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Implementing Dynamic Boundary Conditions
with the Material Point Method
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and Michael A. Hicks

Geo-Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of
Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands

P.J.Vardon@tudelft.nl

Abstract. The material point method (MPM) is gaining an increasing amount
of attention due to its capacity to solve geotechnical problems involving large
deformations. Large deformations in geotechnics usually involve the failure pro-
cess and therefore dynamic analyses are often carried out. However, simulating
the (infinite) continuous domain using typical Dirichlet (fixed) boundary condi-
tions induces spurious reflections, causing (1) unrealistic stress increments at the
domain boundary and (2) the appearance of multiple unnatural stress waves in
the domain. Aiming to eliminate this numerical artifact in MPM, two solutions
for absorbing boundary conditions found in FEM are implemented and investi-
gated; these are (1) a viscous boundary condition and (2) a viscoelastic boundary
condition. The use of such dynamic boundary conditions in MPM is scarce and
no validation of them has yet been presented in the literature. In this paper, these
absorbing conditions are implemented alongside recent mapping and integration
techniques, improving numerical stability and accuracy.

Keywords: Dynamic boundaries · Double mapping–generalized composite
MPM · Implicit MPM · Shallow foundation · Wave propagation

1 Introduction

Since the first release of the material point method (Sulsky et al. 1994), numerous large
deformation geotechnical problems have been successfully simulated using this tech-
nique, such as CPT penetration (Ceccato et al. 2016), landfill settlement (Zhou et al.
1999) and slope failure (Wang et al. 2016). Despite MPM’s advantages, the method’s
accuracy, particularly in the stress field, is far from the desired level. This problem is
commonly manifested as stress oscillations which are mostly caused due to the use of
discontinuous finite element (FE) shape function gradients (Bardenhagen et al. 2000;
González Acosta et al. 2020). Additionally, another problem often encountered during
dynamic simulations is that shear and compression waves are unable to transmit through
typical fixed boundaries. This problem, combined with stress oscillations, can signifi-
cantly result in a poor quality of the MPM solution. In this paper, standard viscous and
viscoelastic boundary conditions will be implemented and validated using the MPM
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framework to eliminate spurious reflections. Section 2 presents the background formu-
lation of the implicit MPM and DM-GC, a technique used to enhance MPM accuracy.
Section 3 derives the dynamic boundary formulations, while benchmarks are presented
in Sect. 4. Conclusions are drawn in Sect. 5.

2 Background

2.1 Material Point Method

This work employs the implicit MPM formulation used in Wang et al. (2016). The
equation of equilibrium, obtained through the principle of virtual work, is written as:(

K + 4m
�t2

)
�u = Fext − Fint − Fkin (1)

where �u is the incremental nodal displacement vector, and K and m are the global
stiffness and mass matrices computed as:

K =
nmps∑
p=1

BT(xp)DB(xp)|J |Wp (2)

m =
nmps∑
p=1

ρpNT(xp)N(xp)|J |Wp (3)

where nmps is the number of material points, B is the strain-displacement matrix, xp

is the vector of material point coordinates, D is the material elastic matrix, |J| is the
Jacobian determinant, Wp is the material point integration weight, �t is the time step,
ρp is the material point’s density and N is the matrix of shape functions. The vectors of
external, internal and kinematic forces (i.e. Fext , Fint , Fkin, respectively) are computed
as:

Fext =
nmps∑
p=1

NT(xp)b|J|Wp +
bmps∑
p=1

NT(xp)ss (4)

Fint =
nmps∑
p=1

BT(xp)σ p|J|Wp (5)

Fkin = m
(

4u
�t2 − 4v

�t
− a

)
(6)

where b is the body force (i.e. gravity), ss is the traction applied at the boundary, bmps
is the number of boundary material points where traction is applied, σp is the material
point stress tensor, and u, v and a are the vectors of nodal displacement, velocity and
acceleration, respectively.
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2.2 DM-GC

To reduce the oscillation of stresses, double mapping (DM), the generalized interpolation
material point method (GIMP) and the composite material point method (CMPM) are
combined and implemented in one technique, the DM-GC. In this method, the global
stiffness matrix is calculated as:

K =
ngauss∑
g=1

BT(xp)

⎡
⎣ nn∑

i=1

⎛
⎝Ni(xg)

smp∑
p=1

Sip*(xp)DWp

⎞
⎠B(xp)|J|W FE

⎤
⎦ (7)

where ngauss, nn and smp are the number of Gauss integration points in the element,
number of nodes of the element and number of material points with a support domain
inside the element, respectively, Ni is the nodal shape function, Sip* is the local GIMP
shape function and WFE is the finite element weight corresponding to Gauss point g.
A detailed elaboration of these equations is found in Gonzalez Acosta et al. (2017) and
Gonzalez Acosta et al. (2020).

2.3 Non-reflecting Boundaries

Lymsmer and Kuhlemeyer (1969) proposed the standard viscous boundary which can
be expressed in terms of stress condition as:

σ n,s = −ρCn,svn,s (8)

where σn,s and vn,s are the vectors of normal and shear stresses and velocities at the
boundary, respectively. The wave velocity matrix Cn,s is computed as:

Cn,s =
√

E

ρ(1 + ν)(1 − 2ν)

[
(1 − ν) 0

0 (1 − 2ν)/2

]
(9)

where E and ν are the material Young’s modulus and Poisson’s ratio, respectively. The
viscoelastic boundary (Deeks and Randolph 1994) is expressed as:

σn,s = −ρCn,svn,s − kn,sun,s (10)

where un,s is the vector of normal and shear displacements at the boundary and kn,s is
the spring stiffness matrix representing the elastic recovery of the infinite domain, which
can be determined as follows:

kn,s = E

2(1 + ν)

[
2/rb 0

0 1/2rb

]
(11)

where rb is the distance from the boundary to the excitation location.
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3 Implementation

The standard viscous and viscoelastic conditions are implemented in MPM by converting
the boundary stresses into tractions which are applied at boundary material points (i.e.
material points at the outer layer). The equilibrium equation for the mentioned dynamic
boundary conditions is:(

K + 4m
�t2 + Kvis + Krec

)
�u = Fext − Fint − Fkin − Fvis − Frec (12)

where Kvis and Krec are the viscous and recovery stiffness matrices computed as:

Kvis = 4

�t

nmps∑
p=1

ρplpST
ip(xp)TTCn,sTSip(xp) (13)

Krec = 2
nmps∑
p=1

lpST
ip(xp)TTkn,sTSip(xp) (14)

where lp is half of a material point’s support domain, Sip is the GIMP shape function
matrix and T is the transformation. Finally, Fvis and Frec are the viscous and recovery
forces at the boundary, respectively, and they are determined as follows:

Fvis = −2
bmps∑
p=1

ρplpST
ip(xp)TTCn,sTSip(xp)

(
2�u
�t

− v
)

(15)

Frec = −2
nmps∑
p=1

lpST
ip(xp)TTkn,sTSip(xp)(u + �u) (16)

By neglecting the terms Krec and Frec in Eq. (12) the viscous formulation is obtained.
The reader is directed to Phuong (2021) for a detailed derivation of the equations.

4 Numerical Examples

In this section, two benchmarks are used to assess the proposed boundary formulations.
First, a 1D column under axial loading is used to study the boundary’s performance. Then,
a shallow foundation under repeated loading is presented to investigate the advantages
of simulating the unbounded domain properly.
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4.1 1D Column Benchmark

Fig. 1. (a) Schematic of the 1D benchmark with a measuring point, and (b) Delta load function

A 1D column of 20 m height and 1 m width under axial loading is investigated
(Fig. 1a). A Delta load function with a maximum stress of 300 kPa and duration of
0.5 s is applied at the top of the column (Fig. 1b). The elastic parameters are Young’s
modulus E = 20 MPa, Poisson’s ratio ν = 0.25, and density ρ = 1500 kg/m3. The
background mesh is discretised using 2D square elements of size 0.25 m, in which each
element contains initially 4 material points equally distributed. Figure 2b shows the stress
recorded at the measuring point using different boundary conditions. The fixed boundary
models (in dashed and solid black lines) show oscillations due to reflection with a peak
stress of nearly 700 kPa (higher than the input load due to the combination of reflected
and incoming waves). Using the dynamic boundaries, a peak stress of 300 kPa is obtained
(equal to the Delta function) with almost all reflected waves being absorbed. While the
viscous model perfectly absorbs the incoming waves, stress tension is observed after
t ≈ 0.57 s with the viscoelastic model due to the recovery of the boundary (Fig. 2b).
The maximum displacement obtained with the fixed models is nearly 0.2 m, while the
absorbing boundary models produce higher values of 0.4 m and 0.34 m with the viscous
and viscoelastic conditions, respectively.

4.2 Foundation Under Repeated Loading

A 2D strip foundation of width 2B = 1.0 m on a cohesive soil under repeated loading
is studied. The soil domain has a depth of H = 8B m and a width of D = 12B. The
model is set up with 2 measuring points (point 1 and 2) as shown in Fig. 3a. The soil
parameters are Young’s modulus E = 2000 kPa, Poisson’s ratio ν = 0.41, and density
ρ = 1000 kg/m3. A time step of �t = 0.005 s is used and the background mesh uses
quadrilateral elements of size 0.0625 m.

The soil behaves as an elastic, perfectly plastic material, using a von Mises yield
criterion incorporating post-peak softening in which the peak cohesion is cp = 10 kPa
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Fig. 2. Vertical stress at the measuring point (a) and Vertical displacement at the measuring point
(b)

Fig. 3. Foundation model with measuring points 1 and 2 (a) and Repeated load (b)

and the residual strength is cr = 3 kPa. Figure 3b shows the loading applied to the
foundation. A quasi-static step is performed to generate initial stresses.

Figure 4 shows the plastic strains obtained using fixed and dynamic boundaries. It
is observed that a primary shear band is fully developed for all 3 simulations, starting
at the toe of the foundation, to a depth of 2B (with the fixed boundary model) and 4B
(with the viscous and the viscoelastic boundary models). Additionally, the soil imme-
diately beneath the foundation yields completely when using fixed boundaries due to
the amplification effect, which creates larger stresses and results in more plastic strains,
whereas with the remaining simulations no plastic strains are generated at this location.
The fixed model also indicates that the secondary shear band is almost fully developed
to the surface, while it is only partly generated with the dynamic boundary models. The
soil below the foundation behaves more stiffly with the fixed model, which is why deeper
plastic strain zones cannot fully develop as compared to the others models.

The vertical stress recorded at point 1 is given in Fig. 5a. It is observed that results
for different boundaries are identical until time t ≈ 0.38 s, after which oscillations
are observed when fixed boundaries are used. In contrast, oscillations are non-existent
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Fig. 4. Plastic strain at time t = 0.925 s below the foundation, using (a) fixed boundary with
DM-GC, (b) viscous boundary with DM-GC, and (c) viscoelastic boundary with DM-GC

Fig. 5. (a) Vertical stress at point 1, and (b) Deviatoric stress at point 2 (b)

when the viscous (red line) and the viscoelastic (blue line) boundaries are used. This
phenomenon causes the deviatoric stress of the fixed model to be higher (nearly 17.5 kPa
at time t ≈ 0.63 s) than those obtained with the dynamic models (14.9 kPa with the
viscoelastic model and 14.5 kPa with the viscous model), as shown in Fig. 5b. Hence,
more plastic strain is generated and the secondary shear band can fully develop.

5 Conclusions

This paper presents the implementation of two standard absorbing boundaries (viscous
and viscoelastic) with an advanced MPM framework (i.e. DM-GC). The results of the
1D benchmark indicate that the spurious reflections induced by the fixed boundaries
are eliminated almost completely using the dynamic boundaries. Furthermore, the vis-
coelastic boundary allows the recovery of the initial position of the bottom boundary.
The geotechnical example shows that the absorbing boundaries lead to a higher quality
solution, as the amplification effect is eliminated. The failure shear bands can be more
accurately simulated since stress oscillations caused by the returning wave are removed.
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