart form these properties, since the same micromodel was used, the straightforward
option here would be to update the material properties in both Cωmatrix and Cωfiber and test
the PRNN performance with gradually increasing modes until convergence, in the same
fashion as in Section 6.3.1. This time, however, direct transfer to the new set of properties
is not possible. To better understand why, we generate several test sets considering dif-
ferent combinations of matrix and fibers properties and found that the direct update of
the material properties works, but only on a certain range around the original properties
used for training. This study can be found in the Appendix A.
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Hence, for modeling the creep experiments, we take a step back and train the PRNNs
from scratch with the new set of properties µcreep

fiber and the first 2 modes (the first from

each process) from µ
creep
matrix. For the training, the same approach and optimization pa-

rameters and hyper-parameters as in Chapter 5 are used with two modifications: 1)
when creating the proportional GP-based curves, the time increment in each curve is
sampled from a log-uniform distribution∆t ∼U [10−3 s,103 s], and 2) the maximum num-
ber of epochs was increased to 2000. Fig. 6.18a shows the envelope of highest and lowest
errors over a validation set V2 with 150 proportional GP-based curves for the different
initializations, and material layer and training set sizes. From that, we select the net-
works with 12 fictitious material points (9 evaluated by Cωmatrix and 3 by Cωfiber) trained on
144 proportional GP-based curves.
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Figure 6.18: Model selection procedure for PRNNs trained on the micromodel with ma-
terial properties calibrated on creep experiments.

Then, we apply the same reasoning as discussed in Section 6.2.6 and Section 6.3.1 to go
from a network trained on 2 modes fromµ

creep
matrix to one that predicts the response of a mi-

cromodel with the full relaxation spectrum. For this purpose, first we select the network
with the lowest error over a test set T2 with 150 proportional GP-based curves and same
material properties as in the training. Then, on a new test set T8 that considers an RVE
with the new full relaxation spectrum, we test the accuracy of that network with a vary-
ing number of modes (see Fig. 6.18b). In this case, the errors reach a minimum around
3 MPa (≈ 10 %) with 4 modes. Similar to the methodoloy adopted in Section 6.3.1, we re-
peat this study for the surrogate-based multiscale simulations to make a final choice on
the number of modes we consider in the PRNN, having the fitness with the experiments
as our guide.
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6.4.2. COMPARISON WITH EXPERIMENTAL RESULTS

We start the discussion again with the scenario for which fiber reorientation is not rele-
vant and where the impact of the extrapolation in terms of material properties is more
evident, i.e. θ0 = 90◦. Fig. 6.19a shows the strain-time FEPRNN responses for the max-
imum engineering stress of σmax

yy = 97 MPa, as well as the micromodel results from [3],
without the consideration of micro-cracking. Note how the strain responses converge
towards the one obtained with the full relaxation spectrum (8 modes) with only a few
modes and close to the experimental curve. We quantify the differences, similarly to
Eq. (6.11), between the strains predicted by our surrogate-based approach and those
obtained in the experiment during the constant stress phase in Fig. 6.19b to define the
smallest number of modes we need to consider in the PRNN using the following metric:

Relative mean error:
1

ncreep
exp

ncreep
exp∑
i=1

|εeng
yy,FEPRNN(texp,i )−εeng

yy,exp(texp,i )|
|εeng

yy,exp(texp,i )| (6.14)

where ncreep
exp is the number of pairs of time-strain available in the experiment. Based on

the plateau around the response with six modes (≈ 4.1%) in Fig. 6.19b, we employ this
number of modes in all FEPRNN creep simulations from here on.

To further demonstrate the generality of the approach, we consider two differentσmax
yy :

92 MPa and 101 MPa. The strain-time curves are shown in Fig. 6.20, while the relative er-
rors calculated over the constant engineering stress phase are summarized in Table 6.1.
In both cases, the lowest error occurs at the last time step, with average errors around
9.0 % and 5.6 %, respectively. The statistics for the previous case discussed are also in-
cluded in Table 6.1 for reference.

Table 6.1: Summary of relative errors between FEPRNN and creep experiments for θ0 =
90◦ and different maximum stress levels.

Relative error [%]
σmax

yy [MPa] Lowest Average Highest Last time step

92 7.1 9.0 10.9 7.1
97 0.1 4.2 14.5 0.1

101 2.0 5.6 14.5 2.0

Next, we investigate the θ0 = 15◦ case, a scenario where the effect of the reorientation
angle update φ on the micromodel results is significant. Therefore, we plot in Fig. 6.21
the two alternatives associated with this approach — with (φ ̸= 0) and without (φ = 0)
the reorientation — for comparison with the FEPRNN results, where reorientation of
the material follows naturally and varies across the coupon. Despite the offset with re-
spect to the experiment and the convergence issue at the later stages of the numeri-
cal simulation, the FEPRNN response lies between the two bounds of the micromodel
solution, as expected. The lowest, average and maximum relative errors over the con-
stant engineering stress phase are 6.0 %, 13.1 % and 14.9 %, respectively. In this case,
the surrogate-based multiscale simulation is vital to account for the macroscopic vari-
ations that the micromodel-based approach cannot. These variations are illustrated in
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Figure 6.19: Strain-time curves for θ0 = 90◦ and σmax
yy = 97 MPa using the micromodel-

based solution (8 modes) and FEPRNN with different number of modes in
the fictitious material points evaluated by Cωmatrix compared to experiment.

Fig. 6.22 by the macroscopic strain fields snapshots at times “c” and “d” marked in the
simulations shown in Fig. 6.21, along with the snapshots at times “a” and “b” marked in
Fig. 6.19a with θ0 = 90◦, which, in contrast, show a nearly uniform distribution across
the entire domain, which complies with the assumption adopted for the micromodel
solution.

For θ0 = 45◦ and θ0 = 30◦, the FEPRNN significantly undershoots the engineering
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Figure 6.21: Strain-time curves for θ0 = 15◦ and σmax
yy = 290 MPa.

strain, following at best the micromodel response, as shown in Fig. 6.23. The general
trend across angles reflects the fact that the material properties were calibrated from
creep tests performed without an extensometer, which implicitly include the machine-
grip compliance to different extents depending on the off-axis angle. As a result, when
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Figure 6.22: Macroscopic strain field predicted by FEPRNN at different times of simula-
tions with different initial off-axis angles.

these properties are used in a multiscale simulation, we end up correcting the same
machine-grip effect twice. As noted in [3], improving the underlying material calibration
through more accurate measurements would probably improve these predictions. Nev-
ertheless, the present results indicate that the surrogate framework already captures the
main features of the creep response and, more importantly, it establishes a robust frame-
work for future developments. Future research directions include extentsometer-based
re-calibration of the relaxation spectrum, surrogate-driven parameter (re-)identification,
and targeted sensitivity analyses of the material properties with respect to the material
response.

6.5. CONCLUSION
In this chapter, we address the challenges observed in [2, 3] to model constant strain-rate
and creep experiments on unidirectional composites under off-axis loading. In those
works, a simplified and efficient approach was proposed based on a single macroscopic
point with special boundary conditions to reproduce an (assumed) uniaxial stress state.
While successful in many cases, the framework showed limitations with lower off-axis
angles. The main hypothesis is that the assumption of macroscopic uniform deforma-
tion did not hold in the experiments. To test this hypothesis with the same high-fidelity
micromodel, a full multiscale approach would be necessary, which remains computa-
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Figure 6.23: Strain-time curves for θ0 = 30◦ and θ0 = 45◦ and loading time t = 10s.

tionally prohibitive. However, with the development of the PRNN, a surrogate model
recently tested on the same micromodel and constitutive models as in this chapter (see
Chapter 5), a surrogate-based multiscale analysis becomes within reach. Building on
these contributions, it is now possible to verify the hypotheses raised in [2] and to gain
insights into the potential macroscopic strain/stress distribution in the experiments.

The PRNNs have a hybrid architecture that combines data-driven components and
physics-based constitutive models to leverage better generalization properties with lim-
ited datasets. They have been used to model the homogenized response of micromodels
with a range of constitutive laws, from linear elastic to elasto-viscoplastic models, in-
cluding the ones considered in this chapter. With embedded models in the latent space,
extrapolation is possible not only in terms of loading types but also in terms of material
properties. Here, we harness this feature to simplify and reduce the computational cost
of the offline phase by training with a fraction of the set of properties used in the refer-
ences [2, 3]. Specifically, we generate and train the network with the first mode of each
process in the elasto-viscoplastic model. Because each mode is associated with many
internal variables, and these are at the core of the backpropagation in time, training with
fewer modes translates into a more efficient process. We then show that these networks
can be successfully transferred to our main task without any retraining effort by directly
updating the material properties of the constitutive model. This feature is illustrated in
the multiscale applications with the gradual mode addition.

From the constant strain-rate experiments, and assuming that the good match be-
tween them and the multiscale simulations implies a faithful characterization of the for-
mer, we summarize the following findings:

• Due to the tension/shear coupling, the constrained movement of the specimen by
the machine grips, and the straight end-tabs, significant shear is present when the
coupon is loaded in tension, except for the extreme cases θ0 = 0◦ and θ0 = 90◦. Al-
lowing free shear deformation of the coupon eliminates the shear stress measured
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at the top surface, and significantly reduces the stress concentration problem near
the grips, but it is insufficient to achieve uniform strain and stress distributions;

• While it is generally known from experiments monitored by Digital Image Correla-
tion that off-axis loading can lead to inhomogeneous strain fields, the surrogate-
based simulations in this chapter validate and illustrate in detail how severe these
inhomogeneities can be in lower off-axis angles. In our case, for θ0 = 15◦, strain
and stress concentrations manifest near the grips of the specimen, making the re-
sponse deviate significantly from a representative uniaxial stress-strain state;

• We verify the hypotheses raised in the reference work of the micromechanical
model [2] to explain the lack of fitting for θ0 = 15◦. The experimental response
is indeed a combination of material points that rotate to align with the loading
direction (at the center of the specimen) and material points that have little to no
rotation (near the surface of the end-tabs). For the remaining studied off-axis load-
ing cases, there is moderate (θ0 = 30◦ and θ0 = 45◦) to negligible (θ0 = 90◦) strain
variation;

• To achieve a more uniform stress-strain uniaxial state in these experiments, we
investigate the use of oblique end-tabs. It is confirmed that these also help re-
duce the stress concentration near the grips and greatly reduce the manifestation
of shear stress across the specimen even with material nonlinearity.

For the creep experiments, we observe no accuracy gain in the multiscale simulations
for the intermediary off-axis angles (θ0 = 30◦ and θ0 = 45◦) compared to the micromodel
solution. Our results highlight the pitfalls of calibrating the material parameters from
experiments without reliable strain measurements and under the assumption of homo-
geneous stress fields. For the two remaining cases, opposite scenarios are observed: one
where the strain distribution is quite uniform with little machine grip effect (θ0 = 90◦)
and the other with large macroscopic variability (θ0 = 15◦). For the former, we obtain
a relatively good fit at different stress levels with average relative errors ranging from
4.2 % to 9.0 %. Whereas for θ0 = 15◦, despite the convergence issues, the approximate re-
sponse follows the same trend as the experiment, with an average error of 13.1 %. These
findings, along with the insights from the constant strain-rate experiments, showcase
the potential of PRNNs to enable efficient and robust multiscale analysis under variable
loading conditions.

APPENDIX A. LIMITATIONS ON THE TRANSFER LEARNING FOR

CREEP EXPERIMENTS
The following combination of material properties was considered to generate test sets
of 150 proportional GP-based curves each: full relaxation spectrum calibrated for the
creep experiments, referred as µcreep

matrix, and varying shear modulus G12 in the material

properties of the fibers µcreep
fiber . The only difference between µε̇fiber and µcreep

fiber is the G12,
which changed from 45 MPa to 5 MPa.

With the network parameters obtained training on the first mode of µε̇matrix and µε̇fiber,
we update the material properties in the fictitious material points with Cωfiber to match the
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corresponding shear modulus being tested, while the modes used in Cωmatrix were grad-
ually updated with increasing number of modes from the new spectrum. Although the
test sets have slightly different stress-strain ranges, the comparison in terms of absolute
errors in Fig. 6.24 is meaningful and reveals a few insights.

Firstly, going from the 1st mode of one relaxation spectrum (µε̇matrix) to a multi-mode

prediction of another (µcreep
matrix) is possible. Second, the best performance is achieved

around 5 modes. And lastly, in this case, the change in the shear modulus is the most
important parameter in determining how well we can extrapolate. For the value consid-
ered in the creep simulations (G12 = 5 MPa), the lowest error observed is, unfortunately,
still quite high, around 9 MPa.
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[1] D. Kovačević and F. P. van der Meer. “Strain-rate based arclength model for non-

linear microscale analysis of unidirectional composites under off-axis loading”.
International Journal of Solids and Structures 250 (2022), 111697. ISSN: 0020-7683.
DOI: https://doi.org/10.1016/j.ijsolstr.2022.111697.
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In this thesis, a novel class of neural networks, PRNNs, was introduced for accelerating
multiscale simulations of complex materials. PRNNs achieve this by replacing the ho-
mogenized response of the Representative Volume Element (RVE) in FE2 and microme-
chanical simulations. Their design directly addresses the main challenges in surrogate
material modelling: the black-box nature, the poor extrapolation properties, and the
data-hungriness of purely data-driven models, as well as the limited generalization of
highly specialized architectures to a specific class of materials.

To tackle these issues, we devised a hybrid approach that builds on the high flexibility
of data-driven models while preserving key aspects of the computational homogeniza-
tion procedure by embedding classical constitutive models in an encoder-decoder net-
work architecture. The network was tested in a variety of scenarios that cover different
levels of complexity in terms of 1) constitutive models (from linear elasticity to complex
elasto-viscoplasticity), 2) loading cases (from monotonic to cyclic to creep and relax-
ation), and 3) analysis frameworks (from 2D small strains to 3D finite strains). The con-
sistently good performance of PRNNs in these studies ratifies the method as a reliable
tool to accelerate multiscale simulations and to enable its adoption to solve real-world
problems. The main contribution of this thesis is the development of a non-intrusive
and robust surrogate model that is general in the sense that the framework is unbound
to a specific class of material model.

In the following, we summarize the five main advantages of the proposed approach:

• Interpretability: By incorporating well-established constitutive models in NNs,
PRNNs ensure that predictions remain interpretable and grounded in physics rather
than relying on intricate and opaque approximations. This transparency is ex-
plored in many ways throughout the chapters, from the identification of poten-
tial pitfalls when choosing the architecture (as in Chapter 2 and Chapter 4) to the
direct comparison of the latent space with microscopic quantities, as in Chapter 3.

• Extrapolation capabilities: The proposed approach inherits from FE2 the idea
that the complex behavior of heterogeneous materials can be accurately described
by letting simpler constitutive models that represent the microscopic constituents
interact. In the PRNN, this interaction is described by the data-driven compo-
nents, which are learned based on snapshots of the homogenized responses of
the micromodel, but the embedded models are kept untouched. This means the
network can reproduce the complex behavior encapsulated in the physics-based
models without the need to (re)learn the time-dependencies from the data.

• Data efficiency: By offloading part of the learning process to known physical laws,
PRNNs require significantly less training data while still achieving high accuracy.
This makes them practical for real-world applications where extensive datasets
can be difficult to obtain.

• Robustness: Throughout the chapters, we applied the network in a series of equi-
librium problems to showcase its robustness to obtain macroscopic convergence
with an implicit solver. From simple monotonic and cyclic loading to creep and re-
laxation, different applications demonstrated the consistency of this feature under
general loading conditions in different analysis frameworks.
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• Generality: Last, but not least in importance, is generality. While particularised in
this thesis for NNs, the hybrid nature of this approach allows modularity, meaning
an arbitrary data-driven model could be used as the first of the two main com-
ponents, provided the second and most important part is preserved: the physics-
based constitutive models. In this regard, the approach is general and can be em-
ployed to account for any effects by adapting the constitutive model embedded in
the material layer. This thesis explored elastoplasticity, linear and nonlinear elas-
ticity, stiffness degradation, hyperelasticity, orthotropy, and elasto-viscoplasticy.

Based on these features, we now highlight the main achievements and conclusions
from each chapter:

PRNNs generalize to unseen arbitrary loading behavior based on relatively small
datasets with monotonic loading paths. Compared to a Bayesian RNN, the pro-
posed approach outperformed it using 64 times less data. A brief study on a micro-
model with different combinations of constitutive models and material properties
demonstrated the generality of the method, although limited to linear and non-
linear elasticity and elastoplasticity. As a constitutive model, the network showed
robustness in FE2 problems, with speed-ups of up to four orders of magnitude.

For a linear encoder and decoder, we illustrated the effect of a new weight normal-
ization constraint on bringing the stress distribution closer to the true distribution
from the micromodel. The constraint also acts as a regularization technique, pre-
venting overfitting and enabling robust training with limited datasets. With just
two curves, PRNNs can accurately predict and extrapolate to different loading con-
ditions. We have also leveraged the latent space to retrieve information from the
microscopic level and incorporated it into a multi-task approach.

The first key extension towards including damage models in PRNNs was pre-
sented. Starting from the original architecture that only considered bulk consti-
tutive models — which failed to capture stiffness degradation resulting from mi-
croscale debonding, we proposed a series of modifications to better represent the
increased complexity in the micromodel. The final PRNN architecture was suc-
cessfully trained on non-proportional and non-monotonic loading and tested over
different loading conditions.

We extended the PRNN to deal with path and rate-dependent heterogeneous ma-
terials in a 3D finite strain framework. To reduce the high dimensionality of the de-
formation gradient, we applied polar decomposition, tasking the network with the
mapping between stretch and unrotated stress. The network was employed as the
surrogate model for a unidirectional composite micromodel with rate-dependent
plasticity in the matrix and hyperelasticity in the fibres. The network extrapolated
well to various strain-rates and unloading/reloading scenarios, and was later ap-
plied to solve a micromodel-based simulation with off-axis loading.
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With PRNNs as the homogenized constitutive model, we enabled a surrogate-
based multiscale framework that addressed unanswered questions about off-
axis experiments on unidirectional thermoplastic composites. It was previously
demonstrated in [1, 2] that these experiments can be well captured by a sin-
gle micromodel, except for small off-axis angles. The hypothesis was that the
mismatch in these cases was due to the non-uniform stress/strain states at the
macroscale. A multiscale simulation was necessary to test this hypothesis with
the same high-fidelity micromodel, which is not (computationally) feasible in this
case. With the surrogate-based multiscale simulations, we confirmed the signif-
icant macroscopic variations in the tests and showed that accounting for them
improves model-experiment agreement for small angles without affecting large-
angle accuracy. Moreover, the framework proved robust enough to achieve macro-
scopic convergence with an implicit solver across several constant strain-rate and
creep simulations.

Although PRNNs have been applied to a comprehensive set of problems, their flexi-
bility is far from exhausted. The developments discussed here pave the way for expand-
ing their applicability to more complex material systems and loading conditions. In the
following sections, we briefly discuss opportunities for further development, generaliza-
tion, and new applications in promising areas, with some already underway.

7.1. COLLABORATIONS AND IMPACT

Parallel with the developments presented in this thesis, multiple collaborators within
and outside TU Delft have pushed the boundaries of PRNN’s versatility in new applica-
tions. In the following, we briefly discuss how these ideas advance the state of the art in
their respective fields and how they build on the developments discussed in this work.

• Multiscale analysis of woven composites using Hierarchical PRNNs (HPRNNs)
[3]: Journal paper (preprint). University of Gothenburg, SE.

In the full-order computational homogenization scheme, woven materials are mod-
elled in three scales: macro, meso and micro, as illustrated in Fig. 7.1a. The RVE at
the mesoscale is composed of warp and weft yarns embedded in an elastoplastic
matrix, while the RVE at the microscale is treated as a unidirectional composite.
However, the interaction between the matrix and the yarns introduces substantial
complexities across scales and results in extreme computational effort, rendering
the full-order solution infeasible.

To enable these simulations, we propose a bottom-up approach. Firstly, we use
the micro-RVE to generate pairs of homogenized strains and stresses. These are
used to train PRNNs in the same fashion discussed throughout this thesis. Then,
the optimal parameters of this network, referred to as warp-PRNN in Fig. 7.1a, are
copied, generating what we call weft-PRNN. The inputs of this network are ob-
tained by rotating the inputs from the warp-PRNN and transforming the outputs
accordingly. These two models are combined with the elastoplastic model that de-
scribes the matrix material in the meso-RVE and micro-RVE in a so-called module.
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Finally, a second PRNN is devised to combine the response of several of these mod-
ules leveraging an encoder and decoder tasked with the de-homogenization of the
macroscale strain into fictitious mesoscopic strains and the homogenization of the
fictitious mesoscopic stresses into the macroscale stress, as depicted in Fig. 7.1a.
Adopting HPRNNs for both scale transitions avoids nonphysical behavior often
observed in predictions from pure data-driven RNNs and transformers. This re-
sults in better generalization under complex cyclic loading conditions.

• Accelerating multiscale modelling of delamination with a suite of surrogate mod-
els [4]: Journal paper (in preparation). TU Delft, NL.

In this work, we are concerned with modelling crack propagation at the mesoscale
while keeping track of the micromechanical evolution of plasticity and distributed
cracking ahead of the crack tip in laminated composites. This requires a concur-
rent multiscale approach, which is computationally prohibitive. The solution ex-
plored here involves combining two surrogates in a single framework, as PRNNs
are not suitable for capturing softening at the macroscale.

For example, to simulate mixed-mode bending tests, we consider three domains,
as illustrated in Fig. 7.1b. In the regions where softening can take place, we employ
a GP-based active learning framework conditioned on a small number of micro-
model computations observations of strains and stresses. The same framework is
applied to model crack growth but conditioned on observations of cohesive trac-
tions and displacement jumps. Finally, for the surrounding bulk domain, we em-
ploy PRNNs. This combination allows us to perform FE2 simulations that would
otherwise be out of reach and help elucidate energy dissipation mechanisms due
to delamination.

• Efficient optimization of composites using ML-based techniques: Grant. Uni-
versidade Federal do Ceara (UFC), BR.

The goal of this grant is to establish and develop a partnership between two labora-
tories: the Statistical Learning for Intelligent Material Modeling Laboratory (SLIMM
Lab/TU Delft, NL) and the Laboratorio de Mecanica Computacional e Visualiza-
cao (LMCV/UFC, BR). The idea is to build on the strengths of each research group
to develop an efficient method for the simulation and optimization of composite
materials.

Optimization techniques are needed to fully exploit the potential of composites.
However, due to the high computational cost of nonlinear analyses, optimiza-
tion is often performed using simplified methods without considering phenom-
ena happening at lower scales, which can lead to unsafe and inefficient solutions.
A potential solution is to employ PRNNs to efficiently represent the nonlinear be-
havior of composites at the microscale.

For this project, PRNNs also need to be extended to deal with other types of com-
posite materials, namely functionally graded materials. The overarching goal is
to integrate the network and other ML-based techniques into an efficient opti-
mization framework and validate the optimal solutions through laboratory exper-
iments.
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(a) HPRNN for homogenization of woven composites

(b) Suite of surrogate models to capture delamination in mixed-mode bending test

Figure 7.1: Schematic representation of collaborative works that expand the applicability
of PRNNs.
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In addition to these ongoing collaborations, the following three MSc theses connect
with the core idea of PRNNs:

• PRNNs to predict microscale debonding in composite materials [5]:

The goal of this MSc thesis was to extend PRNNs to account for distributed dam-
age in the form of microscale debonding. For this purpose, we employed cohesive
zone models (CZMs) at the interface elements between fibre and matrix in a com-
posite RVE. This arrangement allows stiffness degradation without softening at the
macroscale. The main problem of the original architecture discussed in Chapter 2
was the inability to reproduce that behavior, even when CZMs were included in the
material layer. Therefore, several architectures were proposed to address this lim-
itation, leading to a modified layout that leveraged the damage variable to modify
the fictitious strains fed to the bulk models. This study resulted in the publication
discussed in Chapter 4.

The researcher has continued advancing the applicability of PRNNs in a PhD at
the University of Porto (Portugal) with collaboration from the former MSc super-
visory team at TU Delft. In the most recent development, PRNNs trained on a mi-
cromodel with fixed material properties, as presented in Chapter 2, were demon-
strated to maintain accuracy with varying properties. This opened the door for the
model to be used to propagate uncertainty in multiscale frameworks, speeding up
simulations on overly coarse macroscopic meshes by three orders of magnitude
and enabling simulations with finer meshes that were previously inaccessible.

• Multi-task approach to predict maximum hydrostatic stress using PRNNs [6]:

The goal of this MSc thesis was to explore the potential of PRNNs, trained initially
to predict macroscopic stress, to extract information from the microscale. Specifi-
cally, we were interested in retrieving the maximum microscopic stress, which has
been recently used as a failure indicator, from the pool of fictitious stress states in
our latent space. Though the PRNN cannot predict failure yet, having a thresh-
old maximum stress to compare with can help set up alternatives to deal with the
problem. For example, once we reach this threshold, we could switch to another
surrogate model or a full-order micromodel at the macroscale point where this
happens or remove the element from the mesh. The main developments and key
takeaways from this study were included in the publication discussed in Chapter 3.

• FE model as building blocks of NNs to model lattice materials [7]:

The goal of this MSc thesis was to predict the homogenized constitutive response
of 2D lattice materials. For that, we built on the idea of having smaller represen-
tations of the macroproblem embedded in the network to capture geometric non-
linearity. In the RVEs discussed throughout this thesis, the building blocks and
primary (often only) source of nonlinearity were the constitutive models, with no
specific concern for geometric nonlinearity. In contrast, for the lattice application,
the constitutive models were quite simple (linear elasticity), while geometric non-
linearity was the central phenomenon to be captured.
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The basic building block was changed to a Finite Element (FE) model, specifically
a cantilever beam, as illustrated in Fig. 7.2. Each beam can be discretized in as
many elements as needed and inherits all the same material properties and con-
stitutive models as the beams that compose the high-fidelity unit cell. Although
the findings in [7] do not satisfy the requirements for practical application yet,
they indicate that introducing FE models improved the extrapolation properties
and interpretability of the surrogate model compared to regular FNNs.

Given further development, these networks could be the key to efficiently handling
more complex scenarios as the required changes are relatively straightforward to
incorporate, e.g., dynamics and history-dependent behavior. This is possible be-
cause the state of the FE models is known at every time step, which includes po-
tential internal variables of the constitutive models.

Figure 7.2: FE models as building blocks embedded in PRNN architecture, as in [7].

7.2. FUTURE RESEARCH DIRECTIONS
1. Different RVE morphologies, micromodel geometry, and material properties:

While a wide range of constitutive model behaviors and loading conditions were
considered in this thesis, the numerical examples only dealt with two-phase com-
posites with fixed micromodel geometry. A straightforward application would be
to test it with more than two phases and different RVE morphologies (e.g., amor-
phous, porous, and Voronoi-Tessellated). Another avenue unexplored is the ex-
tension of PRNNs to deal with geometrical features (e.g., volume fraction and ra-
dius and shape of inclusions) and variable material properties. Although the latter
topic is briefly discussed in Chapter 6, we only touched the surface of the potential
of having such a feature without explicitly training for it. Limitations and implica-
tions have not been thoroughly discussed yet.

2. Robustness to noisy data and active learning: PRNNs were not tested with noisy
data. Therefore, strategies for improving their robustness to such conditions could
be explored (e.g., dropout and bayesian approach). Another avenue for impact
would be the integration of PRNNs in an active learning framework to guide the
adaptive selection of loading paths, material properties, and/or constitutive mod-
els. The careful incorporation of new data has not been considered so far, but it has
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the potential to achieve more efficient training schemes and improve the design of
space exploration.

3. Multi-physics: PRNNs have been primarily applied to mechanical systems, but
many real-world problems involve multiple physical phenomena (e.g., thermal,
moisture diffusion, aging mechanisms, etc.), and PRNNs have not been investi-
gated in these multi-physics contexts.

4. Strain localization: In this thesis, softening was only considered at the microscale
for modelling debonding in a composite RVE (see Chapter 4). In practice, however,
micro-cracks appear scattered and can coalesce to form arbitrary paths that must
be propagated to the macroscale, challenging the fundamental assumptions of
FE2. In recent years, a framework with enhanced localization criterion for macro-
scopic cohesive failure with less intrusive changes to FE2 compared to the liter-
ature was proposed [8]. However, the computational cost associated with these
simulations is enormous, which is precisely where PRNNs could thrive. Extending
these networks from bulk to cohesive homogenization can enable the analysis that
would otherwise be out of reach.

5. Material model calibration of heterogeneous materials: A promising research
direction is the integration of PRNNs for automated material model calibration.
While automated frameworks, such as the Efficient Unsupervised Constitutive Law
Identification and Discovery (EUCLID) [9] made important advances in the con-
text of homogeneous materials, the generalization to heterogeneous materials re-
mains an open challenge. The large microscopic variability, the interaction be-
tween phases, and the limited number of experiments are only some of the hur-
dles. PRNNs could help address these difficulties in different ways depending
on how much knowledge of constitutive models, material properties, and micro-
model geometry we have a priori.

From an assumed set of constitutive models and a sufficiently large and fixed mi-
cromodel geometry, a PRNN that generalizes to different material properties could
serve as the constitutive model in the surrogate-based multiscale simulation that
reproduces the experimental conditions, similar to what we explored in Chapter 6.
In this case, an outer optimization loop is required to identify the material proper-
ties.

Moving towards a more general approach naturally introduces more complexity.
For example, if no information on the material geometry can be assumed, the ge-
ometric features would have to be a part of the optimization loop, and a more
general PRNN, one that can extrapolate both in terms of material properties and
material geometry, would be required. In case the constitutive models are also
uncertain, one option would be to work on a small pool of constitutive model can-
didates. Based on the findings in Chapter 3, where minimal training sets provided
reasonable extrapolation, an ensemble of PRNNs trained on different constitutive
model combinations could be considered.

Alternatively, a fully automated framework could be developed where the three
main ingredients are identified simultaneously. In this case, networks trained on-
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the-fly with combinations obtained by an active learning strategy could be em-
ployed to handle the increased complexity of the optimization problem. In all
cases, the robustness of PRNNs to noisy data is paramount and demands atten-
tion.

6. Many-query applications: The applications in FE2 illustrated the potential of PRNNs
in speeding up computationally intensive simulations, but other many-query ap-
plications could benefit immensely from it. Integrating the proposed model in
other many-query frameworks, such as material design optimization, sensitivity
analysis, topology optimization, uncertainty quantification, and inverse modelling,
requires development. From the identification of optimal microscopic features
(e.g., fibre orientation, volume fraction, etc.) to the quantification of material
property variability, PRNNs can pottentially be extended beyond their current role
as surrogate models to actively guide design, calibration, and decision-making
processes in next-generation material design and optimization processes.
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