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Preface 

This document presents the research work done on the development of a loading protocol 
for realization of enhanced maturity of cardiac myocytes in vitro. The presented study is 
performed in terms of a graduation thesis at the Delft University of Technology, between 
May 2010 and January 2011. This graduation study is part of a running project performed 
by the department of Anatomy and Embryology at the Leiden University Medical Centre and 
the department of Electronic Measurement at Philips Research.  
 
Cytostretch is a multi-disciplinary project; it combines biological, electronic and mechanical 
knowledge. The project is performed on the area of agreement of cell biology, 
microelectronics and mechanics. The primary goal of the Cytostretch project is the 
development of an in vitro cell based model for cardiac drug screening purposes. To ensure a 
properly matured cell based model, mechanical stimulation is introduced. The presented study 
in this document focuses on the analysis of the introduced mechanical stimulation for the 
realization of an accurate cell based model.  
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took me some time to cope with the variety of inputs, I really enjoyed the multi-disciplinary 
nature of the project. It gave me the opportunity to gain insight in very interesting fields of 
science and at the same time gave me the opportunity to contribute to this progressive 
project. 
 
During the time I spend on the Cytostretch project, I received help from a lot of people, for 
which I am very grateful. First, I would like to thank Hans Goosen for his everlasting support 
and time to discuss the project with me. I also would like to thank Fred van Keulen for 
sharing his broad knowledge in non-linear mechanics with me; it was very pleasant to see his 
increasing enthusiasm during the study. Thanks also to Ronald Dekker for his impelling 
enthusiasm about the project, and to Stefan Braam for introducing me into the cell biology, 
and for his patience with an ignorant technical student in working with living material.  
 
I want to send a special thanks to Patrick van Holst and Harry Jansen with their help in the 
design and great effort in the realization of the experimental setup. Furthermore, I would like 
to thank my friends and especially study-mates for their critical view on the project during 
discussions but most of all for their encouragement and never-ending supply of coffee. I 
would like to thank my family for their support and interest during my entire study. Finally 
my boyfriend Rutger, thank you for your great optimism during difficult periods and your way 
of toning me down when I was stressed, you were of great support. 
 
 
 
Stefanie Langeslag 
Delft, January 2011 
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Abstract 

One of the major challenges in drug development is the development of a drug-screening 
model that closely resembles the adult human heart. Currently many drugs are rejected in 
late stages of development and even withdrawn from the market due to possible cardiac 
tissue damaging side effects. The corresponding delay in drug development is mainly due to 
a lack in drug-screening methods, to determine these life-threatening side effects. Cultivation 
of human cardiac cells in vitro could provide such a drug-screening model. Human cardiac 
muscle cells can be derived from human embryonic stem cells. However, the cardiac muscle 
cells derived by culturing these human embryonic stem cells into cardiomyocytes (cardiac 
muscle cells) appear to be immature in relation to cardiac muscle cells taken directly from 
the adult human body. This immaturity results in a drug-screening model with limited 
predictability. 
 
The hypothesis of the Cytostretch project, a collaborative project between Leiden University 
Medical Centre and Philips Research, is that in vitro cultured cardiomyocytes subjected to in 
vivo mimicking mechanical stimuli (stretch), will show enhanced maturation. These mature cell 
cultures provide a good basis for future drug-screening models.  
 
A chip is developed containing a polydimethylsiloxane (PDMS) thin-film as a substrate for 
cardiomyocyte culturing. A pressure difference is applied to the membrane to obtain a 
strained membrane, which with anchored cardiomyocytes will result in cardiomyocyte stretch. 
In order to stretch cardiac myocytes in vitro, the development of an in vivo mimicking 
loading protocol is essential. The main goal for the presented study, therefore, is the 
development of a proper loading protocol for in vitro stretching of cardiomyocytes. To reach 
this goal two study objectives have been defined; investigation of in vivo cardiac muscle 
strain during a normal cardiac cycle and the determination of the PDMS thin-film behavior. 
 
For the determination of the in vivo cardiac muscle strain, the left ventricle was modelled 
mathematically. Assumed was a homogeneous stress distribution along the left ventricular 
wall, corresponding to a fiber direction course along the wall, consistent with anatomical 
findings. The relation between left ventricular fiber stress and left ventricle pressure showed 
to depend mainly on the ratio of cavity volume over wall volume. The left ventricle 
mechanics can be approximated by: 
  

 

 

 

 

  
Where σf is the left ventricular fiber stress, Plv the left ventricular pressure. Vlv is the left 
ventricular cavity volume, Vw the left ventricular wall volume and Δεf the natural fiber strain. 
The outcome of the mathematical left ventricle model led to the conclusion that the 
absolute left ventricular fiber strain between end systole (reference volume) and end diastole 
equals an approximate 14.7% for a healthy adult human heart during normal cardiac cycle. 
 
The PDMS thin-film behavior is modelled analytically with use of classical thin plate 
mechanics, considering large deformations. The analytical derived outcomes were 
subsequently compared with numerical and experimental results. The thin-film mechanics 
appeared to depend mainly on strain due to the extension of the membrane, and only little 
on strain related to bending. Moreover, the bending strain could be neglected when a 
pressure of 3kPa or more was applied to the membrane. 
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It was concluded that an analytical model, simply supported around the edges, assuming a 
linear elastic homogeneous isotropic material, describes the membrane behavior properly. An 
analytical model with clamped edges was not able to deal with the small radius curvature at 
the edges due to the great flexibility of the membrane. The displacement field corresponding 
with the supported boundary condition was consistent with both the numerical approximation 
and the experimental data. 
 
The results of the analytical model showed that the order of the in plane displacement 
function u has major influence on the strain outcomes of the model. An in plane 
displacement function with two terms showed a great strain variation across the membrane, 
whereas an in plane displacement function containing 5 terms showed a relatively 
homogeneous strain distribution, consistent with the numerical approximation. 
 
From the results of the analytical model the conclusion was drawn that the pressure-strain 
behavior of the two membrane configurations (circular and dogbone) differs. In order to 
obtain a maximum membrane strain of 14.7%, the applied pressure for the dogbone 
membrane should be 3.725kPa, whereas for the circular membrane the applied pressure 
should be 5.375kPa. Moreover, on the circular membrane, the transverse strain differs from 
the radial strain. The radial strain showed to be homogeneously distributed over the entire 
membrane, resulting in longitudinal equally stretched cardiomyocytes. The transverse strain 
however decreased from the centre outwards. In the centre section this will result in cells 
equally stretched longitudinal as well as transverse, however in the edge sections the cells 
will receive considerably lower stretch in the transverse direction. 
 
Some preliminary testing has been performed in stretching beating areas (clogs of 
cardiomyocytes) in vitro while applying the amount of pressure to the membranes as 
described above. The first set of experiments showed a maintained cell anchorage to the 
moving substrate for a long period of time (>120 hours). The second set of experiments 
showed detachment of the cells at increased pressures up to approximately 7kPa (for both 
configurations). From this we were able to conclude that a moving substrate has no 
detrimental impact on cardiomyocyte anchorage. Furthermore, from the detachment of cells 
at higher pressures than derived we are able to conclude that the pressure protocol will be 
in a correct range. 
 
The fact that the moving substrate has no detrimental impact on the cardiomyocytes 
indicates the great opportunities for the Cytostretch project.   
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1 Introduction 

Drug development is being significantly delayed due to a lack in functional drug testing 
models. Cardiac safety risks have become a principal area of concern in this area, since drug 
side effects influencing the cardiac system can be immediately life threatening. Drugs 
effecting heart tissue, also called cardiac toxicity, has become the most common cause for 
drug rejection in late stages of drug development, and even for withdrawal of previously 
approved drugs from the market.  
 
Cardiac toxicity often results in the development of fast cardiac rhythms that arise within 
the heart ventricles. The primary risk factor in the development of these so-called 
arrhythmias is the prolongation of the QT-interval on a surface electrocardiogram (Section 
1.1.1). 
 
Drug failures in the past have led to strong regulatory guidelines. To date, new molecular 
entities must be evaluated in specialized clinical trials (TQT-study) to determine the effect of 
a drug on the QT-interval, mostly done on human volunteers (HVs). This TQT study serves 
to assess the potential arrhythmia liability of a drug. Many drugs get rejected, leading to 
high costs for the pharmaceutical industry, costs that later shift to the consumer by price 
increments. Not only costs are involved, drug development is dramatically delayed due to this 
problem, with many patients waiting for a cure. 
 
Animal models used for drug screening have constraint reliability, as human differs from 
animal physiology.  
 
A major challenge in drug development is the development of an early drug-screening model 
that closely resembles the human heart. Cultivation of human cardiac cells in vitro could 
provide such a drug-screening model. In vitro cultivation of human cardiac cells shows not 
only potential for drug screening related to cardiac toxicity, but could also provide disease 
models for specific drug testing. Nowadays human cardiac cells are derived from human 
embryonic stem cells. However, the cardiac muscle cells derived by culturing these human 
embryonic stem cells into cardiomyocytes appear to be immature as compared to cardiac 
muscle cells taken directly from the human body. Cardiomyocytes cultured using conventional 
methods do not align and remain poorly differentiated[1]. This immaturity will results in a 
drug-screening model, which has a limited predictability of adverse drug reactions in the 
human body. 
 
In this field directing the cells to establish the physiological structure and function of mature 
human heart tissue needs to be explored. The goal of the research project Cytostretch is to 
develop a method for this further maturation of cardiomyocytes in vitro. Cytostretch is a 
chip consisting of a stretchable thin film for the stretching of cardiomyocytes. The 
hypothesis of the project is that cardiomyocytes subjected to stimuli comparable to in vivo 
stimuli, like cell stretch, will show enhanced maturation.  
 
The aim of this study is the development of a loading protocol for the stretching of cardiac 
myocytes in vitro.  
 
This report is subdivided into five parts, this first introductory part, consists of one chapter 
which will provide the reader some background information, Section 1.1 provides an 
introduction into the biological background of the project. The matter of cardiac toxicity will 
be discussed. Furthermore, the potential of human embryonic stem cells for the application 
of drug-screening models will be presented, and the problem with cardiomyocyte maturation 
will be discussed. In Section 1.2 the project description will be presented, the introduction of 
a stretchable MicroElectrode array will be discussed with the current design considerations. 
Finally Section 1.3 contains the objectives of this study.  
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PART II discusses the left ventricle mechanics, for the establishment of left ventricular fiber 
strain in vivo. A mathematical model will be introduced to determine the left ventricular fiber 
stress, and its relating strain. PART III will provide the reader a detailed insight in the 
currently produces membranes for in vitro testing. In Chapter 3 the mechanics of a thin 
plate will be discussed for the application to the Cytostretch membranes discussed in 
Chapter 4.  
 
In addition to the determination of an in vitro loading protocol, preliminary experiments on 
the straining of cardiomyocytes in vitro have been performed with use of a developed 
measurement setup. PART IV presents these preliminary experiments, including information 
about the used measurement setup and the first test results. Finally, conclusions and 
recommendations relating the entire process are presented in PART V, containing a chapter 
with a concluding section (Section 6.1), and a section of recommendations for future work 
(Section 6.2). 
 

1.1 Biological background 

Stem cells have the capability to differentiate into specialized cells in the human body. Adult 
stem cells are called multipotent; they are able to differentiate into limited types of 
specialized cells. In contrary, embryonic stem cells (ESCs) derived from early embryos have 
the capacity to differentiate into any of the three germ layers in the body (pluripotent). The 
ability exists to cultivate contracting cardiomyocytes from embryonic stem cells, under 
defined conditions. These contracting outgrowths show potential for early drug-screening 
purposes. 

1.1.1 Cardiac toxicity  
Cardiac toxicity often results in the development of fast cardiac rhythms that arise within 
the heart ventricles. The primary risk factor for the development of these so-called 
arrhythmias is the prolongation of the QT-interval on a surface electrocardiogram (ECG). The 
QT-interval denotes the period between the beginning of the Q- and the end of the T-wave, 
and represents the depolarization and repolarization of the ventricles; the total duration of 
electrical ventricular activity (Figure 1).  

 

 
Figure 1: ECG (top) and action potential (bottom) of normal and prolonged QT-interval. 
Adverse drug effects can cause these prolonged QT-intervals, which result in fast 
cardiac rhythms. The blue line indicates a prolonged QT-interval, which becomes 
apparent in the action potential. 
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Prolongation of the QT-interval can be most easily observed by measurement of the action 
potential (Figure 1, bottom). The action potential relates to a voltage difference that exists 
across the cell membrane, resulting from an interaction between ion-pumps and ion-channels 
in the cell membrane. During contraction, cardiac cells undergo a fast rising and falling in this 
membrane potential due to ion currents, for a joint contraction of the heart. The 
prolongation of the QT-interval becomes apparent in de prolongation of the repolarization 
phase (blue line Figure 1). 

1.1.2 Pluripotent Human Embryonic Stem Cells (hESCs) 
Human embryonic stem cells can be cultured indefinitely, and have the ability to differentiate 
into any of the three germ layers; endoderm (gastrointestinal tract, lungs), mesoderm 
(muscle cells, bone, blood) or ectoderm (epidermis, neural cells) (Figure 2). This pluripotency 
makes them ultimately suitable for these in vitro models for drug screening purposes.  
 
The pluripotent cells are harvested from the inner cell mass of the early blastocyst in the 
development of the embryo (Figure 2). The human embryonic stem cells are then co-cultured 
with fibroblasts (inactivated for cell division); to keep the cells in their undifferentiated 
pluripotent state. The fibroblasts achieve this through the secretion of growth factors and 
synthesis of an extra cellular matrix as framework[2].  
 
For the differentiation of the embryonic stem cells into cardiomyocytes (cardiac muscle cells) 
previous experiments have mostly relied on spontaneous differentiation to form contracting 
outgrowths. A range of different cardiomyocyte cell types can be obtained from these 
differentiation processes, including nodal-like, atrial-like and ventricular-like cells (Figure 3). 
For the enrichment and purification of these different populations of cardiomyocytes, the use 
of certain cytokines or growth factors is used. 

1.1.3 Cardiomyocyte maturation 
MicroElectrode Array’s (MEA) have been used in the past to perform early drug screening on 
the in vitro cultured contracting outgrowths. These MEA’s consist of a glass substrate 
embedded with titanium-nitride electrodes for measuring the cells’ membrane potentials. On 
the glass substrate a culturing ring is positioning for containing nutritious fluid. The reliability 
of these models however shows not to be significantly higher than the reliability of animal 
models, mainly due to poor maturation of the cardiomyocytes in in vitro cultures. 
 
The in vitro cultured contracting outgrowths show stressed plated cardiomyocytes on the 
glass substrates (Figure 3). The substrate lacks in elasticity to comfort cardiomyocytes in 

  

  
Figure 2: Pluripotent embryonic stem cells can differentiate into 
any of the 3 germ layers; endoderm, mesoderm and ectoderm. 
These cells are harvested from the inner cell mass of an early 
blastocyst, and can thus differentiate into cardiac muscle cells. 

Figure 3: Contracting outgrowth plated on 
a glass substrate. Notice the stressed 
fibers providing cell attachment to the 
substrate. 

  

!
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vitro. Furthermore, the substrate lacks in mechanical stimuli, a probable cue in cardiac 
maturation. 
 
Analysis of ultra-structural cell organization, electrophysiology, and gene- and protein 
expression has led to the conclusion that the derived cardiomyocytes derived from human 
embryonic stem cells are relatively immature compared to adult human cardiomyocytes.  
 
The probable cause for the poor maturation of cardiomyocytes in in vitro cultures is the lack 
in normal in vivo environmental input. The cardiomyocytes appear to need external stimuli for 
further maturation. For further maturation processes, the cultivation should mimic the heart 
and its environment.  
 
Cardiomyocytes in the developing heart are exposed to several stimuli, chemical stimuli as 
well as mechanical stimuli. Although the exact nature and effects of these stimuli are not 
fully known, it is thought that chemical stimuli include probable stimuli for cardiomyocyte 
alignment, resulting in in vivo resembling anisotropic contraction. Mechanical environmental 
stimuli among others include elastic, moving foundations and with that mechanical stretch 
due to the extension of the foundation. 
 
Earlier studies have showed that induction and sensing of stretch appears to be crucial for 
proper development and assembly of sarcomeres. Cardiac constructs exposed to cyclic 
stretch assembled myofibrils with compact, aligned sarcomeres. Sarcomeres are the smallest 
functional unit of a myofibril (muscle bundle), repeating units along the length of a myofibril. 
Serial alignment and parallel bundling of sarcomeres is required for temporal and spatial 
synchronization required for uniform contraction[3]. 
 
However, not only aligned and bundled sarcomeres indicate matured cardiomyocytes. 
Maturation progression can be assessed at four levels: molecular, cellular, ultra-structural and 
functional. On molecular level, the progression can be seen from the distribution of cardiac 
proteins. For example a high doze of contractile proteins (actin, myosin) indicates high 
contraction density. On cellular level, the cell number, viability of the cells and the 
metabolism indicate stages in maturation[1].  
 
Ultra-structural, maturation can be assessed among others by morphology of cells and nuclei, 
development and volume fractions of the earlier mentioned sarcomeres, development and 
frequency of mitochondria. The mitochondria are the cells energy supply; they generate most 
of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. A 
high mitochondrial density indicates a high energy-usage, relating to active contracting cells. 
Moreover, aligned, elongated multinucleated cells are indicative of cell maturation. 
 
On functional level we can assess the maturation by amplitude of contractions, maximum 
capture rate and transmembrane potentials. With maximum capture rate the maximum pacing 
rate for synchronous construct contractions is meant. A high maximum capture rate indicates 
functional coupling between cells[1]. 

1.2 Stretchable MicroElectrode Array  

The development of a stretchable MicroElectrode Array could provide a solution for further 
maturation and functional analysis of cardiomyocytes in vitro. A stretchable MicroElectrode 
Array could accommodate the cells in proper contraction. Furthermore, mechanical straining 
of the stretchable MicroElectrode Array could enhance cardiomyocyte maturation.  
 
The introduced stretchable MicroElectrode Array consists of a polydimethylsiloxane (PDMS) 
thin-film spin-coated on a silicon wafer. By wet etching a part of the thin layer of PDMS has 
been exposed, resulting in a flexible membrane clamped in a rigid silicon surrounding. On the 
chip a culture container is positioned to contain the culture medium for cell nourishment 
(Figure 4).  
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Figure 4: Cross-section of the cytostretch device. A membrane is attached to the 
bottom of a silicon wafer with an etched hole in the centre. On the silicon wafer 
a culture container is situated for contain nutritious fluid for the cardiomyocytes. 
The cardiomyocytes anchor themselves on the membrane. Applying pressure to 
the bottom surface of the membrane will now result in straining the 
cardiomyocytes. 

 

 
Figure 5: PDMS’ repeating unit, creating the 
polymer’s backbone. 

 

Figure 6: A three-dimensional representation of 
polydimethyldisiloxane, consisting of a Siliconoxide 
backbone with additional methyl groups. 

  

1.2.1 Polydimethylsiloxane 
Cytostretch is based on a spin-coated thin-film flexible silicone rubber, polydimethylsiloxane 
(PDMS), within a rigid silicone structure. PDMS is used frequently for the production of 
microfluidic chips, its gas-permeability and biocompatibility makes it very suitable as a 
substrate for culturing cells. Previous experiments have shown the suitability of PDMS as a 
substrate for cardiomyocytes[4].  
 
PDMS is a commonly used organosilicon compound, an organic compound containing carbon 
silicon bonds. PDMS contains repeating  (CH3)2SiO units (Figure 5 & Figure 6), where alteration 
of the repeating units in the chain and the degree of cross-linking (tying multiple chains 
together) generates polymers with altering physical properties. Silicon-chlorine bonds are very 
susceptible to cleavage by water, making that PDMS can be synthesized by hydrolyzing 
dichloromethylsilane: 
  

 
1.1   

  
Initially, the hydrolysis reaction (Eq. 1.1) generates a silanol Si(CH3)2(OH)2 which directly, due 
condensation, loses water and forms a siloxane polymer. The polymer is able to retain some 
hydroxyl groups since dichloromethylsilane is bifunctional (it contains two chlorines). The 
hydroxyl groups are able to react with boric acid B(OH)3, forming Si-O-B linkages. Boric acid 
on its turn is trifunctional, and can link three polysiloxane chains together, cross-linking the 
polysiloxane chains. The cross-linking results in a high molecular weight solid elastic polymer 
with interesting properties[5]. 
 
This high molecular weight solid elastic polymer (PDMS) can be produced in colorless, 
transparent form, very suitable for cell constructs, as the transparency accommodates for 
the use of conventional microscopy[6]. PDMS is marketed as a kit that consists of a base 
and a curing agent.  
 

n Si CH 3( )
2
Cl2[ ] + nH 2O! Si CH 3( )

2
O[ ]n + 2nHCl
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PDMS has a wide range of advantageous properties, making it extremely suitable as 
stretchable, flexible cell culture substrate[4-8]: 
 

 PDMS has shown great biocompatibility in earlier studies. 
 PDMS’ gas-permeability ensures gas flow towards cells (non-polar gasses e.g. O2). 
 PDMS shows to be chemically inert. 
 PDMS has the ability to conform to the surface of the substrate over a large area, 

and its deformability makes that it can achieve this conformable contact even on 
surfaces that are non-planar on micrometer scale. 

 PDMS can be released easily from complex and fragile structures, thus easy to 
release from the mould. 

 PDMS is homogeneous, isotropic and shows optical transparency down to 300nm. 
 The elasticity modulus of PDMS is low, facilitating a great flexibility for the cardiac 

myocytes.  
 
We should take in consideration that the Young’s modulus of PDMS depends on various 
factors, many of which are processing parameters. The elasticity modulus strongly depends 
on the thickness of the membrane, with increasing stiffness with decreasing thickness. 
Furthermore, the stiffness of the PDMS layer depends on the speed of spin coating. With 
larger spinning speeds, the PDMS polymer chains get unraveled and aligned, resulting in a 
higher Young’s modulus[9, 10]. These parameters enlarge each other; as result of the higher 
spin speeds to obtain thinner membranes. 
 
Moreover, the ratio base over curing agent also affects the stiffness of the PDMS thin 
film[11]. Another method, which can be used when very thin PDMS layers are required, is the 
addition of thinner to the mixture (lowering the materials viscosity). With additional thinner, 
the PDMS’ thin-film stiffness will decrease[10, 12].  
 
In this study we assume an elasticity modulus of 1MPa, considering a membrane thickness of 
25µm[13]. However, for a proper description of the thin-film’s stiffness properties one 
should determine the elasticity modulus experimentally. One could assess the stiffness of the 
membrane by means of an indentation test. 
 
Whereas the elasticity modulus of PDMS is fairly low, the PDMS film will dictate the stiffness 
of the cell-film construct, and its structural integrity will not allow the cells to freely 
contract. The elastic modulus for a PDMS elastomer (thinly spin-coated) is 1MPa, whereas 
the elastic modulus of for cardiomyocytes is in the range of 30kPa, two orders of magnitude 
difference[4].  
 
To accumilate the anchorage of the cardiac myocytes on the PDMS thin-film, the PDMS 
membrane will be coated with fibronectin. Fibronectin is a glycoprotein (plays a role in cell-
cell interaction) present in blood, connective tissue and at cell surfaces. Fibronectin has 
shown that when on a polymer surface, it enhances the attachment of various types of cells 
to that surface. Fibronectin, through it’s binding to collagen and to the cell surface, forms a 
bridge between the cell and its surrounding matrix, with that participating in the formation of 
the extracellular matrix in tissues[14].  
 

1.2.2 Cell alignment 
Although alignment and parallel bundling of sarcomeres mark cardiomyocyte maturation, the 
alignment of cardiomyocytes can also accommodate for the enhancement of maturation. 
Cardiomyocyte alignment provides anisotropic synchronous contraction seen in mature cardiac 
muscle, accommodating contraction coupling. Moreover, the alignment of the cardiac muscle 
cells is essential for directional stretching, and with that accurate modeling of the 
cardiomyocyte behavior. 
 
The most used method in cell patterning is extracellular matrix protein patterning, guiding the 
direction of cell attachment. Fibronectin is a commonly used protein for this so called 
microcontact printing (Figure 7). A polymer (commonly PDMS) stamp is created containing 
the desired pattern, consequently depositing the fibronectin pattern on the substrate. 
Although microcontact printing results in patterns with a lateral resolution down to 1μm, and 
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the process is very cost effective to create chemically micropatterned surfaces for cell 
biological applications, it is very labour intensive and not suitable for large scale 
cardiomyocyte alignment. Furthermore, the difficulty arises to exactly align the stamp in the 
desired direction. 
 

 
Figure 7: Cell patterning methods; Microcontact printing is the most commonly used method for cell 
alignment. Fibronectin is stamped onto the substrate for easy anchorage of the cells. However, 
microcontact printing is very labour intensive and exact alignment with the small substrate fairly 
difficult. Currently replica moulding is used; grooves are created by using a mold, cells are 
subsequently able to align along these grooves as they react to geometrical cues. 

 
Previous studies have shown that cardiomyocytes react to geometrical cues[3, 15]. Shapes 
were engineered by introducing adhesive islands (coated with fibronectin). The cells spread 
to take on the shape of the islands. Cells on round islands extended cell processes at 
random points along their circumference. Cells on square islands seemed to preferentially 
extend these processes from their corners[15]. Physical constraint of cells within square 
islands may cause them to focus cytoskeleton-based tractional forces in their corners. The 
actin-containing stress fibers (mechanically supporting the cells) of the cells preferentially 
align diagonally over the squared islands. The mechanism by which cells redirect the position 
of their leading edge appears to involve a change in mechanical stress distributions in the 
cells. A relative increase in cell distortion (stretch) along the diagonal may promote actin 
filament formation, in a manner analogous to the way in which actin bundles align with the 
applied stress field when cells are exposed to mechanical stress. 
 
Cells apparently want to generate tension to support mechanical stiffening in the 
cytoskeleton. Therefore, we should also be able to guide cell alignment by geometrical cues. 
In the PDMS membrane, grooves are formed by replica moulding for topological alignment of 
the cardiomyocytes, guiding the attachment of the cells (Figure 7). Replica moulding has the 
big advantage that it can be incorporated in the process-flow of the Cytostretch chip in the 
clean room, making it less labour intensive. Fibronectin coating before cell plating can now be 
realised by normal coating mechanisms (submersion by a fibronectin containing solution), 
creating a thin fibronectin layer on the entire membrane. 
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Figure 8: A grooves substrate with plated cardiomyocytes. Notice the 
alignment of the cardiomyocytes to the replica moulded grooves. The 
cells clearly react to the geometrical cues. Notice also the poor 
alignment in the small section where no grooves are situated. 

 
Figure 8 shows the topological alignment of cardiomyocytes on a PDMS membrane. Notice 
that the alignment in the region containing grooves is in the direction of the grooves, which 
will introduce anisotropic contraction of the cardiomyocytes. 

1.2.3 Cytostretch chip 
For the measurement of the cells’ membrane potentials, in order to determine arrhythmias 
during drug testing, the stretchable MicroElectrode Array should contain electrodes (Figure 
11). Furthermore, from the cells’ membrane potential we are able to determine the stage of 
maturity. Whereas we need the total substrate to remain flexible, we also need interconnect 
flexibility.  
 
In a parallel project the insertion of interconnects into the membrane, with electrodes to the 
surface is assessed, preserving the flexibility of the membrane and maintaining the titanium 
nitride interconnects’ function.  
  
Three membrane configurations have been proposed for cardiomyocyte straining. The first 
configuration is based on a circular membrane, with grooves running radially. This membrane 
configuration is designed for multi-axial straining purposes, mimicking in vivo loading 
conditions. The transverse strain of the membrane will result in transverse strain on the 
cardiomyocytes, while the radial elongation of the membrane will result in a longitudinal cell 
stretch.  
 
The interconnect design in this configuration is proposed in a helical manner, showing 
uncoiling with increasing pressure. We should however note, that this helical formed 
interconnects will dramatically constrict the transverse strain, transforming the multi-axial 
straining configuration into a uni-axial straining configuration. 
 
The other two chip configurations are based on the same membrane shape. A dogbone 
membrane shape has been proposed. The inflation of a dogbone shaped membrane will result 
in a cylindrical centre section, producing uni-axial membrane strain in this section. Elongation 
(in plane) of the membrane will only exist in the direction of the short axis. This will result in 
a uni-axial strain on the cardiomyocytes. Grooves are directed in two manners in order to 
obtain two separate loading conditions. One configuration results in a transverse loading, 
while on the other a longitudinal load to the cells is applied. With these two design 
configurations, the effect of transverse and longitudinal stress can be separated for 
determination of the influence of directed mechanical load (transverse vs. longitudinal). 
 
The interconnect design in the dogbone configuration contains four meander shapes. Because 
in the central membrane region only stretching over the short axis exists, interconnects are 
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safe to run parallel to the long axis. An earlier study has proven that both ends of the 
dogbone membrane contain two low strain pathways, interconnects are guided along these 
pathways with a superimposed meander shape to further minimize direct interconnect 
loading[16]. Moreover, all interconnects are isolated in a layer of parylene (Figure 11), 
further absorbing stress (stress shielding). 
 
Currently two configurations are being processed, the circular membrane and the dogbone 
membrane with grooves along the major axis (transverse cell loading). The produced chips 
contain grooves, however, due to further study on interconnects positioning, the current 
chips lack interconnects for membrane potential measurements. For preliminary testing we 
are however able to use the currently produced chips. The first tests concern the 
determination if further maturation occurs when cultured cardiomyocytes are mechanically 
stimulated. Maturity stage can be determined by many factors (Section 1.1.3), making 
membrane potential measuring electronics redundant for preliminary testing. During this 
thesis the currently produced configurations are considered, the circular and the long axis 
grooved dogbone chip without electrodes and interconnects. 
 
Figure 11 shows the proposed Cytostretch system, containing a flexible PDMS membrane 
attached to a rigid silicon wafer chip. To the silicons upper side a transparent culture 
medium container is attached. Cut-outs are created in the upper side of the membrane for 
the topological alignment of the cardiomyocytes. In between the cut-outs the interconnects 
are situated, wrapped in isolating parylene, which lead to electrodes with parylene openings 
to the surface. The interconnect ends lead to a bond pad, connected to a circuit board for 
membrane potential readout. 
 
  

  
Figure 9: Dogbone configuration Cytostretch for an 
approached uni-axial loading condition, here a 
transverse loading condition will be applied, cells will 
presumably align with the grooves. 

Figure 10: Circular configuration Cytostretch for 
a multi-axial loading condition. The grooves run 
radial, in order to obtain transverse and 
longitudinal strain. 

 
Figure 11: Proposed Cytostretch system, containing of a chip including membrane 
with grooves, interconnects and electrodes (titanium-nitride embedded in parylene) 
and a culture container for culture medium. The electrical signals are transferred 
via a bondpad towards a circuit board for electrical readout. 
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1.3 Study objectives 

Cytostretch development is a collaborative project between Philips Research, Eindhoven and 
the Leiden University Medical Center in Leiden. A research group situated at Philips, 
Eindhoven, performs research on the development of the Cytostretch chip. The cell biology 
of the cardiac myocytes with focus on cultivation protocols is studied at the LUMC in Leiden.  
 
The integration of the cultivation protocol into the Cytostretch chip development has yet to 
be made. Measurement of stretched cardiac myocytes in vitro is one of the main goals of 
the Cytostretch project. However, in order to stretch cardiac myocytes in vitro the 
development of an in vivo mimicking loading protocol is essential.  
 
The main goal of this thesis is the discussion of a proper loading protocol for the straining 
of cardiomyocytes in vitro. For the development of a proper cardiomyocyte loading, two main 
objectives have to be fulfilled:  
 

 The first objective of this study is to gain insight in the strain cardiomyocytes have 
to endure in vivo. 

 The second objective of this study is to determine the membrane behavior of both 
Cytostretch configurations, in order to determine how the amount of applied 
pressure relates to membrane stretch. 

 
For the determination of in vivo cardiomyocyte strain, use is made of a mathematical model 
in the calculation of left ventricular mechanics. Moreover, for the determination of the 
Cytostretch membrane behavior an analytical model is introduced. 
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PART II : LEFT VENTRICLE MECHANICS  
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2 Left Ventricular Fiber Strain 

This chapter describes the strain in the fibers of the left ventricle of an adult human heart. 
The left ventricular fiber strain is simulated by a rotationally symmetric thick-walled 
mathematical model considering an anisotropic fluid-fiber continuum subjected to large 
deformations.   
 
The Analytical left ventricular Model results in a predicted strain in fiber direction analogous 
with the strain in human cardiac fibers during a normal cardiac cycle. Together with the 
membrane strain behavior described in Chapter 4, these predicted strain values lead to a 
natural pressure protocol for the experimental setup. 
 

2.1 Introduction 

In vivo measurement of the left ventricular wall mechanics has proven to be very difficult. 
Transducers inserted into the wall to measure stress, damage the tissue at the site of 
measuring[17]. 
 
When modelling the left ventricle in a mathematical manner to describe wall mechanics, 
simplifications concerning the characteristics of the ventricle are required. Each simplification 
is a compromise between accuracy and calculation time. 
 
Initially, most calculations on the left ventricular wall are based on the classical theory of 
elasticity [18, 19] using Hooke’s law or the Laplace Law. Laplace’s Law relates the pressure 
difference across a membrane to its curvature and surface tension, but is only valid for thin 
walled structures, and Hooke’s law assumes that elastic deformations are small, i.e., less than 
approximately 5% of their initial unloaded dimensions. It is well known, however, that 
deformation of the left ventricular wall material during a normal cardiac cycle is not small, 
and the left ventricular wall thickness can neither be assumed small. It is therefore apparent 
that the classical theory is not appropriate to describe the mechanical behavior of the left 
ventricular wall. 
 
Wong and Rautaharju [20] and Falsetti [21] proposed thick-walled models of the left 
ventricle, considering an ellipsoidal shell with the myocardium assumed as passive material. 
They assumed deformation as a result of intraventricular pressure only. The entire cardiac 
cycle was analyzed, and stress components were computed according to the coordinate 
system dictated by total ventricular geometry rather than according to fiber orientations and 
sarcomere lengths at various wall layers. Wong later [22] proposed a similar computational 
method, however now considering a computed sarcomere distribution across the ventricular 
wall. Both models proposed by Wong still made of the linear elasticity theory, assuming small 
deformations. 
 
Mirsky [23] was the first to compute ventricular stresses based on large deformation theory. 
Mirsky first assumed the geometry of the left ventricle to be spherical, and found that the 
tangential stress at the endocardial surface was ten times as high as obtained using small 
deformations elasticity theory. Several different shapes of the left ventricle have been 
considered. Janz [24] developed formulas for estimating local average circumferential stress 
in spherical, cylindrical, conical and ellipsoidal shapes, but again considered the classical 
elasticity theory. Chaudry et al. [25-27] combined the work of the above researchers and 
developed models for the calculation of stresses and strains using spherical and conical thick-
walled shells applying large deformation analysis. He concluded that a truncated conical model 
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leads to more realistic results than the spherical model and enables one to evaluate stresses 
and strains from base to apex instead of only at the equatorial region. 
 
Taber [28] approximated the ventricle as a thick-walled cylinder consisting of incompressible 
laminae of equal thickness, which resulted in a non-linear shell theory to describe the 
stresses in the left ventricular wall (accuracy dropped with increasing lamina thickness).  
 
The researchers mentioned above, however, all assumed the left ventricular wall material 
isotropic and homogeneous. One can imagine that this is an assumption, which may have a 
big impact on the results, as the left ventricular heart wall consists of a fiber structure 
embedded in an incompressible fluidic material. According to Feit [29] a realistic model of 
the left ventricle should take into account the known anatomic structure of the left 
ventricular wall and the key mechanical properties of its muscle fibers. Feit developed a 
model that consists of a hollow cylindrical mass of muscle bound between two plates of 
negligible mass that takes into account non-eligible wall thickness, incompressibility, finite 
deformation, nonlinear elastic effects and the known fiber architecture. The muscle fibers 
follow a helical course in the wall, with a fiber angle (i.e. helical pitch) changing smoothly 
across the wall [30, 31] 
 
Feit uses a simplification for the model; it accommodates for an increase in chamber volume 
without undergoing twisting. To realise this zero rotation, Feit assumes a second system 
containing fibers with an opposite helical pitch angle. However, such a counter system seems 
not to exist, and twisting of the apex with respect to the base during ejection cannot be 
eliminated [32]. 
 
The model used here for the calculation of left ventricular fiber strain is based on the models 
of Arts et al. [32-35] and Chadwick [36-38]. These researchers determine the relation 
between left ventricular pressure and left ventricular volume on the one hand and the 
transmural distribution of sarcomere length and fiber stress on the other. Chadwick describes 
the compact region of the left ventricle by a cylindrical geometry including torsion. For 
simplification reasons Chadwick neglects non-linear effects, such as finite deformation and a 
strain-dependent stiffness. Transmural stress and strain distributions are obtained with use of 
a quasi-static equilibrium. The upper surface must be in force equilibrium and moment 
equilibrium, integration over the total left ventricular wall results in a stress distribution. Arts 
et al. [32], describes the transmural stress and strain in a similar manner. They simulated 
the left ventricle by a thick-walled cylinder composed of 8 concentric shells, with the 
advantage that each shell has a constant fiber angle. Again transmural distributions were 
obtained by force and moment equilibrium. 

2.2 Modelling the left ventricle 

The compact region of the left ventricle has a shape, which can be roughly described as a 
thick-walled, truncated, prolate ellipsoid. In a section through the wall (Figure 12) the 
projection of the direction field onto a meridional plane defines a continuum of nested closed 
curves. These curves are then rotated about the axis of revolution, defining a system of 
closed toroidal surfaces. A fiber path lies on one of these toroids and winds around its 
surface in a helical manner. This is all based on a computation of Chadwick [37], who utilized 
Streeter’s [30] measurements and assumed axial symmetry. Muscle fiber orientation in the 
left ventricular wall is quantified by the helix fiber angle, defined as the angle between the 
muscle fiber direction and the local circumferential direction. The helical pitch angle runs from 
a negative angle in the outer layers (epicardium) to a positive angle in the inner layers 
(endocardium).  
 
The shape of the modelled ventricular wall is an important factor in resulting stress 
contribution in the wall [39]. Furthermore, when introducing anisotropic properties in the 
thick wall, the transmural course of fiber stress appeared to be qualitatively and 
quantitatively different [32, 37] mainly due to choice of fiber orientation. With a proper 
choice of the transmural course of fiber orientation close to anatomical findings [30], and 
assuming torsional deformation, fiber stress was calculated to be homogeneous [35] under a 
wide variety of loading conditions. Such homogeneity in mechanical load is supported by an 
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experimental study [40] in which transmural differences in strain along the fiber direction 
were found to be below the level of significance. In terms of evolution one can imagine this 
homogeneity of fiber stress, optimization of fiber direction will occur to lower peak stresses, 
resulting in a fiber direction accommodating a homogeneous stress distribution[41]. The 
homogeneity of fiber stress simplifies the model and drastically reduces calculation time. 
 

 

 
Figure 12: Section through the left ventricular 
wall, showing a representation of the fiber 
direction. The fibers run in a helical manner 
around the ventricles circumference, with 
elongating helix toward the centre section of the 
wall. This results in transmural fiber direction with 
negative angles at the outer section of the wall 
towards positive angles at the inner sections of 
the wall. 

Figure 13: Section of a fiber bundle, indicating 
the direction of several stress components. Fiber 
stress in the circumferential direction is indicated 
with σcc, in the axial direction, the t-direction 

with σtt, and perpendicular to the surface, in the 
h-direction with σhh. 

 
Previous numerical approximations have shown that to obtain a homogeneous fiber stress, 
the transmural course of the helix fiber angle should go from +60º at the endocardium 
(innermost tissue layer) through +15º in the midwall layers to -60º at the epicardium 
(outermost tissue layer)(Figure 12)[42]. 
 
In the present calculations, myocardial material is considered to be a soft incompressible 
material, described by a hydrostatic pressure (implying a fluid like behavior of the soft non-
fibrous tissue) embedding muscle fibers (fluid-fiber continuum). Fiber stress is assumed 
homogeneous over the left ventricular wall, and calculated for a rotationally symmetric 
geometry, thus excluding geometry effects. Fiber strain is calculated for a human left 
ventricle during a normal cardiac cycle.  
 

2.2.1 Calculations for a thin-walled structure 
We first consider the fiber stress in a thin-walled rotationally symmetric chamber. During 
systole, when fiber stress is high, in the soft bulk of the material hydrostatic pressure is the 
only stress component (denoted by Pim). For the stress along the fiber direction (σ1) 
perpendicular to the fiber direction (σ2) it holds: 
  

 
2.1   

 2.2   
  
When we consider this thin-walled structure, the fibers are directed parallel to the to the 
surface. Arts et al. [32] showed that for the components of the fiber stress in the 
circumferential direction (σcc), in the axial direction, t-direction (σtt), and perpendicular to the 
surface, h-direction (σhh) (Figure 13), it holds that: 
  

 
2.3   

 
2.4   

! 1 = "Pim + ! f

! 2 = "Pim

! cc = "Pim + ! f cos
2 #

! tt = "Pim + ! f sin
2 #
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 2.5   
  
From Equations 2.3, 2.4 and 2.5 the fiber stress can be obtained: 
  

 
2.6   

  
with (goniometry) 
  

 
2.7   

  
results in: 
  

 
2.8   

  
Which means that fiber stress can be expressed in terms of (resultant) perpendicular stress 
components of the material, irrespective of the fiber orientation. 
 

 
Figure 14: Thin-walled rotationally symmetric shell. The variables 
r and z are the radial and axial coordinate, c and t are the 
circumferential and tangential coordinate in point S. ρc and ρt 

refer to circumferential and tangential radius of curvature[43].  

 
If we now consider any rotationally symmetric thin-walled chamber (Figure 14) where r is the 
radial coordinate, c is the circumferential coordinate and z the axial coordinate. The 
geometry of this chamber is described by a function r(z), where obviously the radius of the 
shell is a function of the height. In a point P on the surface of the chamber, t is the 
coordinate tangential to the surface (perpendicular to the c-direction). The symbol α is 
defined as the angle between the t-direction and the z-direction, furthermore ρc and ρt 
represent the radii of curvature along respectively circumferential- and t-direction. 
 
We assume a pressure difference (ΔP) across the thin wall, and take it that the average of 
cavity pressure and outer pressure is zero; from which follows that σhh can be neglected. In 
this case the stress component in axial direction (along the t-coordinate), σtt delivers a force 
in z-direction on the cross-sectional area (because of the thin-walled structure, here only an 
edge) of the area times the force on that area: 
  

 
2.9   

   
Where h represents the wall-thickness. 
 
This force, in terms of equilibrium, must be equal to the pressure difference across the wall 
acting on the cross-sectional area: 
  

 
2.10   
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Resulting in: 
  

 
2.11   

  
The angle α depends on the function r(z), and can be described as follows: 
  

 
2.12   

  
and tanα obviously is the tangent to the curve r(z): 
  

 
2.13   

  
leading to: 
  

 

2.14   

  
Because we consider a thin-walled structure, we can use Laplace’s law. Laplace’s law 
describes the relationship between the transmural pressure difference and the tension and 
radii of the wall. Laplace’s law describes this as an average over the wall, which makes the 
law only valid for thin-walled structures. Laplace’s law states that wall tension can be related 
to transmural pressure in the following manner: 
  

 

2.15   

  
Which means that for the case of the rotationally symmetric shell it holds that: 
  

 
2.16   

  
The radius of curvature at any point x for a curve described by y=f(x) is given by: 
  

                    [44] 

2.17   

  
and considering Equation 2.14 above we obtain: 
  

 

2.18   
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From Equation 2.18 it follows that: 
  

 

2.19    

  
In which a negative sign is introduced because the radius of curvature increases with 
decreasing r. 
 
For the radius of curvature in circumferential direction, Meusnier’s theorem [45] is used. 
Meusnier proved that the radius of any inclined section is equal to the radius of curvature of 
a normal section times the cosine of the angle between the sections: 
  

 
2.20   

  
In which R is the radius of the curve, Rw is the radius of curvature of the normal section of 
the surface in the direction w, and θ is the angle between the normal of the surface and the 
principal normal of the curve. For the radius of curvature of the thin-walled rotationally 
symmetric chamber in circumferential direction, Equation 2.20 leads to: 
  

 
2.21   

  
For a cylinder, where r is constant, from Equations 2.14, 2.19 and 2.21 it follows that: 
  

 2.22   
  
thus: 
  

 2.23   
  
and obviously: 
  

 2.24   

 2.25   
  
We can now express the thickness h in terms of the function r(z), the pressure and the fiber 
stress, by eliminating the stress component σcc in Equation 2.16 by using Equation 2.8 and 
σhh=0. Furthermore, we can eliminate σtt with use of Equation 2.11. Substitution of Equations 
2.14, 2.19 and 2.21 leads to the following function for the wall thickness: 
  

 

2.26   

  
When assuming the homogeneous distribution of fiber stress (σf), we obtain for the volume 
of the shell: 
  

 

2.27   

  
Integrating the cross-sectional area of the wall over the axial length of the rotationally 
symmetric geometry. 
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When including the expression for h (Eq. 2.26) we obtain: 
  

 

2.28   

 

2.29   

  
Notice that the first integral equals the inner cavity volume V, leading to: 
  

 

2.30   

  
From Equation 2.30 the following relation between cavity volume, shell volume, transmural 
pressure and fiber strain can be obtained: 
  

 

2.31   

  
In Equation 2.31 Verr is defined as the error volume introduced by the last integral term. This 
error volume equals zero, if at both ends; for z=zmax and z=zmin the derivative dr4/dz=0, which 
is the case if the cavity is closed with a finite radius of curvature, or if it is open at the 
ends with dr/dz=0. 
 
We assume a closed cavity with a finite radius and can now state that, for a rotationally 
symmetric thin-walled chamber, the following holds: 
  

 

2.32    

  
Notice that Equation 2.32 implies that the dimensionless ratio of transmural pressure to fiber 
stress depends solely on the dimensionless ratio of shell volume to cavity volume, whereas 
the actual shape of the shell is irrelevant as long as it is rotationally symmetric and dr4/dz=0 
at both ends. 
 

2.2.2 Calculations for a thick-walled structure 
As we have determined that the left-ventricle cannot be considered a thin-walled structure, 
we have to convert the formulations to a thick-walled rotationally symmetric chamber.  
 
The relation between fiber stress and left-ventricular cavity pressure (Plv) in a thick-walled 
rotationally symmetric chamber is found by integration of pressure increments over a 
sufficient number of thin fitting shells.  
 
Assuming again a homogeneous fiber stress in the thick wall, with fibers directed parallel to 
the isobaric surfaces, we obtain by using Equation 2.32 inside the wall, for the derivative of 
the hydrostatic pressure with respect to the enclosed volume: 
  

 
2.33   
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Equation 2.33 contains a negative sign, resulting from the negative pressure gradient 
towards the outer wall. Integration from the outer wall surface (V=Vlv+Vw) where the pressure 
is assumed to be zero, to the inner wall surface (V=Vlv) results in: 
  

 

2.34   

  
Which can be approximated by: 
  

 

2.35   

  
Notice that for a very small wall volume: 
  

 
2.36   

  
Equation 2.34 reduces to Equation 2.32. 
 
The equation for a thick-walled structure, implies that, when assuming that the fibers run 
parallel to the isobaric surfaces, and the fiber stress being homogeneous, the dimensionless 
ratio of cavity pressure to fiber stress depends solely on the dimensionless ratio of wall 
volume to cavity volume, and again appears to be independent of other geometric factors 
[43]. 
 
Several research groups showed similar results despite wide variations in model setups. Regen 
[46] derived a similar equation between ventricular pressure, wall volume over cavity volume 
and left-ventricular fiber stress of a prolate spheroid. Arts et al. [35] defined a linear 
expression for left-ventricular fiber stress, using homogeneous fiber stress. Later, Arts et al. 
[34] simulated the left ventricle with mitral valve and right ventricular asymmetry of fiber 
orientation by a cylindrical model. Also the isotropic models described by Mirsky [23] and 
Falsetti et al. [21], show equal results.  
 
Relative fiber stress increases with increasing radius of curvature and with increasing wall 
thickness. Geometry of the left-ventricular wall shows to have little effect on the result; the 
left-ventricular wall stress is mainly determined by the cavity pressure and the relative wall 
volume to cavity volume. Inhomogeneity shows to have little effect on the stress distribution 
across the wall, however, when calculating fiber strain, we should take into account that fiber 
orientation does affect the outcome [32]. Further prove for the orientation of the myofibers 
to accommodate homogeneity should be obtained. 
 

2.2.3 Left ventricular fiber strain 
For the derivation of the left-ventricular fiber strain we use the principle of conservation of 
energy. The mechanical work generated by the myocardial fibers in the entire wall is equal to 
the pumping work of the left ventricular chamber: 
  

 
2.37   

  
 
In Equation 2.37 εf represents the natural fiber strain and Δ here is 
associated with a small increment. 
 
Using the earlier stated assumption that fiber stress and strain are homogeneously 
distributed leads to the following differential form: 
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2.38   

  
The natural fiber strain in the left ventricle wall can be obtained by integration of Equation 
2.38 with respect to relative cavity volume (ratio cavity volume over wall volume):  
  

 
2.39   

  
and applied to Equation 2.34. Which results in the following integral: 
  

 

2.40   

 

2.41   

  
When taking reference volume V0=0 Equation 2.41 results in: 
  

 

2.42   

  
Similar as for the left ventricular fiber stress, for the left ventricular fiber strain a simple 
approximation can be made: 
  

 

2.43   

  
In Equation 2.42 zero strain is assumed at end systolic left-ventricular volume, the smallest 
volume during the normal cardiac cycle. This state is chosen as strain free state, because 
this is the state we assume the cells are in when the membrane is flat (deflated). This 
reference state results in positive strain at end diastolic volume (end of filling phase).  
 
One could also take end diastolic left-ventricular volume as strain free state, because at that 
moment the fibers are fully relaxed (not contracting), and consider a state of negative strain 
at end systole, thus compression of the fibers. For this purpose either one can be chosen as 
reference state, as we want to know the relative length change during the cardiac cycle for 
mimicking purposes.  
 
Initially we want to witness the adaptation of the cardiomyocytes to a normal cardiac cycle, 
assuming that the cells adjust their contraction pattern to the movement of the membrane, 
resulting in contraction of cells when the membrane is in a flat state, and assuming cell-
relaxation when the membrane is inflated. The value we need to obtain is the absolute strain 
between end systolic and end diastolic state of the heart, making the choice of reference 
state, end diastolic or end systolic, irrelevant. 
 
A reference end systolic volume results in a typical reference volume over wall volume ratio 
in the range between 0.2 and 0.4. For the derivation of the following figures, we have 
considered a left-ventricular end systolic volume of 63ml and an incompressible wall volume 
of 200ml [33], leading to a reference volume over wall volume ratio of 0.315. 
 
Thus we assume that: 
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at 
  

  

  
  
resulting in: 
  

 

 

  
Left ventricular cavity volume over wall volume typically increases from 0.2 to 0.8 from end 
systole to end diastole, with end systole volume ratio ranging from 0.2 to 0.4 and end 
diastole volume ratio ranging from 0.6 to 0.8. Here we consider an end-diastolic volume of 
143ml [33], resulting in an end-diastolic relative cavity volume of: 
  

 

 

  
The absolute increase in fiber strain with increasing relative cavity volume from 0.315 to 
0.715 is plotted in Figure 15.  
 
The absolute strain approximated by this mathematical left-ventricular model considering 
homogeneous stress distribution, for left-ventricular fibers during a normal human cardiac 
cycle is 0.147, thus an approximate 14,7%. 
 
 

 
Figure 15: Graph indicating the left ventricular fiber strain as calculated by a rotationally 
symmetric mathematical model. Assumed is a homogeneous stress (and relating strain), 
resulting in a unique strain number. End systolic volume is taken as reference, as we want to 
obtain the absolute strain increase on the muscle fibers in the left ventricle. 
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2.3 Discussion 

Early in the derivation of the left ventricle volume to fiber stress relation for the thin-walled 
rotationally symmetric chamber, the assumption is made that the average of inner and outer 
pressure equals zero. From the expressions 2.2 and 2.5 it follows that σhh and Pim both are 
zero too. When adding a hydrostatic pressure to both the inner and the outer pressure, σhh 
and Pim both increase.  
 
The outcome of Equation 2.32: 
  

 

                                           2.32 

  
remains unaffected as the hydrostatic pressure is not able to store deformation energy in 
incompressible structures [43]. 
 
Obviously, the accuracy of Equation 2.32 is essential for the derivation of accurate fiber 
stress and strain. The error in the equation is expressed by the term Verr in Equation 2.31: 
  

 

                                           2.31 

  
This error term equals zero if the volume is closed with a finite radius or the derivative 
dr/dz is zero at the boundary. This, however, is not the case at the basal boundary of the 
left-ventricle, where the basal boundary is open without the derivative dr/dz being zero at 
that boundary. 
 
The left-ventricle can be seen as a prolate ellipsoid, being cut-off at the upper end, with a 
long to short axis ratio of 2 or more [43]. If we consider a minor axis of 2R and a major to 
minor axis ratio of a, with the centre at the origin and cut-off at z=zmax. 
 
A prolate ellipsoid with both short axes a and long axis c can be expressed in Cartesian 
coordinates in the following manner: 
  

                        [47] 
2.45   

  
The total volume of the prolate ellipsoid (without a part being cut-off) is defined as: 
  

                         [48] 
2.46   

  
In this particular case, with: 
    

        and 
 

leading to    2.47   

    
It follows that: 
  

 
2.48   

  
The volume of an ellipsoidal cap can be defined by: 
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         [49] 
2.49   

  
With 2.47 it follows that: 
  

 

2.50   

  
The volume of the truncated-ellipsoid can be defined as: 
  

 2.51   
  
and shows to be: 
  

 

 

 

2.52   

  
Giving the a volumetric error of: 
  

 

2.53   

  
The maximum error occurs when Verror/Vtruncate_ellipsoid is at a maximum, when the tangent to this 
curve equals zero. This maximum error can be found when we differentiate the ratio 
Vtruncate_ellipsoid/Verror with respect to zmax (for positive zmax) and solve the equation for: 
  

 

 

  
resulting in a maximum error at: 
  

 

 

  
At this maximum error Verr (eq. 2.53) becomes: 
  

 

 

  
with a ≥ 2 (long to short axis ratio of the left ventricle) we obtain: 
  

 
2.54   

  
We now express the stress in fiber direction in terms of V (simplified volume) and in terms 
of V+Verror (true volume), we obtain with Equation 2.54 for a ≥ 2, an error of less than 
2.78%. 
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2.4 Conclusions 

The left ventricle is assumed to be a rotationally symmetric thick-walled structure. The thick-
walled structure is assumed to be build-up out of a, in soft incompressible material 
embedded, fibrous structure. In the calculations of the fiber stress of the left ventricle, the 
fiber stress is assumed homogeneous over the entire left ventricle wall. 
 
The assumption of considering the left ventricular fiber stress to be homogeneously 
distributed can be validated in terms of evolution, the normal heart myofiber structure and 
geometry adapt, until load is evenly distributed. Furthermore, the fiber direction related to a 
homogeneous stress distribution corresponds with experimentally derived values [40]. This 
way we are able to conclude that the left ventricular fiber stress (and corresponding fiber 
strain) can be approximated by a single value. For the determination of a proper loading 
protocol for the Cytostretch experiments this is a desired circumstance, as we are able to 
consider one strain value for the cardiomyocytes. 
 
We can conclude out of the left ventricle calculations, that when assuming a homogeneous 
stress distribution, the fiber stress to ventricle pressure depends mainly on the ratio of 
cavity volume over wall volume. Moreover, we are able to conclude that the shape of the 
left ventricular representation is of minor importance.  
 
The relation between fiber stress and cavity volume leads to the fiber strain with use of the 
principle of conservation of energy. The conclusion can be made that the left ventricle 
mechanics can be approximated by the simple approximations of: 
  

 

                                           2.35 

 

                                           2.43  

  
In Equations 2.35 and 2.43, σf is the left ventricular fiber stress, Plv the left ventricular 
pressure. Vlv is the left ventricular cavity volume, Vw the left ventricular wall volume and Δεf 
the natural fiber strain.  
 
The calculations of the left ventricular fiber strain in section 2.2.3 leads to the conclusion 
that for a healthy adult heart the absolute strain between end systole and end diastole 
equals an approximate 14.7 percent. We should however note that this strain is calculated 
for a healthy adult heart, for there is much MRI (magnetic resonance imaging) data available 
containing cavity and wall volume measures. The cardiomyocytes, which are going to be used 
for the experiments, are however in a much lower maturation stage. From literature however 
it is assumed that the left ventricular cavity volume over wall volume is in a specific range, 
valid for any stage of development [33]. It is assumed that the left ventricle wall growth is 
proportional to the left ventricular cavity increase during development. 
 
Salameh et al. [50] uni-axially strained cardiomyocytes at three different values, 5%, 10% 
and 20%. After 24 hours cyclic mechanical stretch resulted in an increased percentage of 
cells with an elongated phenotype. They discovered that the pecentage of elongated cells 
was dependent on the intensity of the stretch, 10% and 20% stretch generated significantly 
more elongated cells than 5% stretch. There was no significant difference in percentage of 
elongated cells between 10% and 20% stretch. We can thus state that the calculations lead 
to reasonable fiber strains, applicable for the Cytostretch experiments. 
 
Although the outcome of the calculations seems reasonable, we should take into account 
that various simplifications have been made in order to describe the mechanics of the left 
ventricle with reduced calculation time. Biological tissue contains many structural 
components. In the derivation of the left ventricle mechanics, the material is assumed as a 
fluid-fiber continuum, as the incompressible fluid like material and muscle fibers are the most 
distinct components. The next component, which provides consistency of the left ventricle 
material, is collagen. Collagen exists in the left ventricular wall in a matrix structure, and 
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could have effect on the left ventricular fiber mechanics. For increased accuracy a fluid-fiber-
collagen continuum could be considered in the derivation of the left ventricular strain.  
 
Chadwick et al. [38] described the left ventricle mechanics according to the model of Arts 
et al. [32] with an additional collagen matrix, compared the two material models [36-38] 
and discovered that the contribution of the collagen matrix to the elasticity of the material 
is critically dependent on the helical pitch angle of the collagen matrix, the effect shows to 
be maximal when the pitch angle of the collagen matrix equals that of the muscle fiber 
(Section 2.2). Moreover, the collagen matrix appears to affect stiffness in end systole as well 
as end diastole (reference is taken at dead volume 45ml). The elongation between end 
systole and the reference volume (dead volume) deviates by less than 8 percent from the 
elongation between end diastole and reference volume when assuming homogeneity in fiber 
strain over the wall. Incorporation of collagen in the material model could thus result in a 
lowered fiber strain by maximum 8 percent.  
 
To be on the safe side when stretching the cardiomyocytes we should consider the 14.7 
percent as a ceiling value. 
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PART III : MEMBRANE MECHANICS 
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3 Thin Plate Mechanics 

This chapter describes the mechanical behavior of a thin plate, for the derivation of the load-
deflection behavior of both membrane configurations in Chapter 4. The mechanical behavior 
of a thin plate is generally described in differential equations. 
 
For the derivation of the differential equations tin plate’s mechanics, we apply the classical 
plate theory. In this theory three relationships are used for the determination of the 
mechanical behavior. The kinematic equations of the thin plate describe the relation between 
the plate’s displacement and it’s strain, the constitutive equations describe the relation 
between strain and tension of the plate, and the relation between tension and load is 
described by means of equilibrium (Figure 16)[51]. Equilibrium is determined by looking for a 
stationary point in the potential energy of the system. 
 

 
Figure 16: Scheme of three basic equations. The kinematic 
equations describe the relation between the plate’s displacment 
and strain. The constitutive equations describe the relation 
between strain and tension and the relation between load and 
tension is described by means of equilibrium. Externally these 
equations relate the plate’s load to the displacement, internally 
the equations describe the plate’s strain and tension[51]. 

 
The first section describes the kinematics of thin plate or shell elements, considering 
moderate rotations. The kinematics of thin plates can be applied to membranes when 
considering stretch of the neutral line, due to in-plane displacement additional to pure 
bending strains, due to perpendicular displacement. Section 3.2 describes the constitutive 
equations of the plate, which result in a stiffness matrix that can be used easily for the 
determination of the potential energy of the system. In Section 3.3 the equilibrium equations 
will be derived finalizing the thin plate characteristics. 
 
The final description between load, tension, strain and displacement will be used in Chapter 4 
for the determination of the load-deflection behavior of both membrane configurations. 

3.1 Kinematic Equations 

The kinematics of a membrane can be derived with use of the classical plate theory; the 
classical plate theory consists of mathematical descriptions (differential equations) that 
describe the mechanics of a thin plate (one side much smaller than the two other sides). 
The kinematics of classical plates relates the plate’s displacements to its strains. As 
mentioned earlier, the total membrane kinematics contains the bending strain as well as the 
extensional strain, when considering large displacements.  
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Thus we consider the kinematics of thin plate as follows: 
  

 
3.1   

  
In Equation 3.1 εmid-plane is defined as the strain in the middle plane of the plate (neutral line) 
and κ is the curvature of the middle plane. Notice that if the in-plane strain is zero (small 
deflections), that the total strain is defined as: 
  

 3.2   
  
Thus considering pure bending.  

3.1.2 Small deflections 
In order to derive the strain as relation of displacement for a thin plate, we first consider 
this pure bending state. Figure 17 represents the bending of a small section of a beam in 
response to transverse load. The z-direction is here chosen positive downwards.  
  

  
Figure 17: Representation of a small bended 
section of a beam in response to transverse load. 
The z-direction is taken positive downwards. In 
pure bending the middle plane does not undergo 
extension, in positive z-direction the plane will 
undergo a compression and in negative z-direction 
the plane will undergo extension. 

Figure 18: Representation of a part of the 
neutral axis. ds represents a small part of the 
neutral axis, and θ(x) represents the incremental 
angle. 

  
During pure bending the lateral sides remain plane and rotate about the neutral axes, to 
remain normal to the deflected middle surface. In pure bending, the middle plane (neutral 
plane) does not undergo any extension.  However the angular segment dθ varies with the 
distance from the neutral line, due to the small chance in radius of curvature (ρ) from top 
surface to bottom surface of the beam, as the portions above the neutral line are in tension 
and the portions below the neutral line in a state of compression. Specifically, the length of 
an element dL at a distance z from the neutral axis is defined by: 
  

 3.3   
  
At the position of the neutral axis, the corresponding segment is equal to dx, the differential 
length of the segment when the beam is not bend: 
  

 3.4   
  
from which we obtain:   
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Since the unbend length of the segment is dx we can derive that the axial strain εx at 
position z is: 
  

 

3.6   

  
We consider only the neutral axis (Figure 18). It follows that an increment of beam length ds 
along the neutral axis is related to dx by: 
  

 
3.7  

  
And the slope of the neutral axis: 
  

 
3.8   

  
The relation between ds and the incremental angle is, from Equation 3.4: 
  

 3.9   
  
If we now use small angle approximation (moderate rotations) for the small increment we 
obtain: 
  

 
3.10   

 
3.11   

  
From Equations 3.10 and 3.11 it follows that: 
  

 

3.12   

  
The unit elongation in x-direction of a two-dimensional element at distance z (positive 
downwards) from the normal surface can thus be represented by: 
  

 
3.13   

  
The same holds for the y-direction:  
  

 

3.14   
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Equations 3.12, 3.13 and 3.14 lead to: 
  

 
3.15   

 

3.16   

  
when considering pure bending.  
 
If the directions x and y do not coincide with the principal planes of curvature we will also 
obtain a shearing strain, due to twisting of the plate. For the couple of shear strains;   
  

 
 

  
we obtain: 
  

 

3.17   

  
With Equation 3.2, we can state that the curvatures of a plate are defined as: 
  

 
3.18   

 

3.19   

 

3.20   

  
The sign changes in Equations 3.15 to 3.20 are due to the fact that for the moments 
related to these curvatures (Equations 3.36 - 3.38) the signs are chosen as such that the 
positive values of these moments are represented by vectors in the positive direction of x 
and y if the rule of the right hand screw is used [52]. 
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3.1.3 Large deflections 
Secondly we assume large deflections, for the determination of the strain due to the stretch 
of the membrane. Figure 19 represents a segment of the neutral axis in the initial state and 
the deformed state.  
 

 
Figure 19: Segment of the neutral axis at initial and at 
deformed state, the original length of the segment is 
defined by dx, the displacements in plane and out of 
plane are defined as respectively u and w. 

 
The original length of the segment is dx, resulting in a deformed length: 
  

 
3.21   

  
When considering moderate rotations (small angle approximation for the small increment) we 
obtain: 
  

 

3.22   

 
3.23   

 

3.24   

  
and similar: 
  

 

3.25   

  
Analogous to the case of pure bending; if the directions x and y do not coincide with the 
principal planes of curvature we will also obtain a shearing strain, due to twisting of the 
plate. For the couple of shear strains we obtain analogous to Equation 2.29:  
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3.2 Constitutive Equations 

Polydimethylsiloxane has the mechanical property that it is a homogeneous isotropic material. 
In Chapter 4 the following constitutive equations will be applied to the Cytostretch 
membranes. Therefore, for the derivation of the constitutive equations assumed is a 
homogeneous isotropic material. Furthermore, for simplification reasons a linear elastic 
material model is assumed. 
 

3.2.1 Small deflections 
Similar to the derivation of the kinematic equations, we first assume small deflections, and 
focus on the constitutive equations related to bending of the thin plate. To derive the 
bending equations we primarily look at bending of a rectangular plate due to uniformly 
distributed moments Mx and My, in such a way that the xz and yz planes are the principle 
planes of the deflection surface (Figure 20). 
 

 
 

 
 

Figure 20: Representation of a rectangular thin plate, 
bend by uniformly distributed moments Mx and My, in 
such a way that xz and yz are the principle planes of 
the deflection surface. 

Figure 21: Small element of the rectangular 
thin plate with dimensions H, dy and dx. A 
small thickness section dz of this element is 
considered. 

 
We recall the kinematic Equations 3.15 and 3.16:  
  

 
                                           3.15 

 

                                           3.16 

  
Hooke’s law for linear-elastic isotropic materials states: 
  

 
3.27   

 
3.28   

  
in which the lateral strain (y-direction) must be zero in order to maintain continuity during 
bending. Equations 3.27 and 3.28 lead to: 
  

 3.29   

 
3.30   

  
Now the stress in x-direction becomes: 
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3.31   

  
The bending moment (for the two dimensional case) can be derived by multiplication of the 
arm (z) times the stress, integrated over the thickness of the plate: 
  

 

3.32   

  
In Equation 3.32 we take the first term to be de flexural rigidity of the plate: 
  

 

3.33   

  
By using Hooke’s law we can also find the external moments Mx and My for a three-
dimensional problem. The normal stresses distributed over the lateral sides of the element 
(Figure 21) can be reduced to couples, the magnitudes of which, per unit length must be 
equal to the external moments: 
  

 

3.34   

 
3.35   

 

3.36   

 

3.37   

  
If the directions x and y do not coincide with the principal planes of curvature, not only 
bending moments Mxdy and Mydx will act on the sides of the element, but also the twisting 
moments Mxydy and Myxdx. For the couple of twisting moments we obtain: 
  

 
3.38   

  

3.2.2 Large deflections 
When we consider large deflections also the tension in plane has to be considered. We again 
recall the kinematic Equations 3.24, 3.25 and 3.26 due to stretch: 
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If we again obey Hooke’s law, we obtain: 
  

 

3.39   

 

3.40   

 
3.41   

  
Integration of Equations 3.39, 3.40 and 3.41 over the thickness of the plate results in the 
plates tension components: 
  

 

3.42   

 

3.43   

 
3.44   

  

3.2.3 Derivation of the ABD-matrix 
For the description of the membrane mechanics the constitutive equations derived in section 
3.2 are placed in the ABD-matrix. The ABD-matrix defines the bending and extensional 
stiffness of the plate and is used in Section 3.3 for the derivation of the total strain energy 
of the membrane for the determination of the load-deflection relation. 
 
The ABD-matrix shows the constitutive relations of the thin plate in a short overview: 
  

 

3.45   

  
With: 
  

 

3.46   

 

3.47   

  
In which: 
  
A(Aij)=extensional (membrane) stiffness matrix and its elements (i,j=1,2,6)  
B(Bij)=bending-extension-coupling stiffness matrix and its elements (i,j=1,2,6)  
D(Dij)=bending (flexural) stiffness matrix and its elements (i,j=1,2,6)  
  
When considering an isotropic, homogeneous material, the bending-extension-coupling 
stiffness matrix is zero. The bending stiffness matrix can be obtained from Equations 3.36, 
3.37, 3.38 and 3.33: 
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3.48   

  
The extensional stiffness matrix can be obtained from Equations 3.42, 3.43 and 3.44: 
  

 

3.49   

  
From Equations 3.48 and 3.49 we obtain the following ABD-matrix: 
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3.3 Equilibrium Equations 

Equilibrium here is determined by the principle of minimum potential energy. Considering the 
second law of thermodynamics, a system will always approach a point (stationary value) that 
minimizes its energy. 

3.3.1 Potential energy 
We consider a body, initially in equilibrium, subjected to a combination of surface forces Fs 
and body forces Fb, and quasi-statically deforms and displaces as a result of these forces. For 
the derivation of the equilibrium equations, we use the method of minimum potential energy. 
The total potential energy of the system contains the bending strain energy, the extensional 
strain energy, the potential energy of body forces and the potential energy of surface 
forces. The external forces result in potential energy of opposite sign, as the potential of 
these forces decrease when the internal potential increases. The total potential energy of the 
system can therefore be defined as follows: 
  

 
3.51   

 
3.52   

  
In which W is the strain energy of the plate, containing the bending strain energy and the 
extensional strain energy. Fs,xyz are the surface force components, and Fb,xyz the body force 
components.  
 
A material under strain contains elastic energy; energy stored in a body or in a system due 
to its position in a force field or due to its configuration. Since energy is the sum over all 
displacements time the force needed for the displacement, we derive for the elastic strain 
energy (W) for a thin plate per unit volume; one-half the product of stress times strain for 
each component. The factor 1/2 results from counting twice for each component. For an 
element of volume dV we obtain: 
  

 
3.53   

  
For the total strain energy of the plate we now obtain: 
  

 

3.54   

  
We can express stress in terms of the product of stiffness and strain. The strain energy of 
the plate can therefore be derived from the ABD-matrix 3.50 (containing the bending en 
extensional stiffness of the plate).  
  

 

3.55   

  
Equation 3.55 shows the integration over the area of the plate, as in the stiffness matrix 
the height of the plate is already included. Previously stated, for an isotropic, homogeneous 
material, the bending-extension coupling stiffness matrix B equals zero. Therefore, with 
Equations 3.48 and 3.49 we obtain: 
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The first term in Equation 3.56 represents the strain energy due to the extension, and the 
second term due to bending of the plate. We thus obtain for the strain energy due to 
bending (and twisting) of the plate (from Eq. 3.48): 
  

 
3.57   

 
3.58   

  
With kinematic Equations 3.18, 3.19 and 3.20, we obtain: 
  

 

3.59   

  
Equation 3.59 can be rewritten as follows (Appendix 2): 
  

 

3.60   

  
For the strain energy due to the extension of the plate, the first term in Equation 3.56, we 
derive (from Eq. 3.49): 
  

 
3.61   

 
3.62   

  
With kinematic Equations 3.24, 3.25 and 3.26 we obtain for the extensional strain energy: 
  

 

3.63   

  
For the total strain energy (Eq. 3.56) of the plate we derive: 
  

 
3.64   
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When considering a distributed load (P) underneath the thin plate we define (from Eq. 3.52) 
the load potential as follows: 
  

 
3.66   

  
The total strain energy and the load potential together form the total potential energy of 
the system (U). The body forces can be neglected when considering very thin plates, the 
body forces (from gravitational forces) are not significant for membranes with negligible 
mass.  

3.3.2 Equilibrium 
A structure or body will deform or displace to a position that minimizes the potential energy 
(second law of thermodynamics), the structure will approach a stationary point. Therefore by 
using approximations for the displacement fields, calculating the total potential energy, and 
varying the approximate solutions to find a minimum in the total potential energy, we can 
find the load-deflection behavior of the structure. 
 
For this calculation we first define trial displacement functions: 
  

 

3.67   

  
Where c1, c2, …, cn are a set of n parameters that appear in the trial functions. With the 
definition of U (Eq. 3.51), we find the total potential energy of the system, which will 
depend on the parameters c1, c2, …, cn. To find a stationary point in the total potential 
energy (minimum), we can require: 
  

 

3.68   

  
Solving the n equations (Eq. 3.68), gives n values of cj that minimize the total potential 
energy, and with that represent the best approximation to the initial equilibrium 
displacements [52, 53]. 
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4 Membrane Load-Deflection 

This chapter describes the load-deflection behaviour of both the dogbone and circular 
configuration according to a derived Analytical Model with use of the method of Minimum 
Potential Energy of the system.  
 
Verification of the Analytical Model is realised by use of a Finite Element Model and 
experimental results (Section 4.5). 
 
With use of the mathematical Left Ventricle model described in Chapter 2, these relations 
lead to a relation between a desired cardiomyocyte cell-strain and the applied membrane 
pressure. 

4.1 Membrane Displacement Field 

For the calculation of the total potential energy of the system, approximations for the 
displacement fields are defined. By varying the approximate solutions the load-deflection 
behavior of the structure can be determined. In this section the trial displacement functions 
(Eq. 3.67) are defined. In Section 4.2 the trial displacement functions are incorporated in the 
potential energy of the system, from which the membrane deflection and strain can be 
derived (Section 4.3, Section 4.4). 

4.1.1 Dogbone configuration 
The Cytostretch chip exists in two configurations, a circular configuration for multi-axial 
loading, and a dogbone configuration for uni-axial loading conditions. The uni-axial loading 
configuration (Figure 22) is developed for the determination of the influence of directed 
mechanical load; recently only one direction is incorporated in the dogbone configuration. 
Only transverse strain is tested, as the grooves lie in longitudinal direction (Figure 22). 
 

 
Figure 22: Image of an inflated dogbone chip excluding culture container, interconnects and electrodes. Cells 
are transversely strained on this membrane due to the long-axis oriented grooves. Notice that the centre-
section of the membrane bulges up cylindrically, realising the uni-axial straining condition. The strain in the 
membrane can thus be calculated from a small section of the centre region. We are able to model the centre 
section of the dogbone simply by a double clamped thin beam (a two dimensional representation). 
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The geometry of the dogbone configuration results in zero strain in the longitudinal direction 
over the middle part as the strain in this direction gets absorbed by the two half circular 
parts at both ends. The cells are thus in a uni-axial manner strained in the middle section of 
the membrane.  
 
For the derivation of the Analytical Model of this dogbone membrane, we are thus able to 
simplify the membrane to a square membrane clamped at the two edges parallel to the 
grooves and symmetry conditions on the edges perpendicular to the grooves. The upper side 
of the membrane has a free boundary condition, and on the bottom side exists a distibuted 
pressure-load. As a result from the symmetry axes on both edges perpendicular to the x-
axis, we can describe the total behavior of the middle part of the membrane by the 
description of a small slice (dy) of the membrane. The load-deflection behaviour of the 
middle part of the dogbone membrane can thus be descibed by a two-dimensional Analytical 
Model of a uniformly loaded double-clamped beam (Figure 23).  
 

 
Figure 23: Two-dimensional representation of the dogbone 
membrane. The centre section of the membrane can be 
modelled by a double clamped thin beam with a length L and a 
thickness H. 

  
Figure 24: Membrane slices depicting the membrane 
displacement of the centre section of the dogbone 
membrane. Notice the correspondence in deflection 
with the 2D representation of Figure 25. 

Figure 25: 2D representation depicting the membrane 
displacement of the centre section of the dogbone 
membrane. Notice the correspondence in deflection 
with the 3D representation of Figure 24. 

  
Figure 26: Membrane slices depicting the membranes 
axial strain in the centre section of the dogbone 
membrane. Notice the correspondence in strain with 
the 2D representation of Figure 27. 

Figure 27: 2D representation depicting the membranes 
axial strain in the centre section of the dogbone 
membrane. Notice the correspondence in strain values 
with the 3D representation of Figure 26. 

  
 



CHAPTER 4: MEMBRANE LOAD-DEFLECTION 

 45 

The 2D simplification assumption has been verified with use of 2D and 3D Finite Element 
simulations (Appendix 1)(Figure 24 - Figure 27). Notice the correspondence in deflection in 
the 2D simulation in Figure 26 and the 3D simulation in Figure 25. This correspondence can 
also be seen in the transverse strain in the various simulations (Figure 26 and Figure 27). 
 
The two edges of the small slice of the dogbone membrane is clamped, leading to a 
displacement field representing two directions, a displacement function u in x-direction, and a 
displacement function in the z-direction, w (the deflection of the membrane). A trial 
displacement function has to be kinematically admissible, which means that it has to be 
continuous and has to satisfy the boundary conditions. The trial displacement function thus 
has to satisfy the clamped edges and symmetry conditions: 
  

  
4.1   

 
4.2   

 
4.3   

 
4.4   

  
We assume the following trial membrane displacement function in z-direction: 
  

                [52] 
4.5   

  
The cosine describes the membrane movement with clamped edges satisfying condition 4.1 
and symmetry condition 4.2, the constant w0 describes the centre-deflection of the 
membrane. 
 
Figure 28 shows the displacement function in z-direction (after determination of the constant 
w0), for visualization. Notice that the cosine in the trial function properly describes the 
clamped edges, satisfies the boundary conditions. 
 

 
Figure 28: Dogbone membrane trial displacement function in z-
direction (depicting the deflection), versus the location x from the 
centre. The origin is denoted as the centre of the membrane at the 
reference state. Notice that the function properly describes the 
clamped edges, as the deflection leaves under a zero tangent at 
the edges. 
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The displacement in x-direction; u, can be described by Equation 4.6. The displacement 
function satisfies the boundary conditions as the first term ensures symmetry, zero 
displacement at the centre. The second term ensures the edge condition, zero displacement 
at the edges. The polynomial part of the function contains several terms, each refining the 
function. The refinements reduce the error of the function. 
  

   [52] 
4.6   

  
Initially we use the first two terms of the trial displacement function 4.7: 
  

               [52] 
4.7   

  
Notice that function 4.8 again satisfies the boundary conditions of the clamped membrane 
(4.3). Figure 29 shows the trial displacement function (after determination of the constants) 
for visualization. The negative displacement in x-direction relates to the clamped edges. The 
displacement appears to be outward in the central section, and inward in the outside 
sections. At x=300μm from the centre the membrane only moves upward. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 29: Dogbone membrane trial displacement function u, 
representing the in plane displacement of the membrane (x-
direction). Location 0 again denotes the centre of the membrane. 
Notice the negative displacement towards the edges. Due to the 
clamped edges the x-displacement appears to be towards the edges 
in the centre section of the membrane, however in the outer 
section of the membrane the x-displacement appears to be towards 
the centre (negative). 
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4.1.2 Circular configuration 
The circular membrane; designed for multi-axial loading, with grooves running in radial 
direction; has to be modelled in a three-dimensional manner. The entire edge of the circular 
membrane is clamped. For simplification we use polar coordinates, this way we can represent 
the displacement field again in two directions; a radial displacement function u (Figure 30), 
and a displacement function in the w, in z-direction (Figure 31). 
  

  
Figure 30: Representation of the 
circular membrane, depicting the 
direction of the in plane 
displacement u, in radial direction. 

Figure 31: Cross-sectional representation of the circular 
membrane, depicting the direction of the out of plane 
displacement w, in z-direction. 

  
We consider the same boundary conditions as for the dogbone membrane (conditions 4.1, 
4.2 and 4.3), only applied to the circular membrane (polar coordinate system): 
  

 
4.8   

 
4.9   

 4.10   

 4.11   
  
The trial displacement field has to satisfy the conditions 4.9, 4.10 and 4.11 above. In the 
conditions a is considered the radius of the membrane. We define the trial membrane 
displacement function in z-direction as: 
  

                      [52] 

4.12   

  
For the displacement function in z-direction we now consider a cubic function instead of the 
cosine function to describe the clamped edges. This enables us to determine if the trial 
function has a big influence on the outcome. Figure 32 shows the trial displacement function 
u (after determination of the constants), and Figure 33, the trial displacement function w, 
for visualization. Notice that the cubic function also describes the clamped edges properly, 
and satisfies the boundary conditions. 
 
For the trial membrane displacement function u in r-direction we take: 
  

 
4.13   

  
In Function 4.13 r ranges from zero (centre of the membrane) to a (membrane edge). 
Function 4.13 is defined as such, because we do not want to constrict the central 
membrane r-displacement to zero, this means that we do want u to go to zero when r goes 
to zero, however the limit of u divided by r does not equal zero. In order to satisfy this 
condition, we first define the displacement function u, as u divided by r. For an easy 
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implementation into the potential energy functions described in Chapter 3, we now multiply 
both sides with r: 
  

 
4.14   

  
The displacement field in r-direction (u) now becomes identical to the displacement function 
u of the dogbone membrane, satisfying the boundary conditions. We again initially consider 
the first two terms of the polynomial part of the function. 
 

 
Figure 32: Circular membrane trial displacement function u, 
representing the in plane displacement of the membrane (r-
direction). Location 0 denotes the centre of the membrane. Notice 
the similarity with the dogbone u-displacement function. We obtain 
a negative displacement towards the edges. Due to the clamped 
edges the r-displacement again appears to be towards the edges in 
the centre section of the membrane, however in the outer section 
of the membrane the r-displacement appears to be towards the 
centre (negative). 

 
Figure 33: Circular membrane trial displacement function in z-
direction (depicting the deflection), versus the location r (polar 
coordinates) from the centre. The origin again is denoted as the 
centre of the membrane at the reference state. Notice that similar 
to the case of the dogbone membrane, the trial function properly 
describes the clamped edges, as the deflection leaves under a zero 
tangent at the edges. 
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The displacement of membrane elements in radial direction is taken positive from the centre 
of the membrane, outwards (positive r-direction). The centre element moves straight up, 
with no displacement in the radial directions, membrane elements further outward move 
towards the edge of the membrane. However, membrane elements near the edge of the 
membrane move inwards, similar to the dogbone’s x-displacement. This membrane movement 
can be seen in Figure 32, notice that there is a ring on the membrane where the outward 
and inward moving elements will meet, this part of the membrane moves straight up. The 
displacement in r-direction shows similarity with the x-displacement of the dogbone 
membrane. 
 
The displacement function in z-direction (displacement function w, Figure 33) resembles the 
displacement function of the dogbone membrane, however this displacement has been 
represented in polar coordinates and thus holds for a three-dimensional circular case. The 
displacement function shows the deflection of the membrane in a sphere like manner (in 
contrary to the cylindrical manner of the dogbone membrane), and shows the clamped edge 
by tangent approaching zero at the edge.  

4.2 Membrane Potential Energy 

The potential energy of the system leads to the derivation of the true displacement field, by 
deriving the constants in the trial displacement functions u and w. Mentioned previously; The 
kinematics of thin plates can be applied to large membranes when considering stretch of the 
neutral line, due to in-plane displacement additional to pure bending strains, due to 
perpendicular displacement. This is due to the fact that we allow for the deflections to be 
large, and include two sources of strain energy, both energy in the bending of the membrane 
(only strain term when considering small deflections), and the energy due to the stretching 
of the membrane. The potential energy equations for a thin plate derived from kinematic 
equations and constitutive equations considers the bending strain energy and extensional 
strain energy, Equation 3.64. Therefore, we are able to directly apply them to both 
membrane configurations. 

4.2.1 Dogbone Configuration 
We recall the strain energy equation for bending and twisting of the membrane, Equation 
3.58: 
  

 
                      3.58 

  
For the dogbone configuration we obtain a simplified version of the bending strain energy. 
We consider a small element (2D representation) of the membrane, thus only consider the 
curvature in one direction, the x-direction: 
  

 
4.15   

  
The width of the membrane element dy we take equal to unity. With the kinematic Equation 
3.15 we now obtain for the strain energy due to bending and twisting of the dogbone 
membrane: 
  

 

4.16   
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Introduction of the trial displacement function for the dogbone configuration, 4.5, leads to 
the following bending strain energy: 
  

 
4.17   

  
For the strain energy due to the extension of the membrane, we recall Equation 3.62, and 
obtain by using the kinematic Equation 3.24: 
  

 
                       3.62   

 

4.18   

 

4.19   

  
We now obtain with use of the trial displacement field (Eq. 4.5 and 4.8) the following strain 
energy due to extension of the membrane: 
  

 

4.20   

  
Equations 3.60, 3.63 and 3.66 show that solely the extensional strain energy depends on 
the displacement function u. We are thus able to derive the constants c1 and c2 from the 
expression for the extensional strain energy, by approaching a stationary point in the 
extensional strain energy: 
  

 

4.21  

  

 Leading to the following expressions for the constants c1, c2 and Wextension: 
  

 
4.22   

 
4.23   

 

4.24   

  
The total potential energy of the plate contains the strain energy of the membrane and the 
potential energy due to the load (Eq. 3.51). For the potential energy of the load we recall 
Equation 3.66, and obtain with use of the trail displacement function 4.5 the following 
expression for the load potential of the membrane: 
  

 
                                           3.66 
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4.26   

  
The total potential energy of the system follows from Equation 3.33 3.51, 4.16, 4.23 and 
4.25: 
  

 
4.27   

  
The constant w0 can now be determined by minimizing the total potential energy of the 
system, finding a stationary point: 
  

 
4.28   

  
This leads to the following load-centre-deflection relation: 
  

 
4.29   

  
A cubic function in which w0 is the centre-deflection of the membrane, which can be 
calculated for various pressures. From this load-deflection behavior we are able to determine 
the axial strain in the membrane.  

4.2.2 Circular configuration 
The determination of the potential energy of the circular membrane can be done in a similar 
manner. Due to the circular configuration, we are able to express the potential energy in 
polar coordinates. This enables us to simplify the equations to two directions, the radial 
direction r and the transverse direction θ. The transformation to the polar coordinate system 
results in different kinematic and constitutive equations. In analogy with the matrices 3.48 
and 3.49 (isotropic, homogeneous material), we obtain the following constitutive matrices for 
the circular membrane: 
  

 

4.30   

 

4.31   

  
Because of the circular symmetry we do not have to take into account any shear strains in 
the membrane, the shear strains are equal to zero. Conversion of the kinematic expressions 
for the curvature to a polar coordinate system results in: 
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4.33   

  
Where t represents the curvature in transverse direction. With use of Equation 3.24, we 
obtain for the strain in radial direction (large deflections): 
  

 

4.34   

  
And the strain in transverse direction obviously becomes: 
  

 
4.35   

  
The strain energy due to bending and twisting now becomes: 
  

 
4.36   

 
4.37   

  
For the bending strain energy we now obtain from kinematic expressions 4.31 and 4.32: 
  

 

4.38  

 

4.39   

  
Similar to Equation 4.36, we obtain for the strain energy due to the extension of the 
membrane: 
  

 
4.40   

  
Substitution of the kinematic expressions 4.33 and 4.34 in 4.39 leads to the following 
expression for the extensional strain energy: 
  

 

4.41   

  
We now obtain with use of the trial displacement field (Eq. 4.12 and 4.14) the following 
strain energy due to extension of the membrane: 
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We again derive the constants c1 and c2 from the expression for the extensional strain 
energy, by approaching a stationary point in the extensional strain energy.  
  

 
4.43  

 
4.44   

 

4.45   

  

For the potential energy of the load we recall Equation 3.66, and obtain with use of the trail 
displacement function 4.13 the following expression for the load potential of the membrane: 
  

 
4.46   

 

4.47   

  
The potential energy of the system can now be defined as (D eliminated with use of Eq. 
3.33): 
  

 

4.48   

  
From dU/dw0=0, we find the following load-deflection relation:  
  

 
4.49   

  
Again a cubic function in which w0 is the centre-deflection of the membrane. 
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4.3 Membrane Deflection 

From the membrane load-deflection behavior described by expressions 4.28 and 4.48 we are 
able to obtain the deflection of the membrane as function of the applied load. In this section 
the load-deflection of both membrane configurations will be derived, and the load-deflection 
behavior as approximated by the analytical approximation will be compared with the load-
deflection behavior as approximated numerically (Finite Element Model). 

4.3.1 Dogbone configuration 
Figure 34 shows the deflection of the dogbone membrane at a prescribed 5kPa pressure. 
Notice the resemblance of centre-deflection in the validation with the Finite Element Model 
shown in Figure 35. The Analytical Model predicts a centre-deflection of 264.84μm 
(concerning a 16.5μm thick membrane; Appendix 3). The Finite Element Model (Appendix 1) 
predicts a centre-deflection of 269.95μm. 
 

 
Figure 34: Graph indicating the analytically approximated deflection 
of the dogbone membrane as function of location when a pressure 
of 5kPa is applied. Notice the correspondence in centre-deflection 
with the finite element approximation depicted in Figure 35. Notice 
however also that the analytical approximation deviates slightly in 
deflection course, the effect of the clamped edges appears to be 
much greater when approximated analytically. 

 
Figure 35: Graph indicating the numerically approximated deflection 
of the dogbone membrane as function of location when a pressure 
of 5kPa is applied. Notice the correspondence in centre-deflection 
with the analytical approximation depicted in Figure 34. 
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Figure 36: Graph depicting the centre-deflection of the dogbone 
membrane as function of applied pressure for both the numerical 
(green line) as analytical approximation (blue line). Notice the nice 
correspondence between the two models. The deviation we see is 
due to the smaller radius of bending around the edges in the 
numerical model. 

 
Figure 36 shows the centre-deflection of the dogbone membrane as function of applied 
pressure for both numerical and analytical approximation. Notice that for various pressures 
the numerical approximation corresponds with the analytical approximation for a uniform 
16.5μm thick uniform membrane. Furthermore, the membrane shows great flexibility, as it 
deflects up to approximately 350μm at an applied pressure of 10kPa. 

4.3.2 Circular configuration 
Figure 37 shows the deflection of the circular membrane at an applied pressure of 5kPa. We 
again see the similarity with the deflection results of the finite element approximation 
showed in Figure 38. We obtain a centre-deflection with use of the analytical model of 
688.79μm, which corresponds with the centre-deflection obtained from the finite element 
model of 629.91μm. We should notice, however, that the effect of the clamped edges is 
more profound in the analytical model, compared with the numerical model. 
 
In the numerical model (Figure 35 and Figure 38), we witness the clamped edges in the fact 
that the membrane leaves the edges under a zero tangent. The tangent however increases 
fast when going inward. In the analytical model (Figure 34 and Figure 37), we witness a 
slower increase in tangent. The finite element model seems to behave almost as a simply 
supported membrane, almost eliminating the bending term of the strain energy.  
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Figure 37: Graph indicating the analytically approximated deflection 
of the circular membrane as function of location when a pressure of 
5kPa is applied. Notice the correspondence in centre-deflection with 
the finite element approximation depicted in Figure 38. Notice 
however also that also in the circular case the analytical 
approximation deviates slightly in deflection course, the effect of 
the clamped edges appears to be much greater when approximated 
analytically. 

 
Figure 38: Graph indicating the numerically approximated deflection 
of the circular membrane as function of location when a pressure of 
5kPa is applied. Notice the correspondence in centre-deflection with 
the analytical approximation depicted in Figure 38. 
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Figure 39: Graph depicting the centre-deflection of the circular 
membrane as function of applied pressure for both the numerical 
(green line) as analytical approximation (blue line). Notice that in 
the case of the circular membrane the line of the numerical 
approximation is situated below the line of the analytical 
approximation. This is contradictory to the case of the dogbone, 
furthermore one would expect due to the smaller radius of bending 
at the edges that the line of the numerical approximation would be 
above the line of the analytical approximation. However, we 
determine the compliancy here solely by centre-deflection, for the 
correct determination of the deflection (and thus compliancy), the 
deflection should be integrated over the total area of the 
membrane, and not solely centre-deflection should be taken into 
account. 

 
Figure 39 shows the centre-deflection of the circular membrane as function of applied 
pressure for both numerical and analytical approximation. For various pressures the numerical 
approximation corresponds with the analytical approximation for a uniform 21.5μm thick 
uniform membrane. Notice, however, that for the dogbone membrane, the finite element 
model is slightly more compliant, whereas for the circular membrane the analytical model 
shows a higher compliancy.   
 
One would expect a higher compliancy of the finite element model, as the transition area 
(bending area) situated at the edges is smaller. However, we define the compliancy here by 
looking at the centre-deflection, whereas actually the entire deflection plays a role in the 
compliancy of the membrane. To properly describe the compliancy of the membrane, we 
should describe the compliancy by integration of the deflection over the total area of the 
membrane. We can also determine, by looking at the two deflection curves (Figure 37 and 
Figure 38), that this is the case with the circular membrane and in smaller extend also with 
the dogbone membrane. The numerical model (Figure 38) shows lower deflection in the 
centre. However, approximately 400μm from the centre outward, the numerical model shows 
a higher deflection. 
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4.4 Membrane Strain 

From the in plane strain components described by the expressions 3.24, 4.33 and 4.34, 
together with the membrane load-deflection behavior described by expressions 4.28 and 4.48 
we are able to obtain the strain components of the membrane as function of the applied 
load. In this section the in plane strain components of both membrane configurations will be 
derived, and the strain behavior as approximated by the analytical approximation will be 
compared with the strain behavior as approximated numerically (Finite Element Model). 
 

4.4.1 Dogbone configuration 
The axial strain in the membrane is, as earlier stated, a combined function of the strain due 
to membrane bending and the strain due to axial stretching. Both displacements in z- (Figure 
28) as well as x-direction (Figure 29) influence the strain in the membrane. As earlier 
mentioned, we obtain a displacement in x-direction from the centre towards the edge in the 
centre section of the membrane, and from the edge toward the centre in the outer section 
of the membrane. Resulting this material movement, a part of the membrane only moves up 
and downwards. This displacement u has a big influence on the strain distribution over the 
membrane. Figure 40 represents the relation between applied pressure (y-axis), the axial 
strain (z-axis) and the x-coordinate (location on the membrane, x-axis), due to bending and 
stretching (thickness 16.5μm, Appendix 3).  
 
We obtain a non-uniform strain distribution in the membrane, increasing in range with higher 
pressures. This non-uniformity can be more easily witnessed from Figure 41, where the axial 
strain as function of the location is expressed for several pressures. Notice the characteristic 
wave pattern, with a local maximum in the middle. This local maximum seems to correspond 
with the sign transition in u-displacement (Figure 29). 
 

 
Figure 40: Graph depicting the relation between applied pressure (y-
axis), the axial strain (z-axis) and the x-coordinate (location on the 
membrane, x-axis), due to bending and stretching for the dogbone 
membrane. Notice the non-uniform strain distribution, increasing in 
range with increasing pressure. 
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Figure 41: Graph depicting the axial strain as function of the 
location is for various pressures. Notice the characteristic wave 
pattern, with a local maximum in the middle. This local maximum 
seems to correspond with the sign transition in u-displacement. 

 
Figure 42: Graph depicting the strain distribution in x-direction as 
approximated by the finite element model at an applied pressure of 
5kPa. Notice that the characteristic wave pattern we have seen in 
the outcomes of the analytical model does not occur in the 
numerical model. The outcome of the numerical model shows more 
what we would expect, a rather uniform strain distribution. 

 
The strain distribution in x-direction as approximated by the finite element model, is shown in 
Figure 42. Chosen is to show this membrane strain by means of a graph indicating the axial 
strain in the neutral line. From this representation the strain distribution can be easily 
compared with the strain as approximated by the analytical model. In Appendix 3 the strain 
distribution of the membrane including and excluding grooves are presented. Where we can 
note that the uniform thickness representation shows strain similarity with the grooved 
model, when we look at the overall membrane strain. The axial strain (x-direction) as 
approximated by the finite element model, shows to be different from the axial strain as 
approximated by the analytical model. The characteristic wave pattern, as witnessed in the 
analytical model, does not occur in the finite element model. The axial strain as approximated 
by the finite element model shows a behavior more like we would expect; a rather 
homogeneous distribution. Large strain deviation only occurs at the clamped edges.  
 
The logic behind the variable strain distribution in the analytical approximation is hard to 
understand. When considering a flexible, thin membrane, under large deflection, one would 
expect the stretch term to take the overhand. The strain in a double clamped element would 
then in axial direction become more or less uniform. The only non-uniformity that could occur 
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would be in the edge region, where more bending exists. This is exactly what the finite 
element model predicts. In order to better understand the outcome of the analytical model, 
displacement field variations are done. 

4.4.1.1 Displacement field variation 
As can be witnessed from Figure 43 and Figure 44, the deflection approximated with the 
analytical model for the dogbone membrane does not exactly resemble the actual measured 
deflection of the membranes during experiments. When comparing the actual membrane 
deflection obtained by a microscope (Figure 43) with the deflection function obtained by the 
analytical model (Figure 44), we notice some error near the clamped edges.  
 

 
Figure 43: Image obtained by the microscope of the dogbone membrane including grooves. Notice that 
in the centre region the membrane seems to leave the edges under a considerable angle. The effect of 
the clamped edges appears to be extremely small. 

 
Figure 44: Graph indicating the deflection of the dogbone membrane in the central region, x=zero defines 
the centre of the membrane. Notice that the analytical model approaches the edges with a zero tangent, 
unlike the actual deflection Figure 43. 

 
Similar to the finite element model (Figure 38), the actual membrane deflection does not 
show a transition region, it appears to leave almost immediately under a considerable angle. 
This proves the assumption that for thin membranes subjected to large deflections the 
bending strain plays little to no role in the axial strain. The analytical model, however, 
describes the clamped edges with a zero-tangent when approaching the edge. The 
contribution of the bending strain to the axial strain as follows from the deflection of the 
membrane will in reality thus be less than assumed in the analytical model. 
 
This behavior can be approximated when considering the membrane simply supported instead 
of clamped at both ends. By approximating the edges as simply supported, we switch from 
plate theory to membrane theory. Plate theory is not able to describe the small radius of 
bending that occurs at the edges of a clamped membrane. 
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The true membrane behavior, however, will be in the middle of the two models. The clamped 
edges do not describe the behavior exact, however, simply supported edges will neither. The 
membrane does leave under a zero-tangent, although the small tangent only exists in a small 
outer part of the deflected membrane.  
 
The first variation in the displacement field is thus actually a variation in the boundary 
conditions, with the displacement field changing corresponding to these boundary conditions. 
We consider the boundary conditions as follows: 
  

 
4.50   

 
4.51   

 
4.52   

 
4.53   

  
In which the second condition (condition 4.50) states that the rotations at the supported 
edges are unrestricted. The following kinematically admissible (satisfies the boundary 
conditions) displacement function w will replace function 4.5 when considering a simply 
supported element of the dogbone membrane: 
  

 

4.54   

 

4.55   

  
From the clamped case we have seen that the deflected shape of the circular membrane is 
similar to the deflected shape of the dogbone membrane. For simplification, we now use the 
same trial displacement function for the circular case as well as the dogbone membrane. The 
trial displacement function is obtained from the trial displacement function 4.13 for the 
circular clamped case. In the clamped case P=Q=1 in Equation 4.54.  
 
Secondly we will vary the displacement in x-direction (u-displacement). As stated earlier, we 
can describe the displacement u by a simple polynomial function containing several terms 
(Eq. 4.7), each refining the function. The refinements reduce the error of the function. 
Initially we took two terms of this polynomial function. However, to reduce the error we now 
also look at the polynomial, taking 5 terms into account. 
  

 
4.56   

  
Figure 45 shows the deflection in z-direction (w), for each of the four displacement fields, at 
a prescribed pressure of 5kPa. Notice that, although the centre-deflection w0 is determined 
by the derivation of the total strain energy, and thus also depends on the displacement 
function u, the deflection does not vary with varying trial function u. 
 
The displacement function 4.53 properly describes the supported edges, leaving rotation at 
the edges free. Obviously the model with the supported edges shows a higher centre-
deflection, as the deflection is restricted less in the edge area. 
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Figure 45: Deflection in z-direction (w), for each of the four displacement fields, at a prescribed 
pressure of 5kPa. Notice that, although the centre-deflection w0 is determined by the derivation of 
the total strain energy, and thus also depends on the displacement function u, the deflection does 
not vary with varying trial function u. 

 
When we compare the deflection of the four models with the deflection of the finite element 
model (Figure 35), we can conclude that the finite element model lies in between the 
supported and the clamped analytical model. 
 
Figure 46 shows the displacement in x-direction (u), for each of the displacement field, at an 
applied pressure of 5kPa. The extra terms in the trial function u do not show any big 
transformation in the derived u-displacement. A significant transformation of the 
displacement u occurs though, when considering simply supported edges with respect to 
clamped edges. Because of the free rotations at the edges, a negative displacement u 
obviously does not occur.  
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Figure 46: Displacement in x-direction (u), for each of the displacement field variations of the 
dogbone membrane, at an applied pressure of 5kPa. Notice that the extra terms in the trial 
function u do not show any big transformation in the derived u-displacement. A significant 
transformation of the displacement u occurs though, when considering simply supported edges with 
respect to clamped edges. Because of the free rotations at the edges, a negative displacement u 
obviously does not occur. 

 
When we now compare the displacement in u direction of the four models (Figure 46) with 
the displacement u of the numerical model shown in Figure 47. Notice that the numerical 
approximation predicts a displacement in x-direction that lies between the predictions of the 
analytical models for clamped and supported edges. The behavior tends to the behavior of 
the analytical supported model, however in the edge section you can find the clamped edge 
effect. The displacement, however, does not turn negative in the edge region. 
 

 
Figure 47: Displacement u as approximated by the numerical model. 
Notice that the numerical approximation shows mainly resemblance 
with the simply supported analytical model, however, still some 
effects occur at the edges. 
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The effect of the refinement of the displacement function u, by adding terms, becomes 
obvious when we look at the strain distribution over the membrane (Figure 48). 
 

 
Figure 48: Strain approximation of the four analytical models as function of location (x), for various 
pressures. Notice that the effect of the refinement of the displacement function u, by adding 
terms, becomes obvious when we look at the strain distribution over the membrane. 

 
The characteristic wave pattern, which we obtain when we only use two terms in the 
displacement function in x-direction, is greatly reduced when we include 5 terms. Expected is 
a homogeneous strain distribution over the membrane, because the bending term in the 
strain energy plays little to no role when considering a thin flexible membrane. We obtain 
that homogeneous distribution of strain when adding additional terms to the displacement 
function u.  
 
Comparing the strain approximation of the analytical models (Figure 48) above, with the 
strain approximation of the numerical model (Figure 42), we can again conclude that the 
numerical strain distribution lies in between the strain distributions of the clamped and the 
supported analytical model, containing 5 terms in the u displacement function. The strain 
obtained by the numerical model in the central region tends to the strain obtained by the 
clamped analytical model. The strain obtained by the numerical model in the outer region 
tends to the strain obtained by the simply supported analytical model.  
 
The asymptotic behavior, as a result from the small radius bending (due to the clamped 
edges), in case of the numerical model, does not appear in the results of the analytical 
models. When we zoom in on this area in the numerical model1 (Figure 49), we can see that 
in these edge regions (very near to the edge, small region), the numerical model shows an 

 
 
 
 
1 Here we make use of the two dimensional representation (not containing shell elements), to be able to show the distribution 
over the thickness. Figure 42 is obtained from the shell model. 
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asymmetric behavior around the mid-plane (black line), where we would expect a symmetric 
behavior. 
 

 
Figure 49: Close up of the numerical model near the edges. Notice that in the edge regions (very 
near to the edge, small region), the numerical model shows an asymmetric behavior around the 
mid-plane (black line), where we would expect a symmetric behavior. 

 
This asymmetric behavior occurs due to the fact that instead of using classical deformation 
theory, a shear deformation theory is applied. In the classical deformation theory, as used for 
the analytical model, the assumption is made that plane sections, initially normal to the mid 
surface before deformation, remain plane, and normal to that surface after deformation. In 
the classical deformation theory no shear deformation due to transverse forces is considered, 
only in plane deformations are considered. 
 
When a shear deformation theory is applied we do consider shear deformation due to out of 
plane forces. Plane sections; initially normal to the mid surface do not necessarily remain 
plane and normal to that surface after deformation. The plane sections, initially normal to the 
mid surface are displaced by z(x) and rotates by θ=(θ1(x),θ2(x)). 
 
The element used for the shell interface in comsol is of Mindlin-Reissner type, which means 
that in these shell models transverse shear deformation is accounted for. The transverse 
forces, creating these shear deformations, are proportional to the derivative of the moment 
to x. The moments approach zero in the largest part of the membrane, due to the negligible 
effect that the bending of the membrane has on the total strain energy. However, near the 
edges, due to the clamped boundary (and the related small radius of bending), the moment 
increases rapidly. This results in a large transverse force, leading to large shear deformations, 
thus leading to a different strain distribution near the clamped edges. 
 
This differing behavior near the membrane’s clamped edges occurs in a small region where 
no grooves exist. When plating a monolayer of cardiomyocytes on the membrane, we assume 
that the cells tend to anchor inside the grooves. We thus assume that this edge effect does 
not affect the cell stretch in a significant manner. Furthermore, the edge behavior we see in 
the finite element model is the behavior as calculated for the mid surface of the membrane. 
The cardiomyocytes will anchor on the top surface of the membrane. Notice, from Figure 49 
that on the top surface of the membrane the strain decreases and even turns into a 
compression. We can thus conclude that we do not have to consider possible overstretch of 
the cardiomyocytes near the edges. We are thus able to focus on the overall strain as 
predicted by the analytical model, without further complicating this model. 
 
With this homogeneous axial strain distribution in the dogbone membrane, we are able to 
describe the axial strain as function of the load applied. This enables us to define the optimal 
pressure to be applied for to obtain the 14.7 percent stretch (Section 2.2.3) on the 
cardiomyocytes as desired. Figure 50 shows this load-strain behavior.  
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Figure 50: Load-strain behavior; the axial strain as function of the 
load applied. Notice the change from an exponential increase to a 
more linear relation, in the exponential part the bending strain is 
leading, in contrary to the linear region where the stretching strain 
is leading. 

 
Notice the change from an exponential increase to a more linear relation, in the exponential 
part the bending strain is leading, in contrary to the linear region where the stretching strain 
is leading. One can see that up from an applied pressure of approximately 3kPa the strain 
due to stretch is leading in the axial strain of the membrane and the bending strain has little 
to no influence on the axial strain.  
 
For the determination of the pressure for the optimal the ceiling value will be considered, in 
order to be sure not to overstretch the cells initially. 

4.4.2 Circular configuration 
For the circular configuration we obtain two strain components, the component in radial 
direction (Eq. 4.33) and the component in transverse direction (Eq. 4.34). This corresponds 
with respectively the longitudinal and transverse strain on the cardiomyocytes (considering 
grooves running radial). A similar strain distribution will be expected for the radial strain as 
for the dogbone case (Figure 40) when considering the initial displacement field and 
boundary conditions. This similarity will be expected due to similarity of the displacement 
field, and the same way of calculating this radial strain with respect to the axial strain in the 
dogbone case. The radial strain distribution belonging to the initial conditions, for the circular 
configuration can be witnessed in Figure 51. We obtain the same illogical characteristic wave 
pattern. For this reason we immediately start varying the displacement field. 
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Figure 51: Radial strain distribution of the circular membrane as 
function of applied pressure. Notice that we obtain an expected 
similar non-uniform strain distribution as we have seen in the 
dogbone case. 

 

4.4.2.1 Displacement field variation 
Similar to the dogbone case, when we closely look at the boundaries of the circular 
membrane, and comparing the actual membrane deflection obtained by a microscope (Fig. 
2.4.1-2.4.4) with the deflection function obtained by the Analytical model (Fig. 2.4.5-2.4.6), 
we notice again the same error near the clamped edges.  
 

 
Figure 52: Two images showing the actual circular membrane deflection. Notice that, similar to the dogbone 
membrane, the membrane seems to leave the edges under a considerable angle, the clamped edges seem to have 
little to no effect. 

 
Figure 53: Circular membrane deflection as predicted by the analytical model. 
Notice that in contrary with the actual membrane, the analytical model predicts a 
large transition area from the edge inward. 
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Figure 54: Deflection of the membrane as function of location (r) at an applied pressure of 5kPa as 
predicted by the analytical model, for the four different displacement cases. Notice that the 
supported boundary condition shows a slightly higher deflection, although it is not as big a 
difference as in the dogbone case. However, we should note that again we are solely considering 
centre-deflection as compared to the integrated deflection. 

 
Where the Analytical model describes the clamped edges with a zero-tangent when 
approaching the edge, the actual membrane leaves almost immediately under a considerable 
angle. 
 
We again model the membrane behavior with two different boundary conditions. We consider 
clamped edges, from which we have seen that this model is not fully able to describe the 
small radius bending at the edges. Furthermore, we consider simply supported edges, 
switching from thin plate behavior to membrane behavior. Where we expect the real behavior 
to resemble a combination of the two, as bending does exist at the edges. 
 
Furthermore, we vary the radial displacement function u. We expect that refinement of the 
radial displacement function, similar to the dogbone case, will correct the membrane stain to 
a more accurate distribution. 
 
Figure 54 shows the deflection of the membrane as predicted by the analytical model, for 
the four different displacement cases.  
 
The supported boundary condition shows a slightly higher deflection, the deflection difference 
however is not as big as we have seen in the dogbone case (Figure 45). As mentioned 
before, the compliancy cannot be expressed accurately in terms of centre-deflection; we 
should consider the deflection integrated over the area. When we consider the deflection 
deviation further towards the edges, we see a bigger difference. Thus we can state that the 
overall deflection of the simply supported model is higher than the deflection of the clamped 
model. The deflection distribution described by the supported model shows better similarity 
with the finite element approximation (Figure 38). However, the edge effects as predicted by 
the clamped analytical model should be taken into account. 
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Figure 55: The displacement u, in radial direction, of the four displacement cases. We again notice 
that the extra terms in the trial function u do not show any big transformation in the derived u-
displacement. The only significant transformation of the displacement u we see is due to the 
boundary conditions. 

 
Figure 55 shows the displacement in radial direction (u), for each of the displacement cases. 
We again notice that the extra terms in the trial function u do not show any big 
transformation in the derived u-displacement. The only significant transformation of the 
displacement u we see is due to the boundary conditions. The free rotations at the edges 
eliminate extreme bending at the edges and thus negative u values.  
 
We compare the displacement u of the four displacement cases with the displacement u as 
approximated numerically (Figure 56). Notice that the finite element approximation resembles 
the analytical model with simply supported edges even more than in the dogbone case. The 
exponential decrease we see in the dogbone numerical approximation, relating to the clamped 
edges, has reduced in the circular case. The explanation for this is that the circular 
membrane has a smaller thickness-area ratio, leading to a smaller contribution of the bending 
strain energy as compared with the dogbone membrane. 
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Figure 56: displacement u approximated numerically as function of 
location (r) at an applied pressure of 5kPa. Notice again the 
resemblance with the simply supported analytical model. 
Furthermore, the edge effect as seen in the u displacement as 
approximated by the numerical model for the dogbone membrane 
almost disappears here. 

 
Figure 57: Radial strain of the circular membrane as function of location (r) for the different 
displacement fields, at various applied pressures. Notice that the characteristic wave pattern, which 
we obtain when we only use two terms in the displacement function in r-direction, is again greatly 
reduced when we include 5 terms. 

 
We are thus able to describe the behavior of the circular membrane almost completely by 
membrane theory instead of plate theory, leaving out any bending terms. We can only 
neglect all bending terms when we consider large deflection (at large applied pressure). 
 
Figure 57 shows the radial strain of the circular membrane at various applied pressures. 
Notice that the characteristic wave pattern, which we obtain when we only use two terms in 
the displacement function in r-direction, is again greatly reduced when we include 5 terms.   
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Figure 58: Strain approximation of the numerical model as function 
of the location (r) on of the membrane. Notice the correspondence 
with the strain distributions of the clamped and the supported 
analytical model, containing 5 terms in the u displacement function. 

 
When we compare the strain approximation of the analytical models (Figure 57), with the 
strain approximation of the numerical model (Figure 58), we can again conclude that the 
numerical strain distribution lies in between the strain distributions of the clamped and the 
supported analytical model, containing 5 terms in the u displacement function. The 
distribution resembles the simply supported model, however we obtain a maximum strain 
(edge error excluded) more similar to the clamped analytical model. 
 
Similar to the dogbone case, we are able to reject the edge effect, which occurs in the 
numerical model due to shear deformation. The edge effect, seen in Figure 58 will result in 
compression on the upper surface of the membrane, thus not resulting in overstretch of 
cardiomyocytes at the edge regions. 
 
As previously stated, the cardiomyocytes on the circular membrane are not solely subjected 
to longitudinal strain; they also obtain strain in their transverse direction. The circular 
membrane introduces a multi-axial straining of the cardiac muscle cells. The cells will be 
stretched longitudinal by the radial strain of the membrane, as well as stretched transverse 
by the transverse strain of the membrane.  
 
The transverse strain (Eq. 4.34) as function of location at various pressures for the four 
different displacement cases can be witnessed in Figure 59. Notice the high amount of 
transverse strain in the centre of the membrane, decreasing towards the edges. The increase 
results from the relative larger increase in circumference towards the centre of the 
membrane. The tangent approaches the radial direction near to the centre of the membrane, 
thus resulting in an increasing transverse strain near the centre of the membrane. 
 
Furthermore, notice the multiple zero-strain areas, in case of the clamped edges. Obviously, 
no transverse strain exists totally at the membrane end, due to the fact that the edge is 
clamped. However another zero-strain point exists, where the displacement u in radial 
direction changes sign. A part of the circular membrane (ring) solely moves in a vertical 
direction, similar to the strip on the dogbone. Because of this vertical movement, and the 
negative radial displacement outward from this rigid ring, the outer membrane part shows a 
small negative strain. Sections move here from a ring with bigger diameter to a ring with a 
smaller diameter. In the case of low applied pressure, the compression is small compared to 
the tensile strain in the central region of the membrane. However, when applying a higher 
pressure to the membrane, this might be an effect we should consider. 
 
Although, when we compare the outcomes of the several analytical models with the 
approximation of the finite element model in Figure 60, we notice that we can better 
describe the transverse strain behavior of the circular membrane when we consider the edges 
simply supported. Notice that in the finite element approximation the transverse strain does 
show a small exponential decrease near the edges, still indicating some effect due to the 
clamped edges. The simply supported model in Figure 59 obviously does not show such an 
effect, due to the free rotation at the edges. 



CHAPTER 4: MEMBRANE LOAD-DEFLECTION 

 72 

We are thus also able to describe the transverse strain of the circular membrane by 
neglecting the edge bending terms. We can model the total behavior of the circular 
membrane by simply supported edges. 
 
We should notice that the transverse strain, in contrary to the radial strain, depends highly 
on the radial coordinate. This means that cells centrally located will be subjected to higher 
transverse strain compared to cells located more peripheral. 
 

 
Figure 59: Transverse strain as function of location at various pressures for the four different 
displacement cases. Notice that in none of the four displacement cases the transverse strain is a 
uniform value. There will always be a transverse strain gradient in over the membrane in radial 
direction. 

 
Figure 60: Transverse strain as function of location approximated 
numerically at an applied pressure of 5kPa. Notice that when we 
compare this graph with the previous one (Figure 59) we can 
describe the transverse strain behavior of the circular membrane 
most properly when we consider the edges simply supported. 
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Figure 61: Both strain components as function of the applied 
pressure. The blue line denotes the radial strain as function of 
applied pressure; the green line represents the maximum transverse 
strain as function of presuure. We take the ceiling strain values in 
order not to overstretch the cardiac muscle cells. 

 
We are now able to describe the two strain components as function of the applied pressure. 
Once again we will take the ceiling strain value in order not to overstretch the cardiac 
muscle cells. Figure 61 shows the maximal load-radial strain and load-transverse strain 
behavior.  
 
Notice that we thus obtain a different load-strain behavior for the transverse direction with 
respect to the longitudinal direction. This will lead to a sub-optimal loading protocol for one 
of the two directions. Furthermore, we again see that for lower loading conditions the 
bending strain takes part in the total strain behavior of the membrane. However, for higher 
applied pressures, the bending strain energy can be neglected with respect to the 
extensional strain energy. The transition of the point where bending strain energy can be 
neglected is related to pressure, thickness to area ratio and elasticity modulus. 
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4.5 Experimental verification 

For the validation of the Analytical Model, approximated experimental values are compared 
with both the Analytical and Finite Element approximations. The comparison is made in terms 
of centre-deflection, and in terms of the either x- or r-displacement of both membrane 
configurations.  

4.5.1 Materials and methods 
The experimental setup used (Figure 62), consists of a pressure box (Figure 63) connected 
to analogue regulated compressed air (Figure 64). For a better quantification of the applied 
pressure, the actual pressure in the box is measured by means of a pressure sensor. The 
voltage output of this pressure sensor is read out by a voltmeter, which relates to pressure 
by: 1V=6.9kPa (Figure 65).  
  

  
Figure 62: Entire experimental setup. Figure 63: Pressure box, to generate a constant 

presurre. 

  
Figure 64: Analogue regulated compressed air, to fill 
the pressure box. 

Figure 65: Voltmeter, measuring the voltage from a 
pressure sensor inside the box, for an accurate 
measure of the applied pressure. 

  
Figure 66: Chip holder consisting of two Plexiglas 
plates in between which the chip is clamped, and 
through which air is supplied.  

Figure 67: The measurement of the table height (and 
thus deflection) when focussing visually, is done by a 
sensor situated underneath the table. 
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A single chip is clamped between two transparent plates (Figure 66), connected by a tube 
to the pressure box, the lower plate containing an air-tube ending below the membrane, for 
applying the pressure. The upper plate contains a rectangular hole to account for the 
deflection of the membrane and proper visualization. Visualization is realised by means of a 
Leica Ergoplan wafer inspection microscope. 
 
The deflection of the membrane is obtained by measuring the table height, measured by a 
sensor below the table (Figure 67), and is indicated digitally (Figure 65, right). Deflection is 
set to zero, at visual focus in deflated condition between successive inflation. Deflection is 
determined by visual focus at various applied pressure in the range of 1kPa-11kPa, with use 
of a magnification of 500x (objective magnifying 50x). 
 
The displacement in either x- or r-direction (displacement u) has been obtained by particle 
tracking. Black toner particles are randomly distributed on the membrane. With use of the 
Leica Ergoplan wafer inspection microscope, pictures are made of the membranes, at a 
magnification of 25x (objective magnifying 2.5x). Several sequences of pictures (11) are 
obtained under several applied pressures, in the range between zero and 6.9kPa. 
 
For the tracking of the particles, from which the displacement function u is obtained, the 
PolyParticleTracker is used. The PolyParticleTracker is a versatile particle tracker, based on 
the "Polynomial Fit Gaussian Weight" (PFGW) method by S.S. Rogers et al. [54], and is 
written by S.S. Rogers at the University of Manchester Biological Physics Group in 2007. The 
PolyParticleTracker contains three Matlab M-files, and can be run via a graphical user 
interface. The PolyParticleTracker has been runned on Matlab version R2008b.  

4.5.2 Deflection w 
Figure 68 shows the experimental values for the centre-deflection of the dogbone membrane, 
as obtained by visual focus. We first notice that the centre-deflection progression of the 
actual membrane resembles the overall progression of both analytical and numerical models.  
 
We subsequently compare the experimental, with the finite element and both clamped and 
simply supported analytical centre-deflections as function of applied pressure, for the 
dogbone membrane (Figure 69). Notice the centre-deflection resemblance between the three 
methods and the experimental derived values. The simply supported analytical model 
resembles the experimental deflection lapse over pressure most accurately.  
 
 

 
Figure 68: Experimental values for the centre-deflection of the 
dogbone membrane, as obtained by visual focus. Notice that the 
centre-deflection progression of the actual membrane resembles the 
overall progression of both analytical and numerical models. 
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Figure 69: The experimental (red line), finite element (cyan line) and 
both clamped and simply supported analytical (resp. blue and green 
line) centre-deflections of the dogbone membrane as function of 
applied pressure, for the dogbone membrane. Notice the centre-
deflection resemblance between the three methods and the 
experimental derived values. The simply supported analytical model 
resembles the experimental deflection lapse over pressure most 
accurately. 

 
Figure 70: Experimental deflection of the circular membrane as 
obtained by visual focus. We again obtain a similar relation between 
pressure and deflection as we have seen in the analytical and 
numerical outcomes. 

 
Figure 70 shows the experimental deflection of the circular membrane as obtained by visual 
focus. We again obtain a similar relation between pressure and deflection as we have seen in 
the analytical and numerical outcomes. 
 
Figure 71 shows the comparison of the experimental values, with the numerical, the clamped 
analytical and simply supported analytical outcomes for the load-deflection behavior. We 
obtain a similar image as for the dogbone (Figure 69), a resembling load-deflection relation, 
subjected to a small shift. Notice that for the circular membrane, in contrary to the dogbone 
membrane, we do not obtain a different pitch angle for the simply supported analytical 
approximation as compared to the clamped analytical approximation. Which most probably will 
be an artefact due to the fact that we consider only centre deflection instead of the total 
deflection, described on Page 69.  
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Figure 71: The experimental (red line), finite element (cyan line) and 
both clamped and simply supported analytical (resp. blue and green 
line) centre-deflections of the circular membrane as function of 
applied pressure, for the dogbone membrane. Notice the centre-
deflection resemblance between the three methods and the 
experimental derived values. The simply supported analytical model 
resembles the experimental deflection lapse over pressure most 
accurately. 

4.5.3 Displacement u 
Figure 72 shows the experimental tracked particles in x-direction for the dogbone membrane. 
A polynome is used for fitting the data, containing three terms. Notice that the tracked data 
shows a relatively big variation. However, we do obtain a noticeable trend, indicated by the 
fitted polynome.  
 
Although we obtain many tracked particles, the distribution near the edges of the membrane 
is very poor. When the membrane is inflated underneath the microscope, it obtains a three-
dimensional shape, with an increasing depth. The pictures with particles for tracking are 
obviously taken in a two-dimensional manner. The microscope is not able to obtain a multiple 
depth focus, resulting in a picture partly focussed. The edge regions, are the regions with a 
sharp inclination, we thus loose focus in that region fast, when we try to obtain a large focal 
field. During particle tracking, the particles in these edge regions get excluded due to poor 
recognition of the program. Therefore, we obtain little to no tracked particles near the edge. 
However, we have the knowledge that the u displacement at the edge equals zero. We are 
thus able to extrapolate the fit towards the edge.  
 
We do have to keep in mind that the behavior near the edge is an extrapolation, and we are 
not certain if any deviations from this extrapolation exist in the real membrane. We for 
example do not know if an exponential decrease exists near the edges as we have seen in 
the finite element model (Figure 47), indicating the clamped edges. The extrapolated region 
is indicated by the dotted line, in order to express these uncertainties. 
 
From Figure 73 we obtain the comparison between the experimentally obtained (second 
sequence) and analytically approximated u displacement (supported). We obtain a very similar 
displacement function experimentally, as we have obtained analytically considering a simply 
supported two-dimensional representation, including 5 terms.  
 
The experimental displacement u shows a shifted top towards the edge as compared to the 
analytical model. We have seen this slightly shifted top in the finite element u approximation, 
Figure 47. We can however state that the simply supported analytical model of the dogbone 
can very well predict the displacement u of the true dogbone membrane. 
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Figure 72: Experimental tracked particles for two different membranes in x-direction for the dogbone 
configuration. A polynome is used for fitting the data, containing three terms, including an extrapolated 
fit towards the edge. Notice that the tracked data shows a relatively big variation. However, we do 
obtain a noticeable trend, indicated by the fitted polynome.  

 
Figure 73: Experimentally obtained (left) and analytically simply supported approximated (right) u 
displacement. We obtain a very similar displacement function experimentally, as we have obtained 
analytically considering a simply supported two-dimensional representation, including 5 terms. 

 
Figure 74: Experimentally tracked particles in radial direction for the 
circular membrane, including a fitted polynome, containing three 
terms. Notice that the variation in the tracked particles is even 
bigger for the circular membrane. 
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Figure 74 shows the experimental tracked particles in radial direction for the circular 
membrane, including a fitted polynome, containing three terms. Notice that the variation in 
the tracked particles is even bigger for the circular membrane. The big spread in tracked 
particles is due to the poor quality of the circular membrane pictures. The reflectance of the 
circular membrane and lighting of the microscope and camera results in pictures with a poor 
contrast when the membrane becomes inflated.  
 
Furthermore, the circular membrane deflection increases even more rapidly with increasing 
pressure than the dogbone deflection, resulting in even a bigger challenge to obtain a sharp 
picture. For the circular membrane, only one sequence of pictures, and thus only one 
membrane could be evaluated, with the results being poor. The other two sequences of 
pictures resulted in little to no tracked particles. 
 
The fitted curve (Figure 74) is obtained when first excluding data, which is in absolute sense 
larger than one-half the standard deviation of the initially drawn fit. Again, the dotted line 
represents the extrapolation of the fitted curve when including a zero displacement at the 
membrane’s edges. 
 
When we compare the experimentally obtained u displacement with the approximated u 
displacement of the simply supported analytical model (Figure 75), we obtain a resembling 
curve. The experimental fit shows again a slightly shifted top as compared to the analytically 
obtained radial displacement. Furthermore, we see a slightly large displacement predicted by 
the analytical model, with that keeping in mind that a lot of noise exists in the experimental 
data. We should however note that by no means real conclusions can be drawn from the 
experimental data of the circular membrane, and more study should be done on the true 
radial displacement of the circular membrane. 
 
 
 
 
 
 
 

 
Figure 75: Experimentally obtained u displacement (left) with the approximated u displacement of the 
simply supported analytical model (right). Notice that we obtain a resembling curve in a resembling 
range. However due to the poor quality of the particle tracking (the particle spread is simply too large), 
no hard conclusions can be drawn from these results. 
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4.6 Discussion 

Following this chapter, a few points of discussion should be addressed. Some discussion 
arises relating the experimental determination of the displacement field.  Furthermore we 
should address the fact that during the derivation of the membrane behavior a uniform 
thickness membrane is considered, whereas anchoring of the cardiac muscle cells is assumed 
inside the grooves, where the strain can differ from the uniform membrane strain. 

4.6.1 Experimental verification 
The analytical approximation shows a small upward shift as compared to the experimental 
deflection (Figure 69), which could have several causes. The shift could be due to the fact 
that at processing the parameters cannot be monitored accurately. For example the young’s 
modulus (stiffness) of the spin-coated PDMS layer cannot be determined exactly at 
processing. The stiffness of the PDMS layer appears to be dependent on the thickness of the 
layer and the way of processing. Furthermore, when using a spin-coating processing 
technique, most probably the stiffness of the PDMS also depends on the location on the 
wafer. Due to alignment of the polymer chains, the outer sections of the wafer obtain more 
aligned polymer chains, in contrary to the centre section where more cluttered chains are 
deposited [9]. A possible explanation for this shift could thus be a slightly stiffer actual 
membrane. 
 
When we however adjust the young’s modulus in the analytical simply supported simulation 
(Figure 76), we notice that mainly the pitch of the plot shifts. Which is to be expected, 
because we have an inverse cubic correlation between the young’s modulus and the load-
deflection relation.  
 
We recall the introduction of Hooke’s law for linear elastic isotropic materials (Eq. 3.27 and 
3.28). Hooke’s law states that extension is in direct proportion with applied load, for many 
soft materials however linear elastic models do not accurately describe the material behavior. 
These materials could be modelled with hyperelastic material models, which show a non-linear 
behavior between extension and applied load. It would be recommendable to try the 
introduction of a hyperelastic material model. A Neo-Hookean or Mooney-Rivlin material could 
be implemented in the applied analytical model, for accuracy purposes (Appendix 4). 
 

 
Figure 76: Experimental centre-deflection (red line), analytical 
approximated centre-deflection with Young’s modulus equals 1MPa 
(blue line), analytical approximated centre-deflection with Young’s 
modulus equals 1.5MPa (green line) and analytical approximated 
centre-deflection with Young’s modulus equals 2MPa (cyan line) 
versus applied pressure. Notice that mainly the pitch of the plot 
shifts with increasing stiffness. 
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A second cause for the shift could be due to the experimental technique used. For the 
experiments, the centre of the membrane is visually determined. An offset from the actual 
centre of the membrane could result in a shifted load-deflection relation of the membrane. 
However, as the experiments are performed for several membranes (plotted including error 
bar), this shift will not be large enough to cause a shift as such. However, to exclude this 
factor, an experimental load-deflection study could be done with the determination of the 
deflection by side-view. 
 
Furthermore, the shift could also be due to the fore mentioned definition of deflection and 
corresponding membrane compliancy. We make a comparison solely on the centre-deflection 
of the membrane. However, the actual comparison should be made according to the total 
deflection of the membrane. The deflection shape is dependent on many variables. We for 
instance model the behavior of the membrane by a distributed load, for simplification 
reasons. The true membrane obviously is subjected to a follower load, leading to a more 
globular deflected membrane. One could imagine the centre-deflection of a more globular 
shaped membrane to be lower than the centre-deflection of a more egg-shaped membrane. 
One should determine and compare the deflection by integration of the total deflection over 
the surface. However, to be able to do that first the total deflected shape of the membrane 
should be determined experimentally.  
 
When we consider the displacement u, determined experimentally, we have seen some major 
difficulties, leading to experimental results from which no hard conclusions can be drawn. For 
a better tracking of the particles several sequences of pictures could be made, taking a 
different focal area per sequence in order to obtain more tracked particles. When more 
particles are tracked a trend will probably become more apparent, and the edge effects will 
probably also become visible.  

4.6.2 Groove strain 
Another point of discussion is that the strain in the grooves is of main concern, while we so 
far have only determined the overall (leading) membrane strain. The strain in the grooves 
however directly affects the cell stretch, when assuming anchoring of the cells inside the 
grooves.  As can be witnessed from Figure 77, this strain is not equal to the leading 
membrane strain. For simplification reasons the calculation of the axial strain inside the 
grooves here is done with use of the finite element model (Appendix 1).  
 
We have seen that the axial strain of a thin membrane is almost solely due to the stretch of 
the membrane, when considering a pressure of approximately 3kPa per unit area or more. To 
calculate the transverse strain inside a groove we consider one building block of the 
membrane. The leading membrane strain taken is 0.25, which follows if we take a prescribed 
displacement of the right side of the building block of 10 microns. The left side is taken to 
be a symmetry axis.  
 
  

  
Figure 77: Image of the axial strain in the 
dogbone membrane as approximated numerically. 
Notice that the strain inside the grooves does 
not equal to the leading membrane strain. 

Figure 78: Close-up of Figure 77. Notice that the 
bulk material blocks on top of the membrane 
constrict the top part of the membrane 
underneath these blocks, resulting in a higher 
stain inside the grooves. 
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Figure 79: Single element of the dogbone membrane, strain differences can be calculated from the 
nodal displacements. 

 
The bulk material blocks on top of the membrane constrict the top part of the membrane 
underneath these blocks. However, the total displacement of this slice of material has to be 
equal to the displacement of the rest of the membrane, for continuity reasons. Therefore the 
material between these constricted parts, have to take up the extra strain the block 
constricts. The effect of the bulk material on top of the membrane, on the strain inside the 
grooves, is determined by the nodal displacement of the three corner points (N1, N2 and N3 
in Figure 79). The nodal displacement of the three points is show in Table 1. 
 
Table 1: Nodal displacement of one element of the dogbone membrane, when the right boundary is subjected to 
an displacement of 10μm. 

 Node 1 Node 2 Node 3 

Nodal Displacement 3.1μm 6.9μm 10μm1 

 
 
The relation between the leading membrane strain and the strain inside the grooves (the 
attachment area for the cardiomyocytes), can be defined as: 
  

 

4.57   

 
4.58   

  
This modifies the pressure-strain relation to the relation shown in Figure 80. 
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Figure 80: Modified load-strain relation. This graph shows the strain 
inside the grooves. Notice that the analytical approximation gives 
resembling values with the Finite Element approximation. 

 
Notice that this analytical approximation gives resembling values with the Finite Element 
approximation. The analytical simply supported approximation gives a strain inside the groove 
at an applied pressure of 5kPa of approximately 0.175 versus the strain given by the Finite 
Element approximation of approximately 0.18. We choose to describe the behavior of the 
membrane by the simply supported analytical model, for the reason that its results show the 
highest similarity with both the finite element model and the experimental values. 
 
We assume here that the ratio groove strain over leading membrane strain versus pressure 
behaves linearly. For a more accurate definition of the groove strain with respect to the 
overall membrane strain, one could use a weight method. Determining the constricting role of 
the block material on top of the membrane by their relative weight. 
 
The same is done for the transverse strain in the circular membrane, as we can see (and 
imagine) that for the transverse strain in the circular membrane a similar effect occurs 
(Figure 81). The effect however is not as big as for the axial strain in the dogbone, which 
also became apparent from the established uniform representation (Appendix 3). The multi-
axial strain that exists in the circular membrane and the round constriction leads to this 
lower effect of the grooves. The deflection of the membrane depends on the extension in 
two directions, the transverse direction and the radial direction.  
 
At the edges the transverse strain equals zero, because of the rigid connection. The material 
in between the grooves will therefore not get pulled apart as fierce as in the dogbone 
membrane where the axial strain is barely constricted. 
 
For the strain in radial direction (Figure 82), the material in between the grooves acts as 
ribs, adding extra stiffness to the structure. Because the orientation of these ribs is in the 
direction of the strain considered, the cutouts will barely affect the membrane motion in this 
direction, as we can see from Figure 82.  
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Figure 81: Transverse strain of the circular 
membrane. Notice that for the transverse strain 
in the circular membrane a similar effect occurs 
as for the axial strain in the dogbone membrane. 
Bulk material on top constricts the strain of the 
membrane. 

Figure 82: Strain in radial direction of the circular 
membrane. Notice that no constricting effect 
occurs in radial direction. 

  
The overall membrane strain in radial direction thus equals the membrane strain inside the 
grooves. We can thus obtain the radial strain directly from Figure 61, where the radial strain 
is presented for the analytical simply supported membrane. The highest strain value is 
considered, as we want to prevent overstretching of the cardiac muscle cells. Figure 83 
shows this ceiling value of radial strain and the modified transverse strain. From nodal 
displacement in the finite element model, the factor relating the overall membrane strain to 
the groove strain appeared to be 1.16: 
  

 4.59   
  
From Figure 83 we obtain the strain inside the grooves that the cardiac muscle cells will be 
subjected to (assuming anchoring inside the grooves, cross-ref paragraaf in intro), as 
function of the applied pressure. 
 
Notice that when considering pure strain inside the grooves, that the transverse strain 
resembles the radial strain in a better manner. However, we should take into account that 
the transverse strain still varies largely over the membrane. The radial strain thus resembles 
the maximal transverse strain, near the centre of the membrane. The cells on the outer 
regions of the membrane will not receive an equal strain in transverse and longitudinal 
direction. They will be subjected to a larger strain in the longitudinal direction as compared 
to the transverse direction. 
 

 
Figure 83: Radial (blue line) and transverse (green line) strain inside 
the grooves of the circular membrane as function of applied 
pressure. Notice that when considering pure strain inside the 
grooves, that the maximum transverse strain resembles the radial 
strain. 
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4.7 Conclusions 

From the outcomes of the analytical model with various boundary conditions (Figure 45, 
Figure 46 and Figure 48 in Section 4.4.1) in comparison with the results of the numerical 
model (Figure 42 and Figure 47 in Section 4.4.1) and the experimental data (Figure 43 in 
Section 4.4.1, Figure 69 in Section 4.5.2 and Figure 72 and Figure 73 in Section 4.5.3), we 
are able to conclude that a simply supported analytical model, considering a two-dimensional, 
16.5μm thickness representation properly describes the dogbone membrane behavior. For 
this model we assume a linear elastic homogeneous isotropic material, from which we have 
seen that the error with the experimentally determined values remains small. The 
determination of the membrane behavior by means of a potential energy method has shown 
to provide correct outcomes. However, the right trial function, and boundary conditions are 
essential. Both the in plane displacement u and the deflection play a big role in the accuracy 
of the analytical outcome. The trial in plane displacement function shows to have a big 
effect on the strain outcomes.  
 
Furthermore, for an increased accuracy in the description of the edge effects in this 
potential energy also the shear deformations due to transverse forces could be implemented. 
For this application there is no necessity of including these deformations. We assume that 
the cardiac muscle cells attach inside the grooves, the shear deformation occurs only in the 
small region near the edges where the actual membrane leaves under a zero tangent. When 
including these shear deformations, one should also apply the formulation of clamped 
boundaries, as they introduce the effect. 
 
Similarly, from the outcomes of the analytical model with various boundary conditions (Figure 
54, Figure 55, Figure 57 and Figure 59 in Section 4.4.2) in comparison with the results of 
the numerical model (Figure 56, Figure 58 and Figure 60 in Section 4.4.2) and the 
experimental data (Figure 52 in Section 4.4.2, Figure 71 in Section 4.5.2 and Figure 74 and 
Figure 75 in Section 4.5.3), a three-dimensional, round the edges supported analytical model, 
properly describes the behavior of the circular membrane. Here we consider a 21.5μm 
thickness representation, assuming a linear elastic homogeneous isotropic material. 
 
We can state that the membrane behavior of both membrane configurations depends mainly 
on the extensional energy density. When lower (<3kPa) pressure is applied, extensional and 
bending strain energy determines the membrane’s behavior. However, when applying larger 
amounts of pressure, the bending strain energy fails to participate in the membrane’s 
behavior. This is due to the fact that the membrane has a very small thickness to area ratio, 
and the deflection is very large. 
 
In the dogbone membrane, the axial strain (transverse on the cardiomyocytes) shows a nice 
homogeneous distribution. This will result in a similarity in transverse stretch of all the cells 
situated on the membrane. The cells are considered fully anchored, and plated in a 
monolayer. The radial strain, introducing a longitudinal stretch of the cells, of the circular 
membrane is also nicely homogenous distributed. However, the transverse strain (Figure 84) 
increases towards the centre of the circular membrane. The transverse strain (on the bottom 
of the grooves) in the centre of the membrane resembles the radial strain. This will result in 
equally stretched cardiomyocytes longitudinally and transversally in the central region of the 
membrane. However, the cardiomyocytes in the outer regions of the membrane will barely 
receive transverse stretch, although their longitudinal stretch will be equal to the centrally 
plated cells. 
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Figure 84: Transverse strain inside the grooves of the circular 
membrane. Notice that the transverse strain is not uniform for the 
entire membrane, a strain gradient exists along the radial 
coordinate. 

 
Figure 85: Axial strain as function of pressure for the dogbone 
membrane. A pressure of 3.735kPa should be applied in order to 
obtain a strain of 14.7% on the cardiomyocytes. 

 
From Figure 85 we observe that when we consider the dogbone membrane, we will need to 
apply 3.725kPa to obtain the desired amount of strain of 14.7% on the cardiomyocytes 
situated in the grooves of the membrane (Section 2.4).  
 
Figure 86 however shows that for the circular membrane, to obtain the same desired amount 
of strain of 14.7%, we should apply a much higher amount of pressure. To obtain the same 
stretch of the cells on the circular membrane as the cells on the dogbone membrane, a 
pressure of 5.375kPa should be applied.  
 
Whereas both membranes are produced for simultaneous stretching, in order to see the 
difference between multi-axial loading and uni-axial loading under equal conditions, we notice 
that cells in that case on one or the other membrane do not obtain the right amount of 
strain.   
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Figure 86: Radial (blue line) and transverse (green line) strain as 
function of pressure for the circular membrane. A pressure of 
maximum 5.375kPa should be applied in order to obtain a maximal 
strain of 14.7% on the cardiomyocytes. 

 
We thus conclude that the pressure protocol should depend on the membrane configuration 
implemented in the experiment. Furthermore, when we consider the ventricular volume – time 
relationship, presented in Figure 87, ideally the pressure protocol should match this particular 
course. In Figure 87 the red line represents the volume of the left ventricle over time. The 
time-span is not mentioned in this figure, as it depends on the heart frequency. When we 
consider a relatively standard human adult heart frequency in rest of 1Hz (60 beats per 
minute), we can conclude that approximately two-third of the time-span of one second per 
heartbeat the heart is filling, and one-third of the time the heart is ejecting.  
 
Moreover, both filling and ejection phase show an exponential upstroke function and an 
exponential down stroke function. Widely stated, the left ventricle volume shows a blunted 
block-function over time. For preliminary testing implementation of a block-function including 
some build-in delay will approach the in vivo left ventricle volume over time relation. For 
experiments including dogbone membranes a block-function with an absolute peak pressure of 
no more than 3.725kPa should be introduced, whereas for experiments including circular 
membranes a block-function with an absolute peak pressure of no more than 5.375kPa 
should be introduced. 
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Figure 87: Left ventricle behavior, the red line denotes the left 
ventricular volume. Notice that that approximately two-third of the 
time-span of one second per heartbeat the heart is filling, and one-
third of the time the heart is ejecting. We can model this left 
ventricular volume behavior by a blunted block-function over time, 
related to the heart frequency. 
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PART IV : PRELIMINARY EXPERIMENTS 
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5 Preliminary Experiments 

In this chapter some preliminary results regarding stretched cardiomyocytes will be discussed. 
Because of the preliminary nature of these experiments, and a poorly optimized process, we 
are not able to draw any hard conclusions from the results regarding the developed loading 
protocol. These preliminary experiments are done in terms of verification of the principle of 
stretching anchored cardiomyocytes in vitro by inflation of the substrate. 
 
Materials and methods of testing are described in Section 5.1. In Section 5.2 some 
preliminary results are presented. Section 5.3 shows some discussion points considering the 
experimental methods and the results, and finally in Section 5.4 the conclusions considering 
the outcomes of the preliminary experiments are discussed. 

5.1 Materials and Methods 

5.1.1 Construct preparation 
Primarily the Cytostretch chips were plasma treated by electric glow discharge to ensure a 
hydrophilic membrane surface, for easy fluid access. The chips were subsequently coated 
with a 20% fibronectin solution (40µl fibronectin, 160µl DPBS-) and incubated for at least 
one hour. 
 
Human embroyonic stem cells were cultured under standard conditions (with feeders to 
support renewal). Subsequently the scaled up hES cells were cocultered with endoderm-2 
cells to extensively induce differentiation into cardiomyocytes. The cocultures were incubated 
at 37 degrees celcius and at a 5% CO2 concentration. Beating areas on at least 12-day 
cocultures were selected and dissociated by cutting[55], whereupon the beating areas were 
dissected in plane in order to obtain beating lumps with little thickness. The beating lumps 
were plated on the fibronectin-coated chips (washed by DPBS-) including BPEL cell medium 
for nutrition.  
 
The chips were incubated without stretching for 48 hours minimum in order to obtain 
cardiomyocyte anchorage on the PDMS membrane. 

5.1.2 Experimental setup 
After 48 hours of incubation, the chips were positioned in the stretch setup. The stretch 
setup consists of a chip-holder, developed for 6 chips (Figure 88). Due to the big tolerance 
on the chips, the holder is designed to clamp the chips between two metal blocks (Figure 
89). This ensures that any chip can fit into the chip-holder. Due to the fact that the medium 
fluid container is small, it was decided to use an under pressure (creating vacuum) in order 
to create more rather volume in this container. Because we have seen that up from 
approximately 3kPa the bending term does not contribute to the total strain energy of the 
membrane, we can state that an applied over pressure will result in the same membrane 
strain as an equally applied under pressure. Furthermore, under pressure will pull the chip 
downwards onto the lower part of the chip-holder, combined with rubber o-rings the under 
pressure will make the airflow up to the membrane airtight (Figure 89). Two holes are 
created halfway in plane in the lower section of the chip-holder, leading to the holes 
underneath the chips inside the o-rings, for the passing of air. At the other end from the 
entering of the holes, a hole is created perpendicular to the first two holes, connecting the 
first to and enabling a linkage to a pressure sensor for measuring the actual pressure 
underneath the membranes. 
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Figure 88: Chip-holder, developed for 6 chips. The 
holder is designed to clamp the chips between two 
metal blocks, to ensure that any chip fits in the 
holder. The two metal parts are joined together with 
hexagon socket head screws. 

Figure 89: Chip-holder opened up. The o-rings ensure 
an airtight fit. Furthermore, the screws are not 
centrally aligned in order to reduce pressure on the 
outer chips. 

  
The upper part of the chip-holder will ensure a tight fix, and will keep the chips in place. This 
upper part contains slightly larger holes to accommodate for the medium fluid containers. 
The holes surround the fluid containers exactly for a nice alignment of the chips with the 
suction holes. The upper half of the chip-holder is attached to the lower half by 4 hexagon 
socket head screws (Figure 88). The central two, are not exactly centrally aligned in order to 
reduce pressure on the silicon parts of the outer chips. For the experiments the hexagon 
socket head screws were cautiously fixed in order not to pulverize the silicon chips. The 
entire chip-holder is placed in the incubator for experiments (Figure 95). 
 
The two air holes are lead to one tube, which can be disconnected just behind the y-
splitting, in order to easily remove the chip-holder from the incubator. The air tube runs 
through a hole in the backside of the incubator towards the mechanical part of the 
experimental setup situated on top of the incubator. The air tube runs towards a solenoid 
valve (Figure 90), an electromechanical valve suitable for liquid or gas. A solenoid valve is a 
induction valve, which operates by means of a magnet and a coil. An electric current in the 
coil creates a magnetic field, which draws a piston up inside the coil, pulling with it a 
diaphragm that normally closes off the airflow. The lift of the diaphragm mechanically opens 
the valve. Solenoid valves offer fast switching, a long service life, a low control power and a 
compact design, useful for this application. The solenoid valve runs on 24Volt. 
 
Airflow towards the solenoid valve is controlled by a manual regulated analogue flow-
regulator (Figure 91). With this regulator the airflow from the valve towards a vacuum 
chamber can be regulated, in order to obtain the correct negative peak pressure just before 
the valve closes. This means that when we introduce a higher heart-frequency, the regulator 
should be further opened in order to obtain the same negative peak pressure. As mentioned, 
the flow regulator is linked to a vacuum chamber (Figure 92). This chamber is implemented 
in order to maintain a constant pressure. Simple pumps do not have the possibility to ensure 
a steady pressure. However, when introducing a vacuum chamber between the pump and the 
valve, we introduce a pressure buffer. The vacuum chamber is obviously connected to a 
pump (aquarium pump, Figure 92), which creates a vacuum inside the vacuum chamber. The 
pump operates on normal line current. 
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Figure 90: Solenoid valve, controlled by the Labview 
program. The solenoid valve opens and closes 
corresponding to a heart frequency of 1Hz. 

Figure 91: Manual analogue flow regulator (centrally 
situated in the image, blue box with grey turning 
wheel). The flow regulator is adjusted until the right 
absolute peak pressure is obtained (read out on 
computer screen). 

  
Figure 92: Sensor for pressure readout (left), vacuum 
chamber for maintenance of a constant pressure 
(centre) and the aquarium pump for creating the 
vacuum (right). 

Figure 93: The entire mechanics of the experimental 
setup, including power supply. 

  
The solenoid valve is controlled via a data acquisition system. The digital port of the DAQ is 
used to control the solenoid valve. However, as the digital port of the DAQ only generates 
8.5mA of current, a Darlington transistor (TIP132) is used to amplify the signal from the 
DAQ towards the solenoid valve. A Darlington transistor circuit is a compound transistor 
circuit, which consists of two transistors in which the collectors are tied together and the 
emitter of the first or input transistor is directly coupled to the base of the second or 
output transistor. The Darlington amplifies the signal twice, creating a DC (direct current) 
current gain of typically 500 to 15000, creating enough current to operate the solenoid 
valve[56]. 
 
The analogue port of the DAQ is connected to an integrated silicon pressure sensor 
(MPXV4006C6T1, Figure 94). This sensor operates on 5Volt, and is able to measure 
pressures between 0 and 6kPa. The sensor measures relative pressures, therefore reversed 
implementation will result in the measurement of negative pressures up to 6kPa. The choice 
for this sensor (0-6kPa) has been made due to its great accuracy. For later disease 
modelling, other sensors are present, which can be directly integrated. The total electrical 
scheme is presented in Appendix 5. 
 
The data acquisition system (DAQ) is connected to a windows computer (Figure 95), for 
sensor readout and valve control in Labview. A block function is introduced in the Labview 
program, controlling the solenoid valve. Chosen is to use a block function in order to 
maintain a tempered valve control. Furthermore, due to the delay in the valve and tubes 
running to the chip-holder the block function will smoothen, and a function corresponding to 
the left ventricle volume-time relation will originate (Figure 96). The Labview program is 
programmed to save three cycles every half to three hours (time-span can be adjusted in 
the program). Moreover, the program constantly shows the introduced heart-rhythm, 1 hertz 
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(60 times per minute), and the absolute pressure-difference over the membranes. The 
pressure difference is calculated from the typical offset of the sensor (0.265V) and the 
sensitivity (0,766V/kPa) (Appendix 6)[57]. 
  

  
Figure 94: Foreground: pressure sensor, connected to 
the air holes underneath the chips, for an accurate 
pressure readout. 

Figure 95: The entire experimental setup. The chip-
holder is placed in the incubator situated underneath 
the experimental setup’s mechanical part. Control and 
readout is done by means of a laptop with Labview. 

 
Figure 96: Sensor readout. Notice that the introduced block function 
gets blunted in the upstroke, however when the valve is opened, the 
pressure drops back to atmospheric pressure immediately. 

 

5.2 Results 

5.2.1 First set of experiments 
The first experiment was set up solely out of circular membranes, to which a negative 
pressure of approximately 5.3kPa was applied. This experiment was performed over a time 
span of 5 days, subsequent to 3 days of anchoring in the incubator without loading. 
 
After 5 days the first experiment failed due to a lack in fluids. When cells are plated in a 
normal well plate they incubate in large amounts of nutritious medium. The Cytostretch 
chips, however, contain a small medium container, surrounding the membrane. The volume of 
this container is as such, that the fluid condenses out of the container too fast. To obtain a 
reasonable fluid level, extra units with fluid were placed in between the chips, on top of the 
chip-holder for extra humidity. This however did not solve the problem of condensation of 
the medium. Together with a non-tight fit of the applied lid, the fluid condensed too fast, 
and left a highly concentrated (minerals) fluid on the cells, leading to cell death. Although 
the first experiment did not lead to any results concerning maturation enhancement, it was 
considered a prosperous experiment. The cells did not appear to be agitated by the 
movement of the substrate and remained attached during the entire 5 days of testing. 
Furthermore, the sensor obtained a steady pressure curve during the experiment, indicating a 
correct function of the experimental setup (Figure 97-Figure 100). 
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Figure 97: Sensor readout of three cycles after 8 
hours. 

Figure 98: Sensor readout of three cycles after 17 
hours. Notice that the peak pressure maintains a 
constant value. 

  
Figure 99: Sensor readout of three cycles after 20 
hours. Notice that the peak pressure maintains a 
constant value. 

Figure 100: Sensor readout of three cycles after 
24 hours. Notice that the peak pressure maintains 
a constant value. Furthermore, notice that 
somewhere along the experiment the block 
function got shifted. 

  
Notice the small shift of the graph in Figure 100, which is related to sudden irregularities in 
the control of the solenoid valve. The pressure diagram occasionally shows an irregularity, as 
can be witnessed in Figure 101. A shortened block diagram is introduced to the solenoid 
valve, resulting in some kind of heart fluttering for the cardiac myocytes. This will however 
have little to no effect on the cardiac myocytes, as these irregularities also occur in a 
healthy heart. Furthermore, we witness an offset. Zero pressure, thus atmospheric pressure, 
is set from the sensor offset (when the valve is closed). We can however see from Figure 
97 to Figure 100 the sensor does not have this typical offset in pressure differential; it 
appears to be slightly higher.  

5.2.2 Second set of experiments 
Due to the inconvenience of removal of the entire tube through the hole in the back of the 
incubator, before the second set of tests a link was created near to the y-junction (near the 
chip-holder). From the initial pressure diagram (Figure 102) it became evident that there was 
leakage around this link. The absolute peak pressure was a lot lower and a big pressure loss 
occurred when the valve was open. For the realization of an airtight link, parafilm was 
wrapped around the link. Furthermore, the flow regulator was adjusted to obtain the right 
amount of pressure underneath the membrane (approx. 3.7kPa due to the implementation of 
the dogbone membranes). Apparently however, some air leakage still occurred. The parafilm 
slowly sealed the leakage, creating eventually an airtight fit. This resulted in a slow increase 
in negative pressure underneath the membranes (Figure 103).  
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Figure 101: Irregularity in the pressure diagram. A 
shortened block diagram is introduced to the 
solenoid valve. Labview occasionally shows these 
irregularities in outgoing signals. 

Figure 102: Initial pressure diagram in the second 
set of experiments. Notice that the chip-holder 
cannot keep the pressure, indicating an air 
leakage. 

  
Figure 103: Sensor readout after one hour. Notice 
that the pressure has risen drastically, indicating 
slow closure of the leakage. 

Figure 104: Sensor readout after 8 hours. Notice 
the further increased pressure up to the ceiling 
value measurable by the sensor. Moreover, notice 
that the ceiling value is slightly higher than 
expected (>6kPa). This is due to the slightly 
higher offset than typical for this sensor. 
Furthermore, the operating voltage could have 
been slightly higher than 5Volt.  

  
After 8 hours, the pressure reached the maximum measuring value of the sensor (Figure 
104). The pressure increased up to an approximate maximum pressure of 7kPa.  The cardiac 
myocytes reacted negative to the increased pressure protocol; all beating areas detached. 
The cardiac myocytes however did remain alive. Subsequently the measurement setup was 
turned of, to provide an opportunity for the beating areas to reattach. 
 
The second set of tests also revealed a major problem with the experimental setup. 
Considering the humidity and oxygen rich airflow in the incubator, aluminium is used as 
material for the chip-holder, a relatively oxidation stable material. However, due to contact 
with other materials, oxidation did occur (Figure 105 and Figure 106). Oxidation particles 
travelling through the incubator destroyed the cells. 
  

  
Figure 105: Bottom view of the chip-holder, the 
contact with another metal in the incubator initiated 
corrosion. 

Figure 106: Top view of the bottom part of the chip 
holder. The corrosion has also immigrated towards the 
upper side of the chip holder, near the chips. Oxidation 
particles floating through the air are able to destroy 
the cardiomyocytes. 
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5.3 Discussion  

Following the preliminary experiments, a few points of discussion should be considered. 
Primarily we should address the fact that initially a block function is introduced into the 
solenoid valve. Although the block function smoothens due to delay in the opening valve in 
the concaving motion of the membrane, the closing of the valve, and introducing 
atmospheric pressure at the membrane occurs very suddenly. This introduces a fast snap 
back to atmospheric pressure at valve closing (Figure 96). We have however concluded that 
the true left-ventricle volume-time function shows both an exponential behavior during the 
filling stage as well as during the contraction stage. The introduced block function is thus 
not able to properly describe ejection of the left ventricle. 
 
Furthermore, due to atrial systole, the filling stage consists of two subsequent exponential 
functions. Primarily, a filling phase due to under pressure that originates in the left ventricle 
subsequent to ejection, and secondly an additional filling phase due to the ejection of blood 
from the left atrium into the ventricle.  
 
Moreover, the filling phase takes up approximately twice the amount of time with respect to 
the ejection phase. For a proper introduction of the left ventricular behavior to the in vitro 
cultured cardiomyocytes, we should approach the correct volume-time relation. This means 
that longer phases of vacuum (stretching) should be implemented, with respect to zero 
pressure phases. The solenoid valve will not be able to switch frequently enough to realise a 
solid exponential increase in the two phases, following a smooth exponential decrease in 
pressure. A solution in realising the exact left-ventricular volume behavior, is the substitution 
of the solenoid valve by a flow-regulator, controlled by the Labview program. Furthermore, a 
feedback loop could be introduced, measuring the true pressure-differential value over the 
membrane (sensor), comparing this value with the introduced pressure, and creating a 
feedback to the flow-regulator. 
 
When we review the pressure curves obtained from the first experiments (Figure 97-Figure 
100), it is indicated that the typical offset of the sensor does not agree with the actual 
offset of the sensor. The result is that when we tune the manual analogue flow-regulator to 
the correct absolute peak pressure, the pressure difference between the stretched 
membrane, and the relaxed membrane is slightly smaller than initially meant. For an easy 
tuning of the absolute peak pressure the offset should be tuned to obtain a zero value at 
zero difference between the outside pressure and the pressure underneath the membrane. 
Furthermore, the supply voltage should be exactly 5Volt. 
 
The sensor measures the pressure differential between the outside air (atmospheric 
pressure), and the pressure underneath the membrane. We actually are interested to know 
the pressure differential over the membrane. On top of the membrane fluid is situated, 
leading to an increased pressure on top of the membrane. When we calculate the additional 
pressure this fluid puts on the membrane, we are able to see that it is negligible compared 
to atmospheric pressure existing at sea level (approx. 100kPa). 
 
Specifications: 
   
Water density:  1 g/cm3  
Container radius: 0.5 cm  
Container height: 0.5 cm  
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Calculations: 
  

 5.1   

 5.2   

 
5.3   

  
To recover an airtight valve - chip-holder connection, the introduced link has been replaced 
by a more rigid connection. The earlier connection contained a connection by sliding the tube 
over a ridged end, and realising fixation by a screwed on cap. The other side of the 
connection contained a little metal tube with an inner o-ring, the pressure tube was 
positioned inside the metal tube, with the o-ring realising an airtight connection. This 
connection will possibly remain airtight when an overpressure is introduced, pressing the 
pressure tube against the o-ring. However, when a negative pressure is introduced, the 
pressure tube will become slightly smaller in diameter, resulting in an air leakage at the o-
ring. The new introduced linkage consists of double ridged-end connection, resulting in an 
airtight link able to be disconnected. 
 
For the first set of experiments, the cardiomyocytes were plated on the Cytostretch chips in 
lumps. Entire beating areas were cut from the primary substrate, and plated as whole on the 
membranes. Each membrane subsequently contained one contracting outgrowth. Resulting 
this plating method were contracting outgrowths, which only attached to the membrane by a 
small lower section. The strain of the membrane will only be taken up by this lower section 
of the contracting outgrowth. Although we assume that the cardiomyocytes in a contracting 
outgrowth communicate, it is not likely that the stretching of connecting cells will affect the 
maturation of the non-stretched cells. In order to broaden the contact plane of the 
contraction outgrowth with the membrane, in the second set of experiments the cells were 
split to obtain flat beating areas. However, still cells maintain to be out of reach for the 
membrane to transfer strain. For a proper experiment execution, the cells should be situated 
on the membrane in a monolayer. This monolayer can be obtained by plating after 
trypsinization; cutting the beating areas into a single cell solution with use of trypsin, a 
dissociation enzyme present in the digestive tract. Consequences could however be 
decreased cell viability.  

5.4 Conclusions 

The conclusion regarding the preliminary experiments have been split up in conclusion 
regarding the experimental setup and conclusion regarding the results considering the effect 
on the cardiac myocytes. 

5.4.1 Experimental setup 
We have witnessed that the incubator environment accommodates for oxidation processes. 
The humidity and various metal components present commences oxidation processes even 
with metals, which are, relatively oxidation stable. We are thus able to conclude that non-
metal experimental setup components should be used for placement inside the incubator. 
 
Furthermore, the low medium container of the Cytostretch chip introduces problems 
considering the cells humidity and mineral concentration. A suitable lid appears to be 
essential for the maintenance of a proper fluid solution for the cardiac myocyte survival. 
Moreover, the chip-holder should accommodate for additional placement of fluid surrounding 
the chips for extra moistening. 
 
The experimental setup has shown to maintain a steady absolute peak pressure during the 
entire experiment. However, we should note that occasionally a heart rhythm fluctuation 
occurs due to a Labview control flaw. 

V = !r 2h = 0.3927cm 3

A = !r 2 = 0.7854cm2

Pcolumn =
Mass

Area
= 50Pa(N / m 3 ) = 0.05kPa
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5.4.2 Cardiac myocyte results 
From the initial experiments it was concluded that the moving substrate has no detrimental 
impact on the cardiac myocytes’ attachment. The cardiac myocytes remained anchored to 
the moving substrate over a long period of time (>120h.). We can therefore carefully state 
that substrate movement mimics some of the cardiac myocyte environment in vivo. 
Furthermore we are able to conclude that PDMS is a proper substrate for cardiac myocyte 
anchorage, and the material can withstand long-term extensive stretching, without 
permanently deforming. 
 
Moreover a conclusion can be drawn relating the pressure protocol. From the failed second 
set of experiments we have seen that at larger pressures (approx. 7kPa) the cardiac 
myocytes detach. From the first set of experiments we have however seen, that with the 
calculated loading conditions, the cardiac myocytes remain attached. We are thus able to 
conclude that the derived pressure protocol in Chapter 4 is in the right range. However, to 
obtain hard conclusion considering the pressure protocol, experiments should be preformed 
with mono-layered cardiac myocytes and varying pressure protocols, and the maturation of 
the cells should be assessed. 
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6 Conclusions and Recommendations 

In this chapter we recapitulate all conclusions and recommendations considering this project. 
The concluding remarks relating to the outcomes of the study objectives, presented in 
Section 1.3 are discussed in Section 6.1: 
 

 Gain insight in the strain cardiomyocytes have to endure in vivo. 
 Determine the membrane behavior of both Cytostretch configurations, in order to 

determine how the amount of applied pressure relates to membrane stretch. 
  
Furthermore, the conclusions will be presented considering the preliminary experiments 
discussed in Chapter 5. Finally recommendations for future work considering the Cytostretch 
project will be presented in Section 6.2. 

6.1 Conclusions 

6.1.1 Left ventricle mechanics 
The strain cardiomyocytes endure in vivo has been determined from the derivation of left 
ventricle mechanics. The left ventricle is the largest, most muscular part of the heart, and 
cells situated in the left ventricle wall will endure the largest strains. 
 
For the calculations of the left ventricle mechanics, we can conclude that the left ventricle 
can be assumed to be a rotationally symmetric thick-walled structure, build-up out of a 
fibrous structure embedded in soft incompressible material. 
 
As a result of evolution, and from previous anatomical fiber angle findings [30] we can 
assume that the left ventricular fiber stress can be considered homogeneously distributed 
over the wall. The normal heart myofiber structure and geometry will adapt, until load is 
evenly distributed. Furthermore, the fiber direction related to a homogeneous stress 
distribution corresponds with experimentally derived values [40]. Thus the conclusion can be 
made that the left ventricular fiber stress (and corresponding fiber strain) can be 
approximated by a single value. For the determination of a proper loading protocol for the 
Cytostretch experiments we are thus able to consider one strain value for the 
cardiomyocytes. 
 
We can conclude from the left ventricle calculations (Chapter 2), that when assuming this 
homogeneous stress distribution, the fiber stress as a function ventricle pressure depends 
mainly on the ratio of cavity volume over wall volume. Moreover, we can conclude that the 
shape of the left ventricular representation is of minor importance.  
 
The relation between fiber stress and cavity volume leads to the fiber strain with use of the 
principle of conservation of energy. The conclusion can be drawn that the left ventricle 
mechanics can be approximated by the simple approximations of: 
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In Equations 2.35 and 2.43, σf is the left ventricular fiber stress, Plv the left ventricular 
pressure. Vlv is the left ventricular cavity volume, Vw the left ventricular wall volume and Δεf 
the natural fiber strain.  
 
The accuracy of Equation 2.32 is essential for the derivation of accurate fiber stress and 
strain. We have seen that the error in the equation is expressed by the term Verr in Equation 
2.31. 
  

 

                                          2.31  

 

                                          2.32 

  
This error term equals zero if the volume is closed with a finite radius or the derivative 
dr/dz is zero at the boundary. This, however, is not the case at the basal boundary of the 
left-ventricle, where the basal boundary is open without the derivative dr/dz being zero at 
that boundary. 
 
The left-ventricle can be seen as a prolate ellipsoid, being cut-off at the upper end, with a 
long to short axis ratio of 2 or more [43]. If we consider a minor axis of 2R and a major to 
minor axis ratio of a, with the centre at the origin and cut-off at z=zmax. For a ≥ 2, a typical 
ellipsoid, resembling the shape of the left ventricle, we obtain an error of less than 2.78%. 
We can thus conclude that the volume accuracy lies within 2.78 percent. And the effect on 
the fiber stress is less than 8.34 percent. 
 
The calculations of the left ventricular fiber strain in Section 2.2.3 lead to the conclusion 
that for a healthy adult heart the absolute strain between end systole and end diastole 
equals an approximate 14.7 percent.  
 
Salameh et al. [50] uni-axially strained cardiomyocytes at three different strain values, 5%, 
10% and 20%. 24-hour cyclic mechanical stretch resulted in an increased percentage of cells 
with an elongated phenotype. They discovered that the pecentage of elongated cells was 
dependent on the intensity of the stretch, 10% and 20% stretch generated significantly 
more elongated cells than 5% stretch. There was no significant difference in percentage of 
elongated cells between 10 and 20% stretch. From this we are able to make the statement 
that the left ventricle calculations lead to reasonable fiber strains, applicable for the 
Cytostretch experiments. 

6.1.2 Membrane mechanics 
We are able to conclude that a simply supported analytical model, considering a two-
dimensional, 16.5μm thickness representation describes the dogbone membrane behavior 
properly. For this model we assume a linear elastic homogeneous isotropic material, from 
which we have seen that the error with the experimentally determined values remains small. 
The determination of the membrane behavior by means of a potential energy method has 
shown to provide correct outcomes. However, the right trial function, and boundary 
conditions are essential. We can state that both the in plane displacement u and the 
deflection play a big role in the accuracy of the analytical outcome. The trial in plane 
displacement functions show to have a big effect on the strain outcomes, whereas the trail 
deflection displacement functions influence both in plane and out of plane displacements to a 
large extend. 
 
Similarly, a three-dimensional, analytical mode supported at the edge, describes the behavior 
of the circular membrane properly. Here we are able to consider a 21.5μm thickness 
representation, assuming a linear elastic homogeneous isotropic material. 
 
We can furthermore state that the membrane behavior of both membrane configurations 
depends mainly on the extensional energy density. When lower (<3kPa) pressure is applied, 
extensional and bending strain energy determines the membrane’s behavior. However, when 
applying larger amounts of pressure, the bending strain energy fails to participate in the 
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membrane’s behavior. This is due to the fact that the membrane has a very small thickness 
to area ratio, and the deflection is very large. 
 
In the dogbone membrane, the axial strain (transverse on the cardiomyocytes) shows to be 
nicely homogeneously distributed. This will result in a similarity in transverse stretch of all 
the cells situated on the membrane. However, in the circular membrane the transverse strain 
increases towards the centre. The transverse strain (on the bottom of the grooves) in the 
centre of the membrane resembles the radial strain. This will result in cardiomyocytes equally 
stretched longitudinally and transversally in the central region of the membrane. However, 
the cardiomyocytes in the outer regions of the membrane will barely receive transverse 
stretch, although their longitudinal stretch will be equal to the centrally plated cells. 
 
We can conclude that when we consider the dogbone membrane, we will need to apply 
3.725kPa to obtain the desired amount of strain of 14.7% on the cardiomyocytes situated in 
the grooves of the membrane (Section 2.4). For the circular membrane, to obtain the same 
desired amount of strain of 14.7%, a pressure of 5.375kPa needs to be applied.  
 
The pressure protocol must be adjusted to the membrane configuration implemented in the 
experiment. From a typical ventricular volume – time relationship, we can conclude that 
approximately two-third of the time-span of one second per heartbeat the heart is filling, and 
one-third of the time the heart is ejecting. Moreover, both filling and ejection phase show an 
exponential upstroke function and an exponential down stroke function. Widely stated, the 
left ventricle volume shows a blunted block-function over time. For preliminary testing 
implementation of a block-function including some build-in delay will approach the in vivo left 
ventricle volume over time relation. For experiments including dogbone membranes a block-
function with an absolute peak pressure of no more than 3.725kPa should be introduced, 
whereas for experiments including circular membranes a block-function with an absolute peak 
pressure of no more than 5.375kPa should be introduced. 

6.1.3 Preliminary experiments 
We can conclude that the experimental setup maintains a steady absolute peak pressure 
during the entire experiment.  
 
Furthermore, we are able to conclude that the moving substrate does not bother the cardiac 
myocytes. The cardiac myocytes remained anchored to the moving substrate over a long 
period of time. We can therefore carefully state that substrate movement mimics some of 
the cardiac myocyte environment in vivo. Furthermore we are able to conclude that PDMS is 
a proper substrate for cardiac myocyte anchorage, and the material can withstand long-term 
extreme stretching, without permanently deforming. 
 
Moreover a conclusion can be drawn relating the pressure protocol. From the failed second 
set of experiments we have seen that at larger pressures (7kPa) than determined the cardiac 
myocytes detach. From the first set of experiments we have however seen, that with the 
calculated loading conditions, the cardiac myocytes remain attached over a long period of 
time. We can thus conclude that the derived pressure protocol in Chapter 4 is in the correct 
range. 
 

6.1.4 Overall conclusions 
The fact that the moving substrate has no detrimental impact on the cardiomyocytes proves 
that the Cytostretch project has great potential. However, we are able to state that for 
proper determination of the effect of the separate strain components (longitudinal and 
transverse) attention should be paid to the Cytostretch configurations. The outcomes of the 
analytical model described in Chapter 4 lead to the conclusion that the circular configuration 
does not meet the demands. Although we have not considered transverse strain in the 
human left ventricle model described in Chapter 2, out of evolution considerations, we can 
state that equal to the longitudinal cardiac muscle stress, the transverse muscle stress will 
be likewise homogeneously distributed. This homogeneity will only be obtained in the centre 
section of the circular membrane. 
 
Furthermore, for a proper determination of the effect of the separate strain components 
(longitudinal and transverse), both strain directions and the combined two should be tested 
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simultaneously, meaning that the both the circular as well as the dogbone configuration 
including anchored cells should be incorporated in the stretch setup at the same time to 
ensure equal conditions. From Chapter 4 we can draw the conclusion that with the current 
dimensions this will not be feasible.  
 
Equally, issues are encountered with the current proposed interconnect design for the circular 
membrane. The helical formed interconnects maintain function due to uncoiling when the 
membrane is pulled into a concave state. However, the rigidity of the coils will affect the 
strain in the membrane, the transverse strain will damp out as a result of the added 
interconnects, leaving the circular chip to be a uni-directional stretching device. From this we 
can conclude that in the current state, the circular membrane is not suitable for proper 
multi-directional cardiomyocyte stretching.  
 
The dogbone configuration on the other hand shows great potential for its purpose, namely 
uni-directional cardiomycyte stretching, when the cells do indeed anchor in the desired 
direction on the centre-section of the membrane. From the numerical approximations 
presented in Appendix 1 we can conclude that the centre section of the dogbone membrane 
does inflate cylindrically as desired, resulting in strain in solely one direction.   
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6.2 Recommendations 

6.2.1 Left ventricle mechanics 
We should note that the left ventricular fiber strain is calculated for a healthy adult heart, as 
there is much MRI (magnetic resonance imaging) data available containing cavity and wall 
volume measures. The cardiomyocytes, used for the experiments, are however in a much 
lower maturation stage. From literature it is assumed that the left ventricular cavity volume 
over wall volume is in a specific range, valid for any stage of development [33]. It is 
assumed that the left ventricle wall growth is proportional to the left ventricular cavity 
increase during development. For a validation of the derived strain values the above 
statement should be checked. Left ventricular cavity and wall measures should be considered 
for embryonic hearts.  
 
Furthermore, the development of cavity volume over wall volume should be analyzed in order 
to determine whether this ratio stays uniform. This assessment could for example be 
performed by observation of MRI data at several developmental stages of the human heart. 
When non-uniformity exists in the cavity volume over wall volume ratio, this should be taken 
into account, pressure during experimental testing should be varied over time. 
 
Although the outcome of the calculations seems reasonable, we should take into account 
that various simplifications have been made in order to describe the mechanics of the left 
ventricle with reduced calculation time. Biological tissue contains many structural 
components. In the derivation of the left ventricle mechanics, the material is assumed as a 
fluid-fiber continuum, as the incompressible fluid like material and muscle fibers are the most 
distinct components. The next component, which provides consistency of the left ventricle 
material, is collagen. Collagen exists in the left ventricular wall in a matrix structure, and 
could have effect on the left ventricular fiber mechanics. For increased accuracy a fluid-fiber-
collagen continuum could be considered in the derivation of the left ventricular strain.  
 
Chadwick et al. [38] described the left ventricle mechanics according to the model of Arts 
et al. [32] with an additional collagen matrix, compared the two material models [36-38] 
and discovered that the contribution of the collagen matrix to the elasticity of the material 
is critically dependent on the helical pitch angle of the collagen matrix, the effect shows to 
be maximal when the pitch angle of the collagen matrix equals that of the muscle fiber 
(Section 2.2). Moreover, the collagen matrix appears to affect stiffness in end systole as well 
as end diastole (reference is taken at dead volume 45ml). The elongation between end 
systole and the reference volume (dead volume) deviates by less than 8 percent from the 
elongation between end diastole and reference volume when assuming homogeneity in fiber 
strain over the wall. Incorporation of collagen in the material model could thus result in a 
lowered fiber strain by a maximal 8 percent. 

6.2.2 Membrane mechanics 
For enhanced accuracy of the membrane behavior and with that an optimized pressure 
protocol, future work lies in the optimization of the analytical model describing the 
membrane behavior. Below, areas for future work on the membrane model are presented, to 
increase accuracy. 
 
We have seen that for a proper description of the edge effects in the potential energy of 
the membranes also the shear deformations due to transverse forces should be taken into 
account. For future work, new calculations could be performed including the transverse 
forces, for further clarification of the edge effects. When including these shear deformations, 
one should also apply the formulation of clamped boundaries, as they introduce the effect. 
 
We have noticed that analytical approximation shows a small upward shift as compared to 
the experimental deflection, which could have several causes. We have also noticed that it is 
likely that some of the shift is caused by ill prediction of the stiffness of the PDMS 
membrane. For a better accuracy of the analytical model, the exact stiffness of the 
membrane is essential. Therefore, future work on this project should include the exact 
determination of the membrane parameters. 
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There is a possibility that a linear elastic material model simply cannot model the PDMS 
membrane accurately. It would be recommendable to introductie a hyperelastic material 
model. A Neo-Hookean or Mooney-Rivlin material could be implemented in the applied 
analytical model (Appendix 4). 
 
In the membrane experiments the centre of the membrane is visually determined. An offset 
from the actual centre of the membrane could result in a shifted load-deflection relation of 
the membrane. To exclude this factor, an experimental load-deflection study could be done 
with the determination of the deflection by side-view. 
 
Furthermore, the shift could also be due to the definition of deflection and corresponding 
membrane compliancy. We make a comparison solely on the centre-deflection of the 
membrane. However, the actual comparison should be made according to the total deflection 
of the membrane. The deflected shape depends on many variables. We for instance model 
the behavior of the membrane by a distributed load, for simplification reasons. The true 
membrane obviously is subjected to a follower load, leading to a more globular deflected 
membrane. One could imagine the centre-deflection of a more globular shaped membrane to 
be lower than the centre-deflection of a more egg-shaped membrane. Future work lies in the 
determination of the membrane deflection, by describing the entire deflection of the 
membrane. Which could be realized by determination and comparison of the deflection by 
integration of the total deflection over the surface. To be able to do that the total deflected 
shape of the membrane should also be determined experimentally.  
 
When we consider the displacement u, determined experimentally, we have seen some major 
difficulties, leading to experimental results from which no hard conclusions can be drawn. For 
further validation of the displacement field in the analytical model, it is highly recommended 
to extensively determine the displacement u of the membrane. For a accurate tracking of the 
particles several sequences of pictures could be made, taking a different focal area per 
sequence in order to obtain more tracked particles. When more particles are tracked a trend 
will probably become more apparent and the edge effects will probably also become visible.  
 
We have seen that due to the desire of the cardiomyocytes to anchor in corners, the strain 
in the grooves is of main concern, while we so far have only determined the overall (leading) 
membrane strain. We have also witnessed that this strain is not equal to the leading 
membrane strain. In the derivation of the groove strain we have assumed that the ratio of 
groove strain over leading membrane strain versus pressure behaves linearly. It is 
recommended to analyze this statement of linearity. The examination of the relation between 
groove strain and overall membrane strain could include the usage of a weight method, 
leading to the determination of the constricting role of the block material on top of the 
membrane by their relative weight. 
 

6.2.3 Preliminary experiments 
We have observed that the incubator environment promotes oxidation processes. The 
humidity and various metal components present cause oxidation processes even of metals, 
which are relatively oxidation stable. For future work on the Cytostretch chip-holder non-
metal components should be used for placement inside the incubator. 
 
Furthermore, the low medium container of the Cytostretch chip introduces problems 
concerning the cells’ humidity and mineral concentration. A suitable lid appears to be 
essential for the maintenance of a proper fluid solution for the cardiac myocyte survival. 
Moreover, the chip-holder should accommodate for additional placement of fluid surrounding 
the chips for extra moistening. Recommended is to ensure humidity for the cardiomyocytes 
at all times. Ideas for future work is either the enlargement of the medium container situated 
on the chip, or the development of a fluid-container incorporated in the chip-holder and a 
suitable lid. 
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We have seen that occasionally a heart rhythm fluctuation occurs due to a Labview control 
flaw. For a better control of the stretch protocol, the source of these fluctuations should be 
analyzed. 
 
Moreover, to obtain hard conclusions concerning the pressure protocol, experiments should 
be preformed with mono-layered cardiac myocytes and varying pressure protocols, from 
which the maturation of the cells should be assessed. 
 

6.2.4 Overall recommendations 
It is highly recommended to assess new membrane configurations and dimensions. First of all 
it is highly preferable to have two membrane configurations, which can be strained in the 
same setup with equal loading conditions. When narrowing the dogbone membrane down to a 
central width of approximately 850μm, or increasing the circular membrane with a factor of 
approximately 2, an equal pressure protocol can be applied.  
 
Furthermore, another solution for multi-axial loading should be investigated. The transverse 
strain on the circular membrane is far from uniform, and with the proposed interconnect 
design the transverse strain will approach zero. Recommended is to assess the potential of a 
squared membrane with centrally located grooves or fibronectin coating. 
 
The preliminary experiments showed great potential for further testing. Future research 
should be done in assessing the pressure protocol. When it appears that cell stretch 
increases the cells’ maturity stage, one could vary the applied loading protocol in order to 
determine whether the derived protocol is optimal.  
 
During this study, assumed is the anchorage of cardiomyocytes in the corners of the 
grooves, as analyzed in earlier studies (Section 1.2.2). A future study objective could be the 
determination of the exact anchorage location of the cardiomyocytes. The outcome could be 
incorporated in the development of the loading protocol, where currently the cell strain is 
assumed to be equal to the membrane strain inside the grooves. Moreover, it is 
recommended that the effect of the cardiomyocytes and vice versa is determined. A 
negligible effect is expected of the cardiomyocytes on the PDMS membrane, as the stiffness 
of PDMS is in the order of two magnitudes higher. However, the PDMS will therefore restrict 
the cardiomyocytes in contraction. A related future research topic is therefore lowering the 
stiffness of PDMS, which can be realized by one of the methods mentioned in Section 1.2.1. 
During this study, the development of a lower stiffness PDMS membrane is already initiated. 
 
Furthermore, to obtain a more homogeneous strain distribution inside the grooves, it would 
be recommendable to analyze the optimal groove width to “in between groove” width ratio. 
Expected would be, when increasing this ratio, and thus decreasing the effect of “dead” 
material on top of the membrane, the groove strain will become more homogeneous.  
 
Recommended for further work on the Cytostretch chips, is to simplify future chip scaling. 
On one hand this could be realized by decreasing the tolerance on the chips, for an easy 
implementation of the chips in a scaling and stretching device. Then a chip-holder could be 
produced in which the chips can be easily clicked in and out. This will create a more rigid 
connection and lowering the probability of crushing the silicone chip during clamping. 
Furthermore it will become less labour intensive and easier to move the chips, resulting in 
less medium spill. On the other hand, this could be realized by rigidly connecting several 
chips, which can be stretched simultaneously. During this study, investigation of the last 
method already started.  
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APPENDIX 1 NUMERICAL MODEL 

For the numerical model use is made of the finite element package of COMSOL multiphysics 
4.0a. For all the numerical models a linear-elastic material model is applied, except for the 
model used in Appendix 4 for which a Neo-Hookean material model is implemented. 
 
For the numerical model the following material parameters are set (equal to the material 
parameters introduced in the analytical model): 
 
Young’s modulus: 1MPa 
Density: 960kg/m3 

Poisson’s ratio: 0.499 
 
For the determination of the deflection, displacement and strain values and graphs, use is 
made of numerical models consisting of shell elements (Figure 107 and Figure 108). Shell 
elements describe the behavior of a very thin membrane most accurately, as they are able 
to divide the thickness of the membrane into many elements. Furthermore, solid elements 
when they become too thin do not have the capability to derive differential equations 
between the two thickness points of an element, and an error occurs. Shell elements do 
have the ability to derive these equations for the description of very thin elements.  
 
When we however want to implement the grooves, for example the determination of the 
thickness of the uniform representation (Appendix 3), we have to apply solid elements. The 
models containing solid elements are solely used to find a relation between a uniform 
thickness representation and true grooved membrane (Figure 109 and Figure 110). 
 
For the visualization of the possibility to use two-dimensional representations in the case of 
the dogbone membrane, two-dimensional models are used with solid elements (Figure 111 
and Figure 112). This model is also solely used for visual purposes. For both the three-
dimensional solid models as the two-dimensional solid models a mapped and subsequently 
swept mesh is introduced, to make sure that the solid contains more than one thickness 
element. By mapping a 5 element thick mesh is introduced.  
 
 
  

 
 

 
 

Figure 107: Uniform thickness representation of the 
dogbone; a numerical model build up from shell 
elements. 

Figure 108: Uniform thickness representation of the 
circular membrane; a numerical model build up from 
shell elements. 
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Figure 109: Grooved membrane including true 
dimension of the dogbone; a numerical model build 
up from solid elements (5 thickness elements). This 
model is solely used for visualization purposes. 

Figure 110: Grooved membrane including true 
dimension of the circular membrane; a numerical 
model build up from solid elements (5 thickness 
elements), solely used for visualization purposes. 

  
Figure 111: Grooved two-dimensional representation 
of the dogbone; a numerical model build up from 
solid elements (5 thickness elements). This model is 
solely used for visualization purposes. 

Figure 112: Two-dimensional uniform thickness 
representation of the dogbone; a numerical model 
build up from solid elements (5 thickness elements). 
This model is solely used for visualization purposes. 

  
Figure 113: Longitudinal strain in the dogbone 
membrane, notice that the strain over the long axis of 
the membrane indeed equals zero in the centre section 
of the membrane. Therefore, we are able to model the 
behavior of the centre section of the dogbone 
membrane two-dimensional. 

Figure 114: Close-up of the groove strain of the 
dogbone membrane. Notice the constricting role of the 
“dead” material on top of the membrane, resulting in 
higher strain values inside the grooves. Furthermore, 
notice the non-uniformity of this groove strain. 
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APPENDIX 2 ADDITIONAL PLATE CALCULATIONS 

The proof of Equation 3.60 can be done most easily by calculating back from Equation 3.60 
to 3.59: 
  

 

A2.1  

  
When we now write out the entire equation, we obtain: 
  

 

A2.2  

 

A2.3   

  
Equation A2.3 again is equal to Equation 3.59. 
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APPENDIX 3 MEMBRANE THICKNESS 

For the analytical calculations, simplifications have to be made. We assume a uniform 
thickness representation of the grooved membrane. The behavior, however, of the uniform 
representation should match the real membrane configuration for a good accuracy of the 
outcomes. The thickness of the uniform representation should be so, that the behavior of 
the uniform representation approaches the behavior of the membrane configuration including 
grooves. 
  
In the dogbone membrane with longitudinal grooves, the leading bulk material is the lower 
part of the membrane (the bottom 15μm of the total 25μm thickness). The additional 
material (top parts of the membrane) has got little effect on the deflection of the 
membrane. The extra blocks of material have a small constricting role in the stretching of 
the membrane. They act mainly as dead material on top of the 15μm thick membrane, as 
can be seen in Figure 113.  
 
The overall membrane strain and deflection of the dogbone membrane with longitudinal 
grooves is analytical approximated as a two-dimensional problem considering the material 
area, only taken as a continuous membrane. For the determination of the thickness of the 
membrane considered in the calculations of the analytical model, we compare the deflection 
and overall membrane strain of the finite element model with and without grooves, and vary 
the thickness of the membrane without grooves. For the dogbone membrane, a similarity in 
central deflection and overall membrane strain has been found at a thickness of 
approximately 16,5μm for the membrane without grooves (Figure 114 - Figure 117). 
 
 

 
Figure 115: Close-up of the two-dimensional representation of the dogbone membrane, indicating 
that the material underneath the grooves mainly causes the leading membrane behavior. The tops 
of the grooves mainly act as dead material on top of the membrane; they do however have a small 
constricting role. 
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Figure 116: Two-dimensional representation of the 
dogbone membrane with the correct dimensions 
(including grooves). Notice that the deflection 
resembles the deflection of the 16.5μm uniform 
thickness representation (Figure 115). 

Figure 117: Two-dimensional uniform 16.5μm 
thickness representation of the dogbone membrane. 
Notice that the deflection resembles the deflection 
of the 2D representation including grooves (Figure 
114). 

  
Figure 118: Two-dimensional representation of the 
dogbone membrane with the correct dimensions 
(including grooves). Notice that also the leading axial 
strain resembles the axial strain of the 16.5μm 
uniform thickness representation (Figure 117). 

Figure 119: Two-dimensional uniform 16.5μm 
thickness representation of the dogbone membrane. 
Notice that also the axial strain resembles the 
leading axial strain of the 2D representation including 
grooves (Figure 116). 

 
Notice that not only there is a similarity in the deflection of the 16,5μm thick uniform 
membrane and the original membrane with grooves, but also overall strain in both 
membranes shows to be similar. We are thus able to model the grooved membrane with a 
uniform 16,5μm thick membrane.  
 
Figure 118 shows the deflection comparison as function of pressure. Notice that the 
deflection shows this similarity for a wide range of pressures. 
 

 
Figure 120: Deflection of the 2D representation of the dogbone 
including grooves (green line), and the deflection of the uniform 
16.5μm thickness representation of the dogbone (cyan line), notice 
the nice correspondence between the two. 

 
For the circular membrane, the grooves are situated radial. Notice from Figure 81 that the 
influence of the material between the grooves differs from that of the dogbone 
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configuration. The material between the grooves plays a bigger role in the behavior of the 
membrane. The material strips account for an equal share in taking up strain, thus playing a 
big constricting role on the uniform material underneath. For simplification reasons in the 
analytical approximation we are able to consider the membrane uniform with a thickness of 
21.5μm (Figure 119 - Figure 123).  
 

  
Figure 121: Three-dimensional representation of the 
circular membrane with the correct dimensions 
(including grooves). Notice that the deflection 
resembles the deflection of the 21.5μm uniform 
thickness representation (Figure 120). 

Figure 122: Three-dimensional uniform 21.5μm 
thickness representation of the circular membrane. 
Notice that the deflection resembles the deflection 
of the 3D representation including grooves (Figure 
119). 

  
Figure 123: Three-dimensional representation of the 
circular membrane with the correct dimensions 
(including grooves). Notice that also the radial strain 
resembles the radial strain of the 21.5μm uniform 
thickness representation (Figure 122). 

Figure 124: Three-dimensional uniform 21.5μm 
thickness representation of the circular membrane. 
Notice that also the radial strain resembles the 
radial strain of the 3D representation including 
grooves (Figure 121). 

 
Figure 125: Deflection of the 2D representation of the circular 
membrane including grooves (green line), and the deflection of the 
uniform 21.5μm thickness representation of the circular membrane 
(cyan line), notice the nice correspondence between the two. 
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APPENDIX 4 HYPERELASTICITY 

Here we introduce a hyperelastic material model, Neo-Hookean, in the numerical model for 
the dogbone membrane. With this introduction in the numerical model, and by comparison 
with the experimental deflection, more insight is gained in the material behavior of the 
membrane. We reduce the error, but still obtain some error in the pitch.  
 

 
Figure 126: Experimental centre-deflection (red line), Neo-Hookean 
numerical approximation with E=1MPa (magenta line), Neo-Hookean 
numerical approximation E=1.2MPa (green line) and Neo-Hookean 
numerical approximation E=2MPa (blue line) as function of applied 
pressure. Notice that the application of a hyperelastic material 
model also mainly changes the pitch angle. 

 

In Figure 124 we assume an elastic, homogeneous, isotropic material. The stiffness of a Neo-
Hookean material model is expressed in terms of lame-constants, and is proportional to the 
youngs-modulus in the following manner: 
  

 
A4.1  

 
A4.2  

  
Thus for the three cases represented in Figure 124 we obtain the following lame’s constants: 
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APPENDIX 4: HYPERELASTICITY 

 126 

It could be interesting to implement a hyperelastic material model in the current analytical 
model. With a hyperelastic material model we are able to reduce some of the error, however, 
with a Neo-Hookean material model we do still obtain some error in the load-deflection 
behavior. More research should be done on the material description of the membranes, to be 
able to accurately describe the mechanics of the membranes. 
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APPENDIX 5 CIRCUIT DIAGRAM 

 
 

 
Figure 127: Circuit diagram of the experimental setup. The numbers at the data acquisition input and output are 
the input and output ports used. The data acquisition is done by means of a texas instruments DAQ, connected 
via USB to the computer. The resistor and transistor are implemented in order to be able to operate the solenoid 
valve. 
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APPENDIX 6 SENSOR DATA 

Table 2: Operat ing Character ist ics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2) 

Characteristic Symbol Min. Typ. Max. Unit 

Pressure Range POP 0 - 6.0 

612 

kPa 

mm H2O 

Supply Voltage1 VS 4.75 5.0 5.25 Vdc 

Supply Current IS - - 10 mAdc 

Full Scale Span2 VFSS - 4.6 - V 

Offset34 Voff 0.152 0.265 0.378 V 

Sensitivity V/P - 766 

7.511 

- mV/kPa 

mV/mm 
H2O 

Accuracy5 - 

- 

- 

- 

- 

- 
±2.46 

±5.0 

%VFSS with 
auto zero 

%VFSS 
without 
auto zero 

[57] 
 

 
 
 
 
1 Device is ratiometric within this specified excitation range. 
2 Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output 
voltage at the minimum rated pressure. 
3 Offset (Voff) is defined as the output voltage at the minimum rated pressure. 
4 Auto Zero at Factory Installation: Due to the sensitivity of the MPXV4006, external mechanical stresses and mounting position 
can affect the zero pressure output reading. To obtain the 2.46% FSS accuracy, the device output must be “autozeroed'' after 
installation. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's output 
during normal operations. The specified accuracy assumes a maximum temperature change of ±5°C between autozero and 
measurement. 
5 Accuracy (error budget) consists of the following: 
Linearity: Output deviation from a straight-line relationship with pressure over the specified pressure range. 
Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is 
cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. 
Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from 
minimum or maximum rated pressure, at 25°C. 
Offset Stability: Output deviation, after 1000 temperature cycles, -30 to 100°C, and 1.5 million pressure cycles, with minimum 
rated pressure applied. 
TcSpan: Output deviation over the temperature range of 10° to 60°C, relative to 25°C. 
TcOffset: Output deviation with minimum pressure applied, over the temperature range of 10° to 60°C, relative to 25°C. 


