Bidirectional enrichment of CityGML and Multi-View Stereo Mesh models

Magdalini - Styliani Tryfona 4516346

1st Mentor: H. Ledoux 2nd Mentor: R.Y. Peters Co-reader: C.W. Quak Delegate of board of examiners: L. Qu

03/07/2017

Outline

- 1. Background & Research objectives
- 2. Bidirectional enrichment
- 3. Proposed methodology & Analysis
- 4. Conclusions & Future work

Outline

- 1. Background & Research objectives
- 2. Bidirectional enrichment
- 3. Proposed methodology & Analysis
- 4. Conclusions & Future work

3D city model

Source: Nagoya city - 3D CityGML modeling example Link: https://www.youtube.com/watch?v=9CTbQTKPtsg

3D city model

→ Helsinki 3D+ (2016)

Solar Irradiation Analysis Rennes (2016)

Berlin Solar Atlas (2017)

3D city model

- Source: virtualcityMAP Demonstration of Solar Irradiation Analysis Rennes, France
- *Link: https://www.youtube.com/watch?v=OzVGzPi1Me0*

Problem

CityGML model

MVSM model

CityGML model

Creation:

Characteristics:

- Rich in semantics (e.g. roof, wall, ground)
- Semi-automatic construction
- Plain (not all geometric aspects)
 UDelft

Multi – View Stereo Mesh model

Creation:

Characteristics:

- Fully automatic construction
- Plenty of geometric information
- Rich textures
- No semantics

CityGML vs MVSM models

Standard\ Criteria	CityGML	MVSM
Geometry	B-rep	Mesh
Semantics	Rich in semantics	No semantics
LOD	5 discrete LODs	Not supported
Texture	Basic support	Rich textures
Construction	Semi-automatic	Fully automatic

Source: Kavisha and Saran (2015)

Research objectives

To what extent can a CityGML model and a MVSM model of the same area, representing the same features, be automatically and bidirectionally enriched?

Bidirectional enrichment

Bidirectional enrichments between models Bidirectional enrichment methodologies

Research objectives

To what extent can a CityGML model and a MVSM model of the same area, representing the same features, be automatically and bidirectionally enriched?

Match faces Semantic To segmentation at

Transfer attributes Segment per building

Research objectives

To what extent can a CityGML model and a MVSM model of the same area, representing the same features, be automatically and bidirectionally enriched?

Validation of the matching

Detection of errors

Texturing

Related work

- Interoperability of information
- Straightening of meshes
- Semantic enrichment of 3D models
- Matching of meshes
- Mesh comparison

Related work

- Veltkamp (2001)
- Straightening of meshes
- Interoperability of information
- Semantic enrichment of 3D models
- Matching of meshes
- Mesh comparison

Eberly (2006)

Guezlec (2001)

Point-to-polygonal-mesh distance

Hausdorff distance

Outline

- 1. Background & Research objectives
- 2. Bidirectional enrichment
- 3. Proposed methodology & Analysis
- 4. Conclusions & Future work

Bidirectional enrichment

Enrichments

City**GML**

- Semantic segmentation
- Transfer attributes
- Straightening
- Simplification

- Texturing
- Validation
- Update
- Creation of 3D CityGML model

Enrichment methodologies

- Creation and comparison of planes
- Probabilistic methods
- Predefined shapes of features
- Template matching techniques
- Machine learning techniques
- Clustering techniques
- Heuristic rules
- Distance computation methods

Outline

1. Background & Research objectives

2. Bidirectional enrichment

3. Proposed methodology & Analysis

4. Conclusions & Future work

- Use point-to-polygonal-mesh distance
- Use Hausdorff distance
- Compute the normals of the triangles
- Create heuristic rules

 $\sup_{y \in Y} \inf_{x \in X} d(x, y)$

 $A \equiv O'$

Point to polygonal mesh distance:

Hausdorff distance:

Data

CityGML model:

<1 point per m^2

ŤUDelft

1st Implementation

1st Implementation 4 buildings

3 Heuristic Rules (HR)

elft)

Closer to roof, HR 1: then **roof**.

Closer to wall and HR 2: larger than T_d , then uncertain.

Vertical sections:

Connected components

ŤUDelft

Connected components

Source: https://breakingcode.wordpress.com

Roof class contains parts of the wall class

→ Wall class contains parts of the uncertain

ŤUDelft

Validate matching

Category	Interval of HD	
Excellent	0m – 5m	
Good	5m – 8m	
Medium	8m – 11m	
Bad	> 11m	

 $T_d (HR 2)$ $T_h (HR 3)$

Validate matching

Detect errors

Detect errors

All buildings:

Building	HD (m)	Absence
B1	10.209	No
B2	9.527	No
B3	9.458	No
B4	9.399	No

B2 and B4 are missing:

Building	HD (m)	Absence
B1	10.209	No
B2	11.549	Yes
B3	9.458	No
B4	11.048	Yes

ŤUDelft

- Stretch to the corners of the boundary lines
- Close the holes of the MVSM model

elft

50

2nd Implementation

Matching faces LOD1 CityGML and MVSM models: Bad

LOD2 CityGML and MVSM models:

Detect errors

Transfer texture LOD1 CityGML and MVSM models:

LOD2 CityGML and MVSM models:

Outline

- 1. Background & Research objectives
- 2. Bidirectional enrichment
- 3. Proposed methodology & Analysis
- 4. Conclusions & Future work

Conclusions

To what extent can a CityGML model and a MVSM model of the same area, representing the same features, be automatically and bidirectionally enriched?

- Bidirectional enrichment
- Bidirectional enrichments between models
- Bidirectional enrichment methodologies
- Match faces
- Semantic segmentation
- Transfer attributes

- Segment per building
- Validation of the matching
- Detection of errors
- Texturing

LOD1 vs LOD2:

Roof structures

Future work

- Extend the table of the enrichments.
- Explore practically more enrichment methodologies.
- Improve the proposed methodology.
- Extend the proposed methodology to other thematic classes e.g.vegetation, water bodies
- Fix the errors in the MVSM model e.g.holes

Future work and recommendations

- Test with LOD3 CityGML model
- Test with smoother and simplified MVSM models
- Test in different building types (more complex)
- Reduce the execution time

Thank you for your attention!

virtualcitySYSTEMS

ŤUDelft