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1
Introduction

DNA, the book of life, controls the growth and appearance of all living beings. A
genome is the complete set of DNA in a living organism. Genomics is the study
of genomes. In genomics, genome analysis or in other words DNA analysis is per-
formed to extract useful information about the characteristics of an organism. This
chapter will present the motivation for the work done in this PhD thesis by outlining
various computational challenges in genome analysis. The chapter is organized as
follows: Section 1.1 discusses DNA sequences technologies and their applications.
Section 1.2 describes the various DNA analysis algorithms. Section 1.3 give de-
tails of the computing platforms for DNA analysis. Section 1.4 explains the current
challenges in the fast analysis of DNA data, followed by Section 1.5 which outlines
possible solutions for these challenges. Section 1.6 describes the research ques-
tions addressed in this thesis, while Section 1.7 lists the contributions of the thesis.
Section 1.8 presents the dissertation outline.

1.1. DNA sequencing methods and applications
A genome or DNA sample can be regarded as a string made up of only four types
of characters ’a’, ’c’, ’g’ and ’t’ representing the four nucleotide bases: Adenine,
Cytosine, Guanine and Thymine, respectively. For DNA analysis, the order of the
bases in the DNA sample must be known. One way to identify the DNA content of
a sample is by using microarrays. A DNA microarray has a solid surface containing
a collection of ”spots”. Each spot has a set of unique DNA sequences attached
to it. To determine whether the target DNA consists of sequences identical to
those on the DNA microarray, the DNA is shattered into small fragments and then
a solution of these small DNA fragments is sprinkled over the DNA microarray. The
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2 Ch-1: Introduction

Sanger

NGS

Figure 1.1: Cost reduction due to Next Generation Sequencing. The figure is reproduced from [1].

small DNA fragments bind to their complementary DNA sequences present in the
DNA microarray. In this way, scientists can detect the relative concentration of
the DNA sequences in the target DNA sample. In [3], Bumgarner describes various
limitations of DNA microarrays regarding their resolution. The microrarrays are used
to determine the relative concentration of the known DNA sequences in the solution
and cannot be used to find the order of bases in a sample. The solution of the target
has to be prepared very carefully. A solution containing a very high or very low
concentration of the DNA sequences may give no information about the relative
concentration of the DNA sequences in the target DNA sample. Furthermore, if
different DNA fragments share a common sequence they will bind to the same
spot, despite being different. DNA microarray can only be designed for known DNA
sequences. Sequences that are unknown or vary greatly from the known sequences
cannot be detected with DNA microarrays. Hence, DNA microarrays may not be
suitable for certain critical applications that require high resolution DNA sequence
analysis.

An alternative approach to find the order of bases in a DNA sample is DNA sequenc-
ing. DNA sequencing machines are capable of reading a DNA sample to find the
exact order of bases in it. As a DNA sequencing machine reads a given sequence
at a per-base level, it does not have the limitations faced by DNA microarrays.
Therefore, DNA sequencing is replacing DNA microarrays for high resolution DNA
analysis. The machine used for DNA sequencing is known as a DNA sequencer. As
in the case of DNA microarrays, the DNA sample is shattered into fragments before
sequencing. The DNA sequencing machines scan through the fragments to read
the bases. The output of the machine is the sequence of bases known as DNA
reads. The read length is the number of bases in a read, specified in base pairs
(bp). First-generation DNA sequencers use Sanger sequencing [4] producing reads
up to 1000 bp. However, Sanger sequencing is only suitable for sequencing smaller
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Sec-1.1: DNA sequencing methods and applications 3

Figure 1.2: Read length distribution for Pacbio sequencing. Reproduced from [2].

genomes due to its low throughput.

As the number of applications grows, scientists faced the need to reduce the cost
of high-throughput DNA sequencing of large genomes. This resulted in the de-
velopment of second-generation massively parallel sequencing technologies more
commonly known as Next Generation Sequencing (NGS). Figure 1.1 shows that
with the advent of NGS in 2007, the cost of sequencing begins to decrease sharply
bringing down the cost of sequencing a human genome to around US $1000 in
2015. In this period, sequencing cost dropped by around 10,000x, from US $10
million in 2007 to US $1000 in 2015. The drop in cost is accompanied with an
increase in throughput, where current NGS machines can produce 6 terabytes of
data in a single machine run of up to 3 days [5]. NGS reads have lengths of up
to 300 bp, and therefore they are referred to as short DNA reads. Illumina is the
leading manufacturer of NGS sequencers.

Third generation sequencers manufactured by Pacific Biosciences (Pacbio) and Ox-
ford Nanopore Technologies (ONT), can produce reads up to hundreds of kilobases
long. Figure 1.2 shows the read length distribution of Pacbio sequencers. The av-
erage read length is around 50 kilobases with the longest read being more than 175
kilobases. ONT sequencers produce ultra-long reads having a similar read length
distribution as shown in Figure 1.2 but with even higher average length.

DNA sequencing has a wide range of applications from nutrition to life sciences.
According to an economic survey, the global sequencing market will grow from
around 6 billion US dollars in 2017 to more than 25 billion dollars in 2025 with a
cumulative annual growth rate of 19% [6]. Examples of the applications of DNA
sequencing are listed below:

1



4 Ch-1: Introduction

seed extendstage 1

stage i

Last

stage

step j step j+1 

Figure 1.3: A multistage DNA analysis pipeline. Each stage is a DNA analysis application. Input is the
DNA reads generated by a sequencer.

• prenatal testing to find abnormalities in an unborn baby [7]

• determining the risk of developing a certain genetic disease [8]

• diagnosing an existing genetic disease [9]

• breeding improved varieties of crops [10]

• improving the efficiency of livestock production [11]

• finding bacteria and viruses in blood and food samples [12] [13]

• etc.

Hence, genome sequencing is becoming the norm rather than the exception in many
fields, which will play an increasingly important role in our wellness and quality of
life.

1.2. DNA analysis algorithms
Reading the DNA bases in a sample is the first step in the process of DNA analysis.
Sequencing data is stored as DNA reads in a computer readable data format, e.g.
FASTQ format. DNA analysis is performed by computer programs that process the
DNA sequencing data to perform the desired analysis. Many DNA analysis tools have
to match two DNA strings 𝑃 and 𝑇. A straight forward application of string matching
algorithms is not feasible for DNA sequencing data due to the large volume of data
to be analyzed. Therefore, string matching in modern DNA analysis applications is
performed in two steps:

1. Finding substrings of 𝑃 and 𝑇 that highly match with each other. This step
is known as seeding and these substrings are known as seeds. Different
kinds of seeds can be computed, e.g. k-mer matches [14], maximal exact
matches [15], etc.

2. Comparing 𝑃 and 𝑇 around the highly matching substrings found in the seed-
ing step. This step is known as seed-extension. The operation performed in
step-2 is known as Sequence Alignment. Sequence alignment is the process
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Sec-1.3: Computing platform for DNA analysis 5

of transforming two or more sequences by introducing gaps or substitutions so
that parts of the sequences become identical to each other. Various sequence
alignment algorithms exist, e.g. local alignment [16], global alignment [17]
etc.

This two-step technique is known as the seed-and-extend heuristic, pioneered by
BLAST [18]. If the length of 𝑃 and 𝑇 is small, the seeding step can be skipped and
𝑃 is directly compared against 𝑇 using sequence alignment algorithms.

The DNA analysis may be performed by a single application or a pipeline of applica-
tions as shown in Figure 1.3. A pipeline stage is a single DNA analysis application.
The output of a pipeline stage acts as the input of the next stage. Each pipeline
stage consists of one or more processing steps. Seeding and extension are one of
the processing steps of a pipeline stage. DNA analysis algorithm is a general term
that we can use to refer to the whole DNA analysis pipeline, an analysis stage in
the pipeline or a processing step within a pipeline stage. Below is a list of some
DNA analysis applications having seeding and extension (or sequence alignment)
as processing steps.

• Modern DNA read mappers (also known as read aligners) like BWA-MEM [19],
Bowtie2 [20] and Minimap2 [21] follow seed-and-extend paradigm.

• Overlap computation in OLC (Overlap Consensus Layout) based assembly of
long DNA reads is also performed using seed-and-extend. Examples are Dar-
win [22] and Daligner [23].

• Whole genome alignment tools like MUMmer4 [24] and LASTZ [25] are based
upon seed-and-extend.

• DNA read error correction applications like Jabba [26] use seed-and-extend.

• DNA analysis applications like HaplotypeCaller [27], DeepVariant [28] and
Strelka [29] etc. form the last stage in the variant calling pipeline. Sequence
alignment is an important processing step in these applications

• DNA database search engines like BLAST [18] select a subset of all the
database sequences by performing seeding. The selected sequences are
aligned to the query. Other tools like DOPA [30] align all the sequences in
the database to the query sequences.

1.3. Computing platform for DNA analysis
DNA analysis algorithms can be executed on high performance computing plat-
forms. A typical high performance computing platform is shown in Figure 1.4,

1
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Figure 1.4: A typical computing platform for DNA analysis. The CPU may physically consist of one more
multicore processors known as sockets.
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Figure 1.5: The DNA analysis algorithm execution before and after offloading highly parallelizable sec-
tions to an accelerator.
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Sec-1.3: Computing platform for DNA analysis 7

Metric CPU FPGA GPU

Amount of parallelism

SIMD parallelism

MIMD parallelism

Sequential performance

Memory bandwidth

Power efficiency

Multiple kernels NA

Table 1.1: A comparison of various metrics of CPU with FPGA and GPU based accelerators for high
performance computing. The metric performance is directly proportional to the number of stars.

although the configuration may vary. It consists of one or more compute nodes.
A cluster is a computing platform with at least two compute nodes. Such a cluster
has shared network storage. The compute nodes and shared storage are intercon-
nected via a high speed network. Each compute node contains a CPU with multiple
cores connected to shared memory. Each compute node also has a local storage
space. Besides, an accelerator may also be attached to the CPU. A node consisting
of an accelerator is known as a heterogeneous computing system.

The accelerator consists of a processing device and memory. Mainly two types of
accelerators are in use today: FPGA-based and GPU-based. The main advantage
of the accelerators over the CPU is the large amount of parallelism offered by these
systems. In a heterogeneous compute system containing an accelerator, the CPU
acts as a host which offloads highly parallelizable sections of the algorithm to an
accelerator. The programmer has to write an implementation of the highly par-
allelizable section that can be executed on the accelerator device (GPU or FPGA).
The implementation is known as a kernel. Figure 1.5 shows the DNA analysis al-
gorithm before and after using an accelerator. The algorithm running on the CPU
consists of highly parallelizable sections that are offloaded to the accelerator. The
kernels contain the implementation of the parallelizable sections which execute on
the accelerator.

Table 1.1 shows a comparison of various metrics of CPU with FPGA (Field Pro-
grammable Gate Array) and GPU (Graphics Processing Unit) based accelerators
that are required for high performance computing. CPUs offers both SIMD (Single
Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data) parallelism

1



8 Ch-1: Introduction

L2 cache

DRAM

. . .

SM SM 

GPU

Figure 1.6: A simplified view of NVIDIA’s Pascal architecture with the magnified view of the streaming
multiprocessor (SM) shown on the top. DP units are double precision cores; LD/STs are load-store
units;SFUs are special function units; TEXs are texture units. The figure is reproduced from [31].

with very high sequential performance. FPGA offers much higher parallelism than
CPU. It also has much less power consumption than CPU and GPU. MIMD as well
as SIMD parallelism can be achieved with FPGAs. GPU is well placed in the list
due its massive amount of SIMD parallelism and high memory bandwidth. Multiple
sections of an algorithm can be parallelized by writing a separate kernel for each
section. FPGAs can also be used for parallelizing multiple sections of the algorithm,
but it requires reconfiguration of the FPGA which involves some overhead. GPUs
were originally designed for graphic rendering. But its many-core design created
an opportunity to parallelize many other applications. The GPU architecture varies
from one vendor to the other and even across different GPU generations from the
same vendor. Here we give a general overview of state-of-the-art NVIDIA GPUs.
Figure 1.6 presents a simplified view of the internals of NVIDIA GPUs based on the

1



Sec-1.4: Challenges in fast DNA analysis 9

Figure 1.7: The SpecINT_rate performance of various generations of Intel Xeon server-class processors.
The fields on the x-axis are the launching year of the processor with the processor name in the brackets.

Pascal architecture. The cores of a GPU, known as streaming processors (SPs),
groups of which are organized into a number of streaming multiprocessors (SMs).
Each SM has a set of SPs, a register file, warp schedulers, a read only memory (not
shown in figure), L1 cache, shared memory, and some other hardware units. In
NVIDIA GPUs, a warp is a set of 32 threads that execute in lockstep by sharing the
program counter. All SMs access the DRAM (known as global memory) through a
shared L2 cache. The programming language for developing kernels for NVIDIA
GPUs is known as CUDA which is an extension of C/C++. The data to be processed
by the kernel is first copied from the host CPU memory into the global memory of
the GPU. The CPU then launches the kernel. Once the kernel is finished the results
are copied from the global memory back into CPU memory.

1.4. Challenges in fast DNA analysis
Low cost sequencing and analysis promises to make DNA analysis affordable enough
to be used by a larger public in many sectors ranging from healthcare to nutrition.
However, several challenges need to be overcome to achieve this goal. Second and
third generation sequencing platforms produce massive amounts of data that has
to be processed by DNA analysis algorithms. Therefore, this makes DNA analysis
a time consuming task. Moreover, in many critical DNA analysis applications like
clinical diagnostic, the time consumed in DNA analysis may become a matter of
life and death. In the following, we will present the current challenges in fast DNA
analysis.

1



10 Ch-1: Introduction

Figure 1.8: The growth of DNA sequencing data. The dotted lines show the projected growth. Repro-
duced from [32].

1.4.1. Slow CPU performance scaling

Moore’s law accompanied with Dennard scaling resulted in an exponential growth
in CPU performance until it hit several barriers: the power wall, the memory band-
width wall, which resulted in limiting CPU performance scaling. Figure 1.7 plots the
throughput performance of Intel Xeon server-class processors on the SPEC CPU2006
integer benchmarks. The graph in the figure shows CPU performance scaling in the
last 11 years. The performance in the first 5 years of the figure (2008 to 2013) has
increased by 6.3x (i.e., 1.44x per year). However, in the last 6 years from 2013 to
2019, it only increased 3.56x (i.e., 1.23x per year). Hence, the performance gain
is reduced by nearly a factor of 2 in the last 6 years.

1.4.2. DNA sequencing data growth

Figure 1.8, reproduced from [32], shows that the amount of DNA sequencing data
generated is doubling every 7 months. The authors predicted that if the current
trend continues (historical growth rate in Figure 1.8) then by 2025 the DNA se-
quencing data will reach 5 Zetta bases per year with 2 billion human genomes
being sequenced every year.Variant calling is a DNA analysis to detect mutations in
a genome. In [33], a cluster implementation of a GATK genome analysis pipeline
for variant calling [34] is presented. The implementation can perform the analysis
of 200 Gbps sequencing data in 90 minutes. But it requires 19 IBM Power8 com-
pute nodes to do so. Each node has 20 cores of IBM Power8 and 512 gigabytes of

1



Sec-1.4: Challenges in fast DNA analysis 11

Figure 1.9: Using the DNA data growth prediction in [32] we can extrapolate the computational needs
required to perform the variant calling based on the results published in [33]. The left Y-axis and the line
labeled as ”data” shows the sequencing data per year. The right Y-axis and the line labeled as ”nodes”
shows the number of compute nodes.

RAM. This shows that sufficient computing resources are required to process the
sequencing data in a reasonable amount of time. A close inspection of the histor-
ical growth rate in Figure 1.8 reveals that the sequencing data is growing by 3.4x
every year. Based on this prediction in [32], about DNA sequencing data growth
and the results of the cluster implementation in [33], we projected the number
of IBM Power8 nodes required to perform variant calling, if the input sequencing
data of [33] (i.e., 200Gbp) grow by 3.4x every year. Figure 1.9 shows our pro-
jection. For predicting the number of nodes, we assume computational power of
the CPUs will increase at a rate of 23% per year as calculated from Figure 1.7 in
Section 1.4.1. The graph shows exponential growth for both the sequencing data
and the required number of nodes to perform the analysis. The sequencing data is
3.4x more than the previous year while the required number of nodes is increased
by around 2.75x every year. By 2024, nearly 23 thousand Power8 nodes will be
required to perform the analysis on 1 Peta bases. In 2025, the data grows to 3.5
Peta bases and the required number of nodes become nearly 65 thousand. Hence,
to keep the compute time constant, old nodes have to be replaced by newer 1.23x
faster nodes and at the same time use more than double (2.76x) the number of
nodes. In this analysis, we have neglected the amount by which the storage and
interconnect network have to be scaled up to avoid degradation in performance.
Such a huge financial investment is not sustainable.

1.4.3. Long DNA reads

State-of-the-art third generation DNA sequencers produce long reads with lengths
ranging up to hundreds of kilobases. We measured the execution time of seeding
and extension for the same amount of sequencing data generated by Illumina,

1



12 Ch-1: Introduction

(a) Seeding

(b) Sequence alignment (seed-extension)

Figure 1.10: Relative execution times of seeding and extension for the reads generated by three second
and third generation sequencing platforms.

Pacbio and Oxford Nanopore sequencers. Seeding and extension for long DNA reads
take considerably more time than for Illumina short reads as shown in Figure 1.10a
and Figure 1.10b. Seeding of Pacbio reads takes 11x more time than short Illumina
reads. For Oxford Nanopore, which produces even longer reads than Pacbio, the
seeding time is 32x slower. In the case of sequence alignment, the gap in the
execution time for short and long reads widens even more where extension with
Pacbio and Nanopore reads takes 128x and 221x more time than Illumina reads,
respectively. Hence, the seed-and-extend of long DNA reads is a bottleneck in DNA
analysis applications.

1.4.4. DNA sequencing time

The DNA sequencing time of the Illumina sequencers is a major bottleneck in the
DNA analysis. The latest NovaSeq sequencing platform produces a maximum of
2.5 Tera bases in 36 hours [5]. However, the cluster implementation of variant
calling described in [33] can process this amount of data in about 18.5 hours,
which is nearly half the time needed for sequencing. Moreover, the implementation

1



Sec-1.5: Overcoming the challenges of DNA analysis 13

is highly scalable, where increasing the number of nodes in the cluster will reduce
the computation time. Further accelerations and optimizations are also possible that
will further reduce the execution time of different pipeline stages, such as reducing
the variant calling stage by tools like elprep [35]. Hence, a highly optimized and
accelerated DNA analysis algorithm will not help to reduce the overall analysis time
if the sequencing itself is taking much more time than the computation.

1.5. Overcoming the challenges of DNA analysis
In the previous section, we described that the challenges faced in fast DNA analysis
are due to the massive amount of sequencing data available, its exponential growth
rate, as well as the increasing DNA read length. These challenges result in the
continued increase in DNA analysis time, a problem that can be addressed in the
following ways.

1.5.1. Acceleration of DNA analysis algorithms

In many DNA analysis algorithms, there are several independent tasks and oper-
ations. The most common way of reducing execution time is to accelerate the
analysis algorithm by running these independent tasks in parallel. A CPU core on a
computing platform (see Figure 1.4) can execute an independent task. Moreover,
CPU cores have SIMD (Single Instruction Multiple Data) units that offer parallelism
at an even finer granularity within a task. A large number of previous research
efforts are based on the parallelization of DNA analysis algorithms. In some re-
searches, the parallelization is performed at the cluster level by efficiently utilizing
the cluster resources. Alternatively, the focus of the research may be on the par-
allelization of DNA analysis algorithms on a single node or even on a single core
using the SIMD units. For example, [33] and [36] present a cluster implementation
of a DNA analysis algorithm; [37] and [38] are parallelization of sequence align-
ment algorithms on a CPU using multiple cores and SIMD units. As heterogeneous
computing is gaining immense significance in the era of high-performance comput-
ing, many researchers have used GPU and FPGA based accelerators to increase the
performance of DNA analysis algorithms by accelerating various steps of the appli-
cation [39]. For example, [40] and [41] present the GPU and FPGA acceleration of
the BWA-MEM seed-extension algorithm, respectively. Similarly, in [42] and [43]
the PairHMM computation step of the GATK variant calling algorithm is accelerated
on GPU and FPGA, respectively.

1.5.2. Optimization of DNA analysis algorithms

In this approach, the sequential performance of DNA analysis algorithms is im-
proved via software optimizations. In the following, some optimizations are de-

1
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scribed that can be applied to reduce the execution time:

• ,mprRYinJ cache ORcaOit\: Increasing cache hits helps to gain more per-
formance on a CPU. Techniques presented in [44] and [45] optimize seeding
algorithms by increasing the cache hit rate.

• 5educinJ memRr\ reIerenceV: Fewer memory references reduce the ex-
ecution time of memory-bound applications. Work in [46] shows a seeding
algorithm that is faster than the original implementation due to less memory
load instructions. Other techniques involve exchanging computation for mem-
ory accesses, e.g. building a so-called ”query profile” reduces the memory
accesses in sequence alignment [47].

• 5educinJ cRmputatiRn: Using methods to avoid redundant computation
helps to reduce the execution time. For example, in banded sequence align-
ment, proposed in [48], less computation is required to align two sequences
without affecting the final result.

• 5educinJ ,�2: In many DNA analysis algorithms, I/O is a major bottleneck
that can be reduced by various methods, such as using in-memory data for-
mats presented by ArrowSAM [49].

1.5.3. Designing efficient algorithms

The performance of a highly optimized and accelerated algorithm to perform a
specific type of analysis can only be further boosted by designing a new algorithm
that is faster than the existing algorithm without losing accuracy. For example, [50]
proposes a better approach for computing maximal exact matching seeds. Similarly,
the algorithm in [22] can be used for fast local alignment of long DNA sequences
with the same accuracy as that of the Smith-Waterman algorithm [16] which is
the standard method for computing the local alignment. For DNA read mapping of
Illumina reads, BWA-MEM is faster and more accurate than BWA-SW [51] as shown
in [19]. The developers of GATK claim that the new algorithm version 4 is faster
than version 3 without sacrificing accuracy.

1.6. Research questions
As described in Section 1.5, many solutions exist to meet the challenges of fast
DNA analysis and researchers are spending their effort to employ these solutions
to speed up the analysis. However, many areas need improvement since there are
still some unaddressed challenges. In this thesis, we answer the following research
questions:

1
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1. How can the performance of the algorithm for computation of maximal exact
matching seeds be improved?

Maximal exact matching seeds are used in many DNA analysis applications.
The algorithm for computing maximal exact matching seeds is memory bound
and cache unfriendly.

2. How can the computation of maximal exact matching seeds for long DNA
reads/sequences be accelerated on a GPU?

State-of-the-art third generation sequencers produce long DNA reads. The
computation of maximal exact matching seeds for long reads/sequences is
a time expensive task. Seed computation is a highly parallel process which
makes it suitable for GPUs. As heterogeneous computing systems are becom-
ing commonplace, there is a need for a high performance GPU acceleration
for maximal exact matching seeds computation of long DNA sequences.

3. How can a GPU accelerated library for the sequence alignment of high-
throughput NGS reads be developed?

Sequence alignment is performed in many DNA analysis algorithms. These
algorithms have to process large amounts of DNA sequencing data. In many
applications, a large number of sequence alignments can be computed in
parallel. GPUs offer massive parallelism which is highly suitable for this pur-
pose. However, there is only one GPU accelerated sequence alignment API,
NVBIO [52]. It has limited performance and does not use the latest features
offered by NVIDIA’s GPUs and their programming models. Therefore, a fast
GPU accelerated library that contains various sequence alignment algorithms
is useful for the developers of DNA analysis pipelines.

4. How does the seeding and extension algorithm affect the speed and accuracy
of DNA read mappers?

Modern DNA read mappers are based on the seed-and-extend paradigm.
There are different types of seeding algorithms. Similarly, various sequence
alignment algorithms can be used in the extension step. The alternatives
available for performing seeding and extension in read mappers call for the
need to compare the speed and accuracy of different combinations of seeding
and extension algorithms.

5. How to reduce the impact of DNA sequencing delay in the DNA analysis time?
The time spent in DNA sequencing is a major bottleneck in the overall DNA
analysis time as described in Section 1.4.4. Therefore, developing methods
and techniques to overcome this bottleneck is important to reduce the DNA
analysis time.

1
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1.7. Thesis contributions
In this section, we present our contributions by addressing the research questions
posed in Section 1.6. We provide solutions by accelerating and optimizing DNA anal-
ysis algorithms as well as for designing efficient algorithms. Most of the existing
accelerated kernels for DNA analysis are designed to fit for a particular application
and hence are deeply integrated. Therefore, the solutions cannot be used to accel-
erate a similar analysis in other applications. Our accelerated algorithms are faster
than existing implementations and at the same time reusable i.e. they can be easily
integrated into DNA analysis algorithms, which makes them unique among many
other optimized and accelerated solutions. We also employ our optimized and ac-
celerated algorithms in real DNA analysis applications to showcase the efficacy of
our approach. In the following, we list the contributions of the thesis.

Contributions to algorithm optimization

1. We present an improved algorithm for computing the maximal exact matching
seeds which is 1.7x faster than the original algorithm. This contribution is
presented in Chapter 2.

2. We used our software optimized algorithm for computing maximal exact
matches in the BWA-MEM DNA read mapper and showed that it raises the
speedup of FPGA accelerated BWA-MEM from up to 2.6x. This is presented in
Chapter 2.

Contributions to algorithm acceleration

1. We accelerated the computation of maximal exact matches on GPUs. Our
GPU acceleration is much faster than CPU based implementations. The GPU
implementation is available in the form of a CUDA API and can be integrated
into any DNA analysis algorithm. Our implementation is up to 9x faster for
computing maximal exact matching seeds as compared to the fastest CPU
implementation running on a server-grade machine with 24 threads. This
contribution is described in Chapter 2.

2. We present GASAL2, a GPU accelerated API for the sequence alignment of
high throughput NGS sequencing data. NVBIO [52], NVIDIA’s library, is the
only other library available for this purpose. GASAL2 is up to 21x faster than
high-performance CPU libraries running on an Intel Xeon system with 28 cores
and up to 13x faster than NVBIO. This contribution is presented in Chapter 3.

3. Using the GASAL2 library, we accelerated the seed-extension step of the BWA-
MEM DNA read mapper. GASAL2 seed-extension is up to 20x faster, which
speeds up the whole BWA-MEM application by 1.3x as compared to 12 Xeon
threads. This contribution is described in Chapter 3.

1
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Figure 1.11: Recommended reading order of the dissertation.

4. We accelerated the Darwin read overlapper, used in the assembly of long DNA
reads. Our GPU acceleration is 109x faster versus 8 CPU threads of an Intel
Xeon machine. This contribution is discussed in Chapter 3.

Contributions to designing efficient algorithms

1. We developed GASE, a generic read mapper based upon seed-and-extend. It
contains many optimized and accelerated seeding and extension algorithms.
In a given study, GASE can be configured with any combination of seeding
and extension algorithm to meet the requirements of accuracy and execution
time.

2. We explored the design choices for DNA read mappers for NGS data. We
employed different algorithms in the seeding and extension step of the map-
per and compared the accuracy and execution time of the alternatives. This
contribution is discussed in Chapter 4.

3. We present a novel method to overcome the long DNA sequencing time bot-
tleneck for Illumina sequencers. We showed that our approach can help to
further reduce the end-to-end analysis time by starting the analysis before
sequencing is completely finished without much loss in the accuracy of the
DNA analysis. This contribution is discussed in Chapter 5

1.8. Dissertation outline
In this chapter, we have discussed the importance of DNA sequencing and the
current challenges we are facing in the fast analysis of the sequencing data. We

1
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Figure 1.12: Various possible DNA analysis workflows with stages based upon seed-and-extend or at
least use sequence alignment in a computational step. Also showing the applications optimized and/or
accelerated in the thesis.

outline the solutions to overcome these challenges and our contributions to fast DNA
analysis. The remaining dissertation describes the algorithms and methods that we
developed to speed up the DNA analysis in detail. The outline of the dissertation is
as follows

Chapter 2 focuses on improving the performance of seeding algorithms. It first
presents a software optimized seeding approach, followed by a GPU accelerated
version of the algorithm.

Chapter 3 focuses on improving the performance of sequence alignment algo-
rithms. It describes the GPU acceleration of a sequence alignment API. The API
is then applied to accelerate the seed-extension stage of BWA-MEM. Furthermore,
it also presents the GPU acceleration for Darwin, a read overlapper for long DNA
reads.

Chapter 4 presents a comparison of seeding and extension algorithms, identifying
their speed and accuracy. It also describes a read mapper, known as GASE, that
we developed to perform the comparison.

Chapter 5 describes our approach to reduce the DNA sequencing delay.

Chapter 6 draws conclusions form the dissertation and proposes future research
directions.

Figure 1.11 shows the relationship between different chapters and the recom-

1
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mended order for the reader. After reading the introduction chapter (Chapter 1),
the reader can move on to Chapter 2, Chapter 3 or Chapter 5. It is recommended
that Chapter 4 should be read after reading Chapter 2 or Chapter 3.

We also applied our optimized and accelerated seeding and extension algorithms
to real DNA analysis applications to show the performance improvement achieved.
Figure 1.12 shows various possible workflows for analyzing DNA sequencing data.
All the DNA analysis applications shown in various stages in the figure commonly
use the seed-and-extend paradigm or at least perform sequence alignment in one
of their computational steps. The figure also shows the stages that we accelerated
using our optimized and accelerated seeding and extension algorithms. The reads
generated by the DNA sequencer are corrected to remove the sequencing errors in
the ”Read error correction” stage. The corrected reads can be assembled using dif-
ferent assembly algorithms. OLC based assemblers and reference guided assembly
algorithms contain seed-and-extend processing steps. The GPU accelerated se-
quence alignment algorithms in Chapter 3 are used to accelerate the read overlap
computation in OLC based read assemblers. Assembled genomes are compared
with each other using ”Whole genome alignment” algorithms. Chapter 2 describes
the GPU accelerated maximal exact match seeding algorithm that can be used to
accelerate whole genome alignment applications (such as MUMmer). Alternatively,
DNA reads are mapped. Modern DNA read mappers are based on the seed-and-
extend approach. Chapter 2 also presents a CPU-optimized seeding algorithm used
to speed up the BWA-MEM DNA read mapper. In Chapter 3, we have shown our
GPU accelerated sequence alignment API that can be used to accelerate the seed-
extension stage of BWA-MEM. Mapped DNA reads are used for variant calling using
the HaplotypeCaller, DeepVariant, Strelka, etc. All these tools contain sequence
alignment as an important processing step. The techniques in Chapter 5 decrease
the end-to-end time by reducing the sequencing delay in a variant calling pipeline
using Illumina reads. Short DNA reads generated by Illumina sequencing platforms
have a very low sequencing error rate, and hence do not require read correction
(as represented by the block in the figure labeled as Chapter 5). Reads are also
searched in DNA databases using search engines to find a matching pattern. Most
of the search engines use sequence alignment algorithms while many others follow
the seed-and-extend paradigm.

1





2
Fast Seeding Algorithms

In seed-and-extend DNA analysis algorithms, the first step is to find seeds (which
are exactly matching substrings) of the two DNA sequences to be compared as
described in Section 1.2. In this chapter, we describe our accelerated and optimized
seeding algorithms for genome analysis. The chapter focuses on the computation of
maximal exact matching seeds which is a compute intensive task that may become
a bottleneck in many DNA analysis applications. We first describe GPUseed, which is
our GPU library for accelerating the computation of maximal exact matching seeds.
We show how the seeds can be computed using space efficient FM-index [53].
Then the GPU implementation is described in detail. The results show that with
real Pacbio data, GPUseed is up to 9x faster than a highly optimized CPU based
implementation running with 24 threads.

We also described our software optimized algorithm for computing maximal exact
matching seeds used in the BWA-MEM read mapper. Our optimization helps to
speed up the FPGA accelerated BWA-MEM from 1.9x to 2.6x.

This chapter consists of the following articles:

• N. Ahmed, K. Bertels, and Z. Al-Ars, GPUseed: Fast Computation of Maximal
Exact Matches for Genome Analysis, (2019), Submitted to MDPI Genes.

• © 2015 IEEE. Reprinted, with permission, from “N. Ahmed, V. Sima, E. Hout-
gast, K. Bertels, and Z. Al-Ars, Heterogeneous Hardware/Software Accelera-
tion of the BWA-MEM DNA Alignment Algorithm, in 2015 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD) (2015) pp. 240–246”.
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Abstract: The seeding heuristic is widely used in many DNA analysis applications to speed up
the analysis. In many applications, seeding takes a substantial amount of total execution time. In
this paper, we present a CUDA API for computing maximal exact matching seeds on GPU. It can
be used to compute maximal exact matching as well as super-maximal exact matching seeds. We
applied optimization to reduce the number of GPU global memory accesses and to avoid redundant
computation. Our implementation also tries to extract maximum parallelism from the maximal
exact match computation tasks. We tested our library using the data from the state-of-the-art third
generation Pacbio and Oxford Nanopore DNA sequencers generating hundreds of kilobases long
DNA reads. Our results show that it is up to 9x faster for computing maximal exact matching seeds
as compared to optimized CPU implementation running on 24 Intel Xeon threads. For computing
super-maximal exact matches, our API is up to 5.5x faster. The implementation is open source and
can be integrated into any DNA analysis application. The results of our implementation show that
GPU provides substantial performance gain for massively parallelizable algorithms even if they are
memory-bound.

Keywords: maximal exact matches, GPU, genome analysis

1. Introduction

Current DNA analysis programs have to process massive amounts of data. In many applications
this data is in the form of DNA reads. A DNA string is a single read or an assembly of many reads.
It is made up of only four characters: "a", "c", "t" and "g". These four characters represent the four
types of nucleotide bases in the DNA and are also known as base pairs(bp). Many of the DNA analysis
algorithms require to solve an approximate string matching problem. Therefore if the number of the
DNA strings to be matched is large or the strings are long, the direct application of Smith-Waterman [1]
or similar algorithms is too slow for practical purposes. To overcome this problem, BLAST [2] pioneered
the approach of applying a seeding heuristic. The reason behind applying the seeding heuristic is the
observation that for a good match to be found between two strings, these strings must share a highly
matching substring. Therefore, to match two strings, first, a common substring should be found. This
common substring is known as a seed. An approximate match between the strings is then found by
applying Smith-Waterman around the seed. This two-step method is known as seed-and-extend.

Computing a seed refers to finding the pattern of the common substring as well as its location in
the two strings. In a typical DNA analysis application, millions of independent DNA strings have to
be processed, each of which may contain many seeds. Therefore, computing seeds is a highly parallel
problem, that can be accelerated on massively parallel Graphics Processing Unit (GPU) devices.

Maximal exact match seeds are computed in a variety of bioinformatics applications which
include: BWA-MEM [3] and CUSHAW2 [4] DNA read mappers; Jabba [5], a DNA sequencing error
correction tool; and MUMmer [6] a whole genome alignment application. Therefore, optimizing or
accelerating the computation of the maximal exact matches could be beneficial for a large number of
DNA analysis programs. Some seeding algorithms, like slaMEM [7], extend the FM-index for faster
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computation of MEMs, while others, like essaMEM [8], propose other types of indexes to speed up
the computation. CUSHAW2-GPU [9] is the GPU implementation of the CUSHAW2 read mapper. It
computes the MEMs on the GPU. But it is designed only for short reads with a maximum allowed read
length of only 320 bases. Moreover, it stores the suffix array intervals of the MEMs in an intermediate
file which is subsequently loaded for locating the MEM seeds on the reference genome. This makes
the computation extremely slow. In [10] the authors present the computation of exact matches using
suffix trees. Suffix trees are large data structures that consume a huge amount of memory. The suffix
tree used in the paper would take 152 gigabytes of memory for the human reference genome. Hence,
the approach is impractical for large genomes. GPUmem [11] is a GPU implementation for computing
maximal exact matches between only two very long DNA sequences, e.g. between chromosome 1 and
chromosome 2 of the human genome.

NVBIO [12] is an open source library developed by NVIDIA. It contains the functions for
computing the maximal exact matching seeds on GPU using the FM-index. But it can only be used
to find maximal exact matching seeds for short DNA reads. For long DNA reads, NVBIO terminates
due to illegal memory access error. This may be due to the sizes of some data structures that are not
sufficient for long DNA reads. Moreover, NVBIO uses bidirectional BWT of [13] which limits the
amount of parallelism (See Section 2.2.3, first paragraph). This is especially true for long DNA reads
since less number of long DNA reads can be loaded in the GPU memory as compared to short DNA
reads for MEM computation.

Maximal exact matching seeds are widely used for DNA analysis but in the past, there were
limited efforts to parallelize their computation. State of the art third generation sequencing platforms
produce long DNA reads with lengths up to hundreds of kilobases. In this paper, we present GPUseed,
a CUDA API to accelerate the computation of various maximal exact matching seeds on GPUs for DNA
analysis in long DNA sequences. The contributions of the paper are as follows:

• We present the fastest GPU implementation in the form of an API for computing the maximal
exact matches in long DNA sequences.

• We present unique optimizations that include pre-calculated suffix array intervals and early
detection of redundant MEMs for fast computation of maximal exact matches on GPU.

• Experiments show that our implementation provides 7-9x speedup over the fastest CPU
implementation for the third generation Pacbio DNA reads.

This paper is organized as follows. Section 2 discusses the required background and the
implementation details of GPUseed. Section 3 describes the experimental results. Section 4 presents
the conclusions drawn from the paper.

2. Materials and Methods

2.1. Background

As described in the introduction, seeding is used to speed up the process of finding an approximate
match between two DNA strings. More formally, let one string be called as text T and the other be
called pattern P.

In practice, T is one long DNA string assembled from many DNA reads. To find an approximate
match between T and P, we first need to find substrings of P that are exactly matching at one or more
locations in T. A maximal exact match (MEM) between two strings is an exact match that cannot be
further extended in either direction without incurring a mismatch. The concept of maximal exact
matches was first proposed in [6]. A MEM is said to be an SMEM (super-maximal exact match) if it is
not contained in any other MEM between T and P [14].
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Figure 1. The FM-index. Strings in red color form a list of suffixes of text sorted in lexicographically
order.

2.1.1. The FM-index

The algorithm for computing the seeds depends upon the underlying index. The index is a
pre-built data structure that is used to compute seeds. For example, to find substrings of pattern P
that exactly match in text T, an index of T is built. In DNA analysis applications, mainly two types of
indexes are used: i) Hash tables ii) Indexes based on suffix/prefix trie.

Hash table indexes are fast and require O(1) time to compute a seed. The disadvantage of using
hash tables is that they can only be used to find fixed-length seeds. Moreover, the length of the seed
should be kept low (e.g., below 15 [15]). For longer seeds, it requires a huge amount of RAM. For
example, the SNAP read mapper hash table requires 39 gigabytes of RAM for seeds of length 20 [16].

There are various types of indexes based on the suffix/prefix trie index type, such as suffix
arrays [17], enhanced suffix arrays, [18], and FM-index [19]. FM-index is widely used in many DNA
analysis applications due to its speed and small memory footprint. In our implementation, we have
used the seed searching algorithm based on the FM-index

The FM-index is a data structure based on the Burrows-Wheelers transform [20] of the text. In
Figure 1, the FM-index is a set of three arrays: i) Count array C ii) Burrows-Wheeler transform array
BWT and iii) Suffix position array SP. The C array has only four elements, one for each DNA base.
The C array element for a base x holds the number of DNA bases in the text T that is lexicographically
smaller than x. The BWT array holds the Burrows-Wheeler transform of T. The Burrows-Wheeler
transform of T is computed by lexicographically sorting all the rotations of T and then storing the last
column. The SP holds the starting position of the suffixes of T. For a very large T, storing the starting
position of all the suffixes will require a huge amount of RAM. For example, if T is the human reference
genome, the number of suffixes are over 3 billion (length of the reference genome). 4 bytes are required
to store each position. Hence, over 12 gigabytes of memory is required to store the full suffix array.
Usually, to save RAM, SP is stored in compressed form and the starting position of only those suffixes
is stored for which suffix array index is a multiple of a certain number, known as compression ratio in
this paper. For example, the compression ratio in Figure 1 is 2.

2.1.2. Computing seeds using FM-index

As described before, computing a seed means that we attempt to find a common substring
between T and P and find its location in T and P. Assume P[i : j], a substring of P. i and j are the
starting and ending positions of P[i : j] in P. |.| denotes the length of a string. Seed computation
using the FM-index is completed in two steps: a) Computing suffix array intervals of the seed, and b)
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Algorithm 1: Computing Suffix array intervals of all the MEMs between P and T
Input: Pattern P and minimum required MEM length min_mem_len
Output: Array M containing all the MEMs in P

1 Function MEMSAINTERVAL(P, min_mem_len) begin
2 Initialize M as an empty array
3 [l, u]← [0, |T| − 1]
4 for j← |P| − 1 down to min_mem_len− 1 do
5 q← j
6 while q >= 0 do
7 prev_l ← l
8 prev_u← u
9 l ← C[P[q]] + Occ(P[q], l − 1) + 1

10 u← C[P[q]] + Occ(P[q], u)
11 if l > u then
12 break

13 q← q− 1

14 // q = −1
15 if l ≤ u and j− (q + 1) + 1 ≥ min_mem_len then
16 start← q + 1
17 end← j
18 Append ([l, u], start, end) to M

19 // otherwise
20 else if j− q + 1 ≥ min_mem_len then
21 start← q + 1
22 end← j
23 Append ([prev_l, prev_u], start, end) to M

Locating the seed in T using suffix array intervals. Suffix array interval [l(P[i : j]), u(P[i : j])] of P[i : j]
is defined as:

l(P[i : j]) = min{k : P[i : j] is the prefix of SA[k]}
u(P[i : j]) = max{k : P[i : j] is the prefix of SA[k]}

where suffix array SA contains the suffixes of the text T sorted in lexicographical order, as shown in
Figure 1. Suffix array interval of P[i : j] can be computed using FM-index with backward search. In
backward search we start with an empty string. The l and u of the empty string are defined as 0 and
|T| − 1, respectively. We then add bases to the empty string from the end of P[i : j], one base at a time,
in the backward direction so that the string grows as P[j : j]→ P[j− 1 : j]→ P[j− 2, j] · · · → P[i : j] .
After adding every base, the suffix array interval of the new string is calculated as:

l(P[x : j]) = C[P[x]] + Occ(P[x], l(P[x + 1 : j])− 1) + 1 (1)

u(P[x : j]) = C[P[x]] + Occ(P[x], u(P[x + 1 : j])) (2)

where Occ(b, y) is the number of occurrences of base b in the BWT array from 0 to y. If l(P[x : j]) ≤
u(P[x : j]), then P[x : j] does exist in T and occurs at u(P[x : j])− l(P[x : j] + 1 locations in T.

Algorithm 1 uses the recurrence Equations 1 and 2 to compute the suffix array intervals of all the
MEMs between P and T. The algorithm returns an array M containing the MEMs in the form of tuples
([l, u], start, end), where [l, u] is the suffix array interval of the MEM; start is the starting position of the
MEM in P and end is the ending position of the MEM. MEM computation starts from the base at index
q and builds the MEM string in the backward direction by adding bases from P until the base at the
0th index of P is reached. To compute SMEMs, assume that the MEMs in the array M are sorted in
ascending order with respect to the start. Since SMEMs are a subset of MEMs, all those MEMs Mi in
the array M which satisfy the condition start[i] == start[i + 1], i = 0 . . . |M| − 2 are filtered out and
the remaining MEMs in the array M are the SMEMs. |M| is the number of elements in the array M

Locating a seed refers to computing the start position of a seed in T. Algorithm 2 shows how
the FM-index is used to compute the starting position of seeds with compressed suffix position
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Algorithm 2: Computing the starting position for a given suffix array index
Input: suffix array index of the seed sa_idx
Output: starting position of the seed in the text

1 Function LOCATESEED(sa_idx) begin
2 itr ← 0
3 i← sa_idx
4 while i%r 6= 0 do
5 i← C[BWT[i]] + Occ(BWT[i], i− 1)
6 itr ← itr + 1

7 return SP[i] + itr

array SP having a compression ratio of r. The suffix array interval of a seed contains u − l + 1
suffix array indexes. The LOCATESEED function accepts a suffix array index (sa_idx) of the seed and
computes the corresponding seed starting position in T. Hence, the LOCATESEED function is called for
sa_idx = l, l + 1 . . . , u− 1, u to find all the locations of the seed in T.

Computing MEM seeds is a highly parallel process. The seeds for all the DNA reads can
be computed in parallel. Even for a single read the iterations of the for loop in Algorithm 1 are
independent. Moreover, each MEM occurs at l − u + 1 places in T and all these locations can be
calculated in parallel using Algorithm 2. Hence, the computation of maximal exact matching seeds is
well suited for parallel processing.

2.1.3. Graphics processing units

In heterogeneous computing era, Graphics Processing Units (GPUs) are used as accelerators for
high performance applications due to there massively parallel architecture. In the following, we will
briefly describe the architecture and programming of NVIDIA GPUs

In NVIDIA GPUs, there are numerous streaming multiprocessors (SMs). Each SM has many
cores known as streaming processors (SPs). An SP is the basic computational unit that executes a
GPU thread. GPU also has its own DRAM known as global memory. GPU threads are grouped into
grids. Each grid contains many GPU thread blocks. The threads in a block are assigned to the same SM.
The number of blocks within a grid and the number of GPU threads in a block are configured by the
programmer. All the GPU threads can communicate with each other via global memory. However, the
threads in a block can also communicate through a fast shared memory. In a block, there is a set of 32
threads known as a warp that share the program counter. The threads in a warp can communicate with
the help of shuffle instructions.

The programming language for NVIDIA GPUs is known as CUDA which is an extension of
C/C++. The GPU programmer writes a kernel which executes on the GPU. The GPU is attached to
a host CPU which initiates all the tasks related to the GPU. The data to be processed by the kernel is
copied from the host memory to the global memory of the GPU. The CPU then launches the kernel.
Once the kernel is finished, the results are copied from the global memory back into the host CPU
memory.

2.2. GPUseed Implementation

GPUseed exploits the massive parallelism in seed computation. In many situations, there is a
large number of patterns that need to be matched with the text T. Moreover, several seeds for each
pattern P need to be computed. Therefore, in total, a large number of seeds can be computed in
parallel. GPUseed contains several stages for computing (S)MEM seeds. Figure 4 shows the different
computational stages of GPUseed. The array shown after each stage is the output of the stage. Each
stage launches one or more GPU kernels. The API is capable of computing MEMs and SMEMs not
only on DNA text T but also on its reverse complement T. To simplify the discussion, we focus on the
case when the (S)MEMs are to be computed only on T.
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Figure 2. The BWT array used in GPUseed. The BWT bases shown here are arbitrary

2.2.1. The index

To compute the seeds using GPUseed, a pre-built index is loaded in the GPU memory. The
index consists of BWT array, count array C, compressed suffix position array SP and a pre-calculated
suffix interval array. The use of the pre-calculated suffix interval array is described in Section 2.2.3.
As described in Section 2.1.2 the seed search algorithm using FM-index needs to compute Occ(b, y),
which is the number of occurrences of base b in the BWT array from 0 to y. In the case of a large BWT
array, counting the number of occurrences becomes very slow. Therefore, in practice, the BWT array
is interleaved with checkpoints that contain the number of occurrences of all the four types of bases
till that checkpoint. Figure 2 shows the BWT array used in GPUseed. To find Occ(b, y), first, the bin
containing the index y is found. Then the bases of type ’b’ in the bin till index ’y’ are counted and the
count is added to the preceding checkpoint value of the base ’b’. The checkpoints occur after a fixed
number of BWT bases. This number is known as bin_size. In GPUseed, each BWT array entry is a
32-bit integer. Since each base is encoded in 2 bits, the bin_size must be a multiple of 16. We found
that bin_size = 64 is the most suitable choice as it allows to load the checkpoint and the bin using only
2 uint4 CUDA vector load instructions. CUDA popcount instructions are used to count the number
of bases in a bin. We also tested other bin sizes. Smaller bin sizes help to decrease the number of
popcount instructions but cannot decrease the number of load instructions as the minimum bin size is
16. Moreover, smaller bin sizes can increase the number of memory accesses as described in the first
optimization of Section 2.2.3.

2.2.2. Stage-0: Pre-processing

GPUseed accepts input data from the user and returns the results. The user passes patterns for
which the seeds are to be computed on the GPU along with the length of each pattern. The user also
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Figure 3. An example of the input to GPUseed and the result of prepossessing for (S)MEM computation
on GPU. Minimum required seed length is 3
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Figure 4. Different computational stages in the GPUseed

passes the pointers to the FM-index arrays. GPUseed also contains the functions for constructing an
FM-index for a given text T. These functions are extracted from BWA read mapper version 0.5.9 [21].
The index is copied to the GPU global memory. In the rest of the paper, we will assume that a pre-built
FM-index exists in the GPU global memory. GPUseed pre-processes the input to generate 4 arrays.
Figure 3 shows an example of the input (pattern and lengths array) and the result of prepossessing
for (S)MEM seed computation on GPU: i) A 32 bit integer array which contains packed patterns. The
bases of the input patterns are converted from ASCII to 4-bit representation. 4-bit representation is
required to accommodate the fifth type of base ’n’, known as an ambiguous base. DNA sequencers
assign value ’n’ to those bases which it finds difficult to identify. 4 bits instead of 3 bits are chosen
for the ease of post-processing. 3-bit representation allows to pack 10 bases in an integer instead of 8
and hence provide a significant advantage over 4-bit representation. The packing is performed on the
GPU using the same method as described in [22]. ii) offsets: an integer array containing the starting
index of the patterns in the input. This array is computed on the GPU by performing a prefix sum
of the input lengths array. These offset values are used to calculate the starting position of a pattern
in the packed patterns array. iii) thread_pattern: an integer array that assigns a pattern to a thread. iv)
thread_mem_end: this array assigns a (S)MEM within a pattern to a thread. The values in this array
specify the index of the pattern at which the (S)MEM is going to end. Since GPUseed uses the backward
search algorithm, the thread starts from the base at the assigned pattern index and extends it in the
backward direction. The maximum number of (S)MEMs in a pattern equals |P| −min_mem_len + 1.
There is a large variation in the length of the long DNA reads produced by the third generation
DNA sequencers. Therefore, The computation of thread_pattern and thread_mem_end arrays is essential
for efficient utilization of the GPU resources. Both the thread_pattern and thread_mem_end are also
computed on the GPU. Since all the output arrays of the pre-processing stage are computed on GPU,
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Figure 5. An example of GPU thread assignment for (S)MEM seed computation on GPU. Minimum
required seed length is 6

the overhead of the pre-processing is negligible. We found that the total time spent in prepossessing is
less than 1% of the total execution time of GPUseed in all the experiments.

2.2.3. Stage-1: Finding suffix array intervals

This first stage computes the suffix array intervals of MEMs. To compute SMEMs, some MEMs
are filtered out the second stage as described in the next section (Section 2.2.4).

The software optimized algorithms for computing MEMs are different from the one shown in
Algorithm 1. For example, the bidirectional-BWT proposed in [13] allows adding bases both in the
forward and backward direction. Also in [14] and in BWA-MEM [3] a bidirectional FM-index (called
the FMD-index) is implemented. In such algorithms, the MEMs covering an index v of pattern P
are computed by first adding the bases in the forward direction and after adding every base the
corresponding suffix array interval is stored. Hence, the stored suffix array intervals are for the strings:
P[v], P[v]P[v + 1], P[v]P[v + 1]P[v + 2], . . . . Then each of these strings is extended in the backward
direction to compute all the MEMs covering base at index v. The bases added in the forward direction
are common to all the MEMs and hence added only once. This reduces the accesses to the FM-index.
One disadvantage of such an approach is that the forward addition of bases has to be sequential and
cannot be parallelized. Therefore, in our GPU implementation, we will use Algorithm 1 as it allows all
the MEMs in pattern to be computed in parallel, exploiting the massive parallelism of GPUs.

The main GPU kernel in this stage is used to compute the suffix array intervals of MEMs. One
MEM is assigned to a GPU thread. Figure 5 shows an example of the GPU thread assignment. THx
are the threads, where x is the thread number. Each GPU thread starts from a different base of the
pattern as shown in Figure 5 and then extends it in the backward direction. Algorithm 3 shows the
GPU kernel used in GPUseed for computing the suffix array intervals of MEMs. The algorithm is
similar to Algorithm 1 with each iteration of the for loop being computed by a separate GPU thread.
We further applied two optimizations which are explained below:

First optimization – Pre-calculated suffix array intervals: As a part of the index building,
we pre-calculate the suffix array intervals of all the possible 4PRE_CALC_LEN sequences of length
PRE_CALC_LEN. Therefore, the suffix array interval of the last PRE_CALC_LEN bases of the MEM
is already known. The GPU thread first loads the pre-calculated suffix array intervals of the last
PRE_CALC_LEN and then extends the MEM in the backward direction. Using pre-calculated suffix
array intervals has two advantages

1. The pre-calculated suffix intervals reduce the number of backward search steps required for the
computation of the suffix array interval of a MEM.

2. As shown in Algorithm 1 the calculation of a suffix array interval [l, u] requires two accesses
to the BWT array to compute the Occ. At the start of the backward search these accesses are in
different bins of the BWT array, but as the backward search proceeds the difference between l
and u decreases [23] and at some point may become less than the bin size. From here only one
BWT array access is required to compute the suffix array interval. Using the pre-calculated suffix
array intervals may allow us to skip that initial phase of two BWT array accesses.
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Algorithm 3: Computation of suffix array intervals of (S)MEMs in GPUseed
Input: The Pattern Ptid assigned to the thread with thread ID tid in thread_pattern array; The index j of the pattern assigned to the

thread in thread_mem_end array; the suffix array interval [lprecalc , uprecalc ] of the last PRE_CALC_LEN bases of the MEM and
minimum required MEM length min_mem_len

Output: Array M containing all the MEMs in P

1 Function GPUMEMSAINTERVAL(Ptid , j, [lprecalc , uprecalc ],min_mem_len) begin
2 if uprecalc ≥ lprecalc then
3 Initialize prev_intv_size array having length of WARP_SIZE with 0’s
4 [l, u]← [linit , uinit ]
5 q← j− PRE_CALC_LEN
6 curr_intv_sizetid ← uinit − linit + 1
7 redundant← 0
8 while q >= 0 do
9 prev_l ← l

10 prev_u← u
11 l ← C[Pt id[q]] + Occ(Pt id[q], l − 1) + 1
12 u← C[Pt id[q]] + Occ(Pt id[q], u)
13 if l > u then
14 break

15 for i← 1 up to tid%WARP_SIZE do
16 if thread tid - i is active and prev_intv_size[i] = curr_intv_sizetid−i and Ptid = Ptid−i then
17 redundant← 1
18 break

19 for i←WARP_SIZE− 1 down to 1 do
20 prev_intv_size[i]← prev_intv_size[i− 1]

21 prev_intv_size[0]← curr_intv_sizetid
22 curr_intv_sizetid ← u− l + 1
23 q← q− 1

24 if redundant = 0 then
25 // q = −1
26 if l ≤ u and j− (q + 1) + 1 ≥ min_mem_len then
27 return ([l, u], q + 1, j)

28 // otherwise
29 else if j− (q + 1) ≥ min_mem_len then
30 return ([prev_l, prev_u], q + 1, j)

31 else
32 // return NULL
33 return ∅

34 else
35 // return NULL
36 return ∅

37 else
38 // return NULL
39 return ∅

We found that PRE_CALC_LEN = 13, requiring 512 megabytes of GPU memory, provides a good
speed-memory tradeoff. In case the minimum required MEM length is less than 13, the value of
PRE_CALC_LEN is reduced.

As described previously, the MEM finding algorithm optimized for CPUs use the bidirectional
index and the algorithm is different for the one used in our GPU implementation (Algorithm 1). The
downside of using such an index is that the optimization of pre-calculated suffix array intervals cannot
be applied. Hence, this optimization is unique in the sense that the MEM finding algorithm of our
GPU implementation allows pre-calculated suffix array intervals to speed up the MEM computation.

Second optimization – Early detection of redundant MEMs: Two overlapping MEMs may have
the same suffix intervals, and hence the smaller one is redundant. For example in Figure 5, TH1 and
TH22 may have the same suffix intervals at the same index of Pattern 0 and will be backward extended
till the same base of the pattern. In this case, the MEM found by TH2 is redundant. In GPUseed,
the kernel to find the suffix array intervals of the MEMs tries to detect such redundant MEMs as
shown from Line 15 to Line 22 in Algorithm 3. WARP_SIZE = 32 in current NVIDIA GPUs. A thread
keeps a record of the previously computed suffix array interval sizes (u− l + 1) in the prev_intv_size
array during the backward search. A MEM computed by a GPU thread is redundant if a value in
its prev_intv_size array is the same as the current interval size of a thread with lesser ID, which is in
the same warp and is also assigned the same pattern. If the MEM assigned to GPU is found to be
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redundant by the early detection mechanism, the thread exits returning NULL. To access the values of
the current interval size of the other threads, we use CUDA warp shuffle instruction, which allows the
rapid exchange of variables between threads in the same warp without involving shared memory.

Finally, each thread writes the suffix array interval and start and end position of the MEMs in
the output array as shown in Figure 4. Each entry in the output array of Stage-1 contains two values.
The top value is the suffix array interval and the bottom value is start→ end, where start and end are
the starting and ending positions of the MEM in the pattern, respectively. Some entries will be NULL.
Note that the values in the output array are in the ascending order with respect to the start. The output
of Stage-1 contains example values of suffix array intervals and start→ end

2.2.4. Stage-2: Filtering redundant MEMs

A warp contains only WARP_SIZE number of threads and a warp shuffle instruction only
exchanges variables within a warp. Therefore, the output of Stage-1 still contains some redundant
MEMs. Moreover, in the case of SMEM computation, we also need to filter out some non-redundant
MEMs. The GPU kernel of Stage-2 is used for this purpose. First, the NULL entries in the output
array of Stage-1 are eliminated. We used the DeviceSelect kernel from CUB CUDA library [24] to
eliminate these NULL entries and compact the output array of Stage-1. After compaction, each thread
is assigned one entry of the output array of Stage-1. The thread applies a test to know whether to
filter out this entry or not. The condition for filtering out an entry slightly differs for MEM and SMEM
computation. For MEM the condition is:

i f ( s t a r t [ i ] = s t a r t [ i −1]
and u [ i ] − l [ i ] + 1 = u [ i −1] − l [ i −1] + 1)

{
/∗ f i l t e r out M[ i ]∗/
M[ i ] = NULL

}

where M is the array of MEMs. For SMEMs the second condition i.e. u[i] - l[i] + 1 = u[i-1] -
l[i-1] + 1, is not required. Since each thread has to work on only one entry, the filtering stage is very
fast. The output of this filtering kernel is once again compacted to remove the filtered out (S)MEMs
using CUB DeviceSelect kernel. The output of filtering stage (Stage-2) after compaction is shown
in Figure 4. It has the same format as for Stage-1. Note that the third value in the output array of
Stage-1 is filtered out. The first value in the array should have also been filtered out if it is an SMEM
computation.

2.2.5. Stage-3: Splitting suffix array intervals

This GPU kernel splits up the suffix interval to its constituent suffix array indexes. The splitting
is done so that each GPU thread in the locate kernel (Section 2.2.6) computes only one position in
the DNA text corresponding to the suffix array index assigned to it. In the case of two overlapping
MEMs with the same starting position, the suffix interval of the longer MEM is the subset of the shorter
MEM. Therefore, the splitting up performed by this stage makes sure that a suffix array index does not
appear twice and, hence two GPU threads in the locate kernel are never assigned the same suffix array
index. This will reduce the number of locations to be computed by the locate kernel (Section 2.2.6).
The splitting process is very fast as each GPU thread is assigned only one suffix interval to split. This
stage takes less than 1% of the total execution time in all the experiments. The output after this stage is
shown in Figure 4. Each entry has two values. The top value is the suffix array index, while the bottom
value is start→ end. Note that the suffix array index 5673 is present in both the first and second entries
of the output of Stage-2, but it is not repeated in the output of Stage-3
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Figure 6. Time spent in different stages for computing (S)MEMs on GPUseed for Pacbio reads with
different required minimum seed lengths.

2.2.6. Stage-4: Locating (S)MEMs in text

This is the final stage and generates the locations of the (S)MEM seeds in the DNA text. Each
GPU thread has to compute only one location using Algorithm 2. Figure 4 shows the example values
of the seed locations in the text.

2.2.7. Capabilities of the API

The CUDA API is suitable for computing both MEMs and SMEMs. The API can also be used
in multithreaded applications with one or multiple GPUs. (S)MEMs for forward as well reverse
complement DNA text can be computed. To do so we reverse complement the pattern P to obtain
P and find the (S)MEMs for P. To reverse complement a DNA sequence it is first reversed and then
base ’a’ is replaced with base ’t’ and vice verse; base ’c’ is replaced with base ’g’ and vice verse. The
packing kernel in the pre-processing stage (Stage-0) can perform the reverse complement operation
if required. In case of reverse complement the entries in output arrays of Figure 4 are arranged as
P0P0P1P1 . . . . The entries in PiPi of final output array are further sorted with respect to start position
on the pattern using CUB DeviceSegmentedSort kernel. The API can be used with patterns up to a
length of 231 bases.

3. Results and discussions

For comparison purposes, we considered the problem of computing (S)MEMs between a set of
DNA reads and the human reference genome, UCSC hg19 (GRCh37 Genome Reference Consortium
Human Reference 37 (GCA_000001405.1)). Hence, in this case the text T is the reference genome.
(S)MEMs on both the T as well as T are computed. We used a subset of long DNA reads generated
by state-of-the-art third generation DNA sequencing of the whole human genome. Experiments are
performed with two datasets: Pacbio reads and Oxford Nanopore reads. The Pacbio reads are downloaded
from [25]. The total number of reads is 25249 with the average read length of 7 kilobases and the longest
read is 35 kilobases. The Oxford Nanopore read dataset is downloaded from [26] which contains 53723
reads, but we only used the top 8954 reads to reduce execution time. The average read length in this
dataset is 25 kilobases and the longest read is 475 kilobases. The execution time reported in this Section
is the time required to find the (S)MEMs for all the reads in the dataset.

We compared our CUDA API against the fastest CPU implementation available to compute
(S)MEMs using FM-index. This implementation is available in BWA-MEM [27]. We used version 0.7.13
which has a fastmap command to generate (S)MEMs. Originally the command only produces SMEMs.
We slightly modified the SMEM function to produce MEMs. Moreover, we extended the fastmap
command to make it multithreaded using OpenMP. The reads are distributed over CPU threads for
computing (S)MEMs. Our extended version of fastmap command is available at [28].

Furthermore, we compared the fastmap command of BWA-MEM to other MEM seeding tools
available publicly to ensure that fastmap is the fastest CPU implementation for computing MEM
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Figure 7. Comparison of time spent in different stages to compute (S)MEMs on CPU and GPUseed
for Pacbio reads with different required minimum seed lengths. GPUseed is executed with one CPU
thread, whereas the CPU implementation is executed with 24 threads.

Figure 8. Comparison of total execution time to compute (S)MEMs on CPU and GPUseed for Pacbio
reads with different required minimum seed lengths. GPUseed is executed with one CPU thread,
whereas the CPU implementation is executed with 24 threads.
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Figure 9. Time spent in different stages for computing (S)MEMs on GPU for Oxford Nanopore reads
with different required minimum seed lengths.

Figure 10. Comparison of time spent in different stages to compute (S)MEMs on CPU and GPU for
Oxford Nanopore reads with different required minimum seed lengths. GPUseed is executed with one
CPU thread, whereas the CPU implementation is executed with 24 threads.
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Figure 11. Comparison of total execution time to compute (S)MEMs on CPU and GPU for Oxford
Nanopore with different required minimum seed lengths. GPUseed is executed with one CPU thread,
whereas the CPU implementation is executed with 24 threads.

seeds. We tested CPU implementation of sparse-MEM [29] and essaMEM [30], both of which support
multithreading. With the same index size of 4.8 GB and 24 CPU threads with minimum MEM length of
20, sparseMEM and essaMEM are 8.5x and 6.8x slower than fastmap, respectively. The measurements
do not include the time required to build the index and I/O time.

Our GPU implementation is executed on NVIDIA Tesla K40c installed in a 2-socket Intel Xeon
E5-2620 v3 CPU with two way hyper-threading (12 physical cores, 24 logical cores) and 32 gigabytes
of RAM. The CPU implementation is executed on the same machine using 24 threads. We tried
different block sizes i.e. the number of GPU threads per block. We found a block size of 128 to be a
suitable choice. In all the experiments GPUseed is executed with one CPU thread, whereas the CPU
implementation is executed with 24 threads.

The index is the same as described in Section 2.2.1 consisting of a BWT array (1.6 gigabytes)
with bin_size = 64, count array (20 bytes), compressed suffix position array (1.8 gigabytes) with
compression ratio of 7 and a pre-calculated suffix intervals array with PRE_CALC_LEN = 13 (512
megabytes). PRE_CALC_LEN = 12 for minimum MEM length of 12. Hence the total FM-index size is
around 4 gigabytes. For the CPU implementation, the FM-index size is 4.8 gigabytes.

3.1. Results for Pacbio reads

Figure 6 shows the time spent in different stages for computing (S)MEMs on the GPU for different
required minimum seed lengths. find intv is the first stage described in Section 2.2.3. The stage for
splitting suffix array intervals and locating the (S)MEMs are shown as single stage locate in Figure 6.
The time spent in splitting (not shown) is negligible as compared to locating the (S)MEMs using
Algorithm 2. cudamemcpy represents the time spent in transferring data from CPU to GPU and vice
versa. We have not included the time to copy the FM-index and pre-calculated suffix array intervals
to the GPU as it is done only once at the beginning of the program. The cudamemcpy time is mainly
due to the copying of the final output array containing the positions of the (S)MEMs in the text and
pattern start→ end from GPU to CPU. Time spent in copying the pattern (reads) sequences and their
lengths and offsets is negligible. The find intv stage is same for both MEMs and SMEMs, Therefore,
the time for finding intervals is the same (around 6 seconds) for both MEMs and SMEMs. Moreover,
the find intervals time remains constant irrespective of the minimum required (S)MEM length. The
filtration of intervals takes negligible time for all minimum required seed lengths in both MEMs and
SMEMs and is around 1% of the total execution time. In the case of MEMs, the locate time is small for
the bigger minimum required MEM lengths but become dominant for smaller values. For a minimum
required MEM length of 12 locate time is nearly 6x more than the find intv time. This happens because
the number of MEMs increase with decreasing minimum required lengths. For the same reason, time
spent in memory transfers between CPU and GPU is small for the longer minimum required lengths,
but becomes larger than find intv for minimum MEM lengths of 14 and 12. In case of SMEMs locate
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time is small for the bigger minimum required lengths but becomes equal to find intv time for smaller
values.

Figure 7 shows the time spent in different stages of the computation. The CPU implementation
has only two stages: finding (S)MEM suffix array intervals (find intv. in the Figure 7) and locating the
(S)MEMs on the text. There is no separate filtering stage as it is performed during interval computation.
Obviously, there is no cudamemcpy in CPU implementation. The figure shows that the main reason
for the speedup of GPUseed over CPU is due to a much faster locate stage on GPU. The locate stage of
GPUseed is 6x-9x faster than CPU implementation. The find intv stage is around 2-3x faster on GPU.

Figure 8 shows a comparison of the total execution time of GPUseed and CPU implementation for
(S)MEM computation. Since 24 threads are used to execute the CPU implementation, the time spent in
find intv and locate stage of the CPU implementation (shown in Figure 7) is computed by taking the
average across the stage time for all threads. Therefore, the sum of the time spent in the CPU stages do
not add up to the total CPU execution time. For MEMs the speedup of GPUseed over CPU varies from
7x to 9x. The maximum speedup is achieved around the minimum required MEM lengths of 16-18.
For SMEMs the speedup is from 4x to 5.6x with a maximum speedup achieved with minimum seed
length of 16.

3.2. Results for Oxford Nanopore reads

The results for Oxford Nanopore reads show the same trend as for Pacbio reads. Figure 9 shows
that the find intv time remains nearly same for all minimum required (S)MEM lengths (around 8
seconds). The locate time is smaller than find intv time for longer minimum lengths but becomes larger
for smaller minimum lengths. But the difference between locate and find intv for smaller minimum
lengths is not as large as for Pacbio reads. This is because Nanopore reads generate less (S)MEMs as
compared to Pacbio reads due to a higher sequencing error rate.

The trend in Figure 10 is same as for Pacbio reads. find intv is around 2x faster on GPU and
thelocate stage is around 9x-5x faster.

Figure 11 shows the overall speedup. The overall speedup is 4x-6x and 3.5x-5x for MEMS and
SMEMs, respectively. Hence, the speedup is less for Nanopore reads as compared to Pacbio reads due
to less number of (S)MEMs.

4. Conclusions

Computation of maximal exact matching seeds is performed in a variety of DNA analysis
applications. In this paper, we presented GPUseed, a CUDA API for computing maximal and
super-maximal exact matching seeds on GPU. The API computes the maximal exact matching seeds
using FM-index. We parallelize the computation on the GPU and extracted maximum parallelism
from the computation task. Optimizations were applied to reduce the GPU memory accesses
and to reduce redundant computation. Tests were performed using the latest Pacbio and Oxford
Nanopore DNA sequencing data containing up to 475 kilobases long reads. Different minimum
match lengths were selected. The results showed that our API is up to 9x faster for computing
maximal exact matches and up to 5.5x faster for computing super-maximal exact matches as compared
to an optimized CPU implementation running on 24 threads of Intel Xeon machine. Computing
suffix array intervals is up to 3x faster whereas calculating the location of the match is up to 14x
faster. The implementation is open source and can be integrated into any DNA analysis application
(https://github.com/nahmedraja/GPUseed).
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Abstract—The fast decrease in cost of DNA sequencing has
resulted in an enormous growth in available genome data,
and hence led to an increasing demand for fast DNA analysis
algorithms used for diagnostics of genetic disorders, such as
cancer. One of the most computationally intensive steps in the
analysis is represented by the DNA read alignment. In this
paper, we present an accelerated version of BWA-MEM, one of
the most popular read alignment algorithms, by implementing
a heterogeneous hardware/software optimized version on the
Convey HC2ex platform. A challenging factor of the BWA-
MEM algorithm is the fact that it consists of not one, but
three computationally intensive kernels: SMEM generation, suffix
array lookup and local Smith-Waterman. Obtaining substantial
speedup is hence contingent on accelerating all of these three
kernels at once. The paper shows an architecture containing
two hardware-accelerated kernels and one kernel optimized in
software. The two hardware kernels of suffix array lookup
and local Smith-Waterman are able to reach speedups of 2.8x
and 5.7x, respectively. The software optimization of the SMEM
generation kernel is able to achieve a speedup of 1.7x. This
enables a total application acceleration of 2.6x compared to the
original software version.

I. INTRODUCTION

With the emergence of low cost high throughput next-
generation DNA sequencing methods, it is now possible to
diagnose many genetic disorders, e.g. cancer, with very high
resolution. In DNA sequencing, DNA is broken down into
small fragments which are then sequenced using sequencing
machines that produce hundreds of millions of short DNA
reads. These short reads are then processed to identify the
differences between the DNA under test and a reference
genome. Processing all these millions of short reads is a
very time consuming process. Therefore, acceleration and
optimization of the analysis time is needed to make DNA
diagnostics feasible for a large population.

Read alignment is a core step in DNA analysis, which is the
process of comparing two DNA strings to identify the amount
of similarity between them. In read alignment, a short read
(with a typical length of 100 bases) is aligned against a huge
reference genome of for example nearly 3 billion bases for the
human genome. The Smith-Waterman algorithm [1], used as a
standard for sequence alignment, has O(n ·m) complexity to

Acknowledgement—This work is supported by the Faculty Development
Program of the University of Engineering and Technology Lahore, Pakistan

align two sequences of length n and m. However, using Smith-
Waterman for the alignment process is too time consuming
for any practical purposes [2]. For this reason, many new read
aligners have emerged in the past few years.

With the continued improvements in sequencing technolo-
gies, sequencing read lengths continue to increase gradually.
BWA-MEM has been designed to perform efficient and accu-
rate alignment of longer reads, making it one of the most pop-
ular alignment algorithms available [3]. However, BWA-MEM
is one of the most computationally intensive algorithms needed
for DNA analysis. In this work, we discuss the acceleration
of BWA-MEM using both hardware and software techniques.
This is the first acceleration of BWA-MEM reported in the
literature. In this work, we accelerate BWA-MEM on the
Convey HC2ex platform, consisting of an 8-core Intel Xeon
based host processor connected to a co-processor with four
Xilinx Virtex-6 FPGAs.

No work has been reported in the literature about the
acceleration of BWA-MEM. Numerous works are published
on the acceleration of other read alignment algorithms. In [4]
is shown to be accelerated on Convey HC2ex platform. BWA-
ALN also has an accelerated version on Convey HC1 [5].
Both algorithms are different from BWA-MEM and are not
suitable for longer reads. The seed generation stage of the
CUSHAW2 [6] is similar to BWA-MEM. It computes maximal
exact matches instead of super maximal exact matches and
uses a different kind of index for which it requires two
passes to find all the seeds as compared to only one pass
in BWA-MEM. CUSHAW2 has a GPU accelerated version
called CUSHAW2-GPU [7].

The paper proposes to split BWA-MEM in different ex-
ecution stages, that are then optimally mapped to CPU or
FPGA. The algorithm has a lot of DRAM accesses causing
large memory waits. We circumvent this problem in software
by improving the algorithm to reduce the number of DRAM
accesses. We also address this problem in hardware by coa-
lescing the memory accesses. The compute intensive parts of
the application are accelerated on the FPGA by exploiting the
available parallelism. BWA-MEM is segmented in such a way
that enables the parallel execution of host and coprocessor to
maximize throughput. With the help of these hardware and
software optimizations we are able to achieve a 2.6x speedup
for the whole application. A large part of the application is

39

2



Reference

Read

Seeding

Reference

Read

Extension

Fig. 1. A seed is first found (rectangular box) and then extended (shaded box).

TABLE I
PERCENTAGE EXECUTION TIME OF BWA-MEM STAGES

Execution stage % Execution time Bound
SMEM generation 31.78 - 38.88% Memory
Suffix array lookup 6.65 - 14.15% Memory

Seed extension 34.57 - 42.87% Computation
Output 7.42 - 11.16% Memory

Miscellaneous 1.33 - 6.04% –

written in Xilinx Vivado HLS to reduce the design time.
The rest of the paper is organized as follows. Section II

summarizes the BWA-MEM algorithm and the profiling re-
sults. Section III describes the implementation details of the
software optimizations of the SMEM generation. Section IV
and V present the hardware acceleration of the suffix array
lookup and the local Smith-Waterman stages, respectively.
Results are presented in Section VI. Conclusions and future
work is discussed in Section VII.

II. BWA-MEM ALGORITHM

Most of the current read aligners (including BWA-MEM)
are based on the observation that two DNA sequences of
the same species are likely to contain short highly matched
substrings. Such kind of aligners follow a seed-and-extend
strategy, which consists of two steps (1) seeding and (2)
extension. The seeding step is to first locate the regions within
the reference genome where a substring of the short read is
highly matched. This substring is known as a seed. A seed
could be an exact match or an inexact match with certain
allowed number of differences. After seeding the remaining
read is aligned to the reference genome around the seed in the
extension step using Smith-Waterman or a Smith-Waterman
like algorithm. BWA-MEM only finds exact matches while
seeding.

A. Execution stages

In BWA-MEM, before starting the read alignment, an index
of the reference genome is created. This is a one time step and
hence not on the critical execution path. In our discussion
we assume that an index is already present. The different
execution stages of BWA-MEM read alignment algorithm are
described below. The first two stages belong to seeding.

SMEM generation: BWA-MEM first computes the so-called
super-maximal exact matches (SMEMs). An SMEM is a
substring of the read that is exactly matching in the reference
DNA and cannot be further extended in either directions.
Moreover, it must not be contained in another match.

Suffix array lookup: The suffix array lookup stage is
responsible for locating the actual starting position of the
SMEM in the reference genome. An SMEM with its known
starting position(s) in the reference genome forms seed(s) in
the reference.

Seed extension: Seeds are substrings of the read that are
exactly matching in the reference genome. As shown in
Figure 1, to align the whole read against the reference genome,
these seeds are extended in both directions. This extension is
performed using a dynamic programming algorithm based on
Smith-Waterman.

Output: The read alignment information is written to a file
in the SAM (sequence alignment/map) format [8].

B. Profiling results

We have profiled the BWA-MEM software version 0.7.8 to
find the percentage execution times of different stages using
gprof. Table I shows the division of total execution time
among the different execution stages, taking a number of input
data sets representing different read lengths into consideration.
These datasets are acquired from GCAT (Genome Comparison
and Analytic Testing) and aligned against the UCSC hg19
human reference genome [9]. The results show that there is
no dominant execution stage which means that it is essential to
accelerate all the stages to achieve a good overall speedup. The
table also shows that the most of the stages of the application
are memory bound.

In the following sections, we show the software optimization
of the SMEM generation step and the hardware acceleration
of the suffix array lookup and seed extension. Compared with
the software all these stages can execute in parallel, which
allows us to hide some of the computation time by pipelining
the queries.

III. OPTIMIZATION OF SMEM GENERATION

A. Theoretical background

This is the first execution stage of BWA-MEM. As described
above, the task is to find SMEMs. BWA-MEM uses the FMD-
index of the reference genome to find the SMEMs. Let T and
Y be two sequences of symbols. In DNA analysis, T is the
reference DNA while Y is a substring of the read, and the
symbols are drawn from an alphabet set Σ consisting of only
four symbols i.e. Σ = {a, t, c, g}. The FMD-index is a set
of data structures based on the Burrows-Wheeler transform of
T ⊕ T where ⊕ is the concatenation operator. T is Watson-
Crick reverse complement of T . It is formed by first reversing
the string T and then replacing symbol a with t and vice
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versa, and replacing g with c and vice versa. The FMD-
index can locate all occurrences of Y in the reference genome
T in time proportional to the length of Y . Let SA be the
lexicographically sorted suffix array of T ⊕ T , where SA(i)
represents the ith suffix. Then the suffix array interval of Y
is defined as [Il(Y ), Iu(Y )], where

Il(Y ) = min{i : Y is the prefix of SA(i)}
Iu(Y ) = max{i : Y is the prefix of SA(i)}

Il(Y ) and Iu(Y ) are known as the lower and upper limit
of the interval, respectively. In other words, the suffix array
interval is the set of all those indices of the sorted suffix array
in which Y is the prefix. As the suffix array is lexicographi-
cally sorted, all these indices will occur together and we only
need to know the first and the last index, i.e. Il(Y ) and Iu(Y ),
respectively. If Y is not present in the reference genome then
[Il(Y ), Iu(Y )] is an empty set and if Y is an empty string
then [Il(Y ), Iu(Y )] = [1, 2|T |]. The size of the interval can be
defined as

Is(Y ) = Iu(Y )− Il(Y ) + 1 (1)

If Y is not present in the reference genome Is(Y ) is less than
or equal to zero. In [10], it is shown that FMD-index can be
used to find the bi-interval of a given DNA string Y . The bi-
interval is defined as [Il(Y ), Il(Y ), Is(Y )]. Y is Watson-Crick
reverse complement of Y . Once the bi-interval of Y is known,
the suffix array interval can be found using equation 1. These
suffix array intervals are used in the next execution stage (the
suffix array lookup stage) to find the exact starting position of
Y in the reference genome.

B. SMEM computation in BWA-MEM

An SMEM satisfies three conditions 1) it is an exact match,
2) the match cannot be extended in either directions, and 3)
it is not contained in any other match. Algorithm 1 shows the
method used in BWA-MEM to find all the SMEMs that include
the base at position i0 of the read P . The complete SMEM
computation algorithm can be found in the literature [10].

The algorithm starts from the base at i0 and first calculates
the bi-interval of the string P [i0] and stores it in Temp array.
This calculation is performed by calling the FMDINDEX
function. The first while loop it moves in the forward
direction and adds the next base to the previous string P [i0],
and calculates the bi-interval of the string P [i0]P [i0 + 1]. The
forward parameter passed to the FMDINDEX indicates the
direction of adding the base to the previous string. If this
string exists in the reference genome T and the bi-interval
is not the same as for P [i0], its bi-interval is saved in Temp.
In this way the algorithm keeps on adding the bases to the
previous string and storing the resulting bi-interval in Temp
until the string does not exist in the reference genome, i.e.
s ≤ 0. Thus the Temp array contains the bi-intervals of a
set of overlapping strings, all starting from i0. In the second
while loop the algorithm picks these strings one by one and
enlarges them in the reverse direction by adding bases that are
behind i0. For each string its keeps on adding the bases in the

backward direction until the resulting string no more exists in
the reference genome. The bi-interval of the last hit string is
then added to SMEMs array if the length of the string is at least
a minimum required. Hence, SMEMs keeps the bi-intervals of
the SMEMs found.

One limitation of this algorithm is the accesses to the FMD-
index. Every time a base is added in either the forward or
backward direction, the FMD-index is accessed. FMD-index
is a large data structure having a default total size of 1.5
GB. These accesses to the FMD-index are not local and
the difference between the memory addresses of consecutive
accesses is huge as studied in [11]. This causes a large amount
of data cache and data TLB misses. Most of the accesses to
FMD-index end up in the DRAM. Algorithm 1 has a large
execution time because it is mostly waiting for the memory
request to complete. In our work we speed up the algorithm
by reducing the number of FMD-index accesses.

Our improvement is based upon two observations. 1) The
algorithm first computes an SMEM and then checks whether
its length is greater than the minimum required. In this way,
it backward enlarges even those strings which cannot have the
total final length greater than the minimum required. 2) All
the computed SMEMs have to include the base at position
i0 which means that they overlap with each other and share a
common substring. If the bi-interval of this common substring
is already known then it can be enlarged to find the SMEMs
with less number of FMD-index accesses.

Algorithm 1: SMEM computation
Input: String P , start position i0, length of reference genome |T |, and minimum

required SMEM length min smem len
Output: Set of bi-intervals [k, l, s] of the SMEMs covering the base at i0

1 Function COMPSMEM(P, i0, |T |,min smem len) begin
2 Initialize [k, l, s] as [1, 1, 2|T |]
3 Initialize Temp, Fwd len and SMEMs as empty arrays
4 [k, l, s]← FMDINDEX([k, l, s], P [i0], forward)
5 Append [k, l, s] to Temp
6 i← i0 + 1
7 x← 1
8 Fwd len[x]← 1
9 x← x + 1

10 while i ≤ |P | and s > 0 do
11 [k, l, s] ← FMDINDEX([k, l, s], P [i], forward)
12 if s > 0 and [k, l, s] 6= Temp[x− 1] then
13 Append [k, l, s] to Temp
14 Fwd len[x]← i− i0 + 1
15 x← x + 1

16 i← i + 1

17 x← 1
18 while x ≤ |Temp| do
19 [k, l, s]← Temp[x]
20 for i← i0 − 1 to 1 do
21 [k, l, s]← FMDINDEX([k, l, s], P [i], backward)
22 if s ≤ 0 then
23 back len← (i0 − i− 1)
24 smem len← Fwd len[x] + back len
25 if smem len ≥ min smem len then
26 Append [k, l, s] to SMEMs

27 break

28 x← x + 1

29 return SMEMs
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Algorithm 2: Optimized SMEM computation
Input: String P , start position i0, length of reference genome |T |, minimum

required SMEM length min smem len, a parameter to turn on-off the
optimization max fwd distance

Output: Set of bi-intervals [k, l, s] of the SMEMs covering the base at i0
1 Function

COMPSMEMOPT(P, i0, |T |,min smem len,max fwd distance)
begin

2 Initialize [k, l, s] as [1, 1, 2|T |]
3 Initialize Temp, Fwd len,Back intv and SMEMs as empty arrays
4 [k, l, s]← FMDINDEX([k, l, s], P [i0], forward)
5 Append [k, l, s] to Temp
6 i← i0 + 1
7 x← 1
8 Fwd len[x]← 1
9 x← x + 1

10 while i ≤ |P | and s > 0 do
11 [k, l, s] ← FMDINDEX([k, l, s], P [i], forward)
12 if s > 0 and [k, l, s] 6= Temp[x− 1] then
13 Append [k, l, s] to Temp
14 Fwd len[i]← i− i0 + 1
15 x← x + 1

16 i← i + 1

17 x← 1
18 start← i0
19 stop← i0
20 while x ≤ |Temp| do
21 [k, l, s]← Temp[x]
22 if Back intv is empty or stop− start ≥ max fwd dist

then
23 ([k, l, s], back len,Back intv)←

BACKENLARGE([k, l, s], P, i0)
24 start← i0 + Fwd len[x]
25 stop← i0 + Fwd len[x + 1]

26 else
27 stop← Fwd len[x]
28 ([k, l, s], back len)←

FWDENLARGE([k, l, s], P, start, stop,Back intv)

29 smem len← Fwd len[x] + back len
30 if smem len ≥ min smem len then
31 Append [k, l, s] to SMEMs

32 x← x + 1
33 max len← Fwd len[x] + back len
34 while max len < min smem len do
35 x← x + 1
36 max len← Fwd len[x] + back len

37 return SMEMs

Algorithm 3: Backward enlargement
Input: The bi-interval [k, l, s], string P , start postion i0, array to store

intermediate intervals Back intv
Output: Bi-interval [k, l, s], length of backward string back len

1 Function BACKENLARGE([k, l, s], P, i0) begin
2 Initialize Back intv as empty array
3 back len← 0
4 for i← i0 − 1 to 1 do
5 [k, l, s]← FMDINDEX([k, l, s], P [i], backward)
6 if s > 0 then
7 Append [k, l, s] to Back intv
8 back len← back len + 1

9 else
10 return ([k, l, s], back len,Back intv)

Algorithm 4: Forward enlargement
Input: The bi-interval [k, l, s], string P , start and stop index for enlargement

start stop respectively, array of intermediate intervals Back intv
Output: Bi-interval [k, l, s], length of backward string back len

1 Function FWDENLARGE([k, l, s], P, start, stop,Back intv) begin
2 back len← |Back intv|
3 for x← |Back intv| to 1 do
4 for i← start to stop do
5 [k, l, s]← FMDINDEX([k, l, s], P [i], forward)
6 if s < 0 then
7 break

8 else
9 if i = stop then

10 return ([k, l, s], x)

C. Our optimization

Algorithm 2 to 4 present our optimized implementation of
the SMEM generation. We have improved the algorithm of
the second while loop shown in a box in Algorithm 2.
Calculation of the Temp array is same as in the original
algorithm. Based on the observations discussed in the previous
section we have made two improvements in the original
algorithm.

1) If we are certain that after the backward enlargement
of a bi-interval, the total length of the resulting exact match
cannot be larger than the minimum required, we skip the
backward enlargement of the bi-interval. This will avoid
wasteful accesses to the FMD-index. This is implemented in
lines 33 to 36 in Algorithm 2.

2) The SMEMs have to include the base at position i0. All
the strings covering the base at position i0 can be visualized as
a concatenation of two strings. One that contains the symbols
at read positions greater or equal to i0 and the other containing
the symbols at read positions less than i0. We may call
them as forward string and backward string respectively. The
forward string of an SMEM is found in the first while
loop of Algorithm 1 or 2 (both are the same). Therefore,
before starting the second loop we know the forward strings
of all possible SMEMs. If the SMEMs corresponding to
the bi-intervals in SMEMs array are numbered as SMEMi,
SMEMi+1 . . . SMEMi+r . . ., where SMEMi+1 is computed
after SMEMi, then

SMEMi = P [i0 −mi] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni]

SMEMi+r = P [i0 −mi+r] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni+r]

Now we will show that how our optimized method calculates
SMEMi+r using SMEMi. The first while loop mandates that
ni+r > ni. Due to this and the reason that both SMEMs
must not contain each other (condition 3 for an SMEM),
mi+r < mi. In our technique, we compute SMEMi using
the original method but while doing that we store the bi-
intervals of all the intermediate strings formed during the
backward enlargement in the Back intv array. All these in-
termediate strings have the same forward string, but their
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Fig. 2. Percentage reduction in FMD-index accesses (left Y-axis) and the
corresponding speedup in SMEM generation (right Y-axis).

backward strings are extended by only one symbol. Hence,
while computing SMEMi we keep track of the bi-intervals of
all the strings: from P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni]
to P [i0 − mi] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni].
As mi+r < mi, one of these strings is always P [i0 −
mi+r] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni] which is a
substring of SMEMi+r and contains the full backward string
of SMEMi+r but partial forward string (ni+r > ni). In our
optimized version, this substring is enlarged in the forward
direction by (ni+r−ni) bases to find SMEMi+r. To compute
SMEMi+r using this method, total number of accesses to the
FMD-index are ni+r+[(mi−mi+r)·(ni+r−ni)] as compared
to ni+r+mi+r in the original algorithm. The first term for both
these methods is the same and it is observed that on the aver-
age, for small r, the second term of our technique is smaller
than the second term of the original method, i.e. for small r,
(mi−mi+r) · (ni+r−ni) < mi+r. In our implementation we
apply our optimization if ni+r−ni ≤ max fwd dist (default
value 3), otherwise the computation is completed using the
original method.

The results of our optimization are shown in Figure 2. The
read lengths are given in number of base pairs (bps), which is
the same as number of bases. The plot shows that for different
read lengths the reduction in FMD-index accesses is 44-
45% and the corresponding speedup varies from 1.66-1.73x.
Our optimization only relies on algorithmic improvement and
has limited overhead as we only need one extra array i.e.
Back intv. The maximum possible length of this array is equal
to the read length.

IV. SUFFIX ARRAY LOOKUP ACCELERATION

The suffix array lookup is taking around 15% of the
computation time of the whole application. The objective is to
retrieve the index in the reference string of one suffix string.
In order to reduce the memory required for this, partial suffix
and occurrence arrays are stored, and the inverse compressed
suffix array (inverse CSA) is used [12]. The inverse CSA is
given by:

ψ−1(i) = C(B[i]) +O(B[i], i)
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where B is the BWT string, C is the count array and O is
the occurrence array. The above equation is applied until the
result is a factor of 32 and then the suffix can be computed
using:

S(k) = S((ψ−1)(j)(k)) + j

This implies that a series of memory reads are done to the
B and O arrays. Due to their interdependency, these reads can
not be prefetched by a general purpose cache. The result is
that when running this function on the CPU, most of the time
will be spent waiting for memory.

The hardware implementation can avoid waiting for the
memory by using two main ideas: batching the input data
and pipelining the memory reads. The batching will increase
the number of memory reads that can be performed, while the
pipelining will hide the memory latency. We implemented an
architecture where indexes are sent to a number of hardware
cores, and each hardware core processes a number of reads in
a pipeline fashion. For the Convey platform, we implement
a pipeline of 32 indexes, with 5 cores per FPGA, which
gives a total of 640 indexes processed at the same time. This
architecture can be see in Figure 3. All the represented blocks
(Top, Core, Writer) will execute in parallel. Streams are used
to avoid the need of synchronization. The number of core
blocks can be adjusted depending on the FPGA area available.

V. SEED EXTENSION ACCELERATION

The purpose of the seed extension kernel is to extend the
length of an exact match while allowing for small differ-
ences, such as mismatches between the read and reference,
or skipping symbols on either the read or reference. To
obtain the extension, a method is used that is similar to
the well-known Smith-Waterman algorithm [1], which is a
dynamic programming method guaranteed to find the optimum
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alignment between two sequences for a given scoring system.
A similarity matrix is filled that computes the best score out
of all combinations of matches, mismatches and gaps.

A natural way to map dynamic programming algorithms
onto reconfigurable hardware is as a linear systolic array. Many
implementations that map the Smith-Waterman algorithm onto
a systolic array have been proposed, amongst others [13], [14]
and [15]. A systolic array consists of processing elements
(PEs) that operate in parallel. In our case, we use such an array
to take advantage of the available parallelism that exists while
filling the similarity matrix, by processing the cells on the
anti-diagonal in parallel. We map one read symbol to one PE.
Hence, the length of the PE-array determines the maximum
length of a read that can be processed. Each cycle, a PE
processes one cell of the matrix and passes the resulting values
to the next element.

A. Key differences

The seed extension kernel used in BWA-MEM is similar to
the Smith-Waterman algorithm. However, since the purpose is
to extend a seed, and not to find an optimal alignment between
two sequences, three key differences arise:

1. Non-zero initial values: For an extension, the match
between sequences will always start from their respective first
symbols. Hence, unlike normal Smith-Waterman alignment,
the initial values of the dynamic programming matrix are non-
zero, but depend on the alignment score of the seed found by
the SMEM generation function.

2. Additional output generation: Typically, a Smith-
Waterman implementation generates a local and global align-
ment scores, which are the highest score in the matrix and
the highest score that spans the entire read, respectively.
The seed extension also returns the exact location inside
the similarity matrix where these scores have been found.
Furthermore, a maximum offset is calculated that indicates the
distance from the diagonal at which a maximum score has been
found. Therefore, the systolic array implementation passes
additional values between the PEs compared to a regular
Smith-Waterman systolic array implementation

3. Partial similarity matrix calculation: To optimize for
execution speed, the software BWA-MEM uses a heuristic to
only calculate those cells that are expected to contribute to the
final score. Profiling reveals that in practice, only about 42%
of all cells are calculated. This heuristic is not needed for our
implementation, as it is able to perform all calculations on
the anti-diagonal in parallel, which may also result in higher
quality alignments.

B. Implementation details

Before deciding upon the final hardware design of the
seed extension kernel, a number of ideas and designs alterna-
tives have been considered, varying in acceleration potential,
FPGA-resource consumption, suitability for certain data sets,
and complexity.

A read has to travel through the entire systolic array,
regardless of its actual length. To minimize latency, ideally

a read would be processed by a PE-array matching its exact
length. However, in practice this is not achievable, since it
requires having a PE-array exactly matching each possible read
length, which is impractical given the available resources on
the FPGA. Therefore, we implemented an array with multiple
exit points. This ensures that shorter reads do not have to
travel through the entire array, reducing latency and increasing
utilization and performance.

The FPGA-accelerated seed extension kernel is 1.5 times
faster when comparing one module against one Xeon core.
Our design contains three identical modules per FPGA, which
is fast enough to completely hide the execution of this kernel
by overlapping it with SMEM generation. The Seed Extension
kernel implementation and design alternatives are described in
more detail in [16].

VI. RESULTS

The machine on which the implementation was tested is
a Convey HC2ex. It consists of a host computer with 2
Intel Xeon CPU E5-2643 processors running at 3.30GHz (in
total 8 cores) and 64 GB RAM memory. The co-processor is
represented by 4 Xilinx Virtex-6 LX760 FPGA with a 64 GB
memory attached.

The data set used to test the performance of the alignment
algorithm is obtained from the GCAT framework [17]. The
read length is 150 base pairs using pair ended reads.

The tests were run with the complete input and output in
a RAM disk. A RAM disk is a virtual disk built in the DDR
memory. This way, we eliminate any possible I/O limitations
from the test. We note that there are options fast enough to feed
and process the data output by the algorithm, either network
or high performance disks, but we decided to choose the RAM
disk solution to simplify as much as possible the methodology.
Each test was run multiple times and the best result was
selected. We measured the execution time of the original
software, the hardware version without SMEM generation
improvements and the version with all improvements. The
results are presented in Table II.

We can notice, that due to Amdahl’s law, accelerating
Smith-Waterman and suffix array lookup, resulted only in
a moderate speedup of 1.9x. Improving further the SMEM
generation had a big impact, driving the total speedup to 2.6x

We also performed a more complete test of the behavior
of the optimizations for different numbers of processors. The
results are shown in Figure 4.

To show the possibilities of our design we analyzed the
relation between FPGA number, core number and speedup
obtained, considering the currently implemented hardware
kernels. We assumed a 20% overhead for each FGPA for
the memory controllers. The FPGAs and CPU cores are the
same used for the implementation detailed above. The results
are presented in Figure 5. We can see that to obtain a 2.5x
speedup, for the current system we need to use only 2 FPGAs.
For 3 FPGAs, we can get 2.5x speedup for up to 16 cores.
For 4 FPGAs we can get the maximum speedup up until
20 CPU cores. It is worth mentioning that we focused our
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TABLE II
EXECUTION TIMES (IN SECONDS) AND SPEEDUPS OF ACCELERATED BWA-MEM

Data set SW exec HW exec Speedup vs SW HW exec + SMEM opt Speedup vs SW
gcat set 041 534.00 280.00 1.91 208.00 2.57
gcat set 042 530.50 279.00 1.90 208.00 2.55
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implementation on the 8 core processor system, and we do
not exclude further optimizations that would allow the area to
be utilized better.

VII. CONCLUSION AND FUTURE WORK

This paper presented a software optimized and hardware
accelerated implementation of the well-known BWA-MEM
DNA read mapping algorithm. The implementation focused on
the three highest computationally expensive execution stages
of the algorithm: SMEM generation, suffix array lookup and
local Smith-Waterman. A system architecture was proposed to
achieve a high acceleration for these components, containing

two hardware-accelerated kernels and one kernel optimized in
software. The two hardware kernels of suffix array lookup
and local Smith-Waterman are able to reach speedups of
2.8x and 5.7x, respectively. The software optimization of the
SMEM generation kernel is able to achieve a speedup of
1.7x. This enables a total application acceleration of 2.6x
compared to the original software version. Analysis shows that
the implementation is bottlenecked by the software part, which
indicates that further acceleration of BWA-MEM functions in
hardware could achieve higher performance. This will be the
focus of our future work.
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3
GPU Accelerated API for

Sequence Alignment

This chapter discusses our GPU acceleration of sequence alignment algorithms.
These algorithms are widely used in various DNA analysis applications in practice,
either standalone or in combination with other algorithms. For example, seed-
and-extend DNA analysis algorithms are composed of 2 steps: the seeding step
(discussed in Chapter 2), followed by seed-extension (discussed in this chapter),
which is implemented using sequence alignment algorithms.

This chapter discusses GASAL2, our GPU library for sequencing alignment of high-
throughput NGS data. After a brief introduction of sequence alignment algorithms,
we motivate the development of GASAL2. The implementation details of GASAL2
are then presented. The performance limitations of NVBIO, NVIDIA’s sequence
alignment library, are also identified and overcome in GASAL2. We also list the
advantages of GASAL2 over existing GPU based libraries. Performance measure-
ment of GASAL2 shows that it is up to 20x faster than Parasail, a CPU based se-
quence alignment library, running on 56 Intel Xeon threads and up to 13x faster
than NVBIO. GASAL2 is used to accelerate the seed extension stage of BWA-MEM
read mapper which resulted in 1.3x overall application speedup.

In this chapter we also present the GPU acceleration of the Darwin read overlap-
per [22] used for assembly of long DNA reads. After a brief introduction on read
assembly, we describe the Darwin read overlapping algorithm. The implementation
details of the GPU acceleration are provided next. The results of the acceleration
show that with real Pacbio data, our GPU implementation on NVIDIA Tesla K40 GPU
is 109x than 8 CPU threads of Intel Xeon machine and 24x faster than 64 threads
of IBM Power8 machine.

47



48 Ch-3: GPU Accelerated API for Sequence Alignment
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• N. Ahmed, T. D. Qiu, K. Bertels, and Z. Al-Ars, GPU Acceleration of Darwin
Read Overlapper for de Novo Assembly of Long DNA Reads, (2020), Accepted
for publication in BMC Systems Biology.3
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GASAL2: a GPU accelerated sequence
alignment library for high-throughput NGS
data
Nauman Ahmed1*, Jonathan Lévy2, Shanshan Ren2, Hamid Mushtaq3, Koen Bertels2 and Zaid Al-Ars2

Abstract

Background: Due the computational complexity of sequence alignment algorithms, various accelerated solutions
have been proposed to speedup this analysis. NVBIO is the only available GPU library that accelerates sequence
alignment of high-throughput NGS data, but has limited performance. In this article we present GASAL2, a GPU library
for aligning DNA and RNA sequences that outperforms existing CPU and GPU libraries.

Results: The GASAL2 library provides specialized, accelerated kernels for local, global and all types of semi-global
alignment. Pairwise sequence alignment can be performed with and without traceback. GASAL2 outperforms the
fastest CPU-optimized SIMD implementations such as SeqAn and Parasail, as well as NVIDIA’s own GPU-based library
known as NVBIO. GASAL2 is unique in performing sequence packing on GPU, which is up to 750x faster than NVBIO.
Overall on Geforce GTX 1080 Ti GPU, GASAL2 is up to 21x faster than Parasail on a dual socket hyper-threaded Intel
Xeon system with 28 cores and up to 13x faster than NVBIO with a query length of up to 300 bases and 100 bases,
respectively. GASAL2 alignment functions are asynchronous/non-blocking and allow full overlap of CPU and GPU
execution. The paper shows how to use GASAL2 to accelerate BWA-MEM, speeding up the local alignment by 20x,
which gives an overall application speedup of 1.3x vs. CPU with up to 12 threads.

Conclusions: The library provides high performance APIs for local, global and semi-global alignment that can be
easily integrated into various bioinformatics tools.

Keywords: Genomics, Sequence alignment, NGS, GPU library

Background
Many applications for processing NGS sequencing data
depend heavily on sequence alignment algorithms to iden-
tify similarity between the DNA fragments in the datasets.
Well known programs for DNA mapping such as BWA-
MEM [1] and Bowtie2 [2], DNA assemblers such PCAP
[3] and PHRAP [4], make repeated use of these alignment
algorithms. Furthermore, in various practical multiple
sequence alignment algorithms, many pairwise sequence
alignments are performed to align sequences with each
other. Also, alignment based read error correction algo-
rithms, like Coral [5] and ECHO [6], perform a large
number of pairwise sequence alignments. In addition,

*Correspondence: n.ahmed@tudelft.nl
1Delft University of Technology, Delft, Netherlands and University of
Engineering and Technology, Lahore, Pakistan
Full list of author information is available at the end of the article

variant callers for NGS data e.g. GATK HaplotypeCaller
[7], also make use of sequence alignment.
Sequence alignment is the process of editing two or

more sequences using gaps and substitutions such that
they closely match each other. It is performed using
dynamic programming. There are two types of sequence
alignment algorithms for biological sequences: global
alignment and local alignment. The former is performed
using the Needleman-Wunsch algorithm [8] (NW), while
Smith-Waterman algorithm [9] (SW) is used for the lat-
ter. Both algorithms have been improved by Gotoh [10] to
use affine-gap penalties. These alignment algorithms can
be divided into the following classes:

• Global alignment: In global alignment, also known as
end-to-end alignment, the goal is to align the
sequences in their entirety while maximizing the
alignment score.

© The Author(s). 2019, corrected publication 2019 Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated.
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• Semi-global alignment: Unlike global alignment,
semi-global alignment finds the overlap between the
two sequences, allowing to skip the ends of a
sequence without penalty. In semi-global alignment
the gaps at the leading or trailing edges of the
sequences can be ignored, without inducing any
score penalty. Different kinds of semi-global
alignments are possible depending on which
sequence can have its beginning or end be skipped.
GASAL2 supports all kinds of semi-global alignments
where any combination of beginning or end of a pair
of sequences can be ignored.

• Local alignment: In local alignment, the goal is to
align two sequences so that the alignment score is
maximized. As opposed to global alignment, the final
alignment may not contain the whole of the
sequences. No penalty is induced by misalignments
in the beginning and end of the sequences, and the
score is kept positive.

Figure 1 shows the alignment of the two sequences shown
in Fig. 2. The bases enclosed in the box constitute the
alignment. Match score is 3; mis-match penalty is 4; gap
open and gap extension penalties are 6 and 1, respectively.
For global alignment the alignment score is -5. In case of
semi-global alignment the gaps at the end of S1 are not
penalized. The alignment score is 7, while the start and
end positions of the alignment on S2 are 2 and 10, respec-
tively. For local alignment, the final alignment score is
10. The end-positions of the alignment on S1 and S2 are
12 and 10, respectively. The start-position is 3 on both
sequences.

Graphical processing units
Graphical Processing Units (GPUs) were developed for
rendering graphics, but are now being used to accelerate

many other applications due to their massively
parallel architecture. The GPU architecture varies from
one vendor to the other and even across different GPU
generations from the same vendor. Here we give a general
overview of state-of-the-art NVIDIA GPUs. The cores of
a GPU, known as streaming processors (SPs), groups of
which are organized into a number of streaming multi-
processors (SMs). Each SM has a set of SPs, a register file,
one or more thread schedulers, a read only memory, L1
cache, shared memory, and some other hardware units.
All SMs access the DRAM (known as global memory)
through a shared L2 cache. The programming language
for NVIDIA GPUs is known as CUDA which is an
extension of C/C++. The function that executes on the
GPU is known as kernel. The data to be processed by
the kernel is first copied from the CPU memory into the
global memory of the GPU. The CPU (known as the host)
then launches the kernel. Once the kernel is finished the
results are copied from the global memory back into CPU
memory. This copying of data back and forth between
host and GPU is quite time expensive. Therefore, data
is transferred between the host and GPU in the form of
large batches to keep number of transfers at minimum.
Moreover, the batch should be large enough to fully
utilize the GPU resources.
At every clock cycle each SM executes instructions from

a group of threads known as a warp. A warp is a set
of 32 GPU threads that execute in lock-step (i.e., they
share the instruction pointer). Therefore, if one or more
threads execute a different instruction, different execu-
tion paths are serialized causing performance loss. This
phenomenon is known as divergent execution and should
be avoided as much as possible. Moreover, to achieve
good memory throughput the memory accesses should
be coalesced (i.e., all the threads in a warp should access
consecutive memory locations).

Fig. 1 Alignment of S1 and S2 sequences shown in Fig. 2. a Global alignment example. b Semi-global alignment example. c Local alignment example

50 Ch-3: GPU Accelerated API for Sequence Alignment

3



Ahmed et al. BMC Bioinformatics          (2019) 20:520 Page 3 of 20

Fig. 2 Identical H, E and F matrix

To allow the overlapping of GPU and CPU execution,
all the GPU kernel launches are asynchronous i.e. con-
trol is immediately returned to the CPU after the kernel
launch. In this way, the launching thread can perform
other tasks instead of waiting for the kernel to com-
plete. Using CUDA streams, it is possible to launch one
or more kernels on GPU before the results of a previ-
ously launched kernel has been copied back to the CPU.
CUDA streams also allow to asynchronously perform the
copying operations. Hence, one can just launch all the
operations and perform other tasks on the CPU. Subse-
quently, the cudaStreamQuery() API function can be
used to test whether all the operations in a given stream
have completed or not.

Previous research works
GPU acceleration of sequence alignment has been the
topic of many research papers like [11–13]. Apart from
sequence alignment , GPUs are also used for acceler-
ating many other bioinformatics algorithms, such as,
described in [14, 15]. Moreover, various biomedical image

analysis applications are accelerated with GPUs.
Kalaiselvi et al. [16] surveys the GPU acceleration of
medical image analysis algorithms. In [17, 18], GPUs are
used to accelerate the processing of MRI images for brain
tumour detection and segmentation. Most of the previous
work on accelerating sequence alignment, was focused
on developing search engines for databases of protein
sequences. The alignment of DNA and RNA sequences
during the processing of high-throughput NGS data
poses a different set of challenges than database searching
as described below.

1 The sequences to be aligned in NGS processing are
generated specifically for each experiment. In
contrast, in database searching, the database of
sequences is known in advance and may be
preprocessed for higher performance.

2 In database search programs, one or few query
sequences are aligned against all the sequences in the
database (may be regarded as target sequences),
whereas the processing of NGS data requires
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pairwise one-to-one, one-to-many or all-to-all
pairwise sequence alignment. Due to this, a common
performance improvement technique in database
search programs, like using query profile, is not
feasible in NGS data alignment.

3 In programs containing GPU accelerated sequence
alignment, the alignment step is tightly coupled with
the rest of the program. The GPU alignment kernel is
specifically tailored to meet the requirements of the
program. Therefore, reusing the kernel to accelerate
the sequence alignment in other programs is not easy.

Due to these differences, GPU accelerated database
search cannot be used to accelerate the alignment step
in NGS data processing programs. gpu-pairAlign [19]
and GSWABE [20] present only all-to-all pairwise local
alignment of sequences. All-to-all alignment is easier to
accelerate on GPU. Since, only one query sequence is
being aligned to all other sequences, the query sequence
may reside in the GPU cache, substantially reducing global
memory accesses. On the other hand, in one-to-one align-
ment each query sequence is different limiting the effec-
tiveness of caching these sequences. In many NGS data
processing applications, one-to-one pairwise alignment is
required (e.g., DNA read mapping). In DNA read map-
ping, local alignment takes a substantial percentage of
the total run time. For example, in the BWA-MEM DNA
read aligner the local alignment takes about 30% of the
total execution time with query lengths of 250bp (or base
pairs), while calculating only the score, start-position and
end-position.
None of the previously published research efforts

have developed any GPU accelerated sequence alignment
library that can be easily integrated in other programs
that require to perform pairwise alignments. NVBIO [21]
is the only public library that contains GPU accelerated
functions for the analysis of DNA sequences. Although
this library contains a GPU accelerated function for
sequence alignments, its performance is limited. There-
fore, in this paper we present a GPU accelerated library for
pairwise alignment of DNA and RNA sequences, GASAL2
(GPU Accelerated Sequence Alignment Library v2), as
an extension of our previously developed GASAL library
described in [22]. The library contains functions that
enable fast alignment of sequences and can be easily inte-
grated in other programs developed for NGS data analysis.
Functions for all three types of alignment algorithms (i.e.,
local, global and semi-global) are available in GASAL2.
One-to-one as well as all-to-all and one-to-many pairwise
alignments can be performed using affine-gap penalties.
The contributions of the paper are as follows:

• A GPU accelerated DNA/RNA sequence alignment
library that can perform global, semi-global (all types)
as well as local alignment between pair of sequences.

The library can compute the alignment score and the
actual alignment between two sequences by
performing traceback. The actual alignment is
generated in CIGAR format and contains the exact
position of matches, mismatches, insertion and
deletion in the alignment. Optionally it can compute
the alignment score with only the end, and if
required, the start position of the alignment.

• The library uses CUDA streams so that the alignment
functions can be called asynchronously and the host
CPU can perform other tasks instead of waiting for
the alignment to complete on the GPU.

• GASAL2 is the fastest sequence alignment library for
high-throughput Illumina DNA sequence reads in
comparison to highly optimized CPU-based libraries,
and it is also much faster than NVBIO, NVIDIA’s
own GPU library for sequence analysis.

• GASAL2 can be easily integrated in bioinformatics
applications, such as accelerating the seed-extension
stage of BWA-MEM read mapper.

Implementation
In this paper, we describe GASAL2, a GPU accelerated
library for pairwise sequence alignment. The sequences
are first transferred to the GPU memory, where they
are packed into unsigned 32-bit integers. If needed, any
number of sequences can then be reverse-complemented.
Finally, the alignment is performed and the results are
fetched back from the GPU memory to the CPU mem-
ory. This section gives an overview of the implementation
choices of GASAL2 and describes various stages in the
data processing pipeline performed on the GPU.

Stage-1: data packing
The user passes the two batches of sequences to be pair-
wise aligned. A batch is a concatenation of the sequences.
Each base is represented in a byte (8-bits). DNA and
RNA sequences are made up of only 5 nucleotide bases,
A, C, G, T/U (T in case of DNA and U in RNA)
and N (unknown base), 3 bits are enough to repre-
sent each symbol of a sequence. However, we represent
each base in 4 bits for faster packing. Due to the com-
pute bound nature of the GASAL2 alignment kernel,
using 3-bits does not result in any significant speedup
over the 4-bit representation, but instead complicates
the data packing process. Registers in the GPU are 32-
bits wide. Therefore, a batch of sequences is packed
in an array of 32-bit unsigned integers in which each
base is represented by 4 bits. NVBIO also packs the
sequences on CPU using 4 bits per base. As the total
number of bases in a batch is quite large, packing the
data on the CPU is very slow. Figure 3 shows the per-
centage of data packing in the total execution time
for one-to-one pairwise alignment of the input dataset.
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Fig. 3 NVBIO data packing time as percentage of total execution time

The input dataset and GPU platform are described in
“Input dataset and execution platforms” section on page 6.
Figure 3 shows that NVBIO data packing takes around
80% of the total time. Hence, in NVBIO preparing the
sequences for the alignment on GPU takes much more
time then actually aligning the sequences. Based on this
observation, we accelerate the data packing process on
GPU and unpacked batches of sequences are copied to the
GPU global memory for this purpose. Figure 4 shows how
the GPU data packing kernel works on GPU. Each GPU
thread loads eight bases at a time from global memory.
Each base is converted from 8-bit to 4-bit representation
by masking the upper 4 bits, and then packed into an
unsigned 32-bit integer which is written back to global
memory. Figure 5 shows the achieved speedup of our
novel approach of packing the sequences on GPU as com-
pared to sequence packing performed by NVBIO on CPU.
GASAL2 is at least 580x faster than NVBIO. Since, only
few milliseconds are required to pack the sequences in
GASAL2, the data packing time is completely eliminated.
After the data packing is complete, packed sequences
reside on the GPU memory and all subsequent opera-
tions are completely done on the GPU, only the final
results of the alignment need to be copied from GPU
to CPU.

Stage-2 (optional): reverse-complementing kernel
GASAL2 is able to reverse and/or complement any num-
ber of sequences from any batch. Any sequence can
be flagged to be reversed, complemented, or reverse-
complemented. The reverse-complementing process is
performed on the GPU on already packed sequences to
take advantage of the high parallelism of the task.

Stage-3: alignment
The sequence alignment kernel is launched to per-
form pairwise alignment of the sequences using affine-
gap scoring scheme. GASAL2 employs inter-sequence
parallelization and each GPU thread is assigned a pair of
sequences to be aligned. All pairs of sequences are inde-
pendent of the others, so there is no data dependency
and all the alignments run in parallel. An alignment algo-
rithm using affine-gap penalties compute cells in three
dynamic programming (DP) matrices. These matrices are
usually named as H, E and F. The matrices are shown
in Fig. 2. Each cell needs the results of 3 other cells: the
one on top, the one on the left, and the one on the top-
left diagonal. Since the sequences are packed into 32-bits
words of 8 bases each, the alignment fetches a word of
both sequences frommemory and computes an 8x8 tile of
the matrix. Hence, 64 cells of the DP matrices are com-
puted with a single memory fetch reducing the number of
memory requests. All the tiles are computed from left to
right, then top to bottom. To jump from one tile to the
next one on the right, we need to store 8 intermediate
values (which are the values of the cell of the left for the
next tile). To jump from one row of tiles to the next row,
we need to store a full row of intermediate values (which
are the values of the cell of the top for the next row of
tiles). Hence, instead of storing the whole matrix, we only
store an 8-element column and a full row, which reduces
the memory requirement from O(n2) to O(n). Since, the
stored column has only 8 elements it can easily reside in
the GPU register file. For ease of representation, Fig. 2
shows a 4 x 4 tile, and the intermediate values that are
stored are shown shaded. Our library can also compute
the start-position of the alignment without computing the
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Fig. 4 Packing the sequences on GPU. b1, b2, . . . , are the bases

Fig. 5 Data packing time, GASAL2 vs NVBIO
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traceback. To do so, we restart the computation, but now
from the end-position in the backward direction, and exit
where the score becomes equal to the previously found
score. The coordinates of the cells at the exit point give the
start-position of the alignment.
For computing the traceback a directionmatrix is stored

in the global memory of the GPU while computing the
alignment. The direction matrix is similar to the one
shown in Fig. 2 with |S1| × |S2| cells. Each cell is rep-
resented by 4-bits in the memory. The lower 2 bits are
used to encode whether the current cell is match, mis-
match, insertion or deletion. The upper two bits are for
the next cell on the alignment path. If the next cell is
a gap then the upper bits of the current cell represent
whether it is a gap-open or gap-extension, one bit each
for insertion and deletion. The direction matrix is stored
in the memory using uint4 CUDA vector data type.
uint4 has 4 aligned 32-bit unsigned integers. A single
store/load instruction is required to access uint4 data
from the memory. A single uint4 data element can store
32 direction matrix cells, and hence half the cells in a tile.
Moreover, the direction matrices of all the pairs aligned
on the GPU are stored in an interleaved fashion for coa-
lesced memory access. The actual alignment is generated
using the direction matrix by starting from the end cell
and tracing back to the start of the alignment to compute
the exact location of matches, mismatches, deletions and
insertions.
The output of this stage depends on the users choice.

There are three possible outputs: 1) only score and end-
position of the alignment. 2) score, end-position and start-
position of the alignment without performing traceback.
3) score, end-position, start-position and actual alignment
in CIGAR format.

Kernel specialization through templates
GASAL2 supports various kinds of parameters for ker-
nel launches, to tailor the results to the user’s need. For
example, the traceback will only be calculated if the user
requests it. In addition, GASAL2 can adapt to any kind
of semi-global alignment where the initialization or the
search for a maximum can vary, depending on the user
requesting the beginning and/or the end of any sequence.
Dealing with this kind of issue is not trivial in the case of

GPU programming, as creating a simple branch through
an if statement slows down the whole kernel dramati-
cally (for a single if in the innermost loop of an align-
ment kernel, this can cause an approximate slowdown of
40%). Duplicating the kernels is not a viable solution for
code maintenance: for example, for the semi-global ker-
nel, there are 24 = 16 types; and adding the possibility of
asking for the start-position doubles this number.
The solution that we adopted allows to generate all

the possible kernels at compilation time, so that they are

all ready to run at full speed without branches. CUDA
implementation of C++ templates (according to C++11
specifications) allows to generate all template-kernels at
compile time. The programming model that we adopted
allows to create a new kernel specialization by writing if
statements that are resolved at compilation time, to prune
the useless branches.

GPU launch parameters choice
GPU threads are organized in blocks, and blocks are
grouped into kernel grid. A block is run on a SM that
has several hardware resources such as cores, register
file, cache, etc. Two parameters characterize the kernel
launch:

• the block size, which is the number of threads in a
block.

• the grid size, which is the total number of blocks.

Block size affects the SM occupancy. The SM occupancy
is the ratio of number of active warps and the maximum
number of warps allowed on a SM. Increasing the occu-
pancy helps in memory-bound applications. Large occu-
pancy makes sure that they are always enough number
of warps that are ready to be scheduled to the streaming
processors so that all cores (SP’s) in the SM are fully uti-
lized. GASAL2 alignment kernel is not memory-bound.
It can compute a 8x8 tile of cells in only 2-3 memory
requests. Thus, increasing the occupancy does not help
much. However, GASAL2 alignment kernels use a block
size of 128 for reasonable occupancy value. GASAL2 uses
the inter-sequence parallelization and each GPU thread
performs only one alignment. Hence, the grid size is
always the ratio of number of alignments to be performed
and the block size (128).

GASAL2 asynchronous execution
GASAL2 allows the user to overlap GPU and CPU execu-
tion. This is known as asynchronous or non-blocking align-
ment function call as opposed to synchronous or blocking
call used in GASAL [22]. In a blocking alignment func-
tion call, the calling thread is blocked until the alignment
on the GPU is complete. GASAL2 uses CUDA streams
to enable asynchronous execution. In asynchronous calls,
the calling thread is not blocked and immediately returns
after launching various tasks on the GPU. In GASAL2
these tasks are CPU-GPU memory transfers, and the
GPU kernels for data packing, reverse-complementing
(optional), and pairwise-alignment. The application can
perform other tasks on the CPU rather than waiting for
the GPU tasks to complete. This helps to eliminate idle
CPU cycles in case of a blocking call. Hence, the time
spent in the alignment function is merely a small over-
head to call the CUDA API asynchronous memory copy
functions and launch the kernels.
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GASAL2 versus GASAL and NVBIO
The advantages of GASAL2 over GASAL and NVBIO are
listed below:

1. GASAL2 can generate the actual alignment between
a pair of sequences by computing traceback. The
traceback contains the exact position of matches,
mismatches, insertion and deletion in the alignment.
This facility is not provided in GASAL.

2. GASAL2 is much faster than NVBIO.
3. Asynchronous execution. This is a unique facility

that is not available in NVBIO or GASAL.
4. In NVBIO and GASAL, an ambiguous base (N) is

treated as a ordinary base having the same match and
mismatch scores as A, C, G or T. But, in most
sequence analysis programs, the match/mismatch
score of "N" is different. For example, in BWA-MEM
the score of aligning "N" against any other base (A, C,
G, T or N) is always -1. Extending NVBIO to adopt
this new scoring scheme to handle "N" increases the
execution time of GPU kernels by 30% for global and
semi-global alignment, and by 38% for local
alignment. In GASAL2 the score of aligning "N"
against any other base is configurable. Due to this,
the execution time of global, semi-global and local
kernels is higher than that of GASAL by 17%, 15%
and 6%, respectively.

5. In GASAL, the GPU memory allocations are
performed just before the batch of sequences are
copied from CPU to GPU. The allocated memory is
freed after the alignment is complete and the results
are copied from GPU to CPU. If the input batch is
not very large, the time spent in memory allocation
and de-allocations may become significant and, thus
reduces the performance. In GASAL2, we have a
separate API function for memory allocation and
de-allocation which is called only once at the
beginning and end of the program, respectively. At
the beginning of the program, user calls the memory
allocation function by passing an estimated input
batch size. Separate data structures are maintained to
keep track of the allocated memory. If the actual
input batch is larger, GASAL2 automatically handles
the situation by seamlessly allocating more memory.
The allocated memory is freed up at the end of the
application.

6. GASAL2 supports all types of semi-global
alignments. NVBIO and GASAL supports only one
type of semi-global alignment in which the gaps at the
beginning and end of the query sequence are ignored.

7. GASAL2 can also compute the second-best local
alignment score. GASAL only computes the best
score.

8. GASAL2 has a reverse-complementing GPU kernel.
In NVBIO and GASAL, the user has to manually
reverse-complement the sequence before writing it
to the input batch.

Results
Input dataset and execution platforms
To evaluate the performance of GASAL2 we per-

formed one-to-one pairwise alignments between two set of
sequences.We considered the case of DNA readmapping.
Readmappers have to perform billions of one-to-one pair-
wise alignments between short segments of DNA and
substrings of the reference genome. In this paper, we also
perform one-to-one pairwise alignments between two set
of sequences for evaluation purposes. Affine-gap scor-
ing scheme is used in which the match score, mis-match
penalty, gap open penalty and gap extension penalty is 6,
4, 11 and 1, respectively. In the rest of the paper,we will
refer to the substrings of the reference genome as tar-
get sequences. The length of the read sequence is fixed,
while the length of the target sequence may vary. Table 1
shows the different datasets used in this paper. The read
set consists of reads simulated with Wgsim [23] using
UCSC hg19 as the reference genome. To generate the
target set, these reads and the hg19 reference genome
are used as the input for BWA-MEM. During the seed-
extension phase of BWA-MEM, the mapper aligns the
reads with the substrings of the reference genome. These
substrings are stored and used as the target set. Three typ-
ical read lengths generated by Illumina high-throughput
DNA sequencing machines are used: DS100, DS150 and
DS300 representing 100, 150 and 300bp, respectively.
Table 1 shows the number of sequences in the read and
target set and the corresponding maximum and aver-
age length of the sequences in each set. Minimum target
sequence length in each case is approximately equal to the
length of the read.
The CPU-based libraries are executed on a high end

machine consisting of two 2.4 GHz Intel Xeon E5-2680 v4
(Broadwell) processors and 192 gigabytes of RAM. Each
processor has 14 two-way hyper-threaded cores. Hence,
there are 28 physical and 56 logical cores in total. We
measured the execution time of the CPU-based libraries
with 28 and 56 threads and reported the smallest execu-
tion time of the two. GASAL2 and NVBIO are executed

Table 1 Characteristics of the input dataset

Dataset Read Set Target Set

avg. len. max. len. No. of seq. avg. len. max. len. No. of seq.

DS100 100 100 10e6 162 177 10e6

DS150 150 150 10e6 260 277 10e6

DS300 300 300 10e6 538 571 10e6
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on a NVIDIA Geforce GTX 1080 Ti GPU. Only one CPU
thread is used in case of GASAL2 and NVBIO. GASAL2
is compiled with CUDA version 10.0.

Libraries compared with GASAL2
We compared GASAL2 against the fastest CPU and GPU
based libraries available, which are:

• SeqAn contains the vectorized implementation of all
types of alignments using SSE4, AVX2 and AVX512
SIMD instructions [24]. For SeqAn we used the
test-suite provided by the developers of the library
[25]. AVX2 implementation of SeqAn is used in the
experiments with 16 bits per score. Since the test data
set is based on Illumina reads, we have used
align_bench_par and
align_bench_par_trace which follows the
chunked execution policy giving the fastest execution
for short DNA reads. The chunked policy is also used
to generate the results in [24] for Illumina reads.
align_bench_par calculates the alignment score
and does not report the start and end positions of the
alignment. We have not used the banded version of
align_bench_par as it does not guarantee
correct results. align_bench_par_trace is used
for computing alignment with traceback. In this
paper, we are performing one-to-one alignment for
the experiments. The timings reported in the SeqAn
paper [24] are not for the one-to-one alignment. The
paper used a so-called "olc" alignment mode which is
similar to the different one-to-many alignments. The
library is compiled with GCC 7.3.1.

• ksw module in klib [26] contains a fast SSE based
implementation local alignment algorithm. It can also
compute the start-position, but does not compute the
traceback for local alignment. It has a function for
computing the traceback for global alignment, but it
is not vectorized, and hence very slow. ksw is faster
than SSW [27]. We developed our own test program
for ksw (commit:cc7e69f) which uses OpenMP to
distribute the alignment tasks among the CPU
threads. The test program is compiled with GCC
4.8.5 using O3 optimization flag.

• Parasail [28] contains the SIMD implementation of
the local, global and semi-global alignment with and
without traceback. Ten types of semi-global
alignments are supported. We developed our own
test program for Parasail (version-2.4) which uses
OpenMP to distribute the alignment tasks among the
CPU threads. The test program is compiled with
GCC 4.8.5 using O3 optimization flag. Parasail allows
the user to choose between SSE and AVX2 SIMD
implementations. It also consists of different
vectorization approaches namely scan, striped,

diagonal and blocked. We have used the scan
approach implemented with AVX2 instructions as it
is the fastest for our dataset. Parasail does not
compute the start-position directly without
computing traceback. Therefore, the original
sequences are aligned to obtain score and
end-position, then both sequences are reversed to
calculate the start-position without traceback.

• NVBIO contains the GPU implementations of local
global and semi-global alignment with and without
traceback. Only one type of semi-global alignment is
supported shown in Fig. 1. We used sw-benchmark
program in the NVBIO repository. The original
program performs one-to-all alignments. We
modified sw-benchmark to perform one-to-one
alignments. Moreover, in the original program
reading the sequences from the files and packing the
sequences is done in a single API function call. To
exclude the I/O time from the measurements, we first
loaded the sequences in an array of strings and then
pack the sequences using NVBIO API functions.
NVBIO does not contain any function that directly
computes the start-position of the alignment without
computing the traceback. To compute the
start-position without traceback, we make two copies
of each sequence, one in original form and other
reversed. The alignment of original sequences is used
to compute the score and end-position, while the
reverse sequence are aligned to compute the
start-position. Moreover, as described before, NVBIO
considers "N" as an ordinary base and extending the
library to correctly handle the ambiguous base makes
it more than 30% slower. In our comparison we have
used the original NVBIO implementation. NVBIO is
compiled with CUDA version 8 as it cannot be
compiled with latest CUDA version.

There are also very fast CPU-based libraries that compute
the edit distance or sequence alignment with linear-gap
penalty e.g. EDlib [29], BitPAl [30] and [31]. EDlib com-
putes the Levenshtein distance between two sequences.
Edit distance is the minimum number of substitu-
tion, insertions and deletion required to transform one
sequence to the other. BitPAl and BGSA [31] can perform
global and semi-global alignments with linear-gap penalty.
Many bioinformatics applications require sequence align-
ment with affine-gap penalty which allows to have differ-
ent penalties for gap opening and gap extension.Moreover
EDlib, BitPAl and BGSA cannot compute local alignment.

GASAL2 alignment kernel performance
Table 2 shows a comparison of the alignment kernel exe-
cution times of NVBIO and GASAL2. The times listed
in the table represent the total time spent in the GPU
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Table 2 Alignment kernel times (in seconds) for NVBIO and GASAL2

DS100 DS150 DS300

GPU kernel NVBIO GASAL2 NVBIO GASAL2 NVBIO GASAL2

Local (only score) 1 1 2.2 2.2 8.4 9.6

Local with start 2 1.9 4.4 3.3 16.8 13.6

Local with traceback 6 1.58 14 3.6 57.8 15.5

Semi-global (only score) 0.9 1 2 2.2 8 9.3

Semi-global with start 1.8 1.8 4 3.9 16 16

Semi-global with traceback 6 1.43 14 3.4 62 15

Global (only score) 0.9 1 2 2.3 8 9.5

Global with traceback 6 1.4 14 3.5 63 15

alignment kernel while performing all the one-to-one
pairwise alignment between the sequences in the read and
target set. These times do not include data packing and
data copying time. Three different types of kernels are
timed. The “only score” kernels only compute the score
and end position. The “with start” kernels compute the
score as well as start and end position without computing
the traceback. There is no need to compute the start posi-
tion for global alignment. The “with traceback” computes
the actual alignment along with the score, start-position
and end-position. The table shows that the alignment ker-
nel execution times of NVBIO and GASAL2 are almost
the same with and without computing the start-position.
For finding the start-position GASAL2 kernel first finds
the score and end-position. It then again aligns the two
sequences in the backward direction beginning form the
cell corresponding to the end-position. This backward
alignment is halted as soon as its score reaches the previ-
ously calculated maximum score. This approach helps to
reduce the number of DP cells need to be computed for
finding the start-position. With traceback computation
GASAL2 GPU kernels are around 4x faster than NVBIO.
On the other hand, NVBIO is more space efficient and
uses an approach similar to Myers-Miller algorithm [32]
to compute the traceback.

Total execution time
In this section, we compare the performance of GASAL2
and other libraries in terms of the total execution time.
The total execution time is the total time required to per-
form all the one-to-one pairwise alignment between the
sequences in the read and target set. Figure 6 shows the
flow chart of the test program used to measure the total
execution time of the GASAL2. While filling the param-
eters we specify the type of alignment algorithm and one
of the three following types of computations: 1) only score
and end-position. 2) score, start and end-position with-
out traceback. 3)score, end-position start-position and
actual alignment in CIGAR format. Two batches of 500K
sequences each are filled in each iteration. Hence, there

are 20 iterations in total for the dataset of 10 million pair
of sequences. GASAL2 initializes 5 CUDA streams and
each stream performs one-to-one alignment of 100K pair
of sequences. The total execution time of GASAL2 is the
time starting from selecting an available stream till the
time all the streams are completed i.e. allowing all the
operations, from copying batches to copying results, to
finish. Since the data transfer time is much smaller than
the GPU alignment kernel time (at most 30% of kernel
time) and GASAL2 uses CUDA streams, the data trans-
fer is almost entirely overlapped with GPU execution. For
the experiments, we are not reverse-complementing the
sequences.

Local alignment
Figure 7 shows the total execution times computing only
the score and end-position of the alignment. In this case
GASAL2, NVBIO, ksw and Parasail are reporting the
score as well as the end-position of the alignment. SeqAn
only reports the alignment score. The execution times for
SeqAn, ksw and Parasail shown in Fig. 7 are obtained
with 56 CPU threads. For DS100, the figure shows that
GASAL2 is 5.35x, 4.3x, 10x and 2x faster than ksw,
Parasail, NVBIO and SeqAn, respectively. With DS150
the speedup of GASAL2 over ksw, Parasail, NVBIO and
SeqAn is 4.75x, 3.6x, 7x and 2.4x, respectively. GASAL2 is
3.4x, 2.3x, 3.4x and 2.4x faster than ksw, Parasail, NVBIO
and SeqAn, respectively for DS300. These results indi-
cate that the speedup achieved by GASAL2 over ksw and
Parasail decreases with longer reads. This is due to the
fact that the ksw and Parasail use the striped heuristic
that limits the computational complexity for longer reads,
as compared to the GPU implementation. The results
also show that the speedup achieved by GASAL2 com-
pared to NVBIO decreases with longer reads. The reason
for this decreasing speedup over NVBIO with increasing
read lengths is the reduction of the data packing percent-
age (Fig. 3) as the alignment time continues to increase.
GASAL2 speeds up the data packing while its alignment
kernel performance remains similar to that of NVBIO.
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Fig. 6 The flow chart of the test program used to measure the total
execution time of GASAL2

The speedup of GASAL2 over SeqAn remains constant
around 2x with increasing read lengths. This is because
both of them employ inter-sequence parallelization and
use the standard DP algorithm having the complexity of
|S1| × |S2| (Fig. 2). Hence, the execution time increases
quadratically with read length for both GASAL2 and
SeqAn.
Figure 8 shows the total execution time computing the

start-position of the alignment without traceback. Since

SeqAn neither reports the end-position nor the start-
position, it is omitted in this comparison. The execution
time values shown for ksw and Parasail are obtained with
56 CPU threads. The figure shows that GASAL2 is 6x,
5.3x and 4x faster than ksw; 4.8x, 3.7x and 2.4x faster than
Prasail; 13x, 8.7x and 4.4x faster than NVBIO for DS100,
DS150 and DS300 respectively. The reason for decreas-
ing speedup of GASAL2 over CPU-based libraries is the
same as described for local alignment without computing
the start-position. The speedup over NVBIO is more in
this case as compared to alignment without start-position
computation. With start-position computation the pack-
ing time of NVBIO nearly doubles but the packing time of
GASAL2 remains the same. Another interesting point to
note is that the GASAL2 total execution time with start-
position computation is smaller than the total alignment
kernel time shown in Table 2. This happens because the
alignment kernels of 5 batches are launched in parallel and
their execution may overlap on GPU.
Figure 9 shows the total execution of the local align-

ment with traceback. The traceback computation gives
the actual alignment between the pair of sequences along
with the score, end-position and start-position. SeqAn
and Parasail timings are obtained with 56 CPU threads.
GASAL2 is 8.5x, 7.25x and 5x faster than NVBIO for
DS100, DS150 and DS300, respectively. With increas-
ing read lengths the data packing percentage in NVBIO
decreases but the kernel speedup of GASAL2 over NVBIO
remains constant ( 4x). The speedup of GASAL2 over
SeqAn and Parasail is around 8x and 20X for all datasets.

Semi-global and global alignment
There are many types of semi-global alignments. All types
of semi-global alignments are possible with GASAL2.
SeqAn supports all types of semi-global alignments. Pra-
sail support 10 types. NVBIO supports only one type.
In the paper we are showing the results for semi-global
alignment supported by all the libraries i.e. gaps at end
and beginning of the read sequence are not penalized.
The relative performance of GASAL2, Parasail and SeqAn
for the remaining types is similar. Figure 10 shows the
total execution time of semi-global alignment comput-
ing only the score and end-position. Like local align-
ment, SeqAn only reports the alignment score. Whereas,
GASAL2, Prasail and NVBIO compute the alignment
score as well as the end-position of the alignment. The
execution times for SeqAn and Parasail are obtained with
56 CPU threads. GASAL2 is 4x, 10x and 1.7x faster than
Parasail, NVBIO and SeqAn, respectively for DS100. For
DS150 the speedup of GASAL2 over Parasail, NVBIO
and SeqAn is 3.4x, 6.8x and 1.9x, respectively. In case
of DS300 GASAL2 is 2.2x, 3.75x and 2x faster than
Parasail, NVBIO and SeqAn, respectively. The reasons
for decreasing speedup over Parasail and NVBIO with
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Fig. 7 Total execution times for local alignment computing only the score and end-position. The execution time of CPU-based libraries is obtained
with 56 threads

increasing read lengths are the same as described for local
alignment.
Figure 11 shows the total execution time of the semi-

global alignment computing start-position without trace-
back. SeqAn does not compute the start-position, which
is hence omitted in the comparison. The results for Para-
sail are obtained with 56 CPU threads. The figure shows
that GASAL2 is 4.7x, 3.7x and 2.6x faster than Parasail and
13x, 8.4x and 4.4x faster than NVBIO for DS100, DS150
and DS300, respectively.
Figure 12 shows the total execution of the semi-global

alignment with traceback. The speedups of GASAL2 over

NVBIO and Parasail (56 CPU threads) are similar to
local alignment. For SeqAn the fastest execution time for
DS100 is obtained with 56 threads, whereas for DS150 and
DS300 28 threads are faster than 56 threads. GASAL2 is
3x, 3.5x and 13.5x faster than SeqAn for DS100, DS150
and DS300 respectively.
Figure 13 and 14 shows the total execution time

required for global alignment without and with trace-
back, respectively. The thread settings and the speedups
achieved by GASAL2 are similar to that of semi-
global alignment. With traceback computation GASAL2
becomes even more faster than other CPU libraries. For

Fig. 8 Total execution times for local alignment computing start-position without traceback. The execution time of CPU-based libraries is obtained
with 56 threads
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Fig. 9 Total execution times for local alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56 threads

semi-global and global alignments with traceback the
speedup of GASAL2 over SeqAn increases with increasing
read lengths.

Discussion
GASAL2 is a GPU accelerated sequence alignment library.
It can perform global alignment, local alignment and all
types of semi-global alignment with and without trace-
back. It returns the alignment score, end-position and
optionally the start-position of the alignment. It can also
compute the second best local alignment score. Results
show that GASAL2 is faster thanNVBIO and state-of-the-
art CPU-based SIMD libraries, making it a good choice for

sequence alignment in high-throughput NGS data pro-
cessing libraries. In the following, we show how to use the
library to accelerate the BWA-MEM application.

Case Study:
BWA-MEM is a well known seed-and-extend DNA read
mapper. In the seeding step, it finds substrtings of the read
that match exactly somewhere in the reference genome.
In the extension step, BWA-MEM tries to align the whole
read around that match. The algorithm used in the exten-
sion step is similar to local alignment, where the start-
position is also calculated. We accelerated BWA-MEM
using GASAL2. Two paired-end read datasets of length

Fig. 10 Total execution times for semi-global alignment computing only the score and end-position. The execution time of CPU-based libraries is
obtained with 56 threads
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Fig. 11 Total execution times for semi-global alignment computing start-position without traceback. The execution time of CPU-based libraries is
obtained with 56 threads

150 bp (SRR949537) and 250 bp (SRR835433) are used.
The experiments are run on an NVIDIA Tesla K40c
GPU. The GPU host machine has two 2.4GHz Intel Xeon
E5-2620 v3 processors and 32 gigabytes of RAM. Each
processor has six cores with 2-way hyper-threading. The
BWA-MEM version used in this case study is 0.7.13. We
also accelerated BWA-MEM using GASAL and compared
it with the results obtained with GASAL2. The original
GASAL published in [22] has two shortcomings described
in “GASAL2 versus GASAL and NVBIO” section: a)
GASAL treats base ’N’ as an ordinary base. This causes
BWA-MEM to abort due to an error. We updated GASAL
so that it treats base ’N’ in the same manner as GASAL2,

b) GASAL allocates and de-allocates the GPU memory
just before and after the memory transfers between CPU
and GPU, respectively. This causes the whole BWA-MEM
application to slow down substantially due to repetitive
GPU memory allocations and de-allocations. We updated
GASAL so that the memory allocation and de-allocation
are performed same as in GASAL2 i.e. only once, at the
beginning and end of the application. The accelerated
BWA-MEM is executed in the same manner as the orig-
inal BWA-MEM (same command line arguments). The
only difference between the accelerated BWA-MEM and
the original version is that the seed-extension is per-
formed on the GPU instead of CPU.

Fig. 12 Total execution times for semi-global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56
threads except of SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads
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Fig. 13 Total execution times for global alignment without traceback. The execution time of CPU-based libraries is obtained with 56 threads

Execution timeline
Figure 15 shows the execution timeline of BWA-MEM
before and after acceleration. Figure 15a shows the exe-
cution in the original BWA-MEM. Figure 15b shows the
BWA-MEM execution with the extension step acceler-
ated using GASAL. Note that the seeding and exten-
sion steps are performed for a batch of reads to mit-
igate the CPU-GPU memory transfer overhead and to
fully utilize GPU resources. Furthermore, the thread
running on the CPU remains idle while the extension
is performed on the GPU. Figure 15c shows how the
GASAL2 alignment function can be used for overlap-
ping CPU and GPU execution. A batch of reads is

further broken down into sub-batches, numbered 1, 2
and 3. CPU execution is overlapped with the seed exten-
sion on GPU. This is achieved via the GASAL2 asyn-
chrnous alignment function call facility. Empty time slots
on the CPU timeline are also present in (c), but these
are much smaller than (b). These empty slots in (c)
will not be present if extension on GPU is faster than
post-extension processing or vice-versa. We test both
approaches i.e. (b) and (c), to accelerate the extension
step of BWA-MEM. In practice, due to load balancing
(explained below) we used a batch size that varies between
5000 to 800 reads. The number of sub-batches are either
5 or 4.

Fig. 14 Total execution times for global alignment with traceback computation. The execution time of CPU-based libraries is obtained with 56
threads except for SeqAn. For SeqAn the DS100 results are with 56 threads, whereas the DS150 and DS300 results are with 28 threads
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Fig. 15 Execution timeline of original and accelerated BWA-MEM

Load balancing
In the original BWA-MEM, each thread is assigned a
number of reads to process and one read is processed by a
thread at a time. If a thread has finished processing all of
its allocated reads, it will process the remaining reads of
unfinished threads. Due to this, all of the threads remain
busy until the whole data is processed resulting in maxi-
mum CPU utilization. On the other hand, in case of GPU
acceleration reads are processed in the form of batches.
Therefore, some threads may finish earlier than others
and remain idle while waiting for all of the threads to fin-
ish. The idle time of these threads causes underutilization
of the CPU. Decreasing the batch size helps to increase
the CPU utilization, but at the same time may reduce the
alignment function speedup due to increased data trans-
fer overhead and poor GPU utilization. To circumvent this
problem, we used dynamic batch sizes in our implemen-
tation. At the start, the batch size for each CPU thread
is 5000 reads, but can be reduced to as low as 800 reads,
depending upon the number of free threads which have
finished processing there allocated reads. Doing so help
to reduce the time wasted by a CPU thread in waiting
for other threads to finish. We measured the wasted time
as the difference between the finishing times of slowest
and the fastest thread. By applying our dynamic batch size

approach the wasted time is reduced by 3x for 150bp reads
and 2x for 250 bp reads with 12 CPU threads.

Performance with 150bp reads
For 150bp reads, Fig. 16 shows the comparison of time
spent in the seed extension for the original BWA-MEM
executed on the host CPU and the GPU accelerated
BWA-MEM in which the seed extension is performed
using GASAL2 alignment functions. The extension per-
formed using GASAL2 (GASAL2-extend) is the sum of
time to asynchronously call the GASAL2 alignment func-
tion and the time required in getting back the results using
gasal_is_aln_async_done() function, in addition
to the time of the empty slots before the post-processing
of the last sub-batch. GASAL2-extend is more than 42x
faster than the CPU time represented by original BWA-
MEM extension function(orig-extend) for one thread, and
over 20x faster for 12 CPU threads. Hence, the GASAL2
asynchronous alignment function allows to completely
eliminate the seed extension time. The GASAL alignment
function (GASAL-extend) is 3-4x slower than GASAL2-
extend and is hence around 7-10x fassimilarter than orig-
extend.
Figure 17 shows the total execution times of the original

BWA-MEM and GASAL2 for 150bp data. The ideal-total
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Fig. 16 Time spent in the extension step of BWA-MEM for 150bp reads

is total execution time for the case in which the time
spent in the extension step is zero, and thus, represents
the maximum achievable speedup. For 1 to 4 CPU thread,
the GPU speedup is almost identical to the ideal one.
For higher CPU threads, the speedup is slightly smaller
than ideal. For 12 threads, the GASAL2 speedup and ideal
speedup are 1.3 and 1.36, respectively. Since the time con-
sumed by the seed extension function in BWA-MEM is
25-27%, the total execution time of GASAL is only slightly
higher than GASAL2. For 12 threads, the GASAL speedup
is 1.26. The main cause of the difference between ideal
and actual speedup for higher number of CPU threads is
imperfect load balancing between the CPU threads.

Performance with 250 bp reads
Same analysis is repeated for 250 bp reads. Figure 18
shows the seed extension time of original BWA-MEM
andGASAL2 alignment functions. GASAL2-extend is 32x
to 14x faster than orig-extend for 1 to 12 CPU threads,
respectively. The reduction in speed-up as compared to
150bp reads is due to reduction in GPU alignment ker-
nel speed for longer reads, which widens the empty
slots in the CPU timeline of Fig. 15c. GASAL-extend is
7x to 3x faster than CPU extension for 1 to 12 CPU
threads, respectively. This means that GASAL-extend is 4-
5x slower than GASAL2-extend. Hence, for longer reads
the speedup of GASAL2 over GASAL increases.

Fig. 17 Total execution time of BWA-MEM for 150 bp reads
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Fig. 18 Time spent in the extension step of BWA-MEM for 250bp reads

Figure 19 shows the total execution time for 250 bp
reads. For up to 2 CPU threads, GASAL2-total, GASAL-
total and ideal-total all are the same. Above 2 CPU
threads, GASAL2-total becomes faster than GASAL-
total. For 12 CPU threads, the ideal speedup is 1.49
whereas the speedup with GASAL2 and GASAL is 1.35
and 1.2, respectively. The gap between the ideal speedup
and speedup achieved with GASAL2 is larger for 250 bp
reads as compared to 150 bp reads. This happened due
to imperfect load balancing between threads as well as
decreased speedup of the seed extension step for 250bp
reads.
In summary GASAL2 gives seed-extension speedup in

excess of 10x even when 12 CPU threads share a single
NVIDIA Tesla K40c GPU.

Conclusions
In this paper, we presented GASAL2, a high performance
and GPU accelerated library, for pairwise sequence align-
ment of DNA and RNA sequences. The GASAL2 library
provides accelerated kernels for local, global as well as
semi-global alignment, allowing the computation of the
alignment with and without traceback. It can also com-
pute the start position without traceback. In addition,
one-to-one as well as all-to-all and one-to-many pairwise
alignments can be performed. GASAL2 uses the novel
approach of also performing the sequence packing on
GPU, which is over 750x faster than the NVBIO approach.
GASAL2 alignment functions are asynchronous/non-
blocking which allow fully overlapping CPU and GPU
execution. GASAL2 can compute all types of semi-global

Fig. 19 Total execution time of BWA-MEM for 250 bp reads
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alignments. These represent unique capabilities not avail-
able in any earlier GPU sequence alignment library.
The paper compared GASAL2’s performance with the
fastest CPU-optimized SIMD implementations such as
SeqAn, ksw, Parasail and NVBIO (NVIDIA’s own GPU
library for sequence analysis of high-throughput sequenc-
ing data). Experimental results performed on the Geforce
GTX 1080 Ti GPU show that GASAL2 is up to 5.35x
faster than 56 Intel Xeon threads and up to 10x faster
than NVBIO with a read length of 100bp, comput-
ing only the score and end-position. For 150bp reads,
the speedup of GASAL2 over CPU implementations (56
Intel Xeon threads) and NVBIO is up to 4.75x and up
to 7x, respectively. With 300bp reads, GASAL2 is up
to 3.4x faster than CPU (56 Intel Xeon threads) and
NVBIO. The speedup of GASAL2 over CPU implemen-
tations (56 Intel Xeon threads) computing start-position
without traceback is up to 6x, 5.3x and 4x for 100, 150
and 300bp reads, respectively. With start-position com-
putation, the speedup of GASAL2 over NVBIO is up to
13x, 8.7x and 4.4x for 100, 150 and 300bp reads, respec-
tively. With traceback computation GASAL2 becomes
even faster. GASAL2 traceback alignment is 13x and
20x faster than SeqAn and Parasail for read lengths of
up to 300 bases. The GPU traceback alignment ker-
nel of GASAL2 is 4x faster than NVBIO’s kernel, giv-
ing an overall speedup of 9x, 7x and 5x for 100, 150
and 300bp reads, respectively. GASAL2 is used to accel-
erate the seed extension function of BWA-MEM DNA
read mapper. It is more than 20x faster than the CPU
seed extension functions with 12 CPU threads. This
allows us to achieve nearly ideal speedup for 150 bp
reads. The library provides easy to use APIs to allow
integration into various bioinformatics tools. GASAL2
is publicly available and can be downloaded from:
https://github.com/nahmedraja/GASAL2.

Availability and requirements
Project name: GASAL2- GPU Accelerated Sequence
Alignment Library.
Project home page: https://github.com/nahmedraja/
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License: Apache 2.0
Any restrictions to use by non-academics: Not appli-
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GPU Acceleration of Darwin Read Overlapper for
de Novo Assembly of Long DNA Reads
Nauman Ahmed1,2*, Tong Dong Qiu1, Koen Bertels1 and Zaid Al-Ars1

Abstract

Background: In Overlap-Layout-Consensus (OLC) based de novo assembly, all reads must be compared with
every other read to find overlaps. This makes the process rather slow and limits the practicality of using de
novo assembly methods at a large scale in the field. Darwin is a fast and accurate read overlapper that can be
used for de novo assembly of state-of-the-art third generation long DNA reads. Darwin is designed to be
hardware-friendly and can be accelerated on specialized computer system hardware to achieve higher
performance.

Results: This work accelerates Darwin on GPUs. Using real Pacbio data, our GPU implementation on Tesla
K40 has shown a speedup of 109x vs 8 CPU threads of an Intel Xeon machine and 24x vs 64 threads of IBM
Power8 machine. The GPU implementation supports both linear and affine gap, scoring model. The results
show that the GPU implementation can achieve the same high speedup for different scoring schemes.

Conclusions: The GPU implementation proposed in this work shows significant improvement in performance
compared to the CPU version, thereby making it accessible for utilization as a practical read overlapper in a
DNA assembly pipeline. Furthermore, our GPU acceleration can also be used for performing fast
Smith-Waterman alignment between long DNA reads. GPU hardware has become commonly available in the
field today, making the proposed acceleration accessible to a larger public.

Keywords: Genomics; Read overlapper; de Novo Assembly; Long DNA reads; GPU acceleration

Introduction
DNA sequencing techniques used today produce short
pieces of data (called reads) that represent parts of
the sampled DNA, possibly containing some errors.
The length and error rate of these reads depends on
the sequencing technique used. DNA assembly tries
to combine the reads into larger, more accurate DNA
segments. For these DNA reads, graph-based assem-
blers are used for the assembly process, which comes
in two flavors: Overlap-Layout-Consensus (OLC) and
de Bruijn Graph (dBG).

The OLC assemblers [1] first find overlaps and build
an overlap graph. Each node represents a read, and
each edge represents an overlap between two reads.
During the layout phase, the graph is analyzed to
find paths, corresponding to segments of the original
genome. The perfect graph contains one path that vis-
its each node exactly once. This problem can be de-
scribed as finding a Hamiltonian Path. A Hamiltonian

*Correspondence: n.ahmed@tudelft.nl
1Delft University of Technology, Delft, Netherlands
2University of Engineering and Technology Lahore, Lahore, Pakistan

Full list of author information is available at the end of the article

Path includes all vertices of a graph exactly once. Ex-
amples of assemblers that use the OLC approach are
Dazzler [2] and SGA [3].

In dBG based assemblers [4], each read is divided
into K-mers. A K-mer is a substring of a read having
a length K. Each K-mer represents a directed edge be-
tween two vertices, where the source vertex represents
the first K − 1 bases of the K-mer, and the destina-
tion vertex the last K−1 bases of the K-mer. When a
particular K−1 vertex does not exist, it is created, oth-
erwise, the existing one is reused. The weights of the
edges indicate how many times a particular K-mer is
encountered. The next step is to find an Eulerian Path,
which is a path that includes all edges of a graph ex-
actly once. Examples of dBG assemblers are Velvet [5],
ABySS [6] and SOAPdenovo2 [7].

So called Next Generation Sequencing (NGS) tech-
niques produce reads with lengths anywhere from 50 to
500 base pairs. They can be produced at high through-
put but at the expense of a smaller read length. How-
ever, DNA can contain repeat regions, where a certain
piece of DNA is repeated many times back-to-back, or
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a repeat could appear in many different places in the
genome. Since these repeats can be longer than the
produced short reads, this means the reads cannot be
used to resolve these repeat regions. Third generation
sequencing produces much longer reads, of up to 60K
base pairs. Due to their length, these reads are more
likely to contain a whole repeat region, which makes
them suitable for accurately reconstructing the repeat
regions. A major drawback of longer DNA reads is
their higher error rate, ranging from 15-30%, depend-
ing on the exact sequencing technology. dBG based as-
sembly is the more preferred approach for NGS reads,
which are much shorter and have much lower error
rates. However, de Bruijn Graphs are quite suscepti-
ble to sequencing errors, since one substituted base
pair causes K incorrect K-mers. Pair this with an
often-used values of K above 50 and third generation
sequencing error rate of about 15%, it is clear that the
graph will contain a lot of incorrect edges. Therefore,
OLC based assemblers are more suitable for state-of-
the-art third generation long DNA reads produced by
Pacbio and Oxford Nanopore sequencers.

Darwin [8] is a read overlapper for the assembly of
long DNA reads. Darwin is designed to be highly ac-
curate, achieving a sensitivity of 99.89% and a pre-
cision of 88.30% for simulated Pacbio reads. This is
higher than other commonly used read overlappers
such as Daligner [2]. The ASIC (Application-Specific
Integrated Circuit) implementation of Darwin is shown
to be hundreds of times faster than other software
based overlappers. However, ASIC implementation re-
quires bulk volume production to be economically fea-
sible. Moreover, DNA analysis using high-throughput
DNA sequencing is an evolving field, and any major
improvement in the algorithm will require a new ASIC
implementation which costs both time and money.

Heterogeneous systems with GPU accelerators have
become easily accessible due to their widespread use.
They have shown convincing speedups in many high
performance computing applications. In this paper,
we present a GPU accelerated version of Darwin. We
identified the computational bottleneck in the Darwin
software and replaced it with the GPU accelerated ver-
sion. The accelerated implementation proposed in this
paper is orders of magnitude faster than its software
counterpart. The contributions of the paper are as fol-
lows:
• The paper shows the GPU implementation of the

Darwin read overlapper used in the de novo as-
sembly of long DNA reads.
• The paper shows that the GPU acceleration of

Darwin is orders of magnitude faster than the
multithreaded software version on both IBM
Power8 and Intel Xeon machines using a real
Pacbio dataset.

• The results in the paper show that the GPU im-
plementation of Darwin can also be applied for
accelerating Smith-Waterman alignment of long
DNA reads.

Background
Smith-Waterman (SW) [9] algorithm finds local align-
ment between a pair of sequences. Smith-Waterman is
exact, producing the optimal local alignment. It can
be implemented using dynamic programming which
computes a 2D matrix S. Let V and W be the two
sequences to be aligned. Let V0, V 1, . . . , V|V |−1 and
W0,W1, . . . ,W|W |−1 be the bases of V and W , re-
spectively. |V | and |W | are the lengths of V and W .
S(i,−1) = S(−1, j) = 0 for i = 0, 1, 2 . . . , |V | − 1 and
j = 0, 1, 2 . . . , |W |−1. The cells in the matrix are com-
puted using the following recurrence relation:

S(i, j) =max


S(i− 1, j) + gap

S(i, j − 1) + gap

S(i− 1, j − 1) + subt(Vi,Wj)

0

(1)

mi,j =

{
(i, j) S(i, j) > m

mi,j S(i, j) ≤ m
(2)

m =max

{
m

S(i, j)
(3)

D(i, j) =


0 S(i, j) = 0

↑ S(i, j) = S(i− 1, j)

← S(i, j) = S(i, j − 1)

↖ S(i, j) = S(i− 1, j − 1) + subt(Vi,Wj)

(4)

Here, S and D are the score and traceback matri-
ces, respectively. match, mismatch and gap are nu-
meric parameters. subt(Vi,Wj) is equal to match if
Vi = Wj , and is equal to mismatch otherwise. gap
is the penalty for inserting a gap. m is the alignment
score, which is initialized to zero, and mi,j is the corre-
sponding position on V and W . The traceback matrix
is required to compute the actual alignment. Trace-
back starts from the highest scoring cell and follows
the arrows in D until a zero or a boundary of the ma-
trix is encountered. Equations 1 and 3 indicate that
for computing the alignment score m there is no need
to store the whole S matrix as all cells of the S matrix
are computed using only the values of three other cells
S(i−1, j), S(i, j−1) and S(i−1, j−1). Hence, to com-
pute the alignment score, storing only the values in the
previous row and column are sufficient to compute m.
The above equations are for calculating the alignment
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with a linear-gap scoring model. However, Darwin and
our GPU implementation also support the more com-
monly used affine gap penalty model in which there
are separate penalties for opening a gap (gapo) and
extending a gap (gape).

A straightforward way of finding all overlaps is
performing an alignment algorithm, such as Smith-
Waterman, on every pair of reads. The number of
alignments is quadratic with the number of reads, and
the runtime of one alignment is quadratic with the
lengths of the involved reads, making this method not
feasible. Many heuristic algorithms have been devel-
oped to perform this alignment, for different lengths
and error rates. Seed-and-extend is one heuristic,
which dramatically reduces the amount of computa-
tion needed [10]. A seed is a K-mer made up of K con-
secutive bases of a read. Instead of performing Smith-
Waterman on each read pair, only read pairs that have
one or more common K-mers are aligned. A common
K-mer between two or more reads is known as a “seed
hit”. Darwin also uses the seed-and-extend approach,
which reduces the amount of computation needed,
without compromising the output by much. Other
algorithms, like BLAST [11], also use the seed-and-
extend approach, but give sub-optimal alignments. Re-
sults in [8] show that Darwin provides optimal Smith-
Waterman alignments between long DNA sequences
with error rates up to 40%.

Darwin
Darwin is read overlapping algorithm for de novo as-
sembly of third-generation long DNA reads. It is based
on the seed-and-extend. It consists of a filter called
D-SOFT (Diagonal-band Seed Overlapping based Fil-
tration Technique), which finds seed hits, and GACT
(Genome Alignment using Constant memory Trace-
back), which extends the seed hit by performing se-
quence alignment between the sequences on the left
and right of the seed hit. Figure 1 shows the seed-
and-extend technique employed in Darwin to find the
overlap between Read A and Read B. To compute the
overlap, a seed hit is extended on both sides by align-
ing R left with Q left and R right with Q right. This
speedups the computation by avoiding the computa-
tion of a large number of dynamic programming matrix
cells (grey cells in Figure 1).The dynamic program-
ming matrix computed to align R left with Q left is
known as left extension matrix. Similarly, the dynamic
programming matrix computed to align R right with
Q right is known as right extension matrix.

D-SOFT
D-SOFT is the seeding stage of Darwin, also known
as the filtering stage. Darwin uses minimizers [12] as

Read B

R
e
a
d
A

Q_right

Q_left

R_right

R_left

Figure 1 The seed-and-extend method used in Darwin to find
the overlap between Read A and Read B. R left and R right
are the substrings of Read A. Q left and Q right are the
substrings of Read B.

seeds which are K-mers extracted from all the reads
to be overlapped. The position of a seed is stored in
a minimizer table which records the location of the
seed in a read along with the identifier of the read.
The window size w is the most important parameter
for building a minimizer table and must be smaller
than the seed length (K). To obtain seed hits, ‘N ’ K-
mers of a read are used as seeds that are located in
other reads using the minimizer table. Two reads are
considered for alignment in the extension phase if they
have at least h unique bases in common. The pair of
reads passing this filter are aligned using a modified
Smith-Waterman algorithm described below.

GACT
The seed-and-extend approach to find overlap between
two reads is much faster than performing the com-
plete Smith-Waterman alignment algorithm. However,
the reduced dynamic programming matrices could still
be quite large. State-of-the-art third generation se-
quencers produce reads having lengths in megabases
and the dynamic programming matrix in the seed ex-
tension may have around 1 Tera cells to compute. For
example, if the seed hit lies at the beginning of the two
reads, i.e. near the top left corner in Figure 1, the right
extension matrix is nearly as large as the full matrix.
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Listing 1 GACT algorithm

t b l e f t = [ ]
( i c u r r , j c u r r ) = ( i s e e d , j s e e d )
t = 1
whi le ( i c u r r > 0 and j c u r r > 0)
{

( i s t a r t , j s t a r t ) = (Max( 0 , i c u r r − T) , Max( 0 , j c u r r − T) )
( R t i l e , Q t i l e ) = (R [ i s t a r t : i c u r r ] , Q[ i s t a r t : i c u r r ] )
( i o f f , j o f f , i max , j max , tb ) = Align ( R t i l e , Q t i l e , t , T−O)
t b l e f t . Prepend ( tb )
i f ( t == 1) {

( i c u r r , j c u r r ) = ( i max , j max )
t = 0

}
i f ( i o f f == 0 and j o f f == 0) {

break ;
}
e l s e {

( i c u r r , j c u r r ) = ( i c u r r − i o f f , j c u r r − j o f f )
}

}
return ( i max , j max , t b l e f t )
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Figure 2 An example of the GACT algorithm.

Numerous efforts to accelerate Smith-Waterman
have been made, both by using hardware like [13] and
software [14]. But the memory required to store the
traceback matrix D is still an issue. One can apply

the Hirschberg’s algorithm described in [15] to reduce
the RAM storage but at the cost of increase in com-
putation time. Therefore, Darwin proposed the GACT
algorithm for seed extension. It has two advantages:
1) All the cells of the right and left extension ma-
trix are not computed reducing the computation time.
2) The traceback matrix is very small. GACT per-
forms normal Smith-Waterman on a submatrix of the
extension matrix, known as tiles of size TxT . After
computing a tile it computes the next tile, which over-
laps the previous tile with at least O cells on both
axes. For reasonable values for T and O, GACT has
shown to produce the same result as normal Smith-
Waterman [8]. Figure 2 shows an example of comput-
ing the extension matrix with the GACT algorithm.
In the example T = 8 and O = 3. The tiles are com-
puted in the order T1, T2, T3 and T4. The example
in Figure 2 can be used to explain both the compu-
tation of left and right extension matrices. The only
difference is R = R right and Q = Q right in case
of right extension, where R right and Q right is the
reverse of R right and Q right sequences, respectively.
Listing 1, shows the algorithm for left extension. Posi-
tions i curr and j curr are produced by D-SOFT. The
start and end position of the current tile are stored
in (i start, j start) and (i curr, j curr), respectively.
The traceback path of the whole left extension is kept
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in tb left. The function Align() uses Smith-Waterman
to compute traceback matrix D between subsequences
R tile and Q tile. Once the traceback matrix is filled,
traceback is performed starting from the bottom-right
cell, except for the first tile, where traceback starts
from the highest-scoring cell. The starting cells of the
traceback are coloured yellow in Figure 2. Align() re-
turns the number of bases in R and Q aligned by this
tile (i off,j off ), the traceback arrows/pointers (tb) and
the position of the highest-scoring cell (i max,j max ).
Align() also limits i off and j off to at most T − O
bases, to ensure the next tile overlaps by at least O
bases on both R and Q. The green arrows shows the
path taken by the traceback in a tile if there is no
limit and the traceback is allowed to complete. The
left extension finishes when it hits the end of R or Q,
or when traceback cannot add any bases to the exist-
ing alignment. The memory needed for the traceback
is O(T 2), which is constant since T is chosen upfront.
The whole alignment of the extension is contained in
tb left and is equivalent to the path traced by the red
arrows in Figure 2. The alignment score of the exten-
sion can also be computed with the help of tb left The
right extension operates on the reverse of R and Q.

The performance of GACT is linear (O(max{|ReadA|,
|ReadB|} · T )) where |ReadA| and |ReadB| are the
lengths of Read A and Read B, respectively. It is more
suited for long reads than banded alignment [16] be-
cause banded alignment uses a static band around the
main diagonal. GACT allows for flexible bands since
the position of the new tile depends on the traceback
path, this is useful for long reads that have high indel
rates.

GPU processing
A GPU is a Graphics Processing Unit, which is a pro-
cessor that is mainly used to perform video processing.
GPUs contain many cores that allow them to perform
parallelizable tasks very quickly. A GPGPU, or Gen-
eral Purpose GPU, can be programmed to perform
tasks that are different from video processing. GPUs
cannot operate on their own, they must be guided by
a CPU. The functions that run on a GPU are called
kernels and are usually launched by a CPU.

CUDA is a parallel programming platform that al-
lows people to use Nvidia GPUs for their applications.
Developers can write kernels, launched from a CPU
function. The GPU is referred to as device and the
CPU as host. Kernels can be launched from the CPU
with a certain number of thread blocks with each block
containing many GPU threads. The number of blocks
and the number of threads in a block are the kernel
launch parameters. Each thread executes the kernel
code, although they usually operate on different data.

On a hardware level, an NVIDIA GPU is divided into
Streaming Multiprocessors (SM). Each SM contains
several cores, or Streaming Processors (SP), these are
the basic building blocks and perform the actual calcu-
lations. Each block is assigned to at most one SM. This
block’s threads are then executed as warps, with 32
threads per warp. Each SM has multiple warp sched-
ulers, so multiple warps can run in parallel on an SM.
All threads in a warp must execute the same instruc-
tion, if a thread is the only to take a branch, the other
threads must wait until the branch is completed, this
is called thread divergence.

GPUs have several different memory types and lev-
els. It has its own DRAM known as the global mem-
ory and a cache shared by all SM’s. Accesses to the
global memory are also executed in parallel, this means
that all threads try to read/write to the memory in
parallel. If the addresses are next to each other, only
one memory transaction is needed, since a transaction
processes a whole memory line. This is known as coa-
lescing. Non-coalesced memory accesses cause multiple
memory transactions.

A general workflow using a GPU is:

1 Data is copied from the main memory to the GPU
global memory.

2 The CPU launches the GPU kernel.
3 The GPU executes the kernel.
4 Results are copied from the GPU to the CPU

memory.

Previous research
Multiple efforts to accelerate the DNA alignment algo-
rithm on GPU have been made. MUMmerGPU [17] is
one of the first GPU accelerated algorithms, it stores a
suffix tree of the reference sequence on the GPU, and
aligns it with queries. Its newest GPU implementa-
tion shows a 13x speedup over the CPU implemen-
tation. CUDAlign [18] accelerates the exact Smith-
Waterman algorithm and allows an affine gap. The
input sequence length is only restricted by the avail-
able global memory. It uses linear space and boasts a
702x and 19.5x speedup compared to 1 core and 64
cores, respectively. CUSHAW2-GPU [19] is an accel-
erated short read aligner. Other work has been done
on accelerating BWA-MEM [20] and Protein database
search [21].

Implementation
Profiling
We measured the runtime of various elements of the
Darwin algorithm on the CPU. Two notable parts are
D-SOFT (which consists of building the minimizer ta-
ble, and finding the seeds) and aligning using GACT.
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Figure 5 Layout of the tile computed on the GPU. Each green
box is a 8x8 submatrix.

ing 1) takes the most time, namely 99.9% for Pacbio
reads. Therefore, we accelerated the Align() function
on GPU. We selected a tile size T of 320 as it gives op-
timal Smith-Waterman alignment scores [8]. With this
setting, 63% of the tiles are exactly 320x320. The re-
maining tiles are smaller as they occur near the edges
of R-Q matrix (Figure 2). If some GPU threads have a
smaller tile size, it will cause some divergence, because
they will have to wait until the threads with larger tile
sizes are finished.

Acceleration
It is possible to run the whole GACT kernel on the
GPU, for both left and right extension. However, since
it is not known how long the resulting alignment will
be, and all GPU threads have to wait until all threads
are done, this will cause lots of idle time. Instead, it
is chosen to only have a single tile of size TxT aligned
per GPU-thread per GPU-invocation as shown in Fig-
ure 3. The Align() function for many different R,Q
pairs are executed in parallel on the GPU. Figure 4
shows the flow graph of GPU accelerated Darwin. It
has two GPU kernels shown by green processes in the
flow graph. All other tasks are performed on the CPU.
The CPU builds the minimizer table using all the reads
for which the overlaps have to be computed. The ac-
celerated algorithm processes a set of reads to exploit
the massive parallelism of the GPU. The CPU first
computes the seed hits for all the reads in the set us-
ing the D-SOFT algorithm. With the help of the seed
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Algorithm 1: The GPU kernel for the Align() function of GACT (Listing 1) to compute a tile of size
TxT
Input: Two sequences Rtile pack and Qtile pack of length T/8 packed in 32 bit words where each word contains 4 bases (4 bits per base); A

backtrack matrix D of size (T · T ) · nthreads allocated in the GPU memory, where nthreads is the number of GPU threads; tile number t;
maximum number of bases to align maxoff ; number of GPU threads nthreads, GPU thread ID tid, score for match match, mismatch
penalty mismatch and gap penalty gap are known by default

Output: Number of aligned bases in Rtile and Qtile (ioff , joff ); position of the maximum alignment score (imax, jmax) and the traceback
arrows/pointers tb

1 Function AlignOnGPU(Rtile pack , Qtile pack, D, t, maxoff ) begin
2 Initialize H array of length T containing zeros
3 max sc = 0
4 for i = 0 to T/8− 1 do
5 Initialize h and p arrays of length of 9 containing zeros
6 r = Rtile pack[i] // r is a 32 bit word
7 ridx = i·
8 qidx = 0
9 for j = 0 to T/8 do

10 q = Qtile pack[i] // q is a 32 bit word
11 for k = 1 to 8 do
12 qbase = (q >> (32− (k · 4)))&15 /* C++ like shift operation followed by AND to extract a base from a 32 bit

word */
13 h[0] = H[qidx]
14 for m = 1 to 8 do
15 rbase = (r >> (32− (m · 4)))&15 /* C++ like shift operation followed by AND to extract a base from a

32 bit word */
16 if qbase == rbase then
17 tmp = p[m] + match

18 else
19 tmp = p[m]−mismatch

20 h[m] = max {tmp, p[m]− gap, h[m− 1]− gap, 0}
21 if h[m] == 0 then
22 D[(((ridx + (m− 1)) · T ) + qidx) · nthreads) + tid] = 0

23 else if h[m] == tmp then
24 D[(((ridx + (m− 1)) · T ) + qidx) · nthreads) + tid] =↖
25 else if h[m] == p[m]− gap then
26 D[(((ridx + (m− 1)) · T ) + qidx) · nthreads) + tid] =←
27 else if h[m] == h[m− 1]− gap then
28 D[(((ridx + (m− 1)) · T ) + qidx) · nthreads) + tid] =↑
29 if h[m] > max sc then
30 max sc = h[m]
31 imax, jmax = {ridx + (m− 1), qidx}
32 p[m] = h[m− 1]

33 H[qidx] = h[m]
34 qidx = qidx + 1

35 // the traceback starts below
36 if t==1 then
37 (starti, startj) = (imax, jmax)

38 else
39 (starti, startj) = (T − 1, T − 1)

40 while D[((starti · T ) + startj) · nthreads) + tid]! = 0 and ioff ≤ maxoff and joff ≤ maxoff and starti ≥ 0 and startj ≥ 0
do

41 tb.prepend(D[((starti · T ) + startj) · nthreads) + tid])
42 if D[((starti · T ) + startj) · nthreads) + tid] ==↖ then
43 starti = starti − 1
44 startj = startj − 1
45 ioff = ioff + 1
46 joff = joff + 1

47 else if D[((starti · T ) + startj) · nthreads) + tid] ==↑ then
48 starti = starti − 1
49 ioff = ioff + 1

50 else if D[((starti · T ) + startj) · nthreads) + tid] ==← then
51 startj = startj − 1
52 joff = joff + 1

53 return {(ioff , joff ), (imax, jmax), tb}
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hit location the sequences for the left and right exten-
sion matrices are determined. i.e. (R left,Q left) and
(R right,Q right). One tile (R tile, Q tile pair) from
each extension matrix is assigned to a GPU thread
for alignment. All the tile alignments are computed
in parallel on the GPU. There are enough seed hits,
and hence sufficient extension matrices in the set of
reads to fully utilize all the GPU resources. In the post-
processing step, full alignment of the extension using
tb left (and tb right for right extension) is constructed
on the CPU. As described in the “Profiling” section all
the tasks other than computing the alignment between
R tile and Q tile takes a negligible amount of time on
the CPU.

To reduce the GPU memory accesses, the alignment
is preceded by a packing step as indicated in the flow
graph of Figure 4. The bases of both sequences are
packed in a 4-bit format, where 8 bases are packed into
a 32-bit integer. This packing is performed on the GPU
and it is hundreds of times faster than packing bases on
CPU [22]. To align R tile with Q tile, we extended the
local alignment kernel of GASAL (GPU Accelerated
Sequence Alignment Library) library [22]. The tile is
subdivided into submatrices of size 8x8. Since there
are 8 bases in one integer, only two global memory ac-
cesses are required to compute a single submatrix. The
layout of a tile computed on the GPU is shown in Fig-
ure 5. Each green box contains an 8x8 submatrix. The
submatrices are computed in the order shown by their
number. The arrows in the submatrix number 4 show
the order of computation of the dynamic programming
cells in a submatrix. The figure shows that the Q tile
sequence is read multiple times. Hence, packing the se-
quence with 4 bits per base helps to keep it in the cache
for faster access. It is clear from Equations 1-4 that to
compute a column of the submatrix only the cells in
the left column and the row above it are required. The
required column and row are colored blue in Figure
5. The column has only 8 elements, and hence can be
stored in GPU registers. Therefore, the total amount of
memory required is O(T +T 2), where O(T ) is required
for computing maximum alignment score m andO(T 2)
for storing the traceback matrix D. Algorithm 1 shows
the GPU implementation of the Align() function. The
pseudocode above Line 35 is for computing the po-
sition of maximum alignment score (imax, jmax) and
the traceback matrix D. Observe that the all the writes
in D are coalesced to optimize the memory bandwidth
and reduce the number of memory transactions. The
pesudocode below Line 35 is for computing the trace-
back path tb. The GPU accelerated Darwin supports
both linear as well as affine gap penalties. Algorithm 1
shows the alignment using the linear gap penalties.
The algorithm with affine gap penalties has a similar
layout and omitted here for brevity.

Sequence alignment of long DNA sequence is a per-
formance bottleneck in genome analysis algorithms.
The results of Darwin alignment are same as for nor-
mal Smith-Waterman for reasonable values of T and
O. Hence, the Darwin algorithm can also be applied for
Smith-Waterman alignment between two long DNA
sequences and our GPU implementation of Darwin
can be used to accelerate Smith-Waterman alignment
(with traceback) for long DNA sequences.

Figure 6 Total execution time of GPU accelerated Darwin for
different values of number of CPU threads, numbers of blocks
and block size on an IBM machine.

Figure 7 Total execution time of the Darwin’s CPU
implementation and GPU accelerated Darwin, on the IBM
machine. The CPU implementation is running with 64 CPU
threads.

Results
We compared our GPU acceleration with the hand-
optimized CPU version of Darwin [23] (commit:
16bdb81). Tests are performed on both IBM as well as
Intel machines. The IBM machine (S824L) has 2 sock-
ets with each socket containing a 10-core POWER8 @
3.42 GHz processor. Each core has 8-way Simultaneous
Multithreading. Hence, there are 160 logical cores in
total. The machine has 256 GB of RAM and a Tesla
K40m. The CUDA version is 7.5, and the operating
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Figure 8 Total execution time of Darwin’s CPU
implementation and GPU accelerated Darwin, on the Intel
machine. The CPU implementation is running with 8 threads.

system is Ubuntu 3.19.0-28-generic. The GCC version
is 4.9.2.

The Intel machine has 2 sockets with each socket
containing a 6-core Xeon E5-2620 @ 2.4 GHz proces-
sor. Each core has 2-way Hyperthreading. Hence, there
are 24 logical cores in total. The machine has 32 GB
of RAM and a Tesla K40c. The CUDA version is 9.2,
and the operating system is CentOS 7.5. The GCC
version is 4.8.5. The K40c and K40m have the same
performance, the only difference lies in their cooling
method.

We use Pacbio 54x Human sequencing data [24]. The
data has a size of 172 gigabytes containing 21,856,161
reads. Since the runtime of the experiments has a
quadratic relationship with the number of reads, we
use first 50 megabytes (8566 reads) as the input
dataset to finish the experiments in a reasonable time.
Even with 50 megabytes input dataset, the CPU im-
plementation takes more than 2 hours to run on 8
threads of the Intel machine (Figure 8). The input
dataset contains reads up to 33 kilo bases long with
an average read length of 6 kilo bases. Darwin com-
putes the overlaps between the reads in the input
dataset. The settings for GPU and CPU implemen-
tation are as follows: match,mismatch, gapo, gape =
(1,−1,−1,−1), N = 800, T = 320, O = 120, K = 14,
h = 21, w = 1.

Since our GPU implementation accelerates only the
Align() function on the GPU, everything else is exe-
cuted on the CPU with multiple threads. Each CPU
thread launches a batch of R tile and Q tile sequences
to be aligned on the GPU. Since all these CPU threads
share a single GPU, it is necessary to investigate how
the choice of numbers of CPU threads, number of GPU
blocks and the number of threads in a block affect the
performance. Figure 6 shows the total execution size
for various settings of these factors. The figure shows
that the fastest execution time is obtained with 8 CPU

Table 1 Runtimes and speedup for different scoring schemes on
the IBM machine

(2,-1,-2,-2) (1,-3,-1,-1) (5,-4,-10,-1)
CPU 31m15 21m28s 31m27s

GPU-coalesced 76.0 59.3 78.0
speedup 24.7 21.7 24.2

threads running with the GPU launch parameters of
32 blocks and 64 threads per block. We performed a
similar analysis for the Intel machine and found that
8/32/64 is the best setting in the case of the Intel ma-
chine as well. Therefore, we used the 8/32/64 ((Num-
ber of CPU threads) / (number of blocks) / (number
of threads per block)) setting for running the GPU
implementation in the remainder of the experimental
results.

Figure 7 shows the total execution time of the CPU
implementation of Darwin and compares it with the
total execution time of the GPU accelerated Darwin,
for the IBM machine. Note that the y-axis of the figure
represents a logarithmic scale due to the high speedup
achieved by the GPU implementation. The CPU im-
plementation is running with 64 threads, which gives
nearly the fastest execution time. Two GPU times are
reported: “GPU” and “GPU-coalesced”. “GPU” is the
time without coalescing the accesses to the traceback
matrix D. The figure shows that the GPU acceleration
without coalescing is 2.4x faster than the CPU im-
plementation. Coalescing further accelerates the GPU
implementation by 10x to achieve an overall speedup
of 24x.

Figure 8 show the comparison of total execution
times on the Intel machine, again with a logarithmic
scale on the y-axis. The CPU implementation is run-
ning with 8 threads, which gives nearly the fastest ex-
ecution time. The non-coalesced GPU implementation
achieves a speedup of 11.8x over the CPU. With co-
alesced memory accesses the speedup becomes 109x.
Figure 7 and 8 indicate that coalescing helps to im-
prove the speedup by around 10x. This happens due to
efficient utilization of large GPU global memory band-
width

The above results were obtained with the linear-gap
penalty model which is also the default setting in Dar-
win. However, Darwin and hence our GPU accelera-
tion also support the affine gap model. Table 1 shows
the total execution time of the CPU and GPU im-
plementation of Darwin for various values of match,
mismatch, gapo and gape on the IBM machine. The
CPU implementation is running with 64 threads. The
table shows that the speedup nearly remains constant
(20x-25x) regardless of the scoring scheme. Hence our
GPU acceleration is equally effective for both linear
and affine gap penalty scoring models.
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Conclusions
Read overlapping is an important step in OLC based
de novo assemblers. Darwin is a fast and accurate read
overlapper for assembly of long DNA reads. It is based
on the seed-and-extend paradigm. It has two stages: 1)
D-SOFT, to compute the seeds and 2) GACT, to ex-
tend the seed hits on both sides to compute the overlap
between two reads. The ASIC implementation of Dar-
win is shown to be hundreds of times faster than soft-
ware based read overlappers. GPUs are cost-effective
and easily accessible processing units that are used
to accelerate many high performance applications. In
this paper, we have shown a GPU implementation of
Darwin which accelerates the Smith-Waterman align-
ment with traceback computation used in the GACT
stage. We pack the sequences on the GPU and com-
pute the Smith-Waterman alignment matrix by di-
viding the matrix into 8x8 submatrices. This helps
to reduce the GPU memory accesses. To further re-
duce the memory transactions, writing to the trace-
back matrix is coalesced. We tested our implementa-
tion against the hand-optimized CPU implementation
of Darwin. The results show that using the real Pacbio
dataset, our GPU implementation is 24x faster than
64 IBM Power8 threads and 109x faster than 8 Intel
Xeon threads, regardless of the scoring scheme (linear
or affine gap). The GPU implementation can also be
used to accelerate generic Smith-Waterman alignment
of long DNA sequences.

Availability and requirements

Project name: darwin-gpu

Project home page: https://github.com/Tongdongq/darwin-gpu

Operating system(s): Linux

Programming language: C++, CUDA

Other requirements: CUDA toolkit version 8 or higher.

License: Apache 2.0

Any restrictions to use by non-academics: Not applicable
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4
Comparison of

Seed-and-Extend
Algorithms

In this chapter, we discuss the comparison of commonly used seeding and exten-
sion algorithms in the context of seed-and-extend based DNA read mappers. The
chapter first gives a brief overview of various seeding and extension techniques.
We also present GASE, our generic seed-and-extend read aligner/mapper. Next,
the results of the comparison are discussed. Based on the results, we propose suit-
able combinations of seeding and extension algorithms for various read lengths in
DNA read mappers.

This chapter consists of the following articles:

• © 2016 IEEE. Reprinted, with permission, from “N. Ahmed, K. Bertels, and
Z. Al-Ars, A Comparison of Seed-and-Extend Techniques in Modern DNA Read
Alignment Algorithms, in 2016 IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM) (2016) pp. 1421–1428”.
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Abstract—DNA read alignment is a major step in genome
analysis. However, as DNA reads continue to become longer, new
approaches need to be developed to effectively use these longer
reads in the alignment process. Modern aligners commonly use
a two-step approach for read alignment: 1. seeding, 2. extension.
In this paper, we have investigated various seeding and extension
techniques used in modern DNA read alignment algorithms to
find the best seeding and extension combinations. We developed
an open source generic DNA read aligner that can be used
to compare the alignment accuracy and total execution time
of different combinations of seeding and extension algorithms.
For extension, our results show that local alignment is the best
extension approach, achieving up to 3.6x more accuracy than
other extension techniques, for longer reads. For seeding, if
BLAST-like seed extension is used, the best seeding approach
is identifying all SMEMs in the DNA read (e.g., approach used
by BWA-MEM). This combination is up to 6x more accurate
than other seeding techniques, for longer reads. With local
alignment, we observed that the seeding technique does not
impact the alignment accuracy. Furthermore, we showed that
an optimized implementation of local alignment using vector
instructions, enabling 4.5x speedup, makes it the fastest of all
extension techniques. Overall, we show that using local alignment
with non-overlapping maximal exact matching seeds is the best
seeding-extension combination due to its high accuracy and
higher potential for optimization/acceleration for future DNA
reads.

I. INTRODUCTION

High throughput DNA sequencing techniques have caused
an enormous decrease in the cost of whole genome sequenc-
ing [1]. This decrease has ushered a new era of genome
analysis for a large number of applications like genetic disease
diagnosis, personalized medicine, agriculture and livestock
trait selection. To extract meaningful information from the se-
quenced genome, it has to pass through various DNA sequence
analysis stages. DNA read alignment or DNA read mapping is
the core stage in this analysis. The DNA sequencing machines
output the sequenced genome in the the form of millions
of short DNA sequences without giving any information
about their actual location in the genome. These short DNA
sequences are known as DNA reads or simply as reads. In
read alignment, the task is to find the actual location of these
DNA reads within a reference genome of the species to which
the sequenced genome belongs.

To align a DNA read of length m to a genome of length

TABLE I. Seeding and extension techniques used in modern
DNA read aligners

Aligner
Seeding Extension

all-
SMEM

nov-
SMEM

fix-len
(0)1

fix-len
(1)2

global local BLAST-
ext

BWA-MEM X X X
Bowtie2 X X X X

Novoalign X X
Cushaw2 X X

1 0 mismatch 2 at most 1 mismatch

n, a dynamic programming algorithm (e.g., Smith-Waterman,
Needleman-Wunsch or alike) will require O(nm) computation
steps. For a human reference genome, n ≈ 3 billion characters
(or bases) long, and therefore, a straight forward application
of a dynamic programming algorithm is impractically slow.
Moreover, in a typical DNA sequencing experiment, there are
hundreds of millions of DNA reads that need to be aligned
against the genome. Most modern DNA read aligners tackle
this problem by using the seed-and-extend approach. The
observation behind this approach is that two highly matching
sequences contain short substrings that are exactly (or nearly
exactly) matching. This approach, pioneered by BLAST [2],
aligns a DNA read in two steps: 1. seeding and 2. extension.
Figure 1 shows the seeding and extension phases in a DNA
read aligner. During seeding, the aligner first finds substrings
of a DNA read that are exactly matching (or nearly exactly) in
the genome at one or more than one places. These substrings
are known as seeds. During extension, the read is aligned
to the region around the location of the seed. Such aligners
are called seed-and-extend aligners. Many modern DNA read
aligners like Novoalign [3], BWA-MEM [4], Bowtie2 [5],
and Cushaw2 [6] are seed-and-extend aligners. Table I shows
the different seeding and extension strategies used by these
aligners (see Section III). In this work, we compare 4 seeding
and 3 extension algorithms found in contemporary DNA read
aligners.

This paper has the following contributions:
• We developed an open source, generic DNA read aligner

that can be used with different seeding and extension
techniques [7].

• We compared different combinations of seeding and ex-
tension techniques for short as well as long read lengths in
terms of accuracy and speed to find the best combinations.
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Fig. 1. Seeding followed by extension of short DNA reads
against a reference genome

• We optimized the code of the local alignment extension
technique to achieve the shortest runtime and one of the
highest accuracy combination for longer reads

The rest of the paper is organized as follows: Section II
describes the motivation for this paper. Section III and IV
introduce different seeding and extension techniques used in
the comparison, respectively. Section V presents the details of
the DNA read aligner that we have implemented for the com-
parison. Results of the comparison are shown in Section VI.
Finally, we conclude the paper in Section VII.

II. MOTIVATION

Aligners need to be fast and accurate, and have to rely
on various heuristics to find a good balance between speed
and accuracy. Seeding followed by extension is a heuristic
used by many modern DNA read aligners. With the growing
importance of genome analysis, many fast and accurate seed-
and-extend DNA read aligners have been proposed in recent
times, each having its own seed-and-extend method. The
accuracy and execution time of a DNA read aligner heavily
depends upon the type of seeding and extension technique
used.

There are many comparisons of DNA read aligners in the
literature. A more recent one is given in [8]. There is also a
web based tool for comparing the accuracy of different read
aligners [9]. These comparisons evaluate the complete DNA
read aligner without focusing on the individual stages of a
DNA read aligner. Li and Homer [10] describe different read
alignment techniques used by read aligners. They also give an
overview of different seeding techniques without discussing
their effect on execution time and accuracy on DNA read
alignment. A comparison of different kinds of fixed length
seeds is given in [11]. The effect of these fixed length seeds
on the mapping accuracy and execution time of the DNA read
alignment is not discussed. Maximal exact matching seeds are
not part of the discussion of any previous comparison. In addi-
tion, no previous research has discussed the effect of different
extension algorithms on the mapping accuracy and time of

Fig. 2. Simple seeding example (a) seed length = seed interval
(b) seed length > seed interval (c) seed length < seed interval

the DNA read alignment. Hence, all earlier comparisons in
the literature lack the measurement of the contribution of the
algorithms used in the seeding and extension phase of the
aligner on the accuracy and total execution time of the DNA
read alignment. In this paper we will perform such analysis.

The decreasing cost of DNA sequencing will make
computer-based analysis more viable for different application
domains. Due to this reason one can foresee the emergence
of more DNA read alignment algorithms in the future. This
paper will serve as a guideline for developers of DNA read
aligners in selecting an appropriate algorithm in the seeding
and extension phases of the read alignment process.

III. SEEDING TECHNIQUES

A seed is a substring of the DNA read that is exactly
(or nearly exactly) matching in the genome at one or more
than one places. Modern DNA read aligners use two kind of
seeds: (i) fixed length seeds, and (ii) maximal exact matching
seeds. As listed in Table I, Novoalign and Bowtie2 use fixed
length seeds while BWA-MEM and Cushaw2 use maximal
exact matching seeds.

A. Types of Seeds

1) Fixed length seeds: In this seeding scheme all the seeds
have the same fixed length. They are simply overlapping or
non-overlapping substrings of the read, all having the same
length. Two parameters control the number of seeds generated
from a DNA read. The seed length and seed interval. The
seed interval is the number of the DNA read symbols between
starting point of two consecutive seeds. Figure 2 shows seeds
of DNA read for different relationships between seed length
and seed interval. Decreasing the seed length and/or seed
interval increases the number of the seeds which increases
the sensitivity but at the same time increases the number of
candidate seeds to be extended in the extension phase of the
read alignment resulting in an increase in the computation
time. It is also possible to allow mismatches in a seed. Such
seeds are known as spaced seeds. Novoalign uses fixed length
exact matching seeds. Bowtie2 allows the user to choose
between fixed length exact matching seeds and fixed length
seeds with at most 1 mismatch.

2) Maximal exact matches: A maximal exact match (MEM)
is the longest exact match that cannot be further enlarged
in either direction. Let P and T be the DNA read and
reference string, respectively. Let P [i, j] and T [i, j] be defined
as substring of P and T , respectively, starting from the ith
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symbol and ending at jth symbol. Then a MEM of the read
can be defined as a tuple (P [q, r], T [m,n]) such that

P [p] = T [t] ∀p q ≤ p ≤ r

∀t m ≤ t ≤ n

and

P [q − 1] 6= T [m− 1]

P [r + 1] 6= T [n+ 1]

A more refined form of the MEM is proposed in [12] and
is called as super maximal exact match (SMEM). A MEM
which is not contained in any other MEM of the read is known
as SMEM. Let there be k MEMs of a DNA read: MEM1=
(P [q1, r1], T [m1, n1]), MEM2= (P [q2, r2], T [m2, n2]) . . .
MEMk= (P [qk, rk], T [mk, nk]). Then MEMi for i = 1 . . . k
is an SMEM if and only if:

(qi < qj or ri > rj) and (mi < mj or ni > nj)
∀j j = 1, 2, . . . i− 1, i+ 1 . . . k − 1, k

In this work, a seeding technique which finds all the over-
lapping and non-overlapping SMEMs in a read will be called
as all-SMEM, whereas the scheme in which only the non-
overlapping SMEMs are generated will be called as nov-
SMEM. As an example, consider the following genome:

CCAATGTCTCATGGTGTCTCAGCTCTCAGAATTCAGATC

and a DNA read:

CAATGTCTCAGATAA

The all-SMEM seeds of the this read are CAATGTCTCA,
TGTCTCAG, TCAGAT and AA. The nov-SMEM seeds
are CAATGTCTCA , GAT and AA. For the same seed
setting (i.e., minimum required seed length) all-SMEM is more
sensitive than nov-SMEM but nov-SMEM is faster.

B. Seed Computation

Seed computation refers to finding the seed sequence and
computing its starting position(s) in the reference genome.
As described above seeds are substrings of the read that are
exactly (or nearly exactly) matching at one or more than
one places in the reference genome. Computation of a seed
requires a pre-built index of the reference genome. Different
kinds of genome indexes can be built. Here we will only
focus on those which are found in modern DNA read aligners.
Contemporary DNA read aligners compute seeds by either
using hash table index (e.g., as in Novoalign) or using FM-
index [13] (e.g., as in BWA-MEM, Bowtie2 and Cushaw2).

1) FM-index: FM-index [13] is a memory efficient index of
the reference genome. It is a representation of the suffix/prefix
trie of the reference genome. Other representations also exist
like suffix array [14] and enhanced suffix array [15], but
FM-index has the smallest memory footprint. The FM-index
consists of three arrays: (1) The count array C, (2) the BWT

Algorithm 1: Backward Search using FM-index
Input: String W and length of reference genome |T |. B and C array are

assumed to be known
Output: Set of suffix array intervals [Il, Iu] of W and the match length

1 Function BACKWARDSEARCH(W, |T |) begin
2 Initialize [Il, Iu] as [0, |T | − 1]
3 i← |W | − 1
4 // match_len is used to compute nov-SMEM
5 // match_len← 1
6 while Il ≤ Iu and i > −1 do
7 Il ← C[W [i]] + Occ(W [i], Il − 1)
8 Iu ← C[W [i]] + Occ(W [i], Iu)− 1
9 i← i− 1

10 match len← match len + 1

11 // Uncomment the following line to find nov-SMEM
12 // return ([Il, Iu],match_len)
13 if i = −1 and Il ≤ Iu then
14 return ([Il, Iu])

15 else
16 // return empty interval
17 return ∅

18 Function OCC(a, j) begin
19 x← 0
20 y ← 0
21 while x ≤ j do
22 if B[x] = a then
23 y ← y + 1

24 x← x + 1

25 return y

Algorithm 2: Computing the starting position for a given
suffix array index

Input: Suffix array index k. Suffix array sampling rate r; B , C and SSA array
are assumed to be known

Output: Starting position corresponding to k

1 Function CALCSTART(k) begin
2 i← 0
3 while k mod r 6= 0 do
4 k ← C[B[k]] + Occ(B[k], k − 1)

5 return SSA[k]

array B, and (3) the suffix array SA. The count array has four
entries, one for each of the four DNA base symbols (i.e., A, C,
T and G). An entry for symbol e stores the number of symbols
in the reference DNA that are lexicographically smaller than
e. The BWT array is the Burrows-Wheeler transform of the
reference DNA. The suffix array holds the starting positions
of the suffixes of the reference DNA. Computing a seed using
FM-index is a two step process:
Step 1—Computing suffix array interval: Given a seed W of
length |W | and the FM-index of the reference DNA T , the
suffix array interval of W can be computed using Algorithm 1.
The proof of the algorithm is given in [13].

The algorithm returns the suffix array interval of W written
as [Il, Iu] where:

Il(W ) = min{i : W is the prefix of SA(i)}
Iu(W ) = max{i : W is the prefix of SA(i)}

From Il to Iu are the suffix array indexes of all those suffixes
of T in which W is the prefix. The algorithm returns an
empty interval if W is not present in the reference DNA.
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Algorithm 1 is known as backward search as it starts from the
last symbol of W and then builds the string in the backward
direction. Each iteration of the while loop enlarges the
string by one symbol and may be called as a search step. Each
search step returns the suffix array interval of the enlarged
string. If Il ≤ Iu, the enlarged string exits in T otherwise not.
Algorithm 1 is used to find the suffix array interval of a fixed
length seed. To find the suffix array interval of all the fixed
length seeds in a DNA read, the BACKWARDSEARCH function
is called with W set equal to the seed sequence. To find the
suffix array interval of nov-SMEM, uncomment line 12. To
find the first nov-SMEM, call the BACKWARDSEARCH with
W = P , where P is the DNA read sequence. The function
will return match len along with the suffix array interval. If
match len = |P |, we are done, otherwise call the function
again to find the second nov-SMEM with W = P1 where
P1 = P [match len, |P |]. Similarly, if match len = |P1|,
the algorithm completes successfully, otherwise the function
is called again to find the third nov-SMEM with W = P2

where P2 = P1[match len, |P |], and so on. The algorithm
to compute the suffix array interval of all-SMEMs is given
in [12].

Step 2—Computing start position: Once the suffix ar-
ray intervals of the seeds are computed, the suffix array
can be used to find the starting position of a seed (if
present). Usually, to reduce memory a sampled suffix array
SSA is used. A SSA with a sampling rate of r is the
set {SA(k) : k is divisible by r}. Algorithm 2 computes the
starting position of a seed with SSA for a given suffix
array index value. Each suffix array index value from Il to
Iu corresponds to one occurrence of the seed. Hence, the
CALCSTART function is called for k = Il, . . . Iu.

The advantage of using FM-index is its memory efficiency.
The complete FM-index for the the human reference genome
occupies only 1.5 Gbytes of memory. The time required to
compute a seed of length n is O(n + mr) where m = Iu−Il+1
i.e. the number of occurrences of the seed. In practice,
computing seeds with FM-index consume a lot of time due
to pseudo-random accesses to the large B array which is
nearly 1 GB. Such a large array cannot reside in the cache. As
shown in Algorithm 1 during every search step the algorithm
accesses the B array. Similarly B array is also accessed in
every iteration of the loop in Algorithm 2. In [16] the memory
access patterns of B array are studied. The study shows that
these accesses are quite random resulting in a large number
of data cache and data TLB misses due to poor temporal and
spatial locality of the accesses. These large D-cache and D-
TLB misses cause the algorithm to almost always be waiting
for the memory, substantially slowing down the algorithm.

2) Hash table index: Fast computation of fixed length seeds
can be performed using a hash table. Hash table stores the
starting position of n-mers of the reference genome, where n
is the length of the seed. To find the starting position of a fixed
length seed just index the hash table with the seed sequence.
Hence, they require O(1) time to compute a seed. Hash tables

are sensitive to the value of n and the sampling frequency s
of the genome. Sampling frequency is the distance (in no.
of bases) between the starting position of two consecutive
n-mers of the genome. For n > 15 the hash table size
becomes excessively large. Novoalign has a hash table index
that occupies 17 GB of RAM with n = 15 and s = 3
for the human genome. Hence, a hash table index, although
fast, is memory demanding. The index has to be rebuilt if
the seed length is changed. Hash tables cannot be directly
used to compute maximal exact matches. To find maximal
exact matching seeds with hash table index, first find the start
position of a substring of the read with a hash table and then
enlarge it on both sides by a direct comparison between the
read and the reference genome. A similar approach has been
adopted by the HPG DNA read aligner [17].

IV. EXTENSION TECHNIQUES

Flanking bases of the reference genome around the seed
are fetched to perform the extension step. Three types of seed
extension techniques are used in modern DNA read align-
ers: (1) Global alignment (Needleman-Wunsch algorithm),
(2) Local alignment (Smith-Waterman algorithm), and (3)
BLAST-like seed extension. All these three techniques are
implemented using dynamic programming with affine gap
penalties. Cushaw2 performs local alignment, Bowtie2 allows
the user to choose between local and global alignment, while
BWA-MEM performs BLAST-like seed extension.

A. Global and local alignment

In global and local alignment, the bases around the seed in
the reference genome are fetched to form a target sequence that
contains the surrounding bases as well as the seed. In global
alignment the goal is to find the highest scoring alignment
of the full read against the target sequence. In practice the
target sequence is longer than the read. Therefore, a semi-
global alignment is performed in which gaps on both ends of
the read are ignored. In local alignment the goal is only to
achieve the highest scoring alignment and thus the resulting
alignment may not contain the full read sequence. Global and
local alignment algorithm are explained in detail in textbooks.
Readers may refer to [18] for more in depth coverage of local
and global alignment algorithms.

B. BLAST-like seed extension

BLAST-like seed extension is a fast extension technique
that is performed in two steps by calling Algorithm 3 twice,
which shows the BLAST-like seed extension algorithm. First
step: seq1 = read bases on the left side of the seed, seq2
= reference bases on the left side of the seed, start score =
seed score. Second step: seq1 = read bases on the right side
of the seed, seq2 = reference bases on the right side of the
seed, start score = seed score + alignment score of first step.
The BLAST-like seed extension algorithm is similar to local
alignment with the following differences:
1. Non-zero start score.
2. A standard local alignment algorithm computes all the
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local alignments between two sequences. BLAST-like seed
extension is faster as it only computes one local alignment that
must contain the seed as a substring. The pseudo-code framed
in the first box (i.e., lines 25-26) in Algorithm 3 ensures that
this requirement is met. Further speedup is achieved due to
the pseudo-code framed in the second box (i.e., lines 31-44)
which prunes the Dynamic Programming (DP) matrix entries
that cannot result in a final alignment containing the seed.
Hence, BLAST-like seed extension does not compute all the
the entries of the DP matrix making it faster than local and
global alignment techniques.
3. The starting positions of the alignment are always known,
so no traceback is required, thereby reducing run time.

C. Optimized seed extension

The dynamic programming based extension stage is com-
pute bound. Therefore, to reduce the total DNA read alignment
execution time, extension schemes can be optimized. Striped
Smith-Waterman (SSW) is a SIMD optimization of local align-
ment [19]. The implementation of SSW is also available in the
form of a C/C++ library [20]. SIMD optimized DP allows
concurrent computation of many DP matrix cells. Another
optimization is banded DP, which limits the number of DP
matrix cell to be calculated to a narrow band along the main
diagonal [21]. Banded DP works well in situations where the
two sequences to be aligned are homologous as the case of
DNA read alignment.

V. GASE GENERIC ALIGNER

For the comparison of different seeding and extension
techniques, we built GASE (Generic Aligner for Seed-and-
Extend) that can be used with different seeding and extension
techniques. The idea is to use GASE to measure the cor-
responding alignment accuracy and total execution time for
different combinations of seeding and extension. GASE is a
minimalistic aligners that mainly depends on the seeding and
extension technique being used to identify the read alignment,
with little added heuristics coded in the aligner. This results
in an aligner with an alignment accuracy that is mainly
determined by the seeding and extension technique being used.
The different components of our read aligner are outlined
below.

1) Index: The FM-index used in our aligner is same as
the one generated in BWA-MEM. BWA-MEM builds the FM-
Index of T ⊕ T , where T is the reference genome string , T
is Watson-Crick reverse complement of T and ⊕ is the string
concatenation operator. The advantages of such kind of index
are: 1) Apart from backward search, shown in Algorithm 1,
where the string is enlarged from right to left in the reverse
direction, a forward search is also possible in which the string
can also be enlarged from left to right in forward direction 2)
A read P is only aligned against T ⊕ T , rather than aligning
P and its Watson-Crick reverse complement P against T
separately. This roughly doubles the speed of the aligner at
the cost of memory.

Algorithm 3: BLAST-like seed extension
Input: The two sequences to be aligned seq1, seq2 and the start score

start score. Penalty of gap open gapo and gap extension gape are
assumed to be known values

Output: Maximum score score and its position of achievement on read
sequence read end and on the reference ref end

1 Function BLASTSEEDEXTENSION(seq1, seq2, start score) begin
2 Initialize H , E and F arrays of size of (|seq1|+ 1) ∗ (|seq2|+ 1)

containing zeros
3 H[0][0]← start score
4 H[0][1]← max{start score− gapo− gape, 0}
5 for j ← 2 to |seq1| do
6 H[0][j]← max{H[0][j − 1]− gape, 0}

7 H[1][0]← max{start score− gapo− gape, 0}
8 for j ← 2 to |seq2| do
9 H[j][0]← max{H[j − 1][0]− gape, 0}

10 max score← start score
11 read end← ∅
12 ref end← ∅
13 beg ← 1
14 end← |seq1|
15 for i← 1 to |seq2| do
16 row max← 0
17 max j ← ∅
18 for j ← beg to end do
19 E[i][j]←

max{H[i− 1][j]− gapo− gape, , E[i− 1][j]− gape, 0}
20 F [i][j]←

max{H[i][j− 1]− gapo− gape, , F [i][j− 1]− gape, 0}
21 H[i][j]← max{H[i− 1][j − 1] + S(seq1[j −

1], seq2[j − 1]), E[i][j], F [i][j], 0}
22 if H[i][j] > row max then
23 row max = H[i][j]
24 max j = j

25 if row max = 0 then
26 return {max score, read end, ref end}

27 if row max > max score then
28 max score = row max
29 read end = max j
30 ref end = i

31 j ← beg
32 while j < end do
33 if H[i− 1][j − 1] = 0 and H[i− 1][j] = 0 and

E[i− 1][j] = 0 then
34 j ← j + 1

35 else
36 break

37 beg ← j
38 j ← end
39 while j >= beg do
40 if H[i− 1][j − 1] = 0 and H[i− 1][j] = 0 and

E[i− 1][j] = 0 then
41 j ← j − 1

42 else
43 break

44 end← j

45 return {max score, read end, ref end}

2) Seeding: Seeds are computed depending upon the seed-
ing technique under test. We have compared four seeding
methodologies used in contemporary read aligners. 1) Fixed
length seeds without mismatch: we varied the seed length from
15 to 50 in steps of 5 2) Fixed length seeds with at most one
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mismatch allowed: we varied the seed length from 15 to 90
in steps of 5 3) all-SMEMs: we varied the minimum required
seed length from 15 to 50 in steps of 5 4) nov-SMEMs: we
varied the minimum required seed length from 15 to 50 in
steps of 5. For all the above seeds, the seed interval is varied
as 1, 5, 10, 15, . . . , seed length. If a seed is located at more
than 500 positions in the reference genome, it is not extended.

3) Chaining: The seeds which lie nearby on the reference
genome are chained together. The chains are sorted in de-
scending order on the basis of the weight of the chain. The
weight of a chain is the number of reference genome bases
covered by the seeds in a chain. A chain is filtered out if it is
overlapping with the next higher weight chain by more than
50%.

4) Extension: The seeds in a chain are sorted on the basis
of their length. The longest seeds is extended first using one
of the three extension techniques being studied. The next seed
in the sorted list of seeds is then extended if it is not already
covered in the extension of the previous seed and so on. The
process is repeated for all the chains. Three different extension
techniques have been tested: global alignment, local alignment
and BLAST-like seed extension. The output is written in SAM
(Sequence Alignment/Map) format [22].

VI. EXPERIMENTAL RESULTS

We measured the error in alignment as:

error = No. of incorrectly mapped reads
No. of mapped reads

We tested all the 12 possible combinations of seeding and
extension techniques. A read aligned within ±20 base pairs of
the true position is considered correct. For each combination
of seeding and extension technique, the seed length and seed
interval (if applicable) is varied over a range discussed in
Section V-2. Only those seed settings have been considered
in the comparison in which the number of mapped reads ≥
99.5% of the total number of reads.

A. Input data set

5 Mega bases of the chromosome 21 of human genome
(UCSC hg19) are used as a reference. 1 million single ended
reads were generated using Wgsim read simulator [23]. Ten
reads are aligned in parallel by running ten threads on Intel
Xeon E5-2670 2.5 GHz processor. The reads have a mutation
rate of 0.4% where 25% of these mutations are indels. 70% of
the indels are extended (length greater than 1). This mutation
rate in the simulated reads represents the upper limit in human
genome variation [24]. Similarly this percentage of indels
and their extension rate in the simulated reads correspond to
observed values in the human genome [25]. The reads have
2% sequencing errors as well.

B. Selecting seeding parameters

Table II shows the results of measuring the mapping error
and the total execution time of DNA read aligner for different
seeding and extension techniques with varying read lengths.
The read length is specified in base pairs (bp). As described in

Section V-2 a number of parameters of the seed are varied over
a wide range. Each seed setting results in a different mapping
error and execution time. The values in Table II represent a
tradeoff between error and time. For each setting we measured
the corresponding error and time. If the difference in error
between the most accurate seed setting and another seed
setting is at most 9 incorrectly mapped reads and achieving at
least 30% faster execution time than the most accurate seed
setting, then the other seed setting is selected.

C. Comparison of seeding techniques

Table II shows that fixed length seeds with no mismatch
are not a good choice in any case. They result in more
error in the mapping and larger total execution time with all
kinds of extension techniques as compared to SMEM seeds
and fixed length seed with at most 1 mismatch for all read
lengths. In some cases of fixed length seeds with no mismatch,
we have not tested some smaller seed lengths due to orders
of magnitude higher total execution time as compared to
other seeding techniques, and hence useless to consider. With
BLAST-like seed extension, all-SMEM is the best approach
due to its higher accuracy and lower execution time. For
example with 600 bp read length, it is 1.34, 6 and 2 times more
accurate than nov-SMEM, fixed length (0 mismatch) and fixed
length (at most 1 mismatch) seeds, respectively. Similarly for
600 bp read length, the execution time is 1.37 and 2 times
less than fixed length (0 mismatch) and fixed length (at most
1 mismatch) seeds, respectively, and comparable with nov-
SMEM. For local alignment all-SMEM, nov-SMEM and fixed
length seeds (at most 1 mismatch) have comparable mapping
error. For global alignment all-SMEM is the most accurate.
With local alignment all-SMEM is faster than nov-SMEM and
fixed length seeds (at most 1 mismatch). For global alignment
nov-SMEM is the fastest.

D. Comparison of extension techniques

Table II shows that the local alignment is the most ac-
curate for all kinds of seeding techniques. The local align-
ment becomes more accurate as compared to the global and
BLAST-like seed extension techniques with increasing read
lengths. For 600 bp read length it is 3.6 times and 1.6 times
more accurate than BLAST-like seed extension and global
alignment, respectively. The results also show that BLAST-
like seed extension should only be used with all-SMEM as
its accuracy drops significantly as compared to local and
global alignment with other three seeding techniques (i.e. nov-
SMEM, fixed length with no mismatch and fixed length with at
most 1 mismatch). Global alignment is less accurate than local
alignment but more accurate than BLAST-like seed extension
for all kinds of seeding techniques. With regard to speed of
the unoptimized techniques, BLAST-like seed extension is the
fastest and it becomes faster with increasing read lengths
as compared to other two extension techniques. With all-
SMEM seeding it is 2.2 to 3.4 times faster than unoptimized
local and global alignment for 600 bp read length. Although
global alignment is more accurate than BLAST-like seed
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TABLE II. Mapping error and total execution time of our DNA read aligner GASE with different combinations of seeding and extension
techniques. The values before the slash (/) in the time column represent the execution time with unoptimized extension stage, whereas
the values after slash are obtained with optimized extension stage.

Read
len.

all-SMEM nov-SMEM fix-len.
(0-mismatch)

fix-len.
(1-mismatch)

error time
(sec.)

error time
(sec.)

error time
(sec.)

error time
(sec.)

global

150 1.24e-3 93 1.3e-3 74 1.39e-3 1704 1.21e-3 209
250 3.35e-4 173 3.81e-4 151 4.66e-4 2949 3.73e-4 185
400 8.3e-5 370 9.4e-5 427 2.15e-4 11637 1.2e-4 710
600 4e-5 890 4.9e-5 742 2.7e-4 43021 1.07e-4 1194

local

150 1.22e-3 59/26 1.3e-3 74/24 1.262e-3 1138 1.21e-3 183/113
250 3.28e-4 180/61 3.68e-4 159/58 3.68e-4 554 3.45e-4 284/99
400 6.8e-5 354/126 7e-5 507/128 6.9e-5 5864 5.6e-5 419/200
600 2.5e-5 805/260 3e-5 1241/272 5.5e-5 3866 3.2e-5 824/392

BLAST-
like seed
extension

150 1.25e-3 28/27 1.37e-3 24 1.80e-3 120 1.34e-3 42
250 4.16e-4 64/59 4.8e-4 60 1.05e-3 65 4.77e-4 262
400 1.36e-4 148/134 1.97e-4 136 6.91e-4 193 2.57e-4 216
600 9.4e-5 305/260 1.26e-4 276 5.05e-4 364 1.88e-4 419

extension, it is not suitable for aligning split reads (also known
as chimeric reads). Split reads are generated due to large
structural variations in the genome. The speed of optimized
Blast-like and local alignment techniques is comparable.

E. Selecting the best seeding-extension combination

From Table II we can conclude that:
• Blast-like seed extension is the fastest and should at least

be combined with all-SMEM
• Local alignment is the most accurate and its accuracy is

nearly the same with all-SMEM, nov-SMEM and fixed
length (at most 1 mismatch) seeds

To come up with the best seeding-extension combination
we must first decide the best seeding technique to be used
with local alignment. To do this we will compare the execution
times of optimized DNA read aligners. The speed optimization
performed here does not affect the mapping error. These
optimization speed up the extension stage of the DNA read
aligner with techniques described in Section IV-C. We only
focus on optimizing the extension rather than the seeding due
to the memory bound nature of seed computation using FM-
index, which makes it hard to optimize/accelerate. Hash table
index is a fast seeding mechanism (as compared to the FM-
index) for finding fixed length seeds, but it cannot be used in
our case as the values reported for fixed length seeds with at
most 1 mismatch in Table II are mostly for very long seeds
(30 or above). Shorter fixed length seeds have much higher
error as compared to the values given in Table II. Building
hash table for seeds longer than 20 bp is impractical. We
can select the best seeding technique to be used with local
alignment by measuring the execution time of the DNA read
aligner with optimized local alignment. The local alignment
is SIMD optimized using SSW. It is implemented with Intel
SSE2 instruction set which has 128-bit SIMD registers. A
signed two-byte integer is used to store the score value. This
allows the concurrent computation of 8 DP matrix cells.

Figure 3 compares the execution of local alignment with
three seeding techniques (all-SMEM, nov-SMEM and fixed

length seeds with at most 1 mismatch) before and after
applying the SIMD optimization. The input data set is the same
as the one used in Table II. The mapping error for each seeding
technique remains nearly the same as reported in Table II and
hence, is comparable to all techniques. Figure 3 shows that
after SIMD optimization nov-SMEM-local becomes slightly
faster than fixed-length(1)-local and has nearly same execution
time as all-SMEM-local. The figure shows the significant
reduction in execution time of local alignment with nov-
SMEM. Its execution time scales down by 4.57x for 600 bp
read length. For the range of DNA read lengths shown, the
reduction in execution time of nov-SMEM is 2.74x up to
4.57x, for all-SMEM it is 2.32x up to 3.1x and for fixed
length seeds with at most 1 mismatch it is 1.62x up to
2.86x. Therefore, the combination of nov-SMEM with local
alignment achieves the highest reduction in execution time
with minimal reduction in accuracy. Although, nov-SMEM
generate less seeds as compared to all-SMEM and fixed length
seeds, however for longer reads the amount of seeds generated
by nov-SMEM is sufficient for accurate mapping of the read.
The high reduction in the execution time of nov-SMEM-
local for longer reads shows that with future DNA reads nov-
SMEM-local has high potential for acceleration/optimization
without sacrificing accuracy.

Now that we have seen that nov-SMEM is a better seeding
approach for local alignment, we will now compare the exe-
cution time of SIMD optimized nov-SMEM-local and banded
all-SMEM-BLAST-ext DNA read aligners (which is the fastest
combination using the Blast-like extension algorithm) to come
up with the best seeding-extension combination. Our banded
implementation of BLAST-like seed extension is the same
as done in BWA-MEM. Figure 4 compares the execution
time of the SIMD optimized nov-SMEM-local and banded
all-SMEM-BLAST-ext. The input data set is the same as the
one used in Table II. The optimization has not increased the
mapping error of both schemes and therefore, nov-SMEM-
local remains more accurate than all-SMEM-BLAST-ext for
all read lengths (with 600 bp read length nov-SMEM-local

88 Ch-4: Comparison of Seed-and-Extend Algorithms

4



Fig. 3. Comparison of execution time of local alignment with
all-SMEM, nov-SMEM and fixed length seeds (at most 1
mismatch) before and after SIMD optimization

Fig. 4. Comparison of execution time of BLAST-like seed
extension with all-SMEM and nov-SMEM-local before and
after optimization

is 3.1x more accurate than all-SMEM-BLAST-ext). Figure 4
shows that the banded all-SMEM-BLAST-ext seed extension
was not able to gain much speed as compared to the un-
optimized all-SMEM-BLAST-ext of Table II, whereas SIMD
nov-SMEM-local shows good speed up has nearly same exe-
cution time as banded all-SMEM-BLAST-ext. Therefore, we
can conclude that SIMD optimized nov-SMEM-local seeding-
extension combination have performed best in this comparison
due to its high accuracy, and more potential for optimiza-
tion/acceleration for future DNA reads.

VII. CONCLUSION

In this paper we compared different seeding and extension
techniques used in modern DNA read aligners. The compared
seeding techniques were maximal exact matching seeds and
fixed length seeds. Three seed extension techniques were
compared: global alignment, local alignment and BLAST-like
seed extension. For the purpose of the comparison we built
an open source generic seed-and-extend DNA read aligner
called GASE and then measured the accuracy and execution
time for all the possible seeding and extension techniques.
Our results showed that fixed length seeds (0-mismatch)
are not a good seeding choice with any type of extension

algorithm, while all-SMEM is the best seeding approach with
BLAST-like seed extension. Local alignment is more accurate
than BLAST-like seed extension, especially for longer reads.
all-SMEM, nov-SMEM and fixed length seeds (at most 1
mismatch) have comparable accuracies with local alignment.
Overall, SIMD optimized nov-SMEM-local seeding-extension
combination has performed best in this comparison due to its
high accuracy and more potential for optimization/acceleration
for future DNA reads.
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5
Predictive Genome Analysis

As described in Section 1.4.4 of Chapter 1, delay in the sequencing process of
the DNA represents a major bottleneck to reduce the latency of DNA analysis. In
this chapter, we present our approach to overcome the delay in GATK variant call-
ing analysis using short Illumina reads. We describe the methods to reduce the
sequencing delay by starting the computational analysis before the sequencing is
completely finished by predicting the unknown bases and the corresponding base
quality scores. Using a real exome sequencing dataset, we measured the accuracy
by calculating the area under the precision-recall curve (APR) and found that the
analysis output of our approach with 50 unknown bases is more than 90% accurate
compared to the full dataset. This helps to reduce the sequencing time by up to a
day.

This chapter consists of the following articles:

• © 2017 IEEE. Reprinted, with permission, from “N. Ahmed, K. Bertels, and
Z. Al-Ars, Predictive Genome Analysis using Partial DNA Sequencing Data, in
2017 IEEE 17th International Conference on Bioinformatics and Bioengineer-
ing (BIBE) (2017) pp. 119–124”.
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Abstract—Much research has been dedicated to reducing the
computational time associated with the analysis of genome data,
which resulted in shifting the bottleneck from the time needed
for the computational analysis part to the actual time needed
for sequencing of DNA information. DNA sequencing is a time
consuming process, and all existing DNA analysis methods have
to wait for the DNA sequencing to completely finish before
starting the analysis. In this paper, we propose a new DNA
analysis approach where we start the genome analysis before
the DNA sequencing is completely finished. The genome analysis
is started when the DNA reads are still in the process of being
sequenced. We use algorithms to predict the unknown bases and
their corresponding base quality scores of the incomplete read.
Results show that our method of predicting the unknown bases
and quality scores achieves more than 90% similarity with the
full dataset for 50 unknown bases (slashing more than a day
of sequencing time). We also show that our base quality value
prediction scheme is highly accurate, only reducing the similarity
of the detected variants by 0.45%. However, there is still room
to introduce more accurate prediction schemes for the unknown
bases to increase the effectiveness of the analysis by up to 5.8%.

Index Terms—DNA Sequencing delay; Prediction; GATK;

I. INTRODUCTION

The decreasing cost of DNA sequencing [1] has enabled sci-
entists to perform genome analysis easily and with increasing
resolution for applications ranging from research to clinical
diagnostics.

In Variant Calling the sequenced DNA sample is compared
against a reference genome to find the genetic variations in the
sample as opposed to the reference. In this paper, we will use
variant calling as case study for predictive genome analysis.
Genome Analysis Toolkit (GATK) [2] is a widely-used variant
calling pipeline. The stages in the GATK pipeline for detecting
SNPs and INDELs are described in [3]

Both DNA sequencing as well as DNA analysis consume
a lot of time before variants are available for further inves-
tigation (e.g., diagnostics). High-throughput Illumina DNA
sequencing machines (such as the HiSeq 2500) require up to
a week to fully sequence the DNA. Similarly, the processing
of the large amounts of data by the genome analysis pipeline
results in a huge computation time as well.

A lot of effort has been made in the past to accelerate the
computation time of individual stages of the pipeline as well as
accelerating the whole pipeline using cluster based computing.
BWA-MEM is accelerated in [4]. A multithreaded version of
Picard tools is presented in [5]. An FPGA acceleration of the
PairHMM calculation is given in [6]. A cluster based Spark

Fig. 1: The proposed scheme to hide DNA sequencing delay

implementation of the whole GATK pipeline is presented
in [7]. As a result of these efforts in reducing the computation
time, the process of DNA sequencing is becoming the limiting-
factor in the total time required for genome analysis. The
process of DNA sequencing takes days to complete [8], while
implementations of the genome analysis pipeline on computer
clusters can process hundreds of gigabytes of DNA sequencing
data in less than two hours [9].

In this paper, we overcome the problem of long DNA
sequencing time by partially hiding its delay. This is achieved
by starting the genome analysis while the sequencing of the
DNA read data is still in progress. In this way, our scheme does
not wait for the DNA sequencing process to completely finish
before starting the analysis. As the genome analysis is started
while the DNA read is still being sequenced, we do not know
the values of the last bases of the read and their corresponding
base quality scores. Therefore, we introduced an additional
stage in the genome analysis pipeline that predicts the value
of the unknown bases and their corresponding base quality
scores. A patent based on the work in this paper is also filed
in Europe [10].

The outline of the rest of the paper is as follows. Our
approach to hide the DNA sequencing delay is presented in
Section II. The method of predicting unknown bases, their
corresponding base quality scores and some additional SAM
fields is described in Section III. Experimental results of our
proposed techniques are discussed in Section IV. We finally
conclude the paper in Section V.

II. APPROACH

In this paper, we propose a scheme in which the large
DNA sequencing time is partially hidden by starting the
genome analysis before the DNA sequencing is completely
finished. Current high throughput DNA sequencing machines
(e.g., Illumina), sequence both ends of a DNA fragment to
generate paired-end read data. Paired-end read data allows
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Fig. 2: (a) Workflow 1 and 2. Workflow 1 has two additional stages: SAMToFASTQ conversion and remapping with BWA-MEM.

more accurate genome analysis as compared to single-end
reads. The DNA sequencing technology used by Illumina
is known as Sequencing by Synthesis (SBS). In SBS, the
first and the second read in the paired-end data is generated
by sequencing the forward and reverse strand, respectively.
The two reads in the pair are sequenced one after the other.
Hence, the first read in the paired-end is completely sequenced
followed by the second read. Moreover, one base is sequenced
at a time. Sequencing a base, produces two values: 1) The
actual value of the base (i.e., A, T, C, G or N (ambiguous
base)) and 2) The base quality score which is the probability
of error in the sequencing process.

In high-end Illumina DNA sequencing machines (e.g.,
HiSeq 2500), generating around 1 Terabyte of data, sequencing
a base takes around 30 minutes [8]. Therefore, hiding the
sequencing of even a few bases results in large saving in time.
In this work, we have reduced the DNA sequencing latency
by starting the genome analysis while the DNA sequencing
of the second read in a paired-end read is still in progress.
In this way, we can save a large amount of time, and the
genome analysis can be completed much earlier as compared
to the case in which the genome analysis is started after the
DNA sequencing is completely finished. Figure 1 shows the
proposed scheme. The sequenced bases are streamed out of
the DNA sequencing machine while the sequencing is still in
progress. The bases are stored in a base accumulator. After
enough bases of the second read have been accumulated, the
FASTQ file is generated. At the same time a base quality
profile of the first read is also generated. The FASTQ file and
the base quality profile of the first read are used to perform
the genome analysis and complete the unknown part of the
reads

III. METHODS

In the rest of the paper we will use the following termi-
nology:

1) The paired-end read dataset which would have been
generated if the DNA sequencing is allowed to finish
is called original read dataset.

2) The second read in the paired-end read dataset which
would have been generated if the DNA sequencing is
allowed to finish is called original second read.

3) The paired-end read dataset in which the second read
has unknown bases due to incomplete DNA sequencing
is called incomplete read dataset.

4) The first read in the incomplete read dataset is exactly
the same as that in the original read dataset and is simply
called first read.

5) The second read in the paired-end dataset with unknown
bases due to incomplete DNA sequencing is called
incomplete second read.

6) The number of unknown bases in the incomplete second
read is called n unknown.

7) The paired-end read dataset in which the unknown bases
and quality scores of the second read are completed by
our read prediction schemes is called completed read
dataset.

8) The second read in the paired-end read dataset with
unknown bases and quality scores that have been com-
pleted by our read prediction schemes are called com-
pleted second read.

A. Input read dataset

In the experiments in this paper, we use the whole exome
sequencing of NA12878 dataset. This dataset has 150x cov-
erage with paired-end reads and a read length of 100 base
pairs (bp) [11]. The 150x dataset is used to generate subsets of
datasets with 50x and 100x coverage. Throughout the paper we
will use these three read datasets as the original read datasets.
Last tens of bases of the second reads of these datasets are
clipped to form the incomplete read datasets.

B. Workflows

As described above we have reduced the DNA sequencing
delay by starting the genome analysis while the second read
in the paired-end DNA read data is still being sequenced.
Therefore, the values of the last bases of the second read and
their corresponding base quality scores are unknown to us.
We have designed a prediction stage PredictReads that
predicts the values of the unknown bases of the second read
and their corresponding base quality scores. We have tested the
efficacy of our prediction stage using two different workflows.
Figure 2 shows Workflow-1 and Workflow-2, respectively, of
our prediction scheme.

Workflow-1 (WF-1) starts with a FASTQ file in which
the last bases of the second read and their corresponding
base quality score values are unknown. It first maps the
incomplete read dataset using BWA-MEM. The mapped reads
are sorted (w.r.t. mapping position) using Picard’s SortSAM.
The unknown bases of the second read and their corresponding
base quality score are predicted using our PredictReads
stage. The predicted bases and their corresponding base quality
scores are appended at the end of the second read. This
SAM file is then converted into a FASTQ file using Picard’s
SAMToFASTQ utility. The output of the SAMToFASTQ is a
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Fig. 3: Set of overlapping reads mapped to a reference genome.
Lines with arrowheads are the reads

FASTQ which is a completed read dataset. This FASTQ file
is used as an input for a run of the whole GATK pipeline of.

Workflow-2 (WF-2) starts with the same first three stages
(from BWA-MEM to PredictReads) of WF-1. WF-2 then
sorts the SAM output file of the read prediction stage and con-
tinues to execute the remaining stages in the GATK pipeline
after SortSAM. The read prediction stage of WF-2 is slightly
different from the read prediction stage of WF-1. Apart from
predicting the unknown bases of the second read and their
corresponding base quality scores, the read prediction stage
of WF-2 has to also predict/correct some additional fields of
the input SAM file, as described in Section III-C3.

C. Read prediction

The core of the the proposed scheme is the read prediction
stage. Read prediction has to perform the following: 1) Predict
the values of the unknown bases of the second read, 2) Predict
the base quality scores of the unknown bases of the second
read, and 3) Predict some additional fields of the input SAM
file in case of WF-2.

1) Predicting unknown bases: We predict the unknown
bases by detecting the overlap between the incomplete second
read and the reads that are mapped close by. Figure 3
shows a set of overlapping reads mapped to a reference
genome. The black-colored read is an example of an
incomplete second read, while the gray-colored reads are
the overlapping reads. The reads containing dotted lines
are the incomplete second reads, where the dots show the
unknown bases. The arrow on the reads indicate the direction
of mapping. We tested various prediction schemes. Here we
will describe two prediction schemes that give the best results:

Scheme-1: For each unknown base we take a majority
vote of the bases from the overlapping reads to predict the
value of the unknown base. An unknown base having no
overlap is substituted with the reference genome base located
at the corresponding position. The number of bases having
no overlap is quite low for high coverage data. For 150x
coverage data with the last 30 bases unknown in the second
read, there are only 2.22% unknown bases with no overlap.
Moreover, only 3.64% of the unknown bases have less than
10 overlapping bases. Hence, in most of the cases the majority
vote is taken among a large number of overlapping bases.

Scheme-2: In the second scheme, we predict the unknown
bases of the incomplete second read by matching the known
bases of the incomplete second read with the overlapping

Fig. 4: Prediction accuracy of unknown bases

Fig. 5: Average base quality profile of WES 150x dataset.

reads. The overlapping read that is matching most closely
is used to predict the unknown bases. The bases of the
overlapping read covering the unknown bases are used to
complete the unknown bases of the incomplete second read.
If the overlapping read does not cover all the unknown bases
of the incomplete second read, then the remaining unknown
bases are predicted using prediction scheme 1.

Figure 4 shows the effectiveness of scheme 1 and scheme 2
in completing the unknown bases in the incomplete reads.
The figure shows percentage of the incomplete seconds
reads that the scheme is able to complete perfectly (i.e., the
completed second reads becoming exactly the same as the
original second read). The original read data set has 150x
coverage. The figure shows that prediction scheme 1 results
in more accurate prediction of unknown bases as compared
to prediction scheme 2. Therefore, in this work we will use
prediction scheme 1 to predict the unknown bases.

2) Predicting unknown base quality scores: For predicting
the base quality scores, we observe the fact that the slope of
the average base quality score pattern generated by Illumina
machines for the first read and the second read is nearly the
same. We used FastQC [12] to plot the average base quality
score of the first and second read across the read length.
Figure 5 shows a plot of the average base quality score values
across the entire read for the 150x original read dataset. It
clearly shows that the slope of the average base quality score
pattern of the first read and the second read is nearly the same.

To predict the base quality scores of the unknown bases of
the second read, we modeled the base quality score pattern
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of the last n unknown bases of the first read with a piece-
wise linear function. The number of “pieces” in our piece-wise
linear model is equal to n unknown− 1. Assuming that the
slope of the base quality score pattern of the second read is
same as the average of that of the first read, our piece-wise
linear model is able to correctly predict the unknown base
quality scores of the second read.

3) Predicting additional SAM fields: In the workflow
WF-2 (Section III-B, apart from predicting the unknown
bases and their corresponding base quality scores, we also
need to predict some other SAM fields in the read prediction
stage. These are: A. Mapping position of the completed
second read B. CIGAR string of the completed second read.

A. Mapping position of the completed second read: In
both workflows WF-1 and WF-2, mapping using BWA-MEM
is the first stage. Therefore, if the incomplete second read
is mapped on the reverse strand of the reference genome,
then its mapping position in the SAM file will always be
n unknown positions ahead of the original second read,
assuming that there are no deletions and soft clipping in the
last n unknown bases of the original second read. In our
prediction of the mapping position, we assume that there
are no deletions and soft clipping in the last n unknown
number of bases of the original second read, and hence,
subtract n unknown from the mapping position of the
incomplete second read to form the mapping position of the
completed second read. If the mapped incomplete second
read has soft clipping at the beginning of the read we do
not perform this operation. Figure 6 shows a plot of the
correctly mapped reads in the completed read dataset. The
original read dataset has 150x coverage. A read is regarded
as correctly mapped if its mapping position is same as the
mapping position of the read in the original read dataset.
The percentage of correctly mapped reads are shown for two
cases: 1) 150x wf1 representing the case of WF-1, which is
the percentage of correctly mapped reads after the completed
read dataset is remapped using BWA-MEM, and 2) 150x wf2
representing the case of WF-2, which is the percentage
of correctly mapped reads in the completed read dataset,
in which the mapping positions of the completed second
reads are predicted using the method describe above. The
plot shows that the reads in WF-2 have very high mapping
accuracy. On the other hand, remapping the reads after the
prediction of the unknown bases of the second read, as done
in WF-1, greatly reduces mapping accuracy.

B. CIGAR string of the completed second read: In WF-
2, we reevaluate the CIGAR string of the completed second
read by performing a semi-global alignment between the
completed second read and the substring of reference genome.
Let T be the reference genome and T [a, b] be its substring
starting from reference position a and ending at position b.
The substring of the reference genome used in the semi-global
alignment is T [p−10, p+qlen+10], where p is the predicted
mapping position of the completed second read and the qlen

Fig. 6: Percentage of correctly mapped reads

Fig. 7: (a) Effectiveness plot for 50x coverage data. (b)
Effectiveness plot for 100x coverage data. (c) Effectiveness
plot for 150x coverage data.

is the length of the completed second read. If the mapped
incomplete read is soft clipped at either end, the CIGAR
string is not reevaluated. Instead, the first or last operation in
the CIGAR string of the incomplete second read is extended
by n unknown depending upon the mapping strand of the
incomplete second read. If the incomplete second read is
mapped on the reverse strand, the first CIGAR operation is
extended and vice versa.
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IV. RESULTS

For evaluating our proposed scheme we implemented the
read prediction stage in practice. Our read prediction stage
is capable of predicting the unknown bases, unknown base
quality scores and the additional SAM fields as described in
Section III-C. The prediction of additional SAM fields is only
required in WF-2. Our prediction stage requires the reference
genome and base quality profile of the first read as input
in addition to the SAM file of the DNA reads mapped and
sorted w.r.t. mapping position. We used UCSC hg19 as the
reference genome. We also used 1000G phase1, dbsnp 138
and Mills and 1000G gold standard as the known SNP and
indel sites for the BaseRecalibrator stage. All the Picard
and GATK tools are run with default settings. BWA-MEM
also is run with default settings except the use of -M option,
essential for Picard compatibility.

We first run the GATK pipeline with original read dataset
to generate orig the set of variant calls (VCF file) that we
compare our techniques with. We then clipped the last tens of
bases of the original second reads to generate incomplete read
dataset. The set of variant calls (VCF file output) of the GATK
pipeline computed for the incomplete read dataset will be
called as incomplt. To test our prediction scheme, we predict
the unknown bases, unknown base quality scores and some
additional SAM fields (only in WF-2). The sets of variant calls
generated by running WF-1 and WF-2 of Figure 2 are called
as complt wf1 and complt wf2, respectively. Precision and
recall (sensitivity) can be defined as:

precision =
TP

TP + FP
× 100% (1)

recall =
TP

TP + FN
× 100% (2)

where TP, FP and FN are the true positives, false positives
and false negatives, respectively, . In order to evaluate the
effectiveness of the predictive analysis workflows defined in
this paper, we use the area under the precision-recall (APR)
curve as our metric. APR indicates the effectiveness of a
pipeline in identifying as much as possible correct variants
(high TP) while identifying as little as possible incorrect
variants (low FP). In the ideal case, APR is equal to 100%,
and the closer the APR is to 100%, the more effective the
workflow is. This definition of APR is the same as the one
used by [13] to evaluate the effectiveness of various variant
calling pipelines. The APR is calculated for complt wf1,
complt wf2 and incomplt, with respect to orig. We use RTG
tools [14] to calculate the precision-recall graph. This is then
further used to evaluate the APR of our workflows.

Figure 7 shows the effectiveness in terms of APR of
incomplt, complt wf1 and complt wf2 with respect to
orig, while clipping 10, 20, .. up to 70 bases of the original
second read. Figures 7a, 7b and 7c show the APR plot for
50x, 100x and 150x coverage data, respectively. Scheme-1
explained in Section III-C1 is used to predict the unknown
bases in the second read. The figures show that the APR
decreases almost linearly with increasing number of unknown

Fig. 8: The difference between the APR of WF-1 and
incomplt for a range of n unknown and coverage values.

Fig. 9: Increase in the APR after assuming original values for
mapping position, unknown base quality score or unknown
base value.

bases. At the same time, the overall APR of all sets of
variant calls increases as the data coverage is increased from
50x to 150x. The figures also show that WF-1 is the most
effective workflow to accurately call variants of incomplete
reads, consistently achieving a higher APR than WF-2 and
incomplt for all cases. For an increasing n unknown, the
APR of WF-2 gets gradually closer to that of WF-1, but
never actually reaching it. Although WF-2 has a much higher
read mapping accuracy than WF-1 (according to Figure 6),
Figure 7 shows that WF-1 has a better APR than WF-2 for
all cases. This degradation in APR of WF-2 as compared to
WF-1 can be attributed to the prediction scheme (scheme-1
of Section III-C1) that we used to predict the the unknown
bases. In scheme-1, we take a majority vote of the bases from
the overlapping reads to predict the value of the unknown
base. This majority vote may cause a true variant to be
overshadowed and hence, being missed in WF-2. On the other
hand, in WF-1 the unknown bases of the incomplete second
read are predicted, and then the completed read dataset is
remapped to the reference genome. This causes some of the
reads to be mapped to a different position than the initial
mapping and hence, do not overshadow a true variant.

Figure 8 shows a plot of the difference between the
APR of WF-1 and incomplt for a range of n unknown.
As pointed earlier, the figure shows that WF-1 is always
better than incomplt. The difference is initially small but
increases with increasing n unknown, then peaks at around
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n unknown = 50, and finally falls back down. The plot also
shows that the difference in the APR of WF-1 and incomplt
is much higher at lower coverage than at higher coverage.
For n unknown = 50, the difference is 5.7% and 3.2% for
50x and 150x coverage, respectively. This means that with
increasing coverage the APR of incomplt increases at a much
higher rate than WF-1. Therefore, our method of predicting
unknown bases and their corresponding base qualities has a
bigger comparative impact on the APR with lower coverage
as compared to incomplt.

We also studied the effect of accurate prediction of dif-
ferent parameters of the incomplete second read. We make
three different assumptions in WF-1. 1) orig pos: We assume
that the mapping position of the reads going into the read
prediction stage of WF-1 is exactly the same as mapping
position of the reads in the original read dataset. The un-
known bases and the corresponding base quality scores are
predicted as described in Section III-C1 (scheme-1) and III-C2,
respectively. 2) orig qual: We assume that the unknown base
quality scores of the incomplete second read are predicted with
ideal accuracy (i.e., they are exactly the same as in original
second read). The unknown bases of the incomplete second
read are predicted as described in Section III-C1(scheme-
1). 3) orig base: We assume that the unknown bases of
only those incomplete second reads in which the mapping
positions are correct (same as that of original second read),
are predicted with ideal accuracy (i.e., they are exactly the
same as in original second read). The mapping positions of the
incomplete second reads are predicted using the same method
as described in Section III-C3. Unknown base quality scores
of the incomplete second read are predicted as described in
Section III-C2. Figure 9 shows the increase in APR for each of
the three cases. ∆APR = 150x y wf1−150x complt wf1,
y is orig pos, orig qual or orig base. Figure 9 shows that
the assumption of accurate prediction of the unknown base
values (orig base) causes a much higher increase in APR
as compared to the other two assumptions. For orig qual,
the increase in APR is quite small. Hence, there is a very
little room for improvement in our method of predicting the
unknown base quality scores. For n unknown = 50, accurate
prediction of unknown base quality scores and read mapping
positions cause an increase of 0.45% and 2% in the APR,
respectively. On the other hand, accurately predicting the value
of the unknown bases of only those incomplete second reads
which have been mapped correctly can help to increase the
APR by 3.8%. Therefore, we can conclude that the method of
predicting unknown bases can be further improved to achieve
more effectiveness.

V. CONCLUSION

In this paper, we proposed a predictive genome analysis
approach based on the idea of starting the genome analysis
before the DNA sequencing is completely finished. We intro-
duced an additional stage in the GATK pipeline to predict the
unknown bases and their corresponding base quality scores,
due to incomplete DNA sequencing. Two workflows were

proposed to achieve this purpose. The results showed that our
method of predicting the unknown bases and quality scores
achieves more than 90% similarity with the analysis performed
on the full dataset for 50 unknown bases (slashing more than
a day of sequencing time).

We also measured the impact of accurate prediction of
unknown bases, unknown base quality scores and the read
mapping position to improve the effectiveness of the work-
flows in identifying the variants. Results show that our base
quality and read mapping position prediction scheme is highly
accurate. with 50 unknown bases, ideal prediction of the
value of the base quality scores and read mapping position
gives only 0.45% and 2% higher similarity with analyzing
the full dataset, respectively. However, accurately predicting
the value of those unknown 50 bases can achieve a 3.8%
higher similarity, meaning that more effective base prediction
methods can achieve an even higher analysis accuracy.

ACKNOWLEDGMENT

This work is supported by the Faculty Development Pro-
gram of the University of Engineering and Technology Lahore,
Pakistan.

REFERENCES

[1] K. Wetterstrand, “DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP),” Available at: www.genome.gov/
sequencingcosts, 2016, Accessed [15 October, 2016].

[2] A. McKenna et al., “The genome analysis toolkit: A mapreduce
framework for analyzing next-generation dna sequencing data,” Genome
Research, vol. 20, no. 9, pp. 1297–1303, 2010.

[3] G. van der Auwera, “GATK Best Practices,” https://software.
broadinstitute.org/gatk/best-practices/, 2016.

[4] N. Ahmed, V. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars, “Het-
erogeneous Hardware/Software Acceleration of the BWA-MEM DNA
Alignment Algorithm,” in ICCAD’15, 2015, pp. 240–246.

[5] A. Tarasov et al., “Sambamba: fast processing of NGS alignment
formats,” Bioinformatics, 2015.

[6] J. Peltenburg, S. Ren, and Z. Al-Ars, “Maximizing Systolic Array
Efficiency to Accelerate the PairHMM Forward Algorithm,” in BIBM’16,
2016, pp. 758–762.

[7] H. Mushtaq and Z. Al-Ars, “Cluster-based apache spark implementation
of the gatk dna analysis pipeline,” in BIBM, Nov 2015, pp. 1471–1477.

[8] Illumina, “Illumina HiSeq-2500 System Specifications,” https://www.
illumina.com/documents/products/datasheets/datasheet hiseq2500.pdf,
2015.

[9] H. Mushtaq, F. Liu, C. Costa, G. Liu, P. Hoftsee, and Z. Al-Ars,
“SparkGA: A Spark Framework for Cost Effective, Fast and Accurate
DNA Analysis at Scale,” in ACM-BCB, August 2017, pp. 148–157.

[10] Z. Al-Ars, N. Ahmed, and K. Bertels, “Early DNA Analysis Using
Incomplete DNA Datasets,” Patent, European Patent no. NL 2017750
(pending), 2016.

[11] G. Highnam et al., “An analytical framework for optimizing variant
discovery from personal genomes,” Nature Communications, vol. 6, no.
6275, 2015.

[12] S. Andrews, “FastQC: a quality control tool for high through-
put sequence data,” http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, 2010.

[13] S. Hwang et al., “Systematic comparison of variant calling pipelines
using gold standard personal exome variants,” Scientific Reports, vol. 5,
no. 17875, 2015.

[14] J. Cleary et al., “Comparing variant call files for performance
benchmarking of next-generation sequencing variant calling pipelines,”
bioRxiv, 2015.

97

5





6
Conclusions and

Recommendations

After having described our optimized and accelerated algorithms for fast genome
analysis, in this chapter we present the major takeaways of the research work
described in this thesis.

Seed-and-extend algorithms are an integral part of data-intensive genome analy-
sis applications. Therefore accelerated solutions for these algorithms will help to
reduce the time and cost of DNA analysis pipelines. In this thesis, we presented op-
timized and accelerated seeding as well as extension algorithms and applied them
to enhance the performance of various genome analysis applications. We demon-
strated that GPUs are a good platform to accelerate maximal exact match (MEM)
seeding algorithms. We also optimized a MEM computation algorithm and showed
that rewriting the algorithm in an intelligent manner helps to reduce the memory
accesses in the memory-bound algorithm, boosting up its performance. Similarly,
for the extension, we demonstrated that seed-extension via sequence alignment
can be performed much faster on GPU as compared to CPU. We developed a high
performance GPU library for sequence alignment and showed that it can be easily
integrated into genome analysis applications. We also performed comparisons of
different seeding and extension algorithms for DNA read mappers with the help
of our generic seed-and-extend mapper. Our analysis shows that maximal exact
matching algorithms combined with local alignment give the best results for read
mapping. Finally, we presented a method to perform variant calling on partial se-
quencing data to reduce the DNA sequencing delay bottleneck. Our approach gives
an accuracy of more than 90% while reducing the sequencing time by one full day.

The outline of this chapter is as follows: Section 6.1 describes the main contribution
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of the thesis as well as the lessons learned during the research, on a chapter-wise
basis. Section 6.2 presents the recommendation for future research work.

6.1. Conclusions
Genome analysis has a variety of applications in everyday life. The current progress
in DNA sequencing will shape the future of life science technology ranging from nu-
trition to clinical diagnostics. Current sequencing platforms generate huge amounts
of DNA data. Therefore, fast and low cost DNA analysis is essential to achieve
the envisioned goals of DNA sequencing. In this thesis, we provide various so-
lutions to overcome the challenges in achieving fast analysis of high-throughput
DNA sequencing data. We presented software optimized and GPU accelerated DNA
analysis algorithms based on the seed-and-extend paradigm. Furthermore, we
discussed methods to avoid the large sequencing delay caused by sequencing ma-
chines needed to read DNA information. In the following, we describe our major
research contributions and observations.

Chapter 2: Fast Seeding Algorithms
Maximal exact matching (MEM) and super-maximal exact matching (SMEM) seeds
are used in many seed-and-extend algorithms due to their high accuracy. Their
computation time may become a bottleneck in DNA analysis applications. In Chap-
ter 2 we presented GPU accelerated and software optimized maximal exact match-
ing seeding algorithms. The following conclusions can be drawn from Chapter 2.

1. Computation of maximal exact matching seeds is a highly parallelizable task
which makes it a good candidate for acceleration on GPUs.

2. Apart from NVBIO, there is no other GPU acceleration available for the compu-
tation of maximal exact matching seeds using FM-index for DNA sequencing
data. Furthermore, NVBIO is only suitable for short DNA reads. Besides, CPU
based libraries are also not designed for sequencing data that require smaller
seed lengths. Therefore, their performance drastically reduces while finding
shorter seeds in the sequencing data.

3. We presented GPUseed a high-performance GPU accelerated API for com-
puting maximal exact matching seeds in DNA sequences using the FM-index.
The implementation extracts maximum parallelism from the computation to
fully utilize the massive parallelism of the GPU. Two unique optimizations are
applied which are 1) Pre-computed suffix array intervals of partial seed 2)
Avoiding redundant computation.

4. We tested our library on state-of-the-art third generation long-read sequenc-
ing data against a highly optimized CPU based algorithm for computing max-
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imal exact matching seeds running on 24 Intel Xeon threads. On an NVIDIA
Tesla K40 GPU, GPUseed is up to 9x and 5.6x faster than CPU implementations
with Pacbio and Oxford Nanopore data, respectively.

5. The acceleration results of GPUseed show that even with memory-bound al-
gorithms, like computing maximal exact matching seeds using FM-index, good
speedups could be achieved with GPUs if the algorithm is massively paralleliz-
able.

6. Maximal exact matching seeds are computed in the BWA-MEM read mapper.
The suffix array interval computation is a highly memory-bound task an takes
about 30% of the total execution time with short DNA reads on BWA-MEM
version 0.7.8. [44].

7. We presented a software optimized algorithm for computing the seeds in BWA-
MEM. Our algorithm reduces the number of memory accesses by up to 45%
resulting in a 1.7x speedup of the suffix array computation of SMEM seeds.

8. We applied our optimized algorithm for computing suffix array intervals of
maximal exact matching seeds to an accelerated BWA-MEM mapper (version
0.7.8), in which the other steps of the mapper are accelerated on FPGAs. Our
optimization achieved an overall application speedup of up to 2.6x.

9. In the newer versions of BWA-MEM (0.7.11 and onwards) suffix array inter-
val computation of seeds takes up to 44% of the total execution time [44],
thereby allowing more speedup with our optimized algorithm.

Chapter 3: GPU Accelerated API for Sequence
Alignment
Sequence alignment is one of the most common operations in DNA analysis algo-
rithms. It is used in the extension step of seed-and-extend algorithms and also as
a standalone step (i.e. without seeding) in many applications. In Chapter 3, we
presented GASAL2, a GPU accelerated API for sequence alignment. GASAL2 can
perform local, global and all types of semi-global alignment; with and without trace-
back computation. We also showed two applications of the API. The conclusions
drawn from Chapter 3 are as follows.

1. GASAL2 and NVBIO are the only two GPU accelerated libraries for the se-
quence alignment of DNA sequencing data. NVBIO does not support ambigu-
ous bases (”N”) and lacks the capability of allowing overlap execution of GPU
and CPU.

2. NVBIO converts the bases of the sequences to be aligned from an 8-bit rep-
resentation to 4 bits (known as packing) on the CPU which is extremely slow
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and takes more than 80% of the total alignment time for 150 base pairs (bp)
long DNA reads. In contrast, our GPU accelerated API performs the pack-
ing on GPU which is up to 750x faster than NVBIO and, hence completely
eliminating the sequence packing overhead.

3. In GASAL2 we compute 64 cells of the dynamic programming alignment ma-
trix with no more than two GPU memory accesses, thereby achieving full
utilization of GPU compute resources. The accesses to the traceback matrix
are coalesced allowing maximum utilization of GPU memory bandwidth

4. GASAL2 GPU alignment kernels for alignment with traceback computation are
4x faster than NVBIO on an NVIDIA Geforce GTX 1080 Ti GPU. Combined with
accelerated sequence packing, this gives an overall speedup of 7x for 150 bp
reads performing the local alignment. Without traceback computation, the
speedup is 8.7x.

5. GASAL2 gives 8x speedup over the fastest CPU based library (SeqAn) with
traceback computation while performing local alignment of 150 bp read
dataset. The speedup is 2.4x without traceback computation. SeqAn is run-
ning on 56 Intel Xeon threads.

6. We used GASAL2 to accelerate the seed-extension step of BWA-MEM DNA read
mapper. It is more than 20x faster than the CPU seed-extension functions with
12 CPU threads giving nearly ideal speedup for 150 bp reads.

7. We observed that considerable time is wasted due to unequal loads on CPU
threads due to batch processing required for accelerating BWA-MEM on GPU.
We solved this problem by using dynamic batch sizing. Our approach reduces
the idle CPU time by 3x for 150 bp reads in BWA-MEM GPU acceleration. Our
proposed method is generic and can be applied to any implementation where
batch processing is required.

8. Using GASAL2, we can accelerate the seed-extension step of Darwin, an algo-
rithm to compute overlaps between long DNA reads. Using an NVIDIA Tesla
K40 GPU, our GPU acceleration speeds up the whole Darwin algorithm by 109x
and 24x running on 8 threads of Intel Xeon and 64 threads of IBM Power8,
respectively.

9. The GPU acceleration of Darwin shows that GASAL2 is also suitable for per-
forming local alignment of long DNA reads.

Chapter 4: Comparison of Seed-and-Extend Algo-
rithms
This chapter is based on the comparison of seeding and extension algorithms used
in the modern DNA read mappers. Different combinations of seeding and extension
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algorithms are tested to find suitable seed-and-extend techniques for various read
lengths. The following conclusions can be drawn from the chapter.

1. We presented GASE (Generic Aligner for Seed-and-Extend), a generic read
mapper based on the seed-and-extend technique. GASE contains various op-
timized and accelerated seeding and extension algorithms. Users can choose
any combination of seeding and extension algorithm to suit their requirements
of speed and accuracy.

2. We showed that for reads up to 600 bp long, exactly matching fixed length
seeds is less accurate than the maximal exact matching seeds and fixed length
seeds with at least 1 mismatch. We also showed that BLAST-like seed exten-
sion works best with the all-SMEM seeding approach. However, local align-
ment is overall more accurate than BLAST-like seed extension.

3. According to our results, nov-SMEM seeding with SIMD optimized local align-
ment seed-extension is the best combination due to its high accuracy and
more potential for optimization/acceleration for future DNA reads.

Chapter 5: Predictive Genome Analysis
DNA sequencing delay is a major bottleneck in DNA analysis pipelines. In Chapter 5,
we described methods to reduce the sequencing delay. In the following, we list the
conclusions drawn from this chapter.

1. We proposed methods to start the computational analysis before the sequenc-
ing is completely finished, thereby reducing the sequencing time, and pre-
dicted the unknown bases and their corresponding quality scores.

2. We presented base prediction schemes and found the consensus approach to
be the best. Similarly, we predicted the quality scores by extrapolating the
average base quality profile.

3. We found that for 100 bp paired-end read data with coverage of 150x, 77%
of the total reads with the last 50 bases unknown are predicted correctly with
our proposed scheme.

4. We measured the area under the precision-recall curve (APR) of the results
generated by the GATK variant calling pipeline using our predicted reads as
input. The APR is 90% for 150x coverage 100 bp paired-end data with the
last 50 bases predicted with our scheme.

5. To measure the maximum possible accuracy of our approach, we compared
the APR values obtained by our prediction schemes with the APR values with
ideal prediction. We found that with 100% correct prediction of the last 50
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unknown bases will help to increase the APR from 90% to 94%. On the other
hand, our scheme for predicting the base quality scores is very accurate and
no considerable gain in APR can be achieved by the ideal prediction of quality
scores.

6.2. Future research directions
In this thesis, we presented high performance seeding, seed-extension, and se-
quence alignment algorithms. We also described methods to overcome the DNA
sequencing delay in an analysis pipeline. Our proposed algorithms and methods
have shown to provide good speedups over the existing schemes. However, our
work has some limitations and it is still possible to achieve more performance and
accuracy by enhancing the proposed solutions. In the following, we will give some
recommendations for extending the algorithms and methods described in the thesis.

1. GPUs have 32-bit registers. Therefore, to maximize performance of our GPU
accelerated seeding algorithm, GPUseed, only supports genomes that have
4 billion bases or below. However, many living organisms have much big-
ger genomes (e.g. many plants). Therefore, extending GPUseed for bigger
genomes will make it applicable in the analysis of genomes larger than 4 billion
bases.

2. In BWA-MEM, the suffix array is stored in an array where each entry has a
size of 64 bits. However, only 33 bits of each entry are required. Therefore,
packing more values in the array will help to improve the compression ratio
and as a result help in speeding up the suffix array lookup.

3. GASAL2 contains GPU accelerated kernels for local, global and semi-global
optimal alignment algorithms. However, many DNA analysis algorithms use
non-optimal but faster alignment algorithms. Therefore, extending GASAL2
to include the GPU acceleration of these non-optimal alignment algorithms
will enhance the applicability of the library.

4. The acceleration of Darwin in Chapter 3 shows that our GPU accelerated se-
quence alignment library for NGS data can also be applied to align long DNA
reads. However, the Darwin sequence alignment algorithm is non-optimal.
Therefore, it would be interesting to investigate the efficacy of GPUs in the
acceleration of optimal alignment algorithms for long DNA reads produced by
third generation sequencers.

5. In Chapter 4, we compared the different seeding and extension algorithms in
the context of short DNA read mappers. Extending this work for long DNA
read mappers may prove to be beneficial in the analysis of sequencing data
produced by Pacbio and Oxford Nanopore sequencers.

6



Sec-6.2: Future research directions 105

6. As described in Chapter 5, to overcome the sequencing delay without losing
the accuracy, correctly predicting the unknown bases is essential. Applying
machine learning algorithms may help to improve base prediction.

The constant improvement in sequencing technologies is accompanied by a reduc-
tion in the sequencing cost. This trend indicates a future where DNA sequencing
can become part of household applications. This will give rise to a tremendous
amount of sequencing data that needs to be processed efficiently. At the same
time, cloud computing is on the rise. Hence, we see accelerated processing using
GPUs and FPGA of DNA sequencing data in the cloud becoming more widespread
in the future. This makes accelerated applications in the cloud a viable solution
for future high performance genomics. Since state-of-the-art third-generation se-
quencing technologies generate long DNA reads which are easy to assemble, DNA
read assembly might replace read mapping. Hence, more and more genome analy-
sis pipelines based on read assembly will appear in the future. However, short DNA
reads will remain in use for clinical purposes due to their much higher accuracy and
even for research due to the easy availability of large amounts of sequencing data
based on short DNA reads.
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Summary

Recent advances in DNA sequencing technology have opened new doors for sci-
entists to use genomic data analysis in a variety of applications that directly affect
human lives. However, the analysis of unprecedented volumes of sequencing data
being produced represents a formidable computational challenge. The conventional
CPU-only computing paradigm is not sufficient to analyze exponentially growing
sequencing data in a cost-effective and timely manner. Heterogeneous computing
systems with GPU and FPGA based accelerators have become easily accessible and
are increasingly being used to process massive amounts of data due to their better
performance-to-cost ratio than CPU-only platforms. Furthermore, highly optimized
analysis algorithms are required to extract the maximum computational power of
these computing systems.

Seed-and-extend based algorithms are widely used for the analysis of high through-
put DNA sequencing data. These algorithms have a two-step process: seeding and
extension. In this thesis, we have presented optimized and accelerated seeding and
extension algorithms specifically designed to analyze massive sequencing data. We
developed GPUseed, a GPU accelerated API to compute maximal exact matching
seeds. We extracted maximum parallelism from the computation and applied var-
ious optimizations to achieve up to 9x speedup over a multi-threaded CPU based
algorithm. We also optimized the memory-bound CPU based algorithm to compute
super-maximal exact matching seeds to achieve 45% fewer memory accesses to
speed up the algorithm by 1.7x. In addition, we proposed GASAL2, a GPU acceler-
ated library to perform all types of sequence alignment algorithms in the extension
step. The library fully utilizes the compute resources of the GPU by minimizing
GPU memory accesses and efficient utilization of high GPU memory bandwidth.
GASAL2 minimizes the CPU wait time by allowing overlap CPU and GPU execution.
It achieves up to 20x speedup over a highly optimized SIMD based CPU library
running on tens of threads. GASAL2 is an open source API and can be used in
any bioinformatics application. As a case study, we used GASAL2 to accelerate the
extension step of BWA-MEM, the most widely used DNA read mapper, to achieve
nearly ideal speedup as dictated by Amdahl’s law. We then extended our GPU ac-
celeration of sequence alignment to accelerate Darwin read overlapping algorithm
designed to compute overlaps between state-of-the-art third generation long DNA
reads. The GPU acceleration is orders of magnitude faster than the multi-threaded
Darwin CPU implementation. Next, we developed GASE a generic read mapper for
seed-and-extend that contains various optimized and accelerated seeding and ex-
tension algorithms. Users can choose any algorithm for the seeding and extension
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step to build a mapper that suits their requirements. Using GASE, we showed that
combining non-overlapping maximal exact matches with local alignment will give
the best results in terms of both speed and accuracy for long DNA reads.

The process of DNA sequencing itself is a time consuming task and requires 3-4 days
to complete. The computation analysis has to wait for the sequencing to complete
to start processing the sequencing data to perform specific analysis. Therefore, we
developed methods to overcome the sequencing delay which helps to reduce the
sequencing time by a day but still achieves 90% accuracy.



Samenvatting

Recente ontwikkelingen in DNA-afleestechnologie maken het mogelijk voor weten-
schappers om genetische gegevensanalyse te gebruiken in toepassingen die grote
invloed kunnen hebben op mensenlevens. Echter zijn er enorme computationele
uitdagingen om deze grote volumes sequentiegegevens te analyseren. Conventi-
onele rekenmethoden zoals het gebruiken van processoren is niet voldoende om
de groeiende hoeveelheid gegevens te analyseren op een effectieve manier. Om
deze uitdaging aan te gaan kunnen analyse-algoritmen versneld worden door het
gebruik maken van gespecialiseerde processoren zoals GPU en FPGA samen met
andere traditionele processoren in een zogeheten heterogeen computer systeem.
Verder is het belangrijk om deze analyse-algoritmen te optimaliseren om de effici-
ëntie van heterogene computersystemen te maximaliseren.

Seed-and-extend-gebaseerde algoritmen worden veel gebruikt voor de analyse van
DNA-sequentiegegevens. Deze algoritmen worden in twee stappen uitgevoerd:
seeding en extention. In dit proefschrift hebben wij deze twee stappen geoptima-
liseerd en versneld. Wij hebben GPUseed ontwikkeld, een GPU versnelde API om
complexe seeding algoritmes snel te berekenen. Hiervoor hebben wij het parallel-
lisme van de algoritme gemaximaliseerd en verschillende optimalisaties toegepast
en hiermee een versnelling van 9x hebben bereikt. Verder hebben wij het ge-
heugenverbruik van het algoritme geoptimaliseerd om geheugentoegang met 45%
vermindert en hiermee een versnelling van 1.7x hebben bereikt. Daarnaast hebben
wij GASAL2 voorgesteld, een GPU-bibliotheek voor het versnellen van verschillende
sequentie analyse-algoritmen tijdens de extention stap. Deze bibliotheek maakt
efficiënt gebruik van GPU onderdelen door toegang tot het GPU-geheugen te mi-
nimaliseren en daarmee een hoge geheugenbandbreedte te bereiken. Verder mi-
nimaliseert GASAL2 de CPU-wachttijd door CPU en GPU operaties te overlappen.
Deze optimalisaties maken het mogelijk voor GASAL2 een versnelling tot 20x te be-
reiken. GASAL2 is open en publiek beschikbaar en kan worden gebruikt door derde
partijen in voor verschillende bio-informatica applicaties. Als case study hebben wij
GASAL2 gebruikt om de extention stap van BWA-MEM, de meest gebruikte DNA
analyse-algoritme, te versnellen. Daarnaast hebben wij GASAL2 gebruikt om de
sequentie-overlap algoritme in het programma Darwin te versnellen. Darwin wordt
gebruikt voor DNA analyse van ultramodern derde generatie DNA-aflees machines.
De GPU-versnelling is tientallen malen sneller dan de snelste bestaande Darwin
CPU-implementatie. Vervolgens hebben we GASE ontwikkeld, een generieke DNA
analyse-algoritme voor seed-and-extension die verschillende geoptimaliseerde en
meerdere seeding- en extention-algoritmen bevat. Gebruikers kunnen combinaties
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van deze algoritmen kiezen en eigen variaties toevoegen om de nauwkeurigheid te
testen.

Als laatste hebben wij in dit proefschrift het DNA-afleesproces geoptimaliseerd. Dit
proces zelf neemt veel tijd in beslag en duurt 3 tot 4 dagen. Om dit proces te
versnellen hebben wij een methode ontwikkeld om de DNA analyse-algoritmen te
laten starten voor dat het afleesproces volledig afgerond is. Hiermee hebben wij
het aflees tijd met een hele dag weten te verminderen en tegelijkertijd een hoge
nauwkeurigheid van 90% behouden.
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