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ABSTRACT
Two-point velocity statistics near the trailing edge of a controlled diffusion airfoil are obtained, both experimentally and analytically, by
decomposing Poisson’s equation for pressure into the mean-shear (MS) and turbulence–turbulence (TT) interaction terms. The study focuses
on the modeling of each interaction term, in order to allow for the reconstruction of the wall-pressure spectra from tomographic velocimetry
data, without numerically solving for pressure. The two-point correlation of the wall-normal velocity that describes the magnitude of the MS
source term is found to be influenced by various competing factors such as blocking, mean-shear, and the adverse mean pressure gradient.
The blocking term is found to supersede the other interaction terms close to the wall, making the two-point velocity correlation self-similar.
The most dominant TT term that contributes to far-field noise for an observer located perpendicular to the airfoil chord at the mid-span
is shown to be the one that quantifies the variation of the wall-normal velocity fluctuations in the longitudinal direction because of the
statistical homogeneity of turbulence in planes parallel to the wall. A model to determine the contribution of the TT interaction term is
proposed where the fourth-order two-point correlation can be modeled using Lighthill’s approximation. However, its contribution toward
wall-pressure spectra is found to be substantially lower than the MS term in the present case.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021121., s

NOMENCLATURE

C airfoil chord
Cij ,kl fourth-order two-point zero time delay correlation
Cp mean pressure coefficient
H boundary layer shape factor
k (k1, k3), wall-parallel wavenumber vector
k

√
k2

1 + k2
3, wall-parallel wavenumber vector magni-

tude

k1, k2, k3 aerodynamic wavenumbers
Kν modified Bessel function of the second kind of

order ν
ly generalized correlation length
p′ fluctuating wall-pressure
prms root-mean-square of the wall pressure
Q∞ inlet free stream dynamic pressure
Rec Reynolds number based on the chord
Rij second order two-point zero time delay correlation
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Sij single sided velocity wavenumber cross-power spec-
tral density

TTij second-order velocity tensor
U1, U2, U3 mean velocity in the trailing edge reference frame
u1
′, u2

′, u3
′ turbulent velocity in the trailing edge reference frame

U∞ inlet velocity
Uc convective speed of wall-pressure fluctuations
Ue boundary layer edge velocity
Vx, Vy mean velocity in the wind tunnel reference frame
x, y, z wind tunnel coordinate system
x1, x2, x3 coordinate system aligned with the trailing edge
α, β, γ anisotropic stretching parameters
αg geometric angle of attack
βc Clauser’s parameter
Γ(ν) gamma function
δ∗ boundary layer displacement thickness
δ95 boundary layer thickness based on 95% of Ue
θ boundary layer momentum thickness
Λk±
ij integral length scale of velocity

Π(f ) single sided wall-pressure frequency auto-power
spectral density

Π(k1) single sided wall-pressure wavenumber auto-power
spectral density

Πc Cole’s wake strength parameter
−ρu1u2max maximum Reynolds shear stress
ρ∞ incoming air density
τ integral time scale of turbulence

I. INTRODUCTION
Modeling the pressure field induced by the turbulent velocity

field in a boundary layer is essential in many engineering applica-
tions including airfoil or blade self-noise, structural vibration and
noise radiation, and aerodynamic losses and instability (flutter). In
airfoil self-noise, the high-frequency model by Amiet (1976), or its
extension to lower frequencies by accounting for the finite chord
length [see Roger and Moreau (2005), for instance], directly relates
the far-field acoustic pressure to the wall-pressure statistics near
the trailing edge. Such models have been successfully validated by
Moreau and Roger (2005, 2009) and Roger and Moreau (2004) by
performing a set of dedicated experiments on several airfoils includ-
ing a Controlled-Diffusion (CD) airfoil. The latter is an airfoil type
for which the drag is reduced by controlled diffusion or growth of the
boundary layer, which has recently been used in many modern tur-
bomachinery applications including compressors, contra-rotating
open rotors, turbofans, and ventilation systems. However, model-
ing the wall-pressure fluctuations is particularly challenging not only
because of its arduous mathematical description but also because of
the abstruse nature and scarcity of data on the two-point velocity
statistics that dictate them. The present state of wall-pressure mod-
eling can be encapsulated in the words of Chase (1980) who said
some 40 years ago “Attainment of a comprehensive, validated, satis-
factory description of the pressure fluctuations on a wall bounding
turbulent flow, despite progress over a protracted period, remains
elusive.”

Wall-pressure fluctuations either can be directly measured
using remote microphone probes (RMPs) or can be determined

from velocity measurements using Particle Image Velocimetry (PIV)
data, provided that Poisson’s equation for pressure is numerically
solved [see De-Kat and Van-Oudheusden (2012), Ghaemi et al.
(2012), and Schneiders et al. (2018), for instance]. Computation-
ally, the surface pressure field can be obtained by performing Direct
Numerical Simulations (DNSs) [see Abe (2017), Choi and Moin
(1990), Na and Moin (1998), Sandberg and Jones (2011), and San-
josé et al. (2011), for instance] that resolve all turbulent scales in the
flow or Large Eddy Simulations (LESs) that only resolve the relevant,
larger scales [see Christophe and Moreau (2008), Wang et al. (2009),
and Winkler and Moreau (2008), for instance]. In all cases, these
methods are complex, time-consuming and can hardly be used for
engineering purposes. For design optimizations, analytical models
should be preferred. In the past, several such approaches including
either statistical [see Grasso et al. (2019), Hodgson (1962), Panton
and Linebarger (1974), Parchen (1998), Remmler et al. (2010), and
Slama et al. (2018), for instance] or semi-empirical methods [see
Hu (2018), Lee (2018), and Rozenberg et al. (2012), for instance]
have been used to reconstruct wall-pressure spectra. While the sta-
tistical methods describe the non-local velocity fluctuations using
two-point velocity correlation, the semi-empirical models rely on
finding suitable integral boundary layer parameters to describe non-
local flow events. For example, Rozenberg et al. (2012) used inte-
gral boundary layer scales such as Coles’s parameter Πc (Coles,
1956) to account for the boundary layer history. The semi-empirical
models also rely on finding suitable boundary layer parameters to
scale the wall-pressure spectra. However, a universal scaling of pres-
sure spectra can only be obtained for a narrow range of frequen-
cies using either inner or outer scales exclusively [see p. 362 of
Camussi (2013)]. Semi-empirical models are therefore calibrated
using inner and outer boundary-layer variables for various test cases.
For instance, Rozenberg et al. (2012) used the velocity flow field
information at the trailing edge of the CD airfoil at 8○ and 16 m/s
as one of the test cases for calibration. Although Rozenberg’s model
is fairly well-tuned and succeeds in capturing the trend and mag-
nitude of the wall-pressure spectra [see Hu (2018), Lee (2018), and
Morilhat et al. (2019)], it relies on pre-established scaling laws that
are not universal.

The statistical approach follows Kraichnan (1956) methodology
and splits the source in two partial pressure terms: the mean-shear
(MS) term and the turbulence–turbulence (TT) term [see Grasso
et al. (2019), Panton and Linebarger (1974), Parchen (1998), Remm-
ler et al. (2010), and Slama et al. (2018), for instance]. Even in this
case, assumptions such as turbulent flow homogeneity are used to
simplify wall-pressure spectra calculations. For example, Slama et al.
(2018) and Chase (1980) assumed homogeneous turbulence in all
three directions, while Panton and Linebarger (1974) and Remm-
ler et al. (2010) made an assumption of turbulence homogeneity
on a plane parallel to a wall. The hypothesis of turbulence homo-
geneity for a flow past an airfoil has nevertheless been questioned in
the past [see Albarracin et al. (2012), for instance]. Hence, the first
objective of the current paper is to assess the validity of the assump-
tion of homogeneous turbulence in the presence of mean adverse
pressure gradient and its impact on the modeling of the two-point
correlation.

For the flow past an airfoil, another important aspect is to
quantify the role of a solid wall on the two-point velocity corre-
lation. In the past, several researchers [see Hunt et al. (1987), for
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instance] have shown that the wall-normal velocity correlation is
strongly affected by the phenomenon of “blocking,” especially at
a high Reynolds number and in the absence of a mean pressure
gradient. Hunt et al. (1987) found that the wall-normal velocity
correlation profiles between two eddies in the wall-normal direc-
tion become self-similar when plotted as a function of the ratio
between distances of the eddies from the wall. The existence of
self-similarity of the two-point correlation was later demonstrated
analytically by Oberlack (2001). Therefore, blocking clearly plays a
critical role in defining the extent of the two-point correlation in
the wall-normal direction and thereby also controlling the MS term.
However, this effect has not been accounted for in the previous stud-
ies [see Parchen (1998), Slama et al. (2018), and Stalnov et al. (2016),
for instance] that use an isotropic turbulence model. Moreover, the
study of Hunt et al. (1987) among others was done for zero mean
pressure gradient, and therefore, the role of the pressure gradient
on two-point velocity correlation is unclear. The second objective
of the present paper is therefore to assess the competing effects of
the streamwise mean pressure gradient and the crosswise variation
of the mean shear induced by the airfoil surface and to quantify the
effect of wall blocking on the two-point velocity correlation in the
presence of a mean pressure gradient.

Another aspect of the two-point correlation model lies in the
determination of the correlation length. This has been done in the
past using semi-empirical laws. For example, Panton and Linebarger
(1974) proposed an empirical model based on fitting data of the
correlation length of the wall-normal velocity component measure-
ments of Grant (1958). Remmler et al. (2010), Kamruzzaman et al.
(2011), and more recently, Stalnov et al. (2016) have employed
Prandtl’s mixing layer theory to estimate this length. However,
Grasso et al. (2019) showed that the correlation length might be
significantly underestimated by this theory. In fact, there are few
experimental and numerical data to assess the validity of this model
in estimating the wall-normal correlation length of the wall-normal
velocity. Moreover, the mixing length theory does not incorpo-
rate the effect of blocking. Therefore, our third objective is to test
the previously proposed models of correlation length against our
experimental data.

Finally, the relative contribution toward surface pressure fluc-
tuations by individual terms, i.e., the mean-shear (MS) term and
the turbulence–turbulence (TT) interaction, has long been a matter
of debate. Approximations by early researchers such as Kraichnan
(1956) and Hodgson (1962) showed that the contribution of the
TT term is small when compared to the MS term. This was later
challenged by Chase (1980), Kim (1989), and Chang (1998). Nev-
ertheless, the models proposed by Panton and Linebarger (1974)
and Remmler et al. (2010), and the TNO-Blake model (Blake, 2017;
Parchen, 1998; and Stalnov et al., 2016) all neglect the contribu-
tion of the TT term, but they are still able to predict the overall
shape and magnitude of the wall-pressure spectra with reasonable
accuracy. Therefore, the relative importance of these terms seems
to depend on the flow conditions. Alternatively, their models may
have overestimated the contribution of the MS term. It is therefore
important to assess the contribution of either of these terms. The
modeling of the TT source term is inherently more complex since it
requires determination of higher order statistics [as shown by Grasso
et al. (2019)]. In order to simplify the representation and computa-
tion with lower order statistics, a hypothesis of normal distribution

was first proposed by Millionshchikov (1941). This assumption has
been extensively used by Hodgson (1962), Slama et al. (2018), and
Grasso et al. (2019) in the past. However, this was done based on
very limited experimental evidence and the assumption was made
based on measurements done in a free shear layer only [see Mahin-
der (1953) and Stewart (1951), for instance]. Many recent studies
have shown that the normal distribution assumption does not hold
for a wall-bounded channel flow in the absence of a pressure gradi-
ent [see Chang (1998), Kim (1989), and Srinath (2017), for instance].
Therefore, this assumption needs to be validated in a realistic flow
field with a mean pressure gradient.

The fourth objective is to determine the relative importance of
individual source terms of TT and to compare the relative contri-
bution of the MS and the most dominant TT terms. The accuracy
of the final result will be gauged against the measured wall-pressure
spectra. As a final objective, the regions within the boundary-layer
that contribute to the wall-pressure spectra are examined for a given
range of frequency, as was done for turbulent channel flows by Abe
et al. (2005) or more recently by Anantharamu and Mahesh (2020).
This helps understand how the non-local velocity fluctuations drive
the wall-pressure fluctuations.

To achieve the aforementioned objectives, a well resolved flow-
field (at least in space) is of paramount importance. Moreover, long
enough signals are necessary to yield reliable high-order statistical
quantities such as two-point correlations. Only few previous experi-
ments [see Gavin (2002), Grant (1958), Kamruzzaman et al. (2011),
Krogstad and Skåre (1995),and Townsend (1980), for example] have
looked in details at two-point velocity correlations. They all used Hot
Wire Anemometry (HWA), which provided the proper time resolu-
tion but was intrusive in nature. Numerically, the two-point velocity
correlation has also been studied by Hunt et al. (1987), Zawadzki
et al. (1996), and Sillero et al. (2014) but limited to the flow over a
flat plate without any mean pressure gradient. In the present study,
Particle Image Velocimetry (PIV) has therefore been used to mea-
sure the velocity field around the CD airfoil, for which various mean
pressure gradients occur on its suction side. The latter has also been
chosen as a large set of numerical and experimental data exists on
this airfoil [see Boukharfane et al. (2019), Moreau et al. (2003; 2006;
2016), Neal (2010), Roger and Moreau (2004), Sanjosé et al. (2011),
and Wu et al. (2018), for instance].

II. EXPERIMENTAL SETUP AND INSTRUMENTATION
The aforementioned Controlled Diffusion (CD) airfoil has a

0.1347 m chord, 0.3 m span, 4% thickness-to-chord ratio, and 12○

camber angle. For the results to be comparable with the previous
studies of Neal (2010), Sanjosé et al. (2011), and Wu et al. (2018),
this airfoil is placed in the jet potential core of an open-jet tunnel at a
geometric angle of attack of αg = 8○, and the Reynolds number based
on chord Rec is equal to 1.5 × 105. To reproduce the correct load-
ing, the same jet width of 50 cm [based on the findings of Moreau
et al. (2003 and 2006) is used in two experiments carried out in the
A-Tunnel at the Technical University of Delft (TU Delft). During
the first experiment, planar measurements have been carried out in
the boundary layer close to the trailing edge on the airfoil suction
side and in the near wake. In the second experiment, Time-Resolved
Tomographic PIV (TR-Tomo PIV) measurements near the trailing
edge were performed.
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The A-Tunnel at Delft is an open-jet facility that has been
recently refurbished to anechoic. It has a circular opening with a
cross section of 60 cm. The free-stream turbulence intensity at the
exit of the circular section of the jet was reported to be equal to
0.02% [see p. 78 of Ghaemi (2013)]. To mount the CD airfoil and
to compare with previous experimental and numerical setups, two
other sections were mounted on top of the original circular test sec-
tion. The final open-jet nozzle exit was made rectangular with an
outlet section of 50 × 30 cm2. The airfoil is placed between two
laser-cut side plates to give the airfoil the prescribed geometrical
angle of attack. The machining accuracy of the laser cut is less than
0.125 mm. The laser-cut section is located in the middle of the side
plates, which ensures the airfoil to be placed at the center of the noz-
zle exit. The side plates are made from plexiglass and are 4.76 mm
thick to provide good optical access for the PIV measurements.

A. Wall-pressure measurements
To determine the mean loading coefficient, several pinholes are

located along the chord and span, as shown in Fig. 1. The diameter
d of these orifices is equal to 0.5 mm each. They allow the mea-
surement of pressure fluctuations using Remote Microphone Probes
(RMPs) [see Moreau and Roger (2005), for instance] and static pres-
sure sensors [see Neal (2010), for instance]. To measure the mean
pressure coefficient, Cp, a PSI System 8400 equipped with ESP pres-
sure scanners was used. These scanners have a range of ±0.36 psi
with an accuracy of ±0.03% in the full scale pressure range. For the
measurement of pressure fluctuations, RMPs were calibrated in situ
by applying white noise via a loudspeaker, which was recorded as
the output of a NI 9263 audio card. A pre-calibrated microphone
was placed in front of and close to the pinhole of the RMP. The ref-
erence microphone and RMP signals were recorded simultaneously
for 30 s. Coherence levels were checked between the reference signal
and RMP and were found to be higher than 95%. The slight loss in
coherence results in uncertainty that can be approximated according
to Bendat and Piersol (2011) by

ϵ =
√

2
1 − Γ2

Γ
√
Ns

, (1)

FIG. 1. Location of pinholes on the CD airfoil.

where Ns is the number of sets, which in this case is equal to 120,
and Γ2 is the squared coherence magnitude. The total uncertainty
encountered due to finite coherence in calibration of RMPs is esti-
mated to be equal to ±0.03 dB (based on the percentage of reference
pressure defined as 2 × 10−5 Pa). Finally, a transfer function can be
built, which can account for the loss of amplitude and phase,

H(f ) = E[Gyy

Gxx
], (2)

where H(f ) is the attenuation function, E is the expected value, Gyy is
the auto-spectrum of the reference microphone signal, and, finally,
Gxx is the auto-spectrum of the RMP measurement. Each measured
spectrum is then multiplied by this attenuation function H(f ) to
yield the single point spectra reported below. The final auto-spectra
are calculated by dividing the signals into blocks of size equal to 1 s
with an overlap of 75%, resulting in 120 sets in total. The uncertainty
in calculating the auto-spectra can be estimated using the following
equation outlined by Bendat and Piersol (2011):

ϵ = 2√
Ns

. (3)

Thus, the uncertainty was found to be equal to 0.7 dB. Another
important aspect that yields measurement uncertainty at high fre-
quencies is caused by the finite size of the microphone sensors [see
Gravante et al. (1998), for instance]. In our case, it scales with the
diameter of the pinholes. However, it was recently shown by Grasso
et al. (2019) that this attenuation occurs at very high frequencies
around 30 kHz–40 kHz. This occurs well beyond the range of fre-
quencies of interest, and hence, no corrections on higher frequency
will be done in the present study.

B. Velocity measurements
Velocity measurements around the CD airfoil were obtained

with PIV. Four different sets of planar-PIV measurements were per-
formed using a single LaVision Imager LX 16M CCD 16 megapixel
camera with a pixel pitch of 7.4 μm and an EverGreen 200 mJ
ND:YAG laser, as shown in Fig. 2, during the first measurement

FIG. 2. Planar-PIV setup.
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TABLE I. Parameters used for planar-PIV measurements.

M1
suction-side M2 M3

boundary pressure- suction- M4
Parameters layer side side wake

Depth of focus (mm) ∼1.4 ∼8.5 ∼6 ∼2.5
Number of images 2050 2000 2700 2300
Interrogation window (pixel2) 24 × 24 16 × 16 16 × 16 16 × 16
Lens focal length (mm) 200 105 105 200
FOV (mm2) 48 ∼174 ∼141 ∼76
Particle image diameter (pixel) ∼4 ∼2.3 ∼2.43 ∼2.8
Magnification 0.756 0.215 0.26 0.486
Digital magnification (mm/pixel) 100 27.58 34.04 63.15
Maximum particle image displacement (pixel) 16 17 16 15
Acquisition frequency (Hz) 0.5 0.5 0.5 0.5

campaign. The laser-sheet thickness was measured to be less than
1.3 mm. About 2000 images in a double frame were recorded for
all the cases. The camera was fitted with an AF Nikkor 200 mm
1:4 D lenses for near-wake and suction-side boundary-layer mea-
surements, while the velocity contours on the pressure and suction
sides were obtained using a 105 mm Nikkor lens. The images were
obtained with an acquisition frequency of 0.5 Hz. The parameters
used for the PIV measurements are summarized in Table I.

During the second campaign, time-resolved tomographic PIV
was employed, using four FASTCAM SA1.1 1 megapixel cameras
and a high speed ND-YLF laser. The cameras were placed as shown
in Fig. 3. The parameters used for the tomographic PIV are listed in
Table II.

Based on the previous computational and experimental stud-
ies on the CD airfoil at the same flow condition, the boundary-layer
thickness at RMP 26 (98% chord) was estimated to be equal to about
5 mm−6 mm [see Table III of Christophe et al. (2015)]. For this rea-
son, the suction-side boundary-layer measurements were carried out
with a higher resolution setup. The camera was tilted in such a way
that velocities obtained were in the wall-normal direction.

For both setups, glycerin particles were used for seeding, and
the particle size was about 1 μm.

FIG. 3. Tomo-TR PIV setup.

C. Image processing and data reduction
of planar-PIV data

Planar-PIV data were processed using Davis 8.1.4 software
from LaVision. The images were first pre-processed to reduce the
background noise by using the subtract minimum filter. The vec-
tor fields were computed by a multi-grid cross-correlation scheme,
with a final window size of 16 × 16 pixels2 except for the case
of the suction-side boundary-layer for which the window size was
increased to 24 × 24 pixels2 (due to relatively lower particle density).
An elliptical weighting window (with a weighting ratio of 2:1) was
used to improve the signal-to-noise ratio of the cross correlation.
Dual frame cross correlation was used to compute the vector field.
Outliers were detected using the universal outlier detection method
of Westerweel and Scarano (2005). The values of vector removal
and insertion were chosen to be equal to the ones recommended by
Westerweel and Scarano (2005).

The random error for PIV is estimated to be in the order of
0.1 pixel for the algorithm used to map the correlation peak. With
this value, the relative error in velocity measurements is 0.67% of
the free-stream velocity, as shown in Table I. The uncertainty in
calculating mean and standard deviation of velocity scales inversely
with the number of independent samples and with the square root
of the number of independent samples, respectively [see p. 279 of

TABLE II. Parameters used for Tomo-PIV measurements.

Parameters Values

Volume size (cm3) 4 × 2 × 0.5
Number of images 2816
Voxel size (pixel3) 24 × 24 × 24
Lens focal length (mm) 200
Numerical aperture F# 11
Magnification 0.58
Maximum particle image displacement (pixels) 20
Acquisition frequency (kHz) 3.0
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TABLE III. Uncertainty quantification for various measured quantities.

Uncertainty
Quantity measured (95% confidence)

Tunnel inlet velocity 1% U∞
Dynamic pressure 0.5% Q∞
Random error mean velocity (planar-PIV) 0.67% U∞
Random error mean velocity (Tomo-PIV) 0.1% U∞
Averaging uncertainty ui′ (planar-PIV) 3.1%

√
ui′

Averaging uncertainty ui′ (Tomo-PIV) 4.5%
√
ui′

Averaging uncertainty Rij = 0.05 (planar-PIV) 4.5%
Averaging uncertainty Rij = 0.05 (tomo-PIV) 5.7%
Averaging uncertainty Λk±

ij (planar-PIV) 1% Λk±
ij

Averaging uncertainty S1
22 (planar-PIV) 4.4%

Averaging uncertainty ui′
4

(ui′2)
2 (planar-PIV) 43% ui′

2

Glegg and Devenport (2007)]. The uncertainty in mean and stan-
dard deviation for planar-PIV measurements is thus quantified and
shown in Table III. U∞ and ρ∞ stand for the free-stream veloc-
ity and density at the nozzle exit, respectively. Q∞ = 0.5 ρ∞U2

∞ is
the corresponding dynamic pressure. ui′ are the rms velocity com-
ponents in a local Cartesian reference frame attached to the airfoil
surface at the considered RMP. Rij and Siij are velocity correlation
or power-spectral-density tensors, respectively. In all local tensors,
the indices are i, j = 1, 2, 3, with (1) the wall-tangential, (2) the
wall-normal, and (3) the transverse directions.

D. Image processing and data reduction
for Tomo-PIV data

The data were processed using Davis 8.4 software from LaV-
ision. The fast-MART algorithm was used for volume reconstruc-
tion. For the processing, 10 SMART [see Atkinson and Soria
(2009), for instance] iterations with nine smoothing operations were
performed. Finally, direct correlation was used to get the three-
dimensional velocity profile. Here, the multigrid scheme was used
as in the case of planar-PIV, starting with a coarse grid of size 80
× 80 × 80 pixels3 to all the way down to 24 × 24 × 24 pixels3. A
universal outlier detection scheme was used to detect and replace
outlier vectors. The uncertainty in the TR-Tomo PIV measurements
was obtained by considering both the random and systematic errors.
Ghaemi et al. (2012) estimated the random error ϵu as

ϵu = 0.2 vxl
1
SΔt

, (4)

where S stands for the digital magnification, vxl stands for the voxel
size, andΔt stands for the time between two image pairs. Finally, var-
ious sources of error in all the measured quantities are summarized
in Table III.

III. VALIDATION OF THE FLOW FIELD
A. Mean airfoil loading

To make sure that the flow qualities do not play a significant
role when comparing the results in the two different experimental

campaigns, the mean wall-pressure coefficient has first been com-
pared. The results in four different facilities, which the CD airfoil has
been tested in within a 50 cm jet, show an overall good agreement
over most of the airfoil chord, c, as shown in Fig. 4. (x, y) represents
the fixed laboratory reference frame at the airfoil mid-span, x being
parallel to the jet axis and oriented with the flow. The error bars in
the different measurements are within the size of the symbols and
mostly concentrated at the leading edge, as shown in Moreau et al.
(2003) (Fig. 2), for instance.

However, small discrepancies are visible near the plateau in the
leading-edge region and can be attributed to the size of the lami-
nar re-circulation bubble. The latter affects the exact location where
the boundary layer transition from laminar to turbulent flow starts.
The reason for the discrepancies is that the location of the laminar
separation bubble is dependent on the inlet free-stream turbulence
intensity that varies between the wind tunnels and the numerical
simulations [see McAuliffe and Yaras (2010), for instance].

B. Flow field description
The assessment of the experiment is completed by qualitatively

comparing the time-averaged flow field with previous studies [see
(Moreau et al., 2016)] on the same airfoil and by quantitatively
comparing the time-average and turbulent boundary layer profiles
obtained from planar and tomographic PIV measurements.

Figure 5 shows the mean flow velocity components Vx and Vy
around the CD airfoil in the laboratory reference frame. This was
obtained by the superimposition of three planar-PIV measurements
performed on the suction-side (M3), on the pressure-side (M2),
and in the near-wake (M4), respectively. Contours reveal numer-
ous salient features of the flow around the airfoil. At the leading
edge, the flow experiences a favorable pressure gradient; starting
from approximately mid-chord, the flow decelerates until the trail-
ing edge; finally, it separates just after the blunt trailing edge. The
flow field near the leading edge shows a region near the wall with a

FIG. 4. Mean pressure coefficient Cp for the CD airfoil in different wind tunnel facil-
ities. Legends: orange diamonds—V-Tunnel at TU Delft, black circles—anechoic
wind tunnel facility at UdeS, blue triangles—anechoic wind tunnel facility at ECL
[see Moreau and Roger (2005), for instance], red squares—wind tunnel facility at
MSU [see Neal (2010), for instance], and gray curve—LBM DNS [see Sanjosé
et al. (2011), for instance].
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FIG. 5. Mean velocity contours around the airfoil in the laboratory reference frame: (a) streamwise velocity Vx and (b) transverse velocity Vy .

localized higher negative wall-normal velocity component; this cor-
responds to the location where the plateau in Cp was observed in
Sec. III A. For this reason, this can be associated with the presence
of a laminar recirculation bubble, which was also observed experi-
mentally and numerically in previous studies [see Moreau and Roger
(2005), Neal (2010), Sanjosé et al. (2011), Wang et al. (2009), and
Wu et al. (2018), for instance]. Using a stethoscope probe, the flow
was verified to transition to turbulence downstream of this location.
Because of the relative low resolution of this experimental setup,
which was built to capture the time-averaged spatial development of
the flow around the CD airfoil, it is not possible to further quantify
the effects of the recirculation bubble. However, this goes beyond the
scope of the current paper.

The comparison of the time-average (U i) and rms (ui′) bound-
ary layer profiles at RMP 26 obtained from planar and tomographic
PIV measurements is shown in Fig. 6. Very good agreement between
the two measurements of the mean boundary layer profile is found,
consistent with the previous comparison of planar-PIV data with
the DNS data by Wu et al. (2018). Some discrepancies for the tur-
bulent fluctuations are caused by the lower spatial resolution of the
tomographic PIV experiment below 0.2 δ95, where δ95 is the bound-
ary layer thickness. The latter is defined by taking 95% of the local
external velocity obtained by checking where the velocity magni-
tude normal to the wall at RMP 26 becomes constant (as shown
in Fig. 5). Furthermore, the limited spatial resolution results in the

3D modulation of the measured flow structure [see Ragni et al.
(2019), for instance], which further limits the fidelity of the mea-
surements. Close to the wall, high spatial resolution is needed to cap-
ture small scale turbulence [see Ahmadi et al. (2019), for instance],
which explains why discrepancies close to the wall are slightly higher
than elsewhere. Nevertheless, the relative intensity of the turbulent
fluctuations is well captured.

From the time-averaged boundary layer profile at RMP 26,
it is possible to estimate the boundary-layer integral parameters
(namely, the displacement thickness δ∗, the momentum thickness
Θ, and the shape factor H) and the wall shear stress, τwall, all rele-
vant for retrieving the surface pressure fluctuations [see Christophe
et al. (2015), for instance]. The boundary-layer integral parameters,
the external velocity Ue, the local streamwise pressure gradient dP

dx1
,

Clauser’s local parameter βc ( θ
τw

dP
dx ), Coles’s integral parameter Πc,

the Reynolds number based on the momentum thickness Reθ, and
the wall shear stress are reported in Table IV for four locations in the
trailing-edge region. The wall shear stress is obtained using the plot
method of Clauser (1956). Given the fact that the Reynolds num-
ber of the present experiment is transitional and the flow encounters
a severe adverse pressure gradient near the trailing edge, the fit is
performed only in the region U+ = x2

+. As a matter of fact, Monty
et al. (2011) showed that the classical log-layer region is limited or
almost non-existent in these flow conditions. This was verified for

FIG. 6. Comparison of velocity profiles
between the two different PIV exper-
iments at RMP 26: (a) mean wall-
tangential velocity U1 and (b) rms veloc-
ity components ui

′ normalized by the
inlet velocity U∞.
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TABLE IV. Boundary layer parameters.

Probe x
c Ue (m/s) δ95 (mm) δ∗ (mm) Θ (mm) H Reθ τwall (Pa) Πc

dP
dx1

(Pa/m) βc δ+

RMP 26 0.98 17.44 6.34 2.42 1.19 2.03 1350 0.34 2.76 1728 6.08 220
RMP 24 0.9216 17.87 5.34 1.85 0.98 1.89 1135 . . . . . . . . . . . . . . .
RMP 22 0.8806 18.41 4.80 1.56 0.88 1.76 1050 . . . . . . . . . . . . . . .
RMP 21 0.8582 18.77 4.41 1.36 0.82 1.65 997 . . . . . . . . . . . . . . .

the present configuration in Wu’s DNS [see Fig. 9 (b) in Wu et al.
(2019)]. This is also consistent with the Kármán number, δ+ ( δ uτν
with uτ being the friction velocity), at RMP26, which is about 220.
The friction velocity is not reported upstream of RMP 26 because
the size of the boundary layer based on the edge velocity decreases
rapidly, and the inner scales are so small that a confident estimate
of the friction velocity could not be determined using Clauser’s
method described above. Nevertheless, spatially well resolved veloc-
ity data near the trailing edge offer an attractive possibility to deter-
mine wall-pressure wavenumber spectra by quantifying the sources
responsible for the generation of pressure fluctuations on the sur-
face, as will be shown in Secs. V–VII. Moreover, the results in
Table IV show that measurements at RMP 26 agree well with the
RANS results reported by Christophe et al. (2015) and the recent
DNS study of Grasso et al. (2019). In fact, the values of δ and τwall
are almost identical at RMP 26.

IV. UNIFIED APPROACH TO STATISTICAL
WALL-PRESSURE MODELING

To determine the wall-pressure fluctuations due to a turbulent
velocity field convecting over a solid surface, the approach pro-
posed by Kraichnan (1956) is pursued and the source term in Pois-
son’s equation for pressure fluctuations is split into the MS and TT
components as

1
ρ
∇2 p′ = −2

∂uj
∂xi

∂Ui

∂xj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mean shear

− ∂2

∂xi∂xj
(uiuj − uiuj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Turbulence-Turbulence

, (5)

where ρ is the density and the overbar stands for a time average.
This Poisson’s equation stems from the divergence of the incom-
pressible momentum equation, introducing the Reynolds decom-
position into mean and fluctuating quantities and then subtracting
the time-averaged equation. Equation (5) is subject to two bound-
ary conditions, one outside the shear layer and another at the airfoil
surface. The first is based on the fact that p′ attains a finite value
outside the shear layer; the second is based on the approximation
that the derivative of p′ in the wall-normal direction goes to zero at
the wall [see Kraichnan (1956), for instance]. They can be expressed
mathematically as

lim
x2→∞

p′ = p0, (6)

lim
x2→0

∂p′

∂x2
= 0. (7)

Since the contribution due to the cross term between MS term
and TT term is negligible [see Chase (1980), for instance], only the
contribution of each source term is considered. Due to limited tem-
poral information, the wavenumber domain was chosen to describe
all the source contributions. Further details to yield the latter can be
found in Grasso et al. (2019).

A. MS source term in wavenumber space
The solution of the MS term in the wavenumber domain is

available from the earlier works of Hodgson (1962) and Panton and
Linebarger (1974). The latter describes the MS term as a quintuple
integral [Eq. (3.5) of Panton and Linebarger (1974)], which, in the
local Cartesian co-ordinate reference frame, reads

ΠMS(k1) =
8k1

2ρ2

π2 ⨌∫
∞

0
[ 1
k2 e−k(x2

′+x2) R22 cos(k1r1)

× cos(k3r3)
∂U1

∂x2

∂U1

∂x2′
u2
′(x2

′)u′2(x2)]

× dx2dx2
′dr1dr3dk3. (8)

Here, R22 is the two-point zero time-lag wall-normal velocity
correlation. k1 and k3 are the wavenumbers in the wall-tangential
and the transverse direction, respectively, while k =

√
k2

1 + k2
3 is the

wall-parallel wavenumber vector magnitude. ri is the separation dis-
tance in the i-direction. The wall-pressure spectra in the wavenum-
ber space ΠMS(k1) is seen to depend on a second-order wall-normal
velocity correlation and an interaction term between the mean shear
(∂U1
∂x2

) and the wall-normal velocity fluctuations [u2
′(x2)].

B. TT source term in wavenumber space
Similar to the MS term, the TT term is expressed in the

wavenumber domain. It is worth mentioning that attempts have
been made in the past by Hodgson (1962) and more recently
by Grasso et al. (2019). However, Hodgson (1962) made several
assumptions, such as the normal distribution assumption that will
be verified here. The present study therefore proposes a new model
reported in Eq. (9), which does not invoke the normal distribution
assumption, the mathematical description of which is given in the
Appendix. The TT term, in the local Cartesian co-ordinate system,
reads

ΠTT(k1) =
2ρ2

π2 ⨌∫
∞

0
[k2 e−k(x2

′+x2) Cij,lm(x2, x2
′, r1, r3)

× [ ¯uiuj − ¯uiuj](x2)[ ¯uiuj − ¯uiuj](x′2) e−i(k1r1+k3r3)]

× dx2dx2
′dr1dr3dk3. (9)
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This source term consists of the fourth-order two-point zero
time-delay correlation term Cij , lm(x2, x2

′, r1, r3), which can be
expressed as

Cij,lm(x2, x2
′, r1, r3)

= (uiuj − uiuj)(x)(ulum − ulum)(x + r1,3)√
(uiuj − uiuj)2(x) × (ulum − ulum)2(x + r1,3)

. (10)

Here, r1,3 is the separation vector in a plane parallel to the wall.
Cij , lm is similar to what has been used in the past by several authors
to determine jet noise sources [see Morris and Zaman (2010), for
instance].

V. CHARACTERIZATION OF MS SOURCE TERMS
The MS source term, given in Eq. (8), consists of the mean shear

term due to the variation of the wall-parallel mean velocity in the
boundary layer (∂U1

∂x2
), the turbulence fluctuations of the wall-normal

velocity component [u2
′(x2)], and the two-point correlation of the

wall-normal velocity component (R22). The latter is the most intri-
cate to quantify and model. Consequently, to estimate the contri-
bution of the MS term toward the total surface pressure fluctuations,
an accurate calculation of the two-point correlation is mandatory. In
the present work, the second order two-point zero-delay correlation

is denoted by

Rij(x1, x1
′, x2, x2

′, x3, x3
′) = ui′(x1, x2, x3)uj′(x1′, x2′, x3′)

ui′(x1, x2, x3) × uj′(x1′, x2′, x3′)
, (11)

where ui′(x1, x2, x3) is the ith component of the velocity fluctua-
tion at the fixed or reference probe location, while uj′(x1

′, x2
′, x3

′)
denotes the jth component of the velocity fluctuations at the moving
probe location. The terms ui′(x1, x2, x3) and uj′(x1′, x2′, x3′) are the
standard deviation of the turbulent velocity at the fixed and moving
probe location, respectively. Equation (11) is written assuming that
the flow is non-homogeneous in all three spatial directions.

The uncertainty in the estimation of R22, ϵRij , is defined follow-
ing Benedict and Gould (1996) as

ϵRij =
2√
N
× (1 − R2

ij), (12)

where N is the number of independent samples and Rij is the value
of the correlation coefficient. The number of samples N depends on
the integral time scale of the largest structures, τ, and on the total
length of recording T. N can then be determined using the Nyquist
criterion as

N = T/2τ. (13)

FIG. 7. Tomo-PIV second-order two-
point zero time-delay correlation Rij (x1,
x1
′, 0.45 × δ95, 0.45 × δ95, x3, x3

′) in
a plane parallel to the wall (iso x2-cut)
at RMP 26 (x1/C = 0.98): (a) R11 and
(b) R22. Color transition from the black
curve to gray curve indicates decreasing
values of correlation, and dotted curves
indicate negative values.

FIG. 8. Tomo-PIV second-order two-
point zero time-delay correlation Rij (x1,
x1
′, 0.35 × δ95, 0.35 × δ95, x3, x3

′) in
a plane parallel to the wall (iso x2-cut)
at RMP 26 (x1/C = 0.98): (a) R11 and
(b) R22. Color transition from black curve
to light gray curve indicates decreasing
values of correlation, and dotted curves
indicate negative values.
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For the sake of simplicity, this time scale τ has been estimated
based on the largest length scale present in the flow. The latter cor-
responds to that of the wall-tangential velocity correlation, which is
here approximately equal to 1.5–2 times the boundary layer thick-
ness. The convection velocity is chosen to be equal to 0.72 U∞ based
on the recent study by Grasso et al. (2019), consistently with all
available experimental data.

A. Overall topology of the two-point velocity
correlation

Two-point correlations of the streamwise (R11) and wall-
normal velocity (R22) in two planes parallel to the wall are shown

in Figs. 7 and 8. The R11 contours are consistent with the results of
the DNS of a turbulent boundary layer subjected to a strong adverse
pressure gradient at a slightly larger Reynolds number Reθ = 1755
but for a similar shape factor H = 2 [Fig. 16 in Gungor et al. (2014)].
R11 has a main lobe stretched along x1 surrounded by two negative
lobes on each side. This is expected as the correlation flux should
vanish in planes perpendicular to the direction of velocity, which,
in turn, implies the presence of negative and positive values of cor-
relation (Sillero et al., 2014). Moreover, this is needed to fulfill the
continuity equation for an incompressible flow, especially in the
direction where the flow is homogeneous [see Townsend (1980), for
instance]. The correlation length of the streamwise velocity correla-
tion structures appears to be about 1.5 × δ95 in both planes parallel

FIG. 9. R22(x1, x1
′, x2, x2

′, 0, 0) in a
plane normal to the airfoil (a) at RMP 21
(x1
′, 0.1 × δ95, x2

′, 0, 0), (b) at RMP 26
(x1
′, 0.1 × δ95, x2

′, 0, 0), (c) at RMP 21
(x1
′, 0.2 × δ95, x2

′, 0, 0), (d) at RMP 26
(x1
′, 0.2 × δ95, x2

′, 0, 0), (e) at RMP
21 (x1

′, 0.5 × δ95, x2
′, 0, 0), and (f)

at RMP 26 (x1
′, 0.5 × δ95, x2

′, 0, 0).
Color transition from black curve to light
gray curve indicates decreasing values
of correlation.
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to the wall located at a distance of 0.35 and 0.45 × δ95 from the
wall, respectively. The presence of large-scale structures with such
a spanwise spacing is consistent with the DNS results of a turbu-
lent boundary layer in the APG zone at a slightly smaller Reynolds
number Reθ = 900 [see Fig. 15(a) in Abe (2019)]. The wall-normal
velocity correlationR22, in contrast, seems to be principally stretched
in the streamwise direction, consistent with the DNS data of Sillero
et al. (2014) on a flat plate and that of Grasso et al. (2019) on the CD
airfoil. Both velocity correlation contours (R11 and R22) seem homo-
geneous in a plane parallel to the wall. Therefore, the anisotropy,
i.e., the stretching in the streamwise direction compared to the wall-
normal direction, is independent of the separation distance from the
fixed point [see Figs. 7 and 8 in Grasso et al. (2019)].

B. Self-similarity of the two-point correlation R22

Even if R22 is homogeneous in planes parallel to the wall, its
anisotropy in planes normal to the wall is clearly shown in Fig. 9.
This inhomogeneity is caused by the presence of the wall that affects
the normal growth of structures in the wall-normal direction.

To better show the inhomogeneity, the two-point correlation
between two points separated by a wall-normal distance Δx2 = x2

′

− x2 for the same streamwise x1 and spanwise x3 location is consid-
ered. To simplify the notations, the latter two coordinates are now
dropped in Eq. (11) to yield for the wall-normal velocity component,

R22(x2, x2
′) = u′2(x2)u′2(x2′)

u′2(x2) × u′2(x2′)
. (14)

However, as suggested by Hunt et al. (1987) and shown analytically
by Oberlack (2001), if the correlation is instead divided by the top
point and plotted against x2

′/x2 (with x2 > x2
′), self-similarity is

achieved. Therefore, Eq. (14) is multiplied by u′2(x2′) for the moving
point x2

′ and divided by u′2(x2) for the upper and fixed point x2 to
yield

R̃22(x2, x2
′) = u′2(x2)u′2(x2′)

u′2(x2) × u′2(x2)
= u′2(x2)u′2(x2′)

u′2(x2)
2 . (15)

The two equations (14) and (15) would yield the same result
if the turbulence is homogeneous. However, in the present case of
inhomogeneous turbulence, the results will differ [see Kamruzza-
man et al. (2011), for instance]. Figure 10 shows the results of the
two-point correlations near the trailing edge using both normal-
izations in the wall-normal direction with zero separation in the
wall-tangential and transverse directions. Each curve corresponds
to a location in the boundary layer, from black close to the wall to
light gray in the external layer. In each plot, the black arrows stress
that both R22 [Fig. 10(a)] and R̃22 [Figs. 10(b)–10(d)] have the same
trends when getting close or moving away from the fixed probe for
all RMP locations. Moreover, R̃22 plots [Figs. 10(b)–10(d)] show a
self-similar behavior for x2

′/x2 < 0.5 and all darkest lines that corre-
spond to the near-wall region, at all probe locations, as predicted
by Hunt et al. (1987) and previous measurements on flat plates.
Moving toward the trailing edge, i.e., with increasing mean pressure

FIG. 10. (a) R22 at RMP 21, (b) R̃22
at RMP 21, (c) R̃22 at RMP 24, and
(d) R̃22 at RMP 26. The color transi-
tion from the black dashed curve to light
gray dashed curve indicates the fixed
probe location close to the wall and away
from the wall, respectively (arrows indi-
cate increasing distance from the wall).
The closet probe is taken at one interro-
gation window away from the wall, while
the farthest probe is located at boundary
layer displacement thickness δ∗.
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FIG. 11. Wall-normal velocity integral length scale Λk±
22 at RMP 26. Legends: gray

curve—Λnt
2+
22 , red curve with circles—Λ2+

22 , blue curve with diamonds—Λ2−
22 , curve

with orange triangles—Λ1+
22 , and black curve with squares—Λ1−

22 .

gradient from RMP 21 to RMP 26, the self-similarity becomes less
pronounced, which is consistent with what Zawadzki et al. (1996)
observed for non-equilibrium boundary layers.

Figures 9 and 10 discussed above suggest that the effect of
blocking becomes weaker as the pressure gradient increases. Fur-
thermore, with increasing pressure gradient, the correlation con-
tours are more tilted, especially near the wall [see Fig. 9(d)]. In
summary, close to the wall, blocking has the most dominant effect
on the wall-normal velocity correlation profiles. Away from the wall,
i.e., toward the regions with a lower blocking effect, the pressure
gradient reduces the extent of the two-point correlation of the wall-
normal velocity [Fig. 9(e) compared with Fig. 9(f)]. The stronger the
adverse pressure gradient, the larger the zone and the less correlated
the wall-normal velocity.

C. Wall-normal velocity correlation length
From the two-point correlation, the integral length scales Λk

ij
can be computed. This section focuses on the correlation length of
the wall-normal velocity component in the wall-normal direction,

Λk
22, defined as

Λk
22(x2) = ∫

∞

0
R22(x2, x′k)dx′k. (16)

Given the asymmetry of the elliptical iso-contours of R22 observed in
Fig. 9, the integration in Eq. (16) can be split with respect to the cen-
ter of these ellipses (xc1, xc2) and four different length scales Λk±

22 can
be defined. For instance, in the wall-normal direction, the following
length scales Λ2±

22 can be defined:

Λ2−
22 (x2) = ∫

0

xc2
R22(x2, x′2)dx′2

and

Λ2+
22(x2) = ∫

∞

xc2
R22(x2, x′2)dx′2, (17)

where the + sign underscores the direction in which x2 increases,
while the − sign underscores the direction in which x2 decreases. A
similar convention has been applied in the streamwise direction.

In the following, the infinite integration limits are set as the
points in the wall-normal direction where the co-variance is lower
than 5% of the maximum value. The length scale computed with
this approach is compared to the length scale obtained without
any volume truncation (Λnt

2+
22 ) in Fig. 11. The comparison confirms

that not including the integration limits results in a larger value of
the integral length scale. The figure further confirms the flow non-
homogeneity discussed above. The following inequality, Λ1

22(x2) ≤
Λ2−

22 (x2) ≤ x2, is also verified, which suggests the absence of any eddy
larger than the height x2. This, in turn, explains the low-frequency
plateau seen below in S22.

Figure 12 shows the integral length scales Λ2±
22 in the airfoil

aft, APG zone on the suction side. As expected, both correlation
lengths increase when moving away from the wall (larger turbulent
scales), and they decrease downstream with increasing mean APG.
This is enhanced away from the wall, as shown in Fig. 12(a). Fur-
thermore, blocking makes the integral correlation Λ2−

22 curves almost
self-similar when the fixed/reference probe is taken near the wall
irrespective of the pressure gradient [see Fig. 12(b) for x2

′/x2 ≤ 0.5
and the black lines], confirming that blocking supersedes the effect
of APG close to the wall. This is consistent with the self-similar

FIG. 12. Effect of an Adverse Pres-
sure Gradient (APG) on Λ2±

22 . (a) Λ2+
22 :

red curve with circles—RMP 26, gray
curve with triangles—RMP 24, and black
curve—RMP 21; (b)Λ2−

22 : blue curve with
diamonds—RMP 26, gray curve with
circles—RMP 24, and black curve with
squares—RMP 21.
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curves in Fig. 10 near the wall, even though while calculating the
integral correlation length we have normalized co-variance values
with the standard deviation of velocity at moving and fixed points.
Finally, it should be noted that Λ2+

22 is always larger than Λ2−
22 and

that the self-similarity is preserved longer for Λ2−
22 because of the wall

blocking.

VI. MODELING OF THE MS SOURCE TERM
Sections V A–V C have assessed the competing effects of the

streamwise mean pressure gradient and the crosswise variation of
the mean shear induced by the airfoil surface. Furthermore, the
effect of wall blocking on the two-point velocity correlation in the
presence of a mean pressure gradient has been quantified. The next
step is to test the existing models and propose some extensions.

A. Modeling of the wall-normal velocity correlation
The two-point correlation has been modeled in the past assum-

ing isotropic turbulence [see Batchelor (1953), for instance]. For the
case of flow past an airfoil, as shown in Sec. V, turbulence is generally
anisotropic and inhomogeneous. Nevertheless, in a plane parallel to
the wall, it was shown that both wall-tangential and normal velocity
fluctuations are almost homogeneous. Figure 13 shows a graphical
representation of the wall-normal velocity fluctuations in a plane
perpendicular to the wall. Thus, it can be expected that a model
assuming isotropic turbulence for the wall-normal velocity performs
poorly. These can be improved either by taking into account inho-
mogenous effects, e.g., blocking of eddies by the wall [see Hunt and
Graham (1978), for instance], or by modifying the isotropic turbu-
lence models based on the experimental results presented in Sec. V.
However, Hunt and Graham (1978) theory can neither be analyt-
ically integrated to give a closed-form expression for the two-point
velocity correlation nor does it account for flow anisotropy in a plane
parallel to the wall. Therefore, in the remainder of this section, we
explore improvements of the isotropic turbulence models based on
the observations made in Sec. V to account flow anisotropy and
inhomogeneity.

The wall-normal velocity two-point correlation for isotropic
turbulence is given by

FIG. 13. Eddy structure of the wall-normal velocity in a plane normal to the airfoil.

R22(r1, r2, r3) = F(r) +
r1

2 + r3
2

2r
dF
dr

, (18)

where r is the norm of the separation vector [see Batchelor (1953),
for instance]. Following Wilson (1997) or Grasso et al. (2019), the
longitudinal correlation function for homogeneous and isotropic
turbulence, F(r), can be given by the generalized von Kármán model,

F(r) = 1
2ν−1 Γ(ν)(

r
ly
)
ν

Kν(
r
ly
), (19)

where ν = 1/3 yields the classical von Kármán model [see von Kár-
mán (1948), for instance], ν = 1/2 yields the Liepmann’s model [see
Liepmann et al. (1951), for instance], and ν = 7/6 yields the Rapid
Distortion Theory (RDT) model proposed by Hunt (1973).

Similarly, the transverse correlation function G(r) for homoge-
neous and isotropic turbulence is given by

G(r) = 1
2ν−1 Γ(ν)(

r
ly
)
ν

× [(ν + 1)Kν(
r
ly
) − 1

2
( r
ly
)Kν+1(

r
ly
)], (20)

where Kν is the modified Bessel function of the second kind of order
ν. The generalized correlation length ly is proportional to Λ as

ly =
Γ(ν)Λ√

πΓ(ν + 0.5)
, (21)

where, for isotropic turbulence, Λ is obtained from a single point
measurement [see Hinze (1975) and Wilson (1997), for instance].
However, based on the observations made in Sec. V, two length
scales Λ2+

22 and Λ2−
22 need to be defined to account for flow inho-

mogeneity in the wall-normal direction, in addition to the trans-
verse length scales Λ1

22 and Λ3
22 to account for flow anisotropy in

wall-parallel planes. Since inhomogeneity due to wall blocking is an
important phenomenon, which cannot be accounted for by using
transverse length scales, it narrows our choice to longitudinal length
scales Λ2+

22 and Λ2−
22 . Among them, however, Λ2−

22 does not reflect any
effect of the mean-pressure gradient, especially close to the wall [see
Fig. 12(b)].

The integral of the correlation functions F(r) and G(r) results
in the integral correlation length scales Λ and Λ/2, respectively. As a
result, in the isotropic correlation model, the transverse length scale
is always half the longitudinal length scale. Figure 11 shows that the
longitudinal length scale Λ2+

22 is approximately half the transverse
length scale Λ1

22. Therefore, the decay of R22 in the transverse direc-
tion can be correctly modeled using the longitudinal length scale Λ2+

22
as input for the isotropic correlation model. Thus, the present paper
will use Λ2+

22 as the appropriate length scale to take into account the
effect of mean-shear, blocking, and mean adverse pressure gradient.

The second parameter to be determined for the isotropic model
[Eq. (18)] is the order of the modified Bessel function ν that controls
the rate of correlation decay. Previous studies found that the expo-
nential decay (ν = 0.5) provides the best estimation [see Kamruzza-
man et al. (2011) and Panton and Linebarger (1974), for instance],
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while Grasso et al. (2019) observed further improvements using the
rapid distortion theory (ν = 7/6) instead. In the present study, we
find that the isotropic turbulence model with ν = 0.5 and Λ2+

22 as the
length scale already gives a fair comparison with the experimental
measurements in the wall-tangential direction, as shown in Fig. 14.
However, the isotropic model with these parameters (length scale
and ν) overestimates the extent of R22, as shown in Fig. 15, due to
flow inhomogeneity in the wall-normal (vertical) direction, which
leads to a reduction in the correlation length (compared to the points
away from the wall). Figure 15 also shows that the exponential decay
function with correlation length Λ2+

22 estimates well the decay of R22
over a shorter separation distance, while it underestimates the value

of R22 for a larger separation. However, when Λnt
2+
22 is used as the

length scale in the exponential decay function, the generalized model
estimates R22 better for large separation distances, while it is less
accurate for small distances. Therefore, it appears that none of the
length scales Λnt

2+
22 or Λ2+

22 is universally applicable for modeling R22.
Changing the exponential decay to a Gaussian one did not result in
any further improvement.

B. Characterization of flow inhomogeneity
Panton and Linebarger (1974) proposed to model R22 by

expressing the correlation length as a function of both the moving

FIG. 14. Two-point wall-normal velocity
correlation R22 with moving point travers-
ing in the wall-tangential direction, i.e.,
(x1). The fixed points for top, middle, and
bottom plots are at (x1 = RMP 26; x2 =
0.1 × δ95), (x1 = RMP 26; x2 = 0.2 ×
δ95), and (x1 = RMP 26; x2 = 0.5 × δ95),
respectively. [(a), (c), and (e)] Moving
points traveling upstream, i.e., x′1

−, and
[(b), (d), and (f)] moving points traveling
downstream, i.e., x′1

+.
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FIG. 15. Two-point wall-normal velocity
correlation R22 with moving point travers-
ing in the wall-normal direction, i.e., (x2).
The fixed points for top, middle, and bot-
tom plots are at (x1 = RMP 26; x2 = 0.1 ×
δ95), (x1 = RMP 26; x2 = 0.2 × δ95), and
(x1 = RMP 26; x2 = 0.5 × δ95), respec-
tively. [(a), (c), and (e)] Moving points
traveling toward the wall, i.e., x′2

−, and
[(b), (d), and (f)] moving points traveling
away from the wall, i.e., x′2

+.

and fixed point variables, i.e., Λi+
22[x2, x2

′]. The length scale used by
Panton and Linebarger (1974) was computed by curve fitting R22(r1,
0, 0), R22(0, r2, 0), R22(0, 0, r3) obtained from the hot-wire mea-
surements of Grant (1958). Panton and Linebarger (1974) also used
stretching factors to account for the flow anisotropy in the wall-
parallel direction. Even though Figs. 7 and 9 suggest that most of
the distortion of the correlation contours of R22 is found in the wall-
normal direction, a single flow anisotropy factor is insufficient to
describe the three-dimensional character of R22. Furthermore, as
discussed in Sec. VI A, Λ2+

22 is a more appropriate scale to use to
quantify the effect of mean-shear, blocking, and mean adverse pres-
sure gradient. We therefore suggest the following anisotropy scaling

factors:

α = 2Λ1
22/Λ2+

22,β = 2Λ3
22/Λ2+

22, γ = Λ1
22/Λ3

22. (22)

The anisotropy scaling factors in Eq. (22) reduce to 1 under
the assumption of isotropic turbulence, where the transverse length
scale is twice the longitudinal length scale. Furthermore, the stretch-
ing parameters as defined in Eq. (22) are interdependent; for
instance, it can be shown that α = γ× β. Using these definitions of the
stretching parameters and the exponential decay function, Eq. (18)
for the two-point correlation becomes
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R22(x2, x2
′, r1, r3) =

⎡⎢⎢⎢⎢⎢⎣
1 − r2

13√
r2

13 + (x2 − x2′)2 × 2Λ2+

22

⎤⎥⎥⎥⎥⎥⎦

× exp
⎛
⎜
⎝
−

√
r2

13 + (x2 − x2′)2

Λ2+

22

⎞
⎟
⎠

, (23)

where r13 is now given by r13 = ( r1
α )

2 + ( r3
β )

2
.

Λ2+
22 [x2, x2

′] is expressed as a function of both the moving point
(x2
′) and the fixed point (x2) variables by defining it as the geometric

mean of the length scales at these two locations. The geometric mean
is chosen since it is always smaller than the arithmetic mean for finite
separation and may thus better reflect compression of wall-normal
velocity correlations due to the solid wall. A detailed comparison is
shown in Fig. 16 to verify the advantage of a combined function with
respect to the more conservative, yet recent, approaches of Slama
et al. (2018) and Grasso et al. (2019).

Figure 16(a) illustrates that the model of Slama et al. (2018)
results in elongated and tilted correlation contours. The tilt angle
of the correlation contours proposed by Slama et al. (2018) is
not well-tuned for the present case. Furthermore, the model fails
to capture the true extent of R22 in the wall-tangential direction.
More importantly, the model does not capture the compression of
correlation contours near the wall because of the assumption of
homogeneity in the wall-normal direction inherent in the model

of Slama et al. (2018). The experimental results are further com-
pared with the model proposed by Grasso et al. (2019) in Fig. 16(b).
Grasso et al. (2019) used modified isotropic turbulence to model
S22 (and hence R22) where Λ1

11 was chosen as the reference length
scale and defined it as a function of both moving and fixed-point
variables by taking the algebraic mean of the length scales between
those two points. The orientation of the contours is significantly
improved, and a fair comparison with the experiment is obtained
away from the wall. However, the model does not compare favor-
ably to the reference data close to the wall. A possible explana-
tion lies in the choice by Grasso et al. (2019) of Λ1

11 to model R22.
Note that such an assumption was mostly driven by similar refer-
ence length scale selection in previous models such as the TNO-
Blake modeling approach. As shown in Figs. 7 and 8, the overall
shape of the two correlations R11 and R22 is strikingly different.
Furthermore, the effect of blocking is not as pronounced in the
streamwise velocity correlations R11 as it is in the case of R22. Con-
sequently, by using Λ1

11 to model R22, the model of Grasso et al.
(2019) does not reflect the compression of R22 contours close to the
wall [see Fig. 9(b), for instance]. Figure 16(c) clearly shows that the
proposed model better estimates the overall extent of R22 in both
wall-normal and wall-tangential directions and better reproduces
the compression of R22 close to the wall. Any further improve-
ment requires consideration of anisotropy. We thus follow Panton
and Linebarger (1974) to consider the variation of anisotropy as a
function of wavenumber and distance from the wall, which requires

FIG. 16. Effect of wall-normal inhomo-
geneity on the wall-normal velocity cor-
relation modeling. Black solid curves—
PIV data. (a) Black dashed curves—
R22 model of Slama et al. (2018), (b)
Black dashed-dotted curves—R22 model
of Grasso et al. (2019), (c) Black dotted
curves—modified model of Panton and
Linebarger (1974). The color transition
from the black curve to light gray curve
represents decreasing correlation.
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to move from the real domain to the Fourier (wavenumber)
domain.

C. Characterization of flow anisotropy
The flow anisotropy is quantified using the wavenumber spec-

trum of the wall-normal velocity component, S1
22(k1) ≡ S22(k1, 0, 0)

(Fig. 17). Such wavenumber spectra have been computed using the
planar-PIV data because they have a higher dynamic range than the
TR-Tomo PIV measurement. The dynamic range of PIV, which is
defined as the ratio between the sensor size and the particle image
diameter, sets the measurement range of the velocity wavenum-
ber spectra [see Adrian et al. (2011), for instance]. While the low
wavenumber limit of the wall-normal velocity spectra is determined
by the field of view, the high wavenumber cutoff depends on the size
of the final window [see Foucaut et al. (2004), for instance].

To isolate the effects of the wall, the wavenumber energy spec-
tra are first computed removing the near-wake region from the vec-
tor field [Fig. 17(a)] and then computed using the entire vector field
[Fig. 17(b)]. Comparing the two figures, it is evident that the pres-
ence of the wall causes a plateau in the spectrum near the wall (for
low wavenumbers below 2000), in agreement with the findings of
De La Riva et al. (2004) and Lee and Hunt (1991). The presence of
a plateau in the wall-normal velocity spectra bounded by the wall
is caused by splatting [see Perot and Moin (1995) and Thomas and
Hancock (1977), for instance] wherein the intercomponent energy
transfer between the velocity components occurs near the wall.

When the wake region is included in the estimation of the
wavenumber energy spectra, peaks appear near the wall at approxi-
mately k1 = 2.6 × 103, which closely corresponds to the trailing edge
thickness where the flow undergoes separation.

Figure 17(a) further shows that the slope of the wavenumber
spectra is shallower closer to the wall, while it becomes− 5

3 away from
the wall. The latter exponent corresponds to the traverse spectra of
the wall-normal velocity fluctuations in the wall-tangential direc-
tion for isotropic turbulence (same as the longitudinal one). This
reveals that the spectra S1

22 are also a function of the wall-normal
distance, which is not accounted for in the TNO-model [see Stal-
nov et al. (2016), for instance]. Therefore, the use of the isotropic
turbulence model (using a constant slope of − 5

3 , for instance) with
stretching parameters to integrate the effect of flow anisotropy has

a significant limitation. Moreover, the fitting function was originally
devised by von Kármán for isotropic turbulence. The aim is thus to
capture the variation in the wavenumber by a correctly adapted value
of anisotropy.

Due to its success in capturing the correct shape of the cor-
relation function, we use the exponential decay function to model
the wavenumber spectra model. The exponential decay model of the
two-point correlation transforms into the Liepmann spectra in the
Fourier space,

S1
22(k1) =

u2
′2Λ1

22

π
1 + 3(k1Λ1

22)2

[1 + (k1Λ1
22)2]2 . (24)

Similar to Eq. (20), Eq. (24) can be modified to accommodate
the fact that turbulence is not isotropic by making sure that the inte-
gral of Eq. (24) is equal to u2

′2. However, as the boundary layer
grows along the suction side of the airfoil, the mean shear contin-
uously increases u2

′ along the wall-tangential direction. Hence, to
take this growth into account, the value of u2

′2 was spatially averaged
in the wall-tangential direction for a given wall-normal location, and
the correlation length taken for the fitting function isΛ1

22. The results
show that the Liepmann spectra can model the wall-normal veloc-
ity spectra, especially away from the wall [see Fig. 18(a)] where the
effect of both mean shear and blocking is negligible. Close to the wall,
while the Liepmann spectra seem to capture the trend of the exper-
imental measurements, it underestimates the spectral contribution
of small scales in the 1–2 × 104 streamwise wavenumber range. This
is expected since the Liepmann fitting function is based on a sin-
gle length scale that corresponds to the most energetic eddy. These
results are coherent with its Fourier transform analog (Fig. 14).

To calculate the anisotropy coefficient α [see Eq. (22)] as a
function of wavenumber, the path of Panton and Linebarger (1974)
and Linebarger (1972) is followed. Although α varies quite signifi-
cantly at low frequencies for a given wall-normal location, at mid-
and high frequencies, the curves collapse, and α can be treated as a
function of wavenumber as proposed by Linebarger (1972) and Pan-
ton and Linebarger (1974). At low frequencies, on the other hand,
α seems to be only a function of the distance to the wall x2. As
can be expected, when these values of anisotropy are accounted for,
the modified isotropic turbulence results in even a better estimation
(see Fig. 19). Hence, to successfully model the two-point velocity

FIG. 17. S1
22 wavenumber energy spec-

tra. (a) Measurement domain without the
wake. (b) Entire measurement domain.
Legends: The color transition from the
black curve to light gray curve indicates
fixed probe location close (x2 = 0.037
× δ95) to the wall and away (x2 = δ95)
from the wall, respectively. Black dashed
curve—cutoff based on the interrogation
window size.
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FIG. 18. S1
22 wavenumber energy spec-

tra: (a) Liepmann’s model against mea-
surements and (b) anisotropy as a func-
tion of wavenumber and distance to the
wall.

correlation in the wall-normal direction, the model must be defined
as a function of both fixed and moving points along with proper
stretching parameters. This conclusion provides an answer to the
second objective of this study.

The anisotropy coefficient γ, as shown in the iso-contours of
R22 in Figs. 7 and 8, appears to be stretched in the wall-tangential
direction for most parts of the boundary layer except close to the
outer edge of the boundary layer as confirmed by Grasso et al.
(2019). However, because of flow homogeneity in planes parallel to
the wall, an important conclusion can be drawn about the anisotropy
coefficient γ: it is unaffected by the mean adverse pressure gradient
near the trailing edge. This also explains why Grasso et al. (2019)
did not notice any variation of γ or of the length Λ1±

11 scale in the
wall-tangential direction.

D. Modeling of the integral length scale
Modeling of the integral length scale Λk±

ij hitherto has been
limited to semi-empirical approaches. Several authors in the past
have attempted to employ Prandtl’s mixing length theory to quantify
the wall-normal velocity correlation length Λ2+

22 [see Kamruzzaman
et al. (2011), for instance]. TNO-Blake models [see Kamruzzaman
et al. (2011), Parchen (1998), and Stalnov et al. (2016), for instance]
use mixing length theory in conjunction with empirical scaling. In
these models, the length scale Λ2+

22 is given by the ratio lm/κ, where

lm is the mixing length and κ is the von Kármán constant. On the
other hand, Panton and Linebarger (1974) stated that the correla-
tion length Λ2+

22 should either be equal to 1.5 × lm or can be modeled
using an empirical model [see Eq. (2.20) of Panton and Linebarger
(1974)]. The former relation has been used by Remmler et al. (2010)
to model Λ2+

22 , while the latter one was used by Grasso et al. (2019).
Nevertheless, as shown in Fig. 20, either of them yields similar pre-
diction. However, as shown in Fig. 20, the mixing length theory fails
to predict the length scales Λ2+

22 away from and very close to the wall.
This poor comparison between the model and measurements can be
due to a couple of reasons. First, it appears from the DNS results of
Sillero et al. (2014) and PIV data that the length scale Λ22 does not
approach zero as quickly as the mixing length theory predicts. This
is due to the length scales close to the wall not obeying the strong
decay of either the mean shear or the wall-normal turbulence veloc-
ity. Therefore, close to the wall, length scales based on inner layer
variables appear most suited to model the correlation length. Hunt
et al. (1987, 1989) and later Hunt and Morrison (2000) proposed a
length scale model based on shear and wall scales,

(Λk+
22)−1(x2) = akb ×

1
x2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Blocking term

+ aks ×
dU1/dx2(x2)

u′2(x2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Shear term

. (25)

FIG. 19. Two-point correlation R22 from
the PIV data (black solid curves) and
anisotropy tuned model (black dashed
curves) (a) at fixed point 0.1 × y/δ95
and (b) at fixed point 0.2 × y/δ95. The
color transition from the black curve to
light gray curve represents decreasing
correlation.

Phys. Fluids 32, 105105 (2020); doi: 10.1063/5.0021121 32, 105105-18

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 20. Modeling of the wall-normal velocity integral length scale Λk±
22 . Legends:

blue curve with open squares—Λ1+
22 ; blue curve with filled squares—Λ1+

22 from
Eq. (25); red curve with open circles—Λ2+

22 ; red curve with filled circles—Λ2+
22 from

Eq. (25); black open circles— u2
′

dU1/dx2 ×κ ; gray open diamonds—Prandtl’s mixing

length scale [Eq. (7) of Remmler et al. (2010)]; and black solid curve— empirical
model of Panton and Linebarger (1974).

Equation (25) actually consists of two terms, namely, the block-
ing term and the shear term. Their relative importance is determined
by the empirical constants akb and aks , respectively. In fact, for our
case, the length scale based on u2

′ and dU1/dx2 was found to esti-
mate the mixing length scale if u2

′ is allowed to be a function of
x2, as shown in Fig. 20. Note again that the introduction of the von
Kármán constant yields a proper length scale from this new mixing
length. Hence, the contribution of the shear can be determined by
using the length scales obtained from their combination, and these
terms also constitute the source terms of the MS term. The block-
ing term is only a function of x2, the location of the fixed point.
In fact, it enforces the correlation length to linearly decrease while
approaching the wall, which can be seen in the correlation con-
tours in Fig. 9. Equation (25) can be first applied in the streamwise
direction to yield the constants a1

b = 1.6 and a1
s = 0.5 for the wall-

normal velocity correlation Λ1+
22 . These constants have been obtained

by a least-square curve-fit of the measured spatial correlation length
reported in Fig. 20. They have the very order predicted by Hunt
et al. (1989) and Hunt and Morrison (2000). The same model can

be used to model the wall-normal velocity correlation in the wall-
normal direction Λ2+

22 . The two constants then become a2
b = 1 and

a2
s = 0.2, respectively. Thus, for the third objective of the paper, the

combination of both wall-blocking and shear needs to be taken into
account to quantify the wall-normal velocity correlation length cor-
rectly. Moreover, the model of Hunt and Morrison (2000) should be
preferred over the mixing length theory, which does not reflect the
effects of blocking.

VII. TT SOURCE TERM DESCRIPTION AND MODELING
Having characterized the MS terms, the present section seeks

to characterize and model TT source terms. As mentioned before,
the first attempt to describe the TT source term in the wavenumber
domain was undertaken by Hodgson (1962). However, as already
pointed out by Grasso et al. (2019), Hodgson (1962) had made
several key assumptions while deriving the final expression for the
wavenumber spectra of the wall-pressure fluctuations due to the
TT term. One such key assumption is that the turbulence statis-
tics follows a normal distribution [see Millionshchikov (1941), for
instance]. To test this, we calculated the flatness factor or kurto-
sis using our planar-PIV data at two different streamwise locations.
The uncertainty in the kurtosis, ϵui′4 , is given by Benedict and Gould
(1996),

ϵui′4 = 1.96 ×
⎡⎢⎢⎢⎢⎣

√
96
N
(ui′2)2

⎤⎥⎥⎥⎥⎦
, (26)

with N given by Eq. (13). Equation (26) yields the largest uncer-
tainty of 43% (ui′2) for the present measurements (see Table III).
Our measurements reveal that, although the flatness factor of the
wall-tangential velocity follows the normal distribution, the values
of the flatness factor of the wall-normal velocity are much higher.
This is the case especially near the wall, as can be seen from Fig. 21.
Note that higher values of the flatness factor especially of the wall-
normal velocity have been reported in the past by Kim (1989) and
Chang (1998) in a channel flow.

We would finally like to dwell into the details of the TT source
term tensor and determine the relative importance of each factor. To
do so, we follow the path of Kim (1989) and more recently of Hor-
nung et al. (2019) and calculate the spatial derivative of the source

FIG. 21. Flatness factor. (a) x1 = RMP 21
and (b) x1 = RMP 26.
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FIG. 22. The mean square source terms in a plane perpendicular to the airfoil. (a)

( du
′
1

dx1
)2, (b)

du′2
dx1

du′1
dx2

, and (c) ( du
′
2

dx2
)2.

term to estimate the relative importance of each individual fac-
tor. The trailing edge noise has a dipole-type directivity, and its
amplitude is highest perpendicular to the airfoil chord at the mid-
span [see Brooks and Hodgson (1981), for instance]. Therefore, for
such an observer location, the contribution to the far-field acoustic
noise from the velocity fluctuations in the spanwise direction can
then be ignored. Hence, the present study will only consider the
factors comprising velocity disturbances in the wall-tangential and
wall-normal directions. In Fig. 22, the spatial derivative of the wall-
normal velocity fluctuations ( du2

′

dx2
)2 is seen to be the strongest, fol-

lowed by du2
′

dx1

du′1
dx2

, and the weakest term is ( du
′
1

dx1
)2. The reason might

be the relative homogeneity in the wall-parallel planes, as reported
in Sec. V A. The fact that ( du

′
2

dx2
)2 is the highest contributor in our

case differs from the results of the previous study of Hornung et al.
(2019). The dominance of ( du

′
2

dx2
)2 is most likely caused by the fact

that the turbulence is well established in our case and the flow seems

to be statistically similar near the trailing edge [see Moreau and
Roger (2005), for instance]. Thus, for the fourth objective, we can
conclude that for a flow that behaves statistically similar near the
trailing edge, the variation of the wall-normal velocity fluctuations is
the dominant far-field noise generation term for an observer placed
perpendicular to the airfoil.

The fourth-order two-point velocity correlation [see Eq. (10)]
used to describe the source field of TT terms has been used in the
past to describe jet noise. Therefore, the natural course of action is
then to take advantage of several simplifications that have been pre-
viously made [see Morris and Zaman (2010), for instance]. The first
simplification without making any assumption on the statistical dis-
tribution of velocity co-variance was proposed by Lighthill (1993)
who showed that if the mean square velocity fluctuations and the
flatness factor are independent of the separation distance, then the
fourth-order two-point correlation is just the square of the second-
order two-point velocity correlation. It must be noted however that
Lighthill’s simplification is valid only for the velocity fluctuations in
the longitudinal direction. Figure 23 shows that Lighthill’s approxi-
mation seems to capture the shape and the levels of the correlation
C22,22 well. This result is rather encouraging, and it is hoped that in
the future, Lighthill’s approximation can be extended in the trans-
verse direction as well. For all modeling perspective, given that the
second-order two-point velocity correlation is captured well with an
exponential function, the fourth-order two-point velocity correla-
tion can be successfully captured using a Gaussian function. In fact,
the success of such a Gaussian fit for modeling Cij ,kl has already been
established by Karabasov et al. (2010) for the jet case.

VIII. EVALUATION OF THE WALL-PRESSURE SPECTRA
Having modeled the MS and TT source terms of Eq. (5) in

Secs. VI and VII, respectively, their relative contribution to the wall
pressure fluctuations p′ can be finally assessed from Eqs. (8) and
(9) in Sec. IV. For instance, the presumably dominant MS term
comprises the mean shear, the wall-normal velocity fluctuations,
and the two-point zero time-delay correlation of the wall-normal
velocity [see Eq. (8)]. All this necessary information is only avail-
able above RMP 26, and the wall-pressure reconstruction is there-
fore limited to this location, which is anyway the only necessary
input in Amiet’s trailing-edge noise model. To prevent the limited

FIG. 23. Lighthill’s approximation of the
fourth-order two-point zero time–delay
correlation at RMP 26 (a) at x2 = 0.2 ×
δ95 and (b) at x2 = 0.5 × δ95.
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resolution and dynamic range inherent to any PIV system near the
wall and its effect on pressure reconstruction, as detailed in the past
by Ghaemi et al. (2012) and van Oudheusden (2013), the present
experimental data have been supplemented by the near-wall values
of anisotropy γ taken from the DNS of the same configuration by
Wu et al. (2019) as already done previously by Grasso et al. (2019).
The convection velocity is also assumed to be 0.72 × U∞, consis-
tently with all previous measurements in different test facilities for
the same flow configuration. Numerical evaluation of the MS and
TT terms, which involve quintuple integrals, using quadrature meth-
ods is prohibitive. Therefore, Monte Carlo methods are used, the
feasibility and robustness of which have been recently evaluated by
Grasso et al. (2018). To facilitate the numerical implementation of
the Monte Carlo scheme, Eqs. (8) and (9) are transformed into polar
coordinates.

Furthermore, all the length scales within the integral are nor-
malized by the boundary layer thickness. For the present study, the
method of quasi-random sampling technique and importance sam-
pling for the variance reduction has been used. The quasi-random
sampling technique is known to improve the rate of convergence
by a factor of N−1/2 (where N is the number of samples) com-
pared to when the Monte Carlo integration is done using a sequence
of pseudo-random numbers [see p. 299 of Press et al. (1992)].
The quasi-random sequence is based on the Sobol sequence taken
directly from Press et al. (1996). To further accelerate the rate of
convergence, the method of importance sampling is used [as done
in the past by Grasso et al. (2018), Linebarger (1972), Panton and
Linebarger (1974), and Remmler et al. (2010)]. Although the method
of importance sampling has been described in detail by Grasso et al.
(2018), the main steps of the procedure are recalled for the sake of
completeness.

The method of importance sampling is based on the simple idea
that by introducing a change in a variable, the function could be
made flatter in the new coordinate system, and hence, fewer sam-
ples would be required to reach convergence. Mathematically, the
process of importance sampling amounts to solving the following
equation:

Ef [h(Y)] = ∫
Y
h(X)g(X)dX. (27)

In the above equation, the expectation Ef of function h(X) is
sought under the Probability Density Function (PDF) g(X) in the
domain Y. In the present case, h(X) represents the integrand of
Eq. (8), the integration of which is to be carried out. X stands for the
five independent variables over which the integration is performed.

To solve the quintuple integral to evaluate Eq. (8), the choice of
g(X) has to be made for the leading terms in each of the indepen-
dent variables Xi present in h(X). The choice itself is dictated by step
1 of the algorithm. From there on, samples could be drawn from
the function g(X) using the technique known as inverse transform
sampling.

The algorithm for inverse transform sampling can be summa-
rized as follows:

(1) Determine the PDF function g(Xi) that “resembles” h(Xi).
(2) Determine its Cumulative Distribution Function (CDF) u(Xi)

from g(Xi).
(3) Find its inverse u−1(Xi) either numerically or analytically.

(4) Generate uniformly distributed random numbers using the
Sobol sequence and plug it to u−1(Xi), which generates a
random number based on the PDF g(Xi).

(5) Solve Eq. (27).

The first CDF is constructed for the variable k3 and is exactly
the one used by Linebarger (1972),

u(k3) =
k1

k2 tan−1( b
k1
)

, (28)

where b represents the upper limit of integration used for the
wavenumber k3. Subsequently, the CDF for the variables x2, x2

′, and
r is chosen to be equal to

u(x2) =
exp(−x2)

exp(−a1) − exp(−a2)
, (29)

where a1 and a2 are the limits of integration for the variable. Finally,
for the variance reduction in the polar angle θ, the following CDF
has been used:

u(θ) = 1
2 ×
√
(θ × 2π)

. (30)

The wall-pressure spectra calculated are then expressed as a
function of frequency under the hypothesis of frozen turbulence.
The final wall-pressure spectra above RMP 26 are shown in Fig. 24.
An integration over the frequency range 0.1 kHz–10 kHz yields prms.
Its normalized value prms/τw of 9.4 is consistent with the distribu-
tion reported by Wang et al. (2009) on the same airfoil for the same
flow condition. Compared with the wall-pressure spectra from a
ZPG case as in Choi and Moin (1990), the low-frequency region has
much higher levels contributing to the larger prms/τw. The latter is
also larger than the value of 3.7 reported by Na and Moin (1998) as
the present APG is more severe. Yet, when the rms of the wall pres-
sure is normalized by the local maximum Reynolds shear stress, we

FIG. 24. Comparison of wall-pressure spectra models against experimental mea-
surements at RMP 26. Legends: red solid curve—probe RMP 26; gray dashed
curve—Rozenberg’s model; black open circle—MS term quasi-random sam-
pling; blue crosses—MS term importance sampling; and blue curve with open
squares—TT22,22 quasi-random sampling.
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obtain about 2.7, which is consistent with the near plateau between
2.5 and 3 reported by Na and Moin (1998) and Abe (2017).

In Fig. 24, the MS term is seen to successfully capture the
experimental levels and slopes. The so-called mid-frequency univer-
sal scaling, as well as the high-frequency roll-off, is well captured.
Figure 24 also confirms that the variance reduction using either
the importance sampling or the quasi-random sampling performs
exceedingly well and differences are negligible at least on a dB scale.
Rozenberg’s model is unable to capture the correct levels at low fre-
quencies. It is worth mentioning that for the input of Rozenberg’s
model boundary layer, integral parameters were calculated based
on 99% of Ue, as proposed by Rozenberg et al. (2012). Finally, the
most dominant in-plane TT term, TT22,22, has been evaluated. For
the range of frequency of interest, the contribution of the TT22,22
term is negligible compared to the MS term for the wall-pressure
spectra reconstruction. For far-field noise estimation for an observer
placed perpendicular to the airfoil, just the contribution from the MS
term would be enough. These conclusions thus answer the fourth
objective of the paper.

As shown in the past [see Linebarger (1972) and Panton and
Linebarger (1974), for instance], different regions of boundary lay-
ers contribute to different bands of frequencies for the wall-pressure
spectra. This information is quite valuable since it can directly link
the contribution to a particular band of frequencies to a specific
layer within the boundary layer. To do this, first of all, we divide
the boundary layer in three different regions:

(1) Inner-layer extending from the wall (IL) to 0.15 × δ95 (IU)
(0 ≤ x+

2 < 33.3)
(2) Middle-layer extending from 0.15 × δ95 (ML) to 0.45 × δ95

(MU) (33.3 ≤ x+
2 < 100)

(3) Outer-layer extending from 0.45 × δ95 (OL) to δ95 (OU)
(100 ≤ x+

2 < 220.5).

Subsequently, to identify regions of frequency that are gener-
ated by different layers, we subdivide integral I as

I =∬
∞

0
∫

2π

0
[∫

xIU2

xIL2
∫

x′IU2

x′IL2

+2∫
xIU2

xIL2
∫

x′MU
2

x′ML
2

+2∫
xIU2

xIL2
∫

x′OU2

x′OL2

+ ∫
xMU

2

xML
2
∫

x′MU
2

x′ML
2

+2∫
xMU

2

xML
2
∫

x′OU2

x′OL2

+∫
xOU2

xOL2
∫

x′OU2

x′OL2

dx2dx′2]

× dθdk3dr. (31)

The above methodology was first used by Linebarger (1972)
and Panton and Linebarger (1974) to identify regional contribu-
tion of the wall-pressure spectra. The results shown in Fig. 25 rein-
force the claim that wall-pressure fluctuations are caused by non-
local events, and as such, local scales based exclusively on either
outer or inner parameters of the boundary layer are insufficient [see
Camussi (2013), for instance]. This non-locality of pressure fluc-
tuations is especially true at low frequencies where various regions
contribute. The inner layer contributes the most to higher frequen-
cies as expected because of the small scales involved. However, one
key difference with Panton and Linebarger (1974) is that the present
calculations do not show the “unexpected” changes in concavity
(points where the second derivative is equal to zero) for the middle
layer contribution. A distinct shift from the edge of the shear layer

FIG. 25. Regional contribution of the MS term at RMP 26. Legends: red solid
curve—inner layer; black open circles—inner–middle layer; blue open squares—
inner–outer layer; gray dashed line—middle layer; red curve with open diamonds—
middle-outer layer; and blue curve with crosses—outer layer.

TABLE V. Zonal distribution in percentage of the rms of the wall pressure.

Inner Middle Outer
(IN) (MD) (OT) IN-MD IN-OT MD-OT

30.3 18.1 6.4 22.8 4.6 17.8

to the near-wall region is observed with an increase in frequency.
A quick drop from the contribution of the middle and outer layer
terms is observed at high frequencies (starting from 3000 Hz). The
low-frequency part is mostly dominated by the outer and middle
parts of the boundary layer and their cross term, as also observed by
Anantharamu and Mahesh (2020). The reason for such a behavior
is most likely caused by the local severe adverse pressure gradient,
which results in the presence of large coherent structures nearer the
wall [see Panton and Linebarger (1974), for instance]. The inner–
outer part contributes the least (as expected) to the wall-pressure
spectrum due to the significant separation distance between these
layers, which results in a loss of correlation (R22). Its contribution
is only significant at low frequencies (below 1000 Hz), and its con-
tribution at higher frequencies reduces quickly to almost zero. The
high-frequency contributions therefore come from stratified regions
within the boundary layer and not because of global motions, as
already suggested by Blake (2017). By again integrating over fre-
quencies each contribution in Eq. (31), similar conclusions can be
drawn on prms, as shown in Table V.

IX. CONCLUSION
A comprehensive approach to wall-pressure spectrum model-

ing in the wavenumber domain based on Poisson’s equation has
been presented and tested for the attached turbulent flow past the
CD airfoil at 8○ and a Reynolds number of 1.5 × 105 (based on
the chord length and inlet velocity), for which a significant adverse
pressure gradient exists at the trailing edge. The models proposed
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for the individual source terms, i.e., the MS and TT terms, show
that the velocity correlation is very important for the wall-pressure
spectra.

The present study confirms the existence of very large struc-
tures for wall-tangential fluctuations in the outer parts of the bound-
ary layer, the size of which is typically 1.5–2 δ95. In any plane par-
allel to the wall, both wall-tangential and normal velocity correla-
tion profiles are homogeneous. The existence of flow homogeneity
is quintessential in allowing simplifications to be made in the wall-
pressure modeling [see Blake (2017), Grasso et al. (2019), Panton
and Linebarger (1974), and Remmler et al. (2010), for instance].
In contrast, in the plane perpendicular to the wall, the correlation
contours of the wall-normal velocity correlation are anisotropic and
inhomogeneous. The inhomogeneity is caused by the blocking of
the wall that stops the development of the turbulent structures. The
assumption of homogeneous turbulence in the wall-normal direc-
tion is bound to give erroneous results as shown when a homo-
geneous model such as EAM [proposed by Slama et al. (2018)] is
used. Furthermore, toward the wall, the correlation profile is found
to collapse, giving rise to self-similarity when normalized by the
upper point, as first shown by Hunt et al. (1987). The blocking
effect is likely responsible for the compression of the correlation iso-
contours close to the wall. However, increasing the mean pressure
gradient seems to counteract the effect of blocking, thus render-
ing self-similarity less noticeable. In short, the effect of the pres-
sure gradient opposes blocking of the eddies by the wall. Generally,
the effect of the pressure gradient decreases the correlation in the
velocity profiles. Therefore, with increasing pressure gradient, the
structure becomes less and less correlated within the boundary layer
away from the wall. Although the adverse pressure gradient, mean-
shear, and blocking appear to be competing, their relative impor-
tance varies across the wall-tangential and wall-normal directions.
Close to the wall, blocking is found to dominate, especially when
the moving point of the two-point wall-normal velocity correlation
moves in the direction of the wall. The importance of blocking near
the wall becomes more evident when considering the correlation
length Λ2−

22 that collapses irrespective of the pressure gradient near
the wall (∼40%).

Because of the competing effects of blocking, pressure gradient,
and wall shear, modeling of the wall-normal velocity is difficult using
isotropic turbulence models. However, slightly away from the wall
and especially in the wall-tangential direction, the exponential func-
tion is found to properly capture the correlation decay. The isotropic
turbulence model can then be used with a fair degree of success, pro-
vided that the two-point correlation length is a function of both the
moving and the fixed point. For the wall-normal velocity correlation,
the transverse correlation length is almost half of the longitudinal
correlation length, which is intrinsic to isotropic models. Mixing-
length theory provides one way of estimating it. However, the effect
of blocking should be incorporated, and therefore, the model of
Hunt and Morrison (2000) provides a more reasonable path.

A new model is proposed to quantify the contribution to the
wall-pressure spectra of the TT term that requires estimation of
fourth-order statistics, making it challenging to evaluate. The alter-
native route of using the normal distribution hypothesis of Million-
shchikov (1941) to reduce the complexity has been pursued in the
past [see Grasso et al. (2019), Hodgson (1962), and Slama et al.
(2018), for instance]. However, the current experimental study and

several other studies [see Chang (1998), Kim (1989), and Srinath
(2017), for instance] have shown that the normal distribution does
not apply close to the wall in particular, even though the relative
uncertainty in the fourth-order statistics of the experimental data
presented in the present study is high. An alternative estimation
of the fourth-order statistics using second-order statistics, which is
mathematically rigorous and does not invoke the assumption of the
normal distribution of the fourth-order statistics, has been proposed
by Lighthill (1993). Such an estimate seems to agree well with the
current PIV data. Another difficulty lies in the fact that the TT shear
noise term requires determination of a fourth-order tensor, and even
though some of the terms are symmetric and equal, the number
of terms to be modeled remains comparatively large. The present
experiment confirms that the wall-normal term TT22 is larger than
the source terms TT11 and TT12, consistently with the homogene-
ity of turbulence in any plane parallel to the wall. Therefore, for an
observer placed in the mid-span location and perpendicular to the
airfoil chord, the MS and TT22 terms contribute the most to the per-
ceived airfoil self-noise. However, estimation of the pressure spectra
shows that the MS term contribution is substantially higher than that
of the TT22 term.

Moreover, good agreement between the measured wall-
pressure and the reconstructed MS term is found. Therefore, the
methodology proposed in the current paper provides a novel way
to reconstruct wall-pressure spectra using a low-repetition rate PIV
system without using elaborate numerical schemes to solve for pres-
sure. Another advantage of such an approach is that it allows unrav-
eling the regional contributions toward the total wall-pressure spec-
tra within the boundary-layer for a given frequency. The regional
contribution of the MS term suggests that the near-wall region
mostly governs high-frequency contribution (x2

+ < 33.3). Low-
frequency contribution is mostly governed by the middle and outer
layers. Furthermore, a clear transition when approaching the wall is
observed with an increase in frequency, and consequently, no point
of inflexion for the contribution of any given layer is found, which is
contrast to the findings of Panton and Linebarger (1974). It is hoped
that by linking velocity field statistics to wall-pressure, latter infor-
mation can be used to improve the existing semi-empirical models
and develop novel noise reduction techniques using flow control
strategies.
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APPENDIX: MODELING OF THE TT INTERACTION
SOURCE TERM

The starting point is the solution of Poisson’s equation, retain-
ing only the TT factor as a source term, in the wavenumber space as
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pursued by Kraichnan (1956) and recalled recently by Grasso et al.
(2019), for instance. Here, we start with the solution of Eq. (5) with
the boundary conditions given by Eqs. (6) and (7).

Equation (5) is Fourier transformed in a plane parallel to the
wall. The following equation is then obtained:

∂2p̂
∂x1∂x1

+
∂2p̂

∂x2∂x2
+

∂2p̂
∂x3∂x3

= −T̂(K, x2). (A1)

Here, (X̂) denotes the spatial Fourier transform of a variable X.

The source term in Eq. (A1) is T̂ij(K, x2
′) = ∂2T̂Tij

∂xi∂xj
. The TT term is

itself a second-order velocity tensor, and the summation of its indi-
vidual components comprises the complete source field. They have
been listed in Table VI for completeness. Equation (A1) is a second-
order non-homogeneous ordinary differential equation, the solution
of which can be obtained using a standard procedure, as shown in
the past by Linebarger (1972) and more recently by Grasso et al.
(2019). The final solution can be written as

p̂(K, 0) = ρ
k ∫

∞

0
e(−kx2

′
)T̂ij(K, x2

′)dx2
′. (A2)

To take the Fourier transform of individual terms, we make use
of the following four properties of the Fourier transform:

f̂ n(k) = (ik)nf ˆ(k),

[ ˆf g](k) = ∫
Km

f̂ (k − k′) ĝ(k′)dk′, (A3)

∂
[f (x)∗g(x)]

∂x
= ∂f (x)

∂x

∗

g(x), (A4)

ˆ[af + bg] = af̂ + bĝ. (A5)

The final tensor Tij is simplified with the abovementioned
properties and by the use of integration by parts. To obtain the
autospectra, Eq. (A2) is multiplied by its complex conjugate. Taking
the ensemble average, we have

p̂(k, 0)p̂∗(k′, 0)

= ρ2

kk′∬
∞

0
e(−kx2

′)T̂ij(k, x2′)e(−k′x2)T̂ij
∗(k′, x2)dx2dx2

′.

(A6)

TABLE VI. Decomposition of the TT tensor.

T̂T11 =
ˆ∂2(u′1u
′
1−u

′
1u
′
1)

∂x1
2 T̂T12 =

ˆ∂2(u′1u
′
2−u

′
1u
′
2)

∂x1∂x2
T̂T13 =

ˆ∂2(u′1u
′
3−u

′
1u
′
3)

∂x1∂x3

T̂T21 = T̂T12 T̂T22 =
ˆ∂2(u′2u
′
2−u

′
2u
′
2)

∂x2
2 T̂T23 =

ˆ∂2(u′2u
′
3−u

′
2u
′
3)

∂x2∂x3

T̂T31 = T̂T13 T̂T32 = T̂T23 T̂T33 =
ˆ∂2(u′3u
′
3−u

′
3u
′
3)

∂x3
2

TABLE VII. Simplified version of the TT source term.

T̂11 = −k1
2[T̂T11] T̂12 = ik1k[T̂T12] T̂13 = −k1k3[T̂T13]

T̂21 = T̂12 T̂22 = k2[T̂T22] T̂23 = ik3k[T̂T23]

T̂31 = T̂13 T̂32 = T̂23 T̂33 = −k3
2[T̂T33]

Since the flow is homogeneous in the wall-tangential direction,
we can simplify Eq. (A6) using the following two identities:

p̂(k, 0) × p̂∗(k′, 0) = Π(0,k)δ(k − k′)dkdk′, (A7)

T̂ij(k, x2) × T̂ij
∗(k′, x2′) = ϕij,kl(x2, x2

′,k)δ(K − k′)dkdk′. (A8)

The final expression for the wall spectra caused by the TT
interaction term is thus given by the following equation:

Π(0,K) = ρ2

k2∬
∞

0
ϕij,lm(x2, x2

′,K)e−K(x2+x2
′
)dx2dx2

′. (A9)

It is worth mentioning that Eq. (A9) together with the source
terms described in Table VII is almost the same as found by Chase
(1980). To see this more clearly, we divide the source terms in
Table VII by k2 and multiply Eq. (A9) by k4. The final expression
for the wavenumber spectra can then be written as

Π(0,K) = ρ2k2∬
∞

0
Sij,lm(x2, x2

′,K)e−K(x2+x2
′
)dx2dx2

′. (A10)

The source terms are now also given by [see Chase (1980), for
instance]

T̂s =
[−(k1

2T̂T11 + 2k1k3T̂T13 + k3
2T̂T33) + i2k(k1T̂T12 + k3T̂T32) + k2T̂T22]

k2 . (A11)

This is not at all surprising since both approaches after all solve
the same set of equations. Yet, we do find two notable differences
that come from the methodology used to obtain the source term.
The first one is rather trivial in that Eq. (A10) describes the wall

pressure spectra solely in the wavenumber domain. In contrast,
Chase’s model gives the wall-pressure spectra in the wavenumber–
frequency domain. This is due to the fact that we have just spatially
Fourier-transformed the source term, whereas Chase (1980) applied
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a spatio-temporal transformation to it. The second difference is that
we retain the mean operator in the source term tensor T̂ij. To see this
more clearly, we write out the source term explicitly,

T̂Tij(K, x2) = ∫ (ûi(K′, x2)ûj(K −K′, x2)

− ûi(K′, x2)ûj(K −K′, x2))d2K′. (A12)

Following Chase (1980), if we define a source T̃ij as T̂Tij but
with 3 axis taken along K, the source term can be reduced to

T̂s = −T̃33 + i2T̃32 + T̃22. (A13)

Finally, the corresponding cross-power wavenumber spectra
can be written as

Ŝij,lm(K, x2, x2
′) = ∫ (ûi(K′, x2′)ûj(K −K′, x2′) − ûi(K′, x2′)ûj(K −K′, x2′)) (ûl(K′, x2)ûm(K −K′, x2) − ûl(K′, x2)ûm(K −K′, x2))d2K′.

(A14)

One can also describe the cross-power wavenumber spectra as
just the spatial Fourier transform of the two-point velocity correla-
tion of the fourth order at zero time delay in a plane parallel to the
wall and is given by

Ŝij,lm(k, x2, x2
′) = [

¯uiuj − ¯uiuj](x2)[ ¯uiuj − ¯uiuj](x2
′)

4π2

× ∫ Cij,lm(r1, x2, x2
′, r3)e−i(k.r)d2r′, (A15)

where r1,3 = (r1, r3) and [ ¯uiuj− ¯uiuj](x2) =
√
(uiuj − uiuj)2(x2). For

the sake of clarity, it can be recalled that the fourth-order two-point
velocity zero time delay correlation is given by Eq. (10) in Sec. IV B.
Equation (A15) can be re-written as a function of the wall-tangential
wavenumber by integrating Eq. (A12) in k3 and substituting in
Eq. (A15),

Π(k1) =
ρ2

4π2∬
∞

0
∭

∞

−∞
[k2e(−k(x2+x2

′
))

× Cij,lm(r1, x2, x2
′, r3)[ ¯uiuj − ¯uiuj](x2)[ ¯uiuj − ¯uiuj]

× (x2
′)e−i(k1r1+k3r3)]dr3dr1dk3dx2dx2

′. (A16)

Finally, taking advantage of the symmetry in the variables r1, r3,
and k3, Eq. (A16) can be simplified to

Π(k1) =
2ρ2

π2 ⨌∫
∞

0
[k2 e−k(x2+x2

′
) Cij,lm(r1, x2, x2

′, r3)

× [ ¯uiuj − ¯uiuj](x2)[ ¯uiuj − ¯uiuj](x2
′) e−i(k1r1+k3r3)]

× dr1dr3dk3dx2dx2
′. (A17)
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