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Abstract. Flood defence systems can be seen as multiple
interdependent flood defences. This paper advances an ap-
proach for finding an optimal configuration for flood defence
systems based on an economic cost–benefit analysis with an
arbitrary number of interdependent flood defences. The pro-
posed approach is based on a graph algorithm and is, thanks
to some beneficial properties of the application, able to rep-
resent large graphs with strongly reduced memory require-
ments. Furthermore, computational efficiency is achieved by
delaying cost calculations until they are actually needed by
the graph algorithm. This significantly reduces the required
number of computationally expensive flood risk calculations.
In this paper, we conduct a number of case studies to compare
the optimal paths found by the proposed approach with the
results of competing methods that generate identical results.
The proposed approach is set up in a generic way and imple-
ments the shortest-path approach for optimising cost–benefit
analyses of interdependent flood defences with computation-
ally expensive flood risk calculations.

1 Introduction

Concerns regarding the safety of people and assets in flood-
prone areas has led to the construction of flood defence sys-
tems all around the world. Some flood-prone areas, for ex-
ample a large part of the Netherlands, face huge potential
loss of life and economic value should heavy flooding occur.

This has led to extensive research regarding the estimation of
flood risk in flood-prone areas. Coupled to this quantification
of the flood risk is the question of how safe a flood-prone
area should be and what the acceptable risk should be (Vri-
jling et al., 1998). A common approach to help answer this
question is a cost–benefit analysis.

Economic optimisation of flood defences, as applied in
the Netherlands, is based on a cost–benefit analysis of the
sum of the annual flood risks balanced against the sum of
the investment costs for flood defences. This type of cost–
benefit analysis was originally developed in the 1950s by
Van Dantzig (1956) and is still used and discussed to this day
(Eijgenraam, 2006; Kind, 2014). The basic principle behind
the economic optimisation of flood defences is finding the
minimum of the total costs (TC) as illustrated in Fig. 1. The
TC (Eq. 1) are the sum of the annual risk costs

(∑p

t=0R(t)
)

and investment costs
(∑p

t=0I (t)
)

over a given time period
(p years). The TC are expressed as the present value of the
(future) annual risk costs and investment costs, which means
these costs are discounted at a discount rate r . The annual
risk cost R(t) is defined in Eq. (2) as the annual probabil-
ity of flooding at time t (Pflood,t ), multiplied by the expected
damages due to flooding at time t (Dflood,t ). An alternative
term for the annual risk cost is the expected annual damage
(EAD). Generally speaking, a larger investment will lead to
a lower EAD; this is where the economic optimisation tries
to find an optimal solution (i.e. the lowest total cost).
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Figure 1. Schematic view of an economic cost–benefit analysis for
a flood defence. The total costs are the sum of the risk and invest-
ment costs, and the optimum can be found at the minimum of the
total costs.

TC=
p∑
t=0

R(t)e−rt +

p∑
t=0

I (t)e−rt (1)

R(t)= EAD(t)= Pflood,t ·Dflood,t (2)

Recent publications regarding economically optimal
safety targets for the Netherlands can be found in the publi-
cations by Eijgenraam (2006), Brekelmans et al. (2012) and
Zwaneveld and Verweij (2014b, a). In Eijgenraam (2006)
and Eijgenraam et al. (2016), a set of equations was derived
which describe the economically optimal safety target for a
single homogeneous flood defence system (i.e. dike ring).
Because they incorporated influence of time-dependent pa-
rameters such as economic growth and climate model param-
eters, these equations also describe the number of (repeated)
investments, as well as the optimal time between these in-
vestments. Repeated investments are necessary to “repair”
the effect of, for example, economic growth (i.e. a higher ex-
pected losses in case of a flood) or subsidence (i.e. a higher
flood probability). A schematic view of the result of such
an economic optimisation with time-dependent parameters
is shown in Fig. 2. This figure shows that as the safety level
goes down over time, recurring investments are needed to re-
pair the effects over time of time-dependent parameters such
as economic growth and climate change.

The equations described in Eijgenraam et al. (2016) are
analytically solvable and the method results in a global min-
imum of the total costs for a relatively simple homogeneous
system. However, dike rings in the Netherlands often consist
of mutually different, nonhomogeneous sections, in which
case the homogenous case needs to be extended to account
for these nonhomogeneous sections. In Brekelmans et al.
(2012), a possible heuristic solution is given by modelling the
problem as a mixed-integer nonlinear programming problem.
Zwaneveld and Verweij (2014b) improved on this method by

Time →
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→
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Investment in safety

Figure 2. Schematic view of an economic cost–benefit analysis for
a flood defence, with time-dependent parameters. Because of these
time-dependent parameters (e.g. economic growth or subsidence),
recurring investments in safety are needed.

developing a graph-based modelling approach to solve the
nonhomogeneous case to proven optimality.

Eijgenraam (2006), Brekelmans et al. (2012) and Zwan-
eveld and Verweij (2014b) assess independent flood-prone
areas in which individual flood defences within a dike ring
area fail under identical circumstances. No interdependen-
cies exist in their modelling approaches, but the notion of
interdependent flood defences expresses that failure of one
flood defence might alter the EAD of other defences. More-
over, a dike ring may fail under different circumstances. A
practical example of a flood defence system with multiple
interdependent flood defences is shown in Fig. 3. In this fig-
ure, a breach occurring at upstream area B impacts the flood
risk at area A. This impact can either increase or decrease the
flood risk at area A. An increase would occur if a shortcut
is formed between area A and an already flooded area B at
arrow 2, whereas a decrease would occur if the breach at ar-
row 1 reduces the probability of a breach at arrow 3 (because
part of the river discharge is diverted into area B). This no-
tion of interdependent flood defences has been, from a flood
risk perspective, the main topic of a number of recent papers
(e.g. Vorogushyn et al., 2010, 2012; Courage et al., 2013; de
Bruijn et al., 2014). All of these papers showed that viewing
the flood defence system as a whole will result in different
EAD estimates than viewing the flood defences as separate,
independent defences.

As the EAD changes, the economic optimisation will also
be affected. Thus, it makes sense to explicitly integrate the
effect of multiple interdependent flood defences on the EAD
in the economic optimisation routines. A method to pro-
vide a modelling approach to the economic optimisation of
a flood defence system with multiple dependent and inde-
pendent dikes was first presented in Zwaneveld and Ver-
weij (2014a). In their study (in Dutch), a graph-based mod-
elling approach is used to obtain economically optimal safety
norms and heights for multiple lines of flood defences. Fur-
thermore, they mentioned that the economic optimisation
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Figure 3. A hypothetical example of a system with interdependent
flood defences. The flood risk in area A is impacted not only by the
flooding probability at its own defence (arrow 3) but also by what
happens at the flood defence of area B (arrow 1) and the connecting
flood defences between area A and B (arrow 2).

problem can be formulated in the form of a minimal cost
flow graph or a shortest-path problem. Three approaches (to
solve economic optimal safety problems for multiple flood
defences) were identified by Zwaneveld and Verweij (2014a)
and Verweij (2014): (1) a heuristic approach based on closed
form formulas, (2) a dynamic programming/shortest-path ap-
proach (as also used in Eijgenraam et al., 2016) and (3) a
branch-and-cut/integer linear programming (ILP) approach.
In Zwaneveld and Verweij (2014a) the branch-and-cut/ILP
approach is preferred and applied. An English description of
the model in Zwaneveld and Verweij (2014a) can be found in
Yüceoglu (2015, chap. 5).

However, a consequence of using an ILP approach in
Zwaneveld and Verweij (2014a) is that, prior to starting the
optimisation routine, all EAD estimates for each and every
possible combination of flood defences in time need to be
computed. Generally speaking, finding EAD estimates for a
number of these combinations is not necessary. For example,
it is unlikely that it is economically optimal to keep all flood
defences at their lowest level for the next 300 years. Calculat-
ing these EAD estimates can be costly, especially if hydro-
dynamic interactions are included, since acquiring a single
EAD estimate can take hours (de Bruijn et al., 2014) or even
days (Courage et al., 2013). In these cases, computational
efficiency will be largely determined by the time it takes to
compute EAD estimates.

Furthermore, the method of Zwaneveld and Verweij
(2014a) is modelled in the modelling language GAMS and
solved using the commercial solver CPLEX. While the
method of Zwaneveld and Verweij (2014a) is, in principle,
applicable to an arbitrary number of lines of defence, in
practice the model code must be manually extended with
new equations to implement any additional lines of defence.
While these extensions are trivial for anyone with experi-
ence in integer programming and GAMS, we believe that by

automating these steps the threshold for using and applying
these models can be lowered.

Reducing the number of EAD estimates that will be com-
puted can be done based on the principle of “lazy evalua-
tion”, which delays calculations until they are actually re-
quired. However, lazy evaluation requires a tight coupling
between the EAD estimation and the economic optimisation
routine. This tight coupling needs to be technically and or-
ganisationally possible. Organisationally, this tight coupling
is possible in projects which are carried out by a single team
combining all relevant disciplines; in the remainder of this re-
search we assume that the organisational requirement is ful-
filled. Technically, the economic optimisation routine needs
to be able to dynamically call the EAD estimation func-
tion during its optimisation process. However, optimisation
routines typically expect a pre-calculated set of data, which
means an optimisation routine will need to be modified in or-
der to support lazy evaluation. One such optimisation routine
that can be easily implemented in a general programming
language and adapted to use lazy evaluation is the shortest-
path approach.

In the following section we further investigate the shortest-
path approach in order to solve the problem of an economic
optimisation for multiple interdependent flood defences. The
aim of this paper is to develop a generic, computationally
efficient approach for finding the economically optimal con-
figuration of a flood defence system with an arbitrary number
of interdependent flood defences which, for example, influ-
ence each other’s EAD. The reliability and performance (in
terms of number of EAD calculations) of finding economi-
cally optimal targets will be tested by comparing the results
of the proposed method with a number of benchmark studies.
We will accomplish this using the following approach:

– Computational efficiency will be primarily obtained by
minimising the number of (time-consuming) EAD com-
putations in the algorithm until they are actually re-
quired (i.e. lazy evaluation).

– A generically applicable, flexible representation of the
problem space will be presented which is able to use an
arbitrary number of defences. Specifically, this entails
generating a graph in an automated way based on an
arbitrary number of interdependent flood defences.

In Sect. 2, a description of the application and a description
of the applied algorithm are given. Implementation details,
focussed on the computational efficiency of the algorithm,
are discussed in Sect. 3, as well as a list of potential future
improvements to the algorithm. Next, the proposed approach
is applied to some simplified case studies in Sect. 4 and is
followed by a discussion (Sect. 5) regarding the relevance of
the proposed approach. Finally, the results and experiences
are concluded in Sect. 6.

www.nat-hazards-earth-syst-sci.net/17/1893/2017/ Nat. Hazards Earth Syst. Sci., 17, 1893–1906, 2017
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Figure 4. Graph where the vertices (dots) at each time step are con-
nected via edges (arrows) to the next time step.

2 An algorithm for flood defence systems with multiple
interdependent flood defences

2.1 Programmatic representation of the solution space

A common choice to present optimisation problems is to use
graph algorithms (Cormen, 2009). Regarding the economic
optimisation of flood defences, this choice was also made in
Zwaneveld and Verweij (2014b). An example of a graph for
a single flood defence is shown in Fig. 4. The graph shows
the possible investments over time for a single flood defence.
In this graph the vertices (dots) are the possible heights the
flood defence can have at a certain point in time. In order to
go the next point in time, edges are drawn which connect a
vertex to all the possible vertices in the next point of time.

These points in time are not fixed; the amount and posi-
tion can be altered to the needs of a particular problem. In
practice, these points in time can be related to the (political)
decision process of a particular problem: if the relevant flood
defences are reviewed and (if necessary) reinforced every 5
years, it would make sense to have a graph that corresponds
to these points in time. Generally speaking, edges in a graph
can be directed or undirected. However, steps backwards in
time do not make sense for investment schemes. Therefore,
only edges directed forward in time are used. The edge cost
(or weight) of an edge is the total cost (EAD plus invest-
ment cost) of moving between the connected vertices. Fur-
thermore, it is assumed that flood defences will not be inten-
tionally decreased to a lower level, which is why, for exam-
ple, there are no edges running from h1 to h0. The starting
point of the graph is denoted with start in Fig. 4 at time tstart
at a height equal to the current height (h0).

In case of multiple flood defences, our method takes into
account that flood defences can be interdependent and inter-
act with each other hydrodynamically. This means that the
EAD of the system of defences can potentially be influenced
by each defence, which also means that each combination
of flood defence levels has to be considered relevant. For
a graph with multiple interdependent flood defences, these

combinations replace the height of a single flood defence on
the y axis in Fig. 4. These combinations of heights for multi-
ple flood defences can be obtained by computing the Carte-
sian product of the flood defence levels of all the involved
defences. For n flood defences, the Cartesian product equa-
tion for determining the combinations is shown in Eq. (3):

n∏
i=1

Xi =X1× . . .×Xn,

= {(x1, . . .,xn) |x1 ∈X1, . . .,xn,∈Xn} (3)

where Xi is a vector containing all the flood defence levels
of flood defence i, and xi is a realisation of vector Xi (i.e. a
flood defence level for flood defence i). If all vectors Xi are
of the same length y, the total number of combinations will
be yn.

The number of relevant system combinations reduces sig-
nificantly if each flood defence can be optimised indepen-
dently of the other flood defences in the system. The assump-
tion of independence can be made if none of the flood de-
fences in a system have a (significant) influence on the EAD
estimates of the other flood defences. The total number of
system configurations under the independence assumption is
n·y, as each flood defence could then be optimised separately
(e.g. using a graph per flood defence similar to the graph
shown in Fig. 4). If only some defences are independent from
other flood defences in the system, this is considered a spe-
cial case of our approach. In that case, our method of using
the Cartesian product is still valid and applicable, although it
will result in a larger-than-necessary graph. In case of some
independent elements, a possible approach to reduce the size
of the graph is discussed in Sect. 3.4.

Figure 5 shows an example of the Cartesian product for
two flood defences, where each flood defence has two possi-
ble heights. The graph in Fig. 5 resembles the graph in Fig. 4
for a single flood defence. Similar to Fig. 4, edges in Fig. 5
are only drawn to vertices containing sets of heights equal or
greater than the set of heights in the vertex at the origin of the
edge. However, because Fig. 5 has two defences instead of
one, the outgoing edges are slightly different when compared
to Fig. 4. For example, the height combination hA0,hB1 is
never connected to hA1,hB0 (since that would correspond to
a reduction in height for defence B).

2.2 Implementation of a graph algorithm

In general terms, a graph algorithm will iterate over vertices
in a graph in an effort to find the path with the lowest costs
between a given start and end vertex. However, in the graphs
of Fig. 4 and Fig. 5 tend contains a number of possible end
points, which means that the algorithm will need to find as
many optimal paths as there are end points in the graph. In
order to only have to run the algorithm once, a stop vertex is
added; the graph of Fig. 5 with an additional stop vertex is
shown in Fig. 6. The edges running towards this stop vertex

Nat. Hazards Earth Syst. Sci., 17, 1893–1906, 2017 www.nat-hazards-earth-syst-sci.net/17/1893/2017/
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Figure 5. Graph with vertices (dots) and edges (arrows) for two
defences (A and B). Each defence has two possible heights.

are all given a weight of zero. Now, the algorithm only has to
find a single optimal path between tstart and tstop. Why this is
an efficient contribution is illustrated in Sect. 2.4.

The graph as shown in Fig. 6 is a graph with directed non-
negative edges. For this kind of graph, a number of algo-
rithms can be used to find the shortest (optimal) path in a
graph, for example: the Dijkstra algorithm (Dijkstra, 1959),
the A* algorithm (Hart et al., 1968) and the uniform cost
search (UCS; e.g. Verwer et al., 1989). All three can be con-
sidered to be part of the family of best-first search algorithms,
where both the Dijkstra and the UCS algorithms can be seen
as a special case of the A* algorithm.

Typically, the best-first search algorithms are implemented
with a minimum-priority queue. A minimum-priority queue
holds a sorted list of vertices, where the sorting is based on
the cost of reaching that vertex from the start vertex; the ver-
tex with the lowest cost is at the top of the queue. This list of
vertices in the priority queue constitutes of, depending on the
implementation, either all vertices in the graph (Dijkstra as
implemented in Cormen, 2009) or only the vertices already
visited by the graph algorithm (UCS). A comparison between
the two algorithms can be found in Felner (2011), where the
priority queue as implemented by UCS was found to be faster
and using less memory. We consider this a relevant advan-
tage, as the number of vertices can be large when using the
Cartesian product of flood defence levels (Sect. 2.1). For this
reason, we chose to implement the UCS algorithm.

In Eijgenraam et al. (2016), a dynamic programming ap-
proach was used, which is related to the shortest-path algo-
rithms discussed thus far. However, the Dijkstra algorithm
(and by extension the UCS and A* algorithms) are seen in
Cormen (2009) as a part of the “greedy” shortest-path al-
gorithms family, which in Cormen (2009) is clearly defined
as a different type of algorithm than dynamic programming.
Greedy algorithms are typically much faster than dynamic
programming approaches, at the expense of not always find-
ing the optimal solution (because less possible solutions are
considered). The optimality condition is further discussed in
Sect. 2.4. Nevertheless, because less possible solutions are
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Figure 6. The graph of Fig. 5 with an additional stop vertex.

considered in a greedy algorithm, this can also lead to a part
of the graph never being visited by a greedy algorithm. Com-
bined with lazy evaluation, this can lead to a significant re-
duction in the number of EAD calculations which are actu-
ally executed; see also Sect. 3.3. Applying the UCS algo-
rithm to a graph such as shown in Fig. 6 begins with creating
a priority queue which only contains the start vertex. After
this initialisation, the iteration process is started. Each iter-
ation starts with taking out the vertex with the lowest cost
known thus far from the priority queue (which is the top en-
try in the queue). Taking out means the optimal route (lowest
cost) from the start vertex to this vertex now known. The ver-
tex that has just been taken out of the priority queue is then
queried in the graph to find all the connecting vertices in the
next time step. Each connecting vertex is added to the prior-
ity queue if the vertex is not already in the queue. If the ver-
tex already exists in the queue, the weight is only updated if
the newly proposed cost is lower than the known cost so far.
Iteration continues until at the start of an iteration the stop
vertex is the top entry in the priority queue. An actual exam-
ple of the application of this algorithm will be elaborated in
Sect. 2.3.

2.3 Example application of the algorithm in an
economic optimisation

This section shows a simple example of an economic optimi-
sation for a single flood defence. While this example uses a
single flood defence for simplicity, the same principles ap-
ply for multiple flood defences. Regarding the investment
costs and EAD estimates, if a vertex at t1 is connected to
another vertex with a larger height at t2, it is assumed that
the actual heightening occurs at t1. This leads to a slightly
different graph than the conceptual implementation shown in
Sect. 2.1 and 2.2 and is emphasised by drawing the edges of
the figures in this example (i.e. Figs. 7, 8 and 9) in a way
which is visually more consistent with the timing of the in-
vestment decision.

The result of the first two iterations is shown in Fig. 7,
where the start vertex is labelled with the number 1. In this

www.nat-hazards-earth-syst-sci.net/17/1893/2017/ Nat. Hazards Earth Syst. Sci., 17, 1893–1906, 2017
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Figure 7. The first two iterations of the graph algorithm with a minimum-priority queue. The vertices available in the priority queue are those
with total costs above their respective vertices, and the first three entries are shown in the column on the right. Note that because the choice
was made to connect the start vertex to vertex 2, vertices 3–6 will not be visited.
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Figure 8. After six iterations with the graph algorithm, vertices 29, 30 and 31 are added to the priority queue. However, in this case the
algorithm makes a step back in time, because vertex 25 is the item with the lowest total cost in the priority queue.
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Figure 9. During the seventh iteration, the old path is abandoned, and an alternative path with vertex 25 instead of vertex 24 is taken. Vertices
30 and 31 are already in the priority queue (calculated from vertex 24) and will only get updated if the total costs from vertex 25 are lower
(which is the case for vertex 30).
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example, the start vertex is associated with a height of 4.25 m
and starts at t = 0, identical to vertex 2. Because the path to
vertex 2 is the only possible path, vertex 2 is the only addition
to the priority queue. In the next iteration, vertex 2 is taken
out of the priority queue as it is the vertex with the lowest
total cost. The total cost to reach vertex 2 is 0, because there
was no heightening (height remains at 4.25 m) and no time
expired (tstart = 0); the EAD is zero because time needs to
expire for risk to occur. From vertex 2, the number of pos-
sible next steps and associated total costs are computed and
added to the priority queue, as illustrated in Fig. 7. Note that
the total costs to reach, for example, vertex 12 consists of the
total cost from tstart to t = 100, not just the cost from t = 50
to t = 100.

The algorithm will continue for a while, until the situa-
tion of Fig. 8 is reached where vertex 24 is taken out of the
priority queue. The new found total costs for vertices 29, 30
and 31 are not lower than the total cost for vertex 25, which
means the algorithm takes a step back and continues from
vertex 25. From vertex 25, vertices 30 and 31 are reevaluated
in Fig. 9, where only vertex 30 results in lower costs than the
existing options. This means that only vertex 30 is updated
with the new, lower, total cost in the priority queue. Addition-
ally, if hypothetically vertex 31 is the vertex with the lowest
cost, the optimal path would revert back to using vertex 24
instead of vertex 25 (because the path from vertices 25 to 31
has higher costs than the path from vertices 24 to 31).

2.4 Global optimal solution

The UCS algorithm finds the shortest path in a graph, see for
example Felner (2011) for a recent elaboration regarding the
“correctness” of the UCS algorithm or Gelperin (1977) for
a proof regarding A* (UCS can be considered a special case
of A*). What remains is whether the additional stop vertex
of Sect. 2.2 leads to a potential heuristic solution or still to
the optimal path. However, assuming that the optimal path
towards the stop vertex is found, whichever vertex at tend is
part of that optimal path has to be the optimal choice. Oth-
erwise, the path towards the end vertex is not optimal, which
contradicts the earlier mentioned proofs. In order to further
test the performance of the proposed method, Sect. 4 will
compare numeric results from our proposed method to other
approaches. These approaches are known to give global op-
timal results.

2.5 Overview of the approach

A general overview of the approach discussed in the previous
sections is shown in Fig. 10. The method is composed of four
steps: input, pre-processing, processing and post-processing.
Of these steps, user interaction is only required at the input
step. The rest of the steps run automatically. Specifically, the
user needs to supply vectors of flood defence levels per flood
defence, a time vector and a function which can calculate the

Input      Pre-process      Process      Post-process

Function(s) 
for edges: 
risk and
investment 
costs

Cost functions

L1 = [...]
L2 = [...]
   ...
Li = [...]

Possible flood
defence levels

T = [...]
Time vector

Create vertices for a 
time-step using the
cartesian product of 
the flood defence 

vectors

Create start and stop
vvertices

Create adjacency lists

Create graph

Find optimal 
path of graph 
using a graph 
algorithm

Find optimal path

Show optimal path 

Figure 10. Overview of the approach using a graph and graph algo-
rithm. In our approach, the graph algorithm is the UCS algorithm.
The input column is the only part what the user should provide, the
other steps run automatically.

cost of an edge in the graph. In the following steps, the graph
is created (pre-process), the optimal path is found (process),
and the optimal path is shown (post-process).

3 Efficiency improvements

The economic optimisation of multiple interdependent flood
defences, implemented in a graph using Sect. 2, can poten-
tially lead to large numbers of vertices and even larger num-
bers of edges. For example, for eight interdependent flood
defences with six possible heights the number of vertices
per time step is approximately 1.68 million (68), while the
number of edges per time step is even larger at approxi-
mately 35 billion. For large problems such as these, stor-
ing all the possible vertices and edges would lead to huge
data structures and a huge number of EAD calculations. This
requires both an efficient implementation of the graph and
an efficient evaluation of EAD calculations (i.e. as few as
possible). An efficient graph implementation is discussed in
Sects. 3.1 and 3.2, while the efficient evaluation of EAD cal-
culations is discussed in Sect. 3.3. Potential further efficiency
improvements are discussed in Sect. 3.4.

3.1 Repetitiveness in lists of vertices

Even though the graphs of Sect. 2.1 can be classified as
sparse graphs (number of edges is much smaller than the
number of vertices squared; Cormen, 2009), the number of
edges is still much larger than the number of vertices. There-
fore, we first focussed on data structures related to the edges
of a graph. For sparse graphs, these are the adjacency lists:
a group of vertices connected via edges stemming from a
source vertex in a previous time step. In these adjacency lists,
repetitiveness can be found with respect to two aspects.

The first repetitive aspect is the similarity of adjacency
lists for the same combination of flood defence levels at dif-
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Figure 11. The adjacency lists for vertices 7 and 12 of Fig. 7 can be
obtained by adding an offset to the adjacency list of vertex 2.
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Figure 12. The adjacency lists for vertices 3 and 4 of Fig. 7 are
reduced sets of the adjacency list for vertex 2.

ferent time steps (except for the adjacency lists at tend). In
Fig. 7, vertices with the same combination of flood defence
levels at different time steps are, for example, vertices 2, 7
and 12. The adjacency lists for these vertices are shown in
Fig. 8, where it is apparent that the adjacency list for the next
time step can be found by adding an offset to the elements of
the adjacency list of the current time step. For example, the
adjacency list of vertex 2 can be turned into the adjacency
list of vertex 7 by adding the total number of combinations
in each time step (which is five in Fig. 11)

The second repetitive aspect is for adjacency lists between
vertices in the same time step. Because the lowest vertex
in each time step (e.g. vertices 2, 7, 12, 17, 22 and 27 in
Fig. 7) has outgoing edges running to each and every vertex
in the next time step, higher vertices (e.g. in Fig. 7, vertex 8 is
“higher” than vertex 7) contain a subset of the adjacency list
of the lowest vertex. In other words, outgoing edge lists in a
single time step can be generated dynamically by shrinking
the adjacency list of the lowest vertex in a time step. This is
shown in Fig. 12.

The combination of these two repetitive characteristics re-
sults in that only a single adjacency list needs to be stored in
memory (i.e. the adjacency list of the lowest vertex in the first
time step). This single adjacency list can be adapted to most
vertices in the graph by means of offsetting and shrinking the
stored adjacency list. Notable exceptions are the adjacency
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Figure 13. Total number of visited vertices as a function of the wait-
ing time for the example of Sect. 4.3.

lists for the vertices at tend, but the adjacency lists for these
vertices are already known and only contain the stop vertex.

3.2 Conditionally removing edge connections

Besides reducing the size of the data structures associated
with a graph, the adjacency list associated with a vertex can
also be reduced under certain conditions. Typically, the time
between improvements in flood defences is large (on the or-
der of 50 years) due to either high (fixed and variable) costs
associated with investments in flood defences or long plan-
ning periods (Zwaneveld and Verweij, 2014b). Therefore, if
one or multiple flood defences have been strengthened re-
cently, the adjacency list can be reduced to only contain ver-
tices that keep the recently strengthened flood defence(s) at
the current level(s). However, this so-called “waiting time”
before new investments are considered has to be chosen with
care because the waiting time should not influence the opti-
mal time between investments. Nevertheless, a correctly cho-
sen waiting time can greatly improve the run time of the al-
gorithm because of the significant reduction in number of
edges that need to be evaluated. This reduction is shown in
Fig. 13, where the total number of visited vertices is plotted
as a function of the waiting time; the underlying problem that
is solved by the algorithm is the same problem as shown in
Sect. 4.3.

3.3 Reducing the number of EAD calculations

In the overview of Fig. 10 it is implied that the EAD calcu-
lations belonging to an edge are only carried out when that
edge is visited by the graph algorithm. Provided that a graph
algorithm does not visit all vertices, delaying EAD calcu-
lations belonging to an edge until that edge is visited leads
to less EAD calculations than the total number of possible
EAD calculations in a particular graph. In contrast, if EAD
(or more generally, cost) calculations are done before a graph
algorithm is initialised, all possible EAD calculations need to
be calculated beforehand.
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Figure 14. Number of times each vertex is visited by the algorithm
for the example in Sect. 2.2. The dotted area emphasises that a part
of the graph is never visited, while vertices 30 and 31 get visited
twice.

As an example, Fig. 14 shows the number of times each
vertex is visited is in the example of Sect. 2.2. The majority
of the vertices in Fig. 14 get visited once, but a significant
proportion is never visited by the graph algorithm; these ver-
tices have a zero above their indices. A small proportion of
the vertices, specifically vertices 30 and 31, are visited twice;
the reason for this revisiting can be seen in Fig. 9. To avoid
completely redoing cost calculations upon a revisit, parts of
a calculation can be cached in order to reduce the computa-
tional penalty incurred by revisiting vertices. The total num-
ber of possible EAD calculations is the number of years mul-
tiplied with the number of options on the y axis; for Fig. 14
this leads to a total number of EAD calculations of 1505 (or
301·5). Because a number of vertices do not get visited by the
algorithm, the number of actual executed EAD calculations
goes down to 1000, or approximately 66 % of all possible
EAD calculations.

Furthermore, the number of EAD calculations can be fur-
ther reduced by using the waiting time of Sect. 3.2. In
Sect. 3.2, it was found that a minimum waiting time between
investments will lead to less edges being evaluated by the al-
gorithm. This also implies that less EAD calculations will be
executed. Using the same example as in Fig. 13, the reduc-
tion in the percentage of actual executed EAD calculations is
given as a function of the waiting time in Fig. 15. Between
using a waiting of 0 years (i.e. no minimum waiting time at
all) and a waiting time of 50 years the number of EAD calcu-
lations goes down from approximately 60 % to 40 % for the
example of Sect. 4.3.

3.4 Potential improvements and special cases

Further improvements can be made both to the graph imple-
mentation and to the implementation of the algorithm. The
algorithm was implemented as a single process; a perfor-
mance improvement might be found by utilising parallel pro-
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Figure 15. Percentage of actual executed EAD calculations as a
function of the waiting time for the example of Sect. 4.3.
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B

Sea

Bay

Land

Figure 16. A top view of a system with a front line defence (B,
five possible safety levels) and five rear defences (A1–A5, each has
four possible safety levels). The front defence influences the rear
defences, but the rear defences do not influence each other.

gramming. The first place where parallel programming could
be beneficial is the loop over an adjacency list. This is be-
cause the potentially expensive EAD calculations are done as
part of determining an edge weight. Therefore, parallelising
the loop over an adjacency list over multiple computational
nodes can lead to significant performance improvements.

Furthermore, regarding the graph implementation, a spe-
cial case is a flood defence system which has independent
flood defences. Section 2.1 uses the Cartesian product of
flood defence options, which has the underlying notion that
all flood defences are interdependent. If some flood defences
are independent (i.e. the defences protect different, indepen-
dent areas), this leads to an inefficient graph. The indepen-
dency of flood defences can be used in an adapted graph rep-
resentation in order to get an efficient graph. While we did
not implement this, a way to solve this inefficiency for the
system in Fig. 16 is shown conceptually in Fig. 17, which
uses “subgraphs” to reduce the number of combinations.

These subgraphs are small graphs which only contain the
number of strengthening options for a single defence for a
single time period (e.g. in Fig. 17, from ti−1 to ti). Addition-
ally, the subgraphs take into account what the level is of the
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Figure 17. Part of the graph belonging to the system of Fig. 16 for
the period ti−1 to ti . Because the rear defences do not influence
each other, subgraphs are used for the rear defences.

Table 1. Variables and values taken from Eijgenraam (2006) for the
EAD and investment equations in this section. NLG refers to the
currency used in the Netherlands prior to the euro.

Name Unit Symbol Value

Height above mean sea level, base cm H0 425
Annual exceedance probability be-
longing to H0

− P0 0.0038

Parameter exponential distribution
water level

cm−1 α 0.026

Increase water level cmyear−1 η 1
Damage by flooding in 1953 106 NLG V0 20 000
Economic growth year−1 γ 0.02
Rate of interest (real) year−1 δ 0.04
Variable costs of investment 106 NLGcm−1 Cv 0.42
Fixed costs of investment 106 NLG Cf 61.7
Heightening of the flood defence at
time t

cm ut −

Height of the flood defence at time t cm Ht −

influential defences (e.g. in Fig. 17, the front defence B is
the only influential defence for the rear defences). The use
of subgraphs leads to a smaller number of combinations, as
the Cartesian product would have resulted in a total number
of 5120 (5 · 45) vertices per time step. With subgraphs, the
number of vertices per time step is reduced to 100 (5 · 5 · 4).

4 Results for simplified flood defence systems

In order to test the performance of the proposed algorithm
versus some existing approaches, three cases are investi-
gated. For simplicity, these three cases will be based upon
a common set of investment and EAD relations, as well as a
common set of input values. The values and symbols used in
this section are largely copied from Eijgenraam (2006, p. 34)
and reproduced in Table 1, with only minimal changes. These
EAD and investment cost relations consist of simple formu-
lations which were specifically chosen for exhibiting the ap-
proach, for ease of reproducibility, and for showing the effi-

ciency regarding the number of EAD calculations. In prac-
tice, EAD estimates can be quite complex and/or have a high
computational burden, especially when flood defences are
modelled to have hydrodynamic interactions with each other.
For example, a single EAD estimate for a complex flood de-
fence system with interdependencies can take hours (Klerk
et al., 2014) or even days (Courage et al., 2013).

The common set of investment (I ) and EAD (or flood risk
cost, R) relations are similar to the relations used with the
data of Table 1 in Eijgenraam (2006). The sum of the invest-
ment cost and EAD is the total cost, which needs to be min-
imised in order to get economically optimal safety targets:

Total cost=

∞∫
0

R(t)dt +
∞∑
t=0

I (t) , (4)

R(t)= P0e
−α(Ht−H0−ηt)V0e

γ te−δt , (5)

I (t)=
(
Cvut +Cf sign(ut )

)
e−δt , (6)

where sign(ut ) is used to prevent fixed costs in case there
is no heightening ut . This sign(ut ) function returns zero if
the heightening ut is equal to zero, and returns 1 when the
heightening ut is larger than zero.

4.1 Single flood defence

For a single flood defence, with the values of Table 1, an an-
alytical solution can be found in Eijgenraam (2006, p. 35).
This solution consists out of an initial dike height increase
coupled with a periodical, constant dike increase over an in-
finite time horizon. The numerical results were recalculated
with the solution listed in Eijgenraam et al. (2016) and re-
sulted in an immediate initial increase of 235 cm with a peri-
odical increase of 129 cm every 73 years.

Because the approach introduced in this paper is a numer-
ical approach, a finite time period had to be used instead of
an infinite time horizon. Similar to Zwaneveld and Verweij
(2014b), we choose to use a time period of 300 years with,
for this application, steps of 1 year. The possible heights were
discretised using a range starting from 425 to 1225 cm, with
steps of one centimetre. Note that these step sizes (and di-
mensions) were deliberately chosen to be on par with the
accuracy level of the analytical solution. In practice, these
step sizes would probably be too detailed for the practical
attainable accuracy in flood defence construction (see also
Zwaneveld and Verweij, 2014b). Furthermore, the total num-
ber of possible EAD calculations in this problem is 241 101
(or 801 · 301). Of these, 137 971 were actually executed by
the UCS algorithm, which corresponds to using only 57 % of
all possible EAD calculations. Increasing the waiting time to
50 years did not affect the solution but did reduce the per-
centage of executed EAD calculations down to 43 %.

A comparison of the results found using the algorithm and
the analytical solution is shown in Fig. 18. The algorithm
found an initial increase of 235 cm, with three additional in-
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Figure 18. The investment scheme found using the algorithm is al-
most identical to the analytical solution.

creases in height at 73 years apart. These three were found to
be 129, 130 and 132 cm. The last increase is different from
the analytical solution and can be attributed to being close
to the end of the time horizon. A finite time horizon im-
plies that there is no EAD beyond the time horizon, which
explains why there is no investment found by the algorithm
in year 292. To compensate for the lack of an investment in
year 292, the investment in year 219 is slightly larger. This
explanation is supported by results with a time horizon of
400 years, where the heightening in year 219 changes to an
expected 129 cm. These deviations near to the time horizon
underline that if a certain point in time is considered relevant,
the used time horizon should stretch significantly beyond that
point in time. However, this is a general problem with all nu-
merical methods, because of the required finite time horizon,
and not a specific issue related to the approach proposed in
this paper. Furthermore, in practice this problem can be cir-
cumvented by setting the time horizon used in the algorithm
to sufficiently exceed the practically required time horizon.

4.2 Two independent flood defences

In the next example two defences are investigated using the
graph algorithm, both with the same characteristics as the
single flood defence in the previous section. However, the
step size for the heights is increased to 20 cm in order to test
the response of the algorithm to larger step sizes. Expected is
that, despite the less detailed step size, the investment scheme
for both defences should be identical to each other and close
to the analytical solution provided in the previous section.

Indeed, the results of the algorithm, illustrated in Fig. 19,
show that both defences are initially increased with 240 cm,
while in both year 75 and 143 the defences are increased
with 120 cm, and finally in year 212 with 140 cm. Clearly,
the larger step size in height leads to larger differences when
compared to the analytical solution. Nevertheless, any over-
shoot/undershoot of the height is “repaired” in the duration
between investments, keeping the solution of the optimal
path stable and close to the analytical solution. Furthermore,
the total number of possible EAD calculations in this prob-

0 50 100 150 200 250 300

T ime [years]

400

500

600

700

800

900

1000

1100

1200

H
ei
g
h
t

[c
m

]

Analytical

Algorithm

Figure 19. The two (independent) flood defences have an identical
solution with the approach proposed in this paper and are (even with
the usage of larger step sizes) good approximations of the known
analytical solution.
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COAST BAY/LAKE PROTECTED
AREA

Figure 20. A coastal system with two lines of defence. This figure
is an adaption from an illustration found in Dupuits et al. (2017).

lem is 24 682 (or 2 · 41 · 301). Of these, 14 510 were actually
executed by the UCS algorithm, which corresponds to using
only 59 % of all possible EAD calculations. If a waiting time
of 50 years is used, the solution is unaffected but the percent-
age of executed EAD calculations goes down to 48 %.

4.3 Two dependent flood defences

The final case is similar to the case with two independent
flood defences, but the second defence is now dependent on
the performance of the first defence. This dependency is il-
lustrated in Figure 16 and is a simplified version of the case
discussed in Dupuits et al. (2017).

The dependency between the defences in Fig. 20 is imple-
mented by adapting the EAD equation of Eq. (5) as follows:

R(t)=
(
P1P2|1+ (1−P1)P2|1

)
V0e

γ te−δt , (7)

Pi = P0e
−αi(Hi,t−H0−ηt), (8)

where Pi is a generic formulation used for the failure proba-
bilities P1, P2|1 and P2|1. The probabilities and are the failure
probabilities of the second defence, dependent on the fail-
ure (P2|1) or non-failure (P2|1) of the first defence, where
the failure probability of the first defence is denoted by P1.
Similarly, the investment equation in Eq. (6) is expanded to
include different costs for the two lines of defence:

I (t)=
(
Cv1u1+Cf sign(u1)

)
e−δt ,

+
(
Cv2u2+Cf sign(u2)

)
e−δt . (9)
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Table 2. Additional variables used in Eqs. (7), (8) and (9), comple-
mentary to Table 1.

Name Unit Symbol Value

Annual exceedance probability
belonging to H0

− P0 0.01

Exponential parameter for defence 1 cm−1 α1 0.026
Exponential parameter for defence 2
for P2|1

cm−1 α1|2 0.052

Exponential parameter for defence 2
for P2|1

cm−1 α1|2 0.026

Variable costs of investment for
defence 1

106 NLG cm−1 Cv1 0.21

Variable costs of investment for
defence 2

106 NLGcm−1 Cv2 0.42

The new variables used in Eqs. (7), (8) and (9) are listed
in Table 2. The solution found with the approach proposed in
this paper was checked with the method proposed in Zwan-
eveld and Verweij (2014a); the outcomes of both methods
were found to be identical and are shown in Fig. 21. Further-
more, the total number of possible EAD calculations in this
problem is 505 981 (or 412

·301). Of these, 311 190 were ac-
tually executed by the UCS algorithm, which corresponds to
using only 62 % of all possible EAD calculations. If a wait-
ing time of 50 years is used, the solution is unaffected but
the percentage of executed EAD calculations goes down to
40 %.

5 Discussion

The proposed approach (see also Fig. 10) in this paper is
based on a best-first graph algorithm, which is relatively easy
to implement in most general or scientific programming lan-
guages. In our opinion, this is a significant advantage over
linear programming algorithms, especially for those who are
not familiar with the implementations of linear programming
as proposed by Zwaneveld and Verweij (2014a). Although
the application area is the same as for Zwaneveld and Ver-
weij (2014a), notable differences are present between the
two approaches. The approach of Zwaneveld and Verweij
(2014a) is capable of including both interdependent and in-
dependent flood defences and focussed on finding the proven
economically optimal solution quickly given pre-calculated
EAD estimates and investment costs. Our approach focusses
on flood defence systems with mostly interdependent flood
defences (though Sect. 3.4 does discuss a possible efficient
extension to mostly independent flood defences) and com-
putational costly EAD calculations. Therefore, the focus of
our approach is on reducing the number of actually executed
EAD calculations (compared to pre-calculating all possible
EAD estimates).

An inherent problem of working with flood defence sys-
tems where most, if not all, elements are dependent on each
other is that the number of system combinations grows expo-
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Figure 21. Optimal investment schemes for the case with two inter-
dependent flood defences.

River

Retention area

Figure 22. A retention area can also be optimised using the ap-
proach proposed in this paper. In this example, the surface area of
the retention basin is used instead of the height of a flood defence.

nentially with the number of interdependent flood defences.
The sheer number of combinations means that the total num-
ber of interdependent flood defences should probably be kept
below 10. This is nothing more than a rule of thumb based
on our experience running the best-first graph algorithm on a
consumer laptop. The true maximum depends on a number of
factors: the number of height options per defence, the perfor-
mance of the particular implementation of the proposed ap-
proach, the computational cost of the associated EAD func-
tions and the computational power of the computer used.

Even though all examples in this research make use of
flood defence heights, this was only done to illustrate the ap-
proach. Other measures besides flood defences can be incor-
porated as well in the graph that is used to find the optimal
solution. While this is not a unique feature of our approach
(i.e. any graph-based approach can do this), it is a relevant
point for the viability of practical applications. For example,
if a retention area is considered (as illustrated in Fig. 22),
a list with possible sizes of the retention area could also be
used in the approach of Fig. 10: in principle, as long as a mea-
sure has a number of options or levels in increasing order that
can be quantified and monetised, it can be included in the ap-
proach. This makes the actual application range much wider

Nat. Hazards Earth Syst. Sci., 17, 1893–1906, 2017 www.nat-hazards-earth-syst-sci.net/17/1893/2017/



E. J. C. Dupuits et al.: Economically optimal safety targets for interdependent flood defences 1905

than flood defence systems with only height-dependent flood
defences such as levees or (storm surge) barriers.

The proposed approach works best if the type of each flood
defence is known and singular. In the case that a number of
different defence types are considered for the same flood de-
fence, it would be better to do an optimisation run per type
of defence. An example of this would be the choice between
a closure dam or a storm surge barrier at the same location.
In this case, the algorithm should be run twice, first with a
closure dam and then with a storm surge barrier. This should
result in two optimal configurations (one with a closure dam,
the other with a storm surge barrier), which can then be com-
pared using the same metric, for example their cost–benefit
ratios.

6 Conclusions

This paper presented a generic, computationally efficient ap-
proach for finding the economically optimal configuration of
a flood defence system with an arbitrary number interdepen-
dent flood defences. Computational efficiency was achieved
by delaying EAD calculations until they are actually needed
in an optimisation routine (i.e. lazy evaluation), which leads
to a reduction in the number of EAD calculations that need to
be done. In the examples shown in this paper, the reduction
in number of EAD calculations was at least 40 %. This is a
significant and relevant reduction, as the EAD calculations
relevant for this approach often have a high computational
cost. This is especially the case when multiple flood defences
interact with each other hydrodynamically in a larger flood
defence system.

The approach presented in this paper uses a best-first graph
algorithm, which is simple to implement and advances exist-
ing shortest-path implementations for economic optimisation
of interdependent flood defence systems. Furthermore, the
approach is flexible towards the number and type of flood de-
fences because the graph representation shown in this paper
can trivially accommodate an arbitrary number of interde-
pendent flood defences. The proposed approach utilises the
repetitive properties of the graphs in order to efficiently store
the representation of the graph in memory. In case indepen-
dent flood defences are present in a system, the proposed ap-
proach of generating a graph can be adapted to a more ef-
ficient method which makes use of the attractive properties
of independence. To that end, a concept has been proposed
which reduces the size of the graphs.

Assuming that the graph and combinations of flood de-
fences are portrayed correctly, the best-first graph algorithm
has been proven in literature to return the shortest (or opti-
mal) path in a graph. To corroborate this for our implemen-
tation and intended application, the method was tested on a
number of benchmark problems with known solutions. The
tests show that indeed the optimal path is found with the ap-

proach proposed in this paper, which justifies the conclusion
that the implementation was done correctly.
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