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ABSTRACT

Today, with increasingly aging population, healthcare systems in many countries need
to improve their effectiveness, and the automatic Human Activity Recognition (HAR)
technology can be beneficial. This can provide early diagnosis of changes in behavioral
patterns in the home environment, without hospitalization, and detect critical events
such as falls in a timely manner. In this area, radar-based HAR solutions are attracting
the researchers’ attention because no optical images are captured by radars, and thus
respect of privacy and functionality in darkness can be guaranteed. Furthermore, no
sensors need to be worn by the person being monitored.

Most previous work related to radar-based HAR employs image-like data represen-
tation such as spectrograms, range profiles, and snapshots of point clouds, and the in-
formation contained in these data representation is limited. For instance, spectrograms
and range profiles cannot reflect the body shape of the subjects, while snapshots of point
cloud do not contain Doppler or intensity information.

To overcome the limitation of these data representations, we propose to utilize the
data from a mm-wave FMCW MIMO radar to create a novel data representation of point
cloud with Doppler and intensity values, plus temporal information to achieve accurate
HAR. Specifically, this thesis work focuses on the high dimensional radar point clouds
and on a pipeline to generate and process this novel data representation. The pro-
posed method combines the spatial information of point clouds with other features like
Doppler, intensity/SNR, and time, expanding each point from 3D coordinates to a 6D
vector. Hence, the movement of every part of the body can be expressed by those points.
A module consisting of adaptive noise cancelation, frame selection, and resampling is
proposed to process point clouds to match the input of subsequent classifiers.

Considering that the core of the self-attention concept matches well the informa-
tion within point clouds, we investigate three self-attention based models as classifiers.
These models can learn the spatial distribution of point clouds with their extra features
with self-attention mechanism. The best combination of different input features, the
positive contribution of the proposed adaptive noise cancellation method, and the per-
formance of these three models are studied with experimental data from the MMActivity
dataset and a purposely collected TU Delft (TUD) dataset.

vi
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INTRODUCTION

This chapter describes the background on the radar-based HAR in section 1.1, the problem
formulation according to the gaps of existing research studies in section 1.2, the contribu-
tions of this work and finally the structure of this thesis in sections 1.3 and 1.4, respectively.

1.1. BACKGROUND

Today, most people can expect to live into their sixties and beyond. Every country in the
world is experiencing growth in both the size and the proportion of older people in the
population [15]. This challenge of aging population is pushing toward novel healthcare
provision that evolves from the traditional hospital-based system. For example, for a
person-centric healthcare, patients can be monitored in their home remotely via mod-
ern technology. Home-centric healthcare devices can recognize the situation of aged
people and patients and thus enhance the life quality of these aged people and patients
by minimizing the disruption to their usual routine and lifestyle [16].

In addition to being used for eldercare and healthcare as part of assistive technolo-
gies, in isolation or in ensemble with other technologies such as Internet of Things (IoT)
[17], HAR also plays a significant role in many applications such as gaming, smart screen
interaction, sign language interpretation (gesture recognition), remote monitoring, and
human-computer interaction. Therefore, we can say that HAR occupies an important
place in improving our life quality and reducing living cost [18].

From a source-domain perspective, HAR can be categorized into using external and
wearable sensors. For external sensors, cameras are used for HAR very commonly be-
cause of their high accuracy and robustness for different backgrounds. However, pro-
cessing video sequences shows great disrespect to users’ privacy, high computational
cost and poor performance without light. Radars have also been typical external sensors
to capture physical information from human targets compared to cameras. For instance,
radars can directly estimate the range and Doppler/velocity information from human
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Table 1.1: Summary of pros and cons of different types of sensors for HAR [14]

Source domain | Sensor type Pros Cons
a) Robustness against a) Privacy issues

External Cameras different backgrounds b) High computational cost
b) Storage of records c) Dependency on light

a) Sensitive to the direction

of arrival of motions

b) Required installation

and calibration

c) Directional functionality
a) High velocity accuracy a) Uncomfortable

Wearable Embedded sensors b) Privacy is ensured b) Expensive

a) Privacy is ensured

b) No extra devices

a) Privacy is ensured

Radars b) Functionality in darkness

Smartphones a) Low accuracy

subjects. Specifically, radars collect and analyze the reflected electromagnetic waves to
obtain the features to recognize the situation of the monitored subjects. Unlike cameras,
radars do not capture optical images or videos from the monitored subjects, which cause
less problems in terms of privacy and guarantee functionality in darkness.

For wearable sensors, the majority of sensor types are gyroscopes and accelerome-
ters embedded in clothes or built in smartphones. These sensors are generally not con-
sidered to be privacy sensitive and have high velocity accuracy [14], but may cause some
discomfort due to these embedded sensors. Unlike wearable sensors, radar systems do
not require users to wear, carry, or interact with any additional electronic device or mod-
ify their daily routine and behavior [19]. Pros and cons of these mainstream sensors for
HAR are listed in table 1.1.

1.2. PROBLEM FORMULATION

After reviewing the literature of radar-based HAR, it is realized that most of the features
and data representations extracted from radar raw data to solve radar-based HAR prob-
lems are spectrograms, range-Doppler heatmaps and range profiles, which are stored as
an image. Therefore, with the help of those Deep Learning (DL) networks for processing
images such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),
it is successful to utilize DL classifiers to recognize human activities with images as in-
put. For RNN and its variants, the image data are cut into slices along the time axis so
that the inputs are sequential signals.

With the popularity of the mm wave Multiple-Input and Multiple-Output (MIMO)
radar, radar point clouds are available, and this data representation can be used to dis-
tinguish different human activities since point clouds can better reflect the posture of
the human body and its shape in the 3D space. However, in most current work of using
point clouds to solve HAR, they either take pictures of point clouds [20] or embed point
clouds into a cube [10]. Essentially, this is equivalent to 'flatten’ the point clouds into
lower-dimension representations, sometimes just still images. Moreover, several studies
only used the coordinates of the points while ignoring the other features of points such
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as Doppler and intensity. Therefore, the potential of using point clouds with more fea-
tures as data representation to solve HAR is considerable.

From DL model perspective, Transformer has dominated Natural Language Process-
ing (NLP) since it was proposed, and its variants like Vision Transformer also perform
well in the Computer Vision (CV) field, showing the good performances of this family
of models for many tasks. However, the combination of Transformer-based DL models
and radar data is so far rare, and most related works are listed in Table 2.3. All research
indicates that the use of a Transformer-based model can result in better performance,
thus opening up an opportunity for research in the radar-based HAR field.

In summary, the research gaps from the literature can be listed as the following points:

* The research for HAR using point clouds with high dimensional information is
lacking.

» Transformer and its variants showed superiority compared to other DL models,
but the applications of Transformer in radar-based HAR are so far limited.

Based on these research gaps, the problem to be studied in this thesis can be formu-
lated as:

"Can we combine attention-based DL models and point clouds with high dimen-
sion features such as Doppler, intensity, and time to achieve accurate HAR, and how
can these added information of point clouds affect the classification results 2"

1.3. THESIS CONTRIBUTIONS
The main contributions of this thesis are summarized in the following aspects:

» This work developed and tested a pipeline that solely utilized point clouds as in-
put data to train attention-based DL models, and this pipeline can classify both
motions and static postures using only one classifier.

* An adaptive clutter cancellation method is developed to remove the clutter in point
cloud data. This increases the performance by 2%-5%, varying for different input
features. The effect of selecting different input features was also investigated and
quantified.

» This work investigates performance of three different attention-based networks
with only point clouds as input. It shows that the classification results of Heng-
shuang’s model is slighter better than Menghao, but F1 score of them are obviously
higher than Nico’s model. With fewer frames of input data, the F1 score of three
models decrease, but the decline is more significant in Nico’s model.

e Part of this thesis is being written as a paper to be submitted to the IEEE Radar
Conference, which will take place in San Antonio, USA, in May 2023.
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1.4. THESIS STRUCTURE

The following chapters in this thesis are structured as follows. Chapter 2 reviews previous
researches related to addressing HAR problems, and this chapter are divided based on
different types of DL classifiers. Chapter 3 introduces the architectures of three attention-
based networks investigated in this thesis and other DL models related to the literature
review. Then, there is an overview of the data preprocessing algorithms that convert
complex radar signals into point clouds. Moreover, the pipeline proposed in this thesis
is also described. Chapter 4 gives an introduction to the two datasets used to test the pro-
posed pipeline, and then describes how to adjust the data format of these two datasets
to match the pipeline. Chapter 5 shows the classification results using two datasets and
three networks with different input sizes and input features. In Chapter 6, the conclusion
and the future work are presented.



LITERATURE REVIEW

This chapter gives an account of related work on the topic of deep learning-based human
activity classification from the literature. In section 2.1, relevant previous research studies
are introduced based on the various DL models used, from CNN to Transformer. Section
2.2 provides a summary from the aspects of data generation, data representation, and
classifier choice, and indicates the gaps between previous works and this research.

2.1. DEEP LEARNING APPROACHES FOR HUMAN ACTIVITY RECOG-

NITION IN RADAR

Thanks to the rapid development in CV and NLP field, numerous well-performing DL
algorithms for extracting features and classifying radar data have been presented in the
literature. A deep learning model has multiple processing layers to learn high-level rep-
resentations automatically[21], so that difficult and complicate classification and recog-
nition tasks could be solved. Therefore, radar-based HAR could also learn from those
models. In this section, we investigate several classical and novel DL models that can be
utilized for HAR.

2.1.1. HAR USING CNN AND ITS VARIANTS

CNN is currently the state-of-art network for almost any computer vision task. As an end
to end classification approach, it can extract features from an image automatically, com-
pared to the conventional handcrafted feature-based classifiers that were used in the ini-
tial stages of research into radar-based HAR [22]-[23]. For radar-based HAR, most data
representations after processing the I/Q raw data include range-Doppler heat maps,
spectrograms, and time-range heat maps. These can be forwarded to a classifier as im-
age matrices. Therefore, it is theoretically feasible to apply CNN for radar-based HAR by
taking the radar feature maps as inputs and actually CNN is a popular DL. model in radar-
based HAR field. More specific cases are reviewed and sorted by the different radar data
representations. The table 2.1 summarizes papers reviewed for HAR using CNN, with
additional discussion provided for each group of papers clustered with respect to the
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data representation used as input of the network.

Table 2.1: Summary of relevant radar-based HAR studies using CNN, where # classes
represents the number of classes.

Paper #classes Data format Network architecture Scenario Radar type
MOCAP UWB radar
22
[22] Lang 7 spectrogram CNN simulated 3-5GHz
o . . UWB radar
[24] Bresnahan 8 spectrogram CNN in-vehicle 3-5GHz
(25] Zhan 4 spectrogram CNN lab Doppler radar
2 g scalogram 5.8GHz
S . - Doppler radar
[26] Le 3 spectrogram Bayesian optimized CNN lab 24GHz
L . UWB radar
[27] Shao 7 time-range DCNN lab 0.7-7GHz
FMCW radar
5 . . .
[28] Alujaim 7 point cloud image CNN lab 77GHz
(29] Ki 7 " DCNN ind Doppler radar
29] Kim spectrogram indoor 2 AGHz
. Doppler radar
[30] Park 5 spectrogram CNN Aquatic 7 95GHz
. L. . indoor FMCW radar
[31] Shao 8 spectrogram CNN with inception module 8 subjects 24GHz
a5 indoor CW radar
[32] Trommel 6 spectrogram DCNN 29 subjects X-band
. 10 . MARS FMCW radar
[20] Lee 5 point clouds ST-GCN MMActivity 77GHz.

A Spectrograms

Currently, spectrogram is the most common feature extracted from radar data us-
ing time-frequency analysis. A spectrogram reveals the instantaneous spectral
content of the time-domain signal and the variations of the spectral content over
time [33]. Therefore, in many HAR works, spectrograms are fed into CNN to ex-
tract features of different human activities such as [22, 24, 25, 29].

To begin with, in [22], Yue Lang et al. employed a CNN to classify seven human
activities based on spectrograms generated from MOtion CAPture database (MO-
CAP). Since the data were simulated, varying levels of noise were added and all
the average accuracy was above 90%, which showed the robustness of the CNN
utilized for radar based HAR. Besides, the spectrograms in grayscale were also
fed, and the results showed the eventual accuracy remained unchanged but its
coverage time increased. Hoang Thanh Le et al.[26] used Bayesian optimization
model for optimizing hyperparameters of CNN such as the number of convolu-
tion layers, the learning rate, the momentum and the L2 regularization coefficient.
Meanwhile, the spectrogram-based classifications of human aquatic activities and
driver head motions were also investigated in [30] and [24] respectively, where date
were generated from real measurements. Worth to mention, micro-Doppler signa-
tures can also be used for personnel recognition as a personal identification [31].
Additionally, spectrograms were utilized for human gait and gesture classification
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in [32] and in [25] respectively.

B Range information

The above studies address only the radial velocity information of human subjects,
but neglect the range information during the activities. For the majority of human
activities, errors in spectrograms are easily caused by low speed movements that
generate little Doppler, that can be confused with static clutter in the scene. How-
ever, High Resolution Range Profiles (HRRP) can differentiate the motions when
the difference of spectrograms are not obvious [27]. To obtain HRRP, a radar with
a wide bandwidth is needed because the resolution is proportional to the inverse
of the bandwidth. UWB radar can provide HRRP due to its small pulse duration
or its chirp bandwidth [34]. Otherwise, the human subject will look like a large
point. Therefore, in HAR, range information is usually bound to UWB radar or
FMCW radar with wide bandwidth [27, 35, 36]. Furthermore, the Doppler infor-
mation is dependent on the aspect angle between the line of sight of the radar and
the movement trajectory, while range information is not.

In [37], range information was introduced for fall detection, and it decreased the
probability of false alarms. For human motion classification, in [27], Yuming Shao
et al. investigated the method of recognizing human motions by HRRP with a
Deep Convolutional Neural Network (DCNN), the results of which showed more
robustness than the micro-Doppler signatures, especially for unknown radial ve-
locity conditions.

C Point clouds

Radar point cloud represents the possible point scattered by an object. Usually,
it contains 3D coordinates information plus the intensity and Doppler features,
so it is easy to describe the shape and size of an object, including a human sub-
ject. MIMO millimeter-wave radar can generate 3D point cloud with some target
detection algorithms such as Constant False Alarm Rate (CFAR) and estimation
algorithms to measure the range, angle, Doppler and intensity from every cell se-
lected by the CFAR.

Radar point cloud is relatively sparse compared to Lidar due to the wavelength
and hardware noise. To overcome the sparsity, in [13] the author aggregates sev-
eral frames over time to generate a relatively dense point cloud, but it comes at
a price that multiple activities can be merged, and it is impossible to classify the
symmetric motions such as sitting down and standing up. In [28], Ibrahim Alujaim
et al. measured 7 human motions using a 77GHz FMCW radar and calculated the
direction of arrival angle to obtain the 3D point clouds. Then they classified the
motions by taking the point cloud images as the input of a CNN.

In [20], Gawon Lee et al. designed a Spatial-Temporal Graph Convolutional Net-
work (ST-GCN) based model to process point cloud data from MARS[38] dataset
and MMActivity dataset[10]. MARS contains the point cloud data from 10 different
indoor activities from 19 human subjects, collected using a MIMO 77GHz FMCW
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radar. The MMActivity dataset directly includes the point cloud data of 5 indoor
motions, collected using TI's IWR1443BOOST radar with Robot Operating System
(ROS).

2.1.2. HAR USING RNN AND ITS VARIANTS

With the successful implementation of RNN in speech recognition and NLP, the per-
formance of RNN processing temporal sequences was proved to be excellent and thus,
RNN caught the researchers’ attention in HAR. RNN is famous for its ability to remember
the previous information, that is to say, the current outputs are influenced by previous
inputs. But gradients will exponentially shrink down as we back propagate because the
gradient is calculated at each step, and this is the so-called 'vanishing gradient’ problem.
This means it is too difficult for the RNN to learn over many timesteps.

To solve this problem, there are two variants of RNN proposed, Gated Recurrent Unit
(GRU) [39] and Long-Short Time Memory (LSTM)[40]. In GRU, update gate and reset
gate are introduced to decide whether the memory cell should be updated and if the
previous cell state is important, respectively. In LSTM, the forget gate decides what in-
formation should be kept and what should be forgotten, and the output gate determines
what the next hidden state will be. Thus, the problem of vanishing gradient is overcome.
Therefore, in HAR, many researchers opt for these two network architectures rather than
original RNN.

The radar signals of human motions have high temporal sequentiality: human mo-
tions are continuous in time and not separated snapshots of individual activities [41].
However, CNN cannot utilize such sequential information to learn more relevant fea-
tures. RNN can learn more information through the time-varying radar signals and take
advantage of the sequentiality of human motions.

The input of RNN can be different data representation of radar data in sequence for-
mat, but can also be the features extracted by a CNN. So the following sub-sections will
be organised in terms of papers using RNN only, and using hybrid model, i.e. models
that combine CNN and RNN together. The summary of papers reviewed for HAR using
RNN can be seen in table 2.2.

A RNN only

RNN can learn the temporal information of the radar data by treating them as a
sequential signal rather than individual images. For spectrograms and time-range
maps, these heatmaps will be cut into slices along the time axis to be temporal
sequences as the input of a RNN. Usually, multiple RNN layers can be stacked to
extract more generalized sequential features like the structure in [41], where two
layers of LSTM are stacked and connected to an output layer to generate the prob-
abilities of six different human motions.

One of the advantages of using RNN is that low computational power is needed,
especially for embedded system [42]. In [41], the authors also compared the per-
formance of DCNN and the network they proposed. The result showed the RNN
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Table 2.2: Summary of relevant radar-based HAR studies using RNN, where # classes
represents the number of classes

Paper #classes Data format Network architecture Scenario Radar type
el T UWRB radar
[35] Li 6 HRRP LSTM MOCAP 4GHz
. lab FMCW radar
49
[42] Jiang 6 spectrogram LSTM & GRU 72 subjects 5.8GHz
CW radar
[41] Wang 6 spectrogram stacked LSTM lab 25GHz
FMCW
[43] Zhang 8 stacked time-range 3D-CNN+LSTM+CTC lab 2(21 Glgz;dar
. . UWB radar
[44] Park 5 amplitude spectrum GRU lab(indoor) 6.0-8.5GHz
1 d
[45] Tang 4 spectrogram attention-based LSTM outdoor pl;j;ars dar
[46] Wang 11 range-Doppler CNN+RNN lab soli sensor
e T attention-augmented . UWB radar
[36] Jian 4 HRRP GRU indoor 1.6-2.2GHz,
[47] Guo 6 3D image frame CNN+RNN indoor FMCW radar
. indoor CW radar
[48] Klarenbeek 4 spectrogram LSTM 29 subjects X-band
. . UWB radar
49 -
[49] Sadreazami 2 range-Doppler stacked LSTM indoor 5.9-10.3GHz
- . FMCW radar
[50] Sun 7 range-angle LST™M indoor 77GHz.
. . FMCW radar
[10] Singh 5 point clouds CNN+LSTM lab 77GHz
ST . . . FMCW radar
[51] Li 6 micro-Doppler signatures bi-LSTM lab 5.8GHz
FMCW radar
01T . 24GHz
[52] Li 12 spectrogram bi-LSTM lab UWB radar
X-band

network had better accuracy even if the number of parameters is one eighth of
the DCNN, which means employing RNN can significantly decrease the computa-
tional load.

The comparison of GRU and LSTM was made in [42]. There are six target classes
in this classification task, and the accuracy of GRU is slightly higher than LSTM.
Moreover, a data augmentation algorithm was proposed based on the RNN prop-
erty of being able to handle any length of input data. In this augmentation algo-
rithm, the original samples are cut into different lengths to increase the number of
samples. Hence, the overfitting phenomenon was suppressed.

Utilizing range information as the input of RNN was studied in [35] and [36] with
the architecture of LSTM and GRU, respectively. In the investigation of Yuan He et
al., simulated one-dimensional HRRPs were fed into bi-directional LSTM and uni-
directional LSTM for comparison [35]. The results demonstrated that using HRRP
for HAR can still obtain comparable results, though HRRPs are not as intuitive as
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spectrograms and bi-directional LSTM has higher accuracy and shorter computa-
tion time. In [36], an attention-augmented sequential classification method was
proposed by Qiang Jian et al. After using GRU to extract semantic features of vari-
ous human activities, the attention mechanism is deployed to enhance the corre-
lation of temporal output sequences of GRU. That is, the attention reinforcement
replaces the stacking of multiple RNN layers to acquire high accuracy.

Apart from these, RNN can also be utilized for radar classification tasks in other
scenarios such as fall detection [49][50], hand gesture recognition citepark2021hand,
target recognition [45] and human gait classification [48]. The novel part in [50]
is that, to reduce the redundancy in spatial domain, a radar low-dimension em-
bedding (RLDE) algorithm is employed to preprocess the range-angle reflection
heatmap sequence. To be more specific, RLDE concatenates horizontal plane and
vertical plane as the input of LSTM. This network architecture not only reduces the
computational complexity and memory consumption as an alternative of CNN,
but also outperforms the state-of-the-art with 3% increases on F1_score.

Hybrid models

Each DL model has its own property and advantages, so it is not possible for a sin-
gle model to be proficient in all the classification tasks. Hybrid models can take
advantages of each model’s own strength by integrating several network architec-
tures to acquire better performance. In HAR, it is common to see RNN and CNN
are combined because CNN does well in extracting abstract and hierarchical fea-
tures from spectrograms and other data representations, while RNN and its vari-
ants are good at exploiting the temporal information. How these two models can
be exactly combined is for example described in [43][47][46][10]. The pipelines in
these papers are similar: data collection, preprocessing, CNN, RNN and final pre-
diction.

Saiwen Wang et al.[46] generated range-Doppler images from radar echos and
then leveraged a CNN to extract the spatial features and a LSTM to capture the
temporal information to predict the probabilities of hand gestures with softmax.
Compared with [46], Zhenyuan Zhang et al. [43], introduced a 3D-CNN for short
spatial-temporal modeling to process stacked spectrograms. At the end of the net-
work, to recognize hand gestures continuously with unsegmented data, a Connec-
tionist Temporal Classification (CTC) layer was introduced to process the results
of LSTM after softmax function. The results of ablation experiment demonstrated
the CTC and the hybrid models can indeed bring increases on accuracy. A signifi-
cant difference between [10] and the other three papers is that Singh et al. utilized
the point cloud data generated directly from a millimeter-wave radar through ROS
without any preprocessing. They compared the performance of various classifiers
such as Support Vector Machine (SVM), Multilayer Perception (MLP), bidirectional
LSTM and CNN+LSTM and the result demonstrated that the hybrid model could
obtain the highest accuracy.
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2.1.3. HAR USING TRANSFORMER AND ITS VARIANTS

Transformer is a novel DL model using only attention mechanism and was originally
designed to resolve the problem that RNN cannot be parallelized and thus improve the
computational efficiency [53]. Since transformer was first proposed in 2017, it has dom-
inated in NLP. Vision Transformer (ViT)[54], as a variant of Transformer, also outper-
forms many state-of-the-art models in CV field. However, for objects classification with
radar, there are only a few studies using transformer and its variants. Three related pa-
pers are summarized in table 2.3.

Table 2.3: Summary of radar-based HAR studies using Transformer, where # classes rep-
resents the number of classes and - means that the paper did not indicate the number of
classes.

Paper #classes Data format Network architecture | Scenario Radar type
range-Doppler
. . . FMCW rad
[55] Zheng 8 range-azimuth CNN+Transformer in-vehicle radar

. 77GHz
range-elevation

indoor FMCW radar

[56] Chen - CVD & spectrogram ViT 98 subjects 24GHz.
. . FMCW radar
=
[57] Bai 5 point cloud radar Transformer outdoor 77GHz

With the limited number of papers, the usage of transformer in radar can be divided into
following three categories:

A Using CNN+Transformer [55]

Usually, a sentence contains up to dozens of words, so in the Transformer model,
the upper limit for the input sequence length is 512[53]. However, the size of an
image for DL model is 224 by 224, and it is not feasible to feed spectrograms and
other image-like data representations of radar data into the Transformer, since the
pixels in these feature maps are obviously far more than the given limit. Therefore,
in [55], CNNs are employed to extract spatial features and reduce the length of
input data without changing the architecture of the Transformer. Range-Doppler
maps, range-azimuth maps and range-elevation maps were generated from the
radar echoes of different hand gestures. The input data of the Transformer were
the spatial features extracted and concatenated from these three maps by three
independent convolutional layers and a fusion block. After the Transformer, a
fully connected layer and softmax function were deployed to predict the proba-
bility distribution among 8 different gestures. Besides, the most suitable number
of Transformer encoder modules was studied to be 3 and a comparison with other
mainstream models demonstrated this model has higher accuracy than 3D-CNN
and CNN+LSTM.

B Using ViT
ViT is modified for images input by dividing an image into 16 x 16 patches and
taking each patch as a word in a sentence [54]. Therefore, it is feasible to di-
rectly utilize spectrograms and other radar images as input. In [56] the authors
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proposed a dual-stream ViT pipeline for radar gait recognition. Shiliang Chen et
al. represented the radar signal as spectrograms and Cadence Velocity Diagram
(CVD) and then used the ViT to split the spectrogram and CVD into patches and
embed their positions separately, so that the information embedded in different
frequency bands could be effectively extracted. Then an attention-based fusion
block integrated the discriminant features from these two representations and a
MLP was connected to complete the classification task. The experimental results
showed that the accuracy of this proposed network is higher than other CNN net-
work such as VGG, AlexNet, and ResNet.

C Using radar Transformer

Radar Transformer takes 5-dimensional point clouds as input and each object point
contains 3D coordinates, Doppler velocity information, and Signal-to-Noise Ratio
(SNR) or a related intensity quantity. The design of radar Transformer [57] refers
to the attention mechanism in [53] and hierarchical feature extraction as well as
fusion of global and local features in [58]. In the feature encoder part of the radar
Transformer, the radar point clouds are first mapped into a feature vector and are
then divided into two branches. One passes through three stacked set abstrac-
tions and vector attention modules to gradually extract deep local features, while
the other one goes to three stacked attention modules to extract global features.
The local features from each hierarchy are concatenated with global feature of the
same hierarchy as new global features. A scalar attention module integrates the
final global features and a MLP is deployed to predict the class of each object.

2.2. SUMMARY AND GAPS

In this section, summary and gaps are indicated from aspects of data generation, data
representation and feature extraction network.

2.2.1. DATA GENERATION

Unlike CV and NLP, only a few open source datasets for radar-based HAR are available.
Therefore, for each research project, the researchers have often to generate radar data by
themselves. Based on the papers reviewed above, methods to generate radar data can be
divided into three main categories:

* Experiments
Radar data from experiments are the most common in HAR researches and the
data are realistic due to multi-path effect, noise, and clutters captured. However,
collecting data from experiments is time-consuming and expensive, especially for
DL models which are data-driven: 98 human subjects spent two weeks accom-
plishing a data set [56].

 Simulation
To avoid complex and time-consuming measurements, simulation is sometimes
adopted due to its convenience [22][35] and most of the simulated data are from
the CMU MOCAP dataset. This type of data are generated based on kinematic
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models where human skeleton motions are simulated to analyze the scattering
behavior and model the radar signal [59][60]. Besides, Generative Adversarial Net-
work (GAN), as a DL model, is also used to generated radar data [61][62].

e Transfer learning
Transfer learning refers to transferring data from other source domains such as
speech signal and image to radar like such as spectrogram [63].

A big challenge for solving HAR problems with DL methods is that these models require
numerous data. For instance, the dataset used for training Transformer is the standard
WMT 2014 English-German dataset which consists of about 4.5 million sentence pairs
[53]. However, it is extremely time-consuming and expensive to set up such a dataset
with radar data.

2.2.2. RADAR DATA REPRESENTATION

There are several types of data representations in radar, but the most significant point
is to find the optimal data representation for a specific HAR problem. The most com-
mon radar data representation for DL is 2D image-alike format including spectrogram
[22], range-Doppler [49], time-range [35], amplitude spectrum [44], range-angle [55] and
point cloud image [28]. For CNN these representations are treated as images while for
RNN, these representations are cut into temporal sequences as input. However, by stack-
ing these 2D representations, we can obtain 3D data representations and utilize 3D-CNN
to extract features. For instance, in [43], many time-range maps are stacked and in [64],
Erol et al. created a tensor structure, called radar data cube, by stacking consecutive
range-Doppler frames.

Apart from these conventional data representations, a point cloud is a set of many
points with associated values. Except the coordinate information, each point can also
contain Doppler and intensity information. The number of researches using point cloud
to solve HAR problem are so far limited. In [28], point clouds are treated as images while
in [10] and [20], only the coordinates of points are used for HAR. Although five dimen-
sional features of point clouds are utilized in [57], the objects are automotive objects
such as car, bus and cyclist. Therefore, the research for radar-based HAR using point
clouds with high dimensional information is lacking.

2.2.3. FEATURE EXTRACTION NETWORK AND CLASSIFIER

There have been numerous researches using CNN, RNN, variants of RNN, and hybrid
models but only a few works using Transformer and its variants to solve HAR problems.
The hyperparameters of DL models can be optimized by machine learning methods
such as Bayesian optimizer [26]. CNN treats the input radar data as images mainly con-
sidering pixel-related features, while RNN and its variants treat radar data as temporal
sequences focusing on the temporal relations. The hybrid models can take advantages of
these two networks. For CNN and RNN, classifier and data representation are mutually
dependent. For Transformer, according to the existent papers, Zheng et al. employed
Transformer to process the features of range-angle maps extracted by CNN [55], ViT is
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deployed to extract feature from spectrograms and CVD directly [56], and radar Trans-
former are leveraged to process the radar point clouds from automotive targets [57].

All of these three papers showed superiority of Transformer and its variants com-
pared to other DL models and in [5], in a shape classification task, point Transformer
performed better than all the other DL models on the ModelNet40 dataset.

Therefore, it is promising to apply point Transformer to solve radar based HAR prob-
lems, although to the best of our knowledge this has not been done in the related litera-
ture.



METHODOLOGY

This chapter describes the different aspects of the methodology related to this research,
including DL models and data pre-processing algorithms. In section 3.1, some classical
and typical DL models such as CNN and RNN are briefly introduced, and then there is an
elaboration on the architectures of Transformer and its variants. Section 3.2 focuses on the
most relevant algorithms, such as CFAR, Fast Fourier Transform (FFT), DOA estimation
that can process the radar raw data into point clouds.

3.1. DEEP LEARNING MODELS

3.1.1. CONVOLUTIONAL NEURAL NETWORK

Convolutional neural network (CNN) was originally proposed for image processing [65].
To be specific, CNN is designed to process the data in multiple arrays format. For in-
stance, a typical image consists of three two-dimensional arrays containing the pixel lu-
minance in the Red Green Blue (RGB) channels. Many realistic data formats conform to
the multiple arrays model: 1D for signal; 2D for spectrogram and images; 3D for video
or volumetric images. There are four key ideas behind CNN exploiting the properties
of natural signals: local connections, shared weights, pooling, and the use of multiple
layers [66].
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Figure 3.1: Example of CNN architecture from the literature [1]
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A typical architecture of CNN is illustrated in Figure 3.1. CNN adopts a series of layers
as a basic block including convolutional layers, pooling layers and activation function.
Many blocks can be stacked to make the network deeper. The role of the convolutional
layer is to extract the features and detect local conjunctions from the previous layer via
sliding a filter over the feature map. The filter is also called a convolution kernel contain-
ing trainable weights, followed by a pooling layer to merge semantically similar features
into one to decrease overfit and expand the perception field. A typical pooling unit com-
putes the maximum of a local patch of units in one feature map. The activation function
is often used to introduce more non-linearity to the network. Therefore, the features
of an input image can be well represented as a vector after passing through the above
blocks. Lastly, fully connected layers are connected to the last block and via a softmax
function the output vector contains the probability for each class.

For radar-based HAR, CNNs are deployed when the inputs are image-like radar data
representation such as spectrograms, HRRP arranged into a matrix, range-time plots,
and so on. Here, the radar data are processed and classified like normal images.

3.1.2. RECURRENT NEURAL NETWORK

RNN is also a classical artificial neural network, where connections between nodes form
a directed or undirected graph along a temporal sequence, so this network is able to ex-
hibit temporal features. As the topology of RNN shown in figure 3.2, this type of network
can utilize the internal state (hidden layer) to store memory from previous inputs. To be
more specific, each input is corresponding to an output, and each output is determined
by current input and previous hidden states jointly.

Unfold

(s

@@@

Figure 3.2: Model of RNN architecture

Where, o is the output, & is hidden layer, x is the input and U, V, and W are three
matrices (linear layers in network), respectively, so that the output of RNN is decided
by previous hidden layers and current input. Compared with CNN which can only pro-
cess certain input size, RNN can process arbitrary length of sequences of input, at least
theoretically. However, one of the main problems in the original RNN is that it cannot re-
member the past very well because gradients will exponentially shrink down as we back
propagate, when the gradient is calculated at each step. To solve this problem ('vanish-
ing gradient’), two variants of RNN with some modifications to the network architecture
are proposed: LSTM and GRU.

* LSTM was first proposed by Hochreiter et al. in 1997, and he aimed to improve the
storage of information over extended time intervals [40]. Its network architecture
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can be seen in figure 3.3. In LSTM three gates are introduced to overcome the
gradient vanishing or exploding. These gates are input, forget and output gate,
respectively. The input gate is responsible for adding new memory, and the forget
gate decides which memory should be forgotten. The output gate modulates the
amount of memory content exposure. LSTM unit is able to decide whether to keep
the existing memory via the introduced gates.Intuitively, if the LSTM unit detects
an important feature from an input sequence at an early stage, it easily carries this
information (the existence of the feature) over a long distance, hence, capturing
potential long-distance dependencies.

* GRU was designed by Cho et al. in 2014 to have the capability to capture depen-
dencies of different time scales adaptively [67]. Figure 3.3 shows the graphical il-
lustration of GRU. Compared with LSTM, GRU can make sure that features will not
be lost during long-term transmission by introducing only 2 gates (reset gate and
update gate), which makes the network architecture relatively simple, thus having
less computational requirement. According to the experiment results of [68], GRU
can save a lot of time due to its simpler architecture while not sacrificing perfor-
mance in long text scenarios.

f
— IN
= OUT
(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 3.3: Illustration of (a) LSTM and (b) GRU. (a) i, f and o are the input, forget and
output gates, respectively. ¢ and ¢ denote the memory cell and the new memory cell
content. (b) r and z are the reset and update gates, and h and h are the activation and
the candidate activation [2]

3.1.3. TRANSFORMER AND ITS VARIANTS

Before the Transformer was proposed, the dominant sequences translation models were
dependent on complex recurrent or convolutional neural network. Transformer is a
novel and simple DL model using solely attention mechanism as its core to implement
sequences translation. It has dominated Natural Language Processing (NLP) since it was
proposed in 2017: it achieved 28.4 BLEUs (bilingual evaluation understudy) on the WMT
2014 English-to-German translation [53], and it can be regarded as initiating the fourth
general DL model after MLP, CNN, RNN.
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SELF-ATTENTION AND TRANSFORMER

Self-attention mechanism is the core of Transformer. As the name of the paper that
proposes Transformer says, "Attention is all you need". In previous research, attention
mechanism are always combined with CNN and RNN to enhance the performance of
models, while Transformer use solely self-attention mechanism without any convolu-
tional layers to solve sequence to sequence problems.

Self-attention, as known as intra-attention, is an attention mechanism relating different
positions of a single sequence in order to compute a representation of the sequence.

Self attention

The The The The
lanimal animal animal animal
didnt didn't didn't didn't
cross cross cross cross
the the the the
street \, street street street
because \\‘ because because - ~— because
it it it T

was was was was
too too too too
tired tired wide wide

Highly related

Figure 3.4: An example of self-attention analyzing a sequence of text [3]

Figure 3.4 shows an example to describe what the self-attention focus is in order to
find the pairwise relations between a sequence based on its context. In this example,
RNN will process the sentence word by word, and it just considers the relation around
the word ’it’ so, RNN is likely to associate the left ’it’ with street since thy are near. How-
ever, when ’self-attention’ processes these two sentences, the model can associate the
left ’it’ with animal and the right ’it’ with street by calculating the attention scores based
on the pairwise relations. When processing long text, self-attention can capture the se-
mantic relation even if across long intervals. Moreover, self-attention can be computed
in parallel, thus training more effectively.

How exactly the self-attention calculates the relations between its key inputs and out-
puts is described in equation 3.1 and figure 3.5.
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Figure 3.5: Graphical illustration of scaled dot-product attention calculation [4]

The mapping of a query and a collection of key-value pairs to an output, where the

query, keys, values, and output are all vectors, is known as the attention function. The
result is calculated as a weighted sum of the values, with the weights assigned to each
value determined by how well the query matches the key in question.
To be specific, in Figure 3.5, x is a token vector and W<, WX, WV are three weight matri-
ces, fully connected layers in a network. After multiplying the token vector with three
weight matrices, we get the query key and value matrices, respectively, and for self-
attention, the three matrices Q(Query), K(Key), V(Value) all come from the same input.
Now, we need to calculate the dot product between Q and K, and then in order to prevent
the result from being too large, it is divided by a scale \/dj, where dj is the dimension
of a query and key vector. Then we use the Softmax operation to normalize the result to
a probability distribution, and then multiply by the matrix V to get the representation of
the weight sum.

Actually, in [53], the authors who first proposed the Transformer found it beneficial
to repeat the single self-attention function h times in parallel, and concatenate and once
again project these outputs, resulting in the final values, as depicted in Figure 3.6.
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With the introductions of self attention and multi-head, it is easier to get an under-
standing of the whole architecture of Transformer, as depicted in Figure 3.7.

Scaled Dot-Product Attention Multi-Head Attention
| MatMul I
L IT
Mask (opt.) Scaled Dot-Product
Attention !

| | |

[ Linear [ Linear [ Linear

BN

Figure 3.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention, which
consists of several attention layers running in parallel.

A Embedding
Inputs of the Transformer are usually words, but they should be represented as
vectors so that the network can process them, so these tokens are converted to
vectors of dimension dj;,04e; in the input embedding layer.

B Positional Encoding
Since the Transformer has no recurrence and no convolution, in order for the
model to utilize the sequence’s order, some information about the relative or abso-
lute position of the tokens in the sequence should be injected. The positional en-
codings and embeddings both have the same dimension d,;,,4.;, allowing the two
to be added together. There are many choices of positional encodings, in Trans-
former the authors use sine and cosine functions of different frequencies [53].

PEpos 2i) = sin (pos/looo()Zi/dmodel )
i (3.2)
PE(pos,2i+1) = COS (pOS/1000()2’/611“0(191 )

Where pos is the position and i is the dimension. In other words, a sinusoid cor-
responds to each dimension of the positional encoding. From 27 to 200007, the
wavelengths follow a geometric progression. We selected this function because we
believed it would make it simple for the model to pick up on relative positioning.
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C Encoder

The encoder is shown in the left part of Figure 3.7, which consists of a stack of N
= 6 identical layers. For each layer, there are two sub-layers. The first sub-layer
is a multi-head self-attention mechanism, and the second sub-layer is just a po-
sitionwise fully connected feed-forward network. The authors employ layer nor-
malization after using a residual connection around each of the two sub-layers.
The model’s embedding layers and all sub-layers generate outputs of dimension
dmodel = 512 to enhance these residual connections.

D Decoder
Similar to the encoder, the decoder is also composed of a stack of N = 6 identi-
cal layers, but the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Besides, there is also a residual
connection around each of the sub-layers followed by layer normalization. In or-
der to stop positions from paying attention to succeeding positions, the authors
additionally modify the self-attention sub-layer in the decoder stack.
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Figure 3.7: Example of the Transformer - model architecture.
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POINT TRANSFORMER - HENGSHUANG ZHAO’S MODEL

Since radar point clouds are simply sets that are sporadically embedded in a metric space
and self-attention can find the relation among inputs in parallel, self-attention fits natu-
rally with point clouds. Here the first self-attention model used in this thesis is described.

A Point Transformer Layer

In Hengshuang'’s point Transformer model, the foundation of the point transformer
layer is vector self-attention [5]. The authors employ the subtraction relation and
add a position encoding 6 to both the attention vector y and the transformed fea-
tures a, which is shown in equation 3.3

vi= ;(.)p(Y(w(xl-)—w(x]')+5))®(a (x;) +9) (3-3)

Where, & (i) € & and itis alocal neighborhood set containing the k nearest points
of point Z (7). y; is the output feature, ¢, ¥, and a are pointwise feature transfor-
mations, like linear projections or MLPs. § is a position encoding function and p
is a normalization function such as softmax. ® stands for the Hadamard product,
that is, element-wise product. y is a mapping function with two linear layers and
one ReLU nonlinearity. These tokens have the same meanings in Hengshuang’s
model.

input: (x, p)

| @,1: linear | | 4: mlp ‘ | a: linear |
I I
N WL/

aggregation

output: (y, p)

Figure 3.8: Details of the point transformer layer

The input of point transformer layer is (x, p) where p stands for the coordinate (po-
sition) of the input point and x represents the features of the input point such as
the normalized vector of the coordinate or the Doppler information of the point
plus the coordinate. The output of point transformer layer contains (y, p) where p
remains unchanged, and y represents the new features after self-attention mech-
anism.
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Label: chair

Figure 3.9: Example of point transformer networks for semantic segmentation (top) and
classification (bottom) [5]

B Position Encoding
Position encoding is crucial for self-attention because it enables the operator to
adjust to local data structure. The 3D point coordinates themselves are a suitable
option for position encoding in 3D point cloud processing. In Hengshuang’s point
transformer model, the position encoding function is described as follows:

§=0(pi-pj) 3.4)

Where, p; and p; are the 3 dimensions coordinates of points i and j. An MLP with
two linear layers and one ReLU nonlinearity makes up the encoding function 0.
Worth to mention, it is beneficial to apply position encoding to both the attention
generation branch and the feature transformation branch. So it can be seen in
Equation 3.3 that the trainable position encoding 6 is added in both branches.

input: (x, p;)

input: (x, p) | farthest point sampl. |

linear
point transformer
linear

output: (y, p)

| KNN, mlp |

l

Ilocalmax pooling ‘

output: (v, p2)

Figure 3.10: Point transformer block (left) and transition down block (right)

C Point Transformer Block
The structure of the point transformer block is illustrated in Figure 3.10. As shown,
there is a residual connection in the block. Besides, the self-attention layer and
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linear projections, which can reduce dimensionality and speed up processing, are
integrated into the transformer block. The input is a collection of feature vectors x
and their corresponding 3D coordinates. The point transformer block permits in-
formation interchange between these localized feature vectors, creating new fea-
ture vectors for all data points as its output.

Transition Down

Reducing the cardinality of the point set when necessary is the main function of
the transition down module, for instance reducing the number of points from N
to N/4. Denote P; and P, as the input and output point set of the transition down
block. First, we apply the farthest point sampling [69] in P; to acquire a well-
spread subset P, c P; with the requisite cardinality. Then, we employ kNN on
P to pool feature vectors from P; onto P, (empirically k = 16 can have the best
results). Each input features are forwarded to a linear transformation, followed
by batch normalization, ReLU and a max pooling onto each point in P, from its k
neighbors in P;.

Network Architecture

The complete 3D point cloud process network is depicted in Figure 3.9. For clas-
sification, the pipeline is based on several repeated blocks, such as point trans-
former block, transition down block, MLP and global average pooling. The net-
work’s main feature aggregation operator is the point transformer, and convolu-
tions are not used for preprocessing: the architecture of the network is entirely
built on point transformer layers, pointwise transformations, and pooling.

N points inputs first pass through an MLP and a point transformer block to be
resized to (N,32), where N is the number of input points. They are forwarded to
a couple of repeated transition down and point transformer blocks with down
sample rate [4 4 4 4], and thus the cardinality of the point set for each stage is
[N/4,N/16,N/64,N/256]. Notably, the number of stage and the downsampling
rate can be varied based on different tasks. At the end of the architecture, a global
average pooling layer and an MLP are connected to output the final classification
result.

POINT CLOUD TRANSFORMER - MENGHAO GUO’S MODEL

The complete architecture of the point cloud transformer (PCT) is shown in Figure 3.11.
This is the second self-attention based model considered in this thesis. The purpose of
PCT is to convert the input points into a new, higher-dimensional feature space that may
describe the semantic affinities between points as a foundation for other point cloud
processing tasks.
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Figure 3.11: Example of the PCT architecture: the encoder mainly comprises an Input
Embedding module and four stacked Attention modules. The decoder mainly
comprises multiple Linear layers. The numbers above each module indicate its output
channels. MA-Pool concatenates Max-Pool and Average-Pool. LBR combines Linear,
Batch Norm, and ReLU layers. LBRD means LBR followed by a Dropout layer [6]

A Encoder

The input coordinates are first embedded into a new feature space by the PCT en-
coder. The embedded features are later forwarded into 4 stacked attention mod-
ules to learn a semantically rich and discriminative representation for each point,
then a linear layer to produce the output feature. Overall, the PCT encoder has a
nearly identical construction as the original Transformer, expect that the position
embedding is removed, since the point’s coordinates already provide positional
information.

Formally, with an input point cloud P € RVN*4, where N is the number of points and
each point has d-dimensional features, a d.-dimensional embedded feature F, €
RN is first transformed in the input embedding module. The attention output
of each attention layer is then concatenated through the feature dimension, and
followed by a linear transformation to generate the PCT output: point-wise d,-
dimensional feature F, € RV*% _ This process can be briefly expressed as Equation
3.5

Fy=AT' (F,)

Fi=AT'(F;_y), =234 (3.5)

F,=concat(F,F,,F3,Fy)- W,

where F, denotes the feature vectors after input embedding, W, denotes the lin-
ear layer’s weights and AT* denotes the ith attention layer, each of which has the
same output dimension as its input.

Atthe end, the outputs from two pooling operators: a max-pooling and an average-
pooling on the learned pointwise feature representation are concatenated so that
an effective global feature vector F; can be extracted to represent the point cloud.

B Classification
For classification task, we can focus on the right part of the Figure 3.11. After the
4 stacked attention layers and a linear transformation, we can obtain the global
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feature vector Fg. To classify the input point cloud, the Fy is fed into a classifica-
tion decoder which is composed of 2 cascaded LBRDs (Linear, Batch Norm, ReLU,
Dropout layer), each with a dropout rate of 0.5, followed by a linear layer to predict
the final classification probability of each class. The predicted class of the input
point cloud is determined as the class with maximal probability.

POINT TRANSFORMER - NICO ENGEL'S MODEL

The overview of Nico’s point transformer architecture is shown in Figure 3.12. This is the
third self-attention based model considered in this thesis. The objective of this model is
to relate local and global input properties in order to investigate the shape information
of the point set.

Local Feature Generation a) Classification

Input 1FF 7

VoD — x M
’—@ E & SortNet ||

i | Set Abstraction

(MSG)

Global Feature Generation b) Part Segmentation

Figure 3.12: Overview of the Point Transformer architecture, which consists of two
branches to generate local and global features. SortNet produces an ordered set of local
features against the global structure of the input point cloud. Depending on the task,

classification or part segmentation heads are employed. Red Boxes denote sorted sets,
only for the segmentation part [7]

This pipeline can be divided into three parts:

1) SortNet that extracts ordered local feature sets from different subspaces.
2) Global feature generation of the whole point set.
3) Local-Global attention, which relates local and global features.

The input point set is considered as P = {p,- eRP,i=1,..., N}, where D is the dimension
of each point. D = 3 when only coordinates are given, and it is possible to let D = 5 when
points are added additional features such as Doppler and time step. Overall, Nico’s point
transformer model is composed of two independent branches: a local feature genera-
tion module, and a global feature.

For the local feature generation branch, the input point set is first projected to latent
space with dimension d;,, via a row wise feed-forward network. To link the points to one
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another, the authors then use self-multi-head attention on the latent features. Even-
tually, the SortNet outputs a sorted set of fixed length. For the global feature genera-
tion branch, set abstraction and multi-scale grouping are deployed here to extract global
features. After collecting local and global features, there is a local-global attention to
combine and aggregate these features from input point cloud. Finally, the outputs of
local-global attention are flatten and forwarded to fully connected layers to predict the
class.

A Local Feature Generation
In this module, SortNet is the crucial part which is illustrated in Figure 3.13. First
and foremost, SortNet receives the original point cloud and the projected latent
features from row-wise feed forward networks, followed by a multi self-attention
layer. This additional self multi-head attention layer is to extract the spatial and
higher-order relation between each input point p; € P.

ball query

concat
feature agg,.

- , 7
shared \% — Top-K F B
< “
learned score Top-K selection

Nx1 KxD
L

Input
N x D

Figure 3.13: Overview of the SortNet: a score is learned from a latent feature
representation to extract important points from the input. Local features are aggregated
from neighboring points. SortNet outputs a permutation invariant and sorted feature
set. Red boxes denote sorted sets [7]

Subsequently, a row-wise feedforward network is employed to reduce the feature
dimension to one, thus generating a learnable scalar score s; € R for each input
point, which integrates spatial relationships as a result of the layer of multi-heads
attention. Pair (p;, s,}iil assigns the score corresponding to each point. Let 2 a

completely ordered set and based on {p;, sﬂfil, we select K < N points from the
original point cloud with the highest score :

2={q;,j=1,...,K}

. K .
where, q; = <pl].,slf.>j:1,pl]. € Pand s} = ... = s, That is, the author deploy the

top-K operation to look for the K points associated with the highest scores s;. After
choosing k points based on the learnable scores, a ball query search is applied
to group the points in the original points within the Euclidean distance r to the
chosen k points. Grouped points are denoted by g/ € R%»~1-D j =1, . K. The
local features g/ and the scores s; are concatenated with the corresponding input
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pointsp;. Thus, the local feature vector is acquired:
fl=plesiegl/, flerim (3.6)

where, ® operation denotes matrix concatenation. Therefore, the SortNet output
makes up one local feature set:

Fh={flj=1...K} (3.7)

ZL is also an ordered set since 2 is ordered. To collect dependencies and regional
features from several subspaces, the M feature sets are concatenated to create an
ordered local feature set of fixed size:

gl=glu. . vzl FLerkMxdn (3.8)
where U denotes the union of two sets.

B Global Feature Generation

The purpose of this branch is to extract the global features from the original point
cloud. The authors employ the set abstraction multiscale grouping layer (MSG)
[69] so that computational time and memory can be reduced with decreased input
points. N input points are down sampled to N’ through Farthest Point Sampling
(FPS) and acquire neighboring points to aggregate features of dimension d,, to
obtain a global feature N’ x d,, with dimension of d,,. In particular, the global
features are not ordered since no sorting operation is performed.

C Local-Global Attention
This part is responsible for relating global and local feature sets, #* and &, re-
spectively, to extract shape and context information from the input point cloud.
Therefore, the authors employ self-attention to both local feature % and global
characteristic %, followed by multihead cross attention:

ALG ._ pcross ( Aself ( FL)’ Aself ( FG)) (3.9)
AT (Q) = AM(PQ) (3.10)
AMH(XY) = LayerNorm (S + rFE(S)) 3.11)

S =LayerNorm(X + Multihead (X,Y,Y)) (3.12)
Multihead(Q, K, V) = (head,; &...® head;,) W° (3.13)
head ; = A (QWZ.Q, Kkwk, vw}’) 3.14)

where, (F' and FC are matrix representation of % and 91G respectively and

A(Q, K, V) = score(Q, K)V which is described in Equation 3.1. The last row-wise
feed forward network in cross multi-head attention changes the feature dimension
to d),, < dp, so that the computational complexity can be reduced.

Finally, after the description of each model used in this thesis, the number of trainable
parameters, the total number of operations, and the network size for each of them are
listed in Table 3.1.
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Table 3.1: Summary of the numbers of parameters in the three models considered in this
work.

Henghuang[5] Menghaol6] Nico[7]

Total parameters 1,431,813 2,932,805 21,994,673

Trainable parameters 1,431,813 2,932,805 21,994,673
Total multi-add (M) 4.17 550.09 48.43
Parameters size (MB) 5.46 11.19 83.90

3.2. DATA PRE-PROCESSING

Since the representation of radar data in this thesis is radar point cloud, this section
will focus on the data pre-processing algorithms that transform radar complex signals
into point clouds with Doppler, intensity and time step features. Also, we assume that
the radar type is a MIMO millimeter wave, so that multiple channels provide angle in-
formation, and that the millimeter wave is short enough to detect human subjects as
extended targets with multiple, distributed reflections. The overview of the radar data
pre-processing pipeline from radar cube to point cloud is displayed in Figure 3.14, with
some of the key steps detailed in the following sub-sections.

ot e o it

)
OSCFAR |- \ J\J: ! Paimaton ¢ %

Radar cube Range-Doppler map Range profile 3D point cloud

Figure 3.14: Overview of the radar data preprocessing from radar cube to point cloud

3.2.1.2D-FFT

As shown in Figure 3.14, the received radar cube has three axes: fast time (M bins), slow
time (L bins), and channels (N bins), respectively; so, for each channel, the radar data can
be regarded as a 2D discrete signal. Therefore, in order to estimate accurate Doppler and
range information of the target, 2D FFT has been applied on this 2D discrete matrix with
an assumption that the beat signal is stationary in each original chirp. The expression of
2D FFT (range-Doppler) is listed in Equation 3.15.

M-1 )
Srx(k, 1) = Z Sg;)(k)e_ﬂ”lm/M
o (3.15)
M-1L-1 . .
=2 2 Sg;l)(n)e_ﬂ”k"/Ne—]anm/M
m=0n=0

where, [ =0,...,M—1,and k=0,...,N—1, M and L is the number of bins for fast time
and slow time, respectively.
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3.2.2. CFAR

After applying the 2D FFT for each channel, the Doppler range matrix is obtained, where
the fast-time dimension is converted to range and the slow-time dimension is converted
to Doppler. To further detect which bins are occupied by the extended target, CFAR is
applied.

CFAR is a popular objection detection algorithm to adaptively suppress homoge-
neous background clutter so that undesired targets can be filtered. The principle of CFAR
is that for a given Doppler-range cell, namely Cell Under Test (CUT), a threshold can be
calculated using the training cells and based on the false alarm rate, and this threshold
is compared with CUT to determine whether there is an object in CUT. That is, we es-
timate the noise level from the training cells and determine whether CUT is occupied
by an object or not. There are two common CFAR algorithms: Cell-Average (CA)-CFAR
and Ordered-Statictic (OS)-CFAR. The reason we choose OS-CFAR is that it shows su-
perior performance over Cell-Averaging (CA) CFAR with non-uniform clutter [70]. The
principle of OS-CFAR is illustrated in Figure 3.15.

X X Y Xn

L] L 1 [ ][]

sort and select the k™ order

w2

Xk
-
object
Tos comparator .
no object

Figure 3.15: Principle of OS-CFAR algorithm: orange blocks represent the training cells,
shallow yellow blocks stand for the guard band cells and green block is the CUT [8]

In contrast to CA-CFAR, which utilizes all the training cells to calculate the threshold,
OS-CFAR choose a single amplitude. The general idea is that noise estimation is based
on the k" values of the training cells sorted in ascending order, as in Equation 3.16.
That is, the arithmetic mean used in CA-CFAR is replaced by a single rank of the ordered
statistic < Xj.

Xj=Xp<...sXp<s--<Xy1=Xn (3.16)
Therefore, if there is another object present in the training cells, its value will not affect

the peak detection in the CUT. For the threshold, the noise level also need to be multi-
plied by a scaling factor Tps.

—1)! — |
PFAZIC( ]I::] )(]C D! (Tos+ N - k)! (3.17)

(Tos + N)!
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According to [71], the suitable value of k is k = 3/4N. The scaling factor Tps can be
derived by solving Equation 3.17.

3.2.3. DOA ESTIMATION

After 2D FFT and CFAR detection, the extended targets’ occupied cells are determined.
That is, the range, Doppler and intensity features of a point are already obtained. Based
on the arrangement of the antenna array on the MIMO radar, we can estimate the ele-
vation angle and azimuth angle by applying a beamforming algorithm, such as FFT and
MUltiple SIgnal Classification (MUSIC) to the multiple channels. With the range, az-
imuth, and elevation angles, we can convert the spherical coordinate to the Cartesian
coordinate. In this thesis, the simple FFT-based beamforming was used, leaving any
super-resolution technique such as MUSIC for future work.

3.3. PROPOSED HAR PIPELINE

The used MIMO mm-wave Frequency-Modulated Continuous-Wave (FMCW) radar can
generate six intrinsic features of the target: range, azimuth angle, elevation angle, Doppler,
SNR, temporal relation by continuously transmitting and receiving modulated millime-
ter wave. For the first three features, they can be represented in Cartesian coordinates
and form the spatial aspect of the point clouds. For the last three features, the most
common data representations are range-Doppler heatmaps and spectrograms, as thor-
oughly analyzed in Chapter 2. In the majority of the previous works, these are separately
used to recognize human activities. The pipeline proposed in this thesis aims to try to in-
tegrate Doppler, SNR, temporal relation information features on point clouds to address
HAR via this more information-rich representation. This is done in conjunction with the
self-attention models described in the previous sections, that will be used as classifiers.
The overview of the proposed pipeline is given in Figure 3.16.
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Figure 3.16: Overview of the proposed pipeline to address HAR problem
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Specifically, this pipeline is made up of three main modules, which are indicated by
three dashed lines in Figure 3.16, and the descriptions of the three modules are listed as
follows:

 The first module is responsible for converting the radar raw data cubes containing
complex signals to 6D point clouds including 3D coordinates, Doppler (velocity),
intensity (SNR), time. In this module, 2D FFT is first applied to 2D discrete signals
to generate the range-Doppler map. Then, we employ 2D OS-CFAR on the map
to detect which bins are occupied by subjects, and the coordinates of the detected
bins are the range and Doppler information of the point, while the values of the
detected bins correspond to SNR. Last but not least, an FFT is applied along the
channel axis to estimate the azimuth angle and elevation angle. With the angle
and range information, we can thus derive the 3D Cartesian coordinates.

* Actually, a lot of points in the point clouds are clutter, and the number of points
after the first module does not match the input of the network. For these two rea-
sons, we need the second block of data pre-processing. In the second module, a
method of removing the clutter is proposed: 1) calculate the centroid of the point
cloud with SNR as weights, 2) filter out the points with the distance to the centroid
higher than 1 m, assumed to be a reasonable number for an average human body
size. After removing clutter, a certain number of frames with the highest Doppler
are selected because points in these frames can better represent the features of
the motion. Lastly, we apply down sampling or up sampling on the point clouds
to match the input size of the network. The specific resampling algorithms are
described in detail in Chapter 4.

* The third module is the DL classifier. In this thesis, we investigate three different
attention-based networks for processing point clouds. They are the point trans-
former of Hengshuang Zhao et al. [5], the point cloud transformer of Menghao
Guo et al. [6], and the point transformer of Nico Engel et al. [7]. For the first two
models, the authors employ a hierarchical architecture to extract the features of
the input point cloud with an attention mechanism, and use fully connected lay-
ers to present the classification results. For Nico’s model, local and global features
are related by cross multi-head attention after being extracted separately, and sim-
ilar to the other two models, fully connected layers are deployed to provide the
classification results.



DATASET PREPARATION AND
RELEVANT PREPROCESSING

This thesis utilizes two datasets to prove its proposed pipeline. One is the MMActvity
dataset [10] and the other one is TUD dataset also used in [13]. In this chapter, the radar
types and measurements of two datasets are depicted in detail. Section 4.1 and section 4.2
introduce the MMActivity dataset and the TUD dataset, respectively.

4.1. MMACTIVITY DATASET

The dataset includes five continuous motions of only two human subjects, including
boxing, jumping jack, jumping, squats, and walking. Given its small size, this dataset
was initially intended to help with just a feasibility study before moving to a larger one.

4.1.1. RADAR INFORMATION

The radar used to collect this dataset is TI's IWR1443BOOST [72]. The waveform of this
radar is FMCW using a chirp signal. The antenna layout of the radar can be seen in Figure
4.1. As shown, the array arrangement of antennas enables the estimation of both eleva-
tion and azimuth angle. It is a MIMO radar with three transmitters and four receivers so
that the radar can detect the angle information of targets. This radar and the radar used
in the TUD data set are both FMCW radar produced by the TI, so the working principle is
similar even if the number of channels is different. The operating frequency band ranges
from 76 to 81 GHz, according to Equation 4.1, since the maximum bandwidth that can
be used is 4 GHz, the best range resolution is 4 cm.

Cc

AR=—
2B

(4.1)

where, B is the bandwidth in Hz swept by the chirp of the radar, c is the speed of light,
and AR is the range resolution.

33
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TX Antennas

RX Antennas

Figure 4.1: Picture of IWR1443 radar board [9]

For angle resolution, we can refer to the Equation 4.2.

A
Oy = ———— (4.2)
Md cosO

Where, M is the number of channels, 8 is azimuth compared to boresight, d is the sepa-
ration between antenna elements and A is wavelength.

According to the antenna pattern in [9] that at 78 GHz, based on the 3-dB drop in the
gain, the horizontal 3dB-beamwidth is approximately +28 degrees and elevation 3dB-
beamwidth is approximately +14 degrees. Additionally, the specific usage of IWR1443
can also be found in [9].

4.1.2. MEASUREMENT

For the measurement of human motion data, the radar is mounted on a tripod stand at
a height of 1.3 m and only two human subjects participated in the data collection. They
performed five different activities including walking, jumping, jumping jacks, squatting,
and boxing. The experimental scene can be seen in Figure 4.2, and human subjects kept
performing one activity for a period of 20 seconds in front of the radar to collect the
data. Totally, they collected 93 minutes of radar point cloud data and the distribution of
the data can be seen in Table 4.1, with a sampling rate of 30 frames per second.

Table 4.1: Classes distribution of the MMActivity dataset

Activity Number of data files Total duration (seconds)
Boxing 39 1115
Jumping 38 1062
Jumping jack 37 1045
Squats 39 1090

Walking 47 1269




4.1. MMACTIVITY DATASET 35

Figure 4.2: MMActivity dataset collection setup [10].

The data collected are then transferred to a laptop using ROS over USB. ROS can
interact with the TI radar development board where raw data preprocessing is imple-
mented in a Digital Signal Processor (DSP), and thus point clouds can be acquired di-
rectly. The storage format of point cloud data in ROS is rosbag file [10], and the data was
converted into .txt files. Unlike the storage format of TUD dataset in Matlab, where each
frame is a single matrix, the data storage format in MMActivity is .txt files and each file
contains all points detected in a period of time. Figure 4.3 shows the data format to save
the information of a detected point. These .txt files store the 3D coordinates, Doppler,
intensity, and time information of each point. These data are directly received from ROS
and data preprocessing such as Direction Of Arrival (DOA) estimation and CFAR detec-
tion are automatically performed in the radar develop board. If radar point clouds are
collected using ROS, we cannot access complex signal data, since the board has only a
few megabytes of memory, not enough to store big complex signals.

header:
seq: 6264
stamp:
secs: 1538888235
nsecs: 712113897
frame_id: "ti_mmwave" Frame ID used for multi-sensor scenarios
point_id: 17 Point ID of the detecting frame (Every frame starts with @)
x: 8.658390625
y: 6.92578125
zZ: 0.0
range: 11.867276001
velocity: 0.0

Point x coordinates in m (front from antenna)

Point y coordinates in m (left/right from antenna, right positive)
Point z coordinates in m (up/down from antenna, up positive)

Radar measured range in m

Radar measured range rate in m/s

doppler_bin: 8

bearing: 38.6818885803
intensity: 13.6172780991

Doppler bin location of the point (total bins = num of chirps)
Radar measured angle in degrees (right positive)
Radar measured intensity in dB

#
#
#
#
#
#
#
#
#
#

Figure 4.3: The storage format of one point in the MMActivity dataset.[11]
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4.1.3. DATASET FOR THIS THESIS

Obviously, data in the format shown in Figure 4.3 cannot be fed into networks directly,
so a Python script is utilized to convert this data format into a matrix as in Figure 4.7.
It shows the .txt file containing the features such as Doppler, intensity and point_id as
features of the point.

In order to explore the variation of recognition results as the number of points de-
creases, the continuous data are segmented into multiple samples with a certain num-
ber of points. The samples have no overlap part with each other. The number of points
and its corresponding duration and frames are showed in Table 4.2.

Table 4.2: Relation among the number of points, frames and duration in adjusted MMAc-
tivity dataset

number of points Frames Duration

1360 60 2s

1024 40 1.5s
512 20 0.8s
256 10 0.4s
128 5 0.2s

The standard number of input points is 1024, so the reason to choose 1360 points as
the input size is that in [10] the author of MMActivity dataset use the data of 60 frames to
train networks and the number of points is approximately 1360 in that case. Therefore,
it is fair to compare the pipeline of this thesis and pipeline in [10] with the same number
of input points.

4.2. TUD DATASET

The TUD dataset [13] includes radar data for 4 motions such as sitting down to a chair,
standing up from a chair, bending and standing up after bending, and 2 static postures
such as standing still and sitting still on a chair. There are 8 male human subjects partic-
ipating in the measurement, in the age between 20 and 30 years.

4.2.1. RADAR INFORMATION

The radar board used to collect data is composed of four cascaded AWR2443 chips, each
of which has 4 transmitters and 3 receivers. Therefore, there are 16 Transmitter (TX)s
and 12 Receiver (RX)s embedded in the board. While the radar board is working, all
RX receive the echo signals simultaneously, but the TXs are working with Time Division
Multiple Access (TDMA). Overlapping channels are discarded, resulting in 86 equivalent
azimuth channels and 7 equivalent elevation channels. According to the TI manual [73],
the field of view in azimuth is approximately -60 to +60 degrees and -20 to +20 degrees
in elevation, for attenuation of less than 10dB in the radiation pattern. A picture of the
actual radar board is shown in Figure 4.4.
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Figure 4.4: Picture of the four-device cascaded AWR2243 radar board

The derived radar parameters, such as the maximum detection range and velocity,
the range and velocity resolution can be seen in Equation 4.3, respectively. Range res-
olution is the ability of a radar to discriminate between two objects that are extremely
close to each other. The velocity resolution means the smallest different of velocity a
radar can measure.

_ ¢fabc
max — ’
2T chirp
Aors
Vinax = + $,
4ANTX Tehirp,total 4.3)
c c .
AR= —=—7—"7"—,
2B 2Tchirp Tchirp
Ap= Achirp
2Tcpr

Where, c is the light speed, fapc is the sample frequency, renhirp is the slope of the chirp,
Achirp i the wavelength, Teniry = Napc/ fapc is the ADC sampled interval. 2Tcpy is the
coherent processing interval. For angle resolution, it is not dependent on the bandwidth
but relies on the proportion between the chirp center wavelength and the MIMO aper-
ture size (i.e. the number of channels), since it is estimated from the phase shift of multi-
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channel. The specific expressions of azimuth and elevation angle resolution are in Equa-
tion 4.4.

A(,b _ /lchirp
= —L¢ ,
1 (4.4)
AG = chirp ,
Lg

Here, Ly and Ly represent the azimuth and elevation apertures, respectively. A¢ and A0
are azimuth resolution and elevation resolution, respectively. According to [13], with the
above factors considered, the radar parameters for HAR are empirically configured as
shown in Table 4.3.

Table 4.3: Waveform parameters and derived features of the radar. The definition of
parameter and feature is subject to whether it is directly configurable, the directly con-
figurable term is referred to as parameter, the other as derived feature [13]

Parameter Symbol Value
Antenna design wavelength Aantenna 3.90mm
Number of TXs Nrx 12

Number of RXs Ngrx 16

Total number of virtual channels Nchannel 192

MIMO aperture on azimuth Ly 425X antenna
MIMO aperture on elevation Lg 3Aantenna
ADC Sampling Rate fabpc 2.7MHz
Chirp Ramp Interval Tenirp 60us

Total Chirp Interval Tenirp,total 63us
Number of chirps per sub-frame Nenirp 1536

Start Frequency fstart 77GHz
Chirp Ramp Slop Tchirp 60MHz/us
Sub-frame Periodicity Tsub-frame 100ms

Field of view on azimuth FOVy [-40deg,40deg]
Field of view on elevation FOVy [-20deg,20deg]
Coherent processing interval Tcpr 0.1s

Derived Features Symbol Value
Equivalent number of channels on x-axis Ny 86
Equivalent number of channels on z-axis Ny 7
Transmitted Chirp Bandwidth Bty 3.6GHz
Received Chirp Bandwidth Bpry 2.84GHz
Valid chirp center wavelength Achirp 3.82mm
Maximum Measurement Range Riuax 6.75m
Maximum Unambiguous Velocity Umax +1.26m/s
Range Resolution AR 5.28cm
Velocity Resolution Av 0.0286m/s
Azimuth Angle Resolution (broadside) A¢p l.4deg
Elevation Angle Resolution (broadside) AO 18deg
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4.2.2. MEASUREMENT

The experiments were carried out at the Lage Hallen of the EWI building in TU Delft. The
specific setups for the measurement are as follows:

* The radar is placed at a height of 0.75 m so that all body parts of human subjects
can be covered within the field of view of the radar.

e Figure 4.5 shows the layout of the measurement room, describing the positions of
the radar and other items in the room. As shown, the distance between the radar
and the chair is 2.7m.

.................... A Radar
z
x
¥ — : human activity crientation
Table 27m Table : position of subjects in all training and fest

sets excluding training set-2 and test set-2,
test set-19 and test set-20

Table C? @\‘ Table

Table

Figure 4.5: Data measurement setup in an office-like room at TU Delft [12, 13]

In this measurement, motions are recorded in pairs. For example, standing up from
a chair and sitting down are paired motions, and the subjects were asked to sit down and
stand up successively for 2 minutes with a regular period of 2 seconds for each motion.
For static postures such as standing and sitting, the human subjects just stood or sat in
front of the radar for 2 minutes. Therefore, it is easy to label the radar data following the
above procedure. The data distribution of six different activities are displayed in the pie
chart of 4.6 showing a balanced distribution.
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@ sit down to a chair stand up from a chair
@ bend over stand up after bending
@ sit still @ stand still

17% 17%

Figure 4.6: Classes and data distribution of the TUD dataset [12]

In this thesis, only data of 7 human subjects with zero aspect angle are used out of
the whole dataset. Each activity was recorded for 2 minutes and each motion lasts for 2
seconds, so there are 420 = 120/2 x 7 samples for each activity and 2520 = 420 x 6 samples
totally.

For cross validation test, we apply 5-fold validation, 80 percentage for training and
20 percentage for testing.

4.2.3. BASIC DATASET FOR THIS THESIS

The data can be directly acquired from the TI radar board, stored in bin files. These
bin files can be parsed into complex signals in Matlab. Then, after applying 2D-FFT,
range-Doppler OS-CFAR and DOA estimation, the point clouds with Doppler and inten-
sity information are thus obtained [74].

The data structure to store the processed data in Matlab is cell with size of 1 x 1197, where
this length means that there are 1197 matrices in this cell and each matrix store the co-
ordinates and corresponding features such as Doppler, SNR and angle information in a
frame. The coordinates already contain the range and angle information, so in a single
frame, the features selected for each point are 3D coordinates, Doppler, and SNR. Be-
sides, for a complete activity, the sequential indices of 20 frames are added as the sixth
feature to a point. Time information is added by considering that the time step decribes
the temporal order of points, which is relevant to capture kinematic information. It may
for example help the network to recognize the pair motions.

For a specific example, if we look at the snapshot of standing up and sitting down,
the spatial distributions of points from 20 frames are almost identical, but if we take the
temporal information into consideration, it is interesting to find some points appearing
earlier in certain areas in the point cloud of sitting down and some points appear later
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in these areas in the point cloud of standing up. Theoretically, this can be used by the
model to distinguish pair motions without using spectrograms.

With prior knowledge that each motion occupies 20 frames (2 seconds) and human
subjects successively repeated paired motions, we can label the data of each 20 frames
with the corresponding activities. To match the Python environment where we train our
networks, while labeling these processed data are transferred into 6D point clouds (3D
coordinates, Doppler, SNR, time step) and saved as a .txt file with 6 decimal places, as
shown in Figure 4.7. Finally, the input date can be regarded as a 2D matrix.

| bending_4.txt - Notepad

File Edit Format View Help
-9.260867,3.088673,-0.261795,-0.019736,20.131911,16.000000 u
9.209949,3.041782,0.233962,0.039472,15.199511,19.0060000
-9.264913,3.136576,0.314639,-0.2170%94,5.555020,8.0800000
©.138032,2.573637,0.177892,0.078943,1806.753888,2.000000
-9.020223,2.643119,-0.493741,0.927582,220.160786, 8.000000
©.323564,2.466582,-0.464697,0.848639,43.147255,6.000000
©.071265,3.104056,-0.190397,0.098679,11.471322,11.000000
-0.046062,3.009912,0.538113,-6.138151,41.659773,9.000000
-9.847005,2.496089, -0.040338,0.236830,14.794335,10.000000
9.097004,2.533913,0.494144,0.059207,205.540474,1.000000
©.042656,2.787322,0.798698,-0.138151,114.198366,15.000000
-0.021691,2.834979,-0.261392,0.098679,58.328276,20.000000

Figure 4.7: Example of data from a 6D point cloud file: from left to right are the
coordinates of x, y, z, Doppler, SNR, and frame index, separated by commas

4.2.4. DATASET WITH ADAPTIVE CLUTTER CANCELLATION

As shown in Figure 4.5, around the human subject there are a couple of tables, a closet
and walls which can cause a lot of clutter reflections. As shown in Figure 4.8, the point
cloud looks disorganized, and it is hard to find the exact position of a human intuitively
since the human subject is surrounded by clutter. In order to remove these clutters adap-
tively, an algorithm called Adaptive Clutter Cancellation (ACC) is proposed in this thesis.
The general idea is to find the centroid of a human subject and keep only the points with
a certain distance from the centroid.

The first step is to determine the centroid. If the coordinates of the centroid is simply
chosen as the mean value of coordinates of all points, there will be an offset, as shown
in Figure 4.8a. The reason is that clutter contributions are not symmetric and there are
more clutter elements near to the radar. After observing that the point clouds data like in
Figure 4.7, it is noticeable that points in the position of human subject have significantly
higher SNR values than clutter, so SNR values can be used as weights to calculate the
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precise position of centroid as per Equation 4.5.

weight = snr/mean(snr)

X ={x,weight)/n

c=X .g ) 4.5)
Ve =(y,weight)/n

z.={z,weight)/n

where, snr x, y, and z are 1D vectors containing SNR coordinates of x, y, z of all points,
respectively. n and <> represents the number of points and inner product, respectively.

1.5
15 1.0
1.0 0.5
0.5 0.0
0.0 -0.5
—05 4 -1.0
2
-1.0 0
-2

4 3 2 1 0*4

(a) calculating the centroid of the point cloud (b) calculating the centroid of the point cloud
without weights. using SNR values as weights.

Figure 4.8: Visualization of point cloud of a standing human subject. The red dot repre-
sents the centroid of the point cloud.

After using SNR as weights to revise the centroid coordinate against offset, we can
calculate the precise centroid. As Figure 4.8b shows, the red dot is almost embedded in
the body of the human subject.

Subsequently, with the assumption that the average height and body size of all hu-
man subjects are less than 2 m, we can consider that all points within a sphere are gen-
erated by human activities. The center of the sphere is the calculated centroid, and the
radius is 1 m. Finally, we just need to retain the points within the sphere and points
outside the sphere can be regarded as clutter and discarded. Figure 4.9 shows the com-
parison of before and after using the proposed ACC and it is obvious that the remaining
points look like the shape of a human body. Intuitively, this algorithm is capable to re-
move most of the clutter contributions.
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Figure 4.9: Comparison of point cloud without/with proposed adaptive clutter
cancellation. The red sphere shows the threshold to determine whether a point is
considered clutter or not.

4.2.5. DATASETS OF SELECTED FRAMES
As shown in Table 4.3, Ty, frame is 100 ms, and each motion is recorded for 2 seconds,
so there are 20 frames in each sample. However, in our common sense, the period of
an actual movement such as sitting down and standing up is far less than 2 seconds. In
the motion data, some frames record movement and the other frames record posture.
Therefore, much information contained in the data of 2 seconds is redundant to recog-
nize a single motion, and indeed not necessary to utilize 20 frames to classify the activ-
ity. In order to explore how many numbers of frames are necessary, 3 new datasets with
fewer frames are created based on the dataset with applied adaptive clutter cancellation.
As introduced in section 4.2.3, each sample in the basic dataset contains the radar data
of 20 frames. To filter the most valuable frames among the 20 available, Doppler infor-
mation is used. Figure 4.10 displays the visualization of point clouds from 20 frames, and
the color of the points can indicate the corresponding velocity. As shown, not all frames
contain the information on how a human subject moves, so there is great potential to
eliminate redundant data. This means that we can utilize only part of 20 frames to rec-
ognize activities so that fewer points and less computational power are needed, and the
classification can happen at a faster rate. Since movements can generate more points in
contrast to static postures, it is relatively fair to choose the average Doppler value as a
suitable indicator to filter frames.

More specific details on this process of selecting frames and modifying where needed
the number of input points are given in the following.

* Strategy for selecting frames

Considering that the actual motion is continuous, the selected frames should also
be continuous, so we deploy a sliding window on the 20 frames with a step of 1
frame to calculate the average Doppler. The window with the highest Doppler
value is selected as new data to represent the sample. The length of the sliding
window can be varying, and in this thesis the length is set as 3, 5 and 10, and 3 new
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benging pointcioud rame o benging pointcioud rame 1 benging pointcioud rame 2 benging pointcioud rame 3

benging pointcioud frame benging pointcious frame 5 bending pointcloud frame 10

Figure 4.10: Visualization of point cloud of the 'bending’ activity for 20 frames. Each plot
shows the point cloud of a single frame, and the color bar indicates the Doppler value.
From left top to right bottom corner, the point clouds from frame 0 to frame 19 are shown

datasets of different frames contained in one sample are created. As introduced in
Chapter 3, the network architecture is made up of a few hierarchical blocks, where
the input size is decreasing proportionally with a ratio of 4, so the number of points
contained in each sample of new datasets is shown in Table 4.4.

* Padding strategy

Since the detection algorithm applied on range-Doppler map is OS-CFAR, we can-
not make sure that the number of points per frame is a constant. After applying
adaptive clutter cancellation, the number of remained points per frame fluctuates
around 100 with a standard deviation of 10, depending on how many movements
are captured by radar. If the human subjects perform more movements, there will
be more points generated. In order to ensure that the total number of points is
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Table 4.4: Mapping relation between number of frames and size of resulting input data

Number of frames | Size of input per sample
20 (1024,6)
10 (512, 6)
5 (256, 6)
3 (256, 6)

constant, we apply up sample and down sample if the number of points is fewer
or more than the preset constant, respectively.

For the up sampling, let us consider that the preset number of points is Ny and
the actual number of points after adaptive noise cancellation is Ny (Ny > Ni), so
the number of points we need to fill is N, = Ny — N;. The most common method
for padding is to fill the data with N, zero vectors, but this operation may add too
homogenized values with little information to all activities, and thus limit the per-
formance of the networks. In order to keep the original information in the data, the
idea is to repeat some representative points and make the features of the selected
points unchanged. Therefore, we use the Farthest Point Sampling (FPS) algorithm
on the original points to sample N, points and then concatenate the new points
with the original data to generate a matrix with a size of (N, 6) and the features
of the added points remained unchanged. For these repeated points, they will be
removed in the down sample block of networks, so this up sample operation can
avoid adding homogenized information artificially, while filling the points to the
needed preset number. If N is far less than Ny such as Ny > 2Ny, the solution is
to double the data first and then apply FPS to sample the remaining number of
points. If the N is even smaller, we can assume that this sample does not contain
enough information to be correctly recognized and discard it.

For the down sampling, consider Ny and N (Np < N;) as the preset number and
the actual number of points in the input point cloud, respectively. The simplest
method is to use a random sample, that is, to randomly select Ny points as input
data. This method may work well when the point cloud is dense, but for a small
number of point set as we often have with radar-based sensing, such as 256 points,
random selection is likely to change the spatial distribution of points and make the
features of points a lot different. To avoid this, we also apply FPS on the original
points to sample Ny points. This operation can ensure that the spatial distribution
isunchanged in great extent, but the price is that it will increase the computational
complexity.



RESULTS

This chapter analyzes the performance of the proposed method through different datasets
and input features. Section 5.1 shows the feasibility results of using point transformer
(Hengshuang's version) on MMActivity dataset. In section 4.2, there are thorough investi-
gations of different input features derived from point cloud, three attention-based models,
and their leave-one-subject-out test.

5.1. FEASIBILITY RESULTS OF USING POINT TRANSFORMER ON
MMA DATASET

In this thesis, training and testing of the networks are done in an Alienware laptop with
an NVIDIA GeForce RTX 3070 Laptop GPU, and the GPU memory is 8 GB.

Since the MMActivity dataset can directly provide the point cloud data and the activ-
ities are continuous motions, it is possible to label the data and convert the data into the
6D point cloud format as described in Chapter 4. Thus, this dataset is utilized to study
first the feasibility of using point transformer to address HAR problems.

5.1.1. COMPARISON BETWEEN PROPOSED PIPELINE AND RADHAR PIPELINE

This subsection compares the classification results of the proposed pipeline and the
pipeline in RadHAR [10], where the authors voxelized points from 60 frames and em-
bedded these points into a cube. The input data format to classifiers is a 3D matrix. The
classification results from the literature when using different classifiers is listed in Table

5.1.

46
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Table 5.1: RadHAR results from [10]: test accuracy of different activity recognition clas-
sifiers trained on the MMActivity Dataset.

S.No Classifier Accuracy
1 SVM 63.74
2 MLP 80.34
3 Bi-directional LSTM 88.42
4 Time-distributed CNN+ Bi-directional LSTM 90.47

In order to have a fair comparison with the results above, the number of input points
for the proposed pipeline of this thesis is selected as 1360, which is approximately the
number of points in 60 frames. The normalized confusion matrix of the proposed pipeline
is shown in Figure 5.1.
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Figure 5.1: Normalized confusion matrix for Point Transformer to classify the five
motions in the MMActivity dataset, with 1360 as the number of input points

The numbers in the diagonal show the accuracy for each activity. All test data of
walking and boxing are classified correctly. Only a few test data of the other three classes
are given a wrong prediction. The overall accuracy is 98.43%, which is 8% more than
the best results with the RadHAR pipeline proposed in [10]. This great enhancement
shows the potential of point transformer architectures to process radar point cloud data
in contrast with the traditional DL models such as CNN and RNN.

5.1.2. RESULTS WITH DIFFERENT INPUT
For the purpose of exploring how the input will affect the classification result, extra
tests are performed with different input features of points and varying number of in-
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put points. First, we feed only the 3D spatial coordinates of the points to the network
and use this result as a baseline. Then we associate the points with different features as
the inputs. Worth to mention is that we make input data with all features as 0 to study
the influences brought by input shape. Figure 5.2 shows the accuracy and F1 score of
different input features.

In the case of MMActivity dataset, input data with Doppler and intensity features
can benefit the classification most. For single extra feature, the improvement brought by
Doppler and intensity is slightly greater than temporal information. The possible reason
for this is that the activities are continuous motion, so the order of how limbs move can
vary from sample to sample. Thus, the temporal distribution of points are not impor-
tant. For the group with 0 as extra features, the accuracy and F1 score decline slightly
instead, so we can consider that from the point transformer perspective the homoge-
nized information may reduce the variance of different activities in radar point cloud,
thus declining the overall classification accuracy.
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Figure 5.2: Classification accuracy and F1 score values with different input features
from the point clouds. %, y, and z indicate the spatial coordinates, and D, [, and T
indicate Doppler, intensity, and time, respectively

Furthermore, the number of points needed for the networks to recognize the ac-
tivities is also important, since in the real scenario many human motions happen in a
short period and the number of generated points is related to how many frames a radar
records. If the number of needed points is much more than the actual motions can gen-
erate, it can be hard to utilize radar in a timely manner to recognize these activities.

Since the point transformer has a hierarchical architecture to extract features from
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point cloud as described in Chapter 3, the input number should be chosen as power of
2 in the proposed pipeline. Figure 5.3 displays the accuracy and F1 score of feeding dif-
ferent number of points to the point transformer. As shown, with decreasing number of
input points, accuracy and F1 score are declining at the same time. However, even only
128 points are fed into the network, the classification result is still better than the best
result in the RadHAR pipeline with non transformer-based networks and approaches.
This means that 128 points and their added information are enough for the proposed
pipeline to distinguish the different motion in MMActivity dataset.
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Figure 5.3: Classification accuracy and F1 scores with different number of input points
in the point cloud, from 128 to 1024

5.2. RESULTS OF USING PT AND PCT ON TUD’S DATASET

In this section, we thoroughly investigate the characteristics of the three attention-based
models chosen in this thesis with various input data. We also have investigated person-
based recognition based on their activities.

5.2.1. RESULTS OF DIFFERENT FEATURES AS INPUTS

There are many combinations of 3D coordinates and extra features. To find the best
combination and explore how these different features contribute to the classification re-
sults, we first train point transformer (Hengshuang’s model) to see the results with differ-
ent combinations of features. The reason why we select the point transformer by Heng-
shuang is that the numbers of parameters and operations in the model are the fewest, as
shown in Figure 3.1, and thus we can experiment effectively by running many tests with
limited computational burden.
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The experiment results with different input features are displayed in the confusion
matrices of Figure 5.4.
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Figure 5.4: Normalized confusion matrix for Point Transformer to classify six motions
and postures with (a) only coordinates, (b) coordinates and Doppler, (c) coordinates
and intensity, (d) coordinates and time, (e) coordinates, Doppler, intensity and time, (f)
coordinates, Doppler and time
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Figure 5.4a shows the results of using only 3D coordinates, and it is used to compare
with other results as the baseline. Here, we can notice that the classification results are
almost in pair, e.g. it is possible for the network to be confused with standing up and
sitting down, but the network is unlikely to mix standing up with bending down.

Only with the coordinates of the point cloud, the network is able to classify six classes
roughly, and it performs better when distinguishing static posture. For the motions, the
results are not good enough, since the spatial distribution for these paired motions are
almost the same, and they are symmetrical in time. That is, standing up can be regarded
as the inverse motion of sitting down. In the previous work in [12], the solution to distin-
guish the paired motions is to introduce spectrograms, which can reflect the difference
of Doppler over time for each motion. For the proposed pipeline, as Figure 5.4b shows,
after adding the Doppler information to each point, the classification results for the mo-
tions improve and the results for all classes are balanced. Moreover, we can achieve
similar results if we add time information as the extra feature as shown in Figure 5.4c.
However, after adding intensity information to input points, the classification accuracy
for motions declines greatly while the results for postures remain unchanged, as Figure
5.4c and Figure 5.4e show. When the Doppler and time information are added to points,
we can obtain the best classification results, that is, the highest accuracy as shown in
Figure 5.4f.

5.2.2. RESULTS WITH ADAPTIVE CLUTTER CANCELLATION

As the description in Chapter 4, many points in the point clouds are actual clutter con-
tributions due to the items around the human subjects, so the proposed ACC is applied
to remove the clutter in the experiment scene. The improvements brought by ACC for
different features as input are listed in Table 5.2.

Table 5.2: F1 score of Point Transformer with and without the proposed adaptive clutter
cancellation

Input features | With ACC | Without ACC Difference
Xyz 0.792 0.741 +0.051 (5%)
xyzD 0.893 0.869 +0.024 (2.4%)
xyzT 0.880 0.861 +0.021 (2.1%)
xyzDT 0.928 0.888 +0.040 (4%)

In this table, it is noticeable that after removing the clutter points outside the human
movement area, the improvement for the F1 score is significant. For the best case, the
F1 score improves by about +4% and reaches 92.8%. For other cases, ACC can also bring
improvements, and it benefits most the group with only coordinates as input.

5.2.3. COMPARISON AMONG THREE ATTENTION-BASED MODELS

As introduced in Chapter 3, we have three attention-based models to investigate, and
they are the point transformer from Hengshuang [5], the point cloud transformer from
Menghao [6], and the point transformer from Nico [7], respectively. Figure 5.5 displays
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the F1 scores of these three attention-based models with decreasing number of frames
as inputs. Since F1 score combines the precision and recall of a classifier into a single
metric by taking their harmonic mean, it is a more complete indicator to compare the
performance of classifiers rather than recall and precision. In this section, F1 score is
used to analyze and compare the performance of three models.

1.0

HE Hengshuang
Menghao
0.9 mmm Nico
0.8
0.7 A
0.6 q
0.5
0.4 -
20frames 10frames Sframes 3frames

Figure 5.5: Classification F1 score for 3 different models with decreasing number of
frames as input, where the horizontal axis represents the number of frames. The F1
scores are the average of 5-fold cross validation

Overall, the F1 score of Hengshuang’s model is slightly higher than Menghao’s model,
but both perform clearly better than Nico’s model. Even the worst case of Hengshuang
and Menghao’s model perform better than the best case of Nico’s model.

Additionally, a noticeable trend reflected from this figure is that as the number of
frames is decreasing, the F1 score of the three models are also declining. For Hengshuang
and Menghao’s models, the F1 scores decline slowly from about 0.92 to 0.85 over 4 differ-
ent number of frames as input. The classification results of Hengshuang and Menghao’s
model are still reliable even if only 3 frames of radar point cloud data are used. This trend
is more evident for Nico’s model, and the F1 score shrinks from around 0.8 to 0.68 as the
number of frames decreases from 10 to 5.

As for the reason for these differences, it can be traced back to the architecture of the
three models. In the architectures of Hengshuang and Menghao’s models, the self atten-
tion mechanism is deployed in each hierarchical blocks, and that is to say, the features
from the point clouds are extracted by self-attention mechanism. However, in Nico’s
model, the features are extracted by SortNet, and the self-attention is just utilized to re-
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late the local and global feature. Moreover, there is no hierarchical structure in Nico’s
network.

Accordingly, we can conclude from these initial results that the self-attention mech-
anism and hierarchical structure is very suitable for extracting the features from data
representation of radar point cloud.

5.2.4. LEAVE-ONE-SUBJECT-OUT TEST

It is expected that each person has its own specific kinematic patterns when performing
certain activities. According to the interview with the subjects, some performed the mo-
tions with swinging arms, while other holding the arms static.

In order to train a generally applicable pipeline, it is important to test the general-
ization of the pipeline. That is to say, how the various kinematic patterns from each
different human individual can affect the classification results. Leave-one-subject-out
test means that the data of one subject are used for testing and the data of all the other
subjects are used for training. Essentially, in every iteration the pipeline is trained to
classify unseen kinematic patterns of data.

As shown in Figure 5.6, the average F1 score is around 0.82, which is approximately
0.1 lower than for the cross validation results.

* The drop in average classification F1 score in the leave-one-subject-out test fits
the expectation that different people have their own kinematic patterns, making
this a more complicated problem than using simpler cross-validation.

* Although there is a drop in average F1 score, it is of interest to find that the F1
score of subject 3 is 0.958 which is even 0.3 more than the original results. It can be
inferred that the kinematic patterns of subject 3 contain somehow more general
features of the activities.

» The F1 score of subject 1 and subject 4 are relatively low, and this shows that either
the kinematic patterns of them are extremely different from the others, or that they
performed the activities without following the 2 seconds interval approach (thus
making invalid some of the labels used for the data).
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Figure 5.6: Classification F1 score in leave-one-subject-out test when using 20 frames,
where the horizontal axis represents the index of the left-out subject, and S represents
specific subjects

5.2.5. PERSON RECOGNITION

The drop in the average F1 score of leave-one-subject-out test means that specific indi-
vidual differences in kinematic patterns can be encoded by the radar in the point cloud
data. These differences can be captured by the proposed pipeline. Accordingly, it is
possible to utilize the proposed pipeline to recognize specific individual based on the
different kinematic patterns. As an example of the potential for this approach, the bend-
ing motion is selected as the data from which infer the identity of a specific individual.
The reason we choose data of bending to recognize people is that this action contains
the most movements, and thus it can reflect more differences in kinematic patterns.

In this test, we only use the bending data and relabel these data with an ID of the
participants. For testing, there are only 12 samples for one class. As shown in Figure 5.7,
itis surprising that only 2 subjects accuracy is 91.67 %, and the other accuracy are all 100
%, which means only 2 data are given wrong predictions.

Apart from the different kinematic patterns, the body characteristics such as weights
and heights of different human subjects can also contribute to the people recognition
via the shape of their bodies. In order to exclude the influence by different body char-
acteristics, the radar point clouds for the static standing’ posture with different human
subjects as classes are fed into the proposed pipeline to see the variant of classification
results.

As can be seen in Figure 5.8, the confusion matrix is disordered and the results are
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Person recognition with standing data
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Figure 5.7: Normalized confusion matrix for Point Cloud Transformer to classify seven
human subjects through their 'bending’ motions.

just slightly better than random predictions. Hence, it is realized that the variety of body
characteristics have little contribution to the people recognition. Though this promising
results might be caused by the small amount of data, it is enough to demonstrate that
the proposed pipeline has the potential to both recognize activities of various people
and recognize people based on their unique kinematic patterns.
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Person recognition with standing data
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Figure 5.8: Normalized confusion matrix for Point Cloud Transformer to classify seven
human subjects through their 'standing’ postures.



CONCLUSION AND FUTURE WORK

Automatic indoor HAR is a crucial technology to address the significant scarcity of health-
care workers caused by the aging population issue, and can improve the healthcare con-
dition both in hospital and at home. With the technology of radar-based HAR, critical
events such as seizure of epileptic patients and falling of frail people can be remotely
detected in a timely manner from home, while protecting privacy.

Through literature review, for the most used HAR pipelines, the limitation of previ-
ous research on radar-based HAR is excessive dependency on image-like data represen-
tations such as spectrograms and range profiles. These are hardly sensitive to static ac-
tivity because the features of static postures cannot be reflected by the spectrogram (no
range or shape information) and the range profiles (no direct movement over time rep-
resented). Although the point cloud is a good data representation to contain the shape
information of the target, for most researches, point clouds are processed as pictures to
be forwarded to classifiers rather than the coordinates of points. This cannot make ef-
fective use of the whole information point clouds can provide.

Therefore, this MSc thesis work focuses on the limitation of common radar data
representations and utilizes the data from MIMO imaging radar to test the proposed
pipeline. The main reason to choose imaging radar rather than conventional radar is
that the provided angle information allows more informative depiction of the shape of
a human body combined with Doppler and temporal information. In principle, this
combination can reflect different features for motions as well as postures. Hence, it is
promising to solve HAR with this combination. Correspondingly, some challenges are
presented as follows:

e Currently, no research explores systematically advantages and disadvantages of
combining the coordinates of the point cloud with additional features such as
Doppler and intensity.

e It is not yet established what classifier can be used to extract features from radar

57
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point clouds to solve HAR problems.

To address these two challenges, a combination of features is proposed in Chapter 4,
and an overall processing pipeline is proposed in Chapter 3. Data representation adds
additional features to the point so that the 3D coordinates are extended to a 6D vector of
(x,y,z,Doppler,SNR, time). The point cloud is therefore represented as a 2D matrix of
the size of (N,6), where N is the number of points in a point cloud.

There are three modules in the proposed pipeline, the first of which aims to con-
vert complex signals to point clouds by applying 2D FFT in range and Doppler, 2D-CFAR
detector, and DOA estimation. In the second module, we proposed the ACC to remove
the clutter and a sample strategy to match the point clouds with the input of the net-
work, counteracting the fact that the number of points of the radar point cloud can be
very unstable even for simple measurements. The third module contains the classifier
to process the point cloud. Considering that point clouds are essentially sets embedded
irregularly and disorderly in a metric space, it is suitable to deploy a self-attention based
model to process point clouds, since the core of self-attention is to relate the different
positions of inputs. Three self-attention-based models are investigated in this thesis.
Furthermore, some datasets with fewer frames in a sample are also generated to inves-
tigate the classification results with a shorter period of available radar data. T he main
findings from the results are as follows:

* For the MMActivity dataset, the proposed pipeline can obtain the best classifica-
tion using 6D (x, y,z, Doppler, SNR, time) input data. It achieves an overall accu-
racy of 98.43%, 8% more than the best results of the RadHAR pipeline [10].

* For the MMActivity dataset, even when the number of input points is 128, corre-
sponding to just 5 frames and 0.2 seconds of radar data, the proposed pipeline can
still achieve promising accuracy (93.57%).

* For the TUD dataset, the proposed pipeline with proposed data representation
achieves the accuracy of 92.8% for the problem of classifying 4 motion and 2 pos-
tures, bringing +5.8% improvement compared with the previous work on the same
TUD dataset that did not use attention-based models [12].

* The proposed clutter removal method ACC is proved to be a crucial contribution
of the pipeline, and it can improve the accuracy by 2% to 5%, depending on the
different input features.

* The comparison of the three models shows that the point transformer from Heng-
shuang performs best: it obtains the highest classification F1 score while consum-
ing the least training time.

* The leave-one-out test demonstrates that each human subject has unique kine-
matic patterns. From the aspect of classifiers, the point cloud features of the same
activity but performed by different human subjects can be huge, and this needs to
be taken into account.



59

* The person recognition test confirms the above findings and shows that the pro-
posed pipeline can not only solve HAR issues, but can be also potentially used for
people recognition problems.

Future work:
Apart from improving the performance of the proposed pipeline with approaches such
as parameter tuning, there are many aspects of future work worth to follow up. Referring
back to the challenges of radar-based HAR, future work can also be divided into such two
categories. Some general ideas are given as follows:

1. More realistic dataset needs to be collected. In the TUD dataset, human subjects
are asked to perform the activities with a controlled 2-second interval repeatedly.
However, in real scenes, people have the freedom to perform daily activities casu-
ally, but how to label these realistic data can be a new challenge, apart from the ef-
fort for the actual data collection. In addition to performing experiments to obtain
radar data, simulation can also be a crucial method to generate additional, diverse
radar point cloud data. For the data representation used in the proposed pipeline
in the point cloud and in [75], a GAN based point cloud generation method has
already been explored. With an increase in the amount of data, the performance
of many DL models can also improve.

2. The work in this thesis only explores the condition that human subjects perform
the activity from the line-of-sight direction of the radar. However, in the actual
scene, the aspect angle can vary from 0 to 180, thus affecting Doppler information.
How the proposed pipeline performs when processing the radar data of human
activities from the non-line-of-sight orientation is worthy exploring.

3. Triggered by the opportunity of high-dimensional point clouds as the chosen data
representation, many advanced classifiers of processing point clouds can be in-
vestigated for solving radar-based HAR. For instance, ModelNet40 is a point cloud
dataset containing 40 classes, and in [76] so far there are more than 60 models
of point clouds processing, and their results are updated. Although not directly
related to HAR radar data, these could be used in transfer learning schemes to im-
prove the results obtainable for radar problems.
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