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Preface 
 

Almost six years ago my journey to become a Technical Physician started. Together with a group of 

around one hundred enthusiastic fellow students I decided to enroll for the new bachelor’s program 

Clinical Technology at TU Delft, Erasmus MC (Rotterdam) and LUMC (Leiden). Over the years, I lost 

count of how many times we were called “the guinea pigs of the program”. After three years of 

education, I proudly graduated for the bachelor’s program. After a short summer break, my 

education continued with the, also new, master’s program Technical Medicine at the TU Delft, 

Erasmus MC and LUMC. The track Sensing and Stimulation started in September 2017 with only four 

fellow students and me. Not much later, in February, the fifth fellow student joined. Instead of 

“guinea pigs”, more and more teachers called us “the pioneers of the program”.  

 

It was the same February that we got education on the subject of this master thesis. Alfred Schouten 

from TU Delft and Natasja de Groot from Erasmus MC introduced us to the methods of signal 

processing and cardiac electrophysiology. Not only did I really enjoy these subjects, but I also noted 

that Technical Medicine could play, and did already play, a major role in connecting these fields. In 

September 2018, the clinical internships started. Instead of attending classes, we learned both 

research skills and medical skills in the huge medical centers in Rotterdam and Leiden. After two 

internships at the rehabilitation center in Rotterdam and the Heart Lung Center in Leiden, I decided 

to return to the fields of cardiac electrophysiology and signal processing. My third internship took 

place at the department of translational electrophysiology under the supervision of Natasja. At the 

end of the internship, it came as no surprise when I asked whether it was possible to arrange my 

graduate internship at the department, after my fourth clinical internship at the transplantation 

center at the Erasmus MC.  

 

In September 2019, I returned to the familiar 19th floor of the EE-building at the Erasmus MC. The 

year started with further developing my academic writing skills, followed by writing a systematic 

review, and ending with working on my thesis project. During all these phases, as well as during my 

third clinical internship, I was helped by the wonderful people from the research group, who I would 

like to thank for their time, help and motivation they gave me. First, I want to thank the group of 

PhD students, in particular Mathijs and Rohit, for their hours and hours of help and their infinite 

patience. Furthermore, I want to thank Natasja and Maarten for their time to discuss the progress 

and results of my project, but most of all for their dedication to help me improve my clinical and 

research skills. Lastly, I would like to thank some other people as well.   

Thank you, Agnes Muskens, for introducing me to the clinical departments. 

Thank you, Paul Knops, for helping with the technical issues.  

Thank you, Yannick Taverne and Jaap Harlaar, for being part of my graduation committee.   

Thank you, Mitchel, Fleur, Amne, Frederique, and Siri, for having started this journey together three 

years ago. 

Thank you, my family, my friends, and my dog, for supporting me and giving me motivation to 

complete this thesis. 

And last but not least, I want to thank my girlfriend, Marloes, for always being there and for her 

constant support.  

 

Although my journey at TU Delft will be ending, my journey at the research department will 

continue. I am looking forward to continuing my journey as a PhD student and working with 

everyone at the research department. 

 

F.J. Wesselius 

Rotterdam, Friday 19 June 2020  
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Summary 

 

Introduction Atrial fibrillation (AF) is the most common age-related, progressive 

tachyarrhythmia in the USA and in European countries. AF is associated with an increased 

risk of stroke, heart failure, impaired cognitive function, and increased mortality. An 

obstacle for optimal diagnosis and treatment is the relatively unknown  

(electro-)pathophysiology of AF. In combination with intra-operative cardiac mapping, 

accurate analysis of the AF burden using post-operative continuous rhythm registrations 

might provide great insight into the underlying mechanisms of AF development. However, 

manual analysis of these continuous rhythm registrations is both time-consuming and 

subject to interpretation. Therefore, the aim of this study is to develop an automated AF 

detection algorithm for use in the research setting. 

Methods Using 6,400 manually annotated 30-seconds electrograms (ECGs) derived from 

the post-operative continuous rhythm registrations in the Erasmus Medical Center 

(Rotterdam), and 192 annotated records from standard MIT-BIH ECG databases, a classifier 

was developed with three output classes: AF, No AF, and Unusable (due to noise/artefacts). 

QRS-complexes were detected using a method based on the Pan-Tompkins algorithm. 

Subsequently, P- and T-waves were detected and features were extracted, which can be 

grouped into eight groups: RR-interval characteristics, peak-interval characteristics, 

amplitude characteristics, P-wave characteristics, T-wave characteristics, QRS-morphology 

characteristics, autocorrelation characteristics, and noise. Multiple classifiers were trained 

using a training set containing 4,800 post-operative ECGs and a hidden test set containing 

the remaining 1,600 post-operative ECGs. The optimal classifier in terms of accuracy was 

further optimized. 

Results Optimal classification was achieved using boosted decision trees. For the hidden 

test set, this resulted in an accuracy of 96.44% (95% CI: 95.41% - 97.24%) for detection of 

AF with a false negative rate of 2.8% (95% CI: 1.5% - 4.9%) and a false positive rate of 3.8% 

(95% CI: 2.9% - 5.1%). Of all 74 misclassifications, 36 (49%) were made in the group with 

irregular rhythms without AF. Classification was mainly based on the RR-interval 

characteristics. 

Conclusion An automated AF classifier based on post-operative continuous rhythm 

registrations for use in the research setting was proposed. Careful use of the classifier in 

combination with manual validation of detected AF segments makes the classifier suitable 

for supervised research purposes.  
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post-operative atrial fibrillation, telemetry, classification, algorithms, machine learning 
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Introduction to Cardiac Anatomy, Atrial 

Fibrillation, and Electrocardiograms 
 

Atrial fibrillation (AF) is the most common age-related, progressive tachyarrhythmia in the 

USA and in European countries. In Australia, Europe and the USA, the current estimated 

prevalence of AF is 1-4%. In 2060, the prevalence is expected to have increased 2.3-fold.1 

Furthermore, the incidence of AF after cardiac surgery lies between 10 and 60%.2 AF is 

associated with serious complications such as stroke, heart failure, impaired cognitive 

function, prolonged hospital stay, and increased mortality.3, 4 Therefore, optimal diagnosis 

and treatment is of the uttermost importance. However, electro-physiological mechanisms 

underlying AF have still not been fully unraveled.  

Anatomy and physiology of the heart 
To understand the mechanisms potentially underlying AF, knowledge of the anatomy and 

physiology of the heart is essential. The main function of the heart is to pump blood 

through the body. The blood flow through the heart is visualized in Figure 1. The right side 

of the heart receives oxygen-poor blood from the body through the superior and inferior 

venae cavae (SVC and IVC). The oxygen-poor blood enters the right atrium (RA). The 

tricuspid valve separates the RA from the right ventricle (RV). Blood flows through this 

valve to the RV, from where it is pumped through the pulmonary valve to the pulmonary 

artery (PA). The PA leads to the lungs, where the blood is oxygenated. The oxygen-rich 

blood arrives in the left atrium (LA) through the pulmonary veins (PV). The LA and the left 

ventricle (LV) are separated by the mitral valve. Oxygen-rich blood enters the LV, from 

where it is pumped through the aortic valve to the aorta. The aorta leads the oxygen-rich 

blood to the rest of the body, where oxygen is used. The cycle continues with oxygen-poor 

blood entering the SVC and IVC again and the circle is completed.5 

 

 

Blood flow through the heart* 

Right side (left side on figure) 

1. SVC and IVC → RA 

2. RA → RV 

3. RV → PA → Lungs 

 

Left side (right side on figure) 

1. Pulmonary veins → LA 

2. LA → LV 

3. LV → Ao → Body 

 
* SVC = superior vena cava; IVC = inferior vena cava;  

* RA = right atrium; RV = right ventricle;  

* PA = pulmonary artery; LA = left atrium; 

* LV = left ventricle; Ao = aorta; 
 

Figure 1 – Blood flow through the heart 
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Cardiac conduction during sinus rhythm 
Electrical activation of cardiomyocytes facilitates contraction of the heart muscle. Cardiac 

electrophysiology describes the generation and conduction of action potentials through 

the heart muscle. In 2012, Lederer extensively described the cardiac electrophysiology 

during normal sinus rhythm (SR).6 Cardiac action potentials originate from the sinoatrial 

(SA) node, which is located in the RA. Bachman’s bundle facilitates conduction from the 

RA to the LA, hence also the LA is activated from the SA node. Due to the presence of the 

fibrous atrioventricular ring between atria and ventricles, no direct conduction from atria 

to ventricles is possible. The sole pathway for the impulse to travel from atria to ventricles 

is the atrioventricular (AV) node. Compared to the conduction velocity in the atria (~1m/s), 

the conduction velocity through the AV node is 20-fold lower (~0.05m/s), hence a delay is 

caused between contraction of the atria and contraction of the ventricles. From the AV 

node, the impulse travels over the interventricular septum, which is depolarized from left 

to right, using the bundle of His and the left and right bundle branch. Subsequently the 

left and right ventricle are activated from apex to base using the Purkinje fibers. 

Cardiac action potentials 

Cardiac action potentials at cellular level form the basis of electrical activation. These action 

potentials are caused by four membrane currents, resulting in depolarization and 

repolarization. Ca2+ current (ICa) causes depolarization in the SA node and AV node and 

facilitates contraction in cardiomyocytes. In contrast, Na+ current (INa) solely causes 

depolarization in the atrial and ventricular muscle and Purkinje fibers. K+ current (IK) 

repolarizes all cardiomyocytes. Pacemaker current (If) facilitates pacemaker activity in the 

SA node, AV node and Purkinje fibers. Pacemaker activity results in generation of new 

cardiac action potentials. 

As illustrated in Figure 2a-b for sinus node cells and ventricular muscle cells, five phases of 

the membrane potential during the cardiac action potential are distinguished: 

Phase 0. Depolarization 

The membrane potential increases due to an inward ICa (slow increase) or a 

combined inward ICa and INa (fast increase). 

Phase 1. Early repolarization 

The membrane potential decreases rapidly due to inactivation of INa and/or ICa. 

Phase 2. Plateau phase 

The membrane potential is constant, due to inflow of Ca2+ and outflow of K+. 

Phase 3. Repolarization 

The membrane potential decreases again to the resting potential depending on 

an outward IK. 

Phase 4. Resting phase 

In SA and AV nodal cells, pacemaker activity is produced by changing IK, ICa and 

If. In Purkinje fibers, pacemaker activity is produced solely by If. 
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During depolarization and repolarization, cardiac cells become refractory to other 

activation. When Na+- and Ca2+-currents are inactivated, new stimuli have no effect on the 

action potential. This phase is called the effective refractory period. After this, the relative 

refractory period starts, when the Na+- and Ca2+-currents recover. During this phase, action 

potentials can be produced, but will be smaller due to the outflow of K+. 

Cardiac action potential phases 

Sinus node 

Phase 0. Inward ICa 

Phase 3. Outward IK 

Phase 4. Outward IK 

Phase 4. Inward ICa and If 

 

 

 

 
 

 
 

Figure 2a – Cardiac action potential phases in sinus node cells, as further explained in text (adapted 

version of figure by Boron and Boulpaep6) 

 

Cardiac action potential phases 

Ventricular muscle 

Phase 0. Inward INa and ICa 

Phase 1. Inactivation of INa/ICa 

Phase 2. Outward IK 

Phase 2. Inward ICa 

Phase 3. Outward IK 

Phase 4. Resting phase 

 

 

 

 
 

Figure 2b – Cardiac action potential phases in ventricular muscle cells, as further explained in text 

(adapted version of figure by Boron and Boulpaep6) 

Impulse propagation 

Cardiac cells are linked through gap junctions, which enable electrical current to flow 

between cells. When there is a voltage difference between two cells, an electrical current 

will flow, which is inversely proportional to the resistance of the gap junction and 

proportional to the voltage difference. The small depolarizing currents between cardiac 

cells may result in neighboring cells reaching their excitation threshold and hence firing an 

action potential. This way, impulses propagate through the heart. 
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Pacemaker activity 

Pacemaker activity originates from three cardiac structures: SA node, AV node and Purkinje 

fibers. In rest, the SA node has an intrinsic rate of ~60 beats per minute (bpm) or faster. A 

decreasing outward current (Ik) and two increasing inward currents (ICa and If) result in slow 

depolarization. Although the intrinsic rate of the SA node is ~60bpm, these membrane 

currents are affected by, among others, acetylcholine, epinephrine, and norepinephrine. 

Also, therapy focused on controlling the heart rate is aimed at these currents, hence the 

firing rate of the SA node can be subject to external conditions. The intrinsic rate of the AV 

node is ~40bpm. Since the intrinsic rate is lower than the rate of the SA node, the heart 

rate is not set by the AV node. However, in case the SA node fails, the AV nodal rhythm 

characterizes the heart rhythm. Finally, the Purkinje fibers have the slowest intrinsic 

pacemaker rate of ~20bpm or less. 

Electrocardiogram 

In the 1900s, Willem Einthoven laid the foundation for the currently standard clinical tool 

to measure the electrical activity of the heart, the electrocardiogram (ECG).6, 7 

Electrode measurements 

Using electrodes, the extracellular voltage differences are measured. During the 

depolarization phase, positive ions enter the cardiac myocytes, hence result in a positive 

deflection when measured at the intracellular level. Therefore, the difference in intracellular 

voltages for an approaching depolarization wave (to the positive electrode) will be 

negative. The extracellular current is equal to the intracellular current, but opposite in 

direction. Therefore, when measuring a positive voltage difference using ECG, an 

approaching depolarization wave is measured.  

Constructing an electrocardiogram 

Using two electrodes on the upper extremities, two electrodes on the lower extremities 

(one ground electrode), and six electrodes on standard locations across the chest, a 12-

lead ECG can be obtained, as visualized in Figure 3. A lead is composed of one positive 

electrode (+) and one or multiple negative electrodes (-). The six limb leads define axes 

with certain angles in the frontal plane, where 0° is defined as the horizontal line pointing 

left and positive angles are clockwise rotations: 

Lead I. Right upper extremity to left upper extremity; 0°. 

Lead II. Right upper extremity to left lower extremity; 60°. 

Lead III. Left upper extremity to left lower extremity; 120°. 

Lead aVR. Middle of the heart to right upper extremity; -150°. 

Lead aVL. Middle of the heart to left upper extremity; -30°. 

Lead aVF. Middle of the heart to left lower extremity; 90°. 

aVR, aVL and aVF are augmented leads, comparing one limb electrode to the average of 

the other two. This way, angles of -150 °, -30° and 90° are constructed. 

Additionally, six precordial leads V1 to V6 are constructed using the average of the three 

limb electrodes in combination with the six chest electrodes. The average of three limb 

electrodes represents the middle of the heart. Comparing each of the six chest electrodes 
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with the average of the limb electrodes provides insight in the transversal plane, instead 

of the frontal plane, as visualized in the right panel of Figure 3. 

 
 

Figure 3 – Standard 12 ECG leads; left: limb leads and augmented leads, right: precordial leads 

Interpretation of the electrocardiogram 

The ECG is characterized by five waves: P-, Q-, R-, S- and T-

waves, as visualized for lead II in Figure 4.6 P-waves, the QRS-

complex and the T-wave are caused by atrial depolarization, 

ventricular depolarization, and ventricular repolarization, 

respectively. Atrial repolarization does not cause a specific wave 

in the ECG, because it coincides with ventricular depolarization. 

Atrial fibrillation 

Pathophysiology 

AF is characterized by continuous rapid chaotic atrial activity and an irregular ventricular 

rhythm.8 Since the AV node slows down the potential between atria and ventricles, the 

high atrial frequency is not propagated to the ventricles. As visualized in Figure 5, this 

results in irregular intervals between R-waves and absence of P-waves. 

A) Normal sinus rhythm 

 
 

B) Atrial fibrillation 

 
Figure 5 – A) ECG (lead II) showing 10 beats of normal sinus rhythm; B) ECG (lead II) showing atrial 

fibrillation characterized by absence of P-waves and irregular intervals between R-waves. 

Figure 4 – Peaks in ECG 

(lead II) 
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Diagnosis and treatment 

Typical symptoms of AF include palpitations, tachycardia, fatigue, weakness, dizziness, 

light-headedness, reduced exercise capacity, increased urination, and mild dyspnea. In 

combination with the medical complaints of the patient and echocardiography, ECG is 

used to determine whether a patient has AF or does not have AF.9 AF is classified into four 

categories based on duration and treatment goals: paroxysmal (<7 days), persistent (>7 

days), long-standing persistent (>12 months), and permanent (no longer pursuing rhythm 

control).10 

Treatment options for AF can be subdivided into two categories: rate control and rhythm 

control. Treatment focused on rate control includes drugs that block the AV node (beta 

blockers) in order to control the heart rate.9, 11 Treatment focused on rhythm control 

includes anti-arrhythmic drugs, catheter ablation and/or surgical treatments in order to 

recover SR.9, 11 Another way to recover SR is using electrical or chemical cardioversion.9 

Rate control is the initial therapy of choice in asymptomatic patients, because of possible 

side effects of the antiarrhythmic drugs and non-inferior outcome rates compared to 

rhythm control.9, 11, 12 Rhythm control is preferred in patients where rate control fails, in 

symptomatic patients and in patients less than 65 year old.9, 11 

Mechanisms underlying atrial fibrillation 

Exact mechanisms underlying AF are not yet entirely understood. Multiple theories have 

been proposed, discussing both initiation and persistence of AF. Single foci can be a trigger 

for the initiation of AF. These foci are mostly found near the PV, but appear throughout 

the entire atria.13 However, single foci do not explain the persistence of AF. Some widely 

supported theories for the persistence of AF are the multiple wavelet hypothesis and the 

re-entrant circuits and rotors theories.14 During AF, multiple activation waves are 

propagating through the atrial wall. These waves encounter areas of different 

refractoriness, which might result in re-entrance.14 These re-entrant circuits are 

characterized by short cycle lengths, which may result in the development of functional 

blocks and slow conduction.13 Also, when multiple wave fronts collide, this might result in 

the creation of new wave fronts, hence result in persistence of AF. These mechanisms are 

supported by atrial and electrical remodeling. Atrial remodeling results in structural 

changes of the atria that can lead to the initiation and persistence of AF. Electrical 

remodeling entails changes in refractoriness of the heart tissue, hypothesized to occur due 

to changes in calcium channels.15 Also, the autonomic nervous system plays a role in the 

initiation and persistence of AF.13 All these mechanisms are supported by several studies. 

Most likely, AF is not caused by a single mechanism, but by a combination of multiple 

mechanisms.16 

Post-operative atrial fibrillation 

After surgery, 0.3 to 29% of the patients develop post-operative AF (PoAF).2 Most patients 

developing PoAF do so immediately post-operatively or on the second day after surgery.17 

Most of the PoAF episodes are self-limited within one day after the onset and few patients 

experience more than two episodes.18, 19 After cardiac surgery – more specifically coronary 

artery bypass grafting (CABG) and valve surgery – the reported incidence of AF lies 
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between 10 and 60%.2 Abnormal atrial conduction and refractoriness caused by incisions 

and ischemia most likely are key factors in the higher incidence after cardiac surgery 

compared to other surgical procedures.20 However, also differences in patient population 

(e.g. age and pre-existing comorbidities), surveillance and detection in the peri- and post-

operative setting contribute to the higher incidence of PoAF.18 

Cardiac mapping  
Recently, mapping of atrial conduction patterns using advanced techniques has provided 

more insights in the electro-pathophysiology of AF. One of the methods to perform cardiac 

mapping was developed in the Erasmus Medical Center (Erasmus MC) in Rotterdam (The 

Netherlands). Using arrays containing 128 or 192 unipolar electrodes, the atria are mapped 

at high spatial resolution and 1kHz temporal resolution during open-heart surgery.21 Using 

the unipolar electrograms recorded at every electrode, local activation times can be 

determined and visualized, which makes it possible to follow the propagation of waves 

through the atria. More recently, simultaneous endo- and epicardial mapping was 

introduced. Two similar electrodes arrays are used, as shown in Figure 6. By positioning 

one electrode array at the endocardium (inner layer of the heart), and another electrode 

on the exact opposite epicardium (outer layer of the heart), conduction patterns in both 

the endo- and epicardium can be analyzed simultaneously.22 

 

Figure 6 – Electrode arrays used for simultaneous endo-epicardial mapping 

Focal activation patterns and endo-epicardial asynchrony 

One of the observations done during AF are focal activation patterns (FAPs), also known 

as breakthrough waves. These FAPs are defined as activation appearing at a local site within 

the recording area with a radial activation pattern.23 Various mechanisms underlying these 

FAPs have been proposed, including transmural conduction (from epi- to endocardium or 

vice versa) and ectopic focal discharge.24 In 2010, an association between the presence of 

FAPs and the persistence of AF was revealed. During high-resolution epicardial mapping, 

a four-fold higher incidence of FAPs was observed in patients with longstanding persistent 

AF compared to patients with pacing-induced AF (respectively 0.47 vs. 0.11/AF-

cycle/cm2).25 Therefore, FAPs are assumed to play a key role in the underlying mechanisms 

of AF.  
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During recent years, large amounts of mapping data have been analyzed, resulting in 

several new insights about the electro-pathophysiology of AF. One major breakthrough 

was the proof of endo-epicardial asynchrony during AF, which implies the asynchronous 

activation of the endocardium and epicardium.26 This finding resulted in the hypothesis of 

possible transmural wave propagation from the endocardium to the epicardium and vice 

versa. Also, epicardial FAPs were described during SR, showing rS- and RS-morphology. It 

is important to note that these R- and S-waves are not the waves as described for QRS-

complexes in the ECG. For unipolar electrograms, R-waves indicate wave propagation 

towards the electrode and S-waves indicate wave propagation in a direction away from 

the electrode. Therefore, rS- and RS-morphologies of these FAPs again indicate transmural 

conduction towards the epicardium.21 Based on the wide spatial distribution of FAPs, non-

repetitiveness, non-prematurity and breakthrough potentials with R-waves, transmural 

conduction is increasingly assumed to be part of the underlying mechanism of FAPs.27 

Goals and objectives of this study 
Analysis of AF episodes in post-operative continuous rhythm registrations is essential to 

draw conclusions on the relation between intra-operative mapping and PoAF. Currently 

available AF detection algorithms are too sensitive to other irregular rhythms and artefacts. 

The alternative is to analyze the continuous rhythm registrations manually. However, due 

to the large amount of data, this is both time-consuming and subject to interpretation. 

This study focusses on the development of an AF classifier to optimize automated AF 

detection and get information on the AF burden in terms of episode duration, number of 

episodes, and proportion of time an individual is in AF during the monitoring period. 
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Automated Detection of Atrial Fibrillation 

Introduction 
Patients undergoing cardiac surgery commonly develop atrial fibrillation (AF) post-

operatively.2 Continuous rhythm registrations of hospitalized patients are acquired using 

telemetry devices. Accurate detection of AF episodes in these continuous rhythm 

registrations is essential to improve treatment of patients. Additionally, accurate detection 

of AF segments provides further information on the AF burden in terms of AF episode 

duration, number of episodes per day, and proportion of time an individual is in AF during 

the monitoring period.28 This data not only supports treatment, but also provides new 

outcome measures which can be used in scientific research. 

Manual analysis of long-term continuous rhythm registrations is both time-consuming and 

subject to interpretation. To detect AF in telemetry data, an accurate automated detection 

algorithm is essential. Several available detection algorithms which are currently being 

used for automated classification of continuous rhythm registrations fail to accurately 

detect AF episodes in post-operative rhythm registrations, due to the presence of other 

irregular rhythms (e.g. atrial and ventricular premature beats), noise, and artefacts due to 

movement.  

A systematic literature study has shown that research on automated detection methods 

for AF in surface electrocardiogram (ECG) measurements has been increasing over the past 

years.29 However, no single classification algorithm or feature selection method was found 

superior on any given data set. Many studies report testing accuracies for AF detection 

ranging up to 100%, using widely available ECG databases for training and validation of 

the classification methods. In contrast to telemetry data, these standard ECG databases 

mostly contain clean ECG records without artefacts. Due to movement of the patient, poor 

contact between electrode and skin, and interferences from other devices, noise and 

artefacts are major obstacles in the analysis of post-operative continuous rhythm 

registrations. 

Therefore, the goal of this study is to develop an accurate classification method for 

detection of AF episodes and calculation of AF burden in post-operative continuous 

rhythm registrations. The research setting differs from the clinical setting, hence the 

intended use should be considered when developing a classifier. Requirements were set 

based on the false positive rate (FPR) and false negative rate (FNR). FPR is calculated by 

dividing the amount of false positive classifications by the total amount of samples which 

are negative for the condition: (100% ∙) Σ(false positive)/Σ(condition negative). FNR is 

calculated by dividing the amount of false negative classifications by the total amount of 

samples which are positive for the condition: (100% ∙) Σ(false negative)/

Σ(condition positive). Multiple studies show a relation between the AF burden and the risk 

of stroke and systemic embolism.30, 31 Therefore, missing a single short AF episode would 

not impact the treatment considerations in the clinical setting. Also, manual validation of 

detected AF segments to screen for false positive classifications is time-consuming, hence 
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unfeasible in clinical practice. Therefore, in the clinical setting, a high FPR would be 

problematic, since the predicted AF burden would be higher, potentially resulting in 

overtreatment. On the other hand, a minor amount of false negative classifications would 

be accepted, since this would not impact the treatment considerations. In the research 

setting, the aim is to unravel the exact electro-pathophysiology underlying AF. Single short 

AF episodes could also contribute to new insights. In addition, manual validation of AF 

episodes is more feasible in a research setting. For example, for every AF episode, a certain 

number of random ECG segments could be manually validated per hour of AF duration. 

Therefore, a higher FPR is accepted. On the other hand, the aim would be to detect all AF 

episodes, hence the FNR should be lower. Since the aim of the current study was the 

development of an AF detection algorithm for a research setting, requirements to the 

classifier’s performance were arbitrarily set to an FPR of at most 5% and an FNR of at most 

3%. 

Methods 

Data 

The AF detection algorithm was developed using post-operative continuous rhythm 

registrations obtained from patients after cardiac surgery for valvular heart disease and/or 

ischemic heart disease in the Erasmus Medical Center, Rotterdam. This data consists of 

6,400 standard 30-seconds 12-lead recordings (sample rate 200Hz), but only lead II was 

used in the present study. Manual annotations for AF, No AF and Unusable (due to 

noise/artefacts) segments were available. Additionally, the ECG segments without AF were 

annotated as regular or irregular, based on the assessor’s judgement.  

Validation of peak detection was performed using five standard MIT-BIH databases32:  

❖ Normal Sinus Rhythm Database (NSRDB)32 

containing 18 24-h ECGs with normal sinus rhythm with annotated ventricular activity, 

❖ Long-term ECG Database (LTDB)32 

containing 7 24-h ECGs with annotated ventricular activity, 

❖ Atrial Fibrillation Database (AFDB)32, 33 

containing 23 10-h ECGs with annotated ventricular activity, 

❖ Arrhythmia Database (MITDB)32, 34 

containing 48 ½-h ECGs with annotated ventricular activity, and 

❖ QT Database (QTDB)32, 35 

containing 105 15-minute ECGs, of which 96 contain atrial and ventricular annotations. 

Development of the proposed AF classifier consisted of five phases: 

Phase 1. Artefact detection 

Phase 2. Peak detection 

Phase 3. Feature extraction 

Phase 4. Training classifiers 

Phase 5. Testing classifier 
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All data processing was performed using the raw output of the ECG recording system in 

arbitrary units. The same steps apply for data converted to (milli)volts. The algorithm uses 

ECG segments with a duration of 30 seconds. Therefore, if the ECG has a longer duration, 

it should be split into multiple segments of exactly 30 seconds.  

Phase 1: Artefact detection 

First, artefacts in the ECG records resulting in unusable signal were detected and excluded 

from analysis. Two types of these artefacts were present in the records: 

Type 1. Clipping or no signal; characterized by a rapid increase/decrease in signal 

amplitude, a series of constant values, and a rapid change of signal amplitude 

in opposite direction. Clipping occurs when the measured voltage is outside the 

measurement range of the device. The source of these artefacts is, e.g. no 

contact between electrode and skin (extremely low voltage output resulting in 

no signal) or cardioversion (extremely high voltage output resulting in clipping).  

Type 2. Single spikes; characterized by a rapid increase/decrease in signal amplitude 

followed by a rapid change of signal amplitude in opposite direction. An 

example of the source of these artefacts is cardiac pacing. 

Artefacts were commonly surrounded by either a distorted QRS-complex due to baseline 

drift or incomplete QRS-complexes. Therefore, artefacts were excluded with a margin of 

300ms (= 60 samples with a sampling rate of 200Hz) on both sides. Other artefacts, caused 

by for example slight patient movement, are excluded in later phases, since these segments 

could contain useful ECG signal. 

Phase 2: Peak detection 

Peak detection was split into four phases. First, the QRS-complexes were detected. Using 

the location of these QRS-complexes, P- and T-waves were located between subsequent 

QRS-complexes. Next, peak detection was validated using the annotations in the MIT-BIH 

databases. Lastly, segments containing excessive noise were excluded from analysis. 

Phase 2a: QRS-complex detection 

Pan-Tompkins Algorithm 

Windows containing QRS-complexes were detected based on the algorithm as described 

by Pan and Tompkins, also known as the Pan-Tompkins algorithm.36 The aim of the Pan-

Tompkins algorithm is to amplify the QRS-complexes and reduce other elements (P-waves, 

T-waves and noise). The algorithm consists of four steps, as visualized in Figure 7. A 

bandpass filter is applied to eliminate high-frequency noise and baseline drift from the 

signal. Using a derivative filter and squaring the resulting signal, segments with steep 

slopes are amplified. Lastly, moving-window integration is used to detect the edges of the 

QRS-windows. Original parameters used by Pan and Tompkins for the bandpass filter are 

lower and higher cut-off frequencies of 5 and 15Hz, respectively. Derivative filtering was 

performed using a standard five-point derivative filter. The original Pan-Tompkins 

algorithm uses a derivative filter with difference equation 𝑦[𝑛𝑇] =
1

8𝑇
(−𝑥[𝑛𝑇 − 2𝑇] −

2𝑥[𝑛𝑇 − 𝑇] + 2𝑥[𝑛𝑇 + 𝑇] + 𝑥[𝑛𝑇 + 2𝑇]), where 𝑇 is the sampling period, 𝑥[𝑛] is the original 
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signal and 𝑦 is the filtered signal. The corresponding transfer function in the 𝑧-domain is 

𝐻(𝑧) =
1

8𝑇
(−𝑧−2 − 2𝑧−1 + 2𝑧 + 𝑧2), where 𝑇 is the sampling period and 𝑧 is a complex 

variable defined as 𝑟𝑒𝑗Ω. 𝑟 and Ω describe the magnitude and the angle of 𝑧, respectively.* 

The size of the original moving window was set to 150ms.  

Thakor et al. have analyzed the power spectrum of ECGs and have shown that most of the 

energy of the QRS complex is between 3Hz and 40Hz.37, 38 The cut-off frequencies for the 

bandpass filter resulting in an optimal signal-to-noise ratio depend on both the power 

spectrum of the QRS-complexes and the power spectrum of the noise. Empirical analysis 

showed that a higher cut-off frequency of 25Hz for the bandpass filter and a moving 

window of 200ms improved the detection rate of QRS-complexes in the records used in 

this study. 

The outcome of the Pan-Tompkins algorithm (ECGP−T) provides insight into the temporal 

locations of QRS-complexes. QRS-windows were extracted by applying a threshold set to 

the overall mean of ECGP−T. QRS-windows were extracted as windows with ECGP-T larger 

than this threshold. 

R-peak detection 

For R-peak detection within the QRS-windows, peak prominence was used. Peak 

prominence is a measure for the peak amplitude relative to other surrounding peaks.† 

Prominence was used instead of amplitude, to avoid mistakenly detecting high-frequency 

noise as R-peaks. Peak amplitude of peaks caused by noise can be high. However, peak 

prominence of such peaks is in general lower, because the peak amplitude is similar to the 

amplitudes of surrounding peaks. Within each QRS-window, one R-peak was detected, 

defined as the positive peak with highest prominence, as illustrated in the middle panel of 

Figure 8. 

Missing QRS-complexes 

Time intervals between R-peaks were calculated. In case the interval between subsequent 

R-peaks was larger than 120% of the median time interval between R-peaks in the entire 

30-seconds segment, ECGP−T between these two subsequent R-peaks was again searched 

for R-peaks with a threshold which was 30% lower than the original threshold. 

Q- and S-peak detection 

As visualized in the lower panel of Figure 8, Q- and S-peak detection was done in a similar 

way as R-peak detection. Within each QRS-window, the Q-peak was detected prior to the 

R-peak, as first minimum with a prominence larger than 95% of the maximum prominence 

of all minima prior to the R-peak. The S-peak was detected after the R-peak, as first 

minimum with a prominence larger than 95% of the maximum prominence of all minima 

following the R-peak. No Q- or S-peak was detected if no local minimum was present prior 

to the R-peak or after the R-peak, respectively. 

 
* Further information on filter design and the 𝑧-transform is provided in Appendix I.  
† Further explained with an example in Appendix II. 
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*For illustrative purpose only; scaling is not equal between the different panels 

 
Figure 7 – Pan-Tompkins algorithm used to amplify and detect windows with QRS-complexes, as 

further explained in text. 
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Figure 8 – Detection of Q-, R- and S-peaks using peak prominence. Upper panel: original ECG; middle 

panel: detection of R-peak as the local maximum with the highest prominence; lower panel: detection 

of Q- and S-peaks as the first local minima (starting from the R-peak) with a prominence of at least 95% 

of the maximum prominence prior to and after the R-peak, respectively. 
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Adaptive thresholding 

In a short time interval after ventricular activation, cardiomyocytes are in a refractory 

period. During this period, the inward sodium and calcium currents of the cardiomyocytes 

are inactivated, which prevents reactivation by action potentials.6 Therefore, detecting 

another QRS-complex in this time interval is highly unlikely. In panel A of Figure 9, an ECG 

segment with an incorrectly classified R-peak is shown. Using the locations of all detected 

R-peaks, correction was applied for such false positive detections. Again, a threshold was 

applied to ECGP−T. As visualized in panel B of Figure 9, instead of simply using the mean 

of ECGP-T, the new threshold was set based on the location of the previously detected R-

peaks, following the sigmoid function‡: 

𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒[𝑚] |
𝑅𝑛+1

 
𝑅𝑛

=
−(ECGP-T[𝑅𝑛] − 𝑇𝑜𝑙𝑑[𝑅𝑛+1])

1 + 𝑒−𝐵∙(𝑚−𝑅𝑛−𝐶)
+ 𝑇𝑜𝑙𝑑[𝑚] + (ECGP-T[𝑅𝑛] − 𝑇𝑜𝑙𝑑[𝑅𝑛+1]) (Eq. 1) 

 

T𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = adaptive threshold 

𝑅𝑛 = location of previous R-peak 

𝑅𝑛+1 = location of next R-peak 

𝑚 = distance from 𝑅𝑛 in unit of time samples 

ECGP-T = result of the Pan-Tompkins algorithm 

𝑇𝑜𝑙𝑑 = threshold as previously used between 𝑅𝑛 and 𝑅𝑛+1 

B = scaling factor; constant value, arbitrarily set at 50 

C = offset in time; constant value, arbitrarily set at 0.15) 

The sigmoid curve was drawn from an R-peak to the next R-peak, as visualized in panel B 

of Figure 9. The denominator in the equation represents the difference between the lowest 

point of the threshold and the highest point of the adaptive threshold (= ECGP-T at the 

previous R-peak). The numerator represents the slope and delay of the sigmoid curve. The 

added factor lifts the sigmoid curve to the level of the old threshold. As 𝑚 tends to infinity, 

the numerator will be almost 1. Therefore, 𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 will be almost equal to the old 

threshold. In reality this will not happen, since the equation is evaluated for 𝑚 from an R-

peak location to the next R-peak location. As 𝑚 tends to 𝑅𝑛, the numerator will be large 

compared to the denominator. This will result in a 𝑇𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 which is almost equal to 

ECGP-T[𝑅𝑛]. Detected QRS-complexes of which ECGP−T was below the adaptive threshold 

were excluded, as visualized in panel C and D of Figure 9. After exclusion of a QRS-complex, 

the adaptive threshold was updated to correct for the removed QRS-complex. 

  

 
‡ Further information on the sigmoid function is provided in Appendix III.  
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* For illustrative purpose only; scaling is not equal between the different panels  

 
Figure 9 – Applying the adaptive threshold. Panel A shows an ECG segment with eight detected R-peaks, 

of which the fourth is incorrectly detected as R-peak. Panel B shows the corresponding result of the 

Pan-Tompkins algorithm. The dashed black line (- - -) shows the original threshold for detecting windows 

for QRS-detection. The solid black line (–––) shows the adapted threshold. Panel C zooms in on the 

misclassified R-peak. The point is above the original threshold, but underneath the adapted threshold, 

hence as visualized in panel D, this R-peak is excluded. 
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Phase 2b: P- and T-wave detection 

The algorithm for P- and T-wave detection was based on the method as described by 

Elgendi et al.39 

In Figure 10, the methods for detection of P- and T-waves are shown. First, a second-order 

Butterworth filter was applied with lower and higher cut-off frequencies of 0.5Hz and 6Hz, 

respectively. These cut-off frequencies were chosen, because the main frequencies of P- 

and T-waves are between these boundaries.39 QRS-complexes were then removed from 

the signal. Using two moving-average windows with different lengths on the original ECG 

signal, windows potentially containing P- and T-waves were detected. The normal width of 

the P-wave is 110ms.39 The size of the first moving window was set to half of the normal 

P-wave width (55ms). The second moving window was used as a threshold. The size of the 

second moving window was set to 110ms, resulting in lower values for P- and T-waves 

compared to the first moving window.  

Next, potential P- and T-windows were extracted where the first moving average was larger 

than the second moving average. Noise can also be characterized by short peaks, thus can 

be mistakenly identified as P- or T-waves. To avoid such false positive detections, windows 

shorter than 25% of the normal width of the P-wave (110ms) were excluded from P- and 

T-wave detection. 

Subsequently, the bandpass-filtered ECG was used for peak detection. In the P- and T-

windows between subsequent QRS-complexes, all minima and maxima were determined. 

In general, T-waves have higher amplitudes compared to P-waves. Therefore, T-waves were 

detected in the window with the largest minimum or maximum, whichever had a larger 

amplitude. If no peaks were detected within the windows, no P- and T-waves were 

detected. Windows between a detected T-wave and the next QRS-complex were used for 

P-wave detection. First, all maxima and minima within these windows were detected. Next, 

maxima or minima with an amplitude larger than 80% of the maximum peak amplitude 

were detected as P-wave. 

Phase 2c: Validation of peak detection 

The locations of the detected peaks were compared to the annotated locations in the 

records of the standard MIT-BIH databases (NSRDB, AFDB, LTDB, and MITDB). These 

databases contain annotations for ventricular activity. The normal QRS-width is 100ms 

(±20ms).39 Therefore, an annotation and a detected R-peak were considered similar when 

they occurred within 100ms. Only one detected R-peak was matched with each annotation, 

and vice versa. Therefore, if many R-peaks were detected within a short time interval and 

only one annotation was present in the same time interval, only one R-peak was labelled 

as correct. Validation of P- and T-wave detection was performed using the QTDB. The same 

approach was used as previously described for validation of R-peak detection. However, 

for T-wave detection, the accepted time difference was set to 150ms instead of 100ms, 

because the normal duration of T-waves can be longer than 100ms. 
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Figure 10 – P- and T-wave detection, as further explained in text. The results of the moving mean with 

a window of 55ms and 110ms are shown in dark green and orange, respectively. 
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Phase 2d: Noise detection 

Noise detection was performed using all local minima and maxima in the ECG signal. For 

each R-peak, prominences of local minima and maxima in the surrounding 4 seconds (2 

seconds prior to the R-peak and 2 seconds after the R-peak) were determined. The 85th 

percentile of all prominences was calculated. R-peaks with a prominence smaller than two 

times the 85th percentile were excluded for further analysis and were marked as noise.  

Additional R-peaks were excluded based on noise peak prominence in the close 

surrounding of the R-peaks. The local minima and maxima in the surrounding 2 seconds 

of an R-peak (1 second prior to the R-peak and 1 second after the R-peak) were detected, 

excluding detected P-, Q- R-, S- and T-peaks and thereby assuming all detected minima 

and maxima were caused by noise. The 85th percentile of the prominences of these local 

minima and maxima was calculated. Two types of noise segments are determined, as 

visualized in Figure 11 and 12: 1) noise segments in which R-peaks cannot be accurately 

detected, and 2) noise segments in which P- and T-waves cannot be accurately detected.  

Segments with R-peaks which have prominences smaller than three times the 85th 

percentile of prominences of all local minima and maxima, which are not P-, Q-, R-, S- and 

T-peaks, were marked as the first type of noise and excluded for QRS-complex detection 

and P- and T-wave detection. Segments with R-peaks which have prominences smaller 

than ten times the 85th percentile of the prominences of all minima and maxima, which are 

not P-, Q-, R-, S- and T-peaks, were marked as the second type of noise and excluded for 

P- and T-wave detection. 
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Figure 11 – Example of ECG segment excluded for QRS-detection. The green line represents an 

included segment, the red line in the shaded area represents the signal in the subsequent segment 

which was excluded for QRS-detection. R-peaks after excluding noise segments are represented by 

the dots (●). 
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Figure 12 – Example of ECG segment excluded for P- and T-wave detection. R-peaks after excluding 

noise segments are represented by the dots (●).  
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Phase 3: Feature extraction 

Using the detected P-, Q-, R-, S- and T-peaks, 57 features were extracted from the ECG 

records, as shown in Table 3 (p. 44). Features were extracted from each ECG segment of 30 

seconds and could be divided into eight groups: 

1. RR-interval characteristics 

2. Peak-interval characteristics 

3. Amplitude characteristics 

4. P-wave characteristics 

5. T-wave characteristics 

6. QRS-morphology characteristics 

7. Autocorrelation characteristics 

8. Noise 

RR-interval characteristics 

Excluding irregular rhythms other than atrial fibrillation 

A total of ten features were based on irregularity of RR-intervals. The RR-interval was 

defined as the time between two consecutive R-peaks. Continuous rhythm registrations 

not only showed RR-interval irregularity caused by AF, but also caused by premature atrial 

complexes (PACs), premature ventricular complexes (PVCs) and beats missed by peak 

detection. Therefore, before extracting the features based on RR-intervals, these beats 

were excluded from analysis using characteristics of the Poincaré plot.  

A Poincaré plot is constructed by plotting each RR-interval against the next RR-interval. 

When all RR-intervals are similar, points will be very close to each other. If RR-intervals are 

changing slowly, the points in the plot will be close to the -45°-line through the origin, on 

which consecutive RR-intervals are equal. Otherwise, if RR-intervals are changing rapidly, 

the points in the Poincaré plot will move away from this -45°-line through the origin. 

Detection of PVCs, PACs, and missing beats was based on the specific patterns in the 

Poincaré plot, as described by Park et al.40 First, the central point of the Poincaré plot was 

determined as the median of all RR-intervals of the entire 30-seconds ECG. Poincaré plots 

of missing beats, PACs, and PVCs are visualized in Figure 13. Missing beats and PACs are 

characterized by a triangle shape, whereas PVCs are characterized by a wedge shape in the 

Poincaré plot. For detection of PVCs, PACs and missing beats, an RR-interval preceding the 

analyzed beat (RRi), and the preceding (RRi-1) and succeeding RR-interval (RRi+1) were 

used.  

Detection criteria for missing beats were: 

❖ Distance between (RRi-1, RRi) or (RRi, RRi+1) and the central point of all RR-

intervals is more than 25% of the distance from the origin to this central point, 

❖ The central point of RRi-1, RRi and RRi+1 is in the upper right plane with respect to 

the central point of all RR-intervals, and 

❖ The distance between point (RRi, RRi+1) and the central point of all RR-intervals 

and the distance between point (RRi-1, RRi) differ no more than 10%. 
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Detection criteria for PACs were: 

❖ Distance between (RRi-1, RRi) or (RRi, RRi+1) and the central point of all RR-

intervals is more than 15% of the distance from the origin to this central point, 

❖ RRi is smaller than RRi-1, 

❖ RRi+1 and RRi-1 differ no more than 10%. 

❖ The central point of RRi-1, RRi and RRi+1 is in the lower left plane with respect to 

the central point of all RR-intervals, and 

❖ The distance between point (RRi, RRi+1) and the central point of all RR-intervals 

and the distance between point (RRi-1, RRi) differ no more than 10%. 

Detection criteria for PVCs were: 

❖ Distance between (RRi-1, RRi) or (RRi, RRi+1) and the central point of all RR-

intervals is more than 10% of the distance from the origin to this central point,  

❖ RRi-1 differs no more than 10% from the central point of all RR-intervals, 

❖ The sum of RRi and RRi+1 equals two times RRi-1 with a margin of 20%, 

❖ RRi is smaller than RRi-1, and 

❖ RRi is smaller than RRi+1. 

In case of missing beats, PACs, and PVCs, the preceding RR-interval was excluded from 

analysis. Additionally, in case of PVCs, the RR-interval following the PVC was excluded, 

because the interval from PVC to the next beat is longer due to a compensatory pause. 

This pause is caused by failed conduction of a sinus beat to the ventricles due to early 

depolarization of the ventricles as a result of the PVC. PACs may also cause a compensatory 

pause due to early depolarization of the sinus node. However, the exact duration of this 

pause is unpredictable, while in case of PVCs, the sinus node is not disrupted and the next 

beat will follow the next sinus node activation.  

 

        Missing beat                         PAC                               PVC

 

Figure 13 – Poincaré plots of missing beat (left panel), premature atrial complex (PAC) (middle panel) 

and premature ventricular complex (PVC) (right panel). The dashed line (- - -) indicates the -45°-line 

where successive RR-intervals are equal. RRi = RR-interval preceding the i-th beat; RRi-1 = RR-interval 

succeeding the i-th beat; RRi+2 = RR-interval succeeding RRi+1. 
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Feature extraction 

Next, a new Poincaré plot was made without the eliminated PACs, PVCs, and missing beats. 

Figure 14 shows a Poincaré plot of sinus rhythm (left panel) and a Poincaré plot of atrial 

fibrillation (right panel). Features extracted from this plot were the standard deviations of 

distances of points to the 45°-line and to the -45°-line, as visualized in Figure 14.§ A large 

standard deviation of distances to the -45°-line indicates successive RR-intervals are 

different, hence this is an indicator for fast changes in RR-interval. A large standard 

deviation of distances to the 45°-line without a large standard deviation of distances to 

the -45°-line indicates successive RR-intervals are similar, but all RR-intervals together 

show a large variation, hence this is an indicator for slow changes in RR-intervals.  
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Figure 14 – Poincaré plots of an ECG of 30 seconds showing sinus rhythm (left) and atrial fibrillation 

(right). Points (o) indicate two successive RR-intervals, the dashed lines (- - -) and the dotted lines (● ● ●) 

indicate the -45°-line and the 45°-line, respectively, used for calculation of standard deviation, as further 

explained in text. 

Furthermore, the median and interquartile range (IQR) of the intervals between 

consecutive R-peaks were calculated. The number of beats per minute was determined 

using the reciprocal of the median RR-interval. Also, the median and IQR of the intervals 

between an R-peak and the R-peak which was two beats later were calculated. As another 

measure of RR-interval irregularity, the median and IQR of the ratio between the RR-

interval preceding an R-peak and the RR-interval succeeding an R-peak were calculated. 

Lastly, Shannon entropy of the RR-intervals was calculated as a measure for the variation 

of RR-intervals. Shannon entropy describes the information content of a variable and is 

defined as41:  

 
Shannon entropy = − ∑ 𝑝(𝑖)

𝑀

𝑖=1

log2 𝑝(𝑖) (Eq. 2) 

 

where 𝑀 equals the number of discrete values the variable can take and 𝑝(𝑖) is the 

 
§ Further explained with an example in Appendix IV. 
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probability density function of variable 𝑥 for the 𝑖th value.** For implementation in the AF 

classifier, a histogram of the RR-intervals was made with a bin width of 100ms. Next, the 

histogram was normalized to sum to one. The result was used as a probability distribution 

for calculation of Shannon entropy. The probability distributions of an ECG with AF and 

without AF are visualized in Figure 15. If all RR-intervals are similar, Shannon entropy will 

be low. Otherwise, if RR-intervals vary, Shannon entropy will be higher. In these examples, 

the Shannon entropy of the RR-intervals during sinus rhythm and atrial fibrillation are 0.76 

bits and 1.3 bits, respectively. 
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Figure 15 – Probability distributions of an ECG of 30 seconds showing sinus rhythm (left) and atrial 

fibrillation (right). 

Peak-interval characteristics 

Ten features based on peak intervals were extracted from the ECG segments. Of each 

interval, median and IQR were used. Calculated intervals were P-peak to Q-peak (PQ-

interval), Q-peak to S-peak (QRS-width), Q-peak to T-peak (QT-time), and S-peak to T-

peak (ST-time). Additionally, the QT-interval was corrected for heart rate using Bazett’s 

formula, which describes the observed relation between the QT-interval and the RR-

interval: QTc = QT-interval  √RR-interval⁄ .42 

Amplitude characteristics 

Based on peak-to-peak amplitudes, twelve features were extracted. Median and IQR of 

amplitudes from Q-peak to R-peak, R-peak to S-peak, absolute differences between 

amplitudes of consecutive R-peaks (RR-amplitude), an R-peak to the R-peak two peaks 

later, and the ratio between RR-amplitude preceding an R-peak and RR-amplitude 

succeeding an R-peak were calculated. Furthermore, similarly to RR-intervals, Poincaré 

features were calculated. Again, the standard deviation of distances of points to the 45°-

line and to the -45°-line were extracted. 

 
** Further explained with an example in Appendix V. 
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P- and T-wave characteristics 

Thirteen characteristics of P- and T-waves were extracted from each ECG segment. The 

percentage of R-peaks without P-waves, with one P-wave, and with multiple P-waves were 

calculated. Also, the percentage of R-peaks without T-waves and with one T-wave were 

calculated. Furthermore, median and IQR of the P-wave amplitude and T-wave amplitude 

were extracted. Additionally, the median and IQR of the ratio between the amplitude of 

the P-wave and amplitude of the QRS-complex, and the ratio between the amplitude of 

the T-wave and amplitude of the QRS-complex were computed. Lastly, the 85th percentile 

of the ratio between the amplitude of the P-wave and amplitude of the QRS-complex was 

calculated as a measure for the amplitude of P-waves with high amplitudes. 

QRS-morphology characteristics 

As visualized in Figure 17, using the cross-correlation between all QRS-complexes in the 

ECG segment, QRS-complexes with similar QRS-morphologies were detected. First, the 

ECG signal was filtered to eliminate noise using a second-order Butterworth filter with 

lower and higher cut-off frequencies of 2Hz and 30Hz, respectively. These cut-off 

frequencies were arbitrarily set to eliminate noise but keep the morphology of the QRS-

complexes intact. Next, for each detected QRS-complex, a segment starting 100ms before 

the R-peak and ending 100ms after the R-peak was created. Before calculating the 

correlation coefficients between segments, segments were optimally aligned using the 

cross-correlation between segments. Cross-correlation was calculated with delays from 

-50ms up to 50ms. Correlation coefficients were calculated for the delay for which the 

segments were most similar. In Figure 16, the relation between correlation coefficients and 

QRS-morphology is illustrated using examples with correlation coefficients ranging from 

0.3 to 1.0. If the correlation coefficient was higher than an arbitrary threshold of 0.8, QRS-

morphologies were assumed to be similar. The number of different morphologies, 

percentage of QRS-complexes with the most common morphology, and percentage of 

QRS-complexes with the second most common morphology were extracted as features.  

Autocorrelation characteristics 

Another measure for signal irregularity is the autocorrelation, as visualized in Figure 18. 

First, the signal was filtered using a second-order Butterworth filter with lower and higher 

cut-off frequencies of 0.5Hz and 10Hz, respectively. These cut-off frequencies differ from 

the frequencies used to detect QRS-morphology. For this calculation, the focus was only 

on the location of the QRS-complexes and not on the exact morphological differences. 

Therefore, the high frequencies in the ECG were filtered out. The normalized 

autocorrelation of the ECG was calculated with a maximum delay of 15 seconds, which is 

half of the duration of the input ECG. Next, the moving maximum of the normalized 

autocorrelation was calculated with a window size of 500ms. The result was used for peak 

detection. The central peak was excluded since the autocorrelation is always optimal with 

a delay of 0ms. Seven features were extracted: median and IQR of the autocorrelation, 

number of peaks in the autocorrelation, median and IQR of the amplitude of peaks in the 

autocorrelation, and median and IQR of the time interval between peaks in the 

autocorrelation.  
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Template of QRS-complex 
 

  
 

Correlation coefficient: 1.0 Correlation coefficient: 0.9 
 

 

 

 

Correlation coefficient: 0.8 Correlation coefficient: 0.7 
 

 

 

 
Correlation coefficient: 0.6 Correlation coefficient: 0.5 

 

 
Correlation coefficient: 0.4 Correlation coefficient: 0.3 

 

 

 

 

 

Figure 16 – Examples of QRS-complexes from post-operative telemetry with correlations ranging from 

0.3 to 1.0. The upper figure contains the ECG which was (for this example) used as a template to 

calculate correlation coefficients. The other figures show the template in light green and the other 

segment in dark green. QRS-complexes with correlation coefficients of at least 0.8 were assumed to have 

similar QRS-morphologies. Scales of all figures are equal. 
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Figure 17 – Differentiating QRS-morphologies, as further explained in text. 
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Figure 18 – Calculating autocorrelation of ECG segments, as further explained in text. The red cross (X) 

indicates the center peak which was excluded from analysis. 
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Noise 

To classify noise segments, for each ECG segment, the percentage of excluded samples for 

R-peak detection was calculated as a feature. 

Phase 4: Training classifiers 

Classifiers were trained to classify 30-seconds ECG segments into one of three classes: AF, 

No AF, and Unusable. Training was performed using the Classification Learner Application 

in Matlab (R2019b with Statistics and Machine Learning Toolbox 11.6) using 10-fold cross-

validation. The input for training consisted of feature vectors containing all 57 features for 

4,800 randomly selected 30-seconds ECG segments. All classes were represented equally 

(1,600 segments per class). The No AF-class was filled with 800 ECG segments with a regular 

rhythm and 800 ECG segments with an irregular rhythm, but without AF (e.g. ECGs showing 

PACs, PVCs, or sinus arrhythmia). The remaining 1,600 ECG segments were kept hidden for 

testing. Additionally, a vector containing the manual annotations of the 4,800 training 

segments was added as reference. Initially, all available classification methods were applied 

to gain insight into the best method. The optimal classifier in terms of accuracy was 

selected for final analysis.  

Phase 5: Testing classifier 

The remaining 1,600 30-seconds ECG segments were used to test the classifier’s 

performance in terms of overall accuracy. Furthermore, accuracy, recall and FNR, and 

specificity and FPR were calculated for detection of AF specifically. The testing set consisted 

of 400 records with AF, 400 records with a regular rhythm, 400 records with an irregular 

rhythm (without AF), and 400 unusable records due to noise and/or artefacts.  

Statistical analysis 

Performance measures for both peak detection and AF classification were calculated. As 

listed in Table 1, the outcome measures for peak detection were recall, precision, and the 

harmonic mean of recall and precision (F1-score): 

 
F1-score = 2 ∙

recall ∙ precision

recall + precision
 (Eq. 3) 

 

Recall is a measure for the number of peaks that were correctly detected by the algorithm, 

compared to the number of peaks that were manually annotated. Likewise, precision is a 

measure for the number of peaks that were correctly detected by the algorithm, compared 

to the total number of both correctly and incorrectly detected peaks. The arithmetic mean 

(𝐴) of a dataset 𝑎 with 𝑛 samples is defined as: 

 
𝐴 =

1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

 (Eq. 4) 

 

Calculating the arithmetic mean of recall and precision would result in an overestimation 

of the classifier performance. For example, if the algorithm detected only one R-peak and 

it was correctly detected, the precision would be 1. However, if 100,000 R-peaks were 
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manually annotated, the recall would be 0.00001. The arithmetic mean would then be 0.5, 

which overestimates the performance of the algorithm. 

Instead, the harmonic mean (𝐻) of a dataset (𝑎) with 𝑛 samples is mainly affected by the 

minimum value. The definition is as follows: 

 𝐻 =
𝑛

∑ 𝑎𝑖
−1𝑛

𝑖=1

 (Eq. 5) 

 

The example with an arithmetic mean of 0.5 results in a harmonic mean of 0.00002, which 

gives a better representation of the actual performance of the algorithm in this example. 

Outcome measures for AF detection were accuracy, sensitivity and FNR, and specificity 

and FPR. Accuracy is a measure for the correctly classified records compared to the total 

number of analyzed records. Sensitivity is a measure for the number of records correctly 

classified as AF, compared to the total number of records with manually annotated AF. 

Specificity is a measure for the number of records correctly classified as not containing 

AF, compared to the total number of records without manually annotated AF. FNR is the 

proportion of the number of records with manually annotated AF, which were incorrectly 

classified as not containing AF. FPR is the proportion of the number of records without 

manually annotated AF, which were incorrectly classified as containing AF.  

The binomial proportion 95% confidence interval (95% CI) was calculated with the Wilson 

score using the standard definition43: 

 

 2𝑛𝑝 + 𝑧2 ± 𝑧√𝑧2 + 4𝑛𝑝𝑞

2 ∙ (𝑛 + 𝑧2)
 (Eq. 6) 

 
𝑛 = sample size 

𝑝 = proportion 

𝑧 = standard normal deviate (≈1.96 for 95% CI) 

𝑞 = 1 − 𝑝 

For accuracy, recall, precision, sensitivity, specificity, FNR and FPR parameters are 

summed up in Table 2. For the F1-score, the lower and upper confidence bound were 

calculated as the harmonic mean of the lower confidence bounds and upper confidence 

bounds of recall and precision, respectively.  
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Table 1 – Performance measures  

 

Classifier output 
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+ 
True 

positive 

(TP) 

False 

negative 

(FN) 

- 
False 

positive 

(FP) 

True 

negative 

(TN) 
 

Measure Calculation 

Accuracy 
TP + FN

TP + FN + FP + TN 
 

Recall 
TP

TP + FN
 

Precision 
TP

TP + FP
 

Sensitivity 
TP

TP + FN
 

FNR 
FN

TP + FN
 

Specificity 
TN

FP + TN
 

FPR 
FP

FP + TN
 

F1-score 2 ·
recall · precision

recall + precision
 

 

 

 

Table 2 – Parameters for Wilson score 

 𝒏 𝒑 𝒛 𝒒 

Accuracy TP + FN + FP + TN 
TP + FN

TP + FN + FP + TN 
 1.9600 1 −

TP + FN

TP + FN + FP + TN 
 

Recall TP + FN 
TP

TP + FN
 1.9600 1 −

TP

TP + FN
 

Precision TP + FP 
TP

TP + FP
 1.9600 1 −

TP

TP + FP
 

Sensitivity TP + FN 
TP

TP + FN
 1.9600 1 −

TP

TP + FN
 

FNR TP + FN 
FN

TP + FN
 1.9600 1 −

FN

TP + FN
 

Specificity FP + TN 
TN

FP + TN
 1.9600 1 −

TN

FP + TN
 

FPR FP + TN 
FP

FP + TN
 1.9600 1 −

FP

FP + TN
 

F1-score 

Not applicable; lower and upper confidence bound were calculated as the harmonic  
mean of the lower confidence bounds and upper confidence bounds of recall and precision, 

respectively. 

TP = number of true positive classifications; FN = number of false negative classifications; FP = number of 

false positive classifications; TN = number of true negative classifications; 
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Table 3 – Features used in atrial fibrillation classifier 

1. RR-interval characteristics (10 features) 

• Number of beats per minute (bpm) 

• Interval between Ri and Ri+1 (seconds)* 

• Interval between Ri-1 and Ri+1 (seconds)* 

• Ratio between the RR-interval preceding an R-peak and the RR-interval 

succeeding an R-peak* 

• Poincaré plot: standard deviation of distances of points to the 45°-line and to the 

-45°-line 

• Shannon entropy of the RR-intervals 

2. Peak-interval characteristics (10 features) 

• Interval between P-peak and Q-peak (seconds)* 

• Interval between Q-peak and S-peak (seconds)* 

• Interval between Q-peak and T-peak (seconds)* 

• Corrected interval between Q-peak and T-peak using Bazett’s formula (seconds)* 

• Interval between S-peak and T-peak (seconds)* 

3. Amplitude characteristics (12 features) 

• Amplitude from Q-peak to R-peak* 

• Amplitude from R-peak to S-peak* 

• Difference in amplitude of Ri and Ri+1* 

• Difference in amplitude of Ri-1 and Ri+1* 

• Ratio between the amplitude differences of Ri-1Ri and RiRi+1* 

• Poincaré plot of differences in RR-amplitude: standard deviation of distances of 

points to the 45°-line and to the -45°-line 

4. P-wave characteristics (8 features) 

• Percentage of R-peaks without P-waves, with one P-wave, and with multiple P-

waves 

• Amplitude of P-wave* 

• Ratio between amplitudes of P-wave and QRS-complex* + 85th percentile of 

amplitudes of this ratio 

5. T-wave characteristics (6 features) 

• Percentage of R-peaks without T-waves, and with one T-wave  

• Amplitude of T-wave* 

• Ratio between amplitudes of T-wave and QRS-complex* 

* median and interquartile range included as features 

bpm = beats per minute; Ri = the i-th R-peak; Ri-1 = the R-peak preceding the i-th R-peak; Ri+1 = the 

R-peak succeeding the i-th R-peak; 
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Table 3 – Features used in atrial fibrillation classifier (continued) 

6.  QRS-morphology characteristics (3 features) 

• Number of different QRS-morphologies 

• Percentage of QRS-complexes with the most common morphology 

• Percentage of QRS-complexes with the second most common morphology 

7.  Autocorrelation characteristics (7 features) 

• Autocorrelation of ECG segment* 

• Ratio between number of peaks in the autocorrelation and number of QRS-

complexes 

• Amplitude of peaks in the autocorrelation* 

• Time interval between peaks in the autocorrelation (seconds)* 

8. Noise (1 feature) 

• Percentage of excluded samples for R-peak detection 

* median and interquartile range included as features 
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Results 

Peak detection 

Detection of QRS-complexes 

Detection of QRS-complexes was validated using the four standard MIT-BIH databases 

(NSRDB, AFDB, LTDB and MITDB), containing a total of 96 records and 3,636,367 annotated 

QRS-complexes. The total amount of detected QRS-complexes was 3,650,232, of which 

3,572,255 detections were true positive. 77,977 detections were false negative, and 64,112 

QRS-complexes were missed. This results in an overall recall of 98.237% and precision of 

97.864%. The F1-score is 98.050%. Results per database are summarized in Table 4. An 

entire list of detections per record is provided in Appendix VI. 

 

P- and T-wave detection 

Detection of P- and T-waves was validated using the MIT-BIH QT Database, containing 96 

records with annotated QRS-complexes and P- and T-waves. A total of 91,607 P-waves and 

117,632 T-waves were annotated. The detection algorithm resulted 102,289 P-waves and 

97,458 T-waves, of which 19,543 and 7,263 detections were false positive, respectively. The 

algorithm missed 8,861 P-waves and 27,437 T-waves. This results in a recall of 90.327% 

(95% CI: 90.134% - 90.517%) and 76.676% (95% CI: 76.433% - 76.916%), precision of 

80.894% (95% CI: 80.652% - 81.134%) and 92.548% (95% CI: 92.381% - 92.710%), and F1-

score of 85.351% (95% CI: 85.130% - 85.569%) and 83.867% (95% CI: 83.654% - 84.078%) 

for P-wave detection and T-wave detection, respectively. An entire list of detections per 

record is provided in Appendix VII. 

Table 4 – Test characteristics for detection of QRS-complexes 

 Annotated Detected TP FP FN 

NSRDB 1,729,630 1,737,076 1,727,469 9,607 2,161 

AFDB 1,128,561 1,143,166 1,075,917 67,249 52,644 

LTDB 668,682 660,548 660,037 511 8,645 

MITDB 109,494 109,442 108,832 610 662 

Overall 3,636,367 3,650,232 3,572,255 77,977 64,112 

 

 Recall (95% CI) Precision (95% CI) F1-score (95% CI) 

NSRDB 99.875% (99.870% - 99.880%) 99.447% (99.436% - 99.458%) 99.661% (99.652% - 99.669%) 

AFDB 95.335% (95.296% - 95.374%) 94.117% (94.074% - 94.160%) 94.722% (94.681% - 94.763%) 

LTDB 98.707% (98.680% - 98.734%) 99.923% (99.916% - 99.929%) 99.311% (99.294% - 99.328%) 

MITDB 99.395% (99.348% - 99.440%) 99.443% (99.397% - 99.485%) 99.419% (99.372% - 99.462%) 

Overall 98.237% (98.223% - 98.250%) 97.864% (97.849% - 97.879%) 98.050% (98.036% - 98.064%) 

NSRDB = Normal Sinus Rhythm Database; AFDB = Atrial Fibrillation Database; LTDB = Long-term ECG 

Database; MITDB = Arrhythmia Database; TP = True Positive, FP = False Positive; FN = False Negative; F1 = 

F1-score; 
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Classifier performance 

The optimal classification method was using boosted decision trees; hence this method 

was used for further training. In Matlab, the AdaBoost algorithm is used to train this 

classifier.†† The AdaBoost algorithm minimizes the final classification error by training 

multiple decision trees iteratively. Given the classification error of the trained decision tree, 

a weight is assigned to the decision tree. Better performing decision trees will be assigned 

a higher weight. The next decision tree is trained using another custom set of training data, 

in which previously misclassified samples are more frequently represented.44 

Hyperparameters of the model are the number of decision trees, the number of splits per 

decision tree, and the learning rate. Using Bayesian optimization with an expected 

improvement acquisition function, the error as a function of the hyperparameters was 

estimated and the hyperparameters were optimized.‡‡ The learning rate was fixed at 0.1. 

The overall classification accuracy as calculated using 10-fold cross-validation was 96.38% 

(95% CI: 95.81% – 96.87%). For AF detection specifically, the accuracy was 97.42% (95% CI:  

96.93% – 97.83%). Other performance measures are summarized in Table 5. Furthermore, 

the receiver operating characteristic (ROC) curve for AF detection is visualized in Figure 19, 

showing an area under the curve (AUC) of 0.99. 

The overall classification accuracy when applying the classifier to the hidden test set was 

95.38% (95% CI: 94.23% – 96.30%). For AF detection specifically, the accuracy was 96.44% 

(95% CI: 95.41% – 97.24%). Other performance measures are summarized in Table 6. Of all 

74 misclassifications, 36 (49%) were made in the group with irregular rhythms without AF. 

Feature importance  

Figure 20 visualizes the estimated feature importance based on the reduced risk of errors 

due to adding the features to the decision trees.45 The feature with the highest importance 

was the percentage of excluded samples for R-peak detection. Because this feature is only 

expected to impact the classification of a segment as noise/artefact, this feature was 

excluded from Figure 20. As expected, the feature with the second highest importance was 

based on RR-interval variability. Moreover, the variation in interval between P-wave and 

Q-peak and the percentage of R-peaks with one P-wave were estimated to be of high 

importance to classify ECG segments correctly. An entire list containing the estimated 

importance for all features is provided in Appendix X. 

  

 
†† Further information on boosted decision trees is provided in Appendix VIII. 
‡‡ Further information on Bayesian optimization is provided in Appendix IX. 
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Figure 19 – Receiver operating characteristic (ROC) curve for AF detection. The calculated area under 

the curve (AUC) was 0.99. 

Table 5 – Classifier performance (using 10-fold 

cross-validation) 

 

Classifier output 

AF No AF 
Un-

usable 

M
a
n

u
a
l 

a
n
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n

s 

AF 1546 45 9 

No AF 63 1518 19 

Un-

usable 
7 31 1562 

 

AF detection % 95% CI 

Accuracy 97.42% 96.93% - 97.83% 

Value of negative classification 

Sensitivity 96.63% 95.62% - 97.40% 

FNR 3.4% 2.6% - 4.4% 

Value of positive classification 

Specificity 97.81% 97.25% - 98.26% 

FPR 2.2% 1.7% - 2.8% 

AF = atrial fibrillation; FNR = false negative 

rate; FPR = false positive rate 
 

 Table 6 – Classifier performance (using hidden test 

set) 

 

Classifier output 

AF No AF 
Un-

usable 

M
a
n

u
a
l 

a
n

n
o

ta
ti

o
n

s 

AF 389 8 3 

No AF 

(reg.) 
7 388 5 

No AF 

(irreg.) 
33 364 3 

Un-

usable 
6 9 385 

 

AF detection % 95% CI 

Accuracy 96.44% 95.41% - 97.24% 

Value of negative classification 

Sensitivity 97.3% 95.1% - 98.5% 

FNR 2.8% 1.5% - 4.9% 

Value of positive classification 

Specificity 96.17% 94.92% - 97.11% 

FPR 3.8% 2.9% - 5.1% 

AF = atrial fibrillation; reg. = regular; 

irreg. = irregular; FNR = false negative rate;  

FPR = false positive rate 
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Figure 20 – Feature importance. Darker color indicates higher importance. Single features are visualized 

in the left (narrow) columns. The exact order of the features and results are provided in Appendix X. 

Maximum feature importance of feature groups is visualized in the right (wide) columns. The noise 

feature is not included in this figure, because of the extremely high estimated importance caused by 

classifying noise signal.  
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Discussion 
The goal of this study was to develop a classifier for automated detection of AF with an 

FPR of at most 5% and an FNR of at most 3%. A novel algorithm was introduced for AF 

detection, using a combination of common ECG features (e.g. RR-intervals and presence 

of P-waves) and more complex features (e.g. QRS-morphology and autocorrelation). 

Whereas most studies use standard ECG databases containing relatively clean ECG data 

for development of an algorithm, the current classifier was trained and tested using 

manually annotated continuous rhythm registrations obtained in the post-operative 

setting. This method resulted in a classifier with an overall accuracy of 95.37%, and for 

detection of AF a low false negative rate of 2.75% and a medium false positive rate of 

3.83%. As expected beforehand, classification was mainly based on RR-interval irregularity.  

Peak detection 

QRS-complex detection 

Detection of QRS-complexes using a method based on the Pan-Tompkins algorithm 

resulted in a high recall and precision in the MIT-BIH databases containing long-term ECGs 

with both normal sinus rhythm (NSRDB) and more irregular rhythms (LTDB). Furthermore, 

detection of QRS-complexes in short ECGs containing various rhythm disorders was 

accurate with an F1-score of 99.4%. Detection of QRS-complexes in the MIT-BIH database 

containing long-term ECG recordings of patients with AF (AFDB) was less accurate with an 

F1-score of 94.7%. This is most likely due to the different methodology for annotating the 

beats in this database. Instead of manually annotating the beats, beat annotations in the 

AFDB are generated using an automated detector. Not all records have been manually 

corrected, which in some records results in inaccurate beat annotations. In particular, as 

visualized in Figure 21, manual inspection of record 07162 (recall: 22.1%; precision: 21.6%; 

F1-score: 21.9%) of the AFDB shows inaccurate placement of the annotations. 
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Figure 21 – Screenshot of the first ten seconds of record 07162 from the MIT-BIH Atrial Fibrillation 

Database.46 Blue arrows and vertical lines indicate annotated QRS-complexes, which were not manually 

corrected. 

P- and T-wave detection 

AF is characterized by the absence of P-waves, hence accurate detection of P-waves is 

essential. The proposed algorithm detected 90.3% of all annotated P-waves and 92.5% of 

detected T-waves were annotated T-waves. However, the algorithm also mistakenly 

detected additional P-waves and missed a substantial number of T-waves. Although the 

detection of P- and T-waves does not perform optimally, these error rates are most likely 

acceptable for AF detection. Detection of T-waves is used to prevent the algorithm 
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mistakenly detecting T-waves as P-waves. Therefore, it is expected that missing T-waves 

only has minor impact on the final AF classification. On the other hand, if there is a P-wave, 

it should be detected by the algorithm to ensure accurate AF classification. Therefore, for 

P-wave detection a high recall is preferred over a high precision. Furthermore, to mitigate 

the effect of the low precision of P-wave detection on the AF classifier, amplitude of the P-

wave relative to the amplitude of the R-peak was added as a feature. Also, false positive 

detection of P-waves in ECG showing AF likely results in larger variance in the interval 

between P-wave and QRS-complex. This might explain the relatively high importance of 

this feature in the final AF classifier. 

Predictive validity 

The proposed classifier has a low FNR, hence few ECG segments with AF will be missed. 

However, 33 out of 400 ECG records in the test set showing other irregular heart rhythms 

were incorrectly classified as containing AF. 

The aim of the current study was to train a classifier for use in the research setting. 

Therefore, as stated before, focus was on reducing the FNR. The FPR of 3.83% is still high, 

hence screening of the AF segments is still required to get an accurate estimation of the 

AF burden. However, since the FNR is only 2.75%, few ECG records containing AF are 

missed. Therefore, only screening the segments with detected AF already results in a 

decent estimation of the AF burden. 

Further development is essential to use the proposed classification model unsupervised 

and/or in clinical practice, because requirements differ from the supervised research 

setting. Also, the calculated performance measures cannot be directly translated to a single 

patient. The test set consisted of segments from many patients. Therefore, it can be 

assumed that the segments are not related. However, in a single patient, if one segment is 

misclassified as AF, a subsequent similar segment will most likely be misclassified. In a 

single patient, this could lead to overestimation or underestimation of the AF burden, 

depending on the type of error (false positive or false negative). Furthermore, provided 

accuracy measures solely apply to the detection of 30-seconds segments containing AF. 

Therefore, these measures do not directly translate to a high accuracy for detecting the 

start and end times, and duration of AF episodes. 

AF segments to AF episodes 

The output of this algorithm is the classification of a single 30-seconds ECG segment into 

one of three classes (AF, no AF, unusable). Therefore, the result of analyzing the telemetry 

data of an entire patient results in a series of classifications for each segment of 30 seconds. 

However, this does not yet result in the demarcation of AF episode boundaries. Additional 

analysis should provide information on the exact start and end times of AF episodes. 

When analyzing a long-term ECG, a parameter which can be changed is the time between 

30-seconds ECG segments which are analyzed. One option is to not allow overlap between 

analyzed segments. In this case, a next segment starts where the current segment ends. 

Another option would be to allow overlap between analyzed ECG segments. A combination 

of these methods most likely results in the fastest accurate estimation of the AF burden. A 
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first and rough estimate of the AF burden can be made using no or minor overlap between 

segments. Subsequently, the algorithm could be applied with more overlap to segments 

in the area with detected AF, resulting in more detailed information on the start and end 

times of the AF episode. 

Furthermore, the definition for an AF episode should be clarified. Currently, the definition 

of a diagnostic AF episode is provided in the ESC Clinical Practice Guidelines.47 The duration 

of a diagnostic AF episode should be at least 30 seconds. However, the guidelines do not 

include time between subsequent AF episodes as a factor for duration of the AF episode. 

For example, if telemetry shows two AF episodes with durations of hours, with only a few 

minutes without AF in between, it is still unclear whether this should be counted as single 

episode, or as two separate episodes. The same applies to AF segments with bad signal in 

between. A novel method for both cases is implemented in the current algorithm. First, AF 

episodes with noise or artefacts in between are merged if the total time of the episode 

does not increase more than 5%. Subsequently, AF episodes are merged if the time 

between episodes is less than an arbitrary threshold of 5 minutes. 

Currently, validation of AF episode detection is not feasible, because this would require 

large amounts of manually annotated telemetry data with start and end times of AF 

episodes. Therefore, this definition of the AF episode is still experimental. 

Other irregular rhythms 

Almost half of the misclassifications were due to irregular rhythms without AF (49%). This 

further illustrates the fact that irregularity of RR-intervals is the main factor which is used 

in the classifier. Furthermore, the percentage of R-peaks with one P-wave is one of the 

major features used to classify features correctly. The current algorithm showed an F1-

score for P-wave detection of 85.351%. This test was performed on data from the MIT-BIH 

QT database, which contains ECG signals which are, in general, without much noise and 

artefacts. In contrast, continuous rhythm registration can contain large noisy segments or 

artefacts. Therefore, P-wave detection will most likely be less accurate in the telemetry data 

compared to the MIT-BIH QT database. Inaccurate P-wave detection might be a factor 

resulting in other irregular rhythms being incorrectly detected as AF segments. 

Furthermore, only 4,800 30-seconds ECG segment were used to train the classifier. More 

segments might be needed to increase the generalizability of the classifier to other 

datasets. 

Limitations and future research 

Although a next step has been taken in the automated AF detection in post-operative 

telemetry data, the algorithm is not yet suitable for unsupervised and/or clinical use. In 

clinical use, the current FPR would lead to an overestimation of AF burden, potentially 

resulting in overtreatment. For the same reason, further improvements should be made 

before using the algorithm unsupervised in a research setting. Improvements should be 

focused on differentiation between AF and other arrhythmias, more accurate detection of 

atrial activity, and identification of AF episode boundaries. 
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Differentiation between atrial fibrillation and other arrhythmias 

The most important features of the classifier are based on irregularity of RR-intervals. 

However, this irregularity can also be caused by other arrhythmias or inaccuracies in R-

peak detection. Single PACs, PVCs, and missing beats were already excluded for RR-interval 

analyses. However, the accuracy of detecting these beats has not been validated yet. Also, 

the exclusion criteria all assumed a normal beat following and preceding the PAC, PVC, or 

missing beat. Therefore, when a PAC, PVC, or missing beat is followed by another irregular 

beat, the PAC, PVC, or missing beat will not be detected as such. Detection of these 

irregularities other than AF should be optimized. The definition of AF states that an episode 

should last at least 30 seconds. For other arrhythmias, the definition is based on the 

percentage of abnormal beats or number of abnormal beats per hour (e.g. PVCs48). 

Therefore, instead of classifying 30-seconds segments with these other arrhythmias, beat-

level classification might provide better insights into these arrhythmias.49 The percentage 

of abnormal beats could be used as a feature for the AF classifier. 

Detection of atrial activity 

Accuracy of P- and T-wave detection might be too low for ECG segments containing noise 

and artefacts. Therefore, detection of atrial activity should be optimized. However, it 

remains a question whether the current equipment is suitable for measuring atrial activity 

accurately with a lot of noise and artefacts. The citation “garbage in, garbage out” might 

apply to detecting atrial activity in these ECG segments; the quality of the input signal 

might be too low to accurately detect atrial activity. If this is the case, the first step should 

be to optimize data acquisition as much as possible in the post-operative clinical setting 

(e.g. ensure good electrode-to-skin contact and use quality electrodes). 

Identification of atrial fibrillation episode boundaries 

Another limitation of the proposed algorithm is the use of a classifier to classify short 30-

seconds ECG segments. This implies surrounding segments are ignored and segments are 

independent of each other. This is not the case for consecutive ECG segments. The current 

classification algorithm does not take into account the state of previous ECG segments (AF, 

No AF, or Unusable). For detection of start and end times of AF episodes, use of state 

transition diagrams, as previously described for rhythm identification of ventricular 

arrhythmias, might increase the accuracy.49 This way, instead of classifying single ECG 

segments, the states of previous ECG segments could be used as input for the algorithm. 

Depending on the state of previous ECG segments, the likelihood of changing to another 

state could be determined. 

Conclusion 
An automated AF classifier based on post-operative continuous rhythm registrations for 

use in the research setting was proposed. An FPR and FNR of 3.8% and 2.8%, respectively, 

were reached. Main features for detection of AF are based on RR- and PQ-interval 

irregularities, and P-wave characteristics. Careful use of the classifier in combination with 

manual validation of the detected AF segments makes the classifier suitable for supervised 

research purposes.   
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Appendix I. Introduction to signal analysis and filter 

design using the 𝒛-transform 
 

From analog to digital 

Electrocardiograms (ECGs) are measured using dedicated measuring devices. Electro-

cardiograms cannot be measured continuously and therefore measurements are taken 

with a certain sampling rate using an analog-to-digital converter. The sampling rate is 

defined as the number of samples per second (Hz). The output of the device is therefore 

not described by a continuous function 𝑥(𝑡), where 𝑡 is the time, but by a discrete function 

𝑥[𝑛], where 𝑛 is the number of samples. Figure 22 shows an example of a continuous-time 

signal and the associated discrete-time signal with a sampling rate of 30Hz. As can be seen 

from the figure, slow changes are recognizable in the discrete-time signal, but fast changes 

are missed as a result of the sampling rate. To reconstruct the original signal perfectly, the 

Nyquist theorem states that the sampling rate must be twice the highest frequency 

component of the signal.50 

 

Figure 22 – Example of continuous-time signal (𝒙(𝒕), upper panel) and the associated discrete-time 

signal (𝒙[𝒏], lower panel) with a sampling rate of 30Hz. 
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Discrete-time signals in the 𝒛-domain 

Instead of describing a discrete-time signal 𝑥[𝑛], the signal can also be described in the 𝑧-

domain, where 𝑧 is a complex variable.51 This way, difference equations are converted into 

more straightforward algebraic equations. The 𝑧-transform 𝑋(𝑧) of a discrete-time signal 

𝑥[𝑛] is defined as: 

 
𝑋(𝑧) = ∑ 𝑥[𝑛]𝑧−𝑛

∞

𝑛=−∞

 (Eq. A1.1) 

 

where 𝑧 is a complex variable defined as 𝑟𝑒𝑗Ω. 𝑟 and Ω describe the magnitude and the 

angle of 𝑧, respectively. 

For example, 𝑥[𝑛] = {3, 7, −2, 5, 8} for 𝑛 = {−1, 0, 1, 2, 3} transforms into 

 𝑋(𝑧) = 3𝑧 + 7 − 2𝑧−1 + 5𝑧−2 + 8𝑧−3 (Eq. A1.2) 

 

The 𝑧-transform has several properties, of which the time-shift property, the linearity 

property and the convolution property are most relevant for filter design.51 The time-shift 

property states that if 𝑋(𝑧) is the 𝑧-transform of 𝑥[𝑛], the 𝑧-transform of 𝑥[𝑛 − 𝑛0] equals 

𝑧−𝑛0𝑋(𝑧). The linearity property states that if the 𝑧-transforms of 𝑥1[𝑛] and 𝑥2[𝑛] are 𝑋1(𝑧) 

and 𝑋2(𝑧), respectively, the sum of 𝑥1 and 𝑥2 has a 𝑧-transform of 𝑋1(𝑧) + 𝑋2(𝑧). The 

convolution property states that if the 𝑧-transforms of 𝑥1[𝑛] and 𝑥2[𝑛] are 𝑋1(𝑧) and 𝑋2(𝑧), 

respectively, the 𝑧-transform of the convolution 𝑥1[𝑛] ∗ 𝑥2[𝑛] equals 𝑋1(𝑧)𝑋2(𝑧). 

Filter design using the 𝒛-transform 

Filters are applied using a convolution between the original signal 𝑥[𝑛] and the filter ℎ[𝑛], 

resulting in 𝑦[𝑛], which can be written as a sum: 

 
𝑦[𝑛] = ∑ 𝑥[𝑚] ∙ ℎ[𝑛 − 𝑚]

∞

𝑚=−∞

 (Eq. A1.3) 

 

where 𝑚 introduces a delay of the signal.  

In the 𝑧-domain, the convolution can be rewritten as a multiplication between the 𝑧-

transform of the original signal, 𝑋(𝑧), and the transfer function of the filter, 𝐻(𝑧): 

 𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧) (Eq. A1.4) 

 

Filters are commonly described using linear constant-coefficient difference equations of 

the form: 

 
∑ 𝑎𝑘𝑦[𝑛 − 𝑘]

𝑁

𝑘=0

= ∑ 𝑏𝑘𝑥[𝑛 − 𝑘]

𝑁

𝑘=0

 (Eq. A1.5) 

 

where 𝑥[𝑛] is the original signal, 𝑦[𝑛] is the output signal, 𝑘 introduces a delay of the signal, 

and 𝑎𝑘 and 𝑏𝑘 are the filter coefficients. 
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Using the 𝑧-transform, this can be written as: 

 
∑ 𝑎𝑘𝑧−𝑘𝑌(𝑧)

𝑁

𝑘=0

= ∑ 𝑏𝑘𝑧−𝑘𝑋(𝑧)

𝑁

𝑘=0

 (Eq. A1.6) 

   

 
𝑌(𝑧) ∑ 𝑎𝑘𝑧−𝑘

𝑁

𝑘=0

= 𝑋(𝑧) ∑ 𝑏𝑘𝑧−𝑘

𝑁

𝑘=0

 (Eq. A1.7) 

   

 
𝐻(𝑧) =

𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑏𝑘𝑧−𝑘𝑁
𝑘=0

∑ 𝑎𝑘𝑧−𝑘𝑁
𝑘=0

 (Eq. A1.8) 

 

For example, the derivative filter used in the Pan-Tompkins algorithm has a difference 

equation of 𝑦[𝑛𝑇] =
1

8𝑇
(−𝑥[𝑛𝑇 − 2𝑇] − 2𝑥[𝑛𝑇 − 𝑇] + 2𝑥[𝑛𝑇 + 𝑇] + 𝑥[𝑛𝑇 + 2𝑇]), which can 

be written as 8𝑇 ∙ 𝑦[𝑛𝑇] = −𝑥[𝑛𝑇 − 2𝑇] − 2𝑥[𝑛𝑇 − 𝑇] + 2𝑥[𝑛𝑇 + 𝑇] + 𝑥[𝑛𝑇 + 2𝑇], where 𝑥 

is the input signal and 𝑦 is the output signal, and 𝑇 is the sampling period.36 Using the 𝑧-

transform, this can be written as: 

 𝑌(𝑧) ∙ (8𝑇) = 𝑋(𝑧) ∙ (−𝑧−2 − 2𝑧−1 + 2𝑧1 + 𝑧2) (Eq. A1.9) 

 

Therefore, 

 
𝐻(𝑧) =

𝑌(𝑧)

𝑋(𝑧)
=

1

8𝑇
(−𝑧−2 − 2𝑧−1 + 2𝑧1 + 𝑧2) (Eq. A1.10) 
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Appendix II. Peak prominence – An example 

In Figure 23 the measurement of peak prominence is visualized and explained. For 

calculation of peak prominence, first a window is determined around each peak. A 

horizontal line from the peak extending to the left and right is drawn. The intersections of 

this line with the signal on the left and right of the peak are the boundaries of the window 

for that peak. Within this window, prominence is defined as52: 

 Prominence = min(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛,𝐿 , 𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛,𝑅) 

𝐴𝑚𝑎𝑥 = Peak amplitude 
𝐴𝑚𝑖𝑛,𝐿 = Minimum amplitude preceding the peak 

𝐴𝑚𝑖𝑛,𝑅 = Minimum amplitude succeeding the peak 

(Eq. A2.1) 

 

Figure 23 – Peak prominence measurement. Peak prominence is defined as the minimum difference 

between a local maximum and the minima on the left side of the peak and the right side of the peak, 

within a window demarcated by the first preceding and succeeding samples of which the signal is equal 

or higher than the local maximum. Four examples are visualized: 

Peak 1: the window of peak 1 starts at the beginning of the signal and ends at the line segment between 

local minimum b and peak 2. The minimum left from the peak is at point a and the minimum right from 

the peak is at point b. The difference between peak 1 and local minimum b is smallest, hence the 

prominence of peak 1 equals the difference between peak 1 and local minimum b.  

Peak 2: the window of peak 2 starts at the beginning of the signal and ends at the end of the signal. 

The minimum left from the peak is at point a and the minimum right from the peak is at point c. The 

difference between peak 2 and local minimum a is smallest, hence the prominence of peak 2 equals the 

difference between peak 2 and local minimum a.  

Peak 3: the window of peak 3 starts at the line segment between peak 2 and local minimum c and ends 

at the line segment between local minimum d and peak 4. The minimum left from the peak is at point 

c and the minimum right from the peak is at point d. The difference between peak 3 and local minimum 

d is smallest, hence the prominence of peak 3 equals the difference between peak 3 and local minimum 

d.  

Peak 4: the window of peak 4 starts at the line segment between peak 2 and local minimum c and ends 

at the end of the signal. The minimum left from the peak is at point c and the minimum right from the 

peak is at point e. The difference between peak 4 and local minimum e is smallest, hence the prominence 

of peak 4 equals the difference between peak 4 and local minimum e. 

 

Peak 1 Peak 2 Peak 3 Peak 4 
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Appendix III. The sigmoid function 

Sigmoid functions, or logistic functions, are mainly used for the prediction of probabilities. 

The standard sigmoid function is the function: 

 𝑦(𝑥) =
1

1 + 𝑒−𝑥
 (Eq. A3.1) 

Figure 24 shows a plot of this sigmoid function. When 𝑥 tends to −∞, 𝑦 will be almost 0; 

when 𝑥 equals 0, 𝑦 will be 0.5; and when 𝑥 tends to +∞, 𝑦 will be almost 1. 

y
 →

 

 

 

 x → 
Figure 24 – Standard sigmoid function 𝒚(𝒙) = 𝟏 (𝟏 + 𝒆−𝒙)⁄  for 𝒙 from -10 to 10. 

The sigmoid function can be manipulated by adding parameters to the function: 

 
𝑦(𝑥) = 𝑨 ∗

1

1 + 𝑒−𝐵∗(𝑥−𝐶)
+ 𝑫 (Eq. A3.2) 

 

𝐴 is a scaling factor for the 𝑦-axis, 𝐵 is a scaling factor for the 𝑥-axis, 𝐶 adds an offset to 

the value of 𝑥 (i.e. shifts along the 𝑥-axis), and 𝐷 adds an offset to the value of 𝑦 (i.e. shifts 

along the 𝑦-axis). Examples for all four parameters are provided in Figure 25. It is important 

to note that if either 𝐴 or 𝐵 is negative, the function has a negative slope instead of a 

positive slope. If 𝐴 is negative, the function is mirrored about the 𝑥-axis, whereas if 𝐵 is 

negative, the function is mirrored about the 𝑦-axis. The parameters can be combined to 

create sigmoid functions with the desired slope and offset. 

  

1 

0 

0.5 

-10 10 0 
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        A: Scaling factor for the 𝒚-axis         B: Scaling factor for the 𝒙-axis 

  

        C: Offset to the value of 𝒙         D: Offset to the value of 𝒚 

  
 

Figure 25 – Sigmoid function 𝒚(𝒙) = 𝑨 ∗ 𝟏/(𝟏 + 𝒆^(−𝑩 ∗ (𝒙 − 𝑪)))  + 𝑫 for 𝒙 from -10 to 10. Default 

values of parameters 𝑨, 𝑩, 𝑪 and 𝑫 were 1, 1, 0, and 0, respectively. 𝑨 is a scaling factor for the 𝒚-axis, 

𝑩 is a scaling factor for the 𝒙-axis. 𝑪 adds an offset to the value of 𝒙 (i.e. shifts along the 𝒙-axis). 𝑫 adds 

an offset to the value of 𝒚 (i.e. shifts along the 𝒚-axis). Each panel shows the effect of changing one 

parameter, while leaving the other parameters constant. 

  



 

 

 70 

Appendix IV. Calculating the standard deviation of 

distances from points to lines through 

the origin using the rotation matrix – An 

example 

To calculate standard deviations of distances from points to perpendicular lines through 

the origin, the standard coordinate system is rotated in the Euclidean space using the 

rotation matrix53: 

 
𝑅(𝜃) = [

cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
] (Eq. A4.1) 

 

By definition, counterclockwise rotations have negative angles and clockwise rotations 

have positive angles. In Figure 26, an example is shown with a counterclockwise rotation 

of 45° (=-π/4 radians). Multiplying the rotation matrix with the original 𝑥- and 𝑦-

coordinates results in the transformed 𝑥- and 𝑦-coordinates: 

 

[
𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑
] = 𝑅 (−

𝜋

4
) [

𝑥
𝑦] = [

𝑥 ∙ cos (−
𝜋

4
) − 𝑦 ∙ sin (−

𝜋

4
)

𝑥 ∙ sin (−
𝜋

4
) + 𝑦 ∙ cos (−

𝜋

4
)

] (Eq. A4.2) 

 

 

 

Figure 26 – Example of rotating the standard coordinate system 45° counterclockwise 
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An illustrative example is provided in Figures 27a-c. Figure 27a shows the example as used 

in the methods section of this thesis (RR-interval characteristics – Feature extraction, p. 35). 

Using Eq. A4.2, the coordinate system is rotated 45° counterclockwise, as visualized in 

Figure 27b. This way, the horizontal and vertical axes are parallel to the -45°- and 45°-line, 

respectively.  

The standard deviation 𝜎 is defined as54: 

 

𝜎(𝒙) = √
∑ (𝒙𝑖 − 𝜇𝒙)2𝑛

𝑖=1

𝑛 − 1
 (Eq. A4.3) 

 

where 𝒙 is the input vector, 𝑛 is the sample size, and 𝜇𝑥 is the mean of the input vector 𝑥. 

The standard deviation is independent of the mean of the input vector, because 𝜇𝒙 is 

subtracted from each value in 𝒙. Therefore, as shown in Figure 27c, the standard deviation 

of distances of points to any line parallel to the horizontal axis can be calculated as the 

standard deviation of 𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑. Similarly, the standard deviation of distances of points 

to any line parallel the vertical axis can be calculated as the standard deviation of 

𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑. In this case, this means that the distances of points to the -45°- and 45°-line 

can be calculated as the standard deviations of 𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 and 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑, respectively. 
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Figure 27a – Poincaré plot of RR-intervals during atrial fibrillation, as also described in the thesis (Figure 

14, p. 35). Points (o) indicate two successive RR-intervals, the dashed line (- - -) and the dotted line (● ● ●) 

indicate the -45°-line and the 45°-line, respectively, as described in text (Feature extraction, p. 35). 
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Figure 27b – Poincaré plot of RR-intervals during atrial fibrillation after rotating the coordinate system 

45° counterclockwise. Points (o) indicate two successive RR-intervals, the dashed line (- - -) and the 

dotted line (● ● ●) indicate the -45°-line and the 45°-line, respectively, as described in text (Feature 

extraction, p. 35). The shaded area is further visualized in Figure 27c. 

Figure 27c – Calculating the standard deviations (SD) of 𝒙𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅 and 𝒚𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅. Points (o) indicate 

two successive RR-intervals, and the dashed line (- - -) indicates the -45°-line, as described in text 

(Feature extraction, p. 35). The 45°-line is not visualized as a result of horizontal scaling. 
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Appendix V. Shannon Entropy – An example 

Shannon entropy describes the information content of a variable 𝑥 and is defined as41:  

 
Shannon entropy = − ∑ 𝑝(𝑖)

𝑀

𝑖=1

log2 𝑝(𝑖) (Eq. A5.1) 

 

where 𝑀 equals the number of discrete values the variable can take and 𝑝(𝑖) is the 

probability density function of variable 𝑥 for the 𝑖th value.  

Shannon entropy is given in the amount of information in bits. This is most easily explained 

using a coin toss with the outcome of the coin toss as the variable 𝑥. In this case, two 

possible outcomes are heads and tails. Both outcomes have equal chances (1/2). Therefore, 

the Shannon entropy will be: 

 
− (

1

2
∙ log2 (

1

2
) +

1

2
∙ log2 (

1

2
)) = 1 bit (Eq. A5.2) 

 

Likewise, using a fair dice with six different sides, six outcomes of the dice are possible. All 

outcomes have equal chances (1/6). Therefore, the Shannon entropy will be: 

 
− (

1

6
∙ log2 (

1

6
) +

1

6
∙ log2 (

1

6
) +

1

6
∙ log2 (

1

6
) +

1

6
∙ log2 (

1

6
)

+
1

6
∙ log2 (

1

6
) +

1

6
∙ log2 (

1

6
)) ≈ 2.59 bits 

(Eq. A5.3) 

 

Lastly, if all sides of the dice have the similar outcome, the Shannon entropy will be: 

 −(1 ∙ log2(1)) = 0 bits (Eq. A5.4) 

 

The higher value for the fair dice with six different sides indicates that a throw with this 

dice will give 2.59 bits of information. Using the last dice, the outcome is already known 

beforehand, hence throwing the dice would give 0 bits of information.  
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Appendix VI. Detection of QRS-complexes 
Results per record 

Table 7 – Detection of QRS-complexes, results per record 

Record Annotated Detected True positive False positive False negative 

MIT-BIH Normal Sinus Rhythm Database (NSRDB) 

16265 100243 100480 100243 237 0 

16272 87758 91204 85725 5479 2033 

16273 89845 89845 89838 7 7 

16420 102067 102102 102058 44 9 

16483 104334 104343 104326 17 8 

16539 108282 108291 108279 12 3 

16773 81989 81987 81987 0 2 

16786 101615 101633 101614 19 1 

16795 86872 86904 86870 34 2 

17052 87356 87570 87355 215 1 

17453 100658 100684 100656 28 2 

18177 115911 116194 115894 300 17 

18184 102313 102363 102303 60 10 

19088 97961 99622 97960 1662 1 

19090 81391 81571 81387 184 4 

19093 75106 75187 75106 81 0 

19140 96596 96757 96596 161 0 

19830 109333 110339 109272 1067 61 

Overall 1729630 1737076 1727469 9607 2161 

MIT-BIH Atrial Fibrillation Database (AFDB) 

04015 44005 44430 42944 1486 1061 

04043 61915 63218 61788 1430 127 

04048 39934 40109 39795 314 139 

04126 42860 43662 42190 1472 670 

04746 47873 49059 47787 1272 86 

04908 61760 63136 61030 2106 730 

04936 53646 54981 50786 4195 2860 

05091 36793 35126 34036 1090 2757 

05121 49881 47712 45824 1888 4057 

05261 45534 46524 45348 1176 186 

06426 55155 54385 52309 2076 2846 

06453 34837 35122 34296 826 541 

06995 55189 56357 54998 1359 191 

07162 39298 40302 8698 31604 30600 

07859 60266 61669 57094 4575 3172 

07879 56594 57887 56302 1585 292 
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Record Annotated Detected True positive False positive False negative 

07910 36599 37809 36590 1219 9 

08215 43356 44195 43219 976 137 

08219 59293 60714 58772 1942 521 

08378 45515 46308 44779 1529 736 

08405 58856 60313 58525 1788 331 

08434 39850 40753 39752 1001 98 

08455 59552 59395 59055 340 497 

Overall 1128561 1143166 1075917 67249 52644 

MIT-BIH Long-Term ECG Database (LTDB) 

14046 115278 108264 108143 121 7135 

14134 49632 49637 49625 12 7 

14149 144818 144463 144355 108 463 

14157 88104 88090 88057 33 47 

14172 66006 65732 65626 106 380 

14184 101490 101405 101405 0 85 

15814 103354 102957 102826 131 528 

Overall 668682 660548 660037 511 8645 

MIT-BIH Arrhythmia Database (MITDB) 

100 2273 2272 2272 0 1 

101 1865 1868 1864 4 1 

102 2187 2187 2184 3 3 

103 2084 2083 2083 0 1 

104 2229 2220 2200 20 29 

105 2572 2597 2560 37 12 

106 2027 1959 1959 0 68 

107 2137 2134 2134 0 3 

108 1763 1759 1730 29 33 

109 2532 2521 2521 0 11 

111 2124 2124 2123 1 1 

112 2539 2540 2539 1 0 

113 1795 1794 1794 0 1 

114 1879 1878 1875 3 4 

115 1953 1952 1952 0 1 

116 2412 2386 2384 2 28 

117 1535 1536 1535 1 0 

118 2278 2279 2278 1 0 

119 1987 1987 1987 0 0 

121 1863 1861 1861 0 2 

122 2476 2476 2476 0 0 

123 1518 1518 1518 0 0 

124 1619 1618 1618 0 1 

200 2601 2607 2593 14 8 
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Record Annotated Detected True positive False positive False negative 

201 1963 1917 1917 0 46 

202 2136 2125 2125 0 11 

203 2980 2918 2885 33 95 

205 2656 2652 2647 5 9 

207 1860 2048 1795 253 65 

208 2955 3051 2898 153 57 

209 3005 3005 3005 0 0 

210 2650 2605 2600 5 50 

212 2748 2748 2748 0 0 

213 3251 3241 3241 0 10 

214 2262 2257 2255 2 7 

215 3363 3356 3355 1 8 

217 2208 2204 2202 2 6 

219 2154 2152 2152 0 2 

220 2048 2047 2047 0 1 

221 2427 2415 2415 0 12 

222 2483 2467 2465 2 18 

223 2605 2579 2579 0 26 

228 2053 2073 2039 34 14 

230 2256 2256 2256 0 0 

231 1571 1571 1571 0 0 

232 1780 1783 1779 4 1 

233 3079 3068 3068 0 11 

234 2753 2748 2748 0 5 

Overall 109494 109442 108832 610 662 
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Appendix VII. Detection of P- and T-waves 
Results per record 

Table 8 – Detection of P- and T-waves, results per record 

Record Annotated Detected True positive False positive False negative 

P-wave detection using the MIT-BIH QT Database (QTDB) 

100 1129 1133 1128 5 1 

103 1047 1748 862 886 185 

114 817 964 749 215 68 

116 1019 1247 978 269 41 

117 765 765 764 1 1 

123 751 756 751 5 0 

213 1573 1631 1531 100 42 

223 1042 1373 966 407 76 

230 1064 1122 746 376 318 

231 729 742 716 26 13 

233 1144 1274 1103 171 41 

301 1282 1269 1136 133 146 

302 1497 1497 1493 4 4 

306 1036 1099 1029 70 7 

307 849 855 848 7 1 

308 1202 1278 1175 103 27 

803 953 1020 950 70 3 

808 899 903 896 7 3 

811 694 731 686 45 8 

820 1073 1156 1070 86 3 

821 1447 1236 1196 40 251 

840 931 1296 832 464 99 

847 784 840 776 64 8 

853 988 1099 706 393 282 

871 911 961 895 66 16 

872 952 984 950 34 2 

873 342 965 265 700 77 

883 891 1037 234 803 657 

891 1045 1296 806 490 239 

16265 712 1118 709 409 3 

16272 846 850 838 12 8 

16273 818 1218 812 406 6 

16420 1062 1062 1061 1 1 

16483 1085 1085 1085 0 0 

16539 916 926 915 11 1 

16773 990 1016 984 32 6 
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Record Annotated Detected True positive False positive False negative 

16786 921 1023 919 104 2 

16795 759 769 758 11 1 

17453 1045 1046 1040 6 5 

e0104 799 801 798 3 1 

e0106 894 895 892 3 2 

e0107 248 812 183 629 65 

e0110 854 886 589 297 265 

e0111 906 905 904 1 2 

e0112 656 777 547 230 109 

e0114 413 704 387 317 26 

e0116 511 746 196 550 315 

e0121 1430 1427 1421 6 9 

e0122 1412 1412 1412 0 0 

e0124 781 1121 779 342 2 

e0126 925 1367 869 498 56 

e0129 664 690 469 221 195 

e0133 839 838 838 0 1 

e0136 661 987 516 471 145 

e0166 809 871 799 72 10 

e0170 893 911 886 25 7 

e0203 1229 1345 1189 156 40 

e0210 1061 1091 1057 34 4 

e0211 1551 1574 1550 24 1 

e0303 1042 1075 1040 35 2 

e0405 1203 1307 910 397 293 

e0406 957 994 947 47 10 

e0409 1648 792 767 25 881 

e0411 1144 1240 1134 106 10 

e0509 1001 1134 999 135 2 

e0603 867 886 504 382 363 

e0604 1030 1178 1010 168 20 

e0606 1435 1445 1431 14 4 

e0607 1181 1181 1180 1 1 

e0609 1119 1126 1110 16 9 

e0612 739 750 698 52 41 

e0704 1092 1176 888 288 204 

30 1008 1046 957 89 51 

31 1038 1140 974 166 64 

32 1192 1191 1097 94 95 

33 523 545 522 23 1 

34 582 914 543 371 39 

38 189 18 0 18 189 
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Record Annotated Detected True positive False positive False negative 

39 1147 1169 1112 57 35 

40 823 1024 350 674 473 

41 920 1361 568 793 352 

42 412 1243 120 1123 292 

43 1175 1428 1046 382 129 

44 1040 1308 981 327 59 

45 739 981 590 391 149 

46 612 890 182 708 430 

47 883 926 869 57 14 

48 1335 1400 1330 70 5 

49 751 785 132 653 619 

51 747 1009 728 281 19 

52 1402 1437 1368 69 34 

17152 1625 1626 1625 1 0 

14046 885 1258 882 376 3 

14157 910 1076 878 198 32 

14172 659 675 657 18 2 

15814 1006 1005 978 27 28 

Overall 91607 102289 82746 19543 8861 

T-wave detection using the MIT-BIH QT Database (QTDB) 

100 1981 1127 1113 14 868 

103 1048 1048 1047 1 1 

114 963 857 827 30 136 

116 1188 1185 1176 9 12 

117 765 765 765 0 0 

123 771 756 749 7 22 

213 1768 1633 1608 25 160 

223 2098 1304 1284 20 814 

230 1248 1077 867 210 381 

231 883 732 715 17 168 

233 1538 1325 1229 96 309 

301 1664 1241 1238 3 426 

302 1513 1498 1497 1 16 

306 1045 1039 741 298 304 

307 859 852 850 2 9 

308 1306 1266 1260 6 46 

803 1037 1025 960 65 77 

808 941 902 183 719 758 

811 700 703 700 3 0 

820 1730 1142 972 170 758 

821 1558 1553 1549 4 9 

840 1306 1178 1175 3 131 
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Record Annotated Detected True positive False positive False negative 

847 814 802 776 26 38 

853 1302 1111 854 257 448 

871 1057 914 912 2 145 

872 1026 988 958 30 68 

873 865 859 857 2 8 

883 1163 892 876 16 287 

891 1629 1266 1231 35 398 

16265 1032 1031 1030 1 2 

16272 849 850 849 1 0 

16273 1112 1110 1110 0 2 

16420 1175 1063 1062 1 113 

16483 1084 1086 1083 3 1 

16539 931 922 919 3 12 

16773 1064 1008 1005 3 59 

16786 925 924 923 1 2 

16795 759 760 759 1 0 

17453 1143 1047 1045 2 98 

e0104 1200 801 738 63 462 

e0106 879 896 856 40 23 

e0107 845 812 659 153 186 

e0110 906 872 869 3 37 

e0111 1137 906 888 18 249 

e0112 685 684 514 170 171 

e0114 926 698 517 181 409 

e0116 840 558 542 16 298 

e0121 1431 1427 1423 4 8 

e0122 1414 1414 1412 2 2 

e0124 1181 1120 1118 2 63 

e0126 1772 944 944 0 828 

e0129 756 675 618 57 138 

e0133 873 839 822 17 51 

e0136 855 809 805 4 50 

e0166 923 811 806 5 117 

e0170 900 897 895 2 5 

e0203 2271 1246 1227 19 1044 

e0210 1080 1063 1061 2 19 

e0211 1593 1574 1573 1 20 

e0303 1363 1044 1042 2 321 

e0405 1420 1215 1213 2 207 

e0406 975 959 957 2 18 

e0409 1780 775 774 1 1006 

e0411 1292 1201 1201 0 91 
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Record Annotated Detected True positive False positive False negative 

e0509 1025 1023 1019 4 6 

e0603 1620 869 867 2 753 

e0604 1035 1031 1029 2 6 

e0606 1453 1441 1438 3 15 

e0607 2122 1177 1169 8 953 

e0609 1269 1124 1123 1 146 

e0612 769 751 749 2 20 

e0704 1786 1089 1089 0 697 

30 1152 1011 1007 4 145 

31 1113 1085 582 503 531 

32 1228 1191 971 220 257 

33 525 526 472 54 53 

34 907 897 894 3 13 

38 1559 527 525 2 1034 

39 1981 1170 1153 17 828 

40 1401 1069 1066 3 335 

41 1285 1365 783 582 502 

42 2025 1247 1159 88 866 

43 587 1349 445 904 142 

44 1476 1305 872 433 604 

45 857 971 723 248 134 

46 1259 838 546 292 713 

47 1593 885 761 124 832 

48 2373 1395 1329 66 1044 

49 1411 826 690 136 721 

51 415 749 227 522 188 

52 2188 1407 1380 27 808 

17152 1723 30 27 3 1696 

14046 1262 1258 1238 20 24 

14157 1340 1079 1057 22 283 

14172 732 663 578 85 154 

15814 1024 1029 999 30 25 

Overall 117632 97458 90195 7263 27437 

 

  



 

 

 82 

Appendix VIII. Boosted decision trees & AdaBoost 
 

Decision trees 

Decision trees consist of nodes, which are connected through branches. An example of a 

decision tree is shown in Figure 28. The tree starts with a root node at the top and ends 

with leaf nodes at the bottom. Between the leaf nodes and the root node can be internal 

nodes. All nodes are connected through branches, which represent outcomes of the 

decision rule as defined for the prior node.  

 

Figure 28 – Example of a decision tree with one root node, one internal node, three leaf nodes and four 

branches. x1 and x2 are the features, T1 and T2 are the thresholds for the decision rules and a and b are 

the output classes of the tree. 

Decision trees can be automatically generated by finding the best splits for each node. A 

split describes the initial node, the two branches with decision rules and the two connected 

nodes at a lower level in the decision tree. Each split is based on one feature from the 

feature set. Splits are made based on the splitting criterion. By default, Matlab uses the 

Gini’s diversity index as splitting criterion.55 The Gini’s diversity index (𝐺) is calculated using 

the following equation56: 

 
𝐺 = 1 − ∑(𝑝𝑖)2

𝑛

𝑖=1

 (Eq. A8.1) 

 

where 𝑝𝑖 is the probability of an object being classified to a particular class 𝑖 and 𝑛 is the 

total number of classes. This Gini’s diversity index is calculated for both branches 

originating at a node and the weighted average of both Gini’s diversity indices is used to 

determine the optimal split.  

An example is visualized in Figure 29, where the split based on a feature 𝑥 with a certain 

decision rule is evaluated: 𝑥 ≤ 𝑣 → go left, 𝑥 > 𝑣 → go right. Fifteen objects are used as 

input: eight objects from the positive class and seven objects from the negative class. Seven 

objects from the positive class satisfy the decision rule for the left branch and three objects 

from the negative class satisfy the decision rule for the left branch. The other objects satisfy 
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the decision rule for the right branch. First the Gini’s diversity index is calculated for the 

initial root node, next the left branch (𝑥 ≤ 𝑣) is evaluated and lastly the right branch 

(𝑥 > 𝑣) is evaluated.  

 

Figure 29 – Example of a decision tree with one root node and two leaf nodes. If the condition 𝒙 ≤ 𝒗 is 

satisfied, the left branch is taken, otherwise the right branch is taken. Fifteen objects are used as input; 

eight objects from the positive class and seven objects from the negative class. Seven objects from the 

positive class take the left branch and three objects from the negative class take the left branch. The 

other objects take the right branch. 

The initial root node shows eight times the positive class and seven times the negative 

class. Therefore, the Gini’s diversity index of the node (𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙) is: 

 
𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1 − ((

7

15
)

2

+ (
8

15
)

2

) ≈ 0.50 (Eq. A8.2) 

 

The left branch shows seven times the positive class and three times the negative class. 

Therefore, the Gini’s diversity index of this branch (𝐺𝑙𝑒𝑓𝑡) is: 

 
𝐺𝑙𝑒𝑓𝑡 = 1 − ((

7

10
)

2

+ (
3

10
)

2

) = 0.42 (Eq. A8.3) 

 

The right branch shows one time the positive class and four times the negative class. 

Therefore, the Gini’s diversity index of this branch (𝐺𝑟𝑖𝑔ℎ𝑡) is: 

 

Combining these values, the Gini’s diversity index of the decision made at the node based 

on feature 𝑥 with this decision rule equals: 

 
𝐺𝑟𝑖𝑔ℎ𝑡 = 1 − ((

1

5
)

2

+ (
4

5
)

2

) = 0.32 (Eq. A8.4) 
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𝐺𝑛𝑒𝑤 =

10

15
∙ 𝐺𝑙𝑒𝑓𝑡 +

5

15
∙ 𝐺𝑟𝑖𝑔ℎ𝑡 ≈ 0.39 (Eq. A8.5) 

 

The decrease in the Gini’s diversity index by using feature 𝑥 with the decision rule is used 

as a measure for decrease in impurity. When generating a classification tree, this value is 

maximized. In this case, the decrease in Gini’s diversity index is: 

  Δ𝐺 = 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐺𝑛𝑒𝑤 = 0.50 − 0.39 = 0.11 (Eq. A8.6) 

 

Training a decision tree is done using the following steps55: 

1. Find the best split for each feature. 

Values of the feature are sorted from smallest to largest. Each value is used as a 

split point. The split point is the “threshold” used for the node (e.g. when the split 

point is called 𝑣; if 𝑥 ≤ 𝑣 take the left branch, else take the right branch). The 

splitting criterion is maximized for each feature.  

2. Find the best split for the node. 

The best split is defined as the feature and corresponding split point which 

maximize the splitting criterion. 

3. Split the node using the split found in step 2. 

This process is repeated until at least one of the following stopping rules has been 

reached, which are standardly used by Matlab55: 

• The node is pure (i.e. only observations of one class are available for a 

node). 

• The number of observations at the current node is below a set threshold. 

• The number of observations in any of the generated nodes is below a set 

threshold. 

• The number of nodes will exceed a threshold, which is set manually. 

Boosted decision trees 

Using boosted decision trees, multiple decision trees are generated iteratively using 

different subsets of the dataset. By default, Matlab uses the AdaBoost algorithm to train 

these decision trees. In short, the AdaBoost algorithm generates a decision tree, assigns a 

weight to the decision tree based on the classification error, and generates a new subset 

of the data with misclassified data being more represented. The new subset of data is used 

to generate the next decision tree. This is repeated until a stopping criterion is satisfied 

(e.g. a maximum number of iterations).57 

Weight of the decision tree 

The weight 𝛼𝑡 for a decision tree ℎ𝑡 with a classification error rate 𝜀(ℎ𝑡) is calculated as57: 

 
𝛼𝑡 =

1

2
ln (

1 − 𝜀(ℎ𝑡)

𝜀(ℎ𝑡)
) (Eq. A8.7) 
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The error rate 𝜀(ℎ𝑡) of the decision tree ℎ𝑡 is calculated as the number of misclassifications 

divided by the number of total classifications, taking into account the weights of the 

different objects which are classified. For the first iteration, weights of all objects are equal. 

This equation results in a high weight for decision trees for which 𝜀(ℎ𝑡) is small. Oppositely, 

if 𝜀(ℎ𝑡) tends to 1 (i.e. all classifications are wrong), the decision tree will be assigned a 

large negative weight. 

New subset of data 

When initiating the training of boosted decision trees, the initial weight for all objects 

(𝑊1(𝑖)) is set to 1/𝑛, where 𝑛 is the total number of objects. This indicates that for the first 

iteration, all objects contribute equally to the training of the decision tree. After training, 

the weights of the objects will be updated based on the object weights for the trained 

decision tree and the weight of the trained decision tree (𝛼𝑡)
57: 

 
𝑊𝑡+1(𝑖) = {

𝑊𝑡(𝑖)𝑒−𝛼𝑡

𝑊𝑡(𝑖)𝑒𝛼𝑡
            

if object 𝑖 was correctly classified

if object 𝑖 was incorrectly classified
 (Eq. A8.8) 

 

This results in an increased weight for objects which were incorrectly classified and a 

decreased weight for objects which were correctly classified. The weights are normalized 

to sum to one. The new subset of data for the next iteration is obtained. The weights are 

then used for training the next decision tree and to calculate the error rate. 

Hyperparameters 

Hyperparameters of a model are the number of decision trees to be generated, the number 

of splits per decision tree and the learning rate.44 The learning rate is used as a scaling 

factor for changing the object weights.58 With small learning rates, the difference 𝑊𝑡(𝑖) 

and 𝑊𝑡+1(𝑖) will be kept smaller, to avoid overfitting of the classifier to the dataset. 

However, the training process will take longer to converge to the optimal solution, since 

training is slowed. 
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Appendix IX. Bayesian optimization 

For this thesis, a boosted decision trees model was used with the number of decision trees 

and the number of splits per decision tree as optimizable hyperparameters. 

Hyperparameters of classifiers can be optimized using multiple methods. The most 

straightforward method is trying all possible inputs within a certain range for the 

hyperparameters, training the classifier, and determining the error for each input. However, 

this is extremely time-intensive when training complex classifiers. Therefore, the default 

method in Matlab, Bayesian optimization, is a more efficient one.59  

The aim of Bayesian optimization is estimating the vector of inputs 𝒙 for which a function 

𝑓(𝒙) reaches its optimum, without calculating 𝑓(𝒙) for all values of 𝒙.60, 61 For the boosted 

decision tree model, 𝑓(𝒙) describes the quality of the classifier using certain inputs for 

hyperparameters (𝒙). The quality of the boosted decision trees model is described by the 

number of incorrect classifications, which is the error function. It is important to note that 

in case of the error function, increased quality indicates a decrease in the error function. 

Therefore, although the aim is to reach a minimum error, the function 𝑓(𝒙) should be 

maximized. Bayesian optimization is an algorithm that works with a surrogate model 𝑓(𝒙) 

of the true function 𝑓(𝒙) and an acquisition function 𝜇(𝒙), where 𝒙 is a vector containing 

the hyperparameters. 𝜇(𝒙) describes the method for selecting points 𝒙 for which 𝑓(𝒙) 

should be evaluated. 

Gaussian processes 

The surrogate model 𝑓(𝒙) has an uncertainty for each value of 𝒙, which is represented by 

a Gaussian process. A Gaussian process describes the probability distribution function over 

all possible functions that fit a set of observations, as visualized in Figure 30.60 In other 

words, the Gaussian process is an indicator for the certainty that the surrogate model 𝑓(𝒙) 

equals the true function 𝑓(𝒙) at a point 𝒙. The Gaussian process is described by a mean 

function containing the expected values of 𝑓(𝒙), and the covariance matrix for 

observations of 𝑓(𝒙). 

 

Figure 30 - Example of a Gaussian process. The lines show functions drawn from the set of functions 

described by the Gaussian process. The shaded regions show for each value of 𝒙 twice the standard 

deviation (SD). 
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Covariance matrix 

A covariance matrix for two variables 𝒛𝟏 and 𝒛𝟐 can be described as54: 

 Σ(𝑥1, 𝑥2) = [
𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟏) 𝑐𝑜𝑣(𝒛𝟐, 𝒛𝟏)

𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟐) 𝑐𝑜𝑣(𝒛𝟐, 𝒛𝟐)
] = [

𝑣𝑎𝑟(𝒛𝟏) 𝑐𝑜𝑣(𝒛𝟐, 𝒛𝟏)

𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟐) 𝑣𝑎𝑟(𝒛𝟐)
] (Eq. A9.1) 

 

where 𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟐) is the covariance between 𝒛𝟏 and 𝒛𝟐, and 𝑣𝑎𝑟(𝒛𝟏) is the variance of 𝒛𝟏.  

The covariance between two variables 𝒛𝟏 and 𝒛𝟐 is defined as54: 

 𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟐) = 𝐸[(𝒛𝟏 − 𝐸(𝒛𝟏))(𝒛𝟐 − 𝐸(𝒛𝟐))] (Eq. A9.2) 

 

where 𝐸 is the expected value (or mean). By definition, 𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟐) = 𝑐𝑜𝑣(𝒛𝟐, 𝒛𝟏). 

The variance of a variable 𝒛𝟏 is defined as54: 

 𝑣𝑎𝑟(𝒛𝟏) = 𝐸 [(𝒛𝟏 − 𝐸(𝒛𝟏))
2

] (Eq. A9.3) 

 

Therefore, by definition 𝑐𝑜𝑣(𝒛𝟏, 𝒛𝟏) = 𝑣𝑎𝑟(𝒛𝟏). 

Radial Basis Function (RBF) kernel 

The covariance matrix for the Gaussian process is generated using a Radial Basis Function 

(RBF) kernel 𝐾(𝑥1, 𝑥2) showing a Gaussian distribution62, 63: 

 
𝐾(𝒙1, 𝒙2) = 𝜎2 ∙ 𝑒

−
1

2𝑙2(𝒙1−𝒙2)2

 (Eq. A9.4) 

 

where 𝒙1 − 𝒙2 is the difference in hyperparameters between two observations 𝒙1 and 𝒙2, 

and 𝜎 and 𝑙 are new hyperparameters of the RBF kernel describing the vertical scaling and 

the horizontal scaling of the Gaussian distribution, respectively. Therefore, if 𝒙1 − 𝒙2 tends 

to 0, this will result in 𝐾(𝒙1, 𝒙2) being close to 𝜎2. However, if 𝒙1 − 𝒙2 tends to ∞, 𝐾(𝒙1, 𝒙2) 

will be close to 0. In practice, this implies that two points 𝒙1 and 𝒙2 with only minor 

differences in hyperparameters have a high covariance, whereas two points 𝒙1 and 𝒙2 with 

large differences in hyperparameters have a low covariance. Furthermore, a smaller 𝑙 will 

result in steeper slopes in 𝐾(𝒙1, 𝒙2) and 𝜎 impacts the maximum value of 𝐾(𝒙1, 𝒙2). 

Using the RBF, the covariance matrix can be calculated as62, 63: 

 Σ(𝒙1, 𝒙2) = 𝐾(𝒙1, 𝒙2) + 𝐼𝜎𝒚
2 (Eq. A9.5) 

 

where 𝐼𝜎𝒚
2 describes how well the estimated function 𝑓(𝒙) fits through all observations of 

𝑓(𝒙). 

Predicting 

Using this covariance matrix, predictions can be made. Predictions of 𝑓(𝒙) are made for a 

finite amount of queried points 𝒙. The predicted values are stored in a vector 𝒚𝟏. First, 

observations of 𝑓(𝒙) are done, which are stored in a vector 𝒚𝟐. Bayes’ rule then states that 

if we know 𝒚𝟐, the probability of 𝒚𝟏 given 𝒚𝟐 (𝑝(𝒚𝟏|𝒚𝟐)) is defined as62, 63: 
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𝑝(𝒚𝟏|𝒚𝟐) =

𝑝(𝒚𝟐| 𝒚𝟏)𝑝(𝒚𝟏)

𝑝(𝒚𝟐)
=

𝑝(𝒚𝟏, 𝒚𝟐)

𝑝(𝒚𝟐)
 (Eq. A9.6) 

 

where 𝑝(𝒚1, 𝒚𝟐) is the prior probability of 𝒚𝟏 and 𝒚𝟐, and 𝑝(𝒚𝒏) the prior probability of 𝒚𝒏.  

Using this property together with the covariance matrix of 𝒚𝟏 and 𝒚𝟐, the predictive mean 

can be calculated. The covariance matrix of 𝒚𝟏 and 𝒚𝟐 is defined as: 

 [
𝐴 𝐶

𝐶𝑇 𝐵
] = [

𝑣𝑎𝑟(𝒚𝟏) 𝑐𝑜𝑣(𝒚𝟐, 𝒚𝟏)

𝑐𝑜𝑣(𝒚𝟏, 𝒚𝟐) 𝑣𝑎𝑟(𝒚𝟐)
] (Eq. A9.7) 

 

Then, as shown by Rasmussen et al., the predictive mean of 𝒚𝟏 given 𝒚𝟐 is calculated as63: 

 𝜇𝒚𝟏|𝒚𝟐
= 𝜇𝒚𝟏

+ 𝐶𝐵−1(𝒚𝟐 − 𝜇𝒚𝟐
) (Eq. A9.8) 

 

where 𝜇𝒚𝟏
 is the mean of 𝑦1 and 𝜇𝒚𝟐

 is the mean of 𝑦2. 

Next, the predictive covariance of 𝒚𝟏 given 𝒚𝟐 is calculated as63: 

 Σ𝒚𝟏|𝒚𝟐
= 𝐴 − 𝐶𝐵−1𝐶𝑇 (Eq. A9.9) 

 

where 𝐴 indicates the uncertainty without having done any observations (since 𝒚𝟐 is not 

involved in 𝐴), and 𝐶𝐵−1𝐶𝑇 describes a reduction in uncertainty as a result of the 

observations in 𝒚𝟐. Using this method, predictions of 𝑓(𝒙) can be done and the uncertainty 

of the predictions can be calculated. 

Acquisition function 

The surrogate model is optimized by calculating the true values of 𝑓(𝒙) at certain values 

for 𝒙, as visualized in Figure 31.62, 63 The values of 𝒙 for which 𝑓(𝒙) should be evaluated are 

determined by the acquisition function. An acquisition function can be set to explore or to 

exploit. An acquisition function focused on exploration tries to decrease uncertainty in 

regions with a high uncertainty, whereas an acquisition function focused on exploitation 

tries to decrease uncertainty in regions with optimal values of 𝑓(𝒙).64 In other words, 

exploration is used to find an optimum in a new region, whereas exploitation is used to 

find the precise location of the optimum. In practice, acquisition functions are designed to 

both explore and exploit. Again, it is important to note that in case of the error function, 

increased quality 𝑓(𝑥) indicates a decrease in the error function.  

By default, Matlab uses an acquisition function based on the expected improvement (𝐸𝐼)59: 

 𝐸𝐼𝑛(𝒙) = 𝐸𝑛 [[𝑓(𝒙) − 𝑓𝑛
∗]

+
] (Eq. A9.10) 

 

where 𝑛 is the iteration, 𝐸𝑛 is the expected value (or mean) for the 𝑛th iteration, 𝑓(𝒙) is the 

estimated quality of the surrogate model with input 𝒙, and 𝑓𝑛
∗ is the maximum quality of 

𝑓(𝒙) for all evaluated values of 𝒙. Therefore, 𝑓(𝒙) − 𝑓𝑛
∗ is the expected difference in quality 

between a point 𝑥 and the previous best. The + indicates that only the positive part is 

considered. In other words, 𝑎+ = max (𝑎, 0). 
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Figure 31 – Example of a Gaussian process with observed values of 𝒇(𝒙) at point 𝒙. The left panel shows 

functions from the prior distribution. The right panel shows the functions of the posterior distribution 

fitting the two observed values of 𝒇(𝒙) for two points 𝒙. The solid line (–) is the mean prediction. The 

dashed lines show functions drawn from the set of functions described by the Gaussian process. The 

orange points indicate the evaluated points of 𝒇(𝒙). The shaded regions show for each value of 𝒙 twice 

the standard deviation (SD). Adapted version of figure by Rasmussen et al.63 

The acquisition function further considers the probability of 𝑓(𝒙) resulting in a better 

quality than 𝑓𝑛
∗. As described by Frazier, this results in the following acquisition function 

𝛼(𝒙)60: 

 
𝛼𝑛(𝒙) = 𝐸𝑛[Δ𝑛(𝒙)+] + 𝜎𝑛(𝒙)𝜑 (

Δ𝑛(𝒙)

𝜎𝑛(𝒙)
) − |Δ𝑛(𝒙)|Φ (

Δ𝑛(𝒙)

𝜎𝑛(𝒙)
) (Eq. A9.11) 

 

where 𝑛 is the iteration, 𝐸𝑛 is the expected value (or mean) for the 𝑛th iteration, Δ𝑛(𝒙) =

𝑓(𝒙) − 𝑓𝑛
∗, 𝜎𝑛(𝒙) is the standard deviation of the probability distribution function for the 

𝑛th iteration, 𝜑 is the standard normal density function, and Φ is the standard normal 

distribution function. 

Using the acquisition function, a point 𝒙 is determined, for which the quality of the model 

is most likely to improve maximally. Next, the real function 𝑓(𝒙) is evaluated for that point 

𝒙 and the predicted means and covariances of the Gaussian process are updated. Using 

this updated Gaussian process, the acquisition function is determined and so we come full 

circle again.60 This process is repeated until either a maximum number of iterations, a 

maximum amount of time, or a manual stopping criterion has been reached.  

Summary of Bayesian optimization 

In short, Bayesian optimization can be used to estimate the optimal hyperparameters for 

a model without evaluating the model for all possible hyperparameters. Bayesian 

optimization fits a Gaussian process over the data, describing the expected values and 

uncertainties for each queried 𝒙. Using these expected values and uncertainties, a point 𝒙 

is selected for which the acquisition function is optimal. For this point 𝒙, the real value of 

𝑓(𝒙) is determined. Next, the Gaussian process is updated, as this new value results in less 

uncertainty. Finally, the new expected values and uncertainties are used to update the 

acquisition function and the next iteration starts.  
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Appendix X. Relative estimated feature importance 
 

Table 9 – Estimated feature importance for all features relative to the maximum estimated feature 

importance (excluding noise), which is the IQR of the ratio between the RR-interval preceding an R-

peak and the RR-interval succeeding an R-peak. 

Features Relative estimated 

feature importance 

RR-interval characteristics 

1. Number of beats per minute (bpm) 0.3020 

2. Median interval between Ri and Ri+1 (seconds) 0.1139 

3. IQR of interval between Ri and Ri+1 (seconds) 0.1040 

4. Median interval between Ri-1 and Ri+1 (seconds) 0.1289 

5. IQR interval between Ri-1 and Ri+1 (seconds) 0.1126 

6. Median ratio between the RR-interval preceding an R-peak and 

the RR-interval succeeding an R-peak 

0.1107 

7. IQR of ratio between the RR-interval preceding an R-peak and the 

RR-interval succeeding an R-peak 

1 (maximum) 

8. Poincaré plot: standard deviation of distances of points to the -

45°-line 

0.1586 

9. Poincaré plot: standard deviation of distances of points to the 

45°-line 

0.0741 

10. Shannon entropy of the RR-intervals 0.1036 

Peak-interval characteristics 

1. Median interval between P-peak and Q-peak (seconds) 0.1351 

2. IQR of interval between P-peak and Q-peak (seconds) 0.9044 

3. Median interval between Q-peak and S-peak (seconds) 0.0374 

4. IQR of interval between Q-peak and S-peak (seconds) 0.2348 

5. Median interval between Q-peak and T-peak (seconds) 0.0201 

6. IQR of interval between Q-peak and T-peak (seconds) 0.0248 

7. Median corrected interval between Q-peak and T-peak (seconds) 0.0656 

8. IQR of corrected interval between Q-peak and T-peak (seconds) 0.0232 

9. Median interval between S-peak and T-peak (seconds) 0.0376 

10. IQR of interval between S-peak and T-peak (seconds) 0.0754 

Amplitude characteristics 

1. Median amplitude from Q-peak to R-peak 0.0396 

2. IQR of amplitude from Q-peak to R-peak 0.0800 

3. Median amplitude from R-peak to S-peak 0.2809 

4. IQR of amplitude from R-peak to S-peak 0.0684 

5. Median difference in amplitude of Ri and Ri+1 0.0441 

6. IQR of difference in amplitude of Ri and Ri+1 0.0731 

7. Median difference in amplitude of Ri-1 and Ri+1 0.0354 

8. IQR of difference in amplitude of Ri-1 and Ri+1 0.0525 

9. Median ratio between the amplitude differences of Ri-1Ri and 

RiRi+1 

0.0349 

10. IQR of ratio between the amplitude differences of Ri-1Ri and RiRi+1 0.0152 
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Features Relative estimated 

feature importance 

11. Poincaré plot of differences in RR-amplitude: standard deviation 

of distances of points to the -45°-line 

0.0715 

12. Poincaré plot of differences in RR-amplitude: standard deviation 

of distances of points to the 45°-line 

0.0441 

P-wave characteristics 

1. Percentage of R-peaks without P-waves 0.0524 

2. Percentage of R-peaks with one P-wave 0.4394 

3. Percentage of R-peaks with multiple P-waves 0.0444 

4. Median amplitude of P-wave 0.1082 

5. IQR of amplitude of P-wave 0.0339 

6. 85th percentile of ratio between amplitudes of P-wave and QRS-

complex 

0.0366 

7. Median ratio between amplitudes of P-wave and QRS-complex 0.0426 

8. IQR of ratio between amplitude of P-wave and QRS-complex 0.0449 

T-wave characteristics 

1. Percentage of R-peaks without T-wave 0.0020 

2. Percentage of R-peaks with one T-wave 0.0022 

3. Median amplitude of T-wave 0.0800 

4. IQR of amplitude of T-wave 0.0617 

5. Median ratio between amplitudes of T-wave and QRS-complex 0.0400 

6. IQR of ratio between amplitudes of T-wave and QRS-complex 0.0563 

QRS-morphology characteristics 

1. Number of different QRS-morphologies 0.0501 

2. Percentage of QRS-complexes with the most common 

morphology 

0.0956 

3. Percentage of QRS-complexes with the second most common 

morphology 

0.1084 

Autocorrelation characteristics 

1. Median autocorrelation of ECG segment 0.0628 

2. IQR of autocorrelation of ECG segment 0.0435 

3. Ratio between number of peaks in the autocorrelation and 

number of QRS-complexes 

0.1549 

4. Median amplitude of peaks in the autocorrelation 0.1774 

5. IQR of amplitude of peaks in the autocorrelation 0.0979 

6. Median time interval between peaks in the autocorrelation 

(seconds) 

0.0648 

7. IQR of time interval between peaks in the autocorrelation 

(seconds) 

0.0601 

Noise (not included in Figure 20) 

Percentage of excluded samples for R-peak detection 3.6815 
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