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A B S T R A C T

Efficient use of water and nutrients in crop production are critical for sustainable water and crop production
systems. Understanding the role of humans in ensuring water and nutrient use efficiency is therefore an im-
portant ingredient of sustainable development. Crop production functions are often defined either as functions of
water and nutrient deficiency or are based on economic production theory that conceptualizes production as a
result of economic activities that take in inputs such as water, capital and labor and produce crop biomass as
output. This paper fills a gap by consistently treating water and nutrient use and human agency in crop pro-
duction, thus providing a better understanding of the role humans play in crop production. Uptake of water and
nutrients are two dominant biophysical processes of crop growth while human agency, including irrigation
machine power, land-preparing machine power and human labor force, determine limits of water and nutrient
resources that are accessible to crops. Two crops, i.e., winter wheat and rice, which account for the majority of
food crop production are considered in a rapidly developing region of the world, Jiangsu Province, China, that is
witnessing the phenomenon of rural to urban migration. Its production is modeled in two steps. First water and
nutrient efficiencies, defined as the ratios of observed uptake to quantities applied, are modeled as functions of
labor and machine power (representing human agency). In the second step, crop yields are modeled as functions
of water and nutrient efficiencies multiplied by amounts of water and fertilizers applied. As a result, crop
production is predicted by first simulating water and nutrient uptake efficiencies and then determining yield as a
function of water and nutrients that are actually taken up by crops. Results show that modeled relationship
between water use efficiency and human agency explains 68% of observed variance for wheat and 49% for rice.
The modeled relationship between nutrient use efficiency and human agency explains 49% of the variance for
wheat and 56% for rice. The modeled relationships between yields and actual uptakes in the second step explain
even higher percentages of observed the variance: 73% for wheat and 84% for rice. Leave-one-out cross vali-
dation of yield predictions shows that relative errors are on average within 5% of the observed yields, reinforcing
the robustness of the estimated relationship and of conceptualizing crop production as a composite function of
bio-physical mechanism and human agency. Interpretations based on the model reveal that after 2005, me-
chanization gradually led to less labor being used relative to machinery to achieve same levels of water use
efficiency. Labor and irrigation equipment, on the other hand, were found to be complimentary inputs to water
use efficiency. While the results suggest interventions targeting machinery are most instrumental in increasing
wheat productivity, they may exasperate rural – urban migration. Policy strategies for alleviating rural-urban
migration while ensuring regional food security can nonetheless be devised where appropriate data are avail-
able.

1. Introduction

Changing climate and growing population in the Anthropocene
(Vörösmarty et al., 2013; Savenije, et al., 2014) are amplifying the
tension between water supply and demand across the planet

(Vörösmarty et al., 2000; Arnell and Lloyd-Hughes, 2014; Flörke et al.,
2018; Duan et al., 2019; Brown et al., 2019; Di Baldassarre et al., 2019).
Increased average temperatures and variability in rainfall are making
water infrastructures for urban and agriculture water supply obsolete as
they have often been designed for a stationary climate (Milly et al.,
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2008; Wagener et al., 2010). Such changes are coupled with rising
population in emerging, mostly agrarian, economies such as China and
India that rely on agricultural water (Parry, 2019). Such changes are
major threats for sustainable development as it renders societies water
insecure, food insecure and at the same time stripping rural commu-
nities of livelihood opportunities (Novoa et al., 2019).

Often human ingenuity is assumed to be able to overcome water and
food challenges posed by changing climate, by conquering climate de-
terminism of human fate and engender human prosperity through
technological innovation in spite of climatic adversity (Kreibich et al.,
2017; Kendall and Spang, 2019). Technological innovations are as-
sumed to not only mitigate water insecurity but also adapt to it by in-
ternalizing climate change in new water infrastructure and technolo-
gical designs (Fletcher et al., 2019; Levin-Koopman et al., 2019; Allen
et al., 2019). As part of the solutions offered, it is assumed that human
agency makes the use of water and other related inputs in food pro-
duction more efficient, thereby releasing pressures of increasing water
scarcity and sustaining food production and human wellbeing
(Sivapalan et al., 2014; Konar et al., 2016).

Human well-being comprising of food and economic security in
water insecure rural areas depends on crop production that efficiently
uses water and nutrients (Haines-Young & Potschin, 2010; Herrero
et al., 2012). This includes the production of feed for livestock pro-
duction, thereby making it the foundation of agricultural systems in
general and linking it to phenomena such as migration, agrarian crisis
across the globe and even dispersal of agrarian societies (Afifi et al.,
2014; Elshafei et al., 2014; Pande et al., 2014; FAO et al., 2018).
Agricultural systems in Jiangsu Province, China are one such example,
where crop production is a major consumer of water, accounting for
nearly 73.5% of total water consumption in Jiangsu Province, China
(BSJ, 2018). It is also a major human activity, employing 5.82 million
people in Jiangsu province in 2017 (BSJ, 2018). Crop production cri-
tically couples wellbeing of human with water and nutrient cycles and
has been shown to be linked with rural to urban migration in Jiangsu
Province, China (Lyu et al., 2019).

Crop production is influenced both by hydro-climatic variability
and the interventions of humans in terms of provisioning of irrigation
and labor. There are therefore several conceptualizations of interactions
between human agency and the environment (Sivapalan and Blöschl,
2015) in how crops are produced, often reflecting the disciplines from
which such models have originated. Water proxies such as transpira-
tion, nutrient proxies such as fertilizer use and their joint-effect effects
have been incorporated in multivariate linear regressions to estimate
crop yield–input relationships in agricultural sciences community
(Insam et al., 1991; Heaton et al., 2004). Meanwhile biophysical models
such as CROPWAT (Smith, 1992), Aquacrop (Steduto et al., 2009; Raes
et al., 2009; Hsiao et al., 2009), WOFOST (WOrld FOod STudies) (de
Wit et al., 2018; Lecerf et al., 2019; Ceglar et al., 2019), APSIM (The
Agricultural Production Systems sIMulator) (Holzworth et al., 2014;
Gaydon et al., 2017), and statistical models such as by Sheldrick et al.
(2003) explicitly explain the underlying mechanisms. Similarly, Hatirli
et al. (2006) focus on nonlinear water, temperature and nutrients
constraints on biomass production (Ferrero et al., 2018; Hoffman et al.,
2018). These models emphasize the critical role of water and other
nutrients in crop yields and incorporate the role of humans as multi-
pliers that scale optimal yields to reflect less than optimal efforts of
humans. For example, less than optimal crop yield is often linked to
water deficit via linear function, i.e., − = −( )K1 1Y

Y y
ET
ET

a
x

a
x
, where the

crop yield response factor Ky changes with crop characteristics (FAO,
2012; Liu et al. 2002).

On the other side of the spectrum are conceptualizations of pro-
duction models based on economic theory, which emphasize less on
biophysical constraints but more on human agency based on the prin-
ciples of economics. Models derived based on Cobb-Douglas production
functions (Cobb and Douglas, 1928) have often been applied, such as by

Goldsmith et al. (2004), which consider water as an input alongside
other inputs such as machinery and labor in the production of a crop as
an economic good. Other forms of production functions have also been
used in this context, see e.g. McCarl (1982). Others examples include
linear programming models of agricultural production (Howitt, 1995,
Pattanayak and Sills 2001), multi-crop micro-econometric models to
interpret farmers' production acreage choice (Femenia et al., 2018),
complex integrated economic-hydrologic models to model the interac-
tions between water allocation, farmer input choice, agricultural pro-
ductivity and water demand (Rosegrant et al. 2000, Roobavannan et al.
2017a) and system dynamics based socio-hydrological models to un-
derstand the interlinkages between water availability, labor demand
and migration (Roobavannan et al. 2017b).

While such models have proved powerful in simulating yields and
modeling labor employment in the agriculture sector as a function of
water availability and other inputs, it remains a challenge to con-
sistently estimate both yield and labor demand from the same function.
Bio-physical models represent labor as a scaling factor on potential
yields, while economic theory-based models often include water as one
of the inputs into an economic activity while deemphasizing the bio-
physical role played by water in biomass production.

The present paper fills this gap by focusing not only on the bio-
physical relationships of crop yield with water and nutrient inputs, but
also by considering how humans, e.g. through irrigation and land-
preparation, which would influence the efficiencies of water and nu-
trients uptake. The paper acknowledges that understanding the critical
role played by human agency in efficient use of water and nutrients for
crop production is key to facilitating a sustainable future, especially in
fast developing parts of the world. Jiangsu Province in China is one
such region, a typical example of rapidly urbanizing region with a
significant flow of economic migrants from rural to urban areas.
Jiangsu is a producer of crops such as rice and wheat, which occupy
almost 60% of the total planted area. Though agriculture production is
closely linked to water availability and is influenced by climatic factors,
several government initiatives have produced rapid development and
industrialization of agriculture in Jiangsu Province. At the same time, it
is undergoing an industrial revolution. The proportion of agriculture
output is being gradually reduced by modern secondary and tertiary
industries, affecting income sources of rural families and exasperating
rural to urban migration. Understanding the interlinkages between
water security, water and nutrient efficiency and food production
would therefore enable policy makers to devise and implement appro-
priate hydrological or economic instruments to address the migration
phenomenon in the province.

The paper is organized as follows. Section 2 introduces the metho-
dology of incorporating both bio-physical mechanisms and human
agency into a single crop-production modeling framework and the
study area. Modeling results including the calibrated parameters of the
crop production model, together with the results of cross validation, are
then shown in section 3. Section 4 then discusses how substitutions
between labor and machinery have changed over time in Jiangsu China,
how it matches with patterns estimated based on independent data and
what it means in terms of rapid mechanization of agriculture in China.
Section 5 gives the conclusions of the study.

2. Methodology

The light reactions of photosynthesis absorb energy from the sun
that is then used by the dark reactions to convert nutrients into crop
biomass (Foyer, 1984; Leegood et al., 2006; Ke, 2001). Crop greenness
resulting from energy absorption by light reactions is therefore an im-
portant indicator of crop biomass accumulation and can be measured
by reflectance-based vegetation indexes (VI). Such indices have been
widely used as indicators of crop yields (Quarmby et al., 1993; Ren
et al., 2008; Mkhabela et al., 2011; Kogan et al., 2013). Given that
transpiration, carbon & nitrogen fixation, and phosphorus consumption
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occur in leaves (Foyer, 1984), reflectance measurements have also been
utilized to assess crop water and nutrient status (Sembiring et al., 1998;
Albayrak, 2008; Caturegli et al., 2016).

Human agencies, representing labor force and machinery utiliza-
tion, on the other hand, contribute to crop production by enabling crops
to access water (Allen et al., 1998) and nutrient resources. Irrigation
devices such as pumps and drip-irrigation systems (Brouwer et al.,
1988) help conveying and concentrating water in the root zone whereas
land-preparation machinery, such as tractors create appropriate
growing space for seeds to get access to nutrients (Arias-Jiménez,
2002). Such agencies are crucial for improving the efficiencies of water
and nutrients use for variety of crops (Bhuiyan, 1992; Bhuiyan et al.,
1995; Erkossa et al., 2005; Johnston and Bruulsema, 2014; Ma et al.,
2014).

Given that human agency supplements water and nutrients in order
to efficiently produce biomass from photosynthesis, we conceptualize
crop production as a (composite) function of human agency induced use
efficiency of water and nutrients and resulting biomass production.

2.1. Conceptual model structure

Fig. 1 illustrates the overall methodology described in detail in
Section 2.3. A crop production function is conceptualized as a compo-
site function of biomass production and efficiency with which water
and nutrients are used up. Labor, irrigation and land-preparation ma-
chinery are considered as factors that impact the efficiency of water and
nutrient use by crops. Human agency therefore does not directly con-
tribute to crop biomass accumulation but determines the amounts of
accessible water and nutrient resources for crops.

2.2. Research area and data

Fig. 2 shows the study area. Crop production is modelled in Jiangsu
Province, China. Jiangsu Province is in the central area of the south-east
coast of China. Being a part of the Yangzi River Delta, Jiangsu Province
rapidly developing, together with one of the highest population den-
sities in the country. The main climate pattern of Jiangsu Province is
subtropical monsoon, with annual precipitation around 1000 mm/year.
Dominated by plain terrain, Jiangsu Province has the highest water
surface proportion among all the administrative regions in China,
taking advantage of abundant surface water resources. The total
planted area under food crops in Jiangsu Province reached to about
5.41 million hectares in 2017. Wheat and rice have the highest two

proportions of plant area, which are 28.69% and 29.94%, respectively.
Jiangsu Province has been undergoing a rapid process of agricultural
mechanization, i.e. more and more machines are being used to replace
human labor. The total power of agricultural mechanics reached to
approx. 50 million Kw in 2017, which is nearly 6 times of the value in
1978 (approx. 8.6 million Kw) (Bureau of Statistics of Jiangsu., 2018).
As a result, it is also witnessing rural to urban migration and urgently
seeks solutions that increase water and food security while balancing it
with employment in rural areas.

Crop growth information, including crop type and growing status,
were obtained from nine agro-meteorological monitoring stations
across Jiangsu Province (shown in Fig. 1). Two major types of food
crops, i.e., winter wheat (growing season: starts from October of pre-
vious year, 8 months in total) and rice (growing season: starts from May
of current year, 5 months in total) were selected as modeling objects. Of
the nine stations, six stations located in Fengxian, Ganyu, Xuyi,
Huaiyin, Yangzhou and Kunshan provided crop growth information for
winter wheat; three stations, including Ganyu, Dantu and Gaochun,
provided information for rice. Time series of precipitation, rootzone
moisture, transpiration, and provincial crop yield per area, are also
used. The data sources are listed in Table 2.1.

2.3. Model Set-up, calibration and validation

Let crop yield Y be represented by a function G(.,.) of actual water,
xW , and nutrient, xN , uptakes. Then =Y G x x( , )W N . However, actual
amounts of uptakes are often less than total amount of water available
WT in the form of rainfall R, rootzone moisture SW and nutrients
available after fertilizer amount F has been applied. The actual amount
of water and nutrient uptakes relative to their available supply defines
corresponding efficiencies. Therefore if uptake efficiencies (ηW as water
use efficiency and ηN as nutrient use efficiency) as well as the available
supplies are known then the amounts taken up by crops can be obtained
by multiplying efficiencies with the corresponding available amounts of
water and nutrients. This means that =x η WW W T and =x η FN N .

Water and nutrient use efficiencies are assumed to be enabled by
human agency, H, representing variables linked to machinery and
labor. This means that efficiencies are functions of H, i.e. =η η H( )W W
and =η η H( )N N . Then crop production can be defined by the following
composite function,

= =Y G x x G η H W η H F( , ) ( ( ) , ( ) )W N W T N (1)

Each station =i S1, .., has its own effects embedded in the functions

Fig. 1. Crop production conceptualized as a composite function of biophysical mechanisms and human agency. Human agency influences uptake efficiencies, which
then influence biomass production for given levels of water and nutrient resources.
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G, ηW and ηN . These station specific fixed effects result lead to station
specific yields. Such effect is implemented in Equation (1) as,

= =Y G x x G η H W η H F( , ) ( ( ) , ( ) )i i
W N

i
W
i i

T
i

N
i i i (1a)

Equation (1a) is the composite function model of crop production
that is calibrated using data available at multiple resolutions. Since the
model brings in human agency and biophysical effects in a sequence
(being a composite function), the parameters of the model can be es-
timated in two stages. Therefore panel regressions (Lobell & Burke,
2010; Cai et al., 2014; Álvarez et al., 2017) are performed in two steps.
This also synthesizes observations at different locations and provides
general relationships across stations.

2.3.1. Fixed effect estimation of the model in two stages
Step 1: In order to understand regional water and nutrient use ef-

ficiencies across locations, panel regression is performed across stations
to estimate ηW and ηN as functions of human activities, H. We use the
ratios =η x WW W T and =η x FN N (efficiencies of water and nutrient

uptakes respectively) as dependent variables and use inputs, H, such as
machineries linked to labor and irrigation as independent variables to
estimate the following equations for stations =i S1, .., :

= + + ∊η H δΛW
i i i

W

= + + ∊η H θΘN
i i i

N (2a.b)

Here, Hi represent station-specific human activities but its effect on
efficiencies, (Λ, Θ), are general across all the stations. Hence, (Λ, Θ) are
independent of station i. Fixed station-specific effects are quantified by
δ θ( , ),i i and ∊ ∊( , )W N represent the residuals accounting for variance of
efficiencies not explained by H. The estimation of effects is based on
linear regression of equations in Equation 2a,b and implemented by
using Álvarez et al. (2017).

Step 2: Panel regressions are again employed to estimate crop yields
as functions of observed water and nutrients uptakes, independent of
the stations. We assume that =G x x kx x( , )W N W

α
N

β (Kouka et al., 1994;
Gowariker et al., 2009; Xin et al., 2016; Li et al., 2016). This is done by

Fig. 2. Study area: Jiangsu Province of China. Also shown are the locations of agro-meteorological stations at which Normalized Difference Vegetation Index (NDVI)
and water-crop-related data were used.

Fig. 3. a, b Modeled and observed crop yields based on estimated effects shown in Table 3.1.
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estimating the following equation in log-space, accounting for station
specific fixed effects.

= + + + + ∊log Y αlog x βlog x log k π( ) ( ) ( ) ( )i
W
i

N
i i

Y (3)

Here x x( , )W
i

N
i are ‘observed’ water and nutrient inputs and Y i cor-

responding observed yields. Note that the effects α β k( , , ) are in-
dependent of the stations while πi is station specific fixed effect and ∊Y
represents variance of Y not explain by the independent variables. The
station independent prediction of yields are obtained by removing fixed
effects =Y kx xW

α
N

β. The regression is performed using Álvarez et al.
(2017).

2.3.2. Model based prediction
When predicting yields, predictions of station specific water, ̂xW

i , and
nutrient uptakes, ̂xN

i , are obtained as products of station-specific pre-
dictions of water and nutrient use efficiencies with location specific
water and nutrient availability respectively.

That is, ̂ ̂=x η WW
i

W
i

T
i and ̂ ̂=x η FN

i
W
i i with ̂ = +η H δΛW

i i i and
̂ = +η H θΛN
i i i being predictions of first stage regressions.

2.3.2.1. Proxies for water and nutrient uptakes. Transpiration, T, is
chosen as the proxy for water uptake by plants. Since it is harder to
detect nutrient uptake directly, proxy for nutrient uptake is estimated
based on Normalized Difference Vegetation Index (NDVI), (Landsat 7,
2001–2017). NDVI reflects the joint effect of water and nutrient uptakes
on plant greenness (Quarmby et al., 1993; Ren et al., 2008; Mkhabela
et al., 2011; Kogan et al., 2013). Therefore, the effect of water uptake
on NDVI is first filtered out and the remaining variance of NDVI is then
assumed to approximate the uptake of nutrients.

In order to filter out the effect of water uptake from NDVI, a fixed
effect regression across the stations, similar to fixed effect regressions
described above, is conducted in log space with NDVI as dependent
variable, g, and water uptake xW , as represented by transpiration T, as
the independent variable. This regression provides ̂g (an estimate of g),
which is the part of greenness that is explained only by water uptake.
The difference between g and ̂g in log space, i.e. residuals, then pro-
vides the part of greenness that is only a function of nutrients taken up
by crops. Such residuals are then taken as proxy of nutrient uptake N,
i.e.

̂= −log N log g log g( ) ( ) ( ) (4)

The yearly maximum value of NDVI during the growing season is
chosen to represent the maximum level of crop greenness because peak
NDVI is most sensitive to the levels of water and nutrient uptakes
(Gamon et al., 1995). We assume that higher peak NDVI also implies
that the crop has undergone lower water and nutrient stress during
other critical growth stages. The growing season considered for winter
wheat was from 1st October of previous year to 1st June of next year
(8 months), while the growing period of rice was set as 1st May to 1st of
October (5 months).

2.3.2.2. Water and nutrient use efficiency. Water and nutrient use
efficiencies are defined as the ratio of transpiration T and nutrient
proxy N to total available water, WT , and nutrient resources
respectively. Total available water resources, WT , is defined as the
sum of root zone moisture SW at the beginning of crop growing season
and precipitation P during crop growing season. Nutrient availability,
F, is represented by the total amount of fertilizer applied per unit area –
assuming that yield response to increased amounts of residual soil
nutrients are much less than to freshly applied fertilizer (Prihar et al.,
1985). The observed water use efficiency ηW and nutrient use efficiency
ηN are then calculated as follows and used to calibrate its predictive
equations (equations 2a, b).

=
+
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=η N
FN (5b)

Human factors such as labor used in crop production LC, irrigation
machinery power MI and land-preparing machinery power ML per unit
area are considered in the set of independent variables H (see equations
2a, b). All combinations of joint and individual effects (such as L M MC I L,
L MC I , M MI L, L MC I , LC, MI andML) were first regressed and only those
effects that were statistically significant were selected in the final
model.

2.3.2.3. Validation. Leave-one-out cross validation was implemented to
test the robustness of estimated crop production for each crop. For each
station, data was available for 17 years (2001–2017, see Table 2.1). In
each round of validation, 16 out of 17 years for each station were
chosen to train the model, while the remaining year was used to
validate the estimated model. This was repeated 17 times, each time
with a unique year left out for validation. Boxplots of relative errors
show the distribution of relative errors in leave one out cross validation.
The calculation of relative errors is defined as:

̂= −RE y y x( ) (5)

where ̂y represents the predicted yield for a crop using all except one
year of data, whereas y represents the observed yield.

3. Model interpretation: Substitution between labor and
machinery in winter wheat cultivation

The proposed crop production function is a composite function of
crop yield and efficiency with which water and nutrients are taken up,
as facilitated by human agency.

One can therefore interrogate such a model to understand how
tradeoffs between different components of human agencies have
evolved over time. The water use efficiency of winter wheat, as shown
in Table 3.2, is supported by labor and irrigation machinery (pumps)
and land-preparation machinery (tractors and supporting tools). Thus,
winter wheat serves as an interesting example to investigate how dif-
ferent elements have substituted one another and shed light on the
mechanization of agriculture in Jiangsu. Here we show that such esti-
mations based on the composite production function are consistent with
observed data.

Here, by substitution of one factor by another we mean how much
of one factor can be substituted by one unit of another factor such that
water use efficiency remains the same. This requires, for example, the
estimation of dL

dM
C
I
such that =d η( ) 0W (so that the level of water use

efficiency remains the same).

=
∂
∂

+
∂
∂

+
∂
∂

=d η
η
L

dL
η
M

dM
η
M

dM( ) 0W
W

C
C

W

I
I

W

L
L (4.1)

To obtain dL
dM

C
I
, we divide both sides of Eq. (4.1) by dMI :

∂
∂

+
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+
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I (4.2)

Obtaining dM
dM

L
I
by using data from the statistical yearbooks of the

province (BSJ, 2001~2018), dL
dM

C
I
can be calculated as

⎜ ⎟= − ∂
∂
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Note here that partial derivatives can be estimated from the re-
gressed equations in 2.3.2. Similarly, dL

dM
C
L
can be calculated as:

⎜ ⎟= − ∂
∂
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L (4.3b)

The calculated dL
dM

C
I
and dL

dM
C
L
are shown in Fig. 7a, b.

4. Model results

4.1. Yield-uptake relationship

Table 3.1 gives the coefficients of proxies correspond to the effects
(i.e., α and β in Eq. (3)) of water and nutrient respectively. It reports
that estimated effects for both the crops were significant.

Fig. 3a,b show observed yields in comparison with the modeled
yields for rice and wheat. Modeled yields for various stations are ob-
tained by incorporating station specific fixed effects (from Eq. (3)) for
stations =i S1, .., with parameters given in Table 3.1 (fixed effects

=k kei πi
not shown).

4.2. Water use efficiency

Table 3.2 shows that several elements of H were found to be sta-
tistically significant in explaining water use efficiency of winter wheat.
In case of rice, only irrigation machinery MI demonstrated significant
effect (regression coefficient) on water use efficiency, which reflects
that water access is most important for its water uptake.

Again, Fig. 4a, b show ‘observed’ (see equation (5a) how water use
efficiency, i.e., WUE, has been defined) WUE in comparison with the
modeled WUE for wheat and rice (from Eq. 2a).

4.3. Nutrient use efficiency

Table 3.3 shows that land-preparing machinery is the only sig-
nificant factor for the nutrient use efficiency of winter wheat. This in-
dicates that better-prepared farmland is the only significant factor that
facilitated better nutrient access for winter wheat. On the other hand,
the major contributing factor to rice nutrient use efficiency is labor
power, together with the joint-effect factor of crop labor and land-
preparation machinery. Also, ‘observed’ (see equation (5b) how nu-
trient use efficiency, i.e., NUE, has been defined) NUE in comparison
with the modeled NUE for wheat and rice (from Eq. 2b) are shown in
Fig. 5a, b.

Table 3.1
Yield-uptake fixed effect estimation of α and β for the two crops. All effects are
significant with p < 0.01.

Crops X Coefficients Std. Error

Winter wheat (x )αW 0.53 0.06

(x )βN 0.12 0.03

Overall R-squared 0.73
Rice (x )αW 0.17 0.02

(x )βN 0.04 0.01

Overall R-squared 0.84

Table 3.2
Fixed effect estimation of water use efficiency for the two crops. All effects are
significant at p < 0.01.

Crops H Coefficients Std. Error

Winter wheat LC 8.57e-3 2.76e-3
MI 5.60e-3 2.00e-3
ML 2.94e-3 0.75e-3
LC*MI −9.92e-6 0.34e-5
LC*ML −3.77e-6 1.05e-6
MI*ML −3.41e-6 0.92e-6
LC*MI*ML 4.45e-9 1.29e-9
Overall R-squared 0.68

Rice MI 3.01e-4 0.77e-4
Overall R-squared 0.49
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4.4. Leave-one-out cross validation

According to Fig. 6a, b, for all crops at all stations, the median
values (shown by red line at the center of the box plots) of relative
errors are within ± 0.05 of observed values (as indicated by the red
shadows). This indicates that the proposed model is robust in modeling
winter wheat and rice production within Jiangsu Province.

4.5. Substitution between labor and machinery in winter wheat cultivation

Fig. 7a, b indicate that during years before 2005, more labor, LC,
was used relative to machinery ML. After 2005, mechanization gradu-
ally led to less labor being used relative to machinery while achieving

same level of water use efficiency. The derivative between LC and MI ,
i.e., dL

dM
C
I
, however fluctuated around 0, indicating that they are com-

plimentary and do not tend to substitute one another. The close re-
semblance of substitution effects estimated based on regressed re-
lationships, together with those estimated based on statistical year
books (indicated as data in Fig. 6), further suggests that the proposed
production function is capable of providing robust interpretation of
how one input has been, or can be, substituted with another without
affecting water use efficiency.

5. Discussion and conclusion

This paper conceptualized crop production as a composite function
of bio-physical mechanisms and human-agency. While the former links
water and nutrient uptakes to crop biomass production, the latter in-
fluences the efficiencies with which water and nutrients are taken up.

The model was calibrated using hydro-climatic and agricultural
statistics from 2001 to 2017 for two main food crops in Jiangsu pro-
vince, i.e., winter wheat and rice, using panel regressions across agro-
meteorological monitoring stations (six for winter wheat, three for
rice). The median performance of the composite function was found to
be within 5% of the observed based on leave one out cross validation.

The fixed effect regressions were used to filter out station specific
effects of human agency on use efficiencies and of efficiencies on crop

Fig. 4. a, b Modeled and observed crop water use efficiency (WUE) across the stations.

Table 3.3
Fixed effect estimation of nutrient use efficiency. All effects are significant at
p < 0.01.

Crops X Coefficients Std. Error

Winter Wheat ML 1.26e-7 0.23e-7
Overall R-squared 0.49

Rice LC 2.35e-8 0.58e-8
LC*ML 5.35e-12 1.25e-12
Overall R-squared 0.56

Fig. 5. a, b Modeled vs observed crop nutrient use efficiency (NUE) across stations for two crop types.
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production. This data-driven approach was key to commensurate, to
certain extent, different scales of the data sets used and to obtain a
generic relationship that is devoid of any station specific effects. The
yield data used was at provincial level, transpiration and soil moisture
was at 0.25° x 0.25° scale based on GLDAS reanalysis data, and NDVI
and human agency data was station specific. However, transpiration
and soil moisture data used is at much coarse resolution compared to
NDVI, which means that, for example, transpiration would give an
aggregate for both (irrigated) crops and native vegetation and other
land surfaces. It is assumed that higher peak NDVI also implies that the
crop has undergone lower water and nutrient stress during other critical

growth stages. Further, irrigation has been ignored when calculating
water use efficiency. Results therefore demonstrate a proof of concept
at best, which can be made more reliable with higher resolution data
sets.

The data driven approach treated crop production as a composite
function of water and nutrient use efficiency and human agency. This
approach fills a gap in our coupled human-water system understanding
of crop production, which either has been focused on bio-physical
mechanisms or based on economic production theory. The proposed
method demonstrated its novelty by not only modeling the bio-physical
relationships of crop yield with water and nutrient inputs, but also

Fig. 6. a, b: Leave-one-out cross validation across the stations and two crops. Distribution of relative errors (Eq. (5)) are shown with zero error shown by the grey
dashed line, and ±0.05 error shown by the red shadows.

Fig. 7. a, b Rates of substitution between labor and machinery.
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considering how humans, e.g. through irrigation and land-preparation,
influence the efficiencies of water and nutrients uptake. Crop and labor
machinery were found to be important for nutrient use efficiency.
Irrigation machinery was most important for water use efficiency of rice
production. However, all aspects of human agency were important for
water use efficiency of winter wheat production.

These results are intuitive, suggesting the labor and land prepara-
tion machinery are key to crop production in the region in general.
While the variance explained by human agency in explaining nutrient
use efficiency was similar across the two crops, human agency appeared
to explain water use efficiency of winter wheat a lot better than rice.
This indicates that WUE of rice is less sensitive to human agency and
perhaps more dependent on water scarcity. On the other hand water
and nutrient use efficiency and therefore crop productivity of winter
wheat was sensitive to various aspects of human agency such as labor
and land preparation machinery. The differences in the effects between
the two crops indicate that rice production is a water intensive crop and
its yield exclusively depends on how well the crop is irrigated. Even
though rice cultivation is labor intensive, the role of human agency in
various stages of the crop growth appears to be less complicated. In
contrast, winter wheat, often grown in autumn, relies on a complex
interplay of water and nutrient availability that is facilitated by human
agency during its growing period.

The substitution analysis revealed that more labor was used relative
to machinery in winter wheat production before 2005. Post 2005,
mechanization gradually led to less labor being used relative to ma-
chinery while achieving similar level of water use efficiency. Labor (LC)
and irrigation machinery (MI) were found to be complimentary to water
use efficiency of winter wheat production. Therefore, interventions
targeting machinery are most instrumental in increasing wheat pro-
ductivity.

Lyu et al. (2019) have recently found that under-employment in
rural areas of Jiangsu Province has been fueling the rural to urban
migration. Given the gains in efficiency that mechanization produces
and the observed transition to mechanization, any sound policy aimed
at alleviating under-employment and hence migration should target
more skilled employment in the non-agricultural sectors of rural areas.
This will ensure rural employment, sustainable rural communities (Li,
2010) as well as regional food security.

The methodology is transferrable to other regions as well. This is
because the data sets used are regional agricultural statistics on crop
yields and open access hydrological data, such as reanalysis data for
transpiration and soil moisture (Rodell et al., 2004) and high resolution
LANDSAT7 based NDVI data (Gorelick et al., 2017). Policy strategies
for alleviating migration while ensuring regional food security there-
fore can be devised based on crop production simulations, as shown in
this paper, in regions where agricultural statistics data are available.
This can be done by analyzing the implications of crop production si-
mulations that ensure food security on rural employment under future
climate and socio-economic scenarios. As Lyu et al. (2019) have found,
rural under-employment is a major driver of rural–urban migration.
Target regions could be fast developing regions such as Maghreb region
of Africa and South Asia that are witnessing massive flux of rural to
urban economic migrants. Yet, given that the dataset that the approach
relies on is either reanalysis or at different scales, such policy designs
will need to be handled with caution and be validated based on field
campaigns where possible.
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