]
TUDelft

An exploratory study about extent of use of released packages in the Maven
Central Repository

Horia Zaharia
Supervisors: Sebastian Proksch, Mehdi Keshani
EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

Maven Central Repository hosts over 9 million
repositories which ease software reuse. Since its
appearance, Maven has been studied and character-
ized using different popularity and quality metrics,
in order to identify defining patterns and possible
improvements. This study aims to analyze extent
of use of packages released in the Maven Central
Repository. Extent of use is a metric that quanti-
fies how much of a package is used. The findings
of this study show that on average 73.2% of avail-
able methods and 77.1% modules in a package are
used by dependents of the package. The study also
shows that extent of use at method level is highly
correlated with extent of use at module level (Pear-
son correlation coefficient r = 0.829).

Keywords: Maven, Exten of use, Metrics

1 Introduction

Software reuse is a necessary practice especially in the enter-
prise application environment. This lead to the appearance of
centralised repositories that provide developers with package
management systems such as Maven, npm, pip, yarn. This
study analyzes the Maven Central Repository at method level
with focus on the extent of use of packages using the FAS-
TEN software.

Maven Central provides developers with over 9 million
repositories that can be used as third party libraries in their
own productions. The reuse of these libraries in new re-
leases lead to the creation of an entangled software ecosys-
tem. Since this ecosystem evolved naturally, studying its per-
formance is necessary to develop and adopt better practices.
The existing literature proposes multiple methods to quantify
characteristics of packages in Maven Central.

[Raemaekers er al., 2012] presents four different metrics
centered around method level changes which can be used
in exploratory studies in order to reveal patterns within the
Maven ecosystem. The metrics presented can be used to
choose an appropriate design of own projects. However, this
study and its proposed metrics only account for the changes
that appear throughout the evolution of the package.

[Sajnani et al., 2014] studies whether or not popularity
is a measure of quality. “One of the perceived values of
open source software is the idea that many eyes can increase
code quality and reduce the amount of bugs” ([Sajnani et al.,
2014]). However, the cited paper challenges this wide-spread
view: there are virtually no correlations between popularity
and software quality metrics. This study proposes a metric
that could be used to identify behaviours and patterns present
in the Maven Central Repository: Extent of use. Extent of
use quantifies what part of a package is used by its depen-
dents. This metric is used to analyze Maven at method level
and module level.

This paper aims to answer three related research questions.
The first research question posed is ”On average, what ex-
tent of a released package version is used by others in Maven
Central?”. After computing the extent of use, we use the re-
sults to investigate the second research question ’Is extent of

use correlated with the number of dependents?”. The third
research question focuses on the relation between extent of
use at method level and module level: “Is extent of use at
method level correlated with extent of use at module level?”.
The answers to the questions should serve as the first steps in
analyzing package management systems through the lens of
extent of use. Further research could prove a correlation be-
tween code quality and high extent of use, since developers
avoid non-qualitative solutions.

This study heavily relies on functionalities provided by the
FASTEN framework. FASTEN provides tools to analyze de-
pendency relationships present in the Maven ecosystem at
method level and a database with information about the in-
gested packages. These tools help create callgraphs which
describe interactions between methods. The generated call-
graphs and the information from the database are used to
compute the extent of use.

This paper is structured as follows. Section 2 provides the
reader with background information needed to tackle this pa-
per. Section 3 discusses the goals and structure of the study,
before describing the steps taken to derive the results. Section
4 shows the results derived from the study. Section 5 covers
the responsible research and the replication package. Section
6 ends the paper with discussions and conclusions.

2 Background

Current literature provides extensive research about the
Maven Central Repository. Continuing studying this topic
is necessary because the ecosystem is continuously changing
and evolving. The following subsections provide the reader
with a glossary of terms discussed throughout the paper and
an overview of the existent related work.

2.1 Glossary

Maven Central Repository - Repository that holds over 9 mil-
lion packages that can be imported in own projects. This is
the scope of this study.

Package - jar file that provides functionalities which can be
used in own projects. This study focuses on packages present
in the Maven Central Repository. Packages published in the
Maven Central Repository are named and uniquely identi-
fied in the format groupld:artifactld:version. In the literature
packages may be encountered under the names artefact or li-
braries.

Dependent - Package A is a dependent of package B if
package A needs package B to build, run or compile.

Dependency - Package A is a dependency of package B if
package B is a dependent of package A.

Callgraph - A callgraph is a directed graph that describes
the interactions between methods of different packages. The
nodes present in the directed graph represent methods that are
called or make calls towards other methods. An edge from A
to B in the graph illustrates that method A calls method B.

Dependent resolution - The process that yields the depen-
dents of a package.

Dependency resolution - The process that yields the depen-
dencies of a package.

FASTEN - FASTEN [FASTEN, 2022] is an intelligent soft-
ware capable of performing package management analysis.

Functionalities of FASTEN include callgraph generation, de-
pendents/dependency resolution, vulnerability analysis etc.
FASTEN also provides a database containing information
about the methods and packages analyzed.

Extent of use - The metric introduced by this paper. This
metric quantifies the natural idea of “how much of this pack-
age is being used?”.

2.2 Related Work

[Kula er al., 2017a] present a way to decide when a library
needs to be updated based on its usage level. The authors
empirically explore library usage as a means to describe the
library’s age. Their results show that changes in library usage
are not random, since 81.7% of the popular libraries fit the
polynomial models.

[Kula ef al., 2017b] propose the Software Universe Graph
Model as means to study evolving software systems and their
dependencies over time. The researchers studied the Maven
Central and the CRAN repositories using intelligent mining
to reveal trends within software ecosystems. Their findings
show that Maven ecosystems have a more conservative ap-
proach to updating dependencies while their CRAN counter-
parts are more adept to adopting changes.

[Kula er al., 2018] wants to answer a hot topic regarding
dependency management. Do maintainers update their de-
pendencies? In order to answer this question the researchers
conducted an empirical study that covers over 4600 GitHub
software projects and 2700 library dependencies. The find-
ings of this study show that 81.5% of the studied systems keep
outdated dependencies. The adoption behaviours of main-
tainers greatly influences how the Maven ecosystem evolves.

[Raemaekers et al., 2012] evaluates method level changes
between different releases of the same libraries making use
of four different metrics that offer insights into the stability
of the said libraries. It assesses the level of change between
releases in a quantifiable manner.

[Raemaekers et al., 2017] is interested in how new releases
of a library impact the client libraries and their semantic ver-
sioning. The findings of the authors show that on average 1 in
3 releases introduce breaking changes that produce compila-
tion errors which need to be addressed. This study is however
more interested in how developers should tackle the problem
of breaking changes and deprecation.

[Soto-Valero et al., 2020] studies the effect of bloated de-
pendencies in systems. Bloated dependencies are defined as
libraries that are packaged and compiled within the applica-
tion but are not required to compile and run the said appli-
cation. The findings of the study reveal that most bloated
dependencies are the result of transitive dependencies indi-
cating that the default dependency selection of Maven might
not be optimal.

[Kula et al., 2015] studies the adoption habits and trust of
maintainers towards new releases of an existing library. The
study concludes that maintainers are becoming more trusting
of new releases being inclined to update their existing systems
to the latest release.

[Raemaekers et al., 2013] presents the Maven Dependency
Dataset containing information on 148253 Java libraries. The
researchers used a supercomputer to calculate metrics and

changes over multiple levels (package, class, method) and to
generate a complete call graph which includes call, inheri-
tance, containment and historical relationships.

3 Methodology

This section describes the approach, objectives and processes
undertaken to arrive at the results. The following section
presents the high-level approach of the study. Section 3.2
restates the research questions and the incentives to answer
them. Section 3.3 illustrates the data selection process and
explains the choices made to derive a representative subset
of packages from the Maven Central Repository. Section 3.4
gives the mathematical definition of extent of use. Sections
3.5 and 3.6 demonstrate the callgraph generation, respectively
the analysis performed on the callgraphs to compute extent of
use.

3.1 High-Level Approach

The process starts with the selection of a representative
sample of packages from the Maven Central Repository.
Using functionalities provided by FASTEN, the dependents
and the dependencies of the dependents are computed for
each selected package. Using the identified artifacts we
generate a callgraph of the method calls present in the pack-
age, dependent and dependencies of dependent. Together
with information obtained from the FASTEN database, these
callgraphs represent the input for the Extent of Use analysis.

v

dependency resaolver

O—) dependent resolver

N Extent of use
computation

l callgraph gerenator

Figure 1: Study Work Flow

3.2 Research Questions

This section describes the research questions related to the
metrics defined in section 3.4 and their importance for the
literature.

Research Question 1:

On average, what extent of a released package version is
used by others in Maven Central? The answer to this ques-
tion provides a baseline for the new metric defined as extent
of use. In future works, extent of use could provide a new tool
for identifying patterns present in the Maven Central Reposi-
tory.

Research Question 2:

Is extent of use correlated with the number of depen-
dents? Answering this question will reveal if extent of use
is related with the number of dependents a package has.

Research Question 3:

Is extent of use at method level correlated with extent
of use at module level? The answer to this question will
provide information on the relation between extent of use at
method and module level. If the two are uncorrelated it means
only certain modules are used, while their counterparts in the
same package are not. Future works could provide an im-
proved dependency management strategy based on used mod-
ules, rather than whole packages.

3.3 Data Selection

Given the immensity of the Maven Central Repository it is
not feasible to conduct the analysis over the whole reposi-
tory. To reduce the number of packages to be analyzed a time
window is chosen: only packages added to FASTEN between
01/10/2021 and 31/03/2022 will be considered.

Test related packages are removed from the dataset, since
releases in Maven Central Repository are shipped without the
testing code available. Given that different versions of the
same package will likely yield similar results, only one ver-
sion per package will be considered. Furthermore, the design
of large scale products is often to release multiple packages
that depend on one another, under the same groupld; to avoid
data skewness generated by this design choice only one pack-
age per groupld is considered.

After filtering weighted random sampling is performed, us-
ing the number of dependents a package has as weight for
sampling. The number of dependents a package has is a natu-
ral choice for sampling, since packages with more dependents
have more influence over the Maven ecosystem.

3.4 Metrics

Extent of use for a package at method level in a dependent
is defined as:

Extent of use = 7=

Where:

n. = number of non-private methods called by dependent
and the dependencies of the dependent

ng = number of non-private methods available in the
package

Only non-private methods are considered to avoid ar-
tificially inflated extent of use generated by the package
design. This metric maps the extent of use to a real number
in the interval [0,1], where 1 corresponds to full extent of
use and O corresponds to no use at all. n, is identified by a
series of SQL queries performed on the FASTEN database.
n. is found by comparing the methods available retrieved
from the database, with the ones present in the callgraph
of the package, dependent and its dependencies. Further
explanations about the computations of these variables are
given in section 3.6.

Thus extent of use for a package at method level is defined
as the mean of the extents of use in its dependents:

AExtent Of Use = 1 3" | EoF;
Where:

n = number of dependents the package has
FEoF; = Extent of use for the package in depenent i

Extent of use for a package at module level in a
dependent is defined as:

Extent of use = 2«
me
Where:

m, = number of modules that contain at least a method
called by the dependent

mg = number of modules in the package

This metric similarly maps extent of use to a real number
in the interval [0,1], but considering usage of modules instead
of method calls. m,, is retrieved from the FASTEN database.
m,, is computed by creating the set of modules containing the
methods called by the dependent, which are found in the call-
graph. Extent of use for a package at module level is the mean
of the extents of use at module level over all dependents, just
like at method level.

3.5 Callgraph generation

Callgraphs describe the relations between packages, under
the form of a directed graph. Nodes in the graph represent
methods and the directed edge from a node to another repre-
sents that the first method calls the second. For each selected
package the callgraph of the package, dependents and depen-
dencies of dependents is generated.

GenerateCallGraph (package)
dependents < resolve Dependents(package)
for d; edependents do
dependencies; «resolveDependencies(d;)
callGraph
generateCallgraph(p, d;, dependencies;)
end
return callgraphs
Algorithm 1: Algorithm that generates a callgraph

Algorithm 1 is a pseudocode representation of the Java al-
gorithm written to generate the callgraphs.

Dependent and dependency resolution are functionalities
provided by the FASTEN suite. After generation callgraphs
are stored for analysis.

3.6 Analysis

In order to compute the extent of use, the non-private meth-
ods of each package need to be identified; this is done by SQL
queries performed on the FASTEN database. The tables from
the FASTEN database that are use are: packages - a table that

contains an unique id for each package, package_versions -
a table that contains an unique id for each version of each
package, modules - a table that contains information such as
which modules belong to which package release and callables
- a table which hosts the information of the methods analyzed
by FASTEN. First, the packages table is queried to find the
id of the package. Then, the package id is used as a foreign
key to identify the id of the package version that is being ana-
lyzed. The id of the version is used as a foreign key to identify
the ids of the modules in the package. Then methods are se-
lected from the callables table, if the module that contains the
method is found in the list of modules previously identified
and the method’s access is not “private” or ’packagePrivate”.

This process yields the wanted list of methods. This list
of methods is then compared to the list of methods in each
callgraph generated for each dependent of a package. The
methods found in the list returned by the SQL query and not
in the list of methods present in the callgraph are the methods
that the dependent does not use. These methods are save after
identification. The list of used method is the union between
the set of methods identified by SQL queries and the set of
methods in the callgraph. The list of used methods is used to
create the set of modules that contain at least a function that
is called.

ExtentOfUse (package)

dependents < resolve Dependents(package)
nonPrivateMethods <+
getMethods(package)

modules < getModules(package)

EoF + 0

moduleEoF + 0

for d; € dependents do

methodsInCallgraph +
getMethodsFromCallgraph(package, d;)

unusedM ethods < nonPrivateMethods —
methodsInCallgraph

usedM odules +—

get M odule(nonPrivateM ethods U
methodsInCallgraph)

EoF + EoF +

nonPrivateMethods.size() —unusedMethods.size()
nonPrivateMethods.stize()

moduleEoF <

usedModules.size()
moduleEoF + modules.size()

end
moduleEoF ¢ ——meduleBol -
dependents.size()

EoF
dents.size()

return (FoF, module EoF)

Algorithm 2: Algorithm that computes extent of use

Then, the extent of use is calculated in each dependent at
method and module level. After calculating the extent of use
in each dependent, extent of use of the package is computed
at both levels.

Algorithm 2 represents the pseudocode interpretation of
the Java application implemented for this computation. EoF
is an abbreviation for extent of use.

4 Results

After computing extent of use for the selected packages re-
sults can be derived. The following subsections present the
results needed to answer the research questions.

To answer the first question, the distributions of extent of
use (method and module level) are used. To identify relations
for the last two questions, the Pearson correlation coefficient
is used.

”Pearson’s correlation coefficient (r) is a measure of the
linear association of two variables. Correlation analysis usu-
ally starts with a graphical representation of the relation of
data pairs using a scatter diagram. The values of correlation
coefficient vary from —1 to +1. Positive values of correlation
coefficient indicate a tendency of one variable to increase or
decrease together with another variable. Negative values of
correlation coefficient indicate a tendency that the increase of
values of one variable is associated with the decrease of val-
ues of the other variable and vice versa. Values of correlation
coefficient close to zero indicate a low association between
variables, and those close to —1 or +1 indicate a strong linear
association between two variables” [Kirch, 2008]. Generally,
a correlation is considered strong when r > 0.7.

Research Question 1

Figure 2 showcases the distribution of the packages over ex-
tent of use at method level.

120

100

number of packages

20

00 02 04 06 08 10
Extent of use

Figure 2: Extent Of Use Distribution At Method Level

It can be observed from the distribution that there exists
a concentration around the 0.8-0.9 extent of use mark. The
table below gives a description of the identified distribution.

Extent of use distribution at method level description
Minimum extent of use 0
Ist quantile 0.873
median 0.804
3rd quantile 0.685
Maximum extent of use 1
Mean extent of use 0.732

The average extent of use at method level is 0.732,
meaning that in general, 3 out of 4 public methods are being

used in dependents. Since the median is 0.804, for half of
the dataset, 4 out of 5 public methods are being used. For
a package to be in the 1st quantile, it should have an extent
of use of at least 0.873 (nearly 9 out of 10 public methods
used).

Figure 3 showcases the distribution of the packages over
extent of use at module level.

100 A

number of packages

0.0 0z 0.4 0.6 0.8 10
Modular Extent of Use

Figure 3: Extent Of Use Distribution At Module Level

The figure clearly shows that the bulk of packages in the
dataset have an extent of use at module level over 0.8. The
table below describes the distribution found.

Extent of use distribution at module level description
Minimum extent of use 0
1st quantile 0.915
median 0.845
3rd quantile 0.707
Maximum extent of use 1
Mean extent of use 0.771

The average extent of use at module level is 0.771. This
means that three quarters of modules in a package are gener-
ally used. The median of the distribution sits at 0.845, sug-
gesting that for half of the packages in the dataset, over 84%
of their modules are used.

Research Question 2

Figure 4 presents extent of use at method level plotted against
the number of dependents the package has.

100 1 f-;
= 80 1 = *
=
al
=
=4
(=]
s) * *
_CIQE.I 40 4 L - -k
* 4 *
2 * * * xx
20 " " w - W
F F o
0 i i a an _ 1
00 02 0.4 15 08 10

Extent Of Use

Figure 4: Extent of use at method level plotted against the number
of dependents

It can be observed from the figure that most packages have
an extent of use around 0.8 at method level regardless of
the number of dependents. This observation is sustained by
the low value of the Pearson correlation coefficient between
number of dependents and extent of use at method level: r =
0.038.

Figure 5 presents extent of use at module level plotted
against the number of dependents the package has.

100 - —
n 807 +*
[=
a
=
=
% B0 * .
=] - -

“|:|_ w
g 407 *
§ *
= *
20 1
r *
4 « | ¥ . ‘;: ¥ g A
0 * &'_E d s
00 02 0.4 06
Extent Of Use

Figure 5: Extent of use at module level plotted against the number
of dependents

Once again, the figure shows a grouping of packages, this
time around 0.9, regardless of the number of dependents.
This observation is validated by the low value of the Pearson
correlation coefficient: r = 0.241.

Although the correlation at module level is bigger than the
one at method level, because both values are so small, it can
be concluded that these correlations arise because of the lim-
ited scope of this study. Thus, there is no relation between the
number of dependents and extent of use at the studied levels.

Research Question 3

Figure 6 shows a plot with extent of use at module level on
the y axis and extent of use at method level on the x axis.

The plot helps us visualise the relationship between extent
of use at the two levels. The Pearson correlation coefficient
for these two variables is r = 0.829. This value is high enough
to conclude that extent of use at method level is related to the
extent of use at module level.

10 * -k
ok L . W e B
=
N oy, *

0.8 * * = &i?'\\-#’ =
w I x T 9 -vl-*“#-*
L. . L ,,,**':"? ** &
5 *
[=] L ¥
= 0o ;3 ** i '*
] * * ¥ s
i w e * 1 * %*
= B
i ' *
w04 ¥ *
2 *
2 - * ¥ . *

021s .

%
0.0+
0.0 02 0.4 06 0.8 10

Extent Of Use

Figure 6: Extent of use at module level plotted against the extent of
use at method level

5 Responsible Research

Meaningful advancements in science can be made only
through responsible research. Results from this study can be
replicated by one who has access to the FASTEN database.
To aid with result replication, a replication package contain-
ing the analyzed packages and the analysis code was realised.
Contact the author of the study to receive the replication pack-
age. The scope of this research does not pose critical ethical
concerns. Data selection was made trying to avoid skewness
or biases. The code written to accomplish the analysis was
written to the best abilities of the author.

6 Discussion and conclusions

Based on the results presented in section 4 we can draw con-
clusions about extent of use in the Maven Central Reposi-
tory. At both method level and module level, extent of use is
high: three quarters of available methods and three quarters
of modules are in use. Since these are used in productions,
one expects that this code is bug-free.

Still, it seems that, on average, one in four modules remains
unused in each dependent. This leads to the idea that instead
of importing whole packages, there may exist a better strategy
based on only importing used modules. [Pashchenko et al.,
2018] presents the problem of vulnerabilities in open-source
software. [Soto-Valero et al., 2020] is a study focused on
identifying causes for bloated dependencies. Bloated depen-
dencies in an application are defined as dependencies that are
not needed to compile, run or build the application. The cited
study concludes that 81.7% of the bloated dependencies are

transitive dependencies. Reducing the import volume could
be a strategy in mitigating bloated dependencies and inherited
vulnerabilities.

Results have shown that there is no relation between extent
of use at method/module level and the number of dependents.
This is not a surprising result, considering that it is normal for
dependents to use the package in similar ways, with similar
extents.

The correlation between extent of use at method level and
extent of use at module level is strong, based on the Pearson
correlation coefficient calculated in the results section. This
means that used methods are generally spread between mod-
ules, instead of having a single module hosting most used
methods. This is a sign of qualitative design of packages in
the Maven Central Repository. Future works could prove cor-
relations between quality of code metrics and high extent of
use.

Extent of use can be a metric used to decide whether or not
to use an available solution, instead of creating one. When
considering to use an already available solution from a pack-
age, one can compute in which extent they will use that pack-
age. If extent of use is very low (i.e. under 0.05), it might be
better to write an own solution to avoid unnecessary bloating
the code.

This study is subject to a number of limitations. Even
though the dataset is considered representative, the limited
scope of this research (384 packages) makes it hard to draw
hard conclusions for the whole of Maven Central Reposi-
tory. The Maven ecosystem is constantly evolving so data
derived within this study might become redundant. Future
works could study the evolution of extent of use in package
management systems.

In conclusion, extent of use in the representative sample
of the Maven Central Repository is elevated: 0.732 at method
level and 0.771 at module level. The strong relation identified
between extent of use at method and module level is natural
and a sign of good package design.

References

[FASTEN, 2022] FASTEN.
project, 2022.

[Kirch, 2008] Wilhelm Kirch, editor. Pearson’s Correlation
Coefficient, pages 1090-1091. Springer Netherlands, Dor-
drecht, 2008.

[Kula et al., 2015] Raula Kula, Daniel German, Takashi
Ishio, and Katsuro Inoue. Trusting a library: A study of
the latency to adopt the latest maven release. IEEE 22nd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), 2015.

[Kula et al., 2017a] Raula Kula, Daniel German, Takashi
Ishio, Ali Ouni, and Katsuro Inoue. An exploratory study
on library aging by monitoring client usage in a software
ecosystem. [EEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
2017.

[Kula et al., 2017b] Raula Gaikovina Kula, Coen De Roover,
Daniel M. German, Takashi Ishio, and Katsuro Inoue.

https://github.com/fasten-

Modeling library popularity within a software ecosystem.
Tech. Rep., 2017.

[Kula et al., 2018] Raula Kula, Daniel German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. Do developers update
their library dependencies? Empirical Software Engineer-
ing, 2018.

[Pashchenko et al., 2018] Ivan Pashchenko, Henrik Plate,
Serena Elisa Ponta, Antonino Sabetta, and Fabio Mas-
sacci. Vulnerable open source dependencies: Counting
those that matter. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engi-
neering and Measurement, ESEM 18, New York, NY,
USA, 2018. Association for Computing Machinery.

[Raemaekers et al., 2012] Steven Raemaekers, Arie van
Deursen, and Joost Visser. Measuring software library sta-
bility through historical version analysis. 28th IEEE In-
ternational Conference on Software Maintenance (ICSM),
2012.

[Raemaekers et al., 2013] Steven Raemaekers, Arie van
Deursen, and Joost Visser. The maven repository dataset
of metrics, changes, and dependencies. 10th Working Con-
ference on Mining Software Repositories (MSR), 2013.

[Raemaekers et al., 2017] S. Raemaekers, A. van Deursen,
and J. Visser. Semantic versioning and impact of break-
ing changes in the maven repository. Journal of Systems
and Software, 2017.

[Sajnani et al., 2014] Hitesh Sajnani, Vaibhav Saini, Joel Os-
sher, and Cristina V. Lopes. Is popularity a measure of
quality? an analysis of maven components. In 2014 IEEE

International Conference on Software Maintenance and
Evolution, pages 231-240, 2014.

[Soto-Valero et al., 2020] César Soto-Valero, Nicolas Har-
rand, Martin Monperrus, and Benoit Baudry. A com-
prehensive study of bloated dependencies in the maven
ecosystem. Empirical Software Engineering, 2020.

	Introduction
	Background
	Glossary
	Related Work

	Methodology
	High-Level Approach
	Research Questions
	Data Selection
	Metrics
	Callgraph generation
	Analysis

	Results
	Responsible Research
	Discussion and conclusions

