
Sustainable &
smart distribution
networks
Thesis
EE BEP Group B
Subgroup B.3 - Optimization Control

Tal Baranes
Rick Steman



Sustainable &
smart distribution

networks
Thesis

by

EE BEP Group B
to obtain the degree of Bachelor of Science

at the Delft University of Technology,

Students: Tal Baranes (4968115)
Rick Steman (4953371)

Project duration: April 19, 2022 – June 24, 2022
Thesis committee: Dr. P.P. (Pedro) Vergara Barrios, TU Delft, supervisor

N. K. (Nanda) Panda, TU Delft daily supervisor



Preface

In this thesis the build plans for a new residential neighbourhoord, Vechtrijk, are used as a basis for an
hypothetical neighbourhood of the future. All data is converted to fit in this hypothetical neighbourhood
with an abundance of PV systems, EV charging stations and electric heating inside the houses. While
this hypothetical neighbourhood often simply is called ’the Vechtrijk neighbourhood’, in fact it is not
connected to the real build plans and always the hypothetical neighbourhood is meant. We thank the
project developer, L. Roodbol from Blauwhoed , for sharing detailed maps from the build plans.

We thank our supervisor, Dr. P. P. Vergara and our daily supervisor, N. Panda for their continuing
support.

EE BEP Group B Delft, June 2022
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Nomenclature
𝐵𝐸𝑆𝑆 Battery Energy Storage System

𝐵𝑀𝑆 Battery Management System

𝐶𝑂𝑃 Coefficient of Performance

𝐷𝐺 Distributed Generation

𝐷𝑜𝐷 Depth of Discharge

𝐷𝑆𝑀 Demand Side Management

𝐷𝑆𝑂 Distribution System Operator

𝐸𝑉 Electric vehicle

𝐼𝐿𝑃 Integer Linear Program

𝐿𝑃 Linear Program

𝐿𝑉 Low Voltage

𝑀𝐼𝐿𝑃 Mixed Integer Linear Program

𝑀𝑃𝐶 Model Predictive Control

𝑃𝐸𝑉 Plug-in Electric Vehicle

𝑃𝑉 Photovoltaic

𝑆𝑂𝐶 State of Charge

𝑆𝑂𝐸 State of Energy

𝑉2𝐺 Vehicle to Grid

𝑉2𝑉 Vehicle to Vehicle
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1
Introduction

In the neighbourhood of the future, the residential and road transportation sectors will probably have
shifted for a large part to all-electric solutions and many houses will have photovoltaic (PV) systems on
their roof. This creates new challenges for grid operators because they introduce large fluctuations in
the demand and production of electrical energy outside the control of the grid operator. Consequently,
this could lead to congestion and problematic fluctuations in voltage and frequency in the distribution
network. Grid congestion occurs when a grid overload prevents electricity from reaching the consumer.
The project of this thesis is about designing a smart and sustainable grid without problems like conges-
tion for an hypothetical neighbourhood of the future in the Netherlands. This hypothetical neighbour-
hood, which is based on plans for building an actual neighbourhood in Weesp, has an electric vehicle
(EV) charging station at every parking spot and each house has PV systems and electric heating.

1.1. Analyses
Tackling global warming is seen by many as one of the biggest challenges humankind faces in the 21st
century. Humans cause too much greenhouse gas emission, causing sunlight to warm up the earth’s
surface more through the greenhouse effect. This effect results in (possibly irreversible) changes in the
climate worldwide, which could lead to catastrophic disasters. In the Netherlands, the residential sec-
tor produced 15.4 Tg CO2 equivalent (CO2 and other greenhouse gasses) in 2019 with heating, water
heating, and cooking, which accounts for 8.5% of the total CO2 equivalent emissions of the Netherlands
in 2019. Fossil-fueled road transportation produced 29.6 Tg CO2 equivalent, which accounts for 16.4%
of the total CO2 equivalent emission of the Netherlands in 2019 [1]. There are options like using electric
cars, installing PV systems and electric heating and cooking to reduce the greenhouse gas emission in
these sectors. However, these newly developed sustainable solutions have a drawback. The current
low-voltage (LV) grid is not designed for their combined operation and the increasing penetration of
PV systems, EV charging stations and electric heating and cooking could result in more problems like
congestion and excessive fluctuations in voltage and frequency. In Amsterdam, congestion already is
a significant problem [2].

Allowing more energy-sustainable options to be implemented and connected to the grid while pre-
venting problems like congestion will be a challenge for engineers in the upcoming years. Upgrades
to the grid and other solutions to cope with this challenge are researched and proposed in this thesis.
Following this general introduction, first follows a section that elaborates on the neighbourhood of the
future in general. Then a neighbourhood that is being developed right now in the Netherlands is intro-
duced, this neighbourhood will be used as example neighbourhood of the future throughout the thesis.
Finally congestion is explained, as coping with congestion is one of the biggest challenges that the
neighbourhood of the future will create.

1.2. Neighbourhood of the future
In the neighbourhood of the future, the previously stated residential and road transportation sectors will
probably have shifted for a large part to all-electric solutions. The advantage of all-electric solutions is
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that the source of energy is interchangeable, meaning that fossil fuels can be replaced by sustainable
energy sources with a dramatically lower emission of greenhouse gasses like wind or solar energy.
In the Netherlands electrical cooking and heating is quickly rising in popularity; the amount of heat
extracted from the air with heat pumps for the heating of residential buildings has more than doubled
between 2018 and 2020 [3]. Also, the number of EVs in the Netherlands has approximately doubled
every year from 2017 until 2021 [4]. Finally, the number of PV systems installed on residential buildings
have also been steadily increasing. It is easily visible when walking outside anywhere in the Nether-
lands that many households have PV systems on their roofs. While these solutions are effective in
reducing our dependence on fossil fuels, they create new challenges for grid operators. First of all,
because the grid is not designed for the high currents that will run through it, congestion will occur.
Secondly, as part of the power generation is happening outside the control of the grid operators, it is
harder to prevent problematic voltage and frequency fluctuations.

1.2.1. Vechtrijk neighbourhood
In order to design, forecast, and optimise a sustainable distribution network, first a neighbourhood
needs to be considered. A new developing neighbourhood was found in Weesp in the Netherlands.
It consists of 37 total houses, a combination of detached houses, semi-detached houses, terraced
houses, and apartments, which can be seen in Figure 1.1. It also consists of a central parking area
where electric vehicles might be parked and charged. We think this is a good representation of an
all-encompassing neighbourhood in the Netherlands and thus a good neighbourhood to design a sus-
tainable grid for [5].

Figure 1.1: The Vechtrijk neighbourhood ground plan

1.3. Congestion: Definition and issues
Grid congestion occurs when an overloaded grid prevents electricity from reaching the consumers. It
can be illustrated as a kind of traffic jam, where the electrons in the wire are symbolized by the vehicles
on a highway. During rush hour, too many vehicles are present and the flow of traffic may come to a
halt. A similar situation occurs on power lines as demand or supply of power is in excess. The high
current the power line has to carry can exceed the maximum capacity of the lines. This will eventually
lead to power outages and costly repairs on power lines. In the Netherlands congestion is becoming
a large issue. Figure 1.2 illustrates the significance of the problem. It is visible, that congestion due
to high demand happens the most in urban areas such as the province of North Holland and around
Leeuwarden. Furthermore, it is visible that congestion due to high generation happens more in rural
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areas such as the provinces Drenthe, Overijssel and Gelderland in the east of the Netherlands. In order
to avoid power outages, Distribution System Operators (DSOs) disconnect parts of the system during
power excess. This necessary measure has great impact; generation systems are put on standby or
consumers will have to seize their activities. Additionally, the connection to the grid for a newly installed
system might take more than a year [6].

Figure 1.2: Consumption (left) and generation (right) congestion in The Netherlands [7]

1.4. Optimisation
When incorporating distributed generation (DG) in a neighbourhood, the chance of congestion in-
creases rapidly. Therefore it is important to optimise the various sources, generations and storage
to control the power flow within the LV grid of the neighbourhood. One of the essential resources when
talking about DG is a battery energy storage system (BESS). This system manages and stores the ex-
cess energy generated by the DG and plays a crucial role to counteract the intermittent nature of DG.
Nevertheless, BESS can be used for many more applications, like in the study of Datta [8], where BESS
is designed to supply the extra demand of an EV charging station above the rated power of the trans-
former. Therefore, reducing the overloading on the transformer and reducing congestion. However,
for any BESS to work, an accurate model must be created. Four types of energy storage models are
mentioned in [9]: dynamic models, energy flow models, physics-based models, and black-box models.
Within these models, the key parameters are power rating, energy capacity, efficiency and ramp rate.
According to [10], a physics based model is necessary for accurately estimating the state of charge
(SOC) for a battery management system (BMS), because the capacity of a battery changes as it de-
cays. For lithium-ion batteries, models have been developed extensively, but most are too complicated
for the calculations of a real-time BMS. A simplified model for a grid-level BMS is suggested by [10].
They also mention that improperly managed stacks of batteries can cause cell mismatch (a situation
where not all battery cells are equally charged), which in turn can cause overcharging. This can be
avoided by managing the batteries with a tiered architecture. The need for prediction for controlling
BESSs and PVs is explained by [11]. They use model predictive control (MPC) to smooth out the
power available from PVs and to match the user load and PV load better. The writers explain that the
system becomes more adaptable and better at self-correcting when MPC is used. The prediction of
the PV generation is built with an asymmetric least-squares fit on the PV output data and a linear error
correction for uncertainties.

Another interesting approach for using batteries is to incorporate the EV battery into the system. Using
personal vehicles as an energy storage solution for the grid has been discussed as far back as 1996 by
Kempton [12]. A partial differential equation-based model to control the charging and discharging of a
fleet of plug-in electric vehicles (PEV) is proposed by [13]. This model concentrates on optimising en-
ergy delivery to the grid (that is contracted ahead of time), supplying car users with sufficiently charged
cars, and minimizing the costs of charging the vehicle batteries after use. Using the vehicle battery
for the grid is called vehicle to grid (V2G) transfer. Another way to incorporate the vehicle batteries to
reduce congestion is vehicle to vehicle (V2V) transfer [14]. By charging PEVs that need to be charged
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during peak times with vehicles that are still charged (for example, because the owners did not need
their car that day), the amount of extra energy necessary from the external electric grid can be reduced.
A direct DC vehicle to vehicle transfer is proposed in [15], to increase the efficiency of power transfer
between electric vehicles.

For optimising an energy storage system, the authors in [9] argue that in power systems, mixed-integer
linear programming (MILP) is often used as an extension of linear programming (LP). Since the extra
decision variables in MILP are useful for applications with on and off states. The optimisation happens
in two stages, one for the day-ahead market and another one for the real-time market, which is used
to adapt to unpredicted changes. Other examples for optimisation are Robust optimisation for includ-
ing worst-case scenario’s into the optimisation, stochastic optimisation for including randomness and
dynamic optimisation. However, dynamic optimisation requires vast amounts of coding and is slow as
a result, and thus is not used for large scale systems.

Many studies also look at the possibility of changing the power consumption of the customer in such a
way that congestion is eliminated. This so called demand side management (DSM) is used to decrease
consumption, especially during peak hours [16]. This paper uses a profile steeringmethodology to steer
the energy demand in a desired profile, which lowers the peaks. As a result this lowers the strain on
the transformer. Another example of DSM can be found in [17]. In this paper, an optimisation algorithm
is proposed to control domestic electricity and heat demand, as well as generation and storage. This
has been modelled as an Integer Linear Program (ILP), with its objective being to minimize the costs
while heat and electricity demand is matched using BESS, PV, and DSM. Another study takes it one
step further and introduces demand prediction uncertainty [18]. Here, DSM under demand prediction
uncertainty is used to reduce peaks. It uses non-linear programming to optimise the loads between
buildings while also sharing energy between these buildings. In [19], the energy sharing and non-linear
optimisation model used in [18] are created. This study analyzes the energy problem from a top-down
approach (e.g., energy and battery sharing).
A similar approach is used in [20], although without using DSM. Here, houses with similar demand
profiles are combined to increase sharing capabilities between clusters. These clusters were then
modeled in an LP model to optimise their electricity usage. A different method is used in [21]. Namely
particle swarm optimisation. They use this method to distribute the energy within the system, where
the BESS provides the extra energy whenever the solar energy is not available and thus manages the
congestion. Finally, [22] provides a mixed-integer non-linear programming model for optimising the
operation of multiple buildings within a microgrid. By using linearization techniques, this model is then
converted to a MILP model. The use of a MILP model for a microgrid can also be seen in [23]. This
paper presents a multi-objective framework to quantify flexibility for a large business park in Eindhoven.
The MILP model created in this paper is developed in Python Pyomo. LP models are often used since
they can be solved by commercially available solvers and are faster at solving the model at the cost
of accuracy. However, when dealing with high amounts of energy, slight accuracy imbalances are
negligible.

1.5. Thesis objective
The objective of this thesis is to create a smart and sustainable distribution network. This will be
achieved by subdividing the problem into three parts (which will be explained in Section 1.6). The
objective of this specific thesis is to create an optimisation model to control the powerflow in the distri-
bution network. Most studies focus mainly on the economic aspect of optimisation and thus consider
the price of electricity as their objective function to minimize. This thesis, however focuses on reducing
the grid interaction and as a result, minimizes the energy taken from the grid. This thesis proposes a
linear optimisation model to optimise the available energy resources, within a LV distribution network,
in such a way that congestion will be avoided and self-consumption will be increased. A focus is put
on optimising the new Vechtrijk construction project. The microgrid designed for this new construction
project includes EVs, a communal BESS and a communal PV system, while also incorporating grid ser-
vices. Using MILP modelling techniques, the optimisation will be done using Pyomo, an optimisation
modelling language within Python.
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1.6. Thesis subdivision
Creating the design for a smart grid is divided into three subgroups/subprojects. The Topology sub-
group (B.1) will develop a new design of a residential distribution network for the neighbourhood which
includes the selection of components in terms of size and capacity. The main goal is to withstand
congestion and integrate PV systems and electrical charging points for at least each resident. The
Forecasting subgroup (B.2) will be making two forecasting models based on machine learning. The
models will forecast the load and the PV power generation of the neighbourhood and can be used to
determine whether congestion or voltage issues will occur. It will use old load data of several house-
holds (updated with EV charging and electric heating data), old PV generation data, old weather data
and weather forecasts as inputs to forecast the load and generation demand. The optimisation Con-
trol subgroup (B.3) will create a controller for the grid by creating an optimisation function for the power
flow. Examples of the decision variables are the rate of charge for the EV batteries and the battery
storage system.

This report will provide an extensive explanation of the work done by subgroup B.3. First the pro-
gram of requirements for the optimisation model will be presented. Then the design process will be
explained. After this, the implementation process and validation tests will be presented and the final
part is a discussion of the results.



2
Program of Requirements

This section will explain the requirements of the optimisation part of this project. Since the focus has
been laid on the new construction in Weesp, namely the Vechtrijk new construction, the specifics of
this neighbourhood will reflect in the program of requirements. These being that the neighbourhood
consists of 37 households, divided into 4 categories: detached houses, semi-detached houses, ter-
raced houses and apartments. For each of these categories the load profile will be predicted by the
Forecasting subgroup (B.2). However since the projects run in parallel, the measurements from the
databases are used for the model in substitution of the predictions. The same will hold for the weather
predictions. These databases contain load and weather measurements from the Netherlands. The
azimuth angle and tilt of the PV panels are out of the scope of this project and will thus not be taken
into account. Finally it is assumed that each parking space in the neighbourhood is occupied by an EV.
This accounts to a total of 54 EVs.

Another important aspect of the model is keeping the batteries in the grid at a safe SOC. An opti-
mal depth of discharge (DoD) for a battery is 77% [24]. For ease of use, the DoD is incorporated into
the model. This means that the capacity of the battery in the model is 23% smaller than that of a phys-
ical battery would be.

In this report, the requirements are developed with the MoSCoW method. In this method, each re-
quirement is prioritized and divided into a specific section: ”Must have”, ”Should have”, ”Could have”
and ”Will not have” [25]. This form of listing requirements gives everyone involved in a project a quick
and simple view into top priorities and less prioritized parts of the projects and provides an easy way
for outsiders to know the intention of the project.

To conclude, all requirements, while making use of the MoSCoW method, are presented below:

Must have:

1. Themodel must receive weather prediction per hour and interpolate this to intervals of 15minutes.

2. The model must receive electricity usage prediction every 15 minutes.

3. The model must receive EV electricity demand prediction every 15 minutes.

4. The model must use as little energy from the external grid as possible.

5. The model must keep track of battery’s state of charge using predictions.

6. The model must keep the battery within a DoD of 77%.

7. The model must charge all EVs to 100% before each morning.

9
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Should have:

1. The model should be able to shut curtail EV charging, as well as charge EVs at different power
levels.

2. The model should be able to curtail solar energy if needed.

3. The model should minimize on system operational costs.

Could have:

1. The model could extract energy from the EVs to provide to the neighbourhood.

(a) The model cannot discharge the EVs further when the SOC is under 20%.

Won’t have:

1. The model won’t perform any demand side management for the houses (e.g. delayed/planned
consumption).

2. The model won’t tweak energy usage in shorter intervals than 15 minutes.



3
Component Design

3.1. Modelling
In an effort to optimise the energy usage within the neighbourhood, first the inputs and outputs of the
optimisation model must be clearly defined. The model must use these inputs to optimise the desired
output. A black box model of the optimisation model can be seen in Figure 3.1.

Figure 3.1: Black box model of the optimisation model showing the inputs and output

As seen in the black box model, the optimisation model gets the following predictions as inputs: PV
power generation, household power demand and the EV charging profiles. These predictions are
supplied to the model with a time horizon of five days. As mentioned previously in the program of re-
quirements, these predictions would normally be provided by the Forecasting subgroup (B.2), however
due to the parallel nature of the project, the data used for prediction is used as a substitute for the actual
prediction. These inputs are used by the model to calculate the power generation of the PV, the total
load and to know how to optimise the EV charging profiles. As for the output, the optimisation model
provides the optimised EV charging profiles. The way these EV charging profiles are determined by
the model is explained in Section 4.5. However, not only the optimised EV charging profiles can be
extracted from the model. For instance the state of energy (SOE) of the BESS system or the generated
PV power at a certain time could also be extracted from the model. While these are not necessarily out-
puts, they do provide the necessary information to inspect the model. These outputs will be discussed
in Chapter 5.

3.1.1. Pyomo
In order to create the digital optimisation model, first a mathematical optimisation problem has been
created. This is shown in Section 4.6. In order to convert this mathematical model into a digital model,
the Pyomo environment within Python is used [26][27]. Pyomo is an open source software package for
modeling and solving mathematical optimisation problems in Python. Pyomo allows for a large variety
of optimisation techniques to be implemented. For this thesis, a LP model has been created since
these models can be solved by commercially available solvers. Additionally, the speed at which the
model can be solved is much higher than for other variants of optimisation models. This is however at
the cost of a little bit of accuracy, but since large amounts of power are handled in this thesis, slight
inaccuracies are negligible for the overall result. As for the solver, Gurobi has been chosen. This due

11
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to this optimisation solver being industry standard and being regarded as the fastest solver available
[28].

3.2. Data analysis
The model of the neighbourhood network requires three sets of data. The power demand from the
houses, the generated power from the PV system and the power demand for EV charging. This section
will elaborate upon the contents and the retrieval of each of these datasets

3.2.1. Household power demand
The dataset of the household power demand was created from a combination of multiple datasets.
First, a record of gas and electricity demand of 82 houses during the whole year of 2013 (in intervals
of 15 minutes) was retrieved from Liander [29]. Then, only the clients with the correct house types
and complete datasets were selected. The gas demand needed to be converted to electricity demand
since the assumption was made that the houses will not have a gas connection. This conversion was
performed and created by the Topology subgroup (B.1). A correct conversion rate was important since
for example devices like heat pumps are more efficient than central heating boilers. According to [30]
about 75% of the gas is being used for heating your house, 20 % of the gas is being used for heating
water and the remaining 5 % is being used for cooking. Heating the house and water can be done
using a heat pump with approximately a coefficient of performance (COP) of 3 [31]. This was used in
Equation 3.1 to calculate 95% of the gas power converted to equivalent electrical power.

𝑃𝑒𝑙[𝑘𝑊] =
𝑃𝑔𝑎𝑠[𝑘𝑊] ⋅ 0.95 ⋅ 𝜂boiler

COPheat pump
(3.1)

The remaining 5% was converted using Equation 3.2.

𝑃𝑒𝑙[𝑘𝑊] =
𝑃𝑔𝑎𝑠[𝑘𝑊] ⋅ 0.05 ⋅ 𝜂furnace

𝜂induction
(3.2)

where 𝜂furnace = 85% and 𝜂induction = 35% [31].
The total demand per client was defined as the summation of the converted gas demand and original
electricity demand.
Finally, an average was taken at each timestep for the different house types and a data profile was
created for the Vechtrijk neighbourhood with a sum of 23x the average of the terraced houses, 11x
the dataset of an apartment (since there was only one set available), twice the average of the semi-
detached houses and one dataset of a detached house (since there was only one set available again).
This thus created a dataset of the electricity demand of the entire neighbourhood for one year in intervals
of 15 minutes.

3.2.2. PV power generation
The generated PV power was based on an open weather dataset from the KNMI of the Netherlands.
This dataset contains the global radiation (in J/cm2) per hour of 2013. This dataset has been selected
to match the same dates as the dataset for the demand from the houses. However this dataset was in
time intervals of an hour, therefore it had to be linearly interpolated to be in line with the timestep of the
model. The generated power was calculated by using the radiation, the total surface of the PV panels
and the efficiency of the PV panels. First, the radiation had to be converted to 𝑊/𝑚2, which was then
used to calculate the generated PV power:

𝑃𝑃𝑉 = 𝐸𝑒 ∗ 𝐴𝑃𝑉 ∗ 𝜂𝑃𝑉 (3.3)

With 𝜂𝑃𝑉 = 20%, since solar panel efficiencies are expected to achieve a maximum of 26% in the
upcoming years [32]. However since the edges of the solar panels are not accounted for in the area
estimation, the efficiency is chosen lower to compensate for this. The PV system would be placed on
every roof in the neighbourhood and above the central parking lot. The measurement of this surface
led to a total of 1178 solar panels, assuming a size of 1.7m2 per panel. The final result was a total PV
power generation of the neighbourhood per 15 minutes for the year 2013.
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3.2.3. EV power demand
For the EV charging demand, a dataset created by M. Muratori in [33] based on modeling reported
in [34] was used. This dataset contains a power demand for charging the electric vehicles of 200
households in the US over one year in timesteps of 10 minutes. To use this data, a summation of power
demand of 54 randomly determined clients have been selected to represent the neighbourhoods EV
load. The 10 minute timestep was converted to a 15 minute timestep by removing one of 3 timesteps
consistently. This method was effective and quick, but not very precise. But due to lack of time, the
choice was made to process the data as mentioned.

3.3. Component sizing
A large amount of components in the model could be selected and sized freely. The amount of PV
panels and EVs were selected by the whole project group since knowledge of each field in this project
was necessary for this choice. The capacity of the BESS was selected by this subgroup, namely B.3,
since the result graphs of this thesis show the clearest consequences of the BESS capacity. And finally,
the transformer rate of power was selected by the Topology subgroup (B.1) and has a value of 630 kW.

3.3.1. PV: Number of PV panels
Since the Netherlands has plans to switch to almost 100% renewable energy by 2050 [35], the decision
was made to place as many solar panels as possible in the neighbourhood. This means that all the
roofs have solar panels, and a roof is placed above the central parking lot with additional solar panels.
To find the amount of solar panels to be installed, the total roof surface has been measured and divided
by solar panels of 1.7m2 (since this is the average size of a solar panel in the Netherlands [36]). It was
important to keep in mind that only a whole panel can be installed, and thus the amount of panels had
to physically fit on the roof. Finally, this added up to 1178 solar panels.

3.3.2. EV: Number of EVs
Due to the rapidly increasing use of EVs, it was hard to predict how many EVs will be in use in the
future. In 2019 the total amount of EVs in the world recorded a yearly increase of 40% [37]. Therefore
to make the design future-proof, the assumption has been made that each parking spot will be occupied
by one EV. As a result, the model contains 54 EVs in total. This corresponds to the total number of
parking spots, both public and private as can be seen in Figure 1.1.

3.3.3. BESS: Capacity and maximum power
Sizing the BESS appropriately in reference to the model is a very important aspect since these systems
are very costly and thus a huge waste of money and resources if not used to their full extent. In contrast,
sizing the BESS too small can result in waste of renewable energy generation. With the PV system
size already determined, as discussed in Subsection 3.3.1, the total PV generation can be calculated
and consequently the excess generated power not used by the EVs or households can be calculated
too. The Matlab code for these calculations is shown in Appendix A.1. Here, the excess generated
power was converted to excess energy per day, since the BESS functions as an addition to the PV
system which cycles per day. In Figure 3.2, the excess energy per day is shown. It is obvious that the
excess generation varies drastically between winter and summer. Therefore the point at which there is
a steady excess generation per day was observed. These dates are the 14th of April and the 11th of
September as seen in Figure 3.2. These dates give insight in how much excess generation the model
will generate when PV generation starts to exceed demand. Since the time horizon for our model is
five days, the five days past the 14th of April and the five days preceding the 11th of September were
considered. Over these weeks, the average excess energy generated was computed and is shown in
Table 3.1.
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Figure 3.2: Average energy shortage/excess per day

As previously stated and seen in Figure 3.2, the values for the 14th of April and the 11th of September
are at the edges of days where PV generation exceeds demand, therefore the BESS capacity should
be at least as large as the excess energy generated in these weeks in April and September.

Table 3.1: The average shortage/excess of energy per day for a week

Time of year Average excess energy [kWh]
January -1180.8
April 280.0
July 1240.3
September 290.9

While the technological advancements in energy storage are improving greatly, it is unsure which ca-
pacity, rated power and efficiency these might achieve in the future. Therefore an already available
BESS was selected. Looking at commercially available and popular BESSs, the Tesla Powerwall 2
was considered as a reference for our model. As specified by the company, this BESS is optionally
expandable up to 10 systems stacked together [38]. Therefore it gives great opportunities to customize
the BESS to the needs of any neighbourhood. In reference to the minimum capacity found in Table 3.1
and the DoD requirements stated in Chapter 2, 30 Powerwalls were selected as the BESS for the
Vechtrijk neighbourhood. Such that the desired minimum capacity was reached while cutting down on
total price. Looking at the datasheet of the Powerwall [39], gives us the following specifications for the
BESS:

Table 3.2: BESS specifications

Rated Power 150 kW [39]
Capacity 405 kWh [39]
Efficiency 90 % [39]

However since the DoD used is 77%, the maximum capacity of the BESS within the model becomes:

𝐸𝐵𝐸𝑆𝑆,𝑚𝑜𝑑𝑒𝑙 = 𝐸𝑚𝑎𝑥 ∗ 𝐷𝑜𝐷 ⟹ 𝐸𝐵𝐸𝑆𝑆,𝑚𝑜𝑑𝑒𝑙 = 405 ∗ 0.77 ≈ 312kWh (3.4)



4
The Optimisation Model

This chapter will elaborate upon the optimisation model. The Python code for this model can be found
in Appendix A.2. The different components of the model will be explained in the same order as the
code is written, namely first the parameters, then the variables and decision variables, and lastly the
constraints. Each of these components are tied together in a Python Pyomo model. Details on the
Pyomo method will be explained in the last section.

4.1. Sets
A set in the model is created to provide an index for parameters and variables [40]. The model for
this project has 3 sets, one for time, one for the BESS and one for the transformer. The time set (set
T) is used for every parameter and variable that has a different value for every timestep. This set is
thus used very often. The set consists of all time slices with timesteps of 15 minutes for one year;
𝑡 ∈ T ∶ 1 ≤ 𝑡 ≤ 35040.
The set for the BESS and the transformer is created for a possible situation where our model is used
for a neighbourhood with multiple BESSs and transformers. At the moment our model only has one
battery and transformer, so the index is of little purpose but this way the setup is ready for expansion.

4.2. Parameters
The parameters in an optimisation model provide the input data that is necessary to solve the model.
This model has constant parameters as well as parameters that change over time (set T). These
multiple-valued parameters consist of the generation data and the load data of the consumers and
the EV charging. The constant valued parameters consist of characteristics of different components
in the network, such as the maximum SOE or efficiency of the BESS. The BESS parameters, as well
as the transformer maximum power parameter only use the battery and transformer sets if multiple are
present in the model. A parameter that does not use any set is the size of the timestep, which is 0.25
hour according to the program of requirements. A list of all of the parameters and so-called variables
can be found in Table 4.1.

4.3. Decision variables
The decision variables are variables of which the model solver can change the values. Choosing the
ideal values for the decision variables is essentially what solves optimisation problems. The decision
variables are also the only values which the model solver can change. In short, this model contains a
decision variable for the power flow and curtailment at each of the components of the model.
The BESS has five decision variables, namely, the SOE, the charging power, the discharging power
and two binary categorical variables to decide whether the battery is charging, discharging or idle. The
SOE is defined by the initial SOE, the efficiency and the charging and discharging energy.
The transformer has three decision variables, namely, the positive power flowing through the trans-
former, the negative power (this is fed back to the grid operator), and a binary categorical variable that
ensures that the power flow at the transformer will always be either negative or positive.

15
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The PV system only has two decision variables, the produced power and the curtailment rate variable.
The EVs have five decision variables, of which one is the power supplied to the EVs and the other four
collaborate in order to create a system where the EV charging can be curtailed to make the system
more efficient. But since the vehicle’s primary function is to drive, a limit of the amount of timesteps
that the charging can be delayed has been added. This is why there are so many decision variables
for this component. The implementation of this system is described in Section 4.5 Constraints.

Parameters
𝛿𝑡 Timestep of the model [15 min]
𝑃𝑏𝑎𝑡𝑚𝑎𝑥 Rated power of the BESS [kW]
𝑆𝑂𝐸𝑏𝑎𝑡𝑚𝑎𝑥 Maximum state of energy of the BESS [kWh]
𝑆𝑂𝐸𝑏𝑎𝑡𝑖𝑛𝑖 Initial state of energy of the BESS [kWh]
𝜂𝑏𝑎𝑡 Efficiency of the BESS
𝑃𝑇𝐹𝑚𝑎𝑥 Rated power of the neighbourhood transformer [kW]
𝑃𝑙𝑜𝑎𝑑𝑡 Power demand from the houses at time t [kW]
𝑃𝑃𝑉, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡 Available power from the PV system at time t [kW]
𝑃𝐸𝑉𝑡 Power demand from the EVs at time t [kW]

Decision Variables
𝑆𝑂𝐸𝑏𝑎𝑡𝑡 State of energy of the battery at time t [kWh]
𝑃𝑏𝑎𝑡, 𝑐ℎ𝑡 Charging power of the BESS at time t [kW]
𝑃𝑏𝑎𝑡, 𝑑𝑖𝑠𝑡 Discharging power of the BESS at time t [kW]
𝑢𝑏𝑎𝑡𝑡 Binary variable indicating whether the BESS is charging or discharging at time t
𝑢𝑏𝑎𝑡,𝑖𝑑𝑙𝑒𝑡 Binary variable indicating whether the BESS is idle or charge/discharge at time t
𝑃𝑔𝑟𝑖𝑑+𝑡 Positive power at the transformer (demand from the neighbourhood) at time t [kW]
𝑃𝑔𝑟𝑖𝑑−𝑡 Negative power at the transformer (supply from the neighbourhood) at time t [kW]
𝑢𝑔𝑟𝑖𝑑𝑡 Binary variable indicating whether the neighbourhood is supplying or demanding power

from the external grid at time t
𝑃𝑃𝑉, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑡 Power generated by the PV system at time t [kW]
𝑢𝑃𝑉𝑡 Variable between 0 and 1 that curtails the amount of power generated by the PV system

at time t
𝑃𝐸𝑉, 𝑑𝑒𝑙𝑎𝑦𝑡 Delayed/unsupplied charging power from the EV power demand at time t [kW]
𝑃𝐸𝑉, 𝑡𝑜𝑡𝑎𝑙𝑡 Sum of the EV power demand at time t and delayed EV power at time t-1 [kW]
𝑃𝐸𝑉, 𝑠𝑢𝑝𝑡 Supplied charging power of the EVs at time t [kW]
𝑢𝐸𝑉𝑡 Variable between 0 and 1 that curtails the amount of charging power supplied to the EVs

at time t

Table 4.1: Overview of the parameters and decision variables of the optimisation model
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4.4. Objective function
The objective function of the optimisation model defines the goal of the optimisation. The goal is to
either minimize or maximize the output value of this function. In the case of the network controller, the
objective function is minimized and consists of the total power at the transformer. This being the sum of
the positive and negative power at the transformer that was mentioned in Section 4.3. In other words,
the total energy that is taken from the grid as well as supplied back to the grid at the end of the time
horizon is minimized. Saving as much energy as possible prevents congestion at the transformer side,
creates more self-sufficiency and also saves on electricity costs for the neighbourhood. Since the goal
of this project is to create a smart and sustainable distribution network which promotes self-sufficiency,
it is important to look at the energy consumption and not the costs. A mathematical description of the
objective function is given in Equation 4.1.

4.5. Constraints
In simple words, the constraints of the model define the rules that the model solver has to follow when
trying to minimize the objective function.The combination of the constraints and the decision variables
are in a way the description the functions in the neighbourhood network. Below, a description will be
given of the constraints in the model. An overview the constraints in mathematical form is given in
Section 4.6.
The BESS is defined by the constraints that describe the current SOE (Eq. 4.2, 4.3), the limits of the
SOE (Eq. 4.4), the charging and discharging power (Eq. 4.5, 4.6) and the state constraint (Eq. 4.7).
The current SOE constraint consists of a summation of the previous SOE, the added charging power
and subtracted discharging power (while holding efficiency in account). The limits of the SOE constraint
keeps the SOE between safe charging limits as mentioned in Ch. 2. The charging and discharging
power constraints define these powers as either a negative or positive value of the battery’s rated power
depending on the state of the BESS. And lastly, the state constraint ensures that the BESS is always
operating in only one mode at the same time; charging, discharging or idle.
The first transformer constraint defines the total power at the transformer to be a summation of all the
supplies and demands in the neighbourhood network (Eq. 4.17). The second and third constraints (Eq.
4.18, 4.19) define the limits of the positive and negative power that the transformer can handle.
The PV system is fairly simple and has only two constraints. One for defining a curtailing variable
between 0 and 1 (Eq. 4.8), and one for defining the produced power by the PV panels after curtailment
(Eq. 4.9).
The EV charging system is the most intricate system in our model. In order to curtail the EV charging, a
large amount of constraints are necessary. First, there are constraints that define curtailment variable
between 0 and 1 (Eq. 4.11) and make sure that there is no curtailment at the end of the total model
time (Eq. 4.10). The latter is to prevent the model from simply disregarding power that was demanded
by the EV demand data (at the end of the models timeline). The next sets of constraints (Eg. 4.12, 4.13
define the total demand of power for the EVs as a summation of the power delayed/unsupplied power
at the previous timestep (if it exists) and the EV power demand of the current timestep. The delayed
power is in turn the difference between the original power demand and the supplied power to EVs at
the current timestep (Eq. 4.14. And finally the supplied power is the previously mentioned total power
EV demand multiplied with the curtailing variable (Eq. 4.15). The very last part of the EV constraints
creates a limit on the amount of time that the EV demand can be delayed. This is defined by Eq. 4.16
with a summation of all of the supplied EV power until the current timestep that has to be larger than
the summation of the original demand until 8 timesteps before. This thus limits the delay to 8 timesteps
which equals to two hours. This limit was created to make sure that curtailing the charging will affect
the user experience of the vehicles as little as possible.
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4.6. Mathematical model
Objective function:

𝑂𝑏𝑗𝐹𝑛𝑐 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [𝛿𝑡 ⋅∑
𝑡
𝑃𝑔𝑟𝑖𝑑+𝑡 + 𝑃𝑔𝑟𝑖𝑑−𝑡 ] (4.1)

BESS constraints:

𝑆𝑂𝐸𝑏𝑎𝑡𝑡 = 𝑆𝑂𝐸𝑏𝑎𝑡𝑖𝑛𝑖 + 𝛿𝑡 ⋅ (𝜂𝑏𝑎𝑡𝑃𝑏𝑎𝑡,𝑐ℎ𝑡 − 𝑃
𝑏𝑎𝑡,𝑑𝑖𝑠
𝑡
𝜂𝑏𝑎𝑡 ) 𝑡 = 1 (4.2)

𝑆𝑂𝐸𝑏𝑎𝑡𝑡 = 𝑆𝑂𝐸𝑏𝑎𝑡𝑡−1 + 𝛿𝑡 ⋅ (𝜂𝑏𝑎𝑡𝑃𝑏𝑎𝑡, 𝑐ℎ𝑡 − 𝑃
𝑏𝑎𝑡, 𝑑𝑖𝑠
𝑡
𝜂𝑏𝑎𝑡 ) ∀ 𝑡 > 1 (4.3)

0 ≤ 𝑆𝑂𝐸𝑏𝑎𝑡𝑡 ≤ 𝑆𝑂𝐸𝑏𝑎𝑡𝑚𝑎𝑥 ∀ 𝑡 ∈ T (4.4)

𝑃𝑏𝑎𝑡,𝑐ℎ𝑡 ≤ 𝑃𝑏𝑎𝑡𝑚𝑎𝑥(𝑢𝑏𝑎𝑡𝑡 ) ∀ 𝑡 ∈ T (4.5)

𝑃𝑏𝑎𝑡,𝑑𝑖𝑠𝑡 ≤ 𝑃𝑏𝑎𝑡,𝑚𝑎𝑥(1 − 𝑢𝑏𝑎𝑡𝑡 ) ∀ 𝑡 ∈ T (4.6)

0 ≤ 𝑢𝑏𝑎𝑡𝑡 + 𝑢𝑏𝑎𝑡,𝑖𝑑𝑙𝑒𝑡 < 1 ∀ 𝑡 ∈ T (4.7)
Photovoltaic panel constraints:

0 ≤ 𝑢𝑃𝑉𝑡 ≤ 1 ∀ 𝑡 ∈ T (4.8)

𝑃𝑃𝑉, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑡 = 𝑃𝑃𝑉, 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡 ⋅ 𝑢𝑃𝑉𝑡 ∀ 𝑡 ∈ T (4.9)
Electric vehicle constraints:

𝑢𝐸𝑉𝑡 = 1 𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ(T) (4.10)

0 ≤ 𝑢𝐸𝑉𝑡 ≤ 1 𝑡 < 𝑙𝑒𝑛𝑔𝑡ℎ(T) (4.11)

𝑃𝐸𝑉, 𝑡𝑜𝑡𝑎𝑙𝑡 = 𝑃𝐸𝑉𝑡 𝑡 = 1 (4.12)

𝑃𝐸𝑉, 𝑡𝑜𝑡𝑎𝑙𝑡 = 𝑃𝐸𝑉𝑡 + 𝑃𝐸𝑉, 𝑑𝑒𝑙𝑎𝑦𝑡−1 𝑡 > 1 (4.13)

𝑃𝐸𝑉, 𝑑𝑒𝑙𝑎𝑦𝑡 = 𝑃𝐸𝑉, 𝑡𝑜𝑡𝑎𝑙𝑡 − 𝑃𝐸𝑉, 𝑠𝑢𝑝𝑡 𝑡 ∈ T (4.14)

𝑃𝐸𝑉, 𝑠𝑢𝑝𝑡 = 𝑃𝐸𝑉, 𝑡𝑜𝑡𝑎𝑙𝑡 ⋅ 𝑢𝐸𝑉𝑡 𝑡 ∈ T (4.15)

𝑡−8

∑
𝑖=0
𝑃𝐸𝑉𝑖 ≤

𝑡

∑
𝑖=0
𝑃𝐸𝑉, 𝑠𝑢𝑝𝑖 𝑡 > 8 (4.16)

Transformer constraints:

𝑃𝑔𝑟𝑖𝑑+𝑡 − 𝑃𝑔𝑟𝑖𝑑−𝑡 = 𝑃𝑙𝑜𝑎𝑑𝑡 − 𝑃𝑃𝑉, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑡 − 𝑃𝑏𝑎𝑡, 𝑑𝑖𝑠𝑡 + 𝑃𝑏𝑎𝑡, 𝑐ℎ𝑡 + 𝑃𝐸𝑉, 𝑠𝑢𝑝𝑡 ∀ 𝑡 ∈ T (4.17)

𝑃𝑔𝑟𝑖𝑑+𝑡 ≤ 𝑃𝑇𝐹𝑚𝑎𝑥 ⋅ 𝑢𝑔𝑟𝑖𝑑𝑡 ∀ 𝑡 ∈ T (4.18)

𝑃𝑔𝑟𝑖𝑑−𝑡 ≤ 𝑃𝑇𝐹𝑚𝑎𝑥 ⋅ (1 − 𝑢𝑔𝑟𝑖𝑑𝑡 ) ∀ 𝑡 ∈ T (4.19)



5
Results and Discussion

This chapter will present and discuss the results of the optimisation model. The results during three
seasons will be discussed, namely during the winter, spring and summer (in the same order). For each
result, the model is executed over a timelength of 5 days.
The first winter figure is Figure 5.1. The graphs in this figure show: the power balance in (a), EV delaying
in (b) and the transformer power of different models in (c). Firstly, when looking at the power balance of
the optimisation model in January, what becomes clear is that even though the sizing of the PV system,
asmentioned in subsection 3.3.1, is quite large, there still is not enough energy generated during winter.
This is reflected in the SOE of the BESS. Large peaks in load and small peaks in PV generation as
seen in Figure 5.1a means that there is no excess energy to charge the communal battery. The lack of
charging power is shown very clearly in the fact that the SOE of the battery only decreases in time. The
energy shortage is also apparent when observing the winter months in Figure 3.2 and Table 3.1. This in
turn makes the BESS system have little effect on the power at the transformer side. This is confirmed
by the small difference in peak heights between the blue and the red line in Figure 5.1c (namely the
power at the transformer with and without the BESS). The only significant difference between the two
lines is the timing: some of the peaks are shifted in time due to the optimised EV delaying. As seen in
Figure 5.1b, the supplied power (red) has peaksmostly at intervals of 2 hours. This interval corresponds
exactly with the maximum delay window of the EVs. In Table 5.1 the effects of changing the EV delaying
window are shown. Unfortunately, during winter the effect of EV delaying is almost negligible since the
amount of energy saved by EV delaying already stagnates at a delay window of 1 hour and only saves
3.49 kWh in 5 days. This is expected however, since having not enough energy stored in the BESS
and having not enough energy production from the solar panels, the power demand must come from
the transformer anyway.
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(a)

(b)

(c)

Figure 5.1: Model characteristics during winter

Table 5.1: Effect of different EV delaying windows on the energy needed from the transformer over five days during the winter

EV delay window [hours] Energy from
transformer [kWh]

Energy saved compared
to 0 EV delay [kWh]

Energy saved compared
to 0 EV delay [%]

0 5840.26 0 0
0.5 5837.84 2.42 0.04
1 5836.77 3.49 0.06
1.5 5836.77 3.49 0.06
2 5836.77 3.49 0.06
2.5 5836.77 3.49 0.06
3 5836.77 3.49 0.06
3.5 5836.77 3.49 0.06

Figure 5.2 shows that during these five days in January there is no PV curtailment since the total energy
is the same height as the used energy every day. Looking at Figure 5.1a, one can see the SOE of the
BESS declining from its original SOE towards zero without charging once. These two events must
mean that all the PV energy is going straight to the houses and EVs to reduce the objective function,
i.e. reduce the power needed from the external grid. Therefore the BESS is not charged during these
5 days in January.
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Figure 5.2: The total and used solar energy during winter

Similarly, the system has also been simulated during summer, which can be seen in Figure 5.3. In
contrast to the model during winter, the model has an excess of energy production during summer,
which is shown by the high peaks in PV production compared to the load in Figure 5.3a. Each day
portrays a clear pattern of high PV production and low load during the day and low PV production and
high load in the evening. The SOE of the battery follows this pattern nicely by charging when there is
more production than load and discharging when it is the other way around. Here, the SOE of the BESS
is at its maximum storage value at certain periods during daylight which is why it looks like the SOE
curve is clipped at 312 kWh. During these periods, PV curtailing is taking place since the transformer
power, shown in Figure 5.3c, is kept zero and the PV production is exactly matched with the load during
these same periods. This proves that the model also minimises the amount of power fed back to the
external grid. Figure 5.4 shows the amount of PV energy that is produced per day. The yellow bars are
the amount of energy available each day, and the blue bars are the amounts that are generated. The
difference between the two is thus the amount of curtailed energy. Here it is evident that a large part of
the PV system is curtailed throughout the day during summer, since some days only about a third of the
total available solar energy is used. One might suggest downsizing the PV system as currently it does
not operate at its full potential during the summer and thus could be considered as a waste of materials
and/or money. This is however not desired, since this will create even larger problems during periods
when solar irradiance is low. A better solution would be to introduce a seasonal BESS which stores
most of the excess generated solar energy to be used later when energy production is low (i.e. during
winter). Another solution would be to introduce a different kind of renewable energy source which is not
seasonally bound the same way as PV systems are. Introducing a different kind of renewable energy
source would in turn give opportunity to downsize the PV system if deemed necessary.
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(a)

(b)

(c)

Figure 5.3: Model characteristics during summer

Figure 5.4: The total and used solar energy during summer

As for the EV delaying during summer shown in Figure 5.3b, the effect it has on the transformer power
demand shown in Figure 5.3c is substantially larger than during winter. There are fewer peaks when
looking at the power at the transformer with the full model (blue) in Figure 5.3c, compared to the delayed
EV supply (red) in Figure 5.3b. For example, between hours 40 and 50, where there is little to no PV
generation present, the transformer power only shows three peaks, whereas the delayed EV supplied
power shows more during this same period. This shows that delaying the EV charging over a window
results in less power at the transformer. Since the model has optimised the EV charging within its
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2 hour window, there are still some peaks visible due to the fact these loads cannot be delayed any
longer than 2 hours. Therefore these loads have to be supplied at a suboptimal moment. This is also
reflected in Table 5.2, where a substantial amount of energy can be saved by delaying the charging
of the EVs over a larger window. A window of 1 hour already saves 8.43 kWh over 5 days, which
is more than double the amount that can be saved by EV delaying in the winter (namely 3.49 kWh).
Enlarging the charging window gives the model more freedom into when to charge the vehicles within
that window. Combining this with an energy generation excess at certain times, it becomes evident
that shifting the EV charging to a time when generation is high, reduces the energy demand from the
transformer. Table 5.2 shows that for a delay window between 0 and 2.5 hours, the improvement
of energy consumption in percentage doubles every step (of 0.5 hours). This leads to almost 9%
less energy consumption over 5 days with a delaying window of 2.5 hours. When increasing the delay
window evenmore, the improvement in energy consumption starts to level off gradually. A delay window
of 3.5 hours reduces the energy consumption of the neighbourhood over 5 days by 17% (which equals
126.13 kWh). To keep the delaying feature user-friendly, the choice was made to delay up to 2 hours.
This was the largest time frame that was expected to have little effect on supplying the consumers
with enough charge for their vehicles. In a real project, the cost of these energy savings should be
compared to the cost of living and user friendliness to choose the optimal value for the EV delaying
window.

Table 5.2: Effect of different EV delaying windows on the energy needed from the transformer over five days during the summer

EV delay window [hours] Energy from
transformer [kWh]

Energy saved compared
to 0 EV delay [kWh]

Energy saved compared
to 0 EV delay [%]

0 758.5 0 0
0.5 756.09 2.41 0.32
1 750.07 8.43 1.11
1.5 740.01 18.49 2.44
2 722.16 36.34 4.79
2.5 692.16 66.34 8.75
3 655.08 103.42 13.63
3.5 632.37 126.13 16.63

Finally, the model has also been tested during spring. This time, the model has a better balance
between the total available solar energy and the used solar energy, which is shown in Figure 5.5. Just
as in the previous figures, the amount of energy that is curtailed is the difference between the total solar
energy and the used solar energy. While there is still curtailment on days where the solar irradiance
is higher (for example April first, where about half of the total solar energy is used), the curtailment
is visibly lower than that during the summer (where often only a third of the energy is used). This
curtailment on days where the solar irradiance is higher is visible in Figure 5.6a. Here the used solar
energy (red), sometimes exactly mirrors the load (blue), which means the model curtails the excess
power generation in an effort to keep the transformer power at zero. This excess power generation
could be stored in a season storage for more renewable energy usage. Whilst the excess generation
could be stored, it means the seasonal storage needs to be of vast capacity if the storage already starts
in April and last throughout the whole summer. This means that the initial decision of preparing for any
demand increases has resulted in over-sizing the PV system for now, since is unsure by how much the
energy demand will increase in the future. If the energy demand increases rapidly in the future, the
large PV system might still be appropriate, however this is beyond the scope of this project.
The results from the model can be seen in Figure 5.6. When looking at the BESS SOE (green) in
Figure 5.6a, it mimics the behaviour as seen in Figure 5.3a where the SOE rises during PV generation
in the mornings and falls during the larger load in the evenings, apart from day three. On day three the
solar generation is too little to have an impact on the model. This resembles the behaviour as seen
in Figure 5.1, where the BESS is not charged due to too little irradiance during that day. Figure 5.6c
clearly shows that the power at the transformer is clearly higher at the third day compared to other days
because of the low irradiance and SOE of the BESS.



24

Figure 5.5: The total and used solar energy during spring

The EV delaying (red) in Figure 5.6b, has a reasonable impact on the power demand from the trans-
former (blue), as seen in Figure 5.6c. When looking between hours 90 and 95, three high peaks are
visible in the load, as seen in Figure 5.6a. These peaks originate from the EV delaying, as these peaks
are also present in Figure 5.6b. However in Figure 5.6c, while the three peaks are still present, the
second peak has greatly reduced in size when looking at the transformer power with the full model
(blue). This amidst a period where little to no PV generation is taking place. The effects of EV delaying
becomes even more clear when inspecting Table 5.3, where extending the EV charging delay window
shows a decrease in energy demand from the transformer. While there is a decrease (29 kWh saved
with a 2-hour delay window), it is a little less than the decrease seen during summer (36 kWh saved
with a 2-hour delay window), this is not surprising since both periods have shown excess PV energy
generation. However, as seen in Figure 5.5, on the third day there is very little solar energy generation.
This can also be seen in Figure 5.6c, where on the third day the demand from the transformer is high-
est. This explains why the EV delaying has less impact than during the summer. This also emphasizes
how weather dependent the efficiency of the model is when the only generation is through solar power.
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(a)

(b)

(c)

Figure 5.6: Model characteristics during spring

Table 5.3: Effect of different EV delaying windows on the energy needed from the transformer over 5 days during the spring

EV delay window [hours] Energy from
transformer [kWh]

Energy saved compared
to 0 EV delay [kWh]

Energy saved compared
to 0 EV delay [%]

0 3593.42 0 0
0.5 3592.89 0.53 0.01
1 3584.28 9.14 0.25
1.5 3578.55 14.87 0.41
2 3564.27 29.15 0.81
2.5 3556.56 36.86 1.03
3 3541.17 52.25 1.45
3.5 3524.34 69.08 1.92

To conclude, the effect the optimisation model has on the demand from the transformer is shown below
in Table 5.4. Here, the total power demand from the EVs and households during the certain period
is added and converted to energy and compared to the energy demand from the transformer with the
optimisation model active. The result thus shows the effect of the communal battery, the PV panels
and the optimisation model on the consumption of energy from the external grid. The improvement
of the model on the energy consumption of the neighbourhood is calculated as the energy demand
without the model subtracted with the energy demand with the model and the initial state of energy
of the battery (namely 156 kWh). It is clear that the model improves the neighbourhood’s energy con-
sumption substantially in the spring and summer (namely 56% and 80% ) but less in the winter (namely
10% ). Since there is very little PV generation during the winter, there is no excess power to charge
the communal battery. Thus, the model has much less room to optimize power consumption during
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the winter. But the large improvement during the summer proves that the smart distribution network
designed in this project has a very positive effect on decreasing congestion and energy consumption.

Table 5.4: Effect of the optimisation model on the energy demand from the transformer

Time of
year

Energy demand
no model [kWh]

Energy demand
with model [kWh]

Improvement [kWh]
(excluding 𝑆𝑂𝐸𝑏𝑎𝑡𝑖𝑛𝑖 )

Improvement [%]
(excluding 𝑆𝑂𝐸𝑏𝑎𝑡𝑖𝑛𝑖 )

winter 6689.21 5836.77 696.44 10.41
spring 8529.74 3564.27 4809.47 56.38
summer 4372.77 722.16 3494.61 79.92



6
Conclusion

The final form of the model met almost all of the requirements mentioned in Chapter 2. All of the ”must
have” requirements have been met, two of the three ”should have” requirements were met and the
”could have” requirements were not implemented. The model saves up to 5MWh of energy in one
week for the Vechtrijk neighbourhood.

The first three ”must have” requirements were about the three input data types. These were indeed
adapted and implemented in 15 minute intervals as explained in Section 3.2. The fourth requirement
mentions that the model must use as little energy from the external grid as possible. This was achieved
by defining the objective function to minimize the total power at the transformer as explained in Section
4.4. To minimize congestion in the Netherlands even more, the objective function also minimizes the
power supplied back to the external grid. The fifth and sixth requirements state that the SOC of the
BESS has to be tracked and kept between a safe depth of discharge. This is all implemented within
the constraints of the BESS model (see Eq. 4.2, 4.3, 4.4). The final ”must have” requirement was that
the EVs have to be fully charged before each morning. This was implemented by creating a limit to the
amount of time that the EV demand can be delayed. This limit was set to 2 hours. That means that after
someone plugs in their vehicle, it will only take up to 2 hours extra to reach a full charge. And since this
limit is always present, this implementation also improves the user experience of the charging stations
during the day.
The two ”should have” requirements that were successfully implemented were the curtailment of EV
charging as well as the PV system. Both could be curtailed with all values between 0 and 1. The
requirement that states that the model should optimise electricity cost was not implemented, since the
decision was made that solving congestion was more important than saving money since congestion
is a much larger problem.
The final requirement was a ”could have” requirement and stated that the model could extract energy
from the EVs. This temporary storage solution was desirable to implement but very complicated to
implement with the current EV input data, namely the charging power at every timestep. Therefore,
this has been added as a suggestion for future work.

6.1. Future work
The results from the model were satisfactory with regard to the requirements. Nevertheless, there were
points on which the model can be improved. This leads to the following possibilities to expand this work
in the future:

• A seasonal BESS could be added to the model which should improve the performance during
winter and reduce the curtailment during summer. This BESS would have to have a significantly
large capacity and thus additional research should also concentrate on investigating the best
material for storing such large amounts.

• Different kinds of renewable energy sources could be explored to have less reliance on solar
irradiation.

27
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• The EVs could also be added to the model as a temporary storage solution. If the model can
extract power from the EVs, it is important to add a constraint that the SOC must not fall below a
value where the consumers cannot drive their cars anymore. The model will also need data that
contains the SOC of the vehicles upon arrival to implement an EV discharging feature.

• Peak shaving could be explored to lessen the unpredictability of peaks in demand from the trans-
former. Since these peaks may not be desirable for the power supplying companies.

• Delaying or controlling the usage of controllable devices (such as washing machines) could be
introduced in the system to give more opportunities to optimise the power flow.

• In future work, this project will incorporate the forecasting data from group B.2 to investigate the
effects of forecasting data on the powerflow.

• The timestep, currently 15 minutes, could be reduced to increase the effect the optimisation has
on the system.

• An additional optimisation problem could be created to find the ideal size for the PV system and
BESS in terms of cost and capacity.
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A
Appendix

A.1. Design
1 area = 2002.6; % PV system area
2 eff = 0.2; % PV system efficiency
3

4 % get irradiance per hour
5 weerdata_2013 = readmatrix(’weerdata_2013.csv’);
6 data.solar = weerdata_2013(:,2);
7 data.hour = weerdata_2013(:,1);
8 data.solarpower_h = data.solar*area*eff/1000; %power in kW
9

10 % interpolate every 15 minutes
11 time = [1:1:8760];
12 interpolated = [1:0.25:8760];
13 data.solarpower_15 = interp1(time,data.solarpower_h,interpolated);
14 data.solarpower_15 = data.solarpower_15(:); % convert to column vector
15

16 % write weather data back to excel in sheet 10
17 writematrix(data.solarpower_15,’variables_BAP_local.xlsx’,’Sheet’,10);
18

19 % Get load data per hour
20 loaddata = readmatrix(’latest_user_data.csv’);
21 evdata = readmatrix(’EV_data.csv’);
22

23 % Make solardata the same length as loaddata
24 solar_data = data.solarpower_15;
25 solar_data(numel(loaddata)) = 0;
26

27 % Delete last element of evdata to make same length
28 evdata(35041) = [];
29

30 % Get total load data
31 total_load = loaddata + evdata;
32

33 % Create x-axis for plot
34 x = [1:1:35040];
35

36 % Calculate excess energy generated by PV sytem
37 excess = solar_data - total_load;
38

39 % Create empty vector
40 Total_excess_day(1:365) = 0;
41

42 for z=1:365 % for every day of the year
43 for y=1:96 % add every 15 minutes of a day
44 if z>1
45 % if not first day of the year, add the values incremented by
46 % multiples of a day
47 Total_excess_day(z) = Total_excess_day(z) + excess(y+(z-1)*96)*0.25;
48 else
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49 % If first day of the year
50 Total_excess_day(z) = Total_excess_day(z) + excess(y)*0.25;
51 end
52 end
53 end
54

55 % Create empty vector
56 Total_excess_jan = 0;
57 Total_excess_apr = 0;
58 Total_excess_jul = 0;
59 Total_excess_sep = 0;
60

61 for i = 0:1:6 % for 7 days, add all excess
62 Total_excess_jan = Total_excess_jan + Total_excess_day(1+i); % Day 1 is 1 jan
63 Total_excess_apr = Total_excess_apr + Total_excess_day(104+i); % Day 104 is 14 apr
64 Total_excess_jul = Total_excess_jul + Total_excess_day(182+i); % Day 182 is 1 jul
65 Total_excess_sep = Total_excess_sep + Total_excess_day(254-i); % Day 249 is 11 sep
66 end
67

68 % Output value
69 Total_excess_jan/7
70 Total_excess_apr/7
71 Total_excess_jul/7
72 Total_excess_sep/7
73

74 % Create figure
75 figure(1)
76 x = [0 365 365 0];
77 y = [0 0 1000 1000];
78 xlim([0 365])
79 f = figure;
80 f.Position = [10 10 1000 400];
81 plot(Total_excess_day)
82 xlabel(’Time [days]’)
83 ylabel(’Energy shortage/excess [kWh]’)
84 title(’Average energy shortage/excess per day’)
85 yline(0, ’--black’)
86 xline(1,’--black’,’1st of January’);
87 xline(104,’--black’,’14th of April’);
88 xline(182,’--black’,’1st of July’);
89 xline(254,’--black’,’11th of September’);
90 grid minor;

Listing A.1: Matlab code for calculating PV generation and BESS sizing

A.2. The Optimisation Model
1 from pyomo.environ import *
2 from pyomo.opt import SolverStatus, TerminationCondition
3 import pandas, numpy
4 import matplotlib.pyplot as plt
5 import matplotlib.colors as mcolors
6 import seaborn as sns
7 import numpy as np
8

9 def readInputFile(filename):
10

11 # Load all data from excel sheets
12

13 LoadData = pandas.read_excel(filename, sheet_name= ’Load’, index_col=0) #data of load
entire neighbourhood

14 TransformerData = pandas.read_excel(filename, sheet_name= ’Transformer’, index_col=0) #
rated power transformer

15 PVProduction = pandas.read_excel(filename, sheet_name=’PVProduction’, index_col=0) #
omgerekende irradiation

16 StorageData = pandas.read_excel(filename, sheet_name= ’StorageSystem’, index_col=0) #
batterij

17 EVDemand = pandas.read_excel(filename, sheet_name = ’EVDemand’, index_col=0) #EV charging
data

18

19 # Return directory
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20 return {’PVProduction’:PVProduction, ’StorageData’:StorageData,
21 ’LoadData’:LoadData, ’TransformerData’:TransformerData, ’EVDemand’:EVDemand}
22

23 def optimizationModel(inputData, modelType):
24

25 # Unpack the data from the dictionary
26 LoadData = inputData[’LoadData’]
27 TransformerData = inputData[’TransformerData’]
28 PVProduction = inputData[’PVProduction’]
29 StorageData = inputData[’StorageData’]
30 EVDemand = inputData[’EVDemand’]
31 #------------------------------------------------------------------------------
32 # Define the Model
33 model = ConcreteModel()
34

35 #------------------------------------------------------------------------------
36 #Define Sets
37 model.T = Set(ordered=True, initialize=LoadData.index) # Set for time
38 model.B = Set(ordered=True, initialize=StorageData.index) # Set for battery
39 model.G = Set(ordered=True, initialize=TransformerData.index) # Set for (grid)

transformer
40

41 #------------------------------------------------------------------------------
42 #Define Parameters
43 # Battery Energy Storage System
44 model.BESS_Pmax = Param(model.B, within=NonNegativeReals, mutable=True)
45 model.BESS_SOEmax = Param(model.B, within=NonNegativeReals, mutable=True)
46 model.BESS_SOEini = Param(model.B, within=NonNegativeReals, mutable=True)
47 model.BESS_Eff = Param(model.B, within=NonNegativeReals, mutable=True)
48 # Load
49 model.Consumption = Param(model.T, within=NonNegativeReals, mutable=True) # Consumption

of load j
50 # PV Generation
51 model.PV = Param(model.T, within=NonNegativeReals, mutable=True) # Production of PV

system k
52 # Transformer
53 model.Pmax = Param(model.G, within=NonNegativeReals, mutable=True)
54 # EV
55 model.EV = Param(model.T, within=NonNegativeReals, mutable=True)
56

57 #------------------------------------------------------------------------------
58 # Initialize Parameters
59 # BESS Parameters
60 for b in model.B:
61 model.BESS_Pmax[b] = StorageData.loc[b,’Pmax’]
62 model.BESS_SOEmax[b] = StorageData.loc[b,’SOEmax’]
63 model.BESS_SOEini[b] = StorageData.loc[b,’SOEini’]
64 model.BESS_Eff[b] = StorageData.loc[b,’Eff’]
65

66 # PV generation Parameter
67 for t in model.T:
68 model.PV[t] = PVProduction.loc[t,’PVProduction’]
69

70 # Transformer Parameter
71 for g in model.G:
72 model.Pmax[g] = TransformerData.loc[g,’Pmax’]
73

74 # The timestep of the model
75 timestep = 0.25
76

77 # Load Parameter
78 for t in model.T:
79 model.Consumption[t] = LoadData.loc[t,’LoadData’]
80

81 # EV Parameter
82 for t in model.T:
83 model.EV[t] = EVDemand.loc[t, ’EVDemand’]
84

85 #------------------------------------------------------------------------------
86 # Define the Decision Variables
87 # BESS
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88 model.SOE = Var(model.B, model.T, within=NonNegativeReals) # SOE
89 model.Pch = Var(model.B, model.T, within=NonNegativeReals) # P charge
90 model.Pdis = Var(model.B, model.T, within=NonNegativeReals) # P discharge
91 model.u_bess = Var(model.B, model.T, within=Binary) # 1 is charging
92 model.u_idle = Var(model.B, model.T, within=Binary) # 1 is idleing
93 # Transformer
94 model.Pgrid_plus = Var(model.T, within=NonNegativeReals) # pushing from
95 model.Pgrid_minus = Var(model.T, within=NonNegativeReals) # pulling to
96 model.u_grid = Var(model.T, within=Binary) # 1 is pulling
97

98 # Added in order to have curtailment
99 model.curtail_pv = Var(model.T, within=NonNegativeReals) # Curtail % of PV
100 model.PVprod = Var(model.T, within=NonNegativeReals) # PV Production
101

102 # Added for EV curtailment/different wattages
103 model.curtail_ev = Var(model.T, within=NonNegativeReals) # Curtail % of EV
104 model.EVDelayed = Var(model.T, within=NonNegativeReals)
105 model.EVTotal = Var(model.T, within=NonNegativeReals)
106 model.EVSup = Var(model.T, within=NonNegativeReals)
107 model.SOPSup = Var(model.T, within=NonNegativeReals)
108 model.SOPDemand = Var(model.T, within=NonNegativeReals)
109

110 #------------------------------------------------------------------------------
111 # Define Constraints
112

113 def CurtailEV(model, t):
114 if model.T.ord(t) == len(model.T):
115 return model.curtail_ev[t] == 1
116 else:
117 return model.curtail_ev[t] <= 1
118

119 def TotalEVDemand(model, t):
120 if model.T.ord(t) == 1:
121 return model.EVTotal[t] == model.EV[t]
122 if model.T.ord(t) > 1:
123 return model.EVTotal[t] == model.EV[t] + model.EVDelayed[model.T.prev(t)]
124

125 def SupplyEVNow(model, t):
126 return model.EVSup[t] == model.EVTotal[t] * model.curtail_ev[t]
127

128 def DelayEV(model, t):
129 return model.EVDelayed[t] == model.EVTotal[t] - model.EVSup[t]
130

131 def TotalSupply(model, t):
132 if model.T.ord(t) == 1:
133 return model.SOPSup[t] == model.EVSup[t]
134 if model.T.ord(t) > 1:
135 return model.SOPSup[t] == model.SOPSup[model.T.prev(t)] + model.EVSup[t]
136

137 def TotalDemand(model, t):
138 if model.T.ord(t) == 1:
139 return model.SOPDemand[t] == model.EV[t]
140 if model.T.ord(t) > 1:
141 return model.SOPDemand[t] == model.SOPDemand[model.T.prev(t)] + model.EV[t]
142

143 def ForceCharge(model, t):
144 if model.T.ord(t) > 8:
145 return model.SOPDemand[t-8] <= model.SOPSup[t]
146 else:
147 return Constraint.Skip
148

149 def ObjectiveFcn(model):
150 return timestep*sum(model.Pgrid_plus[t] + model.Pgrid_minus[t] for t in model.T)
151

152 # Added in order to have curtailment
153 def CurtailPV(model, t):
154 return model.curtail_pv[t] <= 1
155

156 # Curtail > 0 not needed since its NonNegativeReal
157

158 def PVcurtail(model, t):
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159 return model.PVprod[t] == model.PV[t] * model.curtail_pv[t]
160

161 def PGrid(model, b, t):
162 return model.Pgrid_plus[t] - model.Pgrid_minus[t] == model.Consumption[t] + model.Pch

[b,t] \
163 + model.EVSup[t] - model.PVprod[t] - model.Pdis[b, t]
164

165 def GridPull(model, g, t):
166 return model.Pgrid_minus[t] <= model.Pmax[g] * model.u_grid[t]
167

168 def GridPush(model, g, t):
169 return model.Pgrid_plus[t] <= model.Pmax[g] * (1-model.u_grid[t])
170

171

172 def SOE(model, b, t):
173 if model.T.ord(t) == 1:
174 return model.SOE[b,t] == model.BESS_SOEini[b] + timestep * (model.Pch[b,t] \
175 * model.BESS_Eff[b] - model.Pdis[b,t]/model.BESS_Eff[b])
176 if model.T.ord(t) > 1:
177 return model.SOE[b,t] == model.SOE[b, model.T.prev(t)] + timestep * (model.Pch[b,

t] \
178 * model.BESS_Eff[b] - model.Pdis[b,t]/model.BESS_Eff[b])
179

180 def BESS_SOE_max(model, b, t):
181 return model.SOE[b,t] <= model.BESS_SOEmax[b]
182

183 # BESS_SOE_min is not needed, since model.SOE specifies NonNegativeReals
184

185 def BESS_Charging(model, b, t):
186 return model.Pch[b,t] <= model.BESS_Pmax[b] * model.u_bess[b, t]
187

188 def BESS_Discharging(model, b, t):
189 return model.Pdis[b, t] <= model.BESS_Pmax[b] * (1-model.u_bess[b, t])
190

191 def BESS_idle(model, b, t):
192 return model.u_bess[b,t] + model.u_idle[b,t] <= 1
193

194

195 #------------------------------------------------------------------------------
196 # Add Constraints to the model
197

198 model.Obj = Objective(rule=ObjectiveFcn)
199 model.ConPGrid = Constraint(model.B, model.T, rule=PGrid)
200 model.ConGridPull = Constraint(model.G, model.T, rule=GridPull)
201 model.ConGridPush = Constraint(model.G, model.T, rule=GridPush)
202 model.ConSOE = Constraint(model.B, model.T, rule=SOE)
203 model.ConSOEmax = Constraint(model.B, model.T, rule=BESS_SOE_max)
204 model.ConBESSCharging = Constraint(model.B, model.T, rule=BESS_Charging)
205 model.ConBESSDischarging = Constraint(model.B, model.T, rule=BESS_Discharging)
206 model.ConBESSidle = Constraint(model.B, model.T, rule=BESS_idle)
207

208 # Added in order to have curtailment
209 model.ConCurtailPV = Constraint(model.T, rule=CurtailPV)
210 model.ConPVcurtail = Constraint(model.T, rule=PVcurtail)
211

212 # Added in order to have curtailment of EV
213 model.ConCurtailEV = Constraint(model.T, rule=CurtailEV)
214 model.ConTotalEVDemand = Constraint(model.T, rule=TotalEVDemand)
215 model.ConSupplyEVNow = Constraint(model.T, rule=SupplyEVNow)
216 model.ConDelayEV = Constraint(model.T, rule=DelayEV)
217 model.ConForceCharge = Constraint(model.T, rule=ForceCharge)
218 model.ConTotalSupply = Constraint(model.T, rule=TotalSupply)
219 model.ConTotalDemand = Constraint(model.T, rule=TotalDemand)
220

221 return model

Listing A.2: The optimisation model in Python using the Pyomo packages
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