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Abstract

Subgraph matching is a fundamental problem in various fields such as machine learning,
computer vision, image processing, and bioinformatics, where detecting specific sub-
structures within an object is often crucial. In these domains, not only structure plays
an essential role, but also the feature information on nodes should be incorporated,
thus highlighting the necessity for comprehensive analytical approaches.

In this thesis, we propose two novel subgraph matching frameworks using the
Fused Gromov-Wasserstein (FGW) distance, namely the Subgraph Optimal Transport
(SOT) and the Sliding Subgraph Optimal Transport (SSOT). Both frameworks integrate
a dummy node strategy to handle the discrepancy between two graphs of different sizes.
The SSOT extends upon the SOT by incorporating a sliding window framework and
Wasserstein pruning to enhance the performance, especially for sparse large graphs.
Our frameworks can be easily implemented and are adaptable for problems of exact
matching, top-k approximate matching, and inexact matching.

We further propose a normalized FGW distance to cater to the practical interests
and enhance the performance evaluation. We adopt the Frank-Wolfe algorithm for
optimization and develop computation-reducing techniques by isolating the dummy
node.

By conducting experiments on both synthetic and real-world datasets, we demon-
strate that the SOT method achieves excellent performance on small graphs, and
the SSOT method improves the accuracy over the SOT on large graphs. Both these
two methods show the ability to outperform the state-of-the-art methods in noisy
environments in terms of accuracy and efficiency.

Code availability: The implementation of this work is available at https://github.
com/pandadada123/FGWD_on_Graphs_subgraph
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Nomenclature

Mathematical objects

x Scalar
x Column vector
xi The ith entry of column vector x
X Matrix or tensor
X i,j Entry (i, j) of matrix X
X Set or function
xi or x

(i) The ith element of set X
i, i′, j, j′ Discrete value
x, x′, y, y′ Discrete or continuous value

Linear algebra

1n All-ones column vector in Rn

0n All-zeros column vector in Rn

(·)⊤ Transpose
tr(·) Trace
⟨·, ·⟩F Frobenius inner product
⊗K Kronecker product
⊗ Tensor-matrix product (self-defined)
vec(·) Column-stacking operator
∥ · ∥p p-norm of a vector
∥ · ∥F Frobenius-norm of a matrix

Probability

µ Probability measure
supp[µ] Support of probability measure µ
p, q Probability vector
unif(n) Probability vector of uniform distribution of n entries
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Introduction 1
The graph is a powerful model that helps us understand this complex world, no matter
what kind of systems, purely natural or artificial. It comes from the real world and
then pays back to the real world. Often it has an interchangeable name as network. It
has various applications ranging from engineering, network science, machine learning,
bioinformatics, image analysis, pattern recognition, computer vision, natural language
processing, etc.

1.1 Motivation

In this thesis, we specifically focus on the subgraph matching problem. Subgraph match-
ing is a fundamental problem with broad applications. In biology, it is necessary to
detect a specific pattern to understand the biological function of an object. It is also a
common practice to search for the same or similar patterns within the same category
of objects, which may indicate common characteristics of these objects. In chemistry,
detecting chemical patterns helps in formulating new chemical compounds, which will
contribute to various areas such as drug discovery. In cybersecurity, subgraph matching
is utilized to identify patterns of malicious behavior within a network. It is critical to
recognize that in the mentioned fields, the essential information lies not only in the
structural part but also largely in the attributed data associated with the nodes.

To be more specific, Figure 1.1a shows a chemical compound from the chemical BZR
dataset [1], with colors indicating the node feature values. Chemists are particularly
detecting ”rings” within different compounds. In this compound, we can observe three
distinct rings. We are interested in whether other compounds in the dataset also con-
tain rings with similar features and structure, which suggests potential relationships
among them. Figure 1.1b illustrates the biological pathway of breast cancer, showing
the mechanism of this disease. When analyzing different types of cancer, it is crucial to
identify if they possess common characteristics within their mechanisms. This knowl-
edge could enable the use of similar therapeutic strategies across different cancer types.
In addition, we can also make use of known signaling pathways that exhibit specific
characteristics, to determine the type of disease pathway in question.

1.2 Problem statement

Given a test graph, our primary objective is to determine if it contains a subgraph
that aligns exactly or closely with a predefined query graph. If such a subgraph exists,
pinpointing its position within the test graph is of interest. We are also interested in
identifying the top-k subgraphs that are similar to the query graph ranked by their
similarity scores.
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(a) Chemical compound (b) Biological pathway

Figure 1.1: Examples of graphs in applications

Figure 1.2: Problem statement

1.3 Contributions

In this thesis, we propose two frameworks for the subgraph matching problem: Subgraph
Optimal Transport (SOT) and Sliding Subgraph Optimal Transport (SSOT), with adopt-
ing the Fused-Gromov Wasserstein (FGW) distance. Both the proposed frameworks
incorporate a dummy node strategy, bridging the gap between the classical (sub)graph
matching quadratic assignment problem and the partial optimal transport problem.
Based on the dummy node settings, we develop specific techniques to reduce the com-
putational complexity. We further propose a normalized FGW (nFGW) distance fitting
for performance evaluation and practical interests. We conduct comprehensive exper-
iments for performance evaluation of the algorithms. We also compare our method
with existing methods and provide examples of real-world applications. We will further
discuss our contributions at the end of the thesis in Section 6.1.

1.4 Outline

• Chapter 2 presents the basic concepts of (sub)graph matching, and a review of
subgraph matching problems.

• Chapter 3 introduces the background of optimal transport and FGW distance.
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• Chapter 4 formally proposes our algorithms for subgraph matching in details.

• Chapter 5 presents the performance evaluation of the algorithm on synthetic
datasets and real-world datasets, as well as practical examples in the biomedical
field.

• Chapter 6 concludes the thesis and suggests future research directions.

3



4



Background 2
2.1 Graph basics

A graph G = (V , E) is a pair of two sets, where V is the set of nodes (also known as
vertices), and E ⊆ V × V is the set of edges. A graph emphasizes the connections or
relationships between nodes, in contrast to points in Euclidean space where the specific
positions or distances between them are important. A labeled graph G = (V , E , ℓf )
(with only labels on nodes) includes an additional labeling function ℓf that assigns
labels to nodes 1. For each node vi ∈ V ,

ℓf : V → A, ai
def.
= ℓf (vi) , (2.1)

where A is the set that includes all the possible labels assigned to the nodes, and
ai is the label for node vi. In this thesis, unless otherwise specified, we always
consider graphs that are undirected, non-weighted, labeled on nodes, and possibly with
self-loops. Some fundamental terms of graph used in this thesis are listed as follows.

Adjacency matrix. The adjacency matrix of a graph of size n is a matrix A ∈ Rn×n,
in which each entry Ai,j indicates the number of edges directly between nodes vi and
vj in V . This matrix provides the complete information of a graph’s topology. For an
undirected graph with no self-loops , the adjacency matrix is symmetric, with zeros on
the diagonal. For a graph that allows self-loops, the diagonals can also be one.

Walk. A walk is a succession of nodes and edges, in which the nodes and edges can
be possibly repeated. The length of walk is defined as the number of edges in the
sequence. The number of l-length walks between node vi and vj can be computed as(
Al
)
i,j
, in which Al denotes the l-th power of the matrix A.

Path. A Path is a special kind of walk, in which both nodes and edges can not be
repeated. Unfortunately, there exists no solution for the number of l-length paths
between every pair of nodes. Nevertheless, the number of shortest paths between two
nodes can be obtained, since a shortest walk is also a shortest path.

To obtain the length of shortest path between node vi and vj, compute the entry(
Al
)
i,j

recursively with l = 1, 2, ..., until the first nonzero result ai,j appears when

l = L. This means there are ai,j different shortest paths of length L between node vi
and vj. Node vi is a L-hop node of node vj, and vice versa.

1Labels, features, and attributes are used interchangeably in this thesis. All of them refer to some charac-
teristics or properties that nodes are endowed with.
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Let d(vi, vj) denotes the shorstest-path distance between nodes vi and vj. For
nodes vi, vj, vk in V , the lengths of shortest paths between them satisfy the following
properties:

1. Positivity: d(vi, vj) ≥ 0, with equality if and only if vi = vj (i.e., i = j),

2. Symmetry: d(vi, vj) = d(vj, vi),

3. Triangle inequality: d(vi, vj) ≤ d(vi, vk) + d(vk, vj).

Thus, the shortest-path distance defines a metric on the node set V . For future dis-
cussion, we define a shortest-path distance matrix D is with each entry defined as

Di,j
def.
= d(vi, vj).

2.2 Subgraph matching: a review

2.2.1 Basics

Definition. A subgraph of a graph G is another graph formed from a subset of the
nodes and edges of G, with the natural requirement that endpoints of all the edges in
the subset are included in the node subset. An induced subgraph of G is a subgraph
that includes all edges in G that connect the nodes of the subgraph.

Exact matching. The term graph isomorphism is usually used to define exact graph
matching, which decides if two labeled graphs are identical. Based on this, we can
further define the exact subgraph matching.

Definition 1 (Graph isomorphism of labeled graphs). [2, 3] Let G = (V , E , ℓf ) and
G ′ =

(
V ′, E ′, ℓ′f

)
be two labeled graphs, where ℓf and ℓ′f are two labeling functions.

Graphs G and G ′ are isomorphic if and only if there exists a bijection f : V → V ′

satisfying: ∀u, v ∈ V ,

1. ℓf (u) = ℓ′f (f(u))

2. (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E ′

The bijection f is called the isomorphism of graphs G and G ′

The classical (induced) exact subgraph matching problem is usually defined by
the (induced) subgraph isomorphism, that is, graph G is isomorphic to an (induced)
subgraph of G ′.

Related problems. Multiple graph-related problems share similar ideas or methods
to subgraph matching. Graph clustering involves grouping nodes of one graph into
clusters based on their overall connectivity or similarity. The common practice is the
nodes within one cluster are strongly connected or similar with each other. On the
other hand, clustering of graphs intends to classify a number of graphs into different
different categories, based on various characteristics of the graphs. Graph partitioning
divides a graph into several partitions, aiming to minimize the interactions between

6



them. (Sub)Graph mining aims to automatically detect subgraphs with some specific
criteria [4].

Different from the problems above, subgraph matching focuses on identifying prede-
fined patterns or structures that occur within a single large graph, or a set of graphs.
Detecting a predefined pattern in multiple graphs is referred to as the frequent subgraph
finding problem [5, 6]. Similar ideas can be found in temporal subgraph matching, in
which people aim to find a certain pattern in a few time stamps but may not occur in
most of the time stamps [7, 8].

2.2.2 Graph matching: the quadratic assignment program

The early stage graph matching problems are formulated as a quadratic assignment
program (QAP). In this section, we introduce the classic Koopmans-Beckmann’s QAP
and Lawler’s QAP, in terms of two unlabeled, equal size graphs.

For two graphs (referred to as source graph and query graph to align with the
notations in the following chapters) of n nodes, suppose we have structure matrices
Cs ∈ Rn×n and Cq ∈ Rn×n for each graph. A structure matrix represents the structure
of a graph. Two examples of a structure matrix are the adjacency matrix and the
shortest-path distance matrix. We aim to find an mapping matrix X ∈ {0, 1}n×n that
can match the two graphs that are as similar as possible. The entry X i,j indicates
whether node i in the source graph matches with node j in the query graph (1 for a
match, 0 otherwise).

Koopmans-Beckmann’s QAP. A traditional formulation is to compare two structure
matrices after permutation. We want to minimize the discrepancy of Cs and the
permuted version of Cq. The mapping matrix X is constrained to be a permutation
matrix, with only a single one in each row and column. Totally there are n ones and
n2 − n zeros in X.

min
X

∥∥Cs −XCqX⊤∥∥2
F

(2.2)

s.t. X ∈ X =
{
X ∈ {0, 1}n×n | X1n = 1n,X

⊤1n = 1n

}
(2.3)

The objective function can be expanded as [9]∥∥Cs −XCqX⊤∥∥2
F
= ∥CsX −XCq∥2F (2.4)

= ∥Cs∥2F + ∥Cq∥2F − 2⟨CsX,XCq⟩F . (2.5)

Since the first and second terms in (2.5) are constant, the original formulation can be
equivalently written as

min
X∈X

{
−⟨CsX,XCq⟩F = −tr(CsXCq⊤X⊤) = −⟨Cs,XCqX⊤⟩F

}
(2.6)

or
max
X∈X

⟨Cs,XCqX⊤⟩F (2.7)

The formulation ⟨Cs,XCqX⊤⟩F is the same as the original quadratic assignment
problem proposed by Koopmans and Beckmann [10, 11]. This formulation and its

7



variations are commonly named as Koopmans-Beckmann’s QAP.

Lawler’s QAP. A generalized version of Koopmans-Beckmann’s QAP is the Lawler’s
QAP [10, 12]. The cost function first defines cost functions within each graph and then
defines the costs built on each pair of nodes. After this, it summarizes all the costs
based on all pairs of nodes. For each graph, let Cs

i,i′ = ϕ(vi, vi′) and Cq
j,j′ = ϕ(uj, uj′).

Let us define a cost function dS : R × R → [0, 1] between the two elements, such that
value 0 indicates no difference, and value 1 indicates the most difference. We want to
minimize

min
X∈X

∑
i,i′,j,j′

dS(Cs
i,i′ ,C

q
j,j′)X i,jX i′,j′ (2.8)

The structure costs dS(Cs
i,i′ ,C

q
j,j′) for all node pairs (vi, vi′) and (uj, uj′) can be arranged

into a matrix Q ∈ Rn2×n2
. Then the formulation is equivalent to

min
X∈X

vec(X)⊤Q vec(X) (2.9)

where each entry of Q is

Qn(j−1)+i,n(j′−1)+i′ = dS(Cs
i,i′ ,C

q
j,j′) (2.10)

and vec(X) represents vectorization of X via column stack.

vec(X) = (X1,1, ...,Xn,1,X1,2, ...,Xn,2, ...,X1,n, ...,Xn,n)
⊤. (2.11)

Relationships. Koopmans-Beckmann’s QAP is a special case of the Lawler’s QAP
(2.8) and (2.9) with

dS(Cs
i,i′ ,C

q
j,j′) = −C

s
i,i′C

q
j,j′ . (2.12)

or
Q = −Cq ⊗K Cs (2.13)

Where ⊗K denotes the Kronecker product. This applies similarly if dS is set to be L2

norm, since

dS(Cs
i,i′ ,C

q
j,j′) = |C

s
i,i′ −Cq

j,j′ |
2 (2.14)

= |Cs
i,i′ |2 + |C

q
j,j′|

2 − 2Cs
i,i′C

q
j,j′ . (2.15)

The first two terms to be applied in the cost function turns out to be∑
i,i′,j,j′

(
|Cs

i,i′ |2 + |C
q
j,j′|

2
)
X i,jX i′,j′ =

∑
i,i′,j,j′

(
|Cs

i,i′|2 + |C
q
j,j′ |

2
)
=
∑
i,i′

|Cs
i,i′ |2+

∑
j,j′

|Cq
j,j′ |

2

(2.16)
which is only a scalar. Thus the problem is equivalent to Koopmans-Beckmann’s QAP
in this case with the definition of 2.12.
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The cost matrices in these two formulations are usually defined as (weighted) adja-
cency matrices [9] for graph matching. These two formulations both consider pairs
of nodes (or say edges). Formulation of this kind is named as the second-order It is
also possible to consider high-order cost matrix [13, 10], to jointly consider multiple
nodes within each graph. These programs are non-convex naturally due to the joint
matching of two node endings.

2.2.3 Subgraph matching

We have so far discussed graph matching for two graphs of equal size, in which each
node in one graph is matched to a unique node in the other graph, and vice versa. This
forms a one-to-one correspondence, creating a perfect permutation matrix X with
exactly one ”1” in each row and each column.

When we extend these ideas to subgraph matching, where the source graph n is
larger than the query graph m, we do not require that there is always a ”1” in each row.
Instead, we aim to find a partial permutation matrix with the following constraints:

X =
{
X ∈ {0, 1}n×m | X1m ≤ 1n,X

⊤1n = 1m

}
. (2.17)

These constraints allow for only m rows containing a ”1”, indicating which nodes in
the source graph are matched with nodes in the query graph. The objective function
for the optimization problem remains the same as in the equal-size case.

To solve this subgraph matching problem, we can adopt different approaches. One
can design optimization algorithms that directly utilize the feasible set X [14]. Alter-
natively, we can leverage the techniques developed for classic graph matching QAP’s
by introducing a possibly different number of dummy nodes into the query graph to
effectively balance the sizes of the two graphs. Dummy nodes, also referred to as vir-
tual nodes, are non-connected nodes added to the query graph to make up for the size
discrepancy. They serve as placeholders to transform the inequality constraints into
equality constraints, similar to the role of slack variables in linear programming [15]. By
incorporating dummy nodes, we also revise the structure cost function dS(Cs

i,i′ ,C
q
j,j′)

to zero for any component involving these dummy nodes, ensuring they do not con-
tribute to the total cost. This allows us to use existing optimization methods while
still accounting for the different graph sizes [12, 15].

One can choose to add a different number of dummy nodes. The simplest way is to
add n−m dummy nodes to the query graph to make the two graphs of exactly the same
size [12]. However, this method can be demanding regarding its computational costs.
Alternatively, one can only add one dummy node to the query graph with modifications
of the feasible set. This idea can be equivalently illustrated by adding slack variables
as follows.

The inequality constraint (2.17) can be equivalently written by equality constraints
by adding slack variables s ∈ Rn as

X =
{
X ∈ {0, 1}n×m | X1m + s = 1n,X

⊤1n = 1m, s ∈ {0, 1}n
}
. (2.18)

These constraints can be reformulated by expanding the matrix X to include the slack
variables as an additional column, creating a new matrix Y . The revised constraints
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are:
Y =

{
Y ∈ {0, 1}n×(m+1) | Y 1m+1 = 1n,Y

⊤1n = [1m; ∥s∥1]
}
. (2.19)

Actually ∥s∥1 = n − m. We can notice that this extension of the mapping matrix
X is equivalent to adding one dummy node to the query graph. By integrating the
slack variables into the objective function as dummy nodes and setting their related
costs to zero, we can proceed with the optimization without altering the function’s
original intent. This method essentially allows us to apply established graph matching
algorithms (such as graph matching QAP’s) to the subgraph matching scenario.

2.2.4 Subgraph matching for labeled graphs

For labeled graphs, we have to jointly consider feature cost and structure cost. A
general way is to use linear combinations to combine the information of two parts. As
default, for both feature and structure cost, we set 0 to indicate no difference, and 1
to indicate the most difference. With Lawler’s QAP for structure cost, the objective
function is written as

min
X∈X

(1− α) · FeatureCost + α · StructureCost (2.20)

where

FeatureCost =
∑
i,j

dF (i, j)X i,j, (2.21)

StructureCost =
∑

i,i′,j,j′

dS(Cs
i,i′ ,C

q
j,j′)X i,jX i′,j′ (2.22)

Since the feature cost is defined by one single node with another, this kind of cost is
also referred as the first-order cost.

2.2.5 Related works

Different works utilize these formulations, frequently found in computer vision research.
The tensor-styled formulation (2.8) can be found in [13, 16, 17, 18, 19]. The matrix-
styled formulation (2.9) can be found in [10, 20, 21, 22]. Some works view the node
features as external information for the original unlabeled graphs. They have shown
that additional features can actually help find the optimal solutions [9] compared with
the original QAP problem.

Instead of the second-order cost matrix, in practice, first-order structure cost is also
considered,

StructureCost =
∑
i,j

dS(i, j)X i,j (2.23)

An example of this simple framework is shown in NeMa [23]. For the structure cost,
they first defined the proximity and neighborhood vector within each graph, and then
calculated the cost of the neighborhood vectors of nodes vi and uj respectively in two
graphs. Similarly, in G-Finder [24], the structure cost is defined using the number of
neighbors of each node.
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2.2.6 Practical issues and solutions

Nevertheless, the exact subgraph matching problem is known to be NP-complete in na-
ture [25], and hard to be approximated with polynomial-time algorithms [23]. Balancing
between the accuracy and efficiency of the algorithms is a tricky question. Different
algorithms may be chosen depending on specific interests and applications.

2.2.6.1 From discrete to continuous

The graph matching QAP’s are all integer programs and result in a combinatorial
optimization problem that requires a large amount of computation [26, 16]. A common
category of sub-optimal algorithms relax this discrete optimization problem into a
continuous one, and thus can relieve computation burden by using classical techniques
like gradient descent. More specifically, the discrete mapping matrix X ∈ {0, 1}n×m is
relaxed to a continuous one D ∈ Rn×m. The continuous solutions are rounded in the
final step when necessary.

The optimization problem now becomes

min
D∈D

(1− α) · FeatureCost + α · StructureCost (2.24)

where

D =
{
D ∈ Rn×m

+ | D1m ≤ 1n,D
⊤1n = 1m

}
. (2.25)

From a probabilistic view, we relax a deterministic mapping into a probabilistic map-
ping. One node v ∈ Vq is allowed to match with multiple nodes u ∈ Vs with different
probabilities.

Instead of relaxing the mapping matrix directly, there are also other continuation
methods. In [22], the original objective function is convolved with a Gaussian function
to obtain a new continuous function.

2.2.6.2 Categories

As mentioned in Section 2.2.6.1, the non-convexity of the problem brings up com-
putational issues. Thus, what we obtain is often a suboptimal solution. Besides,
practically the exact matching itself may not exist, and that is what we refer to as
inexact matching. Further details are illustrated below. Note that the words ”inexact”
and ”approximate” are often used interchangeably in the literature, but we assign
them with different meanings for essential different objectives.

Exact and approximate matching. Assume the exact matching exists in the test
graph. Due to the large computational burden required for exact subgraph matching,
suboptimal methods are proposed for practical use [27]. These methods are mostly
heuristic and have no guarantee of converging the optimal solutions [23]. Usually,
these methods prioritize efficiency and practicality, while aiming to find solutions that
are only acceptable for certain criteria. We refer to these suboptimal solutions as
approximate matching. The continuation method in Section 2.2.6.1 is also a suboptimal
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method.

Inexact matching. In practice, an exact matching itself may not exist. Firstly, the
dataset is often noisy and incomplete. Secondly, researchers may aim to detect some
similar patterns within a test graph, not to find the exact matching from the outset.
We refer these cases to be inexact matching. In general, we still want to find the
optimal subgraph that most closely resembles the query. In order to tolerate more
possible graph deformations, the conditions of exact matching algorithms are relaxed.
For this optimal inexact matching, it can be viewed as a generalization of exact
algorithms [28]. Analogously, there are also suboptimal solutions in inexact matching.

ε-suboptimal solutions. For both approximate matching and inexact matching, if
the matching cost is less or equal to ε, we say an ε-suboptimal subgraph is found. Thus,
an exact-matched subgraph is also an ε-suboptimal subgraph.

Figure 2.1: Exact, approximate and inexact matching

2.2.6.3 Graph database query and online query

There is a large category of methods for database query problems. These methods are
commonly referred to as indexed-based methods, including SAGA [19], NeMa [23], and
G-Finder [24], etc. The framework of these methods consists of the off-line preprocessing
step (indexing step) and the online query step. The indexing step evaluates various
statistics of the test graphs in the database beforehand, which relatively takes a large
amount of time. Thanks to this beforehand information, the online query can be
conducted efficiently.

These methods do not adopt a standard framework for constructing the loss function
in the same way as the classic graph QAP’s. Instead, they are purpose-built for graph
query problems. They are particularly suitable for graph matching problems involving
of a small query graph against an immense test graph, while QAP’s mostly serve for
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graphs of the same size or of the same order. Additionally, they tend to consider the
subgraph matching problem from a practical perspective.

In terms of loss functions, SAGA used a second-order structure matrix; NeMa and G-
Finder used a self-defined first-order matrix. The loss function of G-Finder is a weighted
linear combination of costs of the number of missing query nodes, the number of missing
query edges, and the number of intermediate nodes.

However, index-based methods are mostly suitable for static database, where in-
dexing is only required once for multiple queries. They are not effective for non-static
temporal/dynamic graphs. Since in these cases, the whole process will be online. Then
it is the total processing time that matters, but not solely the query time.

2.2.7 Other frameworks

In general, instead of a linear combination of feature cost and structure cost, there
are various ways to design an efficient cost function, with the idea of graph distance
or dissimilarity. Researchers have explored various formulations, either heuristic or
mathematically rigorous, to tackle this problem.

Graph edit distance. Graph edit distance has attracted great attention in recent
years. It has a similar idea to optimal transport on graphs, i.e. transfer one graph to
another. The total cost is summed up with the cost of each operation. This distance is
known for its high computation complexity, and numerous works have tried to relieve
its computational burden [29, 30, 31].

Graph kernels. Graph kernels quantify the similarity between graphs by mapping
them into a high-dimensional feature space (different from the node features defined
previously). They are well-fitted for kernel methods, such as support vector machines.
It is an established method for graph classification. A review of graph kernels can be
seen in [32]. For the subgraph matching problem, one may check [33].

Implicit cost functions. In VELSET, NAGA [34], and VerSaChI [35], the feature and
structure cost function are not explicit cost functions. They evaluate graph similarity
based on statistical significance captured by chi-square statistics. The optimization
process of these methods resorts to choosing the node pair that is the most statistically
significant.

Multiobjective optimization. [36] Instead of introducing a trade-off parameter
α and form the FGW distance, a more direct way is to jointly optimize the ob-
jective functions of Wasserstein distance and Gromov-Wasserstein distance. Under
the framework of Pareto optimality, multiple optimal results can be provided with
different trade-offs of feature and structure, while it is more computationally expensive.

Graph neural network. Recent progress in graph neural networks (GNN) has
attracted great attention. The fundamental understanding of GNN is still far from
mature and thus limits its usage in high-risk areas. In [37], a neural subgraph matching
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(NeuroMatch) is proposed. Test graph and query graph are first decomposed into
small overlapping subgraphs, and embedded using graph neural network.
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Optimal Transport for Graphs 3
3.1 Introduction

Optimal Transport, also known as optimal mass transport or the Wasserstein distance,
is a mathematical framework used to measure the most efficient way to transport one
distribution to another. The main objective is to determine the optimal transportation
plan that minimizes the cost of moving a given quantity of mass from one configuration
to another, considering the distance or cost associated with this transportation. This
field offers powerful tools to analyze and solve problems related to data alignment,
image comparison, and more. The sections in this chapter are formulated in a discrete
context with the purpose of graph analysis. For the general formulation of optimal
transport, please refer to Appendix A.1.

Relationship with structured data. Lots of objects can be modeled as probability
measures by normalizing the weights/frequencies, such as graphs, images, documents,
etc. Then we are able to compare these objects via metrics between probability
measures with the tool of optimal transport.

Outline. We first introduce the traditional formulation of optimal transport and the
Wasserstein distance that is rooted in probability theory in Section 3.2. Next, we intro-
duce the probabilistic formulation of labeled graphs in Section 3.3. The framework of
analyzing labeled graphs is introduced succeedingly with the Wasserstein distance (Sec-
tion 3.4), Gromov-Wasserstein distance (Section 3.5), and Fused Gromov-Wasserstein
distance (Section 3.6). Then, we present simple examples of these distances and the
visualization of the non-convexity of GW and FGW distances in Section 3.7. Lastly, we
illustrate the connections between FGW distance and classic graph matching QAP’s in
Section 3.8.

3.2 Optimal transport and Wasserstein distance

3.2.1 The background problem: mines and factories

The historical problem of optimal transport is a ”real” transportation problem in civil
engineering, also called the Earth Movers Distance (EMD) problem [38]. We aim to
find a transport plan T ∈ Rn×m to transport mines from n minerals to m factories with
the minimum total cost.

Suppose the problem is set on 2-dimensional Euclidean space. Mines are located
at x(i) ∈ R2, i = 1, ..., n, while factories are located at y(j) ∈ R2, j = 1, ...,m. Each
mines at x(i) possesses a quantity of P i minerals, i.e.-, minerals are distributed with
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distribution P ∈ Rn among all locations of mines. The minerals need to be transported
to different factories, and we say the minerals received at different factories satisfy a
distribution Q ∈ Rm. We only consider the case that the total minerals are conserved
before and after transportation, i.e., P⊤1n = Q⊤1m, where 1n ∈ Rn and 1m ∈ Rm are
all-ones vectors. Each entry T i,j indicates the amount of mines that are transported
from the ith mine to the jth factory, or from location x(i) to location y(j).

We let the Euclidean distance between x(i) and y(j) define the cost of transporting
a unit of minerals between two locations. Further we define a cost matrix M ∈ Rn×m

with entries M i,j = ∥x(i) − y(j)∥2. To minimize the total cost of transportation, the
following constrained optimization problem is formulated.

T ∗ = argmin
T

{
⟨T ,M⟩F

def.
=
∑
i,j

T i,jM i,j

}
(3.1)

s.t. T1m = P ;T⊤1n = Q;T ≥ 0 (3.2)

where ⟨T ,M⟩F denotes the Frobenius inner product between two matrices, which can
be also written as tr(T⊤M) or tr(TM⊤). The constraint T ≥ 0 means all the entries
of T should be non-negative.

The scope of this problem can cover any transportation scenario from n sources tom
targets. Instead of mines and factories, the study objects can be diverse. Regarding our
work, similar formulations are used for probability distributions and graphs. Instead of
Euclidean distance, the cost matrixM can be defined specifically for different scenarios.
Instead of minerals, the transport object is usually called mass.

3.2.2 Abstract formulation and Wasserstein distance

Since we supposed that the total mass remains unchanged as P⊤1n = Q⊤1m, we can
obtain two probability vectors without loss of information, by normalizing the source
and target distributions by the total mass,

p
def.
=

P

P⊤1n

and q
def.
=

Q

Q⊤1m

. (3.3)

Then p⊤1n = q⊤1m = 1. Together with locations x(i) and y(j), we obtain two proba-
bility measures,

µs =
n∑

i=1

piδx(i) and µt =
m∑
j=1

qjδy(j) . (3.4)

where pi is the ith element of p, and qj is the jth element of q. The EMD problem can
be then reformulated with probability measures. The optimal value of this objective
function is defined as the Wasserstein distance.

Definition 2 (Wasserstein distance). [38, 39, 40] Let µs and µt be two discrete prob-
ability measures in the same metric space (Ω, dΩ), where dΩ is the metric on space Ω.
The Wasserstein distance between µs and µt is defined as

WΩ(µs, µt) =W (p, q,M )
def.
= min

T
⟨T ,M⟩F (3.5)

s.t. T1m = p;T⊤1n = q;T ≥ 0. (3.6)
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where p and q are the probability vectors of µs and µt respectively. For the matrix M ,

each entry M i,j
def.
= dΩ(x

(i),y(j)) indicates the cost between points x(i) ∈ supp[µs],
and y(j) ∈ supp[µt].

For the transport matrix T , each entry T i,j indicates the amount of mass that
is transported from location x(i) to location y(j) [38]. It is also worth noting that∑

i,j T i,j = 1. Based on this, the transport matrix T is actually a joint probability
distribution with marginals p and q. We define the feasible set containing all possible
T as

T (p, q) =
{
T ∈ Rn×m

+ | T1m = p,T⊤1n = q
}
, (3.7)

which is always convex and compact. Then, Definition 2 can be rewritten as

WΩ(µs, µt) =W (p, q,M)
def.
= min

T∈T (p,q)
⟨T ,M⟩F . (3.8)

This optimization problem is a Linear Program and is typically easy to solve. In
addition, the optimal solutions are not always unique [38]. Since the feasible set is a
polyhedron, the problem has a unique solution if and only if the solution lies at the
intersection of two or more constraints. If there is one solution that is situated within
one edge of the polyhedron, then all points on this edge will be solutions to the problem.

The Wasserstein distance satisfies the following properties for all probability measures
µ, ν and σ in the same metric space (Ω, dΩ) [38]:

1. Positivity: WΩ(µ, ν) ≥ 0, with equality if and only if µ = ν,

2. Symmetry: WΩ(µ, ν) =WΩ(ν, µ),

3. Triangle inequality: WΩ(µ, ν) ≤ WΩ(µ, σ) +WΩ(σ, ν).

Thus the Wasserstein distance is a metric on the space of probability measures.

3.3 Labeled graphs as probability measures

A graph is a special kind of discrete structured object. Consider an undirected labeled
graph G = (V , E , ℓf , hG), where V and E denote its sets of nodes and edges. The
function ℓf assigns feature information in some feature metric space (A, dA), for each
node vi ∈ V ,

ℓf : V → A, ai
def.
= ℓf (vi) , (3.9)

where A includes all the possible features on V , and dA defines the cost function in
between. The function hG assigns different weights to the nodes to indicate relative
importance,

hG : V → R, hi
def.
= hG (vi) . (3.10)

Without loss of generality, we constrain h to be a probability vector, i.e.,
∑

i hi = 1.
The vector can be assigned differently for different purposes of the applications. Usually,
equal weights are assigned if no a prior information is available.
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For graphs or general structured objects, often only the relative positions matter.
The structure information of a graph is embedded in its edge set E . The neighborhood
of each node implicitly embeds its structural information. Thus a function ℓs can be
analogously defined and implies the relative relationship with other nodes, in some
structure space (X , dX ),

ℓs : V → X , xi
def.
= ℓs (vi) , (3.11)

where X includes all the possible relative structural information of nodes in G, and ℓs
defines the cost function in between. For graphs, x refers to a list of neighbors of each
node [41], or generally neighborhood information [23, 42]. The metric dX can be set as
the shortest-path distance between two nodes (See further in Section 3.5).

To combine the above information, a graph with n nodes can be represented by a
probability measure on the metric space X ×A,

µ =
n∑

i=1

hiδ(xi,ai). (3.12)

Each node is attached with its own information of feature, structure, and relative
importance. We say the triplet (X ×A, dX , µ) is a structured object on the product
space X × A (See formal definition in Appendix A.1.4) [40]. On this metric space, µ
entirely captures the information of G. Two marginals of µ are µF and µS, respectively
for the features and structure,

µF =
n∑

i=1

hiδai and µS =
n∑

i=1

hiδxi
(3.13)

Suppose we have two labeled graphs (named source and target) represented by
(X ×A, dX , µs) and (Y × B, dY , µt), with

µs =
n∑

i=1

piδ(xi,ai) and µt =
m∑
j=1

qjδ(yj ,bj), (3.14)

then we are able to compare them with the framework of optimal transport.
In the following sections, we first illustrate the feature comparison via the Wasser-

stein distance, then we present the structure comparison via the Gromov-Wasserstein
distance. Finally, we combine the formulations for features and structure, and present
the Fused Gromov-Wasserstein distance.

3.4 Wasserstein distance on graph

We consider the case that the feature measures of two graphs are within the same
metric space (Ω, dΩ), i.e., A ⊂ Ω and B ⊂ Ω, represented by

µF
s =

n∑
i=1

piδai and µF
t =

m∑
j=1

qjδbj . (3.15)
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The Wasserstein distance can be directly used to compare these two measures.
For the cost matrix M , we have M i,j = dΩ(ai, bj). The distance function dΩ can be

defined in several ways. In order to adapt to a wide range of applications in practice, the
cost function dΩ is not necessarily a metric [43]. We refer to the general cost function
as d(ai, bj). In this thesis, we always set the cost function d(ai, bj) to range between
0 and 1, either discrete or continuous. The two extreme values 0 and 1 are achieved
when the matrix M is entirely filled with zeros or ones, respectively. We present two
normalized cost functions that we will use in this thesis as follows.

• For discrete-valued or categorical features, we use Dirac distance for one-
dimensional values,

d (ai, bj) = δ (ai, bj) =

{
1, for ai ̸= bj
0, for ai = bj.

(3.16)

• For multi-dimensional real-valued features, we use the normalized square L2 norm
distance,

d
(
a(i), b(j)

)
= 1− 1

1 + ∥a(i) − b(j)∥22
. (3.17)

3.5 Gromov-Wasserstein Distance

Unfortunately, the Wasserstein distance is not able to compare objects across different
metric spaces. If one object (e.g. a point cloud) embeds in 2-dimensional Euclidean
space, and the other one embeds in 3-dimensional Euclidean space, we are unable to
compare their structure directly by transporting the mass from node to node. It is also
not straightforward to define a cost function across these two spaces. Fortunately, the
Gromov-Wasserstein (GW) distance can play a role.

Regarding labeled graphs, we can use the GW distance to compare two structure
measures respectively lying on two possibly different metric spaces (X , dX ) and (Y , dY),

µS
s =

n∑
i=1

piδxi
and µS

t =
m∑
j=1

qjδyj . (3.18)

The GW distance first defines cost functions between each pair of points within dif-
ferent metric spaces, and then evaluates these costs across two spaces via another loss
function. Even if the two objects are embedded in the same metric space, it is also
beneficial to adopt the formulation of the GW distance, since it is the intra-relationship
of an object that matters. For instance, in a graph, we only emphasize how the nodes
are connected with each other, or what are the neighbors of each node. From a mathe-
matical view, the GW distance is a relaxation of the Gromov–Hausdorf distance, which
is a combinatorial optimization problem [26] (See details in Appendix A.1.2).

Suppose we obtain two structure matrices Cs ∈ Rn×n and Ct ∈ Rm×m for two
graphs. The difference between Cs

i,i′ and Ct
j,j′ is evaluated by a loss function L. We

thus define a 4-dimensional tensor with elements [39]

Li,i′,j,j′ = L
(
Cs

i,i′ ,C
t
j,j′

)
. (3.19)
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The full tensor is denoted as

L = L
(
Cs,Ct

)
∈ Rn×n×m×m. (3.20)

With a transport matrix T , the entries T i,j and T i′,j′ indicate the amount of mass
flowing from node i to node j, and node i′ to node j′, respectively. By taking the
product as T i,jT i′,j′ , we obtain the joint probability of matching two pairs of nodes
(i, j) and (i′, j′) from the two graphs. This joint probability can also be illustrated as
the mass transported from the pair of nodes (i, i′) in the source, to the pair of nodes
(j, j′) in the target (See further in Paragraph ”Transport by pair of nodes”).

Definition 3 (Gromov-Wasserstein distance). [38, 39, 26, 40] Let µs and µt be two
discrete probability measures that possibly live in different metric spaces (X , dX ) and
(Y , dY), where dX and dY are metrics on spaces X and Y respectively. The Gromov-
Wasserstein distance between µs and µt is defined as

GWX ,Y(µs, µt) = GW(p, q,Cs,Ct)
def.
= min

T∈T (p,q)

∑
i,i′,j,j′

L
(
Cs

i,i′ ,C
t
j,j′

)
T i,jT i′,j′ (3.21)

where p and q are the probability vectors of µs and µt respectively. The structure
matrices are defined by Cs

i,i′ = dX (xi, xi′), and Ct
j,j′ = dY(yj, yj′). The loss function L

is some loss that measures the difference between Cs and Ct.

The optimization problem involved is a non-convex Quadratic Program due to
the product of two T i,j’s. The non-convexity can be understood from Lawler’s QAP
by analogy, since the matrix Q in (2.9) is not always a positive semi-definite matrix.
It is generally an NP-hard problem [44]. If we say the structure matrices Cs and Ct

indicate the similarity of the matrices, and L indicates the distortion of each pair of
elements, the GW distance is built on the distortion of the similarity between each pair
of points in both metric spaces [45].

For graphs, the general choice of the structure matrices Cs and Ct is the shortest-
path distance matrixD, since the shortest-path distance is a valid metric on a structure
space (as shown in Section 2.1). Each element Di,j indicates the shortest-path distance
between nodes vi and vj. Other choices of structure matrix include edge information, or
general neighborhood information between two nodes [44]. Similar to what we discussed
in Section 3.4, the choices of structure matrices are not restricted to distance matrices
in practice [43]. Adjacency matrices A are also frequently adopted in practice [46].

The loss function L is usually defined as square L2 norm distance as L(a, b) def.
=

|a − b|2. It can be also defined by the Kullback-Leibler (KL) divergence as L(a, b) =
KL(a|b) def.

= a log(a/b)− a+ b [43].
Similar to the settings of the Wasserstein distance, in this thesis we use normalized

versions of the cost functions for L as default, i.e., L(a, b) ranges between 0 and 1,
either discrete or continuous. Note that the metric dX and dY do not need to satisfy
this requirement. The extreme values 0 and 1 are achieved when the tenser L is
entirely filled with zeros or ones, respectively.
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Transport by pair of nodes. For the graph QAP, several linearization methods have
been proposed [10, 47]. Similar ideas can be adopted for the GW distance. Let us
define another 4-dimensional tensor as

Πi,i′,j,j′
def.
= T i,jT i′,j′ , (3.22)

which has the same element order as tensor L. The objective function can be rewritten
as

GW(p, q,Cs,Ct) = ⟨Π,L⟩F (3.23)

However, the constraints need to be modified and the problem suffers from a large
number of additional variables and constraints [10, 47]. We do not go further into
details of this new formulation since solving this problem is also complex.

Nevertheless, this formulation provides another interpretation of the GW distance
by considering pairs of nodes on graph matching. Assume that we have obtained the
optimal transport matrix T ∗. Then we automatically obtain the optimal transport
tensor Π∗. Each element Π∗

i,i′,j,j′ indicates how the mass is transported from the pair
(i, i′) to the pair (j, j′), and

∑
i,i′,j,j′ Π

∗
i,i′,j,j′ = 1.

In addition, the tensors Π and L can be rearranged into (n × n) × (m × m)
matrices. If we organize the indices (i, i′) and (j, j′) by increasing orders, the matrix
version of Π can be directly written by the Kronecker product as Π = T ⊗K T .
This representation comes from the definition of tensor Π (3.22). The marginals
ofΠ are p⊗Kp and q⊗Kq. Please refer to the example in Section 3.7.2 for more details.

Reformulations. The objective function of the GW distance can be reformulated
concisely by introducing the tensor-matrix product [39],

(L⊗ T )i,j
def.
=
∑
i′,j′

Li,i′,j,j′T i′,j′ . (3.24)

that is L ⊗ T ∈ Rn×m, acts as the similar role as feature cost matrix M . Then the
cost function can be rewritten as∑

i,i′,j,j′

Li,i′,j,j′T i,jT i′,j′ (3.25)

=
∑
i,j

(∑
i′,j′

Li,i′,j,j′T i′,j′

)
· T i,j (3.26)

=
∑
i,j

(L⊗ T )i,j · T i,j (3.27)

=⟨L⊗ T ,T ⟩F (3.28)

Then Definition 3 can be rewritten as

GWX ,Y(µs, µt) = GW(p, q,Cs,Ct) = min
T∈T (p,q)

= ⟨L⊗ T ,T ⟩F (3.29)
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3.6 Fused Gromov-Wasserstein distance

To include both feature and structure information, the Fused Gromov-Wasserstein
(FGW) distance is formulated as a convex combination of the Wasserstein distance
and the GW distance.

Definition 4 (Fused Gromov-Wasserstein distance). [39] Suppose two labeled graphs
are represented by (X ×A, dX , µs) and (Y × B, dY , µt), with

µs =
n∑

i=1

piδ(xi,ai) and µt =
m∑
j=1

qjδ(yj ,bj), (3.30)

in which sets A and B are within the same metric space (Ω, dΩ), while X and Y are
possibly within different metric spaces. Definitions of M , Cs, Ct, and L are set the
same as in Definitions 2, 3 and Equation (3.20). With a scalar α ∈ [0, 1], the Fused
Gromov-Wasserstein distance between µs and µt is defined as

FGWΩ,X ,Y
α (µs, µt) = FGWα(p, q,M ,Cs,Ct)

def.
= min

T∈T (p,q)
(1−α)⟨T ,M⟩F+α⟨L⊗T ,T ⟩F

(3.31)

When α → 0, it is equivalent to the Wasserstein distance, while when α → 1, it is
equivalent to the GW distance. Since one component of the formulation is the same as
the objective function of the GW distance, the FGW distance is also a non-convex
Quadratic Program.

3.7 Examples on graphs

3.7.1 Example 1

Consider the following two graphs shown in Figure 3.1a, with colors indicating the node
features [39]. The Wasserstein coupling, GW coupling, and FGW coupling between the
two graphs are shown in Figure 3.1. We can obtain that both the Wasserstein distance
and the Gromov-Wasserstein distance are zero, since the two graphs are of the same
structure and contain the same features (both graphs contain one blue node and four
green nodes). By setting parameter α = 0.5, we are able to obtain the FGW distance is
0.16. Therefore, both the Wasserstein distance and the GW distance vanish, and only
the FGW distance is able to distinguish between the two graphs.
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(a) Two simple graphs

(b) Wasserstein coupling (c) GW coupling (d) FGW coupling

Figure 3.1: Example 1 of Wasserstein coupling, GW coupling, and FGW coupling:
The dashed lines show the couplings between the nodes. The trade-off parameter is set to
α = 0.5 in FGW coupling.

3.7.2 Example 2

Consider the two simple graphs shown in Figure 3.2, with colors indicating the node
features. Let the graph with three nodes be the source graph (left), and the graph with
two nodes be the target graph (right). Both graphs are assigned with uniform weights
p = unif(3) and q = unif(2).

Figure 3.2: Simple graphs of Example 2.

The feature cost matrix M and structure matrices Cs and Ct are listed below,
in which we use Dirac distance for the feature cost and adjacency matrices for the
structure matrices.

M =

0 1
1 0
1 1

 Cs =

0 1 1
1 0 1
1 1 0

 Ct =

[
0 1
1 0

]
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The tensor L ∈ R3×3×2×2 shows the square L2 norm costs between each pair of elements
of Cs and Ct. It can be represented in various dimensions by combining multiple
dimensions. As shown below, L can be shown by 3 × 3 × 4 (Left) or 9 × 4 (Right).
In the first case, each 3 × 3 matrix shows the differences of Cs and one entry in Ct.
For example, L(:, :, 1) shows the differences between Cs and the first entry 0 of Ct. In
the second case, each row is indexed by an edge (i, i′) in the source graph, and each
column is indexed by an edge (j, j′) in the target graph. The indices are organized
by increasing orders. Each 3 × 3 matrix on the left is stretched into a 9-dimensional
column in the matrix on the right.

Three couplings. We show the Wasserstein coupling, GW coupling, and FGW cou-
pling in the following three figures in Figure 3.3. The results of the corresponding
optimal transport matrices are listed below.

T ∗
WD =

1/3 0
0 1/3
1/6 1/6

 T ∗
GWD =

 0 1/3
1/6 1/6
1/3 0

 T ∗
FGWD =

1/3 0
0 1/3
1/6 1/6


The nodes are attributed with three different colors: blue, green, and yellow. In the

Wasserstein coupling, only features are taken into account, thus the blue nodes and
green nodes are matched accordingly. In GW coupling, only the structure matters,
so the features are actually in the wrong match in Figure 3.3b. One can imagine
there are 6 equivalent coupling approaches with GW (discussed further in the next
paragraph). In the FGW coupling, both features and structure are considered and
optimally matched. Since these two graphs are not identical, the Wasserstein distance
(0.333), the GW distance (0.278), and the FGW distance (0.306) are all larger than zero.
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(a) Wasserstein coupling (b) GW coupling (c) FGW coupling

Figure 3.3: Example 2 of Wasserstein coupling, GW coupling, and FGW coupling:
The dashed lines show the couplings between the nodes. Darker dashed lines indicate stronger
connections between the two nodes (In this case, darker lines show 1/3 mass, while lighter
lines show 1/6 mass.). The trade-off parameter is set to α = 0.5 in FGW coupling.

Visualization of GW and FGW non-convexity. To further consider the GW dis-
tance and the FGW distance of this simple example, we visualize the objective functions
of the GW distance and the FGW distance.

We set the first two entries of T to be the variables a and b. With the constraints
of uniform probability vectors p and q, we have to force each row to sum up to 1/3,
and each column sums up to 1/2. Thus the remaining entries of T can be calculated
by variables a and b. The whole matrix can be represented by a and b as

T =

 a 1/3− a
b 1/3− b

1/2− a− b −1/6 + a+ b

 .

Each entry of this matrix is also constrained to be a positive value. By substituting
this T matrix, and the above M ,Cs,Ct matrices into Definitions 3 and 4, the objective
functions of both GW and FGW are only functions of two variables a and b.

From the figures in Figure 3.4, we can easily see that the objective functions of the
GW distance and the FGW distance are both non-convex. The GW objective function
contains six equivalent global minima, with each corresponding to an optimal structure
matching. The FGW objective function contains only one global minimum, together
with five local minima. Thus, in this case, the optimal matching of FGW is unique.
The global minima are notated in blue circles in contour plots for both GW and FGW
distances. The five local minima of the FGW distance is notated in cyan circles.

The hexagonal feasible set T (p, q) is shown in shadow in the surface plots, and
framed in dashed lines in the contour plots. We can observe that all the local/global
minima are located in the corners of the feasible set. The green dashed lines marked
with stars show the optimization trajectories of GW and FGW distances (with
implementation by Python Optimal Transport (POT) toolbox [48]). The matrix T is
initialized at the point pq⊤, and then it quickly goes to a point very close to (one of)
the global minimum (minima) in the second iteration.
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(a) GW surface plot (b) GW contour plot

(c) FGW surface plot (d) FGW contour plot

Figure 3.4: Surface plots and contour plots of GW and FGW objective functions:
The objective functions are plotted with two variables a and b. Function values from low to
high are denoted by the color blue to red. The feasible set is shown in the gray shadow in
the surface plots. The trade-off parameter is set to α = 0.5 in FGW coupling.

Transport by pair of nodes. By taking the Kronecker product of optimal transport
matrix T ∗

GWD and obtaining the matrix version of optimal Π∗ ∈ R9×4, we can directly
see how the mass is transported by pair of nodes as below.
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The matrix version of Π is a joint probability distribution with marginals p⊗K p =
unif(9), and q ⊗K q = unif(4), with the same increasing indices order as the matrix
version of L ∈ R9×4. In the matrix version of optimal Π∗, the pair (1, 2) in the source
graph owns 1/9 amount of mass, which is transported to pair (2, 1) and pair (2, 2), each
by 1/18.

3.8 Connections with classic graph matching QAP’s

In the field of graph matching, the FGW distance can be viewed as a generalization
of both Koopmans-Beckmann’s QAP and Lawler’s QAP (introduced in Section 2.2.2),
regarding its ability to compare graphs of different sizes, combine feature and structure
information, and introduce relative importance to nodes [49].

As discussed in Section 2.2.6.1, the solution of a graph matching QAP can be
approximated by relaxing the problem from a discrete domain to a continuous one.
The continuous FGW problem owns analogous trajectories under the optimal transport
framework. For the feature part, the Wasserstein distance (Kantorovitch formulation)
is a continuous/probabilistic relaxation of the discrete/deterministic Monge formulation
(Refer to Appendix A.1.1.). For the structure part, the GW distance is a continuous
relaxation of the Gromov–Hausdorff distance (Refer to Appendix A.1.2.).

In Section 2.2.2, we presented that Lawler’s QAP can be narrowed down to
Koopmans-Beckmann’s QAP if the structure loss function dS is set to be square L2

norm. Similarly, the GW problem can also be narrowed down to the continuous ver-
sion of Koopmans-Beckmann’s QAP if the loss function L is set as square L2 norm
[39].

Regarding the choice of structure matrix, the adjacency matrix is generally used for
the graph matching QAP’s. While theoretically, the adjacency matrix is not a natural
choice for the FGW distance, since it is not a valid metric. While in practice, the
adjacency matrix is also adopted for various applications [43, 46].

Furthermore, the FGW distance has more generalized usage, extending beyond
graphs to any structured objects or metric spaces. It also makes cross-domain matching
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possible between different kinds of objects, such as images and graphs.
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Subgraph Matching 4
4.1 Introduction

In this chapter, we introduce two (induced) subgraph matching frameworks using
the FGW distance, namely Subgraph Optimal Transport (SOT), and Sliding Subgraph
Optimal Transport (SSOT). Compared with the standard graph matching QAP’s, the
methods we proposed are more computationally efficient with satisfying matching ac-
curacy. Despite the problem being continuous, in practice, we can always obtain a
”sparse” optimal mapping matrix – meaning most of its entries are almost zero. This
allows for an easy transition to a discrete mapping between graphs.

In this chapter, we introduce the components of our algorithms. In Section 4.2, we
introduce the dummy node strategy, which directly forms the SOT method, and present
the settings in detail. We then focus on the optimization method and computation
issues in Section 4.3. Based on the settings in the dummy node strategy, we propose
a normalized FGW distance in Section 4.4 for practical interests. In order to improve
the general performance, we introduce the SSOT method in Section 4.5, in which we
discuss two components: sliding window and Wasserstein pruning.

4.2 Dummy node strategy

In this section, we introduce the dummy node strategy to handle a large test graph
and a small query graph. The section is presented with ideas and specific settings
under the optimal transport framework.

Ideas. The dummy node strategy for graph matching has been introduced in Sections
2.2.3. We adopt the idea of adding one dummy node to the smaller query graph, as
shown in Figure 4.1. If there is an induced subgraph same as the query graph in the
test graph, there should exist an exact matching T that can match a certain part of
the test graph to the query graph. Besides, the summation of weights on the subgraph
nodes should be the same as that on the query graph. Under the optimal transport
framework, we say the mass endowed with the subgraph is transported to the query
graph, and the total mass is conserved before and after the transportation. Without a
prior information, we assume that nodes in the test graph are endowed with uniform
weights/mass.

While the mass of the subgraph is transported to the query, the mass from the
remaining part of the test graph should also be transported. To ”receive” this irrele-
vant mass, we add a dummy node to the query graph as a ”dustbin”. The test graph
is considered as the source, while the combination of the query and the dummy node
is considered as the target. The extra dummy node ensures that all mass is trans-
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ported from the source to the target, and thus satisfies the requirements of the optimal
transport framework.

Figure 4.1: Subgraph Optimal Transport (SOT) - dummy node strategy: The subgraph
(in red) should be matched to the query graph. The irrelevant part (in blue) should be
matched to the dummy node.

We refer to this method as the Subgraph Optimal Transport (SOT). More gen-
erally, graphs of different sizes can be handled by adding dummy nodes to act
as dustbins, which is not an unusual practice in graph-related tasks. Similar tricks
can also be found in other graph matching/alignment/learning problems [14, 50, 51, 52].

Formulation. We now formulate the ideas above formally. With the optimal transport
framework, the source is the test graph itself, denoted as Gs = (Vs, Es). The target is
the combination of the query graph Gq = (Vq, Eq) and a dummy node {dummy}. The
sets Vs, Es, Vq, Vq are the node sets and edges respectively for graphs Gs and Gq with
different superscripts. The dummy node can be assigned with any feature and is not
connected to any node in the query graph. Thus the target is obtained as

Gt def.
= (Vq ∪ {dummy}, Eq) . (4.1)

Suppose |Vs| = n and |Vq| = m, with n ≥ m. The source graph and target graph can
be denoted as two probability measures,

µs =
n∑

i=1

piδ(xi,ai) and µt =
m+1∑
j=1

qjδ(yj ,bj). (4.2)

The parameters have the same meanings as in (3.30): probability vectors p and q
denotes the distribution of mass on nodes; ai and bj are elements in the same feature
space (Ω, dΩ); xi and yj are elements in the structures spaces (X , dX ) and (Y , dY)
respectively. Note that in µt, the dummy node is indexed by j = m+ 1.
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We aim to obtain the transport matrix via computing the FGW distance between the
source and target,

FGWα(p, q,M ,Cs,Ct)
def.
= min

T∈T (p,q)
(1− α)⟨T ,M⟩F + α⟨L⊗ T ,T ⟩F (4.3)

To obtain the proper transportation of mass to both the query graph and the dummy
node, we have the specific settings of p, q, and M and L as follows. We assume the
nodes in the test graph have equal mass as 1/n. Thus the total mass of the subgraph
is m/n. The total mass of the query should be the same as that of the subgraph, so
each node of the query is also set with equal mass as 1/n. The remaining mass in the
test graph should be fully transported to the dummy node. To sum up, the probability
vectors p ∈ Rn and q ∈ Rm+1 are set to be

pi = 1/n for i = 1, ..., n (4.4)

qj =

{
1/n, for j = 1, ...,m
1−m/n, for j = m+ 1.

(4.5)

We allow any mass of the test graph to be transported to the dummy node ”for free”,
while the transportation cost to the query graph remains unchanged. The feature cost
matrix M ∈ Rn×(m+1) is set to be

M i,j =

{
dΩ(ai, bj), for j = 1, ...,m
0, for j = m+ 1.

(4.6)

To compute the structure tensor L = L(Cs,Ct) ∈ Rn×n×(m+1)×(m+1), the structure
cost matrices Cs ∈ Rn×n and Ct ∈ R(m+1)×(m+1) are defined within the structure space
(X , dX ) and (Y , dY) respectively. Then the computation of L is set to be

Li,i′,j,j′ =

{
L
(
Cs

i,i′ ,C
t
j,j′

)
, for j = 1, ...,m and j′ = 1, ...,m

0, for j = m+ 1 or j′ = m+ 1
(4.7)

By computing the FGW distance (4.3), we are also able to obtain an optimal transport
matrix T ∗ ∈ Rn×(m+1) that indicates how the nodes in the test graph are matched
with the query graph and dummy node. The last column of T ∗ (indexed by j = m+1)
shows which nodes are matched to the dummy node.

For this subgraph matching problem, we do not restrict the feature cost function
to be a metric dΩ, but can be assigned with a general cost function d. The structure
matrices are not restricted either. As default, we would like the cost functions d and
L to use normalized versions (as discussed in Section 3.4 and 3.5). For d, we can
possibly pick the Dirac function (3.16) or normalized square L2 norm distance (3.17).
For structure matrices, we can possibly pick the adjacency matrices or shortest-path
distance matrices as discussed below.

Structure cost matrices. Here we present two choices of structure cost matrices,
the adjacency matrix A and the shortest-path distance matrix D.

31



For the adjacency matrices As and At, the loss function L can be simply set as
square L2 norm as

L
(
As

i,i′ ,A
t
j,j′

)
= |As

i,i′ −At
j,j′ |2 (4.8)

Then the entries of L are only discrete values of either 0 or 1.

With this setting, the FGW distance will be zero if an exact induced subgraph is
successfully found in the test graph. A zero FGW distance also indicates whether an
exact matching is found. Thus we can use a zero threshold of FGW distance to decide
whether an exact induced subgraph matching is found.

The shortest-path distance matrices Ds and Dt are natural choices for FGW
distance from a theoretical point of view, but we need to adopt special loss function
L for adaptation to this subgraph matching problem. Assuming we adopt the square
L2 norm analogously, it can happen that the loss value is nonzero even if the induced
subgraph is properly found. The reason is that the shortest-path distance between the
same pair of nodes may not remain the same in the query graph as in the test graph.
A simple example is shown in Figure 4.2. The graph in blue is the induced subgraph.
The red node is outside of the subgraph but belongs to the test graph. Thus, in the
induced subgraph, the distance between node 1 and node 4 is 3, while this distance in
the test graph is 2. This difference will create a nonzero cost when we further compute
with the L function.

Figure 4.2: Issue with the shortest-path distance matrix

A remedy for this issue is to adopt the proximity and function ∆+(x, y) presented
in NeMa [23] 1. Take Ds for an example, the proximity between two node i and i′

is defined as αDs
i,i′ , where α is an real value between [0, 1]. The function ∆+(x, y) is

defined as

∆+(x, y) =

{
x− y, if x > y

0 otherwise
. (4.9)

1The shortest-path distance matrix is also adopted in SAGA [19] but without special adaptation. Thus the
cost value will not always be zero even if the exact matching is found, which is not appropriate.
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Then we define
L
(
Ds

i,i′ ,D
t
j,j′

)
= ∆+

(
αDt

j,j′ , αDs
i,i′
)
. (4.10)

Thus only the cases when Ds
i,i′ > Dt

j,j′ , the loss is non-zero. If there are additional
nodes in the test graph that act as intermediates between the two nodes, the shortest
path in the test graph can possibly be shorter. Thus we do not want this case to
contribute to the total cost.

Unfortunately, though the proposed remedy offers potential benefits, it comes at the
cost of a significant increase in computational complexity. As we will present in Section
4.3.2, the function ∆+(x, y) does not meet the conditions for adopting the computa-
tional trick. Consequently, the computational complexity will be much higher than the
adjacency matrix approach with square L2 norm, combined with the aforementioned
computational trick.

Another potential issue is that the zero FGW distance does not exactly indicate
whether an exact matching is found, though the converse side holds (if an exact match-
ing is found, the FGW distance will be zero) [23].

4.3 Optimization and computation

The FGW distance inherently involves an optimization problem. Compared with the
Wasserstein distance, it requires heavy additional computation due to the tensor-matrix
product. This section presents the optimization algorithm and techniques for compu-
tation reduction.

To begin with, the FGW objective function and its gradient are shown as follows.

Proposition 1. [43, 14] The gradient of the FGW objective function,

J (T ) = (1− α)⟨T ,M⟩F + α⟨L⊗ T ,T ⟩F , ∈ R. (4.11)

is given by
∇TJ (T ) = (1− α)M + α · 2 · (L⊗ T ) , ∈ Rn×(m+1). (4.12)

Proof of Proposition 1. The first parts of the functions are linear. The gradient of
⟨T ,M⟩F is simply the matrix M . Now we show that the second parts have the
following relationship. For the function

C(T ) = ⟨L⊗ T ,T ⟩F ∈ R, (4.13)

its gradient is
∇TC(T ) = 2 · (L⊗ T ) ∈ Rn×(m+1). (4.14)

The problem is to take the derivative of a scalar function with respect to the variable
matrix T . In the following, we take the derivative with respect to each entry T k,l to
obtain each entry of the gradient (∇TC(T ))k,l.

From definition (3.24), we expand the objective function as

C(T ) = ⟨L⊗ T ,T ⟩F =
∑
i,j

(∑
i′,j′

Li,i′,j,j′T i′,j′

)
· T i,j (4.15)
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Rewrite (4.15) as∑
i,j

(∑
i′,j′

Li,i′,j,j′T i′,j′

)
· T i,j (4.16)

=

(∑
i′,j′

Lk,i′,l,j′T i′,j′

)
· T k,l +

∑
i ̸=k,j ̸=l

(∑
i′,j′

Li,i′,j,j′T i′,j′

)
· T i,j (4.17)

Take the derivative of the first term with respect to T k,l and obtain

∑
i′,j′

Lk,i′,l,j′T i′,j′ +

(
∂

∂T k,l

∑
i′,j′

Lk,i′,l,j′T i′,j′

)
· T k,l (4.18)

= (L⊗ T )k,l +

(
∂

∂T k,l

(
Lk,k,l,l · T k,l +

∑
i′ ̸=k,j′ ̸=l

Lk,i′,l,j′T i′,j′

))
· T k,l (4.19)

= (L⊗ T )k,l +Lk,k,l,l · T k,l (4.20)

Similarly, the second term can be split into∑
i ̸=k,j ̸=l

(Li,k,j,lT k,l) · T i,j +
∑

i ̸=k,j ̸=l

( ∑
i′ ̸=k,j′ ̸=l

Li,i′,j,j′T i′,j′

)
· T i,j, (4.21)

in which the second composition is irrelevant of T k,l. Take the derivative of the first
composition,

∂

∂T k,l

∑
i ̸=k,j ̸=l

(Li,k,j,lT k,l) · T i,j =
∑

i ̸=k,j ̸=l

Li,k,j,l · T i,j (4.22)

Combine (4.20) and (4.22) we have

(∇TC(T ))k,l =(L⊗ T )k,l +Lk,k,l,l · T k,l +
∑

i ̸=k,j ̸=l

Li,k,j,l · T i,j (4.23)

= (L⊗ T )k,l +
∑
i,j

Li,k,j,l · T i,j (4.24)

= (L⊗ T )k,l +
∑
i,j

Lk,i,l,j · T i,j (4.25)

=2 · (L⊗ T )k,l (4.26)

where Li,k,j,l = Lk,i,l,j is defined by the symmetry of Cs and Ct.
Thus the gradient of C(T ) is

∇TC(T ) = 2 · (L⊗ T ) ∈ Rn×(m+1). (4.27)

Then we can conclude that the gradient of J (T ) is

∇TJ (T ) = (1− α)M + α · 2 · (L⊗ T ) ∈ Rn×(m+1). (4.28)
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With the implementation of the FGW objective function and its gradient, multiple
optimization methods can be adopted. Here we present the prevalent Frank-Wolfe
algorithm [14, 9, 22, 12, 53].

4.3.1 Frank-Wolfe algorithm

Frank-Wolfe method is also called conditional gradient descent algorithm, which is a
projection-free method for constrained optimization problem [54, 55]. The objective
function is not required to be convex, but it should be ”smooth” enough (i.e., differen-
tiable with L-Lipschitz gradient). The feasible set is however needed to be convex and
compact. It relies on solving a so-called linear minimization oracle (See (4.31) below).
The steps in our problem are summarized as follows. The algorithm is presented in
Algorithm 1.

At each iteration k, consider the first-order Taylor approximation of J (T ) at T (k),

J (T ) ≈J
(
T (k)

)
+ tr

(
∇J

(
T (k)

)T
·
(
T − T (k)

))
(4.29)

=J
(
T (k)

)
+
〈
∇J

(
T (k)

)
,
(
T − T (k)

)〉
F
. (4.30)

To minimize J (T ) within the feasible set T (p, q), it is only required to minimize

the linear part
〈
∇J

(
T (k)

)
,T
〉
F
. We then obtain a new point T̂

(k)
by solving this

minimization problem,

T̂
(k)
∈ argmin

T∈T (p,q)

〈
∇J

(
T (k)

)
,T
〉
F
. (4.31)

The linear minimization oracle shares the same structure as the EMD problem (or

Wasserstein distance). The notation ∈ is used since the T̂
(k)

obtained is not always
unique, which can be learned from the property of Wasserstein distance in Section 3.2.2.
Then the descent direction is defined as

d(k) = T̂
(k)
− T (k). (4.32)

T (k) is updated with d(k) and a step size γ(k) ∈ [0, 1] as

T (k+1) = T (k) + γ(k)d(k) (4.33)

= (1− γ(k))T (k) + γ(k)T̂
(k)

(4.34)

where γ(k) is usually found by Armijo backtracking line search,

γ(k) = argmin
γ∈[0,1]

J
(
(1− γ(k))T (k) + γ(k)T̂

(k)
)
. (4.35)

or can also be set as γ(k) = 2
k+2

[55].

From (4.34) we know that T (k+1) is a convex combination of T (k) and T̂
(k)
. Since

the feasible set is required to be convex, if the initial T (0) is set to be feasible, T (k) will
be feasible in every step. The algorithm stops when the difference between the current
objective value and that of the previous iteration falls below a certain tolerance ∆, or
when the total number of iterations reaches the maximum N .
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Algorithm 1: Frank-Wolfe Algorithm

Input: p, q, J (T ), ∇J (T ), Tolerance ∆, MaxIter N
Output: T ∗

1 Initialization: T 0 = pqT , n = 0;
2 while δ < ∆ and n < N do

3 T̂
(k) ∈ argmin

T∈T (p,q)

〈
∇J

(
T (k)

)
,T
〉
F
; /* Linear minimization oracle */

4 d(k) = T̂
(k) − T (k);

5 γ(k) = argmin
γ∈[0,1]

J
(
T (k) + γd(k)

)
; /* Set step size γ(k) by linesearch */

6 T (k+1) = T (k) + γ(k)d(k);

7 δ =
∣∣∣J (T (k+1)

)
− J

(
T (k)

)∣∣∣;
8 n = n+ 1;

9 end

10 T ∗ = T (k);

4.3.2 Peyré’s trick

Note that it is expensive to compute the tensor-matrix product (L⊗ T ) directly by
definition (3.24),

(L⊗ T )i,j
def.
=
∑
i′,j′

Li,i′,j,j′T i′,j′ . (4.36)

In our case, it requires O(n2(m + 1)2) = O (n2m2) operations. The computation can
be reduced by modifying the trick introduced by Peyré et al [43]. Based on this, the
computation is reduced from O (n2m2) to O (n2m+m2n), where m is often much
smaller than n. In the following sections, we first show the Peyré’s trick, and then
introduce how to modify it into our subgraph matching algorithm.

Peyré et al [43] proposed a computational method for computing L ⊗ T , subject to
specific conditions on the loss function L.

Proposition 2 (Peyré’s trick). [43, Proposition 1] If the loss between the source graph
Gs and target graph Gt can be written as

L(a, b) = f1(a) + f2(b)− h1(a)h2(b) (4.37)

for functions (f1, f2, h1, h2), then for any transport matrix T ∈ T (p, q),

L(Cs,Ct)⊗ T = cCs,Ct − h1(C
s)Th2(C

t)⊤. (4.38)

where

cCs,Ct
def.
= f1(C

s)p1⊤
m+1 + 1nq

⊤f2(C
t)⊤ (4.39)

is independent of T .
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Special cases. The square L2 loss L(a, b) def.
= |a − b|2 satisfies (4.37) for f1(a) =

a2, f2(b) = b2, h1(a) = a and h2(b) = 2b. The KL loss L(a, b) = KL(a|b) def.
=

a log(a/b) − a + b satisfies (4.37) for f1(a) = a log(a) − a, f2(b) = b, h1(a) = a and
h2(b) = log(b).

Proof of Proposition 2. We continue with the dimensions L ∈ Rn×n×(m+1)×(m+1) and
T ∈ Rn×(m+1).

To substitute p = T1m+1 and q = T⊤1n into the calculation of tensor-matrix
product,

L⊗ T = f1(C
s)p1⊤

m+1 + 1nq
⊤f2(C

t)⊤ − h1(C
s)Th2(C

t)⊤ (4.40)

= f1(C
s)T1m+11

⊤
m+1 + 1n(T

⊤1n)
⊤f2(C

t)⊤ − h1(C
s)Th2(C

t)⊤ (4.41)

Then for each entry,

(L⊗ T )i,j =
∑
i′,j′

[
f1(C

s
i,i′)T i′,j′(1m+11

⊤
m+1)j′,j + (1n1n)i,i′T i′,j′f2(C

t
j′,j)− h1(C

s
i,i′)T i′,j′h2(C

t
j′,j)
]

(4.42)

=
∑
i′,j′

[
f1(C

s
i,i′) + f2(C

t
j′,j)− h1(C

s
i,i′)h2(C

t
j′,j)
]
T i′,j′ (4.43)

If the loss can be written as

L(a, b) = f1(a) + f2(b)− h1(a)h2(b), (4.44)

we can continue equation (4.43) as

(L⊗ T )i,j =
∑
i′,j′

L(Cs
i,i′ ,C

t
j′,j)T i′,j′ =

∑
i′,j′

Li,i′,j,j′T i′,j′ (4.45)

Thus the computation method is valid since it is equivalent to the definition of the
tensor-matrix product.

Peyré’s trick in subgraph matching. We are unable to use Proposition 2 directly
for our subgraph matching problem since our loss function (4.7) can not be written in
form (4.37). However, note that if we first leave out the dummy node, the loss function
related to the query nodes indeed satisfies this requirement. Let us define

L̃ = L(Cs,Cq) ∈ Rn×n×m×m, (4.46)

where Cs ∈ Rn×n is the structure cost matrix of the source graph, and Cq ∈ Rm×m is
the structure cost matrix of the query graph. Then the original tensor L = L(Cs,Cq) ∈
Rn×n×(m+1)×(m+1) can be obtained by adding zero elements to L̃ in the dimensions of
j = m+1 and j′ = m+1. Further, the following proposition shows that we can directly
implement the idea with subsequent computation of the tensor-matrix product, without
directly modifying the tensor L̃.
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Proposition 3 (Tensor-matrix product with isolation of the dummy node). The tensor

matrix product L ⊗ T ∈ Rn×(m+1) can be obtained by L̃ ⊗ T̃ ∈ Rn×m by add a zero-
column at the end of the matrix as

(L⊗ T )i,j =

{ (
L̃⊗ T̃

)
i,j
, for j = 1, ...,m

0, for j = m+ 1
(4.47)

where T̃ ∈ Rn×m is defined with the transport matrix T without the last column.

Figure 4.3 shows the relationship between the matrices with and without isolation
of the dummy node.

Figure 4.3: New matrices and original ones.

Proof of Proposition 3. The intuitive idea is the following. Since Li,i′,j,j′ will be zero if
j = m + 1 or j′ = m + 1, by definition, all the entries in the last column of L ⊗ T ∈
Rn×(m+1) will also be zeros. Specific details are as follows.

The last column of this tensor-product matrix (when j = m + 1) can be directly
computed as

(L⊗ T )i,j=m+1 =
∑
i′,j′

Li,i′,j=m+1,j′T i′,j′ = 0 (4.48)
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The first m columns (when j = 1, ...,m) can be computed as follows

(L⊗ T )i,j =
∑

i′,j′=1,...,m+1

Li,i′,j,j′T i′,j′

=
∑

i′,j′=1,...,m

Li,i′,j,j′T i′,j′ +Li,i′,j,j′=m+1T i′,j′=m+1

=
∑

i′,j′=1,...,m

Li,i′,j,j′T i′,j′

=
∑

i′,j′=1,...,m

L̃i,i′,j,j′T̃ i′,j′

=
(
L̃⊗ T̃

)
i,j

(4.49)

where Li,i′,j,j′ = L(Cs
i,i′ ,C

t
j,j′) and L̃i,i′,j,j′ = L(Cs

i,i′ ,C
q
j,j′) are equal when j = 1, ...,m

and j′ = 1, ...,m.

Modification of Peyré’s trick. Another issue appears subgraph matching with
Peyré’s trick comes down to matrix T̃ ∈ Rn×m since it is an ”incomplete” matrix
compared with T . From the definition in (4.4) let us define q̃j = 1/n for j = 1, ...,m.

From the definition of matrix T̃ we know that its column marginal is T̃
⊤
1n = q̃, while

its row marginal is T̃1m varies along the optimization process and longer equal to p.
Thus the matrix T̃ does not belong to the feasible set T (p, q̃).

Nevertheless, the transportation from the source graph to the query graph can be
viewed as a special case partial optimal transport problem [14]. That is, only a partial
part of the total mass is transported to the query graph. We can adopt the method
presented in [14] to modify the current trick as below.

Proposition 4 (Peyré’s trick for subgraph matching). [14, 56] If the loss between the
source graph Gs and the query graph Gq can be written as

L(a, b) = f1(a) + f2(b)− h1(a)h2(b) (4.50)

for functions (f1, f2, h1, h2), then for any transport matrix T ∈ T (p, q), define a partial

transport T̃ ∈ Rn×m by leaving out the last column of T ,

L(Cs,Cq)⊗ T̃ = f1(C
s)T̃1m1

⊤
m + 1n(T̃

⊤
1n)

⊤f2(C
q)⊤ − h1(C

s)T̃h2(C
q)⊤. (4.51)

Compared with Proposition 2, matrix Ct is substituted by Cq, and T is substituted
by T̃ . Since the marginal T̃1m is no longer p and varies during the optimization process,

the positions of marginals p and q are replaced by T̃1m and T̃
⊤
ln respectively.

Proof of Proposition 4. The proof follows a similar approach to that of Proposition 2,
with substitutions of the relevant matrices and vectors. Starting from step (4.41) with
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the substitutions and proceeding with the subsequent steps, we can derive the desired
results as (

L̃⊗ T̃
)
i,j

=
∑
i′,j′

L(Cs
i,i′ ,C

q
j′,j)T i′,j′ =

∑
i′,j′

L̃i,i′,j,j′T̃ i′,j′ (4.52)

Complexity. By Proposition 3 and 4, the number of operations required is reduced to
O (n2m+m2n). Algorithm 2 shows the process of using these propositions to calculate
the objective function and its gradient. The cost matrix Cq ∈ Rm×m is obtained from
Ct beforehand. At each iteration during the optimization progress, T̃ is obtained by
deleting the last column of T . With Proposition 4 we are able to compute L̃ ⊗ T̃ .
We then add a zero column to obtain L ⊗ T . Finally, we substitute L ⊗ T into the
objective function and its gradient to finish the computation of these two functions.

Algorithm 2: Objective function J (T ) and its gradient ∇J (T )

Input: α,M ,Cs, Ct, T
Output: J (T ), ∇J (T )

1 Cq ← Ct without the last row and last column;

2 T̃ ← T without the last column;

3 Compute
(
L̃ ⊗ T̃

)
with Proposition 4;

4 (L⊗ T ) =
[(

L̃ ⊗ T̃
)
,0n

]
; /* Add a zero column to

(
L̃ ⊗ T̃

)
*/

5 J (T ) = (1− α)⟨T ,M⟩F + α⟨L⊗ T ,T ⟩F ;
6 ∇J (T ) = (1− α)M + α · 2 · (L⊗ T );

4.4 Normalized FGW distance

From the original definition of FGW distance, the distance would be between [0, 1] as
long as the outcomes of loss functions d and L are set to be within [0, 1]. However, due
to the existence of zero elements in matrix M (4.6) and tensor L (4.7), there is always
a part of the loss that automatically ”vanish”. From the idea shown in Figure 4.1 we
know that only a fraction of m/n of mass contributes to the total cost. Therefore the
maximum value of the FGW distance is no longer 1, but a value varying with sizes n and
m. The minimum distance remains the same as 0. This creates difficulty in evaluating
the distances between different sizes of graphs. Here we propose the normalized version
of FGW distance for our formulation of this subgraph matching problem.

Definition 5 (Normalized FGW distance for subgraph matching). Suppose we have a
test graph of size n and a query graph of size m, with n ≥ m. When the total cost is
summarized only over the query graph, the normalized Wasserstein (nW), GW (nGW)
and FGW (nFGW) distances are defined as

nW(p, q,M ) = min
T∈T (p,q)

⟨T ,M⟩F/
m

n
(4.53)
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nGW(p, q,Cs,Ct) = min
T∈T (p,q)

⟨L⊗ T ,T ⟩F/
m2

n2
(4.54)

nFGWα(p, q,M ,Cs,Ct) = min
T∈T (p,q)

(1− α)⟨T ,M⟩F/
m

n
+ α⟨L⊗ T ,T ⟩F/

m2

n2
(4.55)

where all the relevant arguments p ∈ Rn, q ∈ Rm+1, T ∈ Rn×(m+1), M ∈ Rn×(m+1),
and L ∈ Rn×n×(m+1)×(m+1), are defined in (4.4)-(4.7).

Proposition 5. nW distance, nGW distance, and nFGW distance are all valued be-
tween [0, 1], as long as α is chosen within [0, 1].

Proof of Proposition 5. The intuitive ideas are as follows. Since the dummy node has
no contribution to the total cost, we only need to work with dimensions n and m.
Intuitively, only a fraction of m/n nodes contribute to the feature cost and a fraction
of m2/n2 edges contribute to the structure cost. By dividing the original distances by
these two scalars, we are able to obtain the ”cost per node” and ”cost per edge”. It
can be shown that the maximum of the original Wasserstein distance is m/n, and the
maximum of the original GW distance is m2/n2.

More specifically, in the extreme case we have a query that is ”totally different” from
the subgraph being matched. Then M is an all-one matrix except the last column,
and L is an all-one tensor except when j = m+1 or j′ = m+1. The total feature cost
is summed up by all m query nodes, with each weighted by 1/n,∑

i=1,...,n
j=1,...,m+1

M i,jT i,j =
∑

i=1,...,n
j=1,...,m

T i,j =
∑

j=1,...,m

qj =
m

n
(4.56)

Similarly, the total structure cost is summed up by all m2 pairs of query nodes, with
each weighted by 1/n2,∑

i,i′=1,...,n
j,j′=1,...,m+1

Li,i′,j,j′T i,jT i′,j′ =
∑

i,i′=1,...,n
j,j′=1,...,m

T i,jT i′,j′

=
∑

i=1,...,n
j=1,...,m

(T i,j

∑
i′=1,...,n
j′=1,...,m

T i′,j′) =
m

n

∑
i=1,...,n
j=1,...,m

T i,j =
m2

n2

(4.57)

This nFGW distance is specifically for this subgraph matching problem and has the
following benefits. To start with, since the two compositions are both within [0, 1], if we
set α = 0.5, it means that we assign equal weights to the feature cost and structure cost.
Besides, we ensure a fair similarity comparison across different nFGW distances with
varying α, given that the distance values are constrained to the range [0, 1]. Further, it
sets a fair similarity comparison across different sizes of the test graph and the query
graph. This standardization helps us directly evaluate the similarity between the query
graph and the found subgraph, and facilitates the search for ε-suboptimal matching.

Compared with the original FGW distance (4.3), the scaling m/n and m2/n2 can
be absorbed in the cost tensor L and matrix M . In this way, the normalized FGW
distance can still be a special case of FGW distance.
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4.5 Sliding window and Wasserstein pruning

In practice, the use of FGW distance is limited by larger graph sizes. Firstly, the
computational complexity of the tensor-matrix product scales polynomially with the
size of the test graph, following an order of O(n2m+m2n), where n is the size of the test
graph and m is the size of the query graph. Secondly, a larger graph typically contains
more local minima, which causes the algorithm to become more susceptible and easily
get trapped into one of the suboptimal solutions [57]. Given that in subgraph matching
tasks the query graph is usually much smaller than the test graph, we can use this size
discrepancy strategically to mitigate two negative effects.

We introduce two additional components, sliding window and Wasserstein pruning.
Instead of directly comparing the query graph with the test graph, we iteratively com-
pare the query graph with different subgraphs of the test graph. The subgraphs are
built to ensure that at least one of all the subgraphs contains the optimal matching.
The dummy node strategy is still adopted for the comparison with subgraphs. In each
iteration, before calculating the nFGW distance, we first calculate the nW distance and
use a feature cost threshold to filter out the subgraphs that do not meet the feature
requirement.

Built on the SOT method, the new framework with these two additional components
significantly improves the performance on sparse graphs, in terms of matching accuracy
and query time. We refer to this new framework as the Sliding Subgraph Optimal
Transport (SSOT). Ideally, the time complexity scales linearly in the test graph size n.
We present the two components in detail in the following subsections.

4.5.1 Sliding window

The sliding window framework is shown in Figure 4.4 and Algorithm 3. We first define
a center node of the query graph of size m. For each node vi ∈ Vq, i = 1, ...,m,
we calculate the shortest path distances to every node in the graph (including node vi
itself), denoted as d(vi, vj), j = 1, ...,m. Then for each node vi, we set li = maxj d(vi, vj)
as the ”maximum distance” of this node. The node with the smallest ”maximum
distance” is defined as the center node. Its corresponding li value is h, given by

h = min
i
{max

j
d(vi, vj)}. (4.58)

Then the other nodes in the query graph have a maximum length of h from this center.
We iteratively pick every node in the test graph to be the center node. Around this

center node, its h-hop neighborhood is created as a sliding subgraph of size ns. The
intention behind the definition (4.58) of h is to ensure that at least one of the sliding
subgraphs ”includes” the optimal matching of the query graph. At the same time, the
size of this sliding subgraph is kept as small as possible. Ultimately, we build n sliding
subgraphs to be compared with the query graph. In each iteration, we directly skip the
cases that the sliding subgraph does not have enough nodes to include a matching of the
query graph. When the sliding subgraph contains more nodes of the query graph, we
add a dummy node to the query graph, and compute the nFGW distance as introduced
in Section 4.2.
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In the final step, we select the minimum nFGW distance computed between the
query graph and the n sliding subgraphs to obtain final matching. We are also able to
heuristically find the top-k subgraphs by ordering all the nFGW distances. The top-k
results are not always guaranteed since it can happen that two highly similar subgraphs
are within the same sliding subgraph.

Figure 4.4: Sliding Subgraph Optimal Transport (SSOT) - sliding window: In each
iteration, we compare the query graph with a sliding subgraph of size ns. The subgraph (in
red) should be matched to the query graph. The irrelevant part (in blue) should be matched
to the dummy node.

4.5.2 Wasserstein pruning

The Wasserstein pruning is shown within the Algorithm 3. Before computing the
nFGW distance between the query graph and each sliding subgraph, we compute the
nW distance between them. If the nW distance is above the feature cost threshold
TW , then this sliding subgraph is discarded and does not continue with the nFGW
distance computation. This helps us filter out the sliding subgraph that does not meet
the feature requirement in the first place. Thus it reduces the number of candidates
in for nFGW distance and thus increases the chance of finding the optimal solution.
Additionally, nW distance is a linear program, so the results of this feature filtering are
always guaranteed. Moreover, it reduces the computational cost for richly-attributed
graphs, since it reduces the chance of computing nFGW distance, which is more com-
putationally expensive than nW distance. For exact matching, the threshold TW is
often set to a value close to zero. For noisy datasets and inexact matching, a positive
threshold value ranging within [0, 1] is determined based on specific requirements. The
setting TW = 1 essentially means there is no Wasserstein pruning.
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Algorithm 3: Sliding window and Wasserstein pruning

Input: Gs = (Vs, Es), Gq = (Vq, Eq), k
Output: T ∗

1 for node vi in Vq do
2 Compute li = maxj d(vi, vj) as the ”maximum distance”;
3 end
4 Define h = mini{li} as the shortest ”maximum distance” among all li;
5 for node in Vs do
6 Define Gsub = (Vsub, Esub) as the h-hop neighborhood of node;

7 if |Vsub| < |Vq| then
8 continue
9 end

10 Add a dummy node to Gq and become Gt;
11 if nW(Gsub,Gt) > TW then
12 continue
13 end

14 Compute nFGWα(Gsub,Gt) using Algorithm 1 and Algorithm 2;

15 end
16 Return the top-k minimum nFGW distance and T ∗.

4.5.3 Complexity

The time complexity of our algorithm is closely tied to the test graph size n and its
density. Specifically, for sparse graphs, the algorithm SSOT scales linearly at a low
rate with the test graph size n. To obtain this result, we present the following steps.
Before entering the sliding window loop, we need to first determine the parameter h
within the query graph of size m. By using Dijkstra’s algorithm, it requires a time
complexity of O(m(m log(m) + |Eq|)).

Within the sliding window framework, let us define D to be the maximum node
degree of the test graph. In each sliding iteration, searching for the h-hop neigh-
borhood sliding subgraph requires time and space complexity of O(Dh). The size of a
sliding subgraph is also ns = O(Dh). Suppose we have the threshold for Wasserstein
pruning as TW = 1, then in each iteration, both the nW distance and nFGW distance
are computed. The computation of nW and nFGW distances depends on the query
graph size m, and the sliding subgraph size ns = O(Dh). Let K(ns,m) describe the
number of operations for solving the nFGW problem between a sliding subgraph of
size ns and a query graph of size m. Since the nW distance does not need to compute
the tensor-matrix product and requires less complexity, the total time complexity to
compute both distances is also K(ns,m).

To sum up all iterations, the overall time complexity is

O
(
m(m log(m) + |Eq|) + n · (Dh +K(Dh,m))

)
.

This complexity goes linearly with size n. For a query graph of small size m and small
h, and a sparse test graph with a small maximum node degree of D, the complexity
increases at a slow rate.
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To trace back, the complexity of SOT requires a time complexity of O(K(n,m)),
depending on the test graph size n and query graph size m. Since the tensor-matrix
product with nFGW distance demands O(n2m + nm2), the total complexity will at
least go quadratically with n, no matter what the density of the test graph is.

Additionally, for richly-attributed test graphs, the nFGW distance is computed
only when the sliding subgraph satisfies the feature requirement set by the Wasserstein
pruning. Therefore, we only need to compute the nFGW distance for a few iterations,
which will further reduce the computational complexity.

4.6 Related work: partial optimal transport

The partial optimal transport problem considers a case when only a fraction of the
mass is transported to the graph [14]. The objective function has the same formulation
as the Wasserstein distance, the GW distance, or the FGW distance. However, the
constraints for the transport matrix T is different,

T (p, q) =
{
T ∈ Rn×m

+ | T1m ≤ p,T⊤1n ≤ q,1⊤
nT1m = s

}
, (4.59)

with a predefined fraction 0 ≤ s ≤ min(∥p∥1, ∥q∥1). For our subgraph matching
problem, the transportation from the source graph to the query graph can be viewed
as a special case of this partial optimal transport problem. That is, only a partial part
of the total mass is transported to the query graph. The difference is that we have
a fixed requirement of the column sums of the partial transport matrix T̃ defined in
Proposition 3. The constraints for the subgraph matching problem are

T̃ (p, q) =
{
T̃ ∈ Rn×m

+ | T̃1m ≤ p, T̃
⊤
1n = q̃,1⊤

n T̃1m = s
}

(4.60)

For our subgraph matching problem, pi = 1/n for i = 1, ..., n, q̃j = 1/n for j = 1, ...,m
and s = m/n.

Similar to what has been discussed in Section 2.2.3, the partial optimal transport
problem can be solved directly with the feasible set T (p, q), or be solved by adding
dummy nodes to remove the inequalities in the constraints. The study [14] on partial
optimal transport used the dummy node method to compute the partial-Wasserstein
distance by expending the cost matrix M with some positive or nul scalar ξ. How-
ever, the settings of their formulation do not allow them to use the same trick for
expending the structure cost matrices Cs and Cq for partial-GW distance. Thus they
solved partial-GW distance directly using the feasible set (4.59) by Frank-Wolfe al-
gorithm. Within this algorithm, the linear minimization oracle is formulated as a
partial-Wasserstein distance which is solved by adding dummy nodes.

Compared with the settings in our methods, the ”trick” that the work on partial
optimal transport [14] did not adopt is setting all the costs involved with the dummy
node to zero, for both feature and structure parts. Based on what we discussed so far,
our problem can still be properly solved by adding a dummy node by allocating zero
costs to it. By adopting Propositions 3 and 4, we are also able to conduct computation
reduction. The practice of assigning zero costs to the dummy node is also adopted in
[12, 15].
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Experiments 5
5.1 Introduction

This chapter details all the experiments conducted with the frameworks SOT and SSOT.
In response to the questions we raised in Section 1.1, we begin with multiple real-world
examples of chemical compounds and biomedical pathways in Section 5.3. Afterward,
in Sections 5.5 and 5.6, we conduct the performance evaluations with synthetic datasets
and real-world datasets. We investigate the performance of our algorithms on exact
matching, approximate matching, and inexact matching. We also compare the perfor-
mance of methods with existing works NeMa [23] and G-Finder [24].

For exact and approximate matching, we assume the datasets are clean and com-
plete, with the ultimate goal of finding the exact matching. While the optimal solution
is not guaranteed, we are also interested in whether the algorithms are able to find a
satisfying ε-suboptimal solution. In Section 5.5, We use the Erdős–Rényi random graph
model to evaluate the effects of different parameters of graphs, including the trade-off
parameter, number of distinct feature values, sizes of test graph and query graph, and
average node degree of the test graph. In Section 5.6, we use real-world datasets to
evaluate the performance of different methods.

For inexact matching, there is no standard way for evaluation, since the problem
is more application-specific. One may want to find a pattern more similar in terms
of feature, or in terms of structure. The evaluation of the performance can also be
highly customized by adopting various graph similarity measures. Based on these
facts, we only consider the following settings for evaluation in Section 5.6. We conduct
the inexact matching in noisy environments (in which some node feature values are
in a noisy version) and assume that we know the ground truth of exact subgraph
matching from the clean environment. We aim to investigate if the method can still
find the original exact matching in noisy environments. In other words, we evaluate
the robustness of the methods against noise.

5.2 Algorithmic settings

The Frank-Wolfe algorithm (Algorithm 1) is implemented with the Python Optimal
Transport (POT) toolbox [48]. Within this toolbox, the linear minimization oracle
(4.31) is solved by the well-developed EMD solver [58]. In our experiments, we primarily
employ line search to find the step size γ(k). However, in rare cases where the line search
default in POT fails to return an optimal γ(k), we default to γ(k) = 0.99, aligning with
the initial step size set in the POT toolbox.
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5.3 Practical examples

This section shows examples of subgraph matching in chemical compounds and biolog-
ical pathways. We illustrate the potential contributions of our algorithms to chemical
and biomedical fields. We mainly focus on the frequent subgraph matching prob-
lem. Without a prior information, we assume the datasets are clean and complete.
For simplicity, the experiments in this subsection are mainly conducted with the SOT
framework unless specially indicated. The trade-off parameter α in nFGW distance is
set to 0.5 as default.

5.3.1 Chemical Compound

In this section, we use the BZR dataset [1]. The dataset consists of 405 graphs of chem-
ical compounds, with the average number of nodes as 35.75, and an average number of
edges as 38.36. Each graph is endowed with a category label of ”-1” or ”1”. The node
feature values are 3-dimensional real-valued vectors. Features are assigned with real-
valued vectors and the feature cost function is set to be the square L2 norm distance.
We are interested in detecting underlying common patterns among the graphs in this
dataset. The query graph is constructed by taking out the induced subgraph form by
the first six nodes of the first graph (with index 0 and label ”-1”) in the dataset (shown
in Figure 5.1). We then use this query graph to query all the graphs in the dataset.

(a) The first graph in the BZR dataset (b) Query graph

Figure 5.1: BZR dataset: The first graph with label ”-1” in the dataset (with index 0) and
the query graph we obtain from this graph.

The experimental results inform that the exact matching only exists in the first
graph (just the original graph we use to form the query graph) in the dataset. Nev-
ertheless, we are able to obtain ε-suboptimal subgraph within other graphs. With
ε =1e-03, we can find 9 graphs with label ”-1” that contain a ε-suboptimal subgraph,
while none of the graphs with label ”1” contains such a subgraph. For the 9 graphs
being found with a suboptimal subgraph, we have their nFGW distances with the query
graph as follows

8.015e-13, 6.710e-4, 1.881e-4,
9.026e-4, 4.206e-4, 7.964e-5,
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6.135e-4, 5.798e-4, 9.752e-4,

in which the first value 8.015e-13 belongs to the case when the exact matching is found
in the frst graph (with index 0).

5.3.2 Biomedical pathways

With the same idea, biomedical diseases in the same category may share similar char-
acteristics. By analyzing biomedical pathways with small signaling pathway structures,
we are able to learn about similar evolution processes involved in different diseases. We
present two categories of biomedical diseases, neurodegenerative disease and cancers.

We use the biological data from Kyoto Encyclopedia of Genes and Genome (KEGG)
database [59]. The implementation is built on Python API KEGGutils [60]. This API
converts the information of a pathway in KEGG into a graph in NetworkX format.
The feature cost function is set as the Dirac function.

Parkinson and Alzheimer. To explore the similarities between Parkinson disease and
Alzheimer disease, we query the unfolded protein response (UPR) signaling pathway
(as shown in Figure 5.2) in both pathways. Parkinson disease yields with an exact
matching, while Alzheimer disease can be found with a suboptimal matching. The
matching results are shown in Figure 5.3, with circled red dashed lines indicating the
matched subgraphs. The subgraph indicated in Figure 5.3a is exactly the UPR signaling
pathway.

(a)

Figure 5.2: Unfolded protein response (UPR) signaling pathway

Cancers. The Ras-Raf-MEK-ERK signaling pathway (also known as MAPK/ERK
pathway) is a fundamental signal pathway that exists in many disease pathways, es-
pecially cancers. The activation of the ERK pathway has been shown to increase the
expression of HER2 in breast cancer cells, leading to increased signaling through the
ERBB pathway and promoting cancer cell growth and survival.

We use the ERK pathway as the query graph to query the breast cancer pathway.
With the SSOT framework and top-3 subgraph matching, three Ras-Raf-MEK-ERK
pathways are able to be found in the breast cancer pathway. The matching results are
shown in Figure 5.4, with circled red dashed lines indicating the subgraphs.
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(a) Parkinson (b) Alzheimer

Figure 5.3: Neurodegenerative disease pathways with their found subgraphs.

Figure 5.4: Breast cancer pathway with ERK signaling pathways.
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5.4 Parameters of interests

In the remaining sections of this chapter, we aim to evaluate our algorithms on both
synthetic datasets and real-world datasets. The following parameters may affect the
performance of our methods:

• size of query graph m

• size of test graph n

• average node degree of the query graph dQ

• average node degree of the test graph dT

• number of distinct node feature values NF

• trade-off parameter α in nFGW distance

• feature cost threshold TW for Wasserstein pruning

5.5 Synthetic datasets

In this section, we create synthetic datasets to evaluate our own subgraph matching
methods for exact matching and approximate matching. We aim to investigate how
the parameters listed above affect the performance of the algorithms, in terms of query
time and accuracy.

5.5.1 Dataset introduction

The synthetic dataset is created with Erdős–Rényi random graph model without self-
loops. An (N, p) graph refers to a random graph of N nodes, and each pair of nodes is
connected with probability p. The synthetic dataset consists of 1000 pairs of randomly
created test and query graphs. In order to conduct exact matching, we ensure that there
is at least one exact induced subgraph matching in the test graph. When building the
graphs, we first create the query graph of sizem, in which each pair of nodes is randomly
connected with probability pQ. Then the test graph is built by adding additional n−m
nodes to the periphery of this query graph. Each pair of nodes is randomly connected
with probability pT . To ensure the query graph is an induced subgraph, there are no
additional edges between the m subgraph within the test graph compared with the
original query graph.

In the following experiments, we want to evaluate the performance on different
average node degrees dQ and dT , instead of the edge probability pQ and pT . The

average node degree for a random graph (N, p) is d = 2·#edges
N

= (N − 1)p. If we
want to investigate different sizes of graphs of the same degree d, the edge connection
probability is set to be p = d/(N − 1).
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5.5.2 Baseline

In the following, unless otherwise specified, graph parameters are set as default without
further declaration: n = 45, m = 5, NF = 4, dQ = 2, dT = 10. The node features are
discrete-valued. The feature cost function is set as the Dirac function. The structure
cost matrices Cs and Ct are assigned with adjacency matrices. The trade-off parameter
is set as α = 0.5 in nFGW distance to set equal importance for feature cost and structure
cost.

5.5.3 Performance measures

The following measures are evaluated:

1. mean and 95% confidence interval of the nFGW distances

2. success rates of finding an exact matching; success rates that the objective values
are zero; success rates of finding an ε-suboptimal matching

3. time of query (in seconds)

5.5.4 Parameter settings

The zero thresholds are set as 1×10−9 in practice, aligning with the stopping Tolerance
∆ = 1× 10−9 in Frank-Wolfe algorithm (Algorithm 1).

In the SSOT framework, to obtain the exact matching, we first prune the graph
features with zero Wasserstein distance, by setting TW = 1× 10−9. The zero threshold
for nFGW distance is also set as ε = 1 × 10−9. The actual exact matching rate is
calculated by checking the found optimal transport matrix for each pair of query and
test graphs. For inexact matching, we set ε = 0.05 to decide if an 0.05-suboptimal
matching is found.

The mean and confidence interval are calculated by 1000 nFGW distances. The
confidence level is calculated by the Bootstrap method.

5.5.5 Trade-off parameter α

The performance versus the trade-off parameter α is shown in Figure 5.5 and Figure
5.6. The trade-off is varied with α ∈ {0, 0.1, ...1.0} in the experiments. In practice,
the choice of α may largely depend on the goals of the applications. For a (sub)graph
matching problem, it can be obtained via experiments on a ”training dataset” [39], or
by empirical experiments [23].

From Figures (b) we can learn that the nW (α = 0) or the nGW distance (α = 1)
itself is not able to find the subgraph. When α is neither 0 nor 1, the choice of α does
not affect the success rate of exact matching. Nevertheless, from the nFGW distances
in Figures (a) and the ”nFGWD < 0.05” suboptimal lines in Figures (b), we can still
see the effect of α on both frameworks. The worse performance happens when α is
set to be approximately 0.6 ∼ 0.9, among which the objective values are relatively
high, and the 0.05-suboptimal success rates are relatively low. When α is a small value
around 0.1 ∼ 0.5, more suboptimal solutions can be found. The performance reaches
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the worst when α is around 0.9. Since when α is large, we put more emphasis on
the nonconvex structure part, the algorithm can easily get trapped in a ”bad” local
minimum of relatively large value. We can also notice that larger α results in more
fluctuations in the objective values. On the contrary, when α is small, we put more
emphasis on the linear feature part, and then a ”good” local minimum of relatively
small value can be easily found.

Additionally, during the range of α ∈ {0.1, ...0.9}, the black line of exact matching
matches exactly with the red line of ”nFGWD < 1e-09”. This shows that for this
synthetic dataset, the zero threshold for the nFGW distance is indeed a good indication
of exact matching.

In terms of time, there is no big difference when α is neither 0 nor 1. When α = 0,
it takes the least time; when α = 1, it takes the longest time. Compared with the SOT
framework, the SSOT framework achieves lower objective values, higher success rates,
and also longer query time in all experiments.

(a) (b) (c)

Figure 5.5: Objective values, success rates, and query times versus trade-off parameter with
SOT.

(a) (b) (c)

Figure 5.6: Objective values, success rates, and query times versus trade-off parameter with
SSOT.
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5.5.6 Number of distinct feature values

We compare the performance for NF ∈ {2, 4, ..., 38, 40}. Results are shown in Figure
5.7 and Figure 5.8.

For both frameworks, the success rates first decrease and then gradually increase.
The objective values have the corresponding reversed evolution. When the number of
features is very small (smaller than the size of the query graph), there exist more exact
matches and ε-suboptimal matches in the test graph, so the success rate is relatively
high. When there are slightly more distinct features (around the size of the query
graph), the number of optimal solutions becomes less. Afterwards, when there are much
more distinct features (much larger than the query size), the nodes in the test graph
become more distinct and create fewer local minima. In extreme cases, the query graph
can be detected in the test graph only with feature information and without structure
information. The time gradually decreases when there are more distinct feature values.
Thus increasing the variety of features helps accelerate the optimization process.

(a) (b) (c)

Figure 5.7: Objective values, success rates, and query times versus number of features with
SOT.

(a) (b) (c)

Figure 5.8: Objective values, success rates, and query times versus number of features with
SSOT.
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5.5.7 Sizes

We research how the sizes of test graph n and query graph m will affect the per-
formance. For each m, we consider n ∈ {15, 20, 25, 35, 45, 55, 65, 75, 85, 95}. The
experiments are repeated with m ∈ {5, 6, 8, 10, 12}. For each pair of n and m, we set
pT = dT/(n − 1) and pQ = dQ/(m − 1) to construct the graphs. Results are shown in
Figure 5.9 and Figure 5.10.

For the SOT results in Figure 5.9, one may first notice the appearance of ”tops” in
Figure 5.9a, and ”bottoms” (in dashed lines) in Figure 5.9c. The ”top” and ”bottom”
of the line m = 5 are not visible in the figure due to space limitation, but one can
deduce that they should appear somewhere when 0 < n < 15. With the increases of
size n, the objective values first increase and then decrease. The success rates of the
0.05-suboptimal solutions go in the opposite direction correspondingly. It finally gets
close to 1.0 when n is large enough. While the success rates of exact matching (in solid
line) decrease continuously.

In terms of the query time, it increases with size n. Besides, the smaller the size of
the query m, the longer the query will take. We also notice from the mean and 95%
confidence level that with smaller query size m, the cost values have more fluctuations.
With a larger query size, the cost values are more concentrated.

Several possible reasons are as follows. When the size of the test graph n continu-
ously increases, there exists more subgraphs that are similar to the query. Therefore
for exact matching, it becomes easier to be trapped in these local minimums without
finding the optimal solution. This reason applies similarly to the early stage of finding
the 0.05-suboptimal solutions. When the test graph is much larger, there exists more
local minimums that are satisfying enough. However, this is not the case for exact
matching, since the number of exact matches is generally small even when the test
graph is much larger.

The results for SSOT with m = 5 is shown in Figure 5.10. Compared with the m = 5
lines in the SOT, it achieves lower objective values, and higher success rates, at the
expense of longer query times.
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(a) (b)

(c)

Figure 5.9: Objective values, success rates, and query times versus graph sizes with SOT.

(a) (b) (c)

Figure 5.10: Objective values, success rates, and query times versus graph sizes with SSOT.
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Comparison with NeMa. We compare the performance of NeMa with SOT and
SSOT in terms of success rate and query time. The threshold of the individual feature
cost of NeMa is also set to ”zero” as TF = TW = 1× 10−9.

For NeMa, as we can see from the green lines (both solid and dashed ones), whether
the objective value is zero is not a good indication of whether an induced subgraph
is found (This is also illustrated in the original paper [23]). The induced subgraph is
not always found, but the objective value of NeMa is always zero. In terms of success
rate and time, NeMa is slower than the SOT but faster than the SSOT. However, the
success rate is even lower than SOT.

Two situations make the NeMa achieve lower success rate. 1) the mapping is not al-
ways a one-to-one mapping, even though the cost value is zero; 2) NeMa is not designed
for searching induced subgraph. NeMa can potentially fall into a general subgraph with-
out finding the induced subgraph. While for our methods, general subgraphs do not
disturb the search of induced sugraphs.

(a) (b)

Figure 5.11: Success rates, and query times versus graph sizes with SOT, SSOT, and NeMa.

Performance for large sparse richly-attributed graphs. In this part, we evaluate
the performance of graphs with much larger sizes. We assign the size of the test graph
with n ∈ {50, 100, 1000, 3000, 5000, 7000, 10000}, and the number of distinct feature
values as NF = 20. The query size is set to m = 5. The degree values are set to dQ = 2
and dT = 3. The results are shown in Figure 5.12. The experiments are only run with
10 repetitions due to the large graph size and long running time.

The time complexity of SSOT for sparse graphs goes linearly with n as discussed in
Section 4.5.3. The algorithms SOT and SSOT spend the same time at around n = 3000.
Afterward, the SSOT is much faster than SOT.
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Figure 5.12: Time comparison versus size of test graph.

5.5.8 Average node degree of test graph

We investigate the performance of different average node degree dT ∈
{0.5, 1, 2, 4, 6, ..., 14} for the test graph.

The evolution through the increase of degree is similar to the increase of the size
of the test graph, except for the success rates of exact matching. When the graph is
extremely sparse, it is easy to find the solution, since there are few exact matches and
suboptimal solutions. When it becomes a bit denser, it becomes easier to be trapped
in a local minimum. However, when the graph becomes much denser, there exists more
exact matching and satisfying suboptimal solutions. Thus the success rate goes up
again.

In the prior section, we observed that increasing the size n continuously decreased
the success rates of exact matching. However, this trend doesn’t hold when we increase
the average node degree dT of the test graph. When the node degree is relatively
large, increasing the node degree increases the number of exact matchings, while simply
increasing the size n does not have the same effect.

The query time increases continuously. In each iteration, the time is mainly for
constructing sliding subgraphs and computing the nFGW distance. The time for con-
structing the sliding subgraphs is theoretically polynomial to dT and thus the total time
increases with dT .
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(a) (b) (c)

Figure 5.13: Objective values, success rates, and query times versus average node degree of
test graph with SOT.

(a) (b) (c)

Figure 5.14: Objective values, success rates, and query times versus average node degree of
the test graph with SSOT.

Comparison with NeMa. The performance of NeMa can be approximately consid-
ered as in between SOT and SSOT, with a better performance with small node degrees
than large node degrees.

(a) (b)

Figure 5.15: Success rates, and query times versus average node degrees with SOT, SSOT,
and NeMa.
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5.6 Real-world datasets

In this section, we examine the performance of our methods on real-world datasets for
top-1 matching, in both clean and noisy environments. We also compare the perfor-
mance of our methods with the existing methods NeMa [23] and G-Finder [24]. We
explore the performance of these methods in terms of accuracy and time, and compare
the different performances in clean and noisy environments.

5.6.1 Dataset introduction

Test graphs. We use the datasets BZR and FIRSTMM DB. The BZR dataset
has been introduced in Section 5.3.1. The FIRSTMM DB dataset consists of 41
graphs of 3D point cloud data, with the average number of nodes as 1377.27, and an
average number of edges as 3074.10 [1]. The node feature values are real-valued scalars.

Query graphs. For each test graph in the dataset, we generate 10 connected induced
subgraphs of 6 nodes by the Breadth-First Search (BFS) algorithm. To create a sub-
graph, a start node is first randomly picked within the test graph. Then the subgraph is
expanded by adding the neighbors of the current visiting node in a bread-first manner
until the subgraph reaches the desired size. These subgraphs are used as the query
graphs for the corresponding test graphs.

5.6.2 NeMa and G-Finder

NeMa and G-Finder are indexed-based methods which have been briefly introduced in
Section 2.2.6.3. In NeMa, the indexing step pre-computes the neighborhood vectors and
stores the vectors in the index. Before the optimization process begins, it first computes
a ”candidate list” for each query node with a feature cost threshold TF . This threshold
ensures that any individual node in the test graph that is matched to the query node
falls within a specified similarity range. Then the query process greedily searches all
the possible matches within the candidate sets with iterative algorithms, and finds the
match that minimizes the cost function. In G-Finder, only nodes with the same feature
value are allowed to be matched with a query node. A node that is matched with a
query node with a different feature value is considered as a ”node mismatch” in the
cost function.

On the contrary, in our SSOT method, we use the Wasserstein distance to consider
the overall label difference of all node labels of the query. We do not require every
node feature in the found subgraph to be exactly the same or similar to one of the
query nodes. We instead consider a ”candidate list” for the whole query graph with a
threshold TW (as defined in Section 4.5.2).

Regarding the time comparison with these index-based methods, we calculate the
total time, including both the indexing phase and the query phase.
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5.6.3 Implementation details

Matching ratio. We consider the ratio of correctly found nodes within all the query
nodes. The ground truths are known by the node indices of the query graphs taken out
from the original test graph. Since the graphs in datasets BZR and FIRSTMM DB
are all richly-attributed with real values/vectors, two different node feature values
can rarely be the same. Therefore it is rare that there exist multiple exact matchings
in a test graph. There are some rare cases in FIRSTMM DB dataset that the exact
matching is not unique, but these rare cases only have little effect on the overall
performance. Therefore we assume that there is only one exact matching in each graph.

Noisy environments. To introduce the noisy environments, we randomly pick
one node in the query graph and add zero-mean Gaussian noise with a standard
deviation of 0.1 to its node feature value. Since we add a Gaussian noise without
being too strong and only to one of the query nodes, we still assume that there
is only one optimal (inexact) matching in the test graph (not an exact match-
ing in noisy cases). We compare the found subgraph with the ground truth to
calculate the ratio of correctly matched query nodes. We are interested in whether
the method is still able to find the original optimal matching in the noisy environments.

Feature costs. The feature cost function is set to be normalized square L2 norm
distance for our methods and NeMa.

NeMa. We use the Python implementation fornax to conduct our experiments. Since
fornax is implemented with the backup of an SQLite database, the time of database
manipulation should not be included. The total time is measured by the summation
of time of the following three steps: candidate selection, indexing (compute the neigh-
borhood vectors for all nodes in the test graph; eliminate isolated candidates for query
nodes), and query (optimization).

Note that the cost values in fornax are defined ”reversely” from the original
definition. When an exact matching is found, the cost value is 1 instead of 0. This
applies to the same for its feature cost and structure cost. For a fair comparison with
other methods, the trade-off parameter is set to be λ = 0.5. Within the definition
of ”neighborhood vectorization”, which encodes the neighborhood information of
each node, the hopping distance is set to 1, to be matched to the adjacency ma-
trix we used in our algorithms. The propagation factor α is set to be 0.3 as the
default in fornax. Self-loops are not allowed in fornax, in which the program is not
able to proceed. We mark the matching ratio to be zero if we come across this situation.

G-Finder. Since G-Finder is implemented in C++, we do not compare its processing
time with other methods. We only compare its performance in terms of accuracy.

One drawback of G-Finder is that it does not consider the cases when the query
graph is a line graph, where the program is not able to find a root node within the
query and will fail completely (see details below). Before the official comparison with
G-Finder, we modified its ”root selection step” to include this case. The details are as
below.
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• The original algorithm first decomposes the query graph into a core structure
and a forest structure. The core structure is built by iteratively removing all
degree-one nodes from the query graph and the remaining subgraph is the core
structure [24, 61]. Thus in the core structure, each node has at least 2 neighbors.
G-Finder requires that the root of the query should be chosen from a node that
belongs to the core structure of the query. This constraint is not suitable for line
graphs, since the core structure of a line graph is empty by definition. Therefore,
in order to find a root for a line query graph, we modified the algorithm to
include these special cases. If the query graph is a line graph, the root node is

searched among all query nodes with the original metric |C(u)|
deg(u)

defined in the

paper, where |C(u)| is the size of the candidate set of query node u, and deg(u)
is the degree of u in the query graph.

In the original paper, the cost function incorporates tolerances for discrepancies within
the matching process. The weights for the number of missing query nodes (w1),
missing query edges (w2), and intermediate nodes (w3) are all set equally to 1, which
are the same as the default in the paper.

5.6.4 Results and discussions

This section presents the performance of all the methods on BZR and FIRSTMM DB
datasets under both clean and noisy environments. The results are shown by the ratio
of correctly matched nodes (Matching ratio) and query time (Time), in Tables 5.1,
5.2, 5.3, and 5.4.

For the SSOT and NeMa, the query time and accuracy are correspondingly changed
by assigning different thresholds TW and TF to Wasserstein pruning and label cost
function (as introduced in Sections 4.5.2 and 5.6.2), respectively. These accuracy-time
trade-offs in noisy environments are graphically represented in Figure 5.16. For SOT
and G-Finder, they do not have tunable parameters and we only have one experiment
result for each clean/noisy dataset. In our noisy settings, G-Finder is not able to
perform normally due to its inherent limitations when dealing with noise. Specifically,
when noise is introduced to a query node, it results in a new feature value that does
not exist in the test graph, which is not permitted in G-Finder.

From the results of SSOT and NeMa in all tables, the query time increases gradually
with the rise of thresholds TW or TF . All the methods achieve satisfying results on
BZR dataset in both clean and noisy environments. However, when handling the
larger FIRSTMM DB graphs, all methods experienced longer query time and reduced
accuracy.

In clean environments (Table 5.1 and 5.2), the SOT method stands out with
the BZR dataset. Conversely, the SSOT shows the best performance with the
FIRSTMM DB dataset, when the threshold is set as TW = 1 × 10−9. This suggests
the benefits of SSOT over SOT on large graphs. From FIRSTMM DB, we can

62



Table 5.1: Clean dataset of BZR

SOT
Matching ratio 1.0
Time 0.005
G-Finder
Matching ratio 0.9995

TW or TF

1× 10−9 1× 10−5 1× 10−2 5× 10−2 1× 10−1 5× 10−1 1

SSOT (TW)
Matching ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Time 0.008 0.008 0.008 0.009 0.008 0.026 0.088
NeMa (TF )
Matching ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Time 0.028 0.027 0.027 0.031 0.030 0.028 0.132

Table 5.2: Clean dataset of FIRSTMM DB

SOT
Matching ratio 0.835
Time 4.296
G-Finder
Matching ratio 0.872

TW or TF

1× 10−9 1× 10−5 1× 10−2 5× 10−2 1× 10−1

SSOT (TW)
Matching ratio 0.836 0.827 0.821 0.821 0.821
Time 0.252 1.923 6.669 7.834 8.354
NeMa (TF )
Matching ratio 0.772 0.719 0.719 0.719 0.719
Time 0.384 1.430 5.455 7.023 8.585

also observe that both SSOT and NeMa decrease the query time at lower threshold
settings of TW and TF . These results indicate that pre-computing the candidate
sets can both enhance the matching precision and reduce the processing time. The
effects of the pre-computing are mitigated when TW and TF are set to be relatively high.

In noisy environments (Tables 5.3 and 5.4), regarding our results, we can first
observe that SOT achieves the best performance among all the methods. For SSOT
and NeMa, the choice of the thresholds TW and TF becomes more complex. On one
hand, the thresholds should be sufficiently low to minimize the candidate set size, and
thus reduce the query time and improve the matching accuracy. On the other hand,
the thresholds should also be high enough to ensure the inclusion of the objective
subgraph within the candidate set, given that the noise introduces a positive, non-zero
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nW distance even for the correct subgraphs. Therefore, higher thresholds always bring
longer query time, but whether it will bring higher or lower accuracy depends on specific
situations.

For BZR dataset, both SSOT and NeMa achieve higher accuracy with increased
thresholds within the range from 1×10−9 to 1. This improvement suggests that a larger
candidate set is more likely to contain the correct subgraph. Even with a threshold of
1, these methods can accurately identify the subgraph, implying that the computation
of candidate sets is less critical for smaller graphs in the presence of noise.

With the FIRSTMM DB dataset, a more complex pattern emerges. The SSOT’s
matching ratio improves with the threshold up to a point (around TW = 1 × 10−2)
before a slight decline. This implies a threshold around 1× 10−2 may be large enough
to include the objective subgraph, and also small enough to have a small candidate set
size. In contrast, the accuracy for NeMa shows a slight but continuous decline. The
behaviors of NeMa can be potentially explained as follows. We can notice the overall
low matching ratios for the FIRSTMM DB dataset (lower than the ratio of clean nodes
in the query as 5/6). Setting a lower threshold can be potentially beneficial for NeMa,
since a smaller candidate set for the clean nodes in the query graph makes it easier
to pinpoint the correct matches without being overly influenced by the overall cost
associated with all the query nodes. Thus the accuracy of NeMa can be potentially
increased by setting a lower threshold if accuracy is already low. However, this is not
the case for SSOT, since the nodes are not assessed separately in the first place, setting
an extremely low threshold will only filter out the objective subgraph that we intend
for.

The ratio-time trade-off plots for noisy cases of two datasets are shown in Fig-
ure 5.16. From the plot of BZR dataset, we can conclude that SSOT achieves bet-
ter rate-time performance than NeMa. The performance of SOT is even better. For
FIRSTMM DB dataset, two methods have their own benefits in different situations.
With a high feature cost threshold, either TW or TF , the programs require a relatively
high query time, and SSOT achieves higher accuracy. With a low feature cost threshold,
the programs require a relatively low query time, and NeMa achieves higher accuracy.

Figure 5.16: Matching ratio versus Time of different methods with noise std=0.1 for BZR
and FIRSTMM DB .
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Table 5.3: Feature Noise std = 0.1 for BZR

SOT
Matching ratio 1.0
Time 0.005
G-Finder
Matching ratio Fail

TW or TF

1× 10−9 1× 10−5 1× 10−3 1× 10−2 1× 10−1 5× 10−1 1

SSOT (TW)
Matching ratio 0 0 0.101 0.908 1.0 1.0 1.0
Time 2.404e-05 2.876e-05 0.001 0.008 0.008 0.026 0.089
NeMa (TF )
Matching ratio 0.492 0.492 0.495 0.588 0.993 1.0 1.0
Time 0.028 0.028 0.030 0.027 0.029 0.030 0.150

Table 5.4: Feature Noise std = 0.1 for FIRSTMM DB

SOT
Matching ratio 0.697
Time 7.530
G-Finder
Matching ratio Fail

TW or TF

1× 10−9 1× 10−5 1× 10−3 1× 10−2 5× 10−2 1× 10−1

SSOT (TW)
Matching ratio 0 0.140 0.334 0.409 0.407 0.407
Time 11.071e-05 0.245 3.162 6.363 8.023 8.314
NeMa (TF )
Matching ratio 0.372 0.345 0.331 0.332 0.313 0.313
Time 0.328 1.230 3.555 5.646 7.825 8.874

5.7 Discussions

The results of the performance evaluations on synthetic datasets and real-world datasets
lead to several key observations as follows.

The trade-off parameter is always set to α = 0.5 as default in our experiments,
which can be generally adopted in various applications if no a prior information is
available. Nevertheless, if one only wants to conduct exact matching, as we can learn
from Section 5.5.5, this parameter can be selected arbitrarily from the open interval
(0, 1), excluding the values of 0 and 1. For approximate matching and inexact matching,
this parameter can be tailored to specific practical interests within [0, 1], allowing for
a preference towards either feature or structure information. However, due to the non-
convex nature of the structure component, an emphasis on structural information may
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encounter more difficulties in finding a satisfying subgraph, as compared to an emphasis
on feature information.

Our frameworks jointly consider feature information and structure information. It is
also worth mentioning that endowing a greater number of distinct feature values gener-
ally tends to enhance performance. The SSOT method stands out with its Wasserstein
pruning, or alternatively, the SOT method can be employed with a potential bias to-
wards feature information by setting α within [0, 0.5].

The SOT framework consistently yields satisfying results for small graphs. The
SSOT framework, on the other hand, significantly bolsters performance for large graphs.
Also in SSOT, if the dataset is clean and complete, one can always use a lower feature
cost threshold to improve the matching accuracy and reduce the query time. We can
also conclude that with small noise in the node features, the SOT method demonstrates
greater resilience compared to SSOT, NeMa, and G-Finder. The selection of thresholds
in noisy environments should generally be positive, although the ideal value may differ
across datasets. Pre-experimental tuning is recommended to achieve the best possible
matching outcomes in practical settings.
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Conclusion and Future
Directions 6
6.1 Conclusion

In this thesis, we have presented two subgraph matching frameworks: SOT and SSOT,
both founded on the principles of optimal transport and utilizing the Fused Gromov-
Wasserstein (FGW) distance. Our work is built at the intersection of different domains
with newly developed techniques.

• We formulated the subgraph matching problem with the idea of optimal transport
and adopted the FGW distance. With the adoption of Frank-Wolfe algorithm, the
program is computationally efficient and is easy to implement with existing opti-
mization solvers. Moreover, the FGW distance is supported by solid mathematical
foundations.

• We refined the classical graph matching QAP’s by introducing a dummy node
with zero-cost allocations to tailor for this subgraph matching problem. This
innovation led us to propose the normalized FGW distance to adapt to various
real-world applications and enhance performance evaluation. We also achieved
a substantial computation reduction by isolating the dummy node and directly
modifying the matrix of the tensor-matrix product.

• We improved our algorithms with insights from index-based methods in graph
database queries and introduced the sliding window framework and Wasserstein
pruning. These two components significantly improve query efficiency and accu-
racy, offering practical advantages in an engineering context.

The experimental results validate the efficacy of both the SOT and the SSOT frame-
works. The SOT framework is particularly effective for smaller graphs, while the SSOT
framework is beneficial for larger graphs. Furthermore, both methods exhibit robust
adaptability in noisy environments, outperforming existing methods such as NeMa and
G-Finder. Lastly, practical applications presented in the chemical and biomedical fields
highlight the potential contributions of our work to these areas.

6.2 Future directions

6.2.1 Matching for subgraphs of different sizes

The problem we solved in this thesis is about matching a subgraph of the same size as
the query. Note that using the FGW distance allows us to search for a subgraph of a
different size m′, such that m′ ̸= m. To solve this problem, we can simply modify the
mass of each query node to be m′

nm
. The modified version of the ”dummy node strategy”
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Figure 6.1: Subgraph matching algorithm (modified): The subgraph (in red) should be
matched to the query graph. The irrelevant part (in blue) should be matched to the dummy
node.

algorithm is illustrated in Figure 6.1. Here we present an example of this problem. We
have a query graph and a subgraph shown in Figure 6.2a. The query is of size 8 and
the subgraph is of size 6. Both graphs are attributed with two distinct feature values
on nodes. The optimal transport matrix T ∗ is still sparse, while the matching between
the subgraph and query graph is not a one-to-one matching.

(a) (b)

Figure 6.2: Example of matching a subgraph of a different size.

6.2.2 Entropic regularization for large graphs

Entropic regularization can be developed for FGW objective by leveraging the existing
techniques developed for the Wasserstein objective and the GW objective. The main
advantage is to relieve the computational burden for much larger test graphs by adopt-
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ing numerical methods such as Sinkhorn iterations [38, 62]. The modified objectives
are no longer referred to as distances since an entropy term is added.

The entropy-regularized FGW objective can be formulated as follows. The discrete
Shannon entropy of the transport matrix is defined as

H(T ) : = −
∑
i,j

T i,j log (T i,j) (6.1)

= −⟨T , logT ⟩F (6.2)

where log refers to the natural logarithm. H(T ) is a strictly concave function. Consider
the constraints on T , H(T ) is zero if and only if T is a permutation matrix (one entry
of 1 in each row and each column and 0s elsewhere, which is a strongly sparse matrix).
Conversely, H(T ) is large when T has many nonzero entries (not sparse). The gradient
of H(T ) with respect to T

∇TH(T ) = − log(T )− 1n×m (6.3)

We can regularize the original objective function for the FGW distance by the negative
entropy as

minimize (1− α)⟨T ,M⟩F + α⟨L⊗ T ,T ⟩F − ϵH(T ) (6.4)

s.t. T1m = p;T⊤1n = q;T ≥ 0 (6.5)

where ϵ is a small positive value. The regularization term −H(T ) is strictly convex,
which can effectively soften the base FGW objective function, and push the optimal
solution with a higher entropy.

6.2.3 Incorporating new features or data types

The edge feature information can be easily incorporated into the adjacency matrix.
This also includes the possibility of directed graphs. Related works can be found in
[23, 12]. Further, the nature of optimal transport allows us to apply our method across
incomparable spaces [62], like graphs, shapes, and images. Possible research problems
can be: query a shape by using a graph, or query an image by using a graph.
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Appendix A
A.1 General formulation of optimal transport

Metric space. A metric space is a pair (M, dM), where M is a set and dM :
M×M → R is a metric on M [63]. The metric dM is also known as the distance
function, measuring the distances between each pair of points in the set M. For all
points x, y, z ∈M, the metric dM satisfies the following atoms:

1. Positivity: dM(x, y) ≥ 0, with equality if and only if x = y,

2. Symmetry: dM(x, y) = dM(y, x),

3. Triangle inequality: dM(x, y) ≤ dM(x, z) + dM(z, y).

For two metric spaces (X , dX ) and (Y , dY), we define the distance dX ⊕ dY on the
product space X × Y such that, for (x, y), (x′, y′) ∈ X × Y , dX ⊕ dY ((x, y), (x′, y′)) =
dX (x, x′) + dY (y, y′).

A.1.1 Wasserstein distance

Definition 6 (Wasserstein distance). [40] Consider two probability measures µs and
µt with supp[µs] = A and supp[µt] = B, suppose they live in the same metric space
(Ω, dΩ), i.e., A ⊂ Ω and B ⊂ Ω. The Wasserstein distance between µs and µt is defined
as

WΩ
p (µs, µt) =

(
inf

π∈Π(µs,µt)

∫
A×B

dΩ(a, b)
pdπ(a, b)

) 1
p

. (A.1)

where Π(µs, µt) is the set of all possible joint probability measure π(a, b) on A×B with
marginals µs and µt, i.e.,

Π(µs, µt) =

{
π(a, b) ≥ 0,

∫
B
π(a, b)db = µs,

∫
A
π(a, b)da = µt

}
. (A.2)

Compared with the discrete formulation shown in Definition 2, π(a, b) acts as the
same role as the transport matrix T , while c(a, b) acts the same as the cost matrix M .

Kantorovitch and Monge. The formulation of Wasserstein distance is also referred
to be the Kantorovitch formulation. A more historical formulation dates back to Monge.
The Monge formulation seeks for a deterministic mapping T : A → B that minimizes
the total cost of moving µs to µt [44],

MΩ(µs, µt) = inf
T#µs=µt

∫
A
dΩ(a, T (a))dµs(a) (A.3)
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where T#µs = µt constrains that µt is the push-forward measure of µs through a
function T . The Monge problem is difficult to solve since the constraint T#µs = µt is
non-convex. Furthermore, the solution may not exist [38]. One example is when µs is
a Dirac measure while µt is not.

The Kantorovitch formulation acts as a relaxation of the Monge problem, seeking
for a probabilistic coupling π(a, b) to minimize the cost. It is a Linear Program and
there is always a solution.

A.1.2 Gromov-Wasserstein Distance

[40] The Wasserstein distance provides a way to measure the distance between two
probability measures living in the same metric space. However, it is not suitable for
two measures living in different spaces, since we are not able to define a well-behaved
distance function across two different spaces. For example, we are not able to compare
a 2-dimensional probability measure and a 3-dimensional one with the Wasserstein
distance. This issue can be solved with the Gromov-Wasserstein (GW) distance.

Definition 7 (Gromov-Wasserstein distance). Consider two probability measures µs

and µt with supports supp[µs] = X and supp[µt] = Y , on metrics spaces (X , dX ) and
(Y , dY). The spaces do not necessarily belong to a same metric space. The Gromov-
Wasserstein distance is defined as

GWX ,Y
p (µs, µt) =

(
inf

π∈Π(µs,µt)

∫
X 2×Y2

L (x, x′, y, y′)
p
dπ(x, y)dπ (x′, y′)

) 1
p

. (A.4)

where

Π(µs, µt) =

{
π(x, y) ≥ 0,

∫
Y
π(x, y)dy = µs,

∫
X
π(x, y)dx = µt

}
(A.5)

L (x, x′, y, y′)
def.
= L (dX (x, x′) , dY (y, y′)) (A.6)

The GW distance defines two distances dX (x, x′) and dY (y, y′) within different
metric spaces, and then evaluate the cost built on these distances. Compared with
the discrete formulation shown in Definition 3, π(x, y) acts as the same role as the
transport matrix T , while dX (x, x′) and dY (y, y′) act the same as the cost matrix Cs

and Ct respectively.

Gromov-Hausdorff distance. From a mathematical point of view, the GW distance
(with p = 1) is a relaxation of the Gromov–Hausdorff distance. The Gromov–Hausdorff
distance is given by [38, 64],

GHX ,Y (dX , dY) =
1

2
inf

R∈R(X ,Y)
sup

((x,y),(x′,y′))∈R2

L (dX (x, x′) , dY (y, y′)) , (A.7)

where R ∈ X × Y is a set coupling between sets X and Y , and R(X ,Y) consists of
all the possible couplings. The Gromov–Hausdorff distance is a way to measure the
distance between two metric spaces (X , dX ) and (Y , dY). Note that Gromov–Hausdorff
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distance does not endow with the idea of optimal transport itself and does not specify
a probability measure, thus cannot endow relative importance [26]. When the two
metric spaces are discrete, X = {xi}ni=1, and Y = {yj}mj=1, define Cs

i,i′ = dX (xi, xi′),

and Ct
j,j′ = dY (yj, yj′), then

GH
(
Cs,Ct

)
=

1

2
inf

R1m>0,R⊤1n>0
max

(i,i′,j,j′)
L
(
Cs

i,i′ ,C
t
j,j′

)
Ri,jRi′,j′ . (A.8)

where R ∈ {0, 1}n×m is a binary matrix. The function value is nonzero if and only
if both Ri,j and Ri′,j′ are equal to one. The GW distance (Definition 3) relaxes the
Gromov–Hausdorff problem to be a continuous problem [43]. Then the ”soft” matching
between edge (i, i′) source graph, and edge (j, j′) of target graph is formulated by
T i,jT i′,j′ [45].

A.1.3 Probabilistic formulation

The Wasserstein distance and Gromov-Wasserstein distance can be equivalently
written in probabilistic forms.

Wasserstein distance.[38]

WΩ
p (µs, µt) =

(
inf

π∈Π(µs,µt)
Eπ(a,b) [dΩ(a, b)

p]

) 1
p

. (A.9)

Gromov-Wasserstein distance.

GWX ,Y
p (µs, µt) =

(
inf

π∈Π(µs,µt)
Eπ(x,y)Eπ(x′,y′)

[
L (x, x′, y, y′)

p]) 1
p

. (A.10)

A.1.4 Structured objects

Structured data is a broader term that includes graph. Any kind of data composed
with some specific structure or organization can be referred to as structured data.
Data elements are connected with each other with well-defined relationships. Besides
structure, structured data also has an emphasis on the characteristics/features of data
points. In this way, structured data can be defined as generalized labeled graph [44]. A
labeled graph can be viewed as an ensemble of features or attributes, associated with
structural information. Other structured data includes 3D shape or object, time-series
signal, structured image, hierarchical database, etc [38].

In Section 3.3, we introduced the concept of modeling labeled graphs as probability
measures. Expanding on this, we now introduce the definition of structured objects
using the term ”metric measure space”.

Metric measure space. A metric measure space (denoted as mm-space) is a triplet
(M, dM, µ) where µ is a probability measure onM [40]. Metric measure space is built
on metric space and equipped with a notion of probability.
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Definition 8 (Structured objects). [40] A structured object over a metric space (Ω, dΩ)
is the triplet (X ×A, dX , µ), where (X , dX ) is a compact metric space, A is a compact
set of Ω, and µ is a fully supported probability measure over X ×A. The space (Ω, dΩ)
is denoted as the feature space. The set A itself is the feature information of the
structured object and the space (X , dX ) is its structure information.

For graph, it naturally has an edge set in definition, and x is the neighborhood
information of each node; For point cloud data, x is the coordinate of one point, though
it is the relative distance that indicates the structure of the data [40, 44]; For time series
signals [44], x is a timestamp (or temporal position). A simple example of 2-dimensional
point cloud data and its probability measure are shown in Figure A.1. We can observe
that µ acts as a joint distribution of µF and µS.

Figure A.1: µ is the joint distribution of µF and µS: The point cloud data (Left)
consists of four data points. Each point has a color for its feature and a 2-dimensional posi-
tion (x1, x2) in the coordinate system. The relative importance is presented as proportional
to the radius. The measure µ can be written as µ = 1

6δ{(1, 1), red} +
1
4δ{(1, 2),blue} +

1
3δ{(2, 1), yellow} +

1
4δ{(2, 2), red}. The feature distribution µF (Middle) is one marginal,

µF = 1
2δ{red} +

1
6δ{blue} +

1
3δ{yellow}. Similarly, the structural distribution µS (Right) is

µS = 1
4δ{(1, 1)}+

1
6δ{(1, 2)}+

1
3δ{(2, 1)}+

1
4δ{(2, 2)}.

The equivalence of structured objects, named as isomorphism, can be viewed as a
generalization of Definition 1. However, we have to first define the isometry between
two metric spaces. The two definitions are as follows.

Definition 9 (Isometry of metric spaces). [40] Two metric spaces (X , dX ) and (Y , dY)
are isometric if there exists a map f : X → Y that preserves the distances,

∀x, x′ ∈ X , dY (f(x), f (x′)) = dX (x, x′) . (A.11)

The map f is called the isometry of the two metric spaces.

Definition 10 (Isomorphism of structured objects). [40] Two structured objects (X ×
A, dX , µs) and (Y × B, dY , µt) are equivalent if there exists an isometry f such that f
is measure-preserving, i.e. f#µs = µt.

The notion of isometry itself can be used to compare the structures between two
structured objects, while isomorphism also includes the features. The push-forward
notation means that only the positions of supp[µs] and supp[µt] are replaced, while the
values of the measure are preserved.
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A.1.5 Fused Gromov-Wasserstein Distance

[40] To jointly consider features and structure for two objects, one in space (X ×A) and
the other in (Y×B). The formulation of Wasserstein distance and Gromov-Wasserstein
distance is combined into Fused Gromov-Wasserstein distance. The metrics of the
spaces are still dΩ(a, b), dX (x, x′), and dY (y, y′).

Definition 11 (Fused Gromov-Wasserstein distance). For α ∈ [0, 1], the Fused
Gromov-Wasserstein distance between µs and µt is defined as

FGWΩ,X ,Y
α,p,q (µs, µt) =

(
inf

π∈Π(µs,µt)

∫
(X×A)2×(Y×B)2

(
(1− α)dΩ(a, b)

q + αL (x, y, x′, y′)
q)p

dπ((x, a), (y, b))dπ ((x′, a′) , (y′, b′))

) 1
p

.

(A.12)

Actually, we can also define an adapted Gromov-Wasserstein distance on metric
space (X ×A, dX ⊕dA) and (Y×B, dY⊕dB). However, this formulation can not always
distinguish different graphs, and the FGW distance benefits from better mathematical
properties [40].
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