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Abstract: Objective: Image denoising has been considered as a separate procedure 
from image reconstruction which could otherwise be combined with acquisition and 
reconstruction. This paper discusses a joint image reconstruction and denoising 
algorithm in low-field MRI using a dictionary learning approach. Method: Our 
proposed algorithm uses a two-level Bregman iterative method for image 
reconstruction and image denoising procedure using OMP for sparse coding and 
SimCO for Dictionary Update and Learning. Results: Experiments were done on a 
noisy phantom that was obtained from a low field MRI scanner. Results demonstrate 
that our proposed algorithm performs superior image reconstructions that are almost 
noise-free. Our proposed method also performed better than the TBMDU algorithm, 
which performed better than DLMRI, a technique that substantially outperformed 
other CSMRI based reconstruction methods. However, the TBMDU algorithm is 
faster than our proposed algorithm due to additional iterations required during the 
denoising step. Conclusion: An algorithm that jointly performs reconstruction and 
denoising is essential in medical imaging modalities where image denoising has been 
a separate process from the reconstruction. Combining the two could save time and 
could avoid image details to be lost due to having two separate operations.  This 
formulation is essential in imaging modalities like low-field MRI where the image 
signal is noisy and therefore performing a joint reconstruction and denoising could 
help improve the quality of the images obtained.  
Keywords: Dictionary learning, Two-level Bregman iterative method, Image 
Reconstruction, Image denoising, low-field MRI. 

1. Introduction  
Magnetic Resonance Imaging (MRI) is a safe medical imaging technology that provides a 
non-invasive way to view the structure of human anatomy [1]. MRI systems are classified 
according to the strength of the magnetic field they produce (in Tesla): Ultra-High Field > 
3T, High Field (1 - 3T), Mid Field (0.5 - 1T), Low Field (0.1- 0.5T) and Ultra-Low Field < 
0.1T [2]. However, conventional MRI scanners (high-field) are very expensive to purchase, 
operate and maintain in developing countries [2]. Due to these limitations, many people in 
developing countries do not have access to MRI technology [3]: for example, Uganda, with 
a population of nearly 45 million, has only 4 MRI machines and there are 84 MRI machines 
in West Africa serving a combined population of more than 350 million [4]. 
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To address the above challenges, teams from Mbarara University of Science and 
Technology (MUST) in Uganda, Leiden University Medical Centre (LUMC) in the 
Netherlands, Delft University of Technology (TU Delft) in the Netherlands, and 
Pennsylvania State University (PSU) in the USA are working on developing affordable, 
portable and low-field MRI scanners, aiming to diagnose children in developing countries 
with hydrocephalus [3]. Hydrocephalus is a condition where there is an excessive 
accumulation of cerebrospinal fluid in the brain leading to distention of the ventricular 
system of the brain. In hydrocephalic children, the critical issue is to distinguish between 
brain matter and cerebrospinal fluid (CSF) to be able to make treatment decisions. This 
distinction does not require very high-resolution images be make and therefore an 
appropriate low-field MRI system would be able to provide images that make the 
distinction possible [2]. For the beginning, we are targeting the use of the low-field MRI 
devices under development for hydrocephalus diagnosis (imaging). It is after the 
achievement of this objective we plan to scale the devices beyond hydrocephalus.  

Our research is part of a larger programme funded by the Dutch organization NWO-
WOTRO to stimulate research that addresses the Sustainable Development Goals (SDGs). 
By developing low-cost MRI scanners, we aim to contribute to SDG 3: “Ensure healthy 
lives andpromote well-being for all at all ages”. Figure 1.1 shows our low-field MRI 
prototypes. 

   
Figure 1.1: The low-field MRI prototypes. Left is the PSU-MUST prototype, taken  from [2]; and right is the 

LUMC prototype, taken from [4]. 

 The low-field MRI systems above (PSU-MUST and LUMC prototypes) are 
characterized by a low signal-to-noise ratio, and this has a very big impact on the quality of 
the final image [5]. Also, the images generated are very noisy (see Figure 1.2), and it takes 
a long time to acquire an image (takes more than 16 minutes to scan an object). With the 
algorithm that is described in this paper we aim to alleviate these drawbacks of low-field 
MRI. Our project is ongoing and we expect to start clinical trials in the first half of 2021. 
The LUMC prototype will be shipped in the spring of 2020 for testing at MUST in Uganda.  

According to literature, two major attempts have been made to increase the imaging 
speed for MRI systems; these are hardware and software approaches. The hardware 
approach uses a multichannel parallel MRI, its limitation being economically expensive and 
requires considerable time in development. The use of a hardware approach is beyond the 
scope of this study. The software approach uses compressed sensing, which guarantees 
accurate reconstruction of good quality diagnostic MR images from fewer signals than 
those mandated by Nyquist sampling [6] [7]. Compressed sensing techniques like 
dictionary learning, can help us improve on the signal-to-noise ratio of the generated 
images as well as noise removal, and also improvement in the imaging speed of the low-
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field MRI systems since it is possible to reconstruct a good quality diagnostic image with 
20-30% of the k-space data [6]. Figure 1.2 shows some of the images from our low-field 
MRI prototypes. 

      

Figure 1.2: Images showing relatively high SNR but also image distortions. (Left) The phantom (Shepp 
Logan) is 3D printed with dimensions 10x10x3.5 cm3 and filled with oil. (Middle) The image was acquired 
using a spin-echo sequence with no slice selection gradient, and a spatial resolution of 1x1x35 mm3. Eight 

signal averages were acquired with a total data acquisition time of 16 min. Adapted from  [4]. The image on 
the right (oval) was obtained with the PSU-MUST prototype, while that in the middle was obtained with the 

LUMC prototype. 
1.1 Application of Compressed Sensing to low-field MRI 
In the natural sciences, inverse problems are often ill-posed, and their solutions are very 
sensitive to perturbations in the data. An example of such an ill-posed problem is the 
reconstruction of an image based on low-field Magnetic Resonance Imaging (MRI) [5]. 
Compressed Sensing (CS) theory [6] have been applied in ill-posed inverse problems 
including image construction [7], [8], [9], [10], [11], [12], [13], [14] and image denoising 
[15], [16]. Our interest is to develop a joint image reconstruction and denoising algorithm 
that can be used in low-field MRI systems. The model for image reconstruction is described 
by Eq. (1) below: 

   Subject to               (1) 
where u P represents the vector of the 2D complex image to be reconstructed, m 
represents the k-space measurements, Ψ T x p represents the sparsifying transform like 
wavelet transform, 0 represents the number of non-zero elements in the vector, Fp

m 

x p represents the undersampled Fourier encoding matrix and  is the sparsity promoting 
regularization criteria subject to data consistency Fpu – f (in the absence of noise). 
Undersampling occurs whenever the number of k-space measurements is less than the 
number of unknowns i.e. m < P.  In the presence of noise, for example, White Gaussian 
noise, the Eq. (1) is formulated as in Eq. (2) 

 0 subject to 2 ≤ σ (2) 
where σ is the standard deviation of the noise added to the measured k-space data. 

Compressed Sensing reconstructs the unknown u from the measurements f, or by 
solving the underdetermined system of linear equations Fpu = f by minimizing the ℓ0 quasi 
norm (the number of non-zero elements) of the sparsified image , where  represents a 
global sparsifying transform of the image. This ℓ0 problem in Eq. (1) and (2), sometimes 
called sparse coding problem because it corresponds to finding a sparse code u for a given 
vector f using the cookbook Fp, is NP-hard. Greedy algorithms such as Orthogonal 
Matching Pursuit (OMP) have been used to solve this problem. Alternatively, the problem 
is solved by replacing the ℓ0 quasi norm with its convex relaxation, the ℓ1 quasi norm [8], 
which can be solved by linear programming in a real case or second-order cone 
programming in the complex case. Compressed Sensing has been applied to a variety of 
MR modalities such as static MRI, dynamic MRI, diffusion tensor imaging (DTI), and 
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perfusion imaging. In this study, we restrict our attention to Compressed Sensing for static 
MRI, in particular, low-field MRI, and study it in detail. 

1.2 Research Objectives and Outline 
An efficient joint image reconstruction and denoising method can be of great importance 
especially in low-field MRI imaging. There are many sources of noise during imaging 
especially in low-field MRI that renders obtained signals or images noisy. Such noise 
should be removed before subsequent operations are done like segmentation, classification 
or before being used by clinicians in their diagnosis tasks. Image denoising has been used 
as a separate operation from image reconstruction, and therefore doing both operations 
differently consumes time that could otherwise be saved if the operations are combined in 
one algorithm. This study is incremental in nature; it seeks to integrate image reconstruction 
and denoising algorithms. Therefore, the major objective of this study is to develop and 
implement a noise-robust image reconstruction algorithm suitable for medical imaging 
devices like in low-field MRI systems that are characterized by noise. 

The rest of the paper is organized as follows. In section 2, the methodology is 
discussed; section 2.1 discusses the Two-Level Bregman Method for Image Reconstruction 
in MRI; section 2.2 discusses image denoising algorithms, and section 2.3 discusses our 
proposed algorithm. In section 3, Experiments and results are discussed. Section 4 discusses 
the comparison of our proposed formulation with other algorithms and Conclusions and 
Outlook are given in section 5. 

2. Methods 
2.1  Two-Level Bregman Method for Image Reconstruction in MRI  
The Two-Level Bregman image reconstruction algorithm adopted in this paper was initially 
proposed by [7]. The algorithm consists of a two-level solver employing the Bregman 
technique. One part is to estimate the recovery image and the other part is to calculate the 
dictionary and sparse coefficients of image patches. A modified strategy is applied to the 
sparse coding step of the inner minimization, enabling the efficiency of the proposed 
algorithm. For more details, readers can refer to Ref. [7]. 
The following section summarizes the derivation of the Two-Level Bregman image 
reconstruction algorithm from the original Bregman iterative method. 
 The Bregman iterative method is used to solve the following problem 

  Subject to  = 0   (3) 

where J and H are convex functions. H is also differentiable. 
 

The formulation in Eq. (3) can be transformed by the Bregman method into a series of 
unconstrained sub-problems as shown in Eq. (4) 

  (4) 

where  =  -  - . s is a sub-gradient of  at the point y. 

A newly updated formulation is obtained by substituting  = μ  /2, 
 as shown in Eq. (5). 

 (5) 

 
where f 0 = 0  and μ > 0 is a weighting parameter. 
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A two-level Bregman iterative method is formulated by substituting the regularization term 
 in Eq. (5) and a new formulation (Eq. 6) is 

obtained.  
 

 (6) 

where  represents the image to be reconstructed,  represents the 
undersampled Fourier measurements, C represents the complex field and  denotes the ith 
patch extracted from image u.  Represents the partially sampled Fourier encoding 
matrix that maps  to  such that , D = [d1, d2,---, dq]  and Г = 
[ ] . The parameter  balances the sparse level of the image patches 
and the approximation error in the updating dictionary. For many natural or medical 
images, the value  can be determined empirically. For more details, readers can refer to 
Ref. [7]. 
The frequency interpolation on line 10 in the algorithm is achieved by the following 
equations (Eq. 8 and 9). 

      (7) 
 

   (8) 
 

,  (9) 

 
where  represents the updated value at the location ,  stands for the 
subset of k-space that has been sampled. Equations 8 and 9 are referred to as frequency 
interpolation step.  

In summary, the two-level Bregman iterative method consists of two-level nested loops. 
The outer loop updates the value of f k while the inner loop updates the variables D, and u. 
using algorithm 1, for the outer loop, the value of fk is progressively updated to obtain the 
minimum of (1) or (2). The inner loop employs the two-step approach, iteratively attaining 
sparse representation of the image patches and updating (8) and (9), to minimize the penalty 
function for the given value of fk.  

There are four parameters involved i.e. μ, , β and . The parameters μ and  are 
positive parameters for Bregman/AL iteration algorithms. The values of μ and β have little 
effect on the final reconstruction quality provided they are sufficiently small. Furthermore, 
it should be noted that the smaller the value of the Bregman parameters are, the more 
iterations are needed to reach the stop criteria.  stands for the sparse level of the image 
patches and can be determined empirically. As to the step size  for updating the dictionary, 
it can be set as a small positive number such as 0.01. For more details, readers can refer to 
Ref. [7]. 

2.2 Image Denoising  
The image denoising algorithm adopted in this paper was initially proposed by [17]. The 
approach that was used in their study was based on sparse and redundant representations 
where the proposed algorithm denoises the image while simultaneously training a 
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dictionary using Simultaneous Codeword Optimization (SimCO) algorithm. For more 
details, readers can refer to Ref. [17]. 

Consider the following image denoising formulation in Eq. (10)  
 

 (10) 
where Y is the measured image, X is the noised version of Y, D is the dictionary, α is the 
sparse code and  represents non-zero entries in α. 

The formulation in Eq. (10) has three unknowns: (1) the dictionary D, (2) the sparse 
representations  and (3) the overall denoised image output X. The formulation in Eq. 
(10) was solved by using a block-coordinate minimization algorithm that fixes two of the 
unknowns, and searching for the optimal third. The sparse representation is solved using 
the orthonormal matching pursuit (OMP) [18] and the dictionary D is updated using the K-
SVD algorithm [19].  Then finally the sparse representation  and updated dictionary D 
are fixed to update X. therefore, in summary, the above-proposed image denoising 
algorithm performs sparse coding of small image patches using OMP, performs dictionary 
update using KSVD and averaging the resulting image patches as the final step in the 
algorithm. Experiments performed using the proposed algorithm showed excellent results 
even when the dictionary was trained in a noisy image. However, the K-SVD algorithm for 
dictionary learning and updating is slow because it updates dictionary atoms (codewords) 
individually [20]. The study by [20] proposed an algorithm called Simultaneous Codeword 
Optimization (SimCO) for Dictionary Update and Learning that overcomes the challenges 
of KSVD. Instead of updating atoms (codewords) individually, SimCO simultaneously 
updates all the codewords. Hence, SimCO is faster than K-SVD in dictionary learning and 
updating operations. For more details, readers can refer to Ref. [20]. 

2.3  The proposed denoising driven reconstruction algorithm 
Our proposed approach is to reconstruct natural and medical images such as the one shown 
in Fig. (2) using a two-level Bregman iterative method while simultaneously denoising the 
image during reconstruction. Our proposed algorithm is also robust to noise such as zero-
mean white Gaussian noise. The main task here is to reconstruct an image using the Two-
Level Bregman Method (TBMDU) [7] followed by denoising  [20]. Fig 3 shows the 
proposed algorithm. Our proposed algorithm consists of two steps: (1) image reconstruction 
step based on Algorithm 1 and (2) image denoising step based on algorithm2. The image 
denoising step uses SimCO for dictionary updating and OMP for sparse coding. In our 
formulation, the output from step 1 (i.e. image reconstruction step) is fed into step 2 (i.e. 
image denoising step). The results from our experiments show that our proposed methods 
perform well in both reconstruction and denoising even when the input image had natural 
noise (noise obtained from the imaging system) and when noise e.g. white mean Gaussian 
noise was added to the image. The novelty of this work is incremental. During our study, 
we integrated image reconstruction and denoising. The practical significance of this 
proposed algorithm is its applications in joint image reconstruction and denoising especially 
in the low-field and ultralow-field MRI systems. These systems are characterized by low 
signal to noise ratio and therefore the final images have noise which needs to be removed 
before the image is used for clinical use.  
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----------------------------------------------------------------------------------------------------------- 
Algorithm1: Proposed algorithm for image reconstruction and denoising 
----------------------------------------------------------------------------------------------------------- 
1. Initialization: , = 0, D0,  
2.  do 
3.     i = 1 
4.  while i ≤ P do 
5.   while stop criterion not satisfied do 
6.        

7.       

8.   end (while) 
9.   , q = 1,…,Q 
10.  update  by frequency interpolation using equations 8 and 9. 
11.   i  i +1 
12.  
13.    (10) 
14.  end (while) 
15. end (while) 
 
Output: A noise-free reconstructed image  
------------------------------------------------------------------------------------------------------------- 

3.  Experiments and results  
This section explains how the parameters used in this study were selected, data sources 
used in the experiments, the experimental results, and comparison with other states of art 
algorithms. 

3.1  Parameter Selection 
In our study, the parameters for the image reconstruction step were chosen based on the 
original implementation settings of the TBMDU algorithm [7]. The patch size  x  = 
82, the over completeness of the dictionary K=4, and the patch overlap r=1 (corresponding 
Q =256 and w=( /r)2 =64). Also, the parameters for the image denoising step were 
chosen based on the original settings by [20]. All the experiments in this paper have done 
using Matlab 2017a on a laptop equipped with Windows 10, Intel Core i3, 2.0GHZ CPU 
and 8GB RAM.  

3.2  Computational cost 
The number of computations in an algorithm represents the algorithm complexity and 
affects the run time of the algorithm. Our proposed algorithm is comprised of the TBMDU 
algorithm for image construction and the image denoising algorithm uses OMP for sparse 
coding and SimCO for dictionary learning and updating. The total computational cost for 
the TBMDU algorithm is O(QMLmmaxkmaxP) where M denotes the patch size,  L denotes the 
number of image patches and Q denotes the number of atoms. mmax, kmax, and P denote the 
numbers of iterations. For more details, readers can refer to Ref. [7].  For our denoising 
algorithm, the computational cost of OMP is O(mnkN), where m is the length of the 
measurement vector, n is the number of atoms in the dictionary, k is the number of non-zero 
elements in x (sparsity) and N is the total number of patches.  For dictionary learning and 
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updating, SimCO was used. The key characteristic of SimCO is to update all the atoms and 
corresponding non-zero coefficients simultaneously and hence reduce the computation cost. 

The complexity of MOD and SimCO is of the same level, however the computational 
expense for each MOD iteration is less than that for each SimCO iteration, yet the number 
of iterations required for convergence in MOD is larger than that in SimCO. As opposed to 
MOD and SimCO where all codewords are simultaneously updated, K-SVD updates 
codewords individually. The overall speed of K-SVD is often slower than MOD and 
SimCO because of the individual update. For more details, readers can refer to Ref. [20]. 
Therefore, our proposed algorithm is computationally expensive because it is comprised of 
the individual complexities of the TBMDU algorithm, OMP, and SimCO. When compared 
to TBMDU and DLMRI algorithms, the computational cost of the DLMRI algorithm is 
O(nKTN), where n is the size of the patches, K represents the number of atoms, T is the 
sparsity threshold for each patch and N is the total number of patches. The computational 
cost of the DLMRI is higher than that of the TBMDU algorithm, because the dictionary 
update of K-SVD uses the complicated SVD decomposition, while TBMDU method only 
involves simple matrix multiplication. For more details, we refer the reader to Ref. [8]. 
Therefore, our proposed algorithm is computationally more expensive when compared to 
TBMDU and DLMRI algorithms but it is more noise-robust when compared to the two 
algorithms.  

3.3  Data Sources 
The image data used during this study was obtained from the low-field MRI systems that 
are currently at Pennsylvania State University (PSU) and Leiden University Medical Centre 
(LUMC). Both systems are still in development and the images used are available on 
request. Also, a real MRI image was used during the experiment. The image was obtained 
from [8]. 

3.4  The Performance Metrics Used  
During this study, we adopted the performance metric that were used by other researchers 
in related studies. The  metric is  Peak Signal to Noise Ratio (PSNR) [8] [17].  PSNR 
(measured in decibels-dB) is computed as the ratio of the peak intensity value of the 
reference image to the root mean square (RMS) reconstruction error relative to the 
reference image.  This metric is considered as the image quality measure and has been used 
a lot in image compression and denoising tasks. However, PSNR does not represent 
perceptual visual quality, which can be assessed by a human observer. 

3.5  Results 
The phantom image in Figure 1.2 was used in our experiments during this study. We also 
tested our algorithm on an image used in [8]. We compared the performance of our 
algorithm with TBMDU and DLMRI using the PSNR metric and the execution time.  
(a) Comparative Performance of the algorithms basing on PSNR, the Execution Time (s) 
and the CPU_time 

(i) Using a Phantom Image 
The PSNR, the Execution Time (s) and the CPU_time were recorded after 20 
iterations using a phantom image in Figure 1.2 (middle), as shown in Table 1 below. 
It can be noted that our proposed algorithm has a higher PSNR when compared to 
the TBMDU and DLMRI algorithms. However, our proposed algorithm has a 
higher execution time and CPU time when compared to the TBMDU and DLMRI 
algorithms.  
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Table 1: Performance of the algorithms using a Phantom Image 

Parameter TBMDU DLMRI Proposed Algorithm 
PSNR (dB) 30.2 30 33.8 
Execution Time (s) 149.5871 380.8340 631.0341 
CPU_time 3.9013e+03 4.1301 e+03 4.4460e+03 

(ii) Using MR image from [8] 
The PSNR, the Execution Time (s) and the CPU_time were recorded after 20 
iterations using the MR image from [8], as shown in Table 2 below. It can also be 
noted that our proposed algorithm has a higher PSNR when compared to TBMDU 
and DLMRI algorithms. Our proposed algorithm also has a higher execution time 
when compared to TBMDU and DLMRI algorithms. Also, our proposed algorithm 
have a low CPU time when compared to TBMDU and DLMRI algorithms. 

Table 2: Performance parameter of the algorithm 

Parameter TBMDU DLMRI Proposed Algorithm 
PSNR (dB) 38.2 38.3 38.5 
Execution Time (s) 148.0857 370.9409 617.2350 
CPU_time 3.6761e+03 3.8257e+03 3.4443e+03 

(iii) Using MR image from [8]after adding 20dB of noise 
The PSNR, the Execution Time (s) and the CPU_time were recorded after 20 
iterations using the MR image from [8], as shown in Table 3 below. It can  be noted 
that our proposed algorithm has a higher PSNR when compared to DLMRI 
algorithm, and approximately the same value when compared to TBMDU. Our 
proposed algorithm also has a higher execution time and CPU time when compared 
to TBMDU and low execution time when compared to DLMRI. 

Table 3: Performance parameter of the algorithm 

Parameter TBMDU DLMRI Proposed Algorithm 
PSNR (dB) 2.951014e+01 2.874695e+01 2.945824e+01 
Execution Time (s) 235.8519 1.4944e+03 299.7162 
CPU_time 7.8357e+03 7.1346e+03 9.3852e+03 

 
(b) Image Reconstruction using our proposed algorithm, DLMRI and TBMDU  

(i) Using a Phantom Image  

       
 (a)      (b)   (c)    (d) 

Figure 1.3: The original image (a) that was used for reconstruction. The results after 10 iterations for 
TBMDU, DLMRI and our proposed algorithm were (b), (c) and (d) respectively. 

After 20 iterations, a phantom in Figure 1.3 was reconstructed using TBMDU, 
DLMRI and our proposed algorithm. The results are shown in Figure 1.3. It can be 
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noted that our proposed algorithm is robust to noise when compared to TBMDU and 
DLMRI algorithms. 

(ii) Using the MR image from [8] 
After 20 iterations, a real MRI image was reconstructed using TBMDU, DLMRI 
and our proposed algorithm. The results are shown in Figure 1.4. It can be noted that 
our proposed algorithm also performs better when compared to TBMDU and 
DLMRI algorithms. 

          
        (a)   (b)   (c)   (d) 

Figure 1.4: The original MRI image (a). The results after 10 iterations for TBMDU, DLMRI and our 
proposed algorithm were (b), (c) and (d) respectively. 

(iii) Using MR image from [8]after adding 20dB of noise 
During this experiment, we used again the MR image from [8] (a). This image was 
corrupted by 20dB of noise and was used to train the dictionary (b). We were then 
interested to reconstruct the image corrupted by noise. After 20 iterations, the image 
was reconstructed using TBMDU, DLMRI and our proposed algorithm. The results 
are shown in Figure 1.5. Visually, it was noted that our proposed algorithm 
performed relatively better when compared to TBMDU and DLMRI algorithms. 

 

            
                (a)                     (b)           (c)      (d)                        (e) 
Figure 1.5: (a) is the original image, (b) we added 20dB of noise to the original image, (c) a reconstruction of 
b using our proposed algorithm, (d) reconstruction of b using DLMRI and (f) is the reconstruction of b using 

TBMDU 

4.  Discussion 
The results of this study were compared with the TBMDU and DLMRI algorithms. The 
later algorithm (DLMRI) has been used as a benchmark algorithm in studies related to 
image reconstructions in MRI using Compressed Sensing (dictionary learning) techniques. 
TBMDU was also used for comparison because it outperformed DLMRI, a technique that 
substantially outperformed other CSMRI based reconstruction methods (For more details  
we refer the readers to Ref. [7]). By visual inspection (see Figures. 1.3, 1.4 and 1.5), it was 
observed that our proposed formulation outperforms the TBMDU and DLMRI algorithms 
especially when the input image to be reconstructed is corrupted with noise. However, it 
was noted in all our experiments that the TBMDU algorithm converges faster, followed by 
DLMRI and lastly, our proposed algorithm. The proposed algorithm was not compared with 
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Deep learning techniques due to the computational complexity of Deep Learning 
algorithms, e.g. the need for graphical processing units (GPUs) during training, and also 
large training datasets are required for deep learning algorithms to perform well. During 
this study, only one image was required for dictionary training per experiment and also no 
additional computing power like GPUs was required during our experiments which in 
contrast is required for Deep Learning experiments. Therefore, this algorithm is practically 
applicable to the low-field MRI systems. These systems are characterized by low signal to 
noise ratio and therefore the final images have noise which needs to be removed before the 
image is used for clinical use. The algorithm developed during this study is important for 
the final MRI product because of its robustness to noise. The results of the study 
demonstrated that the algorithm is effective in removing noise during the reconstruction 
process.  

5.  Conclusions and Outlook 
The paper discussed a compressed sensing-based image reconstruction algorithm that 
combines both reconstruction and denoising. Authors of this paper were motivated by the 
fact that noise is inseparable from imaging modalities and therefore having an algorithm 
that jointly reconstructs and denoises an image or a signal could save time other than 
working on two operations differently. Results from the experiments demonstrated that our 
proposed algorithm performed well especially when the input image to be reconstructed is 
noisy. Image denoising is an important procedure required before image analysis tasks like 
segmentation, classification and also in computer vision tasks; therefore our proposed 
algorithm is suitable for performing noise-robust reconstructions which is essential for 
image analysis tasks. Combining the two could save time and other image details that could 
be lost due to having two separate operations.  This formulation is essential in imaging 
modalities like low-field MRI where the image signal is noisy and therefore performing a 
joint reconstruction and denoising could help improve the quality of the images obtained. 
The next step in our research is to combine our algorithm with the low-field hardware and 
image processing software that has been developed within our project [2,4,5] and to thesis 
of  Venkateswararao Cherukuri [21] for further evaluation and testing. To this end we are 
currently replicating the MRI devices at MUST and unifying our software. We expect to be 
ready for medical trials which will be performed jointly with CURE children hospital 
Uganda in 2021.  
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