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Summary
Synthetic Aperture Radars (SAR) have demonstrated to be great instruments for space-based Earth
observation in themicrowave frequency, with applications from biomass observation to oil spill detecting.
On the other side, metasurface antennas are a new type of planar antennas with a great potential for
space applications, as they are compact and easy to produce. These antennas, also called printed
antennas, are manufactured using Printed Circuit Board technology where scattering elements with
predetermined shapes are printed on top of the dielectric layer, producing modulated far-field radiation
patterns when excited at its centre by a dipole source. Several methods have been developed in the
past years addressing one or many parts of the design and applications of these antennas, which rely
in more or less measure in locally developed tools. However, some parts of these methods can take
a great amount of time to implement, making this process more difficult than it should especially if the
user has commercial electromagnetic simulation tools available that could accelerate this process. On
the other side, the possibility of using these antennas in SAR applications has been limitedly explored,
especially for the metasurface antennas capable of generating single radiation patterns. In this work,
different procedures have been adapted to the design of a high-gain SAR metasurface antenna (36dB
directivity and 3.2° first-null beam-width) for a multi-static Earth observation mission within the S-band
(3.2GHz), showing that the proposed methodology produces accurate results. Furthermore, the final
design shows that the antenna requirements can be easily achieved, but in terms of mass the proposed
antenna performs worse than other low-mass concepts, such as folded antenna arrays, which adapt
better to the stringent mass requirement proposed in this mission. However, the antenna mass can be
reduced by either operating in a higher frequency, reducing the dielectric slab thickness, or by using
lighter materials for this part of the antenna.

The developed method consists on four steps: Obtaining the initial antenna parameters (thickness,
permittivity, unit cell size and shape), producing a reactance database associated to the unit cell shape,
synthesising the desired radiation pattern in a reactance distribution, and match the aforementioned
distribution with particular unit cells shape. The initial antenna parameters were obtained by adjusting
these to allow only the propagation of the fundamental Floquet mode when the unit cells are modelled
with periodic boundary conditions, simulating an infinite structure. The patch shape chosen was the
elliptical, and the parameters varied to generate the database were its inclination angle and the ratio of
the minor axis to major axis. Next, the reactance database was produced by using the electromagnetic
simulation software Lumerical® Finite-Difference Time-Domain to obtain the anisotropic scattering re-
sponse of these unit cells to an incident plane wave, which was verified with a reactance database
generated by other researchers using a Method of Moments formulation, obtaining a maximum 4.5 %
deviation within the range of database shapes used later for the design. Following, the antenna synthe-
sis was performed using an adiabatic Floquet-wave expansion suggested in [40] obtaining extremely
low differences between the objective and the resulting far-field patterns in term of gain and cross po-
larization. Finally, the reactance distribution in the antenna was matched to the patch shapes from the
reactance database, obtaining a maximum reactance deviation in the final design less than 4.5 % in a
small number of patches in the antenna. The main antenna characteristics are summarized in table 1.
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Table 1: Summary of SAR metasurface antenna characteristics.

Parameters Values
Frequency 3.2GHz
Antenna Radius 1m
Dielectric layer material AR-1000
Relative permittivity 9.8
Unit cell length and width 10mm
Patch shape Elliptical
Antenna thickness 4mm
Directivity 35.28dB
Half-Power Beam-Width 3.41°
Mass range 53 kg - 81 kg

The presented work can be regarded as an additional step to make the metasurface technology
more accessible. These antennas can not only be used for SAR, but also for satellite communications
where different radiation patterns can be obtained by changing only the printed patches on top, making
them easily adaptable for multiple mission scenarios as the development times are reduced. Further-
more, making this antenna deployable would facilitate its accessibility for CubeSat, opening a wider
range of new applications.
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1
Introduction

The introduction to this report consists of a brief motivation that summarizes separately the topics of
Synthetic Aperture Radars (SAR) andmetasurface antennas, and contextualizes the idea of using them
together in space-based applications. Next, the research design is treated, containing the research
objective and research questions. Finally, the overview of this report is presented.

1.1. Motivation
Antenna engineering has been an active field of research for more than a century. Its usefulness for
wireless communication and imaging has made the improvement of this component a constant goal
in systems design. This is also the case for space systems. They are found in the communication
subsystem, which is a vital part in every space mission, and occasionally in the payload for imaging
purposes. It is in this second application that this research project will focus, specifically in SAR imaging,
which works at the radio frequency and has been used in numerous space missions not only for Earth
observation, but also for other celestial bodies like in the Magellan mission which scanned the surface
of Venus or the Cassini mission that scanned Titan.

SAR systems in space-based applications are used to obtain high resolution images of celestial
bodies in three dimensions. One of the main advantages of this system is that images are less affected
by atmospheric conditions and, as the light source is generated by the SAR system itself, it operates
in day and night conditions. On the other side, SAR systems use antennas that are usually either
phased-array antennas which are expensive, heavy and inefficient, or a mechanically actuated gimbal
dishes, which are bulky, slow and require moving parts [4]. Three basic modes are used in SAR
systems: stripmap, spotlight and scan. Stripmap mode uses a fixed beam radiation pattern to scan a
large region of interest, resulting in a relatively low resolution. On the other side, spotlight mode steers
the radiation beam to focus it in one region of interest, achieving a higher resolution at the expense of
scanning a smaller region. Scan mode, in contrast, steers the beam over an even larger observable
region that can be achieved with stripmap mode, but obtaining the worst image resolution. Examples of
stripmap and spotlight modes are shown in figure 1.1 where the fixed and the steerable characteristic
beams are clearly shown for both modes.

(a) Stripmap mode (b) Spotlight mode

Figure 1.1: Stripmap and Spotlight SAR modes, where ROI represents Region Of Interest. Source: [4].

1



1.1. Motivation 2

One new type of antenna that is being heavily researched during the past two decades is one based
on modulated impenetrable metasurfaces, which is made up of an electrically thin metamaterial layer
with a perfect electric conductor (PEC) ground plane at the bottom. Metameterials are engineered-type
materials which consist of an electrically thick dielectric substrate with sub-wavelength electromagnetic
(EM) scatterers that, when modulated correctly, possess EM properties that are not found in natural
homogeneous materials like negative refractive index, permeability and permittivity [31]. Further de-
velopments in this area made possible to control phase, amplitude, polarization and leakage of the
propagating radiation with an electrically thin metamaterial layer, called metasurface. Due to these
properties, metasurfaces have gained a lot of attention in the past two decades ranging from novel
applications like cloaking to more conventional like antennas. In these two applications, a modulated
impenetrable metasurface is used because it is desired that the radiation would propagate in the region
above the metasurface in a controlled manner. Consequently, the radiation cannot penetrate what is
underneath the metasurface (therefore impenetrable) and the scatterers are modulated so the radia-
tion can be emitted in a pre-defined pattern. In the case of space missions and in the radio spectrum,
many research papers have been devoted to the antenna applications of metasurfaces for satellite
communication and imaging due to the wide range of radiating patterns that they can produce, their
low-mass design, the ease to reproduce them and low manufacturing cost [38]. Currently, metasur-
faces antennas have a Technology Readiness Level (TRL) of six for Earth observation1, which makes
them a promising technology for future space missions. An example of such antenna is shown in fig-
ure 1.2 which has been produced for a satellite with an isoflux radiation pattern [36]. Even though a
disadvantage that is commonly cited is its dispersive nature, which would make them only suitable to
function in a narrow bandwidth [38], new modulation methods show that they can achieve a bandwidth
up to 30 % [8].

(a) Example of metasurface antenna design, where the small circles
represent the scatterers.

(b) Close inspection of the antenna centre.

Figure 1.2: Example of metasurface antenna. Source: [36].

These two applications have an enormous potential when used together. Metasurface antennas,
apart of being characterized by a flat design, are easy to manufacture because regular printed circuit
board technology is used to produce them. “The qualification and acceptance process required for
each new (satellite antenna) design constitutes a significant part of the development time and cost” [38,
p. 1298], which can be reduced by just changing a thin layer on top of the antenna when different de-
signs are required. On the other side, SAR are usually restricted to heavy and bulky systems to handle
multiple imaging modes. However, there are new approaches directed to use them in a multi-static
configuration composed by simple nodes with only high-gain antennas capable of realising interfero-
metric measurements [17]. Joining these two concepts together could not only lower the entry barriers
of these these type of missions, but could make earth observation more accessible.

In the context of the Sustainable Development Goals (SDG), SAR missions, depending on their
nature, address 13 Climate action, 14 Life below water, and 15 Life on land. The capability of these
satellites to observe the movements of ice bodies and water currents has been proved for a long time,

1Wave Up R & D. Available on http://www.wave-up.it/rd/ Consulted on 06-11-2022
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which affect primarily goals 13 and 14. Some examples are the characterization of ocean wave pa-
rameters [21] and oil spill characterization [55]. Furthermore, polarimetric SAR can be used to obtain
indications of soil moisture [51], and biomass and carbon deposition in forests with the Biomass mis-
sion from the European Space Agency (ESA), which is expected to launch in 20242. On the other
side, metasurface antennas, as it is an emerging field, are more related to 9 Industry, innovation and
infrastructure because of their still innovative nature that could make antenna production for satellite
applications more affordable. The aforementioned SDGs are summarized in figure 1.3.

Figure 1.3: Metasurface and SAR SDGs

1.2. Research design
When consulting the available literature, some concepts have been developed in the scope of meta-
surface antennas with local-developed methods that are sometimes challenging to implement. For
example, in [4] a method is shown particularly in the scope of SAR space missions with multiple imag-
ing modes using dynamic metasurfaces, which in contrast with regular metasurfaces, have diodes in
its unit cells that make possible controlling each one of these individually and obtain multiple radiation
patterns. On the other side, in [40] a method to design metasurface antennas is presented which again
relies on local-developed approach to retrieve the impedance of each unit cell configuration. Therefore,
it was desired to use a different technique to arrive to a final design using more widely available tools
for simulation, such as commercial software for EM.

The main research objective of this thesis is then to obtain a methodology to design an efficient
metasurface antenna for SAR stripmap imaging mode by using efficient and widely available design
methods and tools, and compare their performance with other antenna configurations. To achieve this
objective, the following research questions can be formulated:

1. Given the antenna requirements for a space-based SAR satellite, how can it be arrived to an
antenna design that, based on metasurface technology, would efficiently work in stripmap mode?

2. What are the main advantages and disadvantages of this design when compared to a reference
antenna for SAR imaging systems with similar requirements?

The first research question focus on the development of a methodology to design metasurface an-
tennas for space-based SAR imaging, which would fall into a design type of practice oriented research,
as described by [53], where the research value would be on obtaining a different method that uses
different tools for designing metasurface antennas. Subsequently, the research value of the second
question relies on how well this type of antenna can be used for space-based SAR imaging when
compared to another type of antenna which characteristics would fall within the mission requirements.

1.3. Report overview
This thesis report is structured as follows. Chapter 2 treats SAR systems. In there, a general expla-
nation of these systems is given, followed by the example mission used for the antenna design, the
SwarmSAR mission, and the antenna used for comparison. Next, chapter 3 explains the theoretical
background necessary to understand metasurface antennas. It starts treating general electromagnetic
theory, followed by antenna theory and ending in Finite-Difference Time-Domain (FDTD) EM simula-
tions. Afterwards, chapter 4 goes over the developed methodology, in which the first part calculates the
reactance database, the second part implements an existing methodology for the antenna synthesis
[40], and the last part matches the required antenna pattern with the patches in the database. Finally,
chapter 5 shows the final results and conclusions.

2Biomass - Earth Online. Available on https://earth.esa.int/eogateway/missions/biomass?text=biomass Consulted
on 06-11-2022.

https://earth.esa.int/eogateway/missions/biomass?text=biomass


2
Synthetic Aperture Radar

Synthetic Aperture Radars (SAR) in space are using primarily for remote sensing applications. By
using interferometric and polarimetric principles, they can achieve high resolutions and identify the
main contribution to the back-scattered signal. In this chapter, the basics of SAR satellites is explained
in section 2.1. Next, in section 2.2 the SwarmSAR mission, which is a multi-node SAR mission and its
antenna requirements are used to test the robustness of the metasurface methodology in chapter 4, is
introduced. Finally, to compare the resulting antenna design with existing concepts, an example of a
folded antenna found in literature is presented in section 2.3 and its performance is evaluated with the
requirements presented in section 2.2.

2.1. General principles of SAR satellites
Satellites capable of performing radio-imaging are used in the vicinity of a celestial body to obtain
images in the microwave region. The main advantage of using this frequency band is that there is
almost no atmospheric interference because microwaves can penetrate clouds and other atmospheric
gases. Furthermore, there is no need to image only during the day, as the satellite itself generates
its own source that is backscattered from the celestial body. Therefore, these type of satellites are
regarded as “all-weather instruments” [51].

Airborne radio-imaging in stripmap mode is performed as shown in figure 2.1. Other modes exist,
such as the scan and spotlight, but they require a steerable antenna and will not be discussed in this
work. The spacecraft (it can also be an aircraft, but this thesis is centred in space applications) points
a highly-directed beam from its antenna, which is slightly deviated from the nadir direction to the cross-
track direction, to get an elliptical illumination shape of the terrain. The signal sent by the satellite
consists on a chirped pulse, that is, a short pulse with a linear frequency variation [51, p. 8]. Then, the
same satellite receives the backscattered signal and reconstructs the image.

In the cross-track (range) direction, the amplitude of the received signal from this elliptical surface
has a time-delay between the scattering that results from the area that is closer to the antenna and
the ones that are further away, which permits to differentiate the objects that are in the cross-track
direction. It is therefore important that the beam is not pointing exactly pointing in nadir direction,
because there would be ambiguities in the obtained image between positive and negative cross-track
direction. Furthermore, the resolution in this direction is determined by the bandwidth of the chirped
pulse because, as the frequency is being changed, the received signal can be filtered to associate
each frequency to the cross-track location of the scatterer [51]. Therefore, the cross-track resolution is
independent of the satellite’s distance to the target.

In case of the along-track (azimuthal) direction, two general techniques are easily recognizable.
The first one is used by real aperture radars, which consists of employing the angular resolution of the
antenna to obtain each pixel in this direction [51]. This is the same principle as a normal lens: the
distance resolution is determined by the Half-Power Beam-Width (HPBW) and the satellite’s orbital
altitude. The resulting imaging method is comparable with the so-called pushbroom imaging system,
where the satellite obtains multiple pixels in the cross-track direction, but only one in the azimuthal
direction for each snapshot taken.
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2.2. SwarmSAR mission 5

Figure 2.1: Radar airborne imaging acquisition. Source: [51]

The second technique is used by SAR and consists on using the Doppler effect of the reflected signal
to increase the along-track resolution. As the satellite is approaching to a scatterer, the frequency starts
increasing until the satellite is at broadside direction, when then it starts to decrease until the scatterer is
out of sight. Then, the satellite can post-process the information received from the scatterer at different
frequencies to increase the resolution in the along-track direction. Ultimately, the final resolution in
this direction is determined by the amount of time the scatterer was observable by the satellite [51].
However, the Nyquist sampling criterion has to be considered to obtain the Pulse Repetition Frequency
(PRF), which affects the achievable swath size [51]. Therefore, a compromise has to be make between
the azimuthal resolution and this parameter.

Multiple SAR images of the same Region Of Interest (ROI) at different angles can be used to obtain
a three-dimensional mapping of the area. This is achieved by the so-called Interferometric Synthetic
Aperture Radar (InSAR), which uses phase information of receivers at different locations to resolve the
three-dimensional ambiguities that may be encountered. Consider as an example figure 2.2 where four
points are sampled with radars at different locations. It results clear that, due to phase differences, the
points a, b and d are distinguishable in figure 2.2a due to its phase difference. However, points a and
c cannot be distinguished because the same phase difference will be backscattered from both. If the
information of the second radar in figure 2.2b is combined, where a and c can be differentiated, all the
points could be differentiated and a three-dimensional image of the ROI can be achieved, which is the
general principle of InSAR.

On the other side, the polarization of the emitted radiation from the SAR instrument can be pre-
determined to measure the surface response to different polarization types. Considering the case of
linear polarization, the SAR instrument can send the signal with a referent linear polarization and mea-
sure the reflected signal with the same polarization and the one with a polarization shifted by 90°. This
same procedure can be repeated for a signal emitted with an orthogonal polarization, and again the
response can be measured in both polarizations. Instead of obtaining one value per pixel, four values
are obtained which can be used to characterize different surface elements such as ocean currents [21],
oil [55], soil moisture [51] and other surface elements.

2.2. SwarmSAR mission
In this section, the SwarmSAR mission is presented. Insection 2.2.1 the mission is presented and
the main characteristics of the composing nodes are described. In section 2.2.2 the desired antenna
characteristics are presented and transformed into antenna requirements.
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(a) Radar image with an ambiguity on points a and b (b) Radar image with an ambiguity on points a and d

Figure 2.2: Image ambiguities when sampling independently at different locations. Source: [47, p. 182]

Figure 2.3: SwarmSAR concept formation. The same ROI would be observed by multiple satellites with different Tx
(transmission) frequency, but all of them will be capable of receive the emitted signal of their peers. Source: [17].

2.2.1. Mission description
The SwarmSAR is a conceptual Earth-observation mission that would use multiple satellites working
either individually as SAR satellites in stripmapmode, or as a constellation of Multiple Input Multiple Out-
put (MIMO) satellites with the additional abilities to perform high-resolution imaging, along-track and
cross-track interferometry [17]. In the high-resolution imaging acquisition, all the satellites would be
pointing at the same ROI and would emit a pulse in a different section of the antenna bandwidth, using
a Frequency Division Multiplexing (FDM) strategy simulating𝑁 Single Input Multiple Output (SIMO) sys-
tems, where𝑁 is the numbers of satellites in the constellation [17]. The nodes separation in cross-track
direction allows to perform an InSAR image acquisition scheme that can resolve three-dimensional sur-
faces, as it was explained in section 2.1. Using a satellite constellation to perform InSAR has an
important advantage: the temporal change of the mapped surface is negligible for one scan of the 𝑁
imaging satellites [17]. The along-track separation between individual nodes gives the further possibil-
ity to perform ground moving target identification [17], detecting the relative velocity of moving targets
in the ground. An example of this image acquisition scheme is shown in figure 2.3.

In this conceptual mission, each satellite is referred as a ”node” which can be characterized as
follows:

1. ”The nodes are extremely simple in terms of illumination capabilities” [17].
2. ”The nodes are all equal” [17].
3. ”The nodes are self-sufficient” [17].

The first point indicates that a simple antenna with no beam-steering capabilities is required [17]. A
pencil-beam antenna that radiates in broadside direction would fulfil this condition. The second point
gives the constellation the interchangeability option whenever a node stops working. Finally, the third
part emphasizes that each node can work independently to obtain SAR imaging in stripmap mode.
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Compared to SAR satellites of medium (between 100 kg and 1000 kg) and large (>1000 kg) sizes,
the SwarmSAR constellation does not have advanced beam-forming capabilities and does not support
multiple SAR mode imaging. Therefore, the main purpose is not to compete with those platforms in
terms of versatility nor image quality, but to provide “... competitive imaging at affordable costs and
fast temporal revisit in a limited number of spots” [17]. Furthermore, for the interferometric mode,
it benefits from a MIMO system with satellites separated in the along-track direction, delivering fast
results with small temporal differences when compared to single-platform SAR systems, where the
satellite has to pass at least two times over the same location to perform interferometric measurements,
or have a big size to use two antennas sufficiently separated from each other to perform interferometric
measurements. An example of the second case is the Shuttle Radar Topography Mission (SRTM)
which used a main radar with transmission and receiving capabilities in the Shuttle cargo bay, and a
receiver radar in a mast that would be deployed from the cargo bay, separated 60m from the Shuttle
[10].

2.2.2. Antenna requirements
The desired antenna characteristics of the SwarmSAR mission are retrieved from [17] and presented
in table 2.1.

Table 2.1: Desired antenna characteristics for every node of the SwarmSAR mission extracted from [17].

Parameter Value
Frequency 3.2GHz
Average Tx power 20W
Pulse length 20µs
Radius 1m
Directivity 36dB
HPBW 3.2°
Bandwidth 20MHz
Surface weight ratio 1m2/kg

The characteristics from table 2.1 are subsequently translated into antenna requirements, where
“SYS” represents system, “Sub” subsystem, “PL” payload, and “Ant” antenna. As in the source [17]
there is no tolerance in the pulse length nor in the central frequency, the author assigned arbitrarily a
value of 1µs and ±1MHz respectively for the completeness and robustness of the requirements.

• SwarmSAR-SYS-Sub-PL-Ant-01: The antenna shall perform its measurements on a central
frequency of 3.2GHz with a maximum deviation of ±1MHz.

• SwarmSAR-SYS-Sub-PL-Ant-02: The antenna bandwidth shall not be smaller than 20MHz.
• SwarmSAR-SYS-Sub-PL-Ant-03: The maximum radius of the antenna shall not exceed 1m.
• SwarmSAR-SYS-Sub-PL-Ant-04: The directivity shall not be smaller than 36dB in the whole
antenna bandwidth.

• SwarmSAR-SYS-Sub-PL-Ant-05: The HPBW shall not be greater than 3.2° in the whole antenna
bandwidth.

• SwarmSAR-SYS-Sub-PL-Ant-06: The transmission power shall not be smaller than 20W.
• SwarmSAR-SYS-Sub-PL-Ant-07: The pulse length shall not deviate by more than 1µs from

20µs.
• SwarmSAR-SYS-Sub-PL-Ant-08: The antenna surface weight ratio shall not be smaller than

1m2/kg.

Particularly for this antenna design exercise, as research question focuses in obtaining a method-
ology for a metasurface antenna design, SwarmSAR-SYS-Sub-PL-Ant-07 is not relevant because it
constraints the precision of the system that sends the signal to the feeding point, which is out of the
scope of the presented methodology. Furthermore, SwarmSAR-SYS-Sub-PL-Ant-06 is also not eval-
uated because it constraints the design of the feeding system which is not included in the scope of
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Table 2.2: Reference antenna main characteristics [54] compared against SwarmSAR from table 2.1.

Parameter Value SwarmSAR required value
Frequency 3.6GHz 3.2GHz
Stowed volume 2U (20 cm×10 cm×11.35 cm) Not specified
Deployed area 1.7m2 3.14m2

Directivity 34dB 36dB
XP level 0dB Not specified
HPBW 3.4° 3.2°
Side lobe level 24dB Not specified
Directivity loss at ±100MHz 0.5dB 20MHz bandwidth
Polarization Linear Not specified
Membrane mass 336g Not applicable
Total mass 1.5 kg 3.14 kg
Surface weight ratio 1.13m2/kg 1m2/kg

this methodology. The rest of the requirements are relevant and should be addressed in such a de-
sign. However, due to limitations in the capacity to simulate such a structure, the requirements that
demand broadband simulations are not considered or only evaluated at the central frequency. That
is the case for SwarmSAR-SYS-Sub-PL-Ant-02, which is not considered, and SwarmSAR-SYS-Sub-
PL-Ant-04 and SwarmSAR-SYS-Sub-PL-Ant-05, which are only evaluated at their central frequency of
3.2GHz.

2.3. SAR antenna used for comparison
The antenna chosen for comparison is the one presented by Warren, Steinbeck, Minelli, and Mueller
in [54]. This is a folded phased array antenna which consists of 16 × 16 patch antennas on a thin
membrane that is deployed once the satellite is in orbit. Table 2.2 shows the main specifications of
this antenna, which has been chosen because it is developed for space applications and has a similar
central frequency as the one required in table 2.1, which is compared in the gray column.

Figure 2.4 shows the antenna used for comparison when it is folded, its unfolding procedure and
when it is fully deployed. This antenna has been designed specifically to fit in a 6U CubeSat and, even
though it is a phased array antenna, no electronic beam steering have been shown in the consulted
literature, however the authors report that this capability has been tested [54].

With the presented antenna characteristics in table 2.2 and, comparing them with the antenna re-
quirements presented before, some insights can be obtained from the suitability of this antenna design.
First, the central frequency would have to be shifted to 3.2GHz, which would increase the antenna size
and its weight. However, it is expected that the new surface weight ratio would have a similar value to
the current one of 1.13m2/kg, which considers the complete antenna system and meets SwarmSAR-
SYS-Sub-PL-Ant-08. Next, the HPBW of 3.4° does not meet SwarmSAR-SYS-Sub-PL-Ant-05 because
it is above the required value of 3.2°. Subsequently, the maximum directivity of 34dB is below the re-
quirement of 36dB and therefore fails to meet SwarmSAR-SYS-Sub-PL-Ant-04, affecting SwarmSAR-
SYS-Sub-PL-Ant-02 too as the loss of 0.5dB at ±100MHz from the maximum directivity makes this
requirement unrealisable with the current design. To meet all of these requirements, the antenna area
and the number of patches should be increased, but SwarmSAR-SYS-Sub-PL-Ant-03 constraints the
antenna radius to 1m, which can be interpreted as an antenna area constraint of 3.14m2. Currently,
an area of 1.7m2 is used, but considering the shift to a bigger wavelength, the needed increase in
gain and HPBW, a bigger antenna would result from subsequent iterations and an extra assessment
would be needed to evaluate if the resulting design meets the antenna requirements. Nevertheless,
this comparison case is useful due to the similarity with the SwarmSAR frequency band and gain, and
would be used to compare against the resulting design from the methodology developed in chapter 4.
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(a) Deployment procedure of antenna used for
comparison.

(b) Fully deployed antenna used for comparison

Figure 2.4: Deployment procedure of the antenna used for comparison [54]



3
Theoretical background

In this chapter, the theoretical background is presented which consists on a brief explanation of general
electromagnetic concepts that are subsequently applied in the metasurface design. This explanation
should not be considered as sufficient to profoundly understand these topics, but as a comprehensive
list of tools with its own derivations, and presented to facilitate their application and serve as a support
for further discussion. This chapter is based on Maxwell’s equations, and the derivations presented
are expected to be traceable to that set of concepts.

This chapter is presented as follows. The first section contains the general electromagnetic theory,
which is formed by the explanation of EM wave propagation, transmission line theory, antenna theory,
and Floquet series. The section of Floquet series is based on solid knowledge of Fourier transforms and
the properties of operators and functions in time and in the frequency domain. Furthermore, although
it is not essential, that section contains an application to antenna theory which uses electric potential
functions which explanation can be consulted in [1, p. 127-143]. These applications are oriented to
antenna arrays but, for a continuous source as a metasurface, the array can be evaluated with an
integral over the area instead of a summation of individual antennas to recreate their properties, ignoring
coupling effects between elements.

The section of metasurface antennas contains an explanation oriented to the design of such struc-
ture. The concepts presented therein are simplified to be as concise as possible for their application.
Most of these methods are based in a Galerkin spectral Method of Moments (MoM) used to obtain a
solution that represents the weighted influence of a set of basis functions that describes the current
density on the metasurface, which is characterized by a set of spectral Green’s functions (GF) in terms
of Floquet modes. This topic is partially treated in appendix C, but the reader is encouraged to review
[24] if the interest in this part persists.

Finally, the section of FDTD simulations gives a brief introduction to this method, stating how the
meshing works and the concept of Yee cells. As there are entire books treating this subject, it was
decided to only explain the basics about this topic. The book of Yang and Mittra [15] provides a good
explanation of this method applied to the simulation of metamaterials.

3.1. General electromagnetic theory
In this section the theoretical background of EM that is needed to properly analyse metasurface an-
tennas in the microwave region and in spectral domain is explained. The first subsection explains
wave propagation in the context of metasurface antennas. This is divided in three parts, where the
first one derives the plane wave equations and their EM properties. Subsequently surface waves are
treated, which are more closely related to metasurfaces because it is the main form in which EM waves
propagate within them. Finally, the derivation of cylindrical EM waves is presented, which describes
the direction in which surface waves propagate from a central feeding point to the boundaries of the
metasurface antenna.

Subsequently, transmission line theory is treated with special emphasis on impedance calculation
with scattering parameters (or S-parameters), and the transverse resonancemethod principles to obtain
the impedance in transmission lines.

10
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In the next subsection, a brief explanation of the spectral techniques used to calculate far-field
patterns is given, together with the derivation of basic antenna parameters used to compare their per-
formance.

Finally Floquet series are explained, which treat propagation of EM waves in periodic structures
and in the spectral domain. They give a comprehensive idea of conditions for the propagation of
fundamental and higher order modes in terms of wavenumber and elements size, which is subsequently
applied in metasurface analysis to model unit cells and their periodicities, using their properties to obtain
leaky-wave radiation.

3.1.1. EM wave propagation
EMwave propagation can be derived fromMaxwell’s equations. Their classical derivation in the phasor
domain is presented in equation (3.1) where equation (3.1a) and equation (3.1b) describe the Gauss
law, and equation (3.1c) and equation (3.1d) the Faraday’s and Ampere-Maxwell’s law respectively. In
these equations, 𝐄 represents the electric field, 𝐫 the space coordinate vector, 𝜌𝑒 the electric charge
density per unit volume, 𝜖 the permittivity, 𝐇 the magnetic field, 𝜌𝑚 the magnetic charge per unit volume,
𝜇 the permeability, 𝑗 is the imaginary number, 𝜔 the angular velocity of the periodic signal, 𝐌 the
magnetic current density, and 𝐉 the electric current density. It is important to note that the terms of
magnetic charge 𝜌𝑚(𝐫) and magnetic current 𝐌(𝐫) do not exist in reality, but are used as reciprocal
terms of their electric counterparts, which is useful in multiple derivations.

𝛁 ⋅ 𝐄(𝐫) = 𝜌𝑒(𝐫)
𝜖 (3.1a) 𝛁 ⋅ 𝐇(𝐫) = 𝜌𝑚(𝐫)

𝜇 (3.1b)

𝛁 × 𝐄(𝐫) = −𝑗𝜔𝜇𝐇(𝐫) − 𝐌(𝐫) (3.1c) 𝛁 × 𝐇(𝐫) = 𝑗𝜔𝜖𝐄(𝐫) + 𝐉(𝐫) (3.1d)
The phasor domain is used to analyse harmonic variables in a steady-state system, which are

represented as in equation (3.2) for a time- and space-dependent variable [44, p. 8], where E is the
electric field in time domain, and 𝑡 is the time. In the rest of this report, the phasor domain is assumed
in all the notation except when explicitly stated.

EEE (𝐫, 𝑡) = Re{𝐄(𝐫)𝑒𝑗𝜔𝑡} (3.2)

It is important to note that the permittivity and permeability can be defined also in relative terms.
That is, the one of free space, with sub-index zero, is taken as reference and a relative term multiplies
it to obtain the permittivity and permeability of the medium. This is shown in equation (3.3) where
a dependency on the frequency is obtained because this material property can change with different
frequencies. However, in this report this dependency is implicitly assumed.

𝜖𝑟(𝜔)𝜖0 = 𝜖(𝜔) (3.3a) 𝜇𝑟(𝜔)𝜇0 = 𝜇(𝜔) (3.3b)
The EM power transferred by the electric and magnetic fields is represented by the Poynting vector

𝐒(𝐫), defined in equation (3.4a) where the asterisk represents the complex conjugate. The Poynting
vector represents the direction in which the energy is transferred and it is expressed in Watts per
meter square. Its real part represents the actual power that is transferred either in Ohmic losses or in
radiated energy, whereas its imaginary part is the energy that is in its vicinity in terms of capacitance
and inductance. The average of the Poynting vector can be obtained with the half of the real part of
equation (3.4a) in equation (3.4b), which is aligned with the propagation direction.

𝐒(𝐫) = 𝐄(𝐫) × 𝐇∗(𝐫) (3.4a) 𝐒𝑎𝑣𝑔(𝐫) = 1
2Re [𝐄(𝐫) × 𝐇∗(𝐫)] (3.4b)

It is widely known that the equation of a wave propagating in three dimensions can be represented
in the time domain by equation (3.5a) where 𝑐 is the propagation velocity, which in EM waves is the
speed of light. In the phasor domain, the derivative notation can be taken away, resulting in equa-
tion (3.5b) where 𝑘 is the wavenumber, measured in radians per meter. This last equation is known as
the Helmholtz equation, which is widely used in EM theory.

𝛁2EEE (𝐫, 𝑡) − 1
𝑐2

𝜕2

𝜕𝑡2EEE (𝐫, 𝑡) = 0 (3.5a) 𝛁2𝐄 + 𝜔2

𝑐2 𝐄 = 𝛁2𝐄 + 𝑘𝐄 = 0 (3.5b)

This can be applied to theMaxwell’s equations by considering a charge-freemedium, that is, 𝜌𝑒(𝐫) =
𝜌𝑚(𝐫) = 0 and 𝐉(𝐫) = 𝐌(𝐫) = 0. Consequently, the Maxwell’s equations described in equation (3.1)
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take the form of equation (3.6).

𝛁 ⋅ 𝐄(𝐫) = 0 (3.6a) 𝛁 ⋅ 𝐇(𝐫) = 0 (3.6b)
𝛁 × 𝐄(𝐫) = −𝑗𝜔𝜇𝐇(𝐫) (3.6c) 𝛁 × 𝐇(𝐫) = 𝑗𝜔𝜖𝐄(𝐫) (3.6d)

Following, the curl of equation (3.6b) is taken and the expression in the right-hand-side is replaced
with equation (3.6d) in equation (3.7a). By using the property of the curl operator 𝐋1 × 𝐋2 × 𝐋3 =
𝐋2(𝐋1⋅𝐋3)−𝐋3(𝐋1⋅𝐋2) and equation (3.6a), the final expression results in the Helmholtz equation for the
electric field, analogous to equation (3.5b). The same procedure can be repeated for the magnetic field,
obtaining equation (3.7b). It is important to note that the wavenumber 𝑘 results from these expressions,
and is defined as 𝑘 = 𝜔√𝜖𝜇.

𝛁 × 𝛁 × 𝐄(𝐫) = −𝑗𝜔𝜇 [𝛁 × 𝐇(𝐫)]
𝛁 × 𝛁 × 𝐄(𝐫) = −𝑗𝜔𝜇 [𝑗𝜔𝜖𝐄(𝐫)]

𝛁 [𝛁 ⋅ 𝐄(𝐫)] − 𝛁2𝐄(𝐫) = 𝜔2𝜖𝜇𝐄(𝐫)
𝛁2𝐄(𝐫) + 𝑘2𝐄(𝐫) = 0

(3.7a)

𝛁 × 𝛁 × 𝐇(𝐫) = 𝑗𝜔𝜖 [𝛁 × 𝐄(𝐫)]
𝛁 × 𝛁 × 𝐇(𝐫) = −𝑗𝜔𝜖 [𝑗𝜔𝜇𝐇(𝐫)]

𝛁 [𝛁 ⋅ 𝐇(𝐫)] − 𝛁2𝐇(𝐫) = 𝜔2𝜖𝜇𝐇(𝐫)
𝛁2𝐇(𝐫) + 𝑘2𝐇(𝐫) = 0

(3.7b)

Plane waves
Considering a uniform plane wave propagating in positive z-direction, that is, an EM wave where the
electric and magnetic fields have uniform properties on the xy-plane. This makes the electric and
magnetic fields loose their dependency with the in-plane components, resulting in 𝐄(𝐫) = 𝐄(𝑧) and
𝐇(𝐫) = 𝐇(𝑧). The general solution to equation (3.7a) becomes equation (3.8a) for the electric and
equation (3.8b) for the magnetic fields, where 𝐻+ and 𝐸+ indicate a progressive and 𝐸− and 𝐻−

a regressive wave respectively, which values can be obtained by using specific boundary and initial
conditions for the evaluated problem. As the values of the electric and magnetic fields only depend
on the z-component, the curl in z-direction is zero, making the electric and magnetic field to only have
components perpendicular to the propagation direction.

𝐸𝑥(𝑧) = 𝐸+
𝑥 𝑒−𝑗𝑘𝑧 + 𝐸−

𝑥 𝑒𝑗𝑘𝑧 (3.8a) 𝐻𝑥(𝑧) = 𝐻+
𝑥 𝑒−𝑗𝑘𝑧 + 𝐻−

𝑥 𝑒𝑗𝑘𝑧 (3.8b)
Following, it can be shown that the electric and magnetic fields are orthogonal to each other. This

can be obtained by evaluating equation (3.6c) and equation (3.6d) for each Cartesian component. The
final result is shown in equation (3.9), where 𝜁 = √𝜇/𝜖 is the intrinsic impedance of the medium
where the plane wave propagates, and �̂� is the unit vector of the wavevector which orientation denotes
the direction of propagation of the plane wave and its magnitude the wavenumber. The direction of
propagation of the wavevector is the same as the direction of the average Poynting vector 𝐒𝑎𝑣𝑔 = 𝑆𝑎𝑣𝑔�̂�,
which average magnitude is shown in equation (3.10).

𝐄(𝑧) = −𝜁�̂� × 𝐇(𝑧) (3.9a) 𝐇(𝑧) = 1
𝜁 �̂� × 𝐄(𝑧) (3.9b)

𝑆𝑎𝑣𝑔 = |𝐄(𝑧)|2
2𝜁 (3.10)

Finally, consider the case of a plane wave propagating in positive z-direction with an incident angle
𝜃𝑖 between the z- and x-axes as shown in figure 3.1. When the electric field is oriented such that all
of its components are contained in the propagation plane (aligned only with the z- and x-axes), and
the magnetic field is aligned to the axis perpendicular to the propagation plane (in this case the y-axis),
the plane wave is said to be vertical, parallel or P polarized. On the contrary, when the magnetic
field components can be represented in the propagation plane and the electric field components are
perpendicular to this plane, the plane wave is said to be horizontal, perpendicular, or S polarized. It
is important to note that any arbitrary direction of the electric and magnetic field perpendicular to the
propagation direction in the plane wave case is possible and can be represented as a linear combination
of the P and S polarizations [44, p. 35].

Surface waves
Consider Snell’s refraction law 𝑛1 sin 𝜃𝑖 = 𝑛2 sin 𝜃𝑡 for a plane wave in 2D as in figure 3.1 going from
a high to a low permittivity medium 𝑛1 > 𝑛2 with same electrical permeability 𝜇1 = 𝜇2, where 𝑛 is
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Figure 3.1: Incident and transmitted plane waves in dielectric media

the refraction coefficient defined as 𝑛 = √𝜖𝜇, and 𝜃𝑖 and 𝜃𝑡 are the incident and transmitted angles
respectively. For this configuration, the critical angle 𝜃𝑐 is the incidence angle for which 𝜃𝑡 = 90∘,
reducing Snell’s law to sin 𝜃𝑐 = √𝜖2/𝜖1. Any incident plane wave with an incident angle higher than
the critical angle “will be totally reflected and the transmitted wave will not propagate into region 2”
[44, p. 38]. This case would result in sin 𝜃𝑡 > 1 and cos 𝜃𝑡 = √1 − sin2 𝜃𝑡 where 𝜃𝑡 ∈ Im. It results
convenient to use the example of a P polarized wave transmitted from the interface given by Pozar [44,
p. 38-41] as described in figure 3.1, which electric and magnetic fields are given by equation (3.11)
where 𝐸0 is the electric field amplitude, 𝑇 ∈ [0, 1] is the transmission coefficient, 𝜖2,𝑟 is the relative
permittivity of medium 2, and 𝑘2 is the wavenumber in medium 2.

𝐄 = 𝐸0𝑇 (cos 𝜃𝑡�̂� − sin 𝜃𝑡 ̂𝐳) 𝑒−𝑗𝑘2(𝑥 sin 𝜃𝑡+𝑧 cos 𝜃𝑡) (3.11a)

𝐇 =
𝐸0𝑇 √𝜖2,𝑟

𝜁 �̂�𝑒−𝑗𝑘2(𝑥 sin 𝜃𝑡+𝑧 cos 𝜃𝑡) (3.11b)

Considering that sin 𝜃𝑡 is real and cos 𝜃𝑡 imaginary, they can be replaced by 𝑘2 sin 𝜃𝑡 = 𝛽 and
𝑘2 cos 𝜃𝑡 = −𝑗𝛼 where (𝛽, 𝛼) ∈ ℝ. The results are shown in equation (3.12) which clearly shows that
the electric andmagnetic field decay exponentially in 𝑧-direction and propagate in 𝑥-direction, which are
main characteristics of surface waves, because the exponential function has a real negative component
being multiplied by the z-distance.

𝐄 = 𝐸0𝑇 (−𝑗𝛼
𝑘2

�̂� − 𝛽
𝑘2

̂𝐳) 𝑒−𝑗𝛽𝑥−𝛼𝑧 (3.12a)

𝐇 =
𝐸0𝑇 √𝜖2,𝑟

𝜁 �̂�𝑒−𝑗𝛽𝑥−𝛼𝑧 (3.12b)

The Poynting vector of a surface wave is shown in equation (3.13) where it can be interpreted that
no real power flow occurs for the transmitted wave in z-direction, as the unit vector is multiplied by an
imaginary term. Therefore, all the real power that the incident wave had before impinging the interface
is reflected back [44].

𝐒 = 𝐄 × 𝐇∗ =
𝐸2

0𝑇 2√𝜖2,𝑟
𝜁𝑘2

(−𝑗𝛼 ̂𝐳 + 𝛽�̂�) 𝑒−2𝛼𝑧 (3.13)

Cylindrical waves
The following derivation is based on the work of Harrington described in [16, p. 198-204]. The Helmholtz
equation presented in equation (3.5b) can be expressed in cylindrical coordinates as in equation (3.14)
where the electric field in radial direction 𝐸𝜌 is used to represent an arbitrary wave function.

1
𝜌

𝜕
𝜕𝜌 (𝜌𝜕𝐸𝜌

𝜕𝜌 ) + 1
𝜌2

𝜕2𝐸𝜌
𝜕𝜙2 + 𝜕2𝐸𝜌

𝜕𝑧2 + 𝑘2𝐸𝜌 = 0 (3.14)

Solving equation (3.14) by separation of variables with the wave function in the form of 𝐸𝜌 =
𝐿1(𝜌)𝐿2(𝜙)𝐿3(𝑧) and dividing by 𝐸𝜌, equation (3.15) can be obtained.
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1
𝜌𝐿1

𝑑
𝑑𝜌 (𝜌𝑑𝐿1

𝑑𝜌 ) + 1
𝜌2𝐿2

𝑑2𝐿2
𝑑𝜙2 + 1

𝐿3

𝑑2𝐿3
𝑑𝑧2 + 𝑘2 = 0 (3.15)

The third term in equation (3.15) could be the only one that would depend of 𝑧. However, as no
other term depend on that variable and this term is explicitly independent of 𝜌 and 𝜙, the third term
must be explicitly independent on 𝑧 to assure that the left-hand part of equation (3.15) gives always
zero. Therefore, this term is replaced by the constant 𝑘𝑧 in equation (3.16).

1
𝐿3

𝑑2𝐿3
𝑑𝑧2 = −𝑘2

𝑧 (3.16)

Then, equation (3.16) can be used in equation (3.15), which results in equation (3.17) after multi-
plying by 𝜌2.

𝜌
𝐿1

𝑑
𝑑𝜌 (𝜌𝑑𝐿1

𝑑𝜌 ) + 1
𝐿2

𝑑2𝐿2
𝑑𝜙2 + (𝑘2 − 𝑘2

𝑧) 𝜌2 = 0 (3.17)

Now, the second term is independent on 𝜌 and 𝑧, while the rest do not depend on 𝜙. Therefore, it
can be reached to the same conclusion as in equation (3.16) but for 𝜙. That is, equation (3.18) where
�̃� is a constant.

1
𝐿2

𝑑2𝐿2
𝑑𝜙2 = −�̃�2 (3.18)

Then, considering equation (3.18), equation (3.17) becomes equation (3.19), which depends only
of 𝜌.

𝜌
𝐿1

𝑑
𝑑𝜌 (𝜌𝑑𝐿1

𝑑𝜌 ) − �̃�2 + (𝑘2 − 𝑘2
𝑧) 𝜌2 = 0 (3.19)

Finally, 𝑘𝜌 is defined as 𝑘2
𝜌 +𝑘2

𝑧 = 𝑘2 and replaced in equation (3.19) to form equation (3.20a), which
is part of a more general system of equations defined in equation (3.20).

𝜌 𝑑
𝑑𝜌 (𝜌𝑑𝐿1

𝑑𝜌 ) + [(𝑘𝜌𝜌)2 − �̃�2] 𝐿1 = 0 (3.20a)

𝑑2𝐿2
𝑑𝜙2 + �̃�2𝐿2 = 0 (3.20b) 𝑑2𝐿3

𝑑𝑧2 + 𝑘2
𝑧𝐿3 = 0 (3.20c)

In this equation system, equations (3.20b) and (3.20c) represent harmonic functions which are
analogous to the regular Helmholtz equation defined in equation (3.5b). Equation (3.20a), however, is
a well-known differential equation which solutions are called Bessel functions. It is not the intention
of this chapter to go into the details of the mathematical derivation of these functions. However, their
implications in electromagnetic waves will be described.

The general solution of the harmonic equations in equation (3.20) can be expressed as in equa-
tion (3.8) by a function of the periodic elements, ℎ′(�̃�𝜙) and ℎ′(𝑘𝑧𝑧). Then, the solution to the Helmholtz
equation in cylindrical coordinates can be expressed as the multiplication of the functions with the form
of equation (3.21) where 𝐵�̃� represents a Bessel’s function of order �̃�.

𝐸𝜌(𝑘𝜌, �̃�, 𝑘𝑧) = 𝐵�̃�(𝑘𝜌𝜌)ℎ′(�̃�𝜙)ℎ′(𝑘𝑧𝑧) (3.21)

In contrast to equation (3.8) and ℎ′(𝑘𝑧𝑧), ℎ′(�̃�𝜙) describes the contribution of an azimuthal variables
with 𝐸𝜌(𝜑) = 𝐸𝜌(𝜙 + 2𝜋). Therefore “ℎ′(�̃�𝜙) must be periodic in 𝜙, in which case �̃� must be an integer”
[16, p. 200]. In EM and in general in wave theory, 𝐽�̃�(𝑘𝜌𝜌) represents the notation used for a Bessel
function of order �̃� which is non-singular at 𝜌 = 0 and represents a cylindrical standing wave. On the
other side,𝐻(1)

�̃� (𝑘𝜌𝜌), called a Hankel function of order �̃� and of first kind, represents an inward travelling
wave, whereas𝐻(2)

�̃� (𝑘𝜌𝜌) is a Hankel function of order �̃� and second kind, denotes an outward travelling
wave. In the Hankel functions the propagating wave can be attenuated if the wavenumber is complex.
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3.1.2. Transmission line theory
A transmission line can be interpreted as a circuit representation that is used whenever the voltages
and currents have non-negligible variations in magnitude and phase over the length of the circuit. In the
traditional circuit model, the electrical properties are modelled considering ideal elements, also called
lumped elements, such as capacitors, inductors and resistors. However, in microwaves “the phase of
the voltage or current changes significantly over the physical extent of the device because the device
dimensions are on the order of the electrical wavelength” [44, p. 1]. When analysing metasurfaces in
the microwave regime, a transmission line representation is used to consider the effects of each of
its element’s physical dimensions in terms of phase shifts of the incoming wave, which can later be
analysed in terms of surface reactance distribution for the propagating waves.

EM modes
The electric and magnetic field can be represented by the sum of independent terms, denoted by the
sub-index 𝑞 in equation (3.22) defined as modes propagating in 𝑧-direction. One form of representing
these modes is by separating the amplitude, 𝑉𝑞(𝑧) for electric and 𝐼𝑞(𝑧) for magnetic field respectively,
and modal functions, 𝐄𝑞(𝑥, 𝑦) and 𝐇𝑞(𝑥, 𝑦).

𝐄(𝐫) = ∑
𝑞

𝑉𝑞(𝑧)𝐄𝑞(𝑥, 𝑦) (3.22a) 𝐇(𝐫) = ∑
𝑞

𝐼𝑞(𝑧)𝐇𝑞(𝑥, 𝑦) (3.22b)

Contrary to the plane wave case, the dependency on the in-plane components is preserved in this
case, leading to the solution defined in equation (3.23) for a progressive wave where 𝛽 is defined as
the propagation constant, which is a positive real number.

𝐄(𝑥, 𝑦, 𝑧) = 𝐄(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 (3.23a) 𝐇(𝑥, 𝑦, 𝑧) = 𝐇(𝑥, 𝑦)𝑒−𝑗𝛽𝑧 (3.23b)
Combining the expressions obtained in equation (3.23) with the Helmholtz equation in equation (3.7),

equation (3.24) is obtained, where 𝑘𝑐 is the cut-off wavenumber defined as 𝑘2
𝑐 = 𝑘2 − 𝛽2.

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 − 𝛽2 + 𝑘2) 𝐄(𝑥, 𝑦) = ( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝑘2
𝑐) 𝐄(𝑥, 𝑦) = 0 (3.24a)

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 − 𝛽2 + 𝑘2) 𝐇(𝑥, 𝑦) = ( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝑘2
𝑐) 𝐇(𝑥, 𝑦) = 0 (3.24b)

Furthermore, using equation (3.23) in Maxwell’s equations for source-free EM fields specified in
equation (3.6), equation (3.25) is obtained. Solving this equation leaving the terms 𝐸𝑧 and 𝐻𝑧 as
independent variables leads to the expressions in equation (3.26) for the field transverse components.
The longitudinal components, on the other side, can be derived from the third element of the vector
given in equation (3.24).

⎡
⎢
⎣

𝜕𝐸𝑧
𝜕𝑦 + 𝑗𝛽𝐸𝑦

−𝑗𝛽𝐸𝑥 − 𝜕𝐸𝑧
𝜕𝑥𝜕𝐸𝑦

𝜕𝑥 − 𝜕𝐸𝑥
𝜕𝑦

⎤
⎥
⎦

= −𝑗𝜔𝜇𝐇(𝑥, 𝑦, 𝑧) (3.25a)
⎡
⎢
⎣

𝜕𝐻𝑧
𝜕𝑦 + 𝑗𝛽𝐻𝑦

−𝑗𝛽𝐻𝑥 − 𝜕𝐻𝑧
𝜕𝑥𝜕𝐻𝑦

𝜕𝑥 − 𝜕𝐻𝑥
𝜕𝑦

⎤
⎥
⎦

= −𝑗𝜔𝜇𝐄(𝑥, 𝑦, 𝑧) (3.25b)

𝐸𝑥 = − 𝑗
𝑘2𝑐

(𝛽 𝜕𝐸𝑧
𝜕𝑥 + 𝜔𝜇𝜕𝐻𝑧

𝜕𝑦 ) (3.26a) 𝐻𝑥 = 𝑗
𝑘2𝑐

(𝜔𝜖𝜕𝐸𝑧
𝜕𝑦 − 𝛽 𝜕𝐻𝑧

𝜕𝑥 ) (3.26b)

𝐸𝑦 = 𝑗
𝑘2𝑐

(−𝛽 𝜕𝐸𝑧
𝜕𝑦 + 𝜔𝜇𝜕𝐻𝑧

𝜕𝑥 ) (3.26c) 𝐻𝑦 = − 𝑗
𝑘2𝑐

(𝜔𝜖𝜕𝐸𝑧
𝜕𝑥 + 𝛽 𝜕𝐻𝑧

𝜕𝑦 ) (3.26d)

Solutions to equation (3.24) and equation (3.26) can be classified as follows according to the values
of 𝐸𝑧 and 𝐻𝑧:

• Transverse electromagnetic (TEM): Both the components of the electric and magnetic fields that
are aligned with the propagation direction are zero (𝐸𝑧 = 𝐻𝑧 = 0).

• Transverse electric (TE): The electric field component aligned with the propagation direction is
zero, but the one of the magnetic field is not (𝐸𝑧 = 0 and 𝐻𝑧 ≠ 0).
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• Transverse magnetic (TM): Only the magnetic field is orthogonal to the propagation (𝐻𝑧 = 0 and
𝐸𝑧 ≠ 0).

• Hybrid mode: The electric andmagnetic fields can have components aligned with the propagation
direction (𝐸𝑧 ≠ 0 and 𝐻𝑧 ≠ 0).

In the case of TEM waves, non-trivial solutions exist for equation (3.26) if 𝑘 = 𝛽 and 𝑘𝑐 = 0. When
the field components parallel to the propagation direction are set equal to zero, the ratio between field
perpendicular components results in equation (3.27) which is the equation of the wave impedance
for the TEM mode. It is important to note that this equation is frequency-independent, that is, the
impedance value does not vary with varying frequency. Furthermore, TEM waves can only exist when
two conductors are separated from each other, originating a difference in electric potential [44, p. 99].
This can be obtained by considering 𝐸𝑧 = 𝐻𝑧 = 0 in the Helmholtz equation, which results in the
Laplace equation given in equation (3.28). A solution to this equation is given in equation (3.29) where
Φ′(𝑥, 𝑦) is the electric scalar potential function, which is the same as in electrostatics. Following from
electrostatics theory, the voltage and currents can be defined as in equation (3.30) where the voltage
is calculated by integrating the electric field through two points with different electric potential 𝑝1 and
𝑝2, and the current is obtained by integrating along one of the magnetic field lines defined as ⃗𝑙𝑐. It
is important to note that the characteristic impedance (𝑍0) in the TEM case can be defined as the
ratio of current and voltages in the progressive and regressive wave cases as in equation (3.31). The
progressive and regressive solutions are obtained because equation (3.29) satisfies Laplace equation,
which as in the Helmholtz case in equation (3.8), results in equation (3.32). Finally, the average power
𝑃𝑎𝑣 leaving an area 𝐴 can be obtained from equation (3.4) as shown in equation (3.33) which contains
the real power in the real term and the reactive power in the imaginary term.

𝑍𝑇 𝐸𝑀 = 𝐸𝑥
𝐻𝑦

= − 𝐸𝑦
𝐻𝑥

= √𝜇
𝜖 = 𝜁 (3.27)

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 ) 𝐸𝑥,𝑦 = 𝛁2
𝑡 𝐄𝑡(𝑥, 𝑦) = 0 (3.28a) ( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 ) 𝐻𝑥,𝑦 = 𝛁2
𝑡 𝐇𝑡(𝑥, 𝑦) = 0 (3.28b)

𝐄𝑡 = −𝛁𝑡Φ′(𝑥, 𝑦) (3.29)

𝑉 = Φ′
1 − Φ′

2 = ∫
𝑝1

𝑝2

𝐄 ⋅ 𝑑𝐥1,2 (3.30a) 𝐼 = ∮ 𝐇 ⋅ 𝑑𝐥 (3.30b)

𝑍0 = 𝑉 +

𝐼+ = −𝑉 −

𝐼− (3.31)

𝑉 (𝑧) = 𝑉 +𝑒−𝑗𝑘𝑧 + 𝑉 −𝑒𝑗𝑘𝑧 (3.32a) 𝐼(𝑧) = 𝐼+𝑒−𝑗𝑘𝑧 + 𝐼−𝑒𝑗𝑘𝑧 (3.32b)

𝑃𝑎𝑣𝑔 = 1
2 ∯

𝐴
(𝐄 × 𝐇∗)⊤ ⋅ 𝑑𝐀 = 1

2(𝑉 𝐼∗) (3.33)

In the case of TE waves, the result of replacing 𝐸𝑧 = 0 in equation (3.26) is given in equation (3.34).
In this case, the cut-off frequency is different from zero as non-trivial solutions can be obtained. There-
fore, the TE wave impedance can be derived as in equation (3.35), which is frequency-dependent.
Furthermore, the solutions for the longitudinal component of the magnetic fields are defined by equa-
tion (3.36), which are subjected to the boundary conditions given by the specific geometry of the system.
As many of these solutions can arise with different cut-off frequencies, 𝐻𝑧 can be expressed as a linear
combination of these as in equation (3.37), where the individual elements in the sum are referred as
modes. Whenever the excited frequency is greater than the cut-off frequency, the mode is referred
as a propagating mode. Otherwise, it is evanescent as its amplitude decreases exponentially in the
guiding structure.
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𝐸𝑥 = −𝑗𝜔𝜇
𝑘2𝑐

𝜕𝐻𝑧
𝜕𝑦 (3.34a) 𝐻𝑥 = −𝑗𝛽

𝑘2𝑐

𝜕𝐻𝑧
𝜕𝑥 (3.34b)

𝐸𝑦 = 𝑗𝜔𝜇
𝑘2𝑐

𝜕𝐻𝑧
𝜕𝑥 (3.34c) 𝐻𝑦 = −𝑗𝛽

𝑘2𝑐

𝜕𝐻𝑧
𝜕𝑦 (3.34d)

𝑍𝑇 𝐸 = 𝐸𝑥
𝐻𝑦

= − 𝐸𝑦
𝐻𝑥

= 𝑘𝜁
𝛽 (3.35)

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 − 𝛽2 + 𝑘2) 𝐻𝑧(𝑥, 𝑦) = 0 (3.36)

𝐻𝑧(𝑥, 𝑦, 𝑧) = ∑
𝑞

𝐻𝑧,𝑞(𝑥, 𝑦)𝑒−𝑗𝛽𝑞𝑧 (3.37)

The TM waves, on the other side, arise when 𝐻𝑧 = 0. Equation (3.38) gives the field’s transverse
components, which results in a frequency-dependent wave impedance of the form of equation (3.39).
The longitudinal component given in equation (3.40) is subjected to the boundary conditions defined
by the specific geometry of the problem. As in the TE case, the cut-off frequency is greater than zero
and is different for each mode arising in the structure. These define the longitudinal component of the
electric field defined as in equation (3.41). There are propagating and evanescent modes which arise
when the exciting frequency is greater or less than the cut-off frequency respectively, as in the TE case.

𝐸𝑥 = −𝑗𝛽
𝑘2𝑐

𝜕𝐸𝑧
𝜕𝑥 (3.38a) 𝐻𝑥 = 𝑗𝜔𝜖

𝑘2𝑐

𝜕𝐸𝑧
𝜕𝑦 (3.38b)

𝐸𝑦 = −𝑗𝛽
𝑘2𝑐

𝜕𝐸𝑧
𝜕𝑦 (3.38c) 𝐻𝑦 = −𝑗𝜔𝜖

𝑘2𝑐

𝜕𝐸𝑧
𝜕𝑥 (3.38d)

𝑍𝑇 𝑀 = 𝐸𝑥
𝐻𝑦

= − 𝐸𝑦
𝐻𝑥

= 𝛽𝜁
𝑘 (3.39)

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 − 𝛽2 + 𝑘2) 𝐸𝑧(𝑥, 𝑦) = 0 (3.40)

𝐸𝑧(𝑥, 𝑦, 𝑧) = ∑
𝑞

𝐸𝑧,𝑞(𝑥, 𝑦)𝑒−𝑗𝛽𝑞𝑧 (3.41)

When the excitation frequency is increased in a waveguide, the region of interest is close to a source,
or discontinuities are present, additional modes may arise forming a discrete spectrum of propagating
signals [16, p. 63]. Furthermore, these signals can be either TM, TE or TEM, which is how hybrid
modes originate.

Port model
Although port models are used to analyse microwave circuits, they can also serve in grounded meta-
surface design by representing each incident and reflected mode as a port. In a two-port model, that
is two incident and two transmitted waves on a device, the scattering matrix (𝐒) that relates the trans-
mitted and reflected equivalent voltages can be represented as in equation (3.42) where 𝑉 +

𝑝 and 𝑉 −
𝑝

are the equivalent incident and reflected voltages respectively [44, p. 174]. The parameter 𝑆𝑝𝑝 in 𝐒
represents, in absence of sources, the reflection coefficient when the incident wave starts propagating
in transmission line 𝑝 and all the other transmission lines are matched at their ends to avoid reflections.
Then, the parameter 𝑆𝑝𝑞 where 𝑝 ≠ 𝑞 represents the transmission coefficient of an incident excitation
in transmission line 𝑞 that propagates into transmission line 𝑝 when all the other transmission lines are
again matched.

[𝑉 −
1

𝑉 −
2

] = [𝑆11 𝑆12
𝑆21 𝑆22

] ⋅ [𝑉 +
1

𝑉 +
2

] (3.42)

It is important to note that the term equivalent voltage is used to include, apart from the TEM, the
TM and TE polarized waves which do not have a unique voltage value defined throughout their cross-
section. The equivalent voltage is defined as the voltage needed to maintain all the properties of
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currents, impedance and power for TEM modes in TE and TM modes. That is, the calculation of the
characteristic impedance as in equation (3.31), the definition of progressive and regressive voltages
and currents as in equation (3.32), the fact that their conjugated product is proportional to the average
power as in equation (3.33), and the proportionality of voltage to transverse electric field, and current
to transverse magnetic field as in equation (3.30) [44, p. 168]. Analogous to the equivalent voltage,
the equivalent current for TE and TM modes can be defined considering all the previously presented
requirements.

The impedance matrix can be defined in a similar manner as the scattering matrix. Equation (3.43)
shows the matrix equation that defines the impedance matrix 𝐙 for a two-port system.

[𝑉1
𝑉2

] = [𝑍11 𝑍12
𝑍21 𝑍22

] ⋅ [𝐼1
𝐼2

] (3.43)

There are important properties that can derived from equation (3.43). Consider the case of a re-
ciprocal two-port network, that is, a network without active devices. Then, the fields at the termination
ports 1 and 2 of the transmission lines caused by two independent sources ̂𝑎 and ̂𝑏 in the network are
related by equation (3.44) due to the reciprocity theorem, explained in appendix A. It is only considered
the surface defined by the termination ports because, if the device has metal boundaries then 𝐄𝑡 = 𝟎,
or if it has infinite boundaries (free-space) then the tangential fields can also be approximated to zero
[44, p. 176].

∯
𝐴1

(𝐄�̂�1×𝐇�̂�2)⊤⋅𝑑𝐀1+∯
𝐴2

(𝐄�̂�2×𝐇�̂�2)⊤⋅𝑑𝐀2 = ∯
𝐴1

(𝐄�̂�2×𝐇�̂�1)⊤⋅𝑑𝐀1+∯
𝐴2

(𝐄�̂�2×𝐇�̂�2)⊤⋅𝑑𝐀2 (3.44)

Considering the condition for tangential fields in transmission lines defined previously to obtain
equivalent voltages and currents, the fields present in equation (3.44) can be expressed as in equa-
tion (3.45) with their equivalent voltages and currents, and the terms 𝐄𝑡,𝑝 and 𝐇𝑡,𝑝 which represent the
transverse modal electric and magnetic field respectively for port 𝑝 [44, p. 176]. These modal fields are
normalized such that equation (3.46) holds at the defined boundaries.

𝐄�̂�1 = 𝑉�̂�1𝐄𝑡,1 (3.45a) 𝐇�̂�1 = 𝐼�̂�1𝐇𝑡,1 (3.45b) 𝐄�̂�1 = 𝑉�̂�1𝐄𝑡,1 (3.45c) 𝐇�̂�1 = 𝐼�̂�1𝐇𝑡,1 (3.45d)

𝐄�̂�2 = 𝑉�̂�2𝐄𝑡,2 (3.45e) 𝐇�̂�2 = 𝐼�̂�2𝐇𝑡,2 (3.45f) 𝐄�̂�2 = 𝑉�̂�2𝐄𝑡,2 (3.45g) 𝐇�̂�2 = 𝐼�̂�2𝐇𝑡,2 (3.45h)

∯
𝐴1

(𝐄𝑡,1 × 𝐇𝑡,1)⊤ ⋅ 𝑑𝐀1 = ∯
𝐴2

(𝐄𝑡,2 × 𝐇𝑡,2)⊤ ⋅ 𝑑𝐀2 = 1 (3.46)

Including equation (3.45) and equation (3.46) in equation (3.44), equation (3.47) can be obtained,
which leads to the conclusion that 𝑍12 = 𝑍21 making the impedance matrix symmetric for a reciprocal
network.

𝑉�̂�1𝐼�̂�1 − 𝑉�̂�1𝐼�̂�1 + 𝑉�̂�2𝐼�̂�2 − 𝑉�̂�2𝐼�̂�2 = 0
(𝑍11𝐼�̂�1+𝑍12𝐼�̂�2)𝐼�̂�1 − (𝑍11𝐼�̂�1+𝑍12𝐼�̂�2)𝐼�̂�1 + (𝑍21𝐼�̂�1+𝑍22𝐼�̂�2)𝐼�̂�2 − (𝑍21𝐼�̂�1+𝑍22𝐼�̂�2)𝐼�̂�2 = 0

(𝑍12 − 𝑍21)(𝐼�̂�2𝐼�̂�1 − 𝐼�̂�2𝐼�̂�1) = 0
𝑍12 = 𝑍21

(3.47)

The same property can be derived for the scattering matrix. From equations (3.32) and (3.43),
equation (3.48) is obtained, which gives an explicit expression of the scattering matrix in terms of the
impedance matrix. Then, considering a reciprocal network where 𝐙 = 𝐙⊤, it can be shown with the
last expression in equation (3.48) that the scattering matrix is also symmetric in a reciprocal system.
Equation (3.49) shows this last step where 𝐔 is the unitary matrix.
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𝐕+ + 𝐕− = 𝐙 ⋅ (𝐈+ + 𝐈−)

𝐕+ + 𝐕− = 𝐙 ⋅ ( 1
𝑍0

𝐕+ − 1
𝑍0

𝐕−)

𝑍0(𝐕+ + 𝐕−) = 𝐙 ⋅ (𝐕+ − 𝐕−)
(𝐙 − 𝑍0𝐔) ⋅ 𝐕+ = (𝐙 + 𝑍0𝐔) ⋅ 𝐕−

𝐕− = (𝐙 + 𝑍0𝐔)−1 ⋅ (𝐙 − 𝑍0𝐔) ⋅ 𝐕+

𝐒 = (𝐙 + 𝑍0𝐔)−1 ⋅ (𝐙 − 𝑍0𝐔)

(3.48)

𝐒⊤ = (𝐙 − 𝑍0𝐔)⊤ ⋅ [(𝑍0𝐔 + 𝐙)−1]⊤ = (𝐙 − 𝑍0𝐔) ⋅ (𝑍0𝐔 + 𝐙)−1 = 𝐒 (3.49)
Furthermore, an explicit equation of 𝐙 is reached in terms of 𝐒 by replacing 𝐕− = 𝐒 ⋅ 𝐕+ in the third

line of equation (3.48). Then equation (3.50) is obtained which relates the scattering and impedance
matrices.

𝐙 = 𝑍0(𝐔 + 𝐒) ⋅ (𝐔 − 𝐒)−1 (3.50)
Apart from reciprocal networks, there can also be networks that do not dissipate any of the input

power, called lossless networks which requirement is Re{𝑃𝑎𝑣} = 0 from equation (3.33) which can
also be applied to TM and TE modes. First, equation (3.51) is obtained by using equation (3.33) for the
entire network. Then, evaluating the case where 𝑝 = 𝑞, equation (3.52) is reached which shows that
Re{𝑍𝑝𝑝} = 0. Then, for cases where 𝑝 ≠ 𝑞, it can be assumed that all the other currents that do not pass
through ports 𝑝 or 𝑞 are set to zero, which results in the condition given by equation (3.53). It results
necessary that Re{𝐼𝑝𝐼∗

𝑞 + 𝐼𝑞𝐼∗
𝑝}Re{𝑍𝑝𝑞} = 0 to fulfil equation (3.53), which results in equation (3.54)

and Re{𝑍𝑝𝑞} = 0. Therefore, to obtain a lossless network the impedance matrix has to be purely
imaginary [44, p. 177].

𝑃𝑎𝑣𝑔 = 1
2𝐕⊤ ⋅ 𝐈∗ = 1

2(𝐙 ⋅ 𝐈)⊤ ⋅ 𝐈∗ = 1
2𝐈⊤ ⋅ 𝐙 ⋅ 𝐈∗ = 1

2
𝑁

∑
𝑝=1

𝑁
∑
𝑞=1

𝐼𝑝𝑍𝑝𝑞𝐼∗
𝑞 (3.51)

Re{𝐼𝑝𝑍𝑝𝑝𝐼∗
𝑝} = |𝐼𝑝|2Re{𝑍𝑝𝑝} = 0 where Re{𝑍𝑝𝑝} = 0 (3.52)

Re{(𝐼𝑝𝐼∗
𝑞 + 𝐼𝑞𝐼∗

𝑝)𝑍𝑝𝑞} = 0 (3.53)

[Re{𝐼𝑝𝐼∗
𝑞} + Re{𝐼𝑞𝐼∗

𝑝}]Re{𝑍𝑝𝑞} = 2 [Re{𝐼𝑝}Re{𝐼𝑞} + Im{𝐼𝑝}Im{𝐼𝑞}]Re{𝑍𝑝𝑞} = 0
where Re{𝑍𝑝𝑞} = 0 (3.54)

In the case of the scattering matrix, the real average power can be derived from equation (3.55).
The real part of last two terms inside the curly brackets equals to zero, as shown in equation (3.56).
Then, the first two terms are completely real, which means that they must be equal to have no losses
in the network. From this condition equation (3.57) can be derived, which shows that the scattering
matrix must be unitary to have no losses in the network [44, p. 182-183].

Re{𝑃𝑎𝑣} = Re{1
2𝐕⊤ ⋅ 𝐈∗} = 1

2𝑍0
Re {(𝐕+ + 𝐕−)⊤ ⋅ (𝐕+ − 𝐕−)∗}

Re{𝑃𝑎𝑣} = 1
2𝑍0

Re {(𝐕+)⊤ ⋅ (𝐕+)∗ − (𝐕−)⊤ ⋅ (𝐕−)∗ + (𝐕−)⊤ ⋅ (𝐕+)∗ − (𝐕+)⊤ ⋅ (𝐕−)∗}
(3.55)

Re{
𝑁

∑
𝑝=1

𝑉 −
𝑝 (𝑉 +

𝑝 )∗ −
𝑁

∑
𝑝=1

𝑉 +
𝑝 (𝑉 −

𝑝 )∗}

=
𝑁

∑
𝑝=1

Re{𝑉 −
𝑝 }Re{𝑉 +

𝑝 }+
𝑁

∑
𝑝=1

Im{𝑉 +
𝑝 }Im{𝑉 −

𝑝 }−
𝑁

∑
𝑝=1

Re{𝑉 +
𝑝 }Re{𝑉 −

𝑝 }−
𝑁

∑
𝑝=1

Im{𝑉 +
𝑝 }Im{𝑉 −

𝑝 }=0
(3.56)



3.1. General electromagnetic theory 20

(𝐕+)⊤ ⋅ (𝐕+)∗ = (𝐕−)⊤ ⋅ (𝐕−)∗ = (𝐒 ⋅ 𝐕+)⊤ ⋅ (𝐒 ⋅ 𝐕+)∗ = (𝐕+)⊤ ⋅ 𝐒⊤ ⋅ 𝐒∗ ⋅ (𝐕+)∗

𝐒⊤ ⋅ 𝐒∗ = 𝐔
(3.57)

Transverse resonance condition
The transverse resonance condition is a method used to calculate the resonance frequencies of struc-
tures with resonating properties. In metasurface design, they are applied to unit cells to find the dis-
persion function which relates the surface wave wavenumber with the free-space wavenumber. This
subsection is based on the work of David R. Jackson which lecture materials can be accessed online
[18].

A diagram of a lossless resonator is shown in figure 3.2 which serves as an example to summarize
this method. In this one-dimensional diagram, two impedance values 𝑗𝑋𝐿1 and 𝑗𝑋𝐿2 are defined at
𝑥 = 0 and at 𝑥 = 𝐿 respectively in a transmission line with characteristic impedance 𝑍0.

Figure 3.2: Transmission line resonator. Source: [18]

At an arbitrary plane 𝑅 where 𝑥 = 𝑥0, an imaginary cut can be made such that the currents and
voltages seen from the right are equivalent to the ones seen from the left, resulting in figure 3.3 where
𝑉 𝑟 = 𝑉 𝑙 and 𝐼𝑟 = 𝐼 𝑙, and the superscripts 𝑟 and 𝑙 indicate right and left respectively. Then, the
impedance can be calculated by obtaining the ratio of voltage and current for left and right directions,
but considering that the positive direction is right, so a minus sign must be added to the impedance on
the left, resulting in ⃗𝑍 +�⃗� = 0 in equation (3.58c) at 𝑥 = 𝑥0 where the arrow on top means the direction
relative to 𝑅 instead of the traditional vector notation.

Figure 3.3: Transmission line resonator at arbitrary reference plane 𝑅. Source: [18]

⃗𝑍 = 𝑉 𝑟

𝐼𝑟 (3.58a) �⃗� = 𝑉 𝑙

−𝐼 𝑙 (3.58b) �⃗� = − ⃗𝑍 (3.58c)

This method is used in metasurfaces to obtain the resonating surface wave wavenumber for a
particular free-space wavenumber by assuming this same resonator configuration where the plane
division is in the interface of the metasurface with free space. When using this method for a broadband
frequency range, the dispersion curve for a unit cell configuration can be obtained which relates the
propagation constant with the excitation frequency.

3.1.3. Antenna theory
This subsection explains in generalized terms the antenna figures of merit that are used throughout this
report and how to calculate them from the near-field parameters. The first part of this subsection, based



3.1. General electromagnetic theory 21

on the work of Balanis [1, p. 684-702], explains how the near-field calculations can be extrapolated to
the far-field by using a series of assumptions and techniques in the spectral plane. Next, the second
part based on the work of the same author [1, p. 37-47], explains the basic figures of merit of antennas,
how to calculate them and what do they represent.

Near- to far-field conversion
Antennas are devices which main objective is to emit or receive a particular far-field radiation pattern.
The effect of the radiation in its vicinity (near-field) can be extrapolated over large distances (far-field) in
the spherical plane to measure its performance in different directions. To this end, spectral techniques,
which are used for aperture-type antennas, can be used to obtain the far-field radiation pattern from
the near-field radiation. First, considering an antenna that radiates in the positive z-direction. The
electric field in the source-free region (𝑧 > 0) can be represented as a Fourier transform of its spectral
components as in equation (3.59) where 𝐟 (𝑘𝑥, 𝑘𝑦) is an amplitude function of these spectral components
on a Cartesian plane.

𝐄(𝑥, 𝑦, 𝑧) = 1
4𝜋2 ∫

+∞

−∞
∫

+∞

−∞
𝐟 (𝑘𝑥, 𝑘𝑦)𝑒−𝑗𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦 (3.59)

The effect of the z-component can be decoupled from the exponential function of equation (3.59)
because of its dependency with 𝑘𝑥 and with 𝑘𝑦. Then, equation (3.59) takes the form of equation (3.60)
which resembles a two-dimensional Fourier transform, with the term that represents the frequency
domain inside the square brackets.

𝐄(𝑥, 𝑦, 𝑧) = 1
4𝜋2 ∫

+∞

−∞
∫

+∞

−∞
[𝐟(𝑘𝑥, 𝑘𝑦)𝑒−𝑗𝑘𝑧𝑧] 𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 (3.60)

The dependency of 𝑘𝑧 on the tangential wavevector 𝐤𝑡 = �̂�𝑘𝑥 + �̂�𝑘𝑦 can be expressed as in equa-
tion (3.61), where 𝑘2 ≥ 𝑘2

𝑥 + 𝑘2
𝑦, so the fields do not decay exponentially from the surface as it was

explained on section 3.1.1 when the Poynting vector was defined in equation (3.4).

𝑘𝑧 = 𝑘2 − 𝑘2
𝑥 − 𝑘2

𝑦 ⟶ 𝑘𝑧 = √𝑘2 − 𝑘2𝑥 − 𝑘2𝑦 (3.61)

Next, a closed-form expression of 𝑓𝑧 can be obtained. Using equation (3.6a) for the source-free
region on equation (3.59) leads to equation (3.62). Interchanging the divergence by the double inte-
gral, and considering a solenoidal field in the spectral domain defined as 𝛁 ⋅ 𝐟(𝑘𝑥, 𝑘𝑦) = 0 leads to
equation (3.63) and to the relation of 𝑓𝑧 with 𝑓𝑥 and 𝑓𝑦.

𝛁 ⋅ 𝐄(𝑥, 𝑦, 𝑧) = 𝛁 ⋅ [ 1
4𝜋2 ∫

+∞

−∞
∫

+∞

−∞
𝐟 (𝑘𝑥, 𝑘𝑦)𝑒−𝑗𝐤⋅𝐫𝑑𝑘𝑥𝑑𝑘𝑦] = 0 (3.62)

𝐟 ⋅ 𝛁𝑒−𝑗𝐤⋅𝐫 = −𝑗𝐟 ⋅ 𝐤𝑒−𝑗𝐤⋅𝐫 = 0
𝐟 ⋅ 𝐤 = (𝐟𝑡 + ̂𝐳𝑓𝑧) ⋅ 𝐤 = 0

𝑓𝑧 = −𝑓𝑥𝑘𝑥 + 𝑓𝑦𝑘𝑦
𝑘𝑧

(3.63)

Next, themethod of stationary phase explained in appendix Bwill be used to evaluate equation (3.59).
First, the expression within the exponential function is evaluated in equation (3.64a), where 𝐤 is ex-
pressed in the Cartesian coordinate system and 𝐫 in the spherical coordinate system, where 𝜑 indi-
cates the azimuthal angle and 𝜃 the inclination or elevation angle. Using the conversion from one
system to another, 𝐫 can be transformed to the Cartesian coordinate system, and the dot product of
equation (3.64a) is expressed in equation (3.64b). Finally, equation (3.61) can be used to replace 𝑘𝑧
and have a final expression as a function of 𝑘𝑥 and 𝑘𝑦 in equation (3.64c).

𝐤 ⋅ 𝐫 = (𝑘𝑥�̂� + 𝑘𝑦�̂� + 𝑘𝑧 ̂𝐳) ⋅ ̂𝐫𝑟 (3.64a)
𝐤 ⋅ 𝐫 = 𝑟(𝑘𝑥 sin 𝜃 cos𝜑 + 𝑘𝑦 sin 𝜃 sin𝜑 + 𝑘𝑧 cos 𝜃) (3.64b)

𝐤 ⋅ 𝐫 = 𝑟 (𝑘𝑥 sin 𝜃 cos𝜑 + 𝑘𝑦 sin 𝜃 sin𝜑 + √𝑘2 − 𝑘2𝑥 − 𝑘2𝑦 cos 𝜃) (3.64c)
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From equation (3.64c) the stationary points can be evaluated. These are given by the partial deriva-
tives of 𝑘𝑥 and 𝑘𝑦 as in equation (3.65), where additional relations between 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 are found on
these stationary points.

𝜕(𝐤⋅𝐫)
𝜕𝑘𝑥

=𝑟 (sin 𝜃 cos𝜑 − 𝑘𝑥
𝑘𝑧

cos 𝜃)=0

𝑘𝑥 = 𝑘𝑧
sin 𝜃 cos𝜑
cos 𝜃

(3.65a)

𝜕(𝐤⋅𝐫)
𝜕𝑘𝑦

=𝑟 (sin 𝜃 cos𝜑 − 𝑘𝑦
𝑘𝑧

cos 𝜃)=0

𝑘𝑦 = 𝑘𝑧
sin 𝜃 sin𝜑
cos 𝜃

(3.65b)

Using the relations obtained on equation (3.65) and the wavenumber expression in equation (3.61),
equation (3.66) can be obtained, which shows an independent expression of 𝑘𝑧 from 𝑘𝑥 and 𝑘𝑦 which
is used on the stationary point. Next, equations (3.65a) and (3.65b) can be used with equation (3.66)
to obtain equations (3.67a) and (3.67b) respectively, which show closed forms expressions of 𝑘𝑥 and
𝑘𝑦 at these locations, named 𝑘1 and 𝑘2 respectively.

𝑘2 = 𝑘2
𝑧 + 𝑘2

𝑥 + 𝑘2
𝑦 = 𝑘2

𝑧 (1 + sin2 𝜃
cos2 𝜃)

𝑘𝑧 = 𝑘 cos 𝜃
(3.66)

𝑘𝑥 = 𝑘 sin 𝜃 cos𝜑 = 𝑘1 (3.67a) 𝑘𝑦 = 𝑘 sin 𝜃 sin𝜑 = 𝑘2 (3.67b)

Following, equation (3.67) can be used in equation (3.64c) to obtain an expression for 𝐤 ⋅ 𝐫 at the
stationary points.

𝐤 ⋅ 𝐫|
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2 = 𝑟 (𝑘 sin2 𝜃 cos2 𝜑 + 𝑘 sin2 𝜃 sin2 𝜑 + 𝑘 cos2 𝜃) = 𝑘𝑟 (3.68)

Subsequently, a Taylor series expansion to the second order can be used for 𝐤 ⋅ 𝐫 considering that
the first derivatives are zero. This expansion can be expressed as a second-degree polynomial in
equation (3.70a), where equations (3.70b) to (3.70f) show what the coefficients and variables therein
represent.

𝐤 ⋅ 𝐫 ≈ 𝐤 ⋅ 𝐫|
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2 + 1
2

𝜕2(𝐤 ⋅ 𝐫)
𝜕𝑘2𝑥

∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(𝑘𝑥 − 𝑘1)2 + 1

2
𝜕2(𝐤 ⋅ 𝐫)

𝜕𝑘2𝑦
∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(𝑘𝑦 − 𝑘2)2

+ 𝜕2(𝐤 ⋅ 𝐫)
𝜕𝑘𝑥𝜕𝑘𝑦

∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(𝑘𝑥 − 𝑘1)(𝑘𝑦 − 𝑘2)

(3.69)

𝐤 ⋅ 𝐫 ≈ 𝑘𝑟 − ̄𝐴𝜉2 − �̄�𝜅2 − ̄𝐶𝜉𝜅 (3.70a)

̄𝐴 = −1
2

𝜕2(𝐤 ⋅ 𝐫)
𝜕𝑘2𝑥

∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(3.70b) �̄� = −1

2
𝜕2(𝐤 ⋅ 𝐫)

𝜕𝑘2𝑦
∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(3.70c) ̄𝐶 = −1

2
𝜕2(𝐤 ⋅ 𝐫)
𝜕𝑘𝑥𝜕𝑘𝑦

∣
𝑘𝑥=𝑘1

𝑘𝑦=𝑘2
(3.70d)

𝜉 = 𝑘𝑥 − 𝑘1 (3.70e) 𝜅 = 𝑘𝑦 − 𝑘2 (3.70f)

Following, the expressions in equation (3.65) can be used to obtain the second derivatives defined
by ̄𝐴, �̄� and ̄𝐶 in equations (3.71a) to (3.71c), which depend only on the spherical coordinates and the
wavenumber.

̄𝐴 = 𝑟
2𝑘 (1 + sin2 𝜃 cos2 𝜑

cos2 𝜃 ) (3.71a)

�̄� = 𝑟
2𝑘 (1 + sin2 𝜃 sin2 𝜑

cos2 𝜃 ) (3.71b)

̄𝐶 = 𝑟
𝑘
sin2 𝜃
cos2 𝜃 cos𝜑 sin𝜑 (3.71c)

4 ̄𝐴�̄� − ̄𝐶2 = ( 𝑟
𝑘 cos 𝜃)

2
(3.71d)
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Next, equations (3.70e), (3.70f) and (3.71) can be used to evaluate equation (3.59) on its stationary
points. Using the same assumptions as in appendix B, 𝐟 (𝑘𝑥, 𝑘𝑦) can be assumed to be a slowly-varying
function, which effect within the integral can be considered negligible and therefore it can be evaluated
outside. This results in equation (3.72) where 𝐴1,2 is the surface area in the stationary points.

𝐄(𝑥, 𝑦, 𝑧) ≈ 1
4𝜋2 ∬

𝐴1,2

𝐟 (𝑘𝑥 = 𝑘1, 𝑘𝑦 = 𝑘2)𝑒−𝑗(𝑘𝑟− ̄𝐴𝜉2−�̄�𝜅2− ̄𝐶𝜉𝜅)𝑑𝜉𝑑𝜅

𝐄(𝑥, 𝑦, 𝑧) ≈ 1
4𝜋2 𝐟 (𝑘1, 𝑘2)𝑒−𝑗𝑘𝑟 ∬

𝐴1,2

𝑒𝑗( ̄𝐴𝜉2+�̄�𝜅2+ ̄𝐶𝜉𝜅)𝑑𝜉𝑑𝜅
(3.72)

As the stationary phase method is used, the integral in equation (3.72) resembles the one in equa-
tion (B.5). Therefore, this can be approximated as in equation (B.13) considering that this integral does
not have the term 𝑘 in the exponential part because its effect has already been included when evaluat-
ing 𝐤 ⋅ 𝐫. Equation (3.71d) shows that 4 ̄𝐴�̄� > ̄𝐶2 and from equation (3.71a) it can be noted that ̄𝐴 > 0.
This results in 𝛿𝑐 = 1 from equation (B.13), and the final expression for this integral can be obtained in
equation (3.73).

∬
𝐴1,2

𝑒𝑗( ̄𝐴𝜉2+�̄�𝜅2+ ̄𝐶𝜉𝜅)𝑑𝜉𝑑𝜅 = 𝑗2𝜋𝛿𝑐
√4 ̄𝐴�̄� − ̄𝐶2

= 𝑗2𝜋𝑘
𝑟 cos 𝜃 (3.73)

The approximation of the double integral by using the stationary phase method in equation (3.73)
can be used in equation (3.72), resulting in equation (3.74). The only term that still needs to be ex-
pressed in spherical coordinates is 𝐟 (𝑘1, 𝑘2).

𝐄(𝑟, 𝜃, 𝜑) ≈ 𝑗𝑘 cos 𝜃
2𝜋𝑟 𝑒−𝑗𝑘𝑟𝐟 (𝑘1 = 𝑘 sin 𝜃 cos𝜑, 𝑘2 = 𝑘 sin 𝜃 sin𝜑) (3.74)

First, equation (3.63) can be used to obtain an expression of 𝐟 only in terms of 𝑓𝑥 and 𝑓𝑦 as in
equation (3.75a). Next, this is evaluated in 𝑘1 and 𝑘2 by using equation (3.67) to replace 𝑘𝑥 and 𝑘𝑦,
which is shown in equation (3.75b). Finally, equation (3.75b) is transformed from Cartesian to spherical
coordinates in equation (3.75c), considering that the radial electric field amplitude is zero because of
the far-field assumption.

𝐟 = �̂�𝑓𝑥 + �̂�𝑓𝑦 − ̂𝐳𝑓𝑥𝑘𝑥 + 𝑓𝑦𝑘𝑦
𝑘𝑧

(3.75a)

𝐟 (𝑘1, 𝑘2) = �̂�𝑓𝑥 + �̂�𝑓𝑦 − ̂𝐳 sin 𝜃
cos 𝜃 (𝑓𝑥 cos𝜑 + 𝑓𝑦 sin𝜑) (3.75b)

𝐟 (𝑘1, 𝑘2) = ̂𝜽𝑓𝑥 cos𝜑 + 𝑓𝑦 sin𝜑
cos 𝜃 − �̂�(𝑓𝑥 sin𝜑 − 𝑓𝑦 cos𝜑) (3.75c)

Using equation (3.75c) in equation (3.74) results in equation (3.76), which is the final expression
for the electric field in the far-field as a function of its amplitude evaluated in its stationary points. The
amplitude function components, 𝑓𝑥 and 𝑓𝑦, are expressed in equation (3.77) and can be obtained by
using an inverse Fourier transform of equation (3.60) evaluated with equation (3.67) at 𝑧 = 0, and
assuming that the radiation comes only from the antenna aperture.

𝐄(𝑟, 𝜃, 𝜑) ≈ 𝑗𝑘
2𝜋𝑟𝑒−𝑗𝑘𝑟 [ ̂𝜽(𝑓𝑥 cos𝜑 + 𝑓𝑦 sin𝜑) − �̂� cos 𝜃(𝑓𝑥 sin𝜑 − 𝑓𝑦 cos𝜑)] (3.76)

𝑓𝑥(𝑘𝑥 = 𝑘1, 𝑘𝑦 = 𝑘2) = ∬
𝐴

𝐸𝑥(𝑥′, 𝑦′, 𝑧′ = 0)𝑒𝑗𝑘(𝑥′ sin 𝜃 cos𝜑+𝑦′ sin 𝜃 sin𝜑)𝑑𝐴 (3.77a)

𝑓𝑦(𝑘𝑥 = 𝑘1, 𝑘𝑦 = 𝑘2) = ∬
𝐴

𝐸𝑦(𝑥′, 𝑦′, 𝑧′ = 0)𝑒𝑗𝑘(𝑥′ sin 𝜃 cos𝜑+𝑦′ sin 𝜃 sin𝜑)𝑑𝐴 (3.77b)

Basic antenna parameters
To measure the antenna’s performance, some basic parameters are used. First, the radiation pattern
of two-dimensional antennas, such as aperture antennas, can be plotted in the so-called (𝑢, 𝑣)-plane,
which is a conversion of one of the spherical coordinates hemisphere into a planar coordinate system.
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Equation (3.78) shows this coordinate transformation, which can be used to change the spherical co-
ordinate system of parameters in the far-field to one easier to plot and interpret. The resulting plot
when using the (𝑢, 𝑣)-plane will have at its centre the broadside direction, and at the boundaries where√

𝑢2 + 𝑣2 = 1 values at which 𝜃 =90°.
𝑢(𝜃, 𝜑) = sin 𝜃 cos𝜑 (3.78a) 𝑣(𝜃, 𝜑) = sin 𝜃 sin𝜑 (3.78b)

The radiation intensity 𝑈(𝜃, 𝜑) can be defined as the “Power radiated from an antenna per unit
of solid angle” [1, p. 37], which is given by equation (3.79) considering the far-field approximation,
where the radiation propagates as plane waves. As the average Poynting vector that was defined in
equation (3.10) is in Cartesian coordinates, this is now changed to the spherical coordinates reference
frame to keep consistency with the far-field notation.

𝑈(𝜃, 𝜑) = 𝑟2𝑆𝑎𝑣𝑔(𝜃, 𝜑) = 𝑟2

2𝜁 𝐄⊤(𝜃, 𝜑) ⋅ 𝐄∗(𝜃, 𝜑) (3.79)

Next, the radiated power 𝑃𝑟𝑎𝑑 can be obtained by integrating 𝑈(𝜃, 𝜑) over the spherical coordinate
system as shown in equation (3.80). As this project is centred in the application of metasurface anten-
nas, which can be approximated to aperture antennas, only the north hemisphere is considered. This
is because in equation (3.77) it has only been considered that the radiation area is delimited by the
antenna area, making not possible the evaluation of back lobes due to phenomena such as fringing
fields on the boundaries. Therefore, the upper integration boundary of 𝜃 set to 𝜋/2 to evaluate only the
north hemisphere.

𝑃𝑟𝑎𝑑 = ∫
2𝜋

0
∫

𝜋/2

0
𝑈(𝜃, 𝜑) sin 𝜃𝑑𝜃𝑑𝜑 (3.80)

Following, the directivity can be defined as “the ratio of the radiation intensity in a given direction
from the antenna to the radiation intensity averaged over all directions” [1, p. 41]. This is shown in
equation (3.81) which illustrates the radiation intensity divided by the radiated power per solid angle
unit (4𝜋).

𝐷(𝜃, 𝜑) = 4𝜋𝑈(𝜃, 𝜑)
𝑃𝑟𝑎𝑑

(3.81)

Subsequently, it is possible to obtain the directivity for the co-polarized (CP)𝐷𝑐𝑝 and cross-polarized
(XP) 𝐷𝑥𝑝 radiation patterns using the third Ludwig definition of cross polarization [22]. To this end,
consider an aperture antenna with an electric field directed along the x-axis. Then, the CP radiation
will be the one that is also aligned with this same axis, which can be evaluated as in equation (3.82)
where the matrix that multiplies𝐄(𝜃, 𝜑) can be obtained by aligning these vectors with the x- and y-axes,
which represent the CP and XP respectively.

[𝐸𝑐𝑝
𝐸𝑥𝑝

] = [cos𝜑 − sin𝜑
sin𝜑 cos𝜑 ] ⋅ [𝐸𝜃

𝐸𝜑
] (3.82)

Finally, equation (3.82) can be included in the directivity calculation as in equation (3.83) [6, p. 48].

𝐷𝑐𝑝 = 4𝜋|𝐸𝜃 cos𝜑 − 𝐸𝜑 sin𝜑|2
2𝜁𝑃𝑟𝑎𝑑

(3.83a) 𝐷𝑥𝑝 = 4𝜋|𝐸𝜃 sin𝜑 − 𝐸𝜑 sin𝜑|2
2𝜁𝑃𝑟𝑎𝑑

(3.83b)

3.1.4. Floquet series
Floquet series are employed to solve Maxwell equations for periodic structures because they allow to
model just one element of the periodic array and apply periodic boundary conditions to model the rest
of the elements. Furthermore, a decoupled solution set is obtained in terms of fundamental and higher-
order modes. They are a generalization of Fourier series whenever the magnitude and the phase of
a function have different periodicities, which is the case for the analysis of scanning beam arrays [3,
p. 65]. This is extrapolated to work with metasurfaces because both metasurfaces and antenna arrays
are composed by periodic structures that influence the incident electric and magnetic fields.
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Periodic lattice
Floquet series are explained in the book of Arun K. Bhattacharyya for a rectangular grid [3, p. 61-76]
as the one in metasurfaces configurations and, in this subsection, the derivations are based entirely on
its book. First, consider the amplitude function of a single antenna element in a linear antenna array
𝑓(𝑥). Then, the amplitude function of an infinite antenna array for this one-dimensional parameter is
ℎ(𝑥) and is specified in equation (3.84) where 𝑝 is the index of the array element, ̃𝑎 is the amplitude
periodicity and �̃� is a real number that modifies the phase periodicity.

ℎ(𝑥) =
∞

∑
𝑝=−∞

𝑓(𝑥 − 𝑝 ̃𝑎)𝑒−𝑗𝑝�̃� (3.84)

The Fourier transform of ℎ(𝑥) is given by equation (3.85) where 𝑘𝑥 is the wavenumber directed
along 𝑥-direction in radm−1.

ℎ̃(𝑘𝑥) = 1
2𝜋

∞
∑
−∞

𝑒−𝑗𝑝�̃� ∫
∞

−∞
𝑓(𝑥 − 𝑝 ̃𝑎)𝑒𝑗𝑘𝑥𝑥𝑑𝑥 (3.85)

This expression can be simplified by considering 𝑔(𝑥) as the function of this antenna array without
the influence of �̃� (�̃� = 0) and its Fourier transform specified in equation (3.86). In this expression,
the equation (3.86a) includes the statement of the Fourier transform as a function of the infinite sum
of 𝑓(𝑥 − 𝑝 ̃𝑎), and equation (3.86b) shows a solution by using the shift theorem and then replacing the
infinite sum of exponential terms by an infinite sum of Dirac delta functions.

̃𝑔(𝑘𝑥) = 1
2𝜋 ∫

∞

−∞
𝑔(𝑥)𝑒𝑗𝑘𝑥𝑥𝑑𝑥 = 1

2𝜋
∞

∑
𝑝=−∞

∫
∞

−∞
𝑓(𝑥 − 𝑝 ̃𝑎)𝑒𝑗𝑘𝑥𝑥𝑑𝑥 (3.86a)

̃𝑔(𝑘𝑥) = ̃𝑓(𝑘𝑥)
∞

∑
𝑝=−∞

𝑒𝑗𝑝𝑘𝑥�̃� = 2𝜋
̃𝑎

̃𝑓(𝑘𝑥)
∞

∑
−∞

𝛿′ (𝑘𝑥 − 2𝑝𝜋
̃𝑎 ) (3.86b)

This can be applied to ℎ(𝑥) by considering the term �̃� as shown in equation (3.87) where the only
difference between this last expression and the one without �̃� is the term �̃�/ ̃𝑎 which represents the
phase shift applied to the spectral function ℎ̃(𝑘𝑥).

ℎ̃(𝑘𝑥) = ̃𝑓(𝑘𝑥)
∞

∑
−∞

𝑒𝑗𝑝(𝑘𝑥�̃�−�̃�) = 2𝜋
̃𝑎

̃𝑓(𝑘𝑥)
∞

∑
−∞

𝛿′ (𝑘𝑥 − 2𝑝𝜋
̃𝑎 − �̃�

̃𝑎 ) (3.87)

When expanding this last element into its series representation, the Floquet series expansion of
ℎ(𝑥) is obtained, which is shown in equation (3.88) and is the analogous case of the Fourier series
expansion when the phase has a different period as the function’s magnitude.

ℎ(𝑥) = 2𝜋
̃𝑎

∞
∑

𝑝=−∞
̃𝑓 (2𝑝𝜋 + �̃�

̃𝑎 ) 𝑒− 𝑗
�̃� (2𝑝𝜋+�̃�)𝑥 (3.88)

The generalization for a 2D case can be done by considering periods of ̃𝑎 and ̃𝑏 along the 𝑥- and 𝑦-
axes respectively for the magnitude, and 𝑘𝑥0 and 𝑘𝑦0 along 𝑥- and 𝑦- axes respectively that determine
the phase shift (equivalent to �̃�/ ̃𝑎). This is shown in equation (3.89) where 𝑥𝑝 = 𝑝 ̃𝑎 and 𝑦𝑞 = 𝑞 ̃𝑏
represent the discrete points where, for example, an antenna element would be located in a rectangular
grid.

ℎ(𝑥, 𝑦) =
∞

∑
𝑝=−∞

∞
∑

𝑞=−∞
𝑓(𝑥 − 𝑥𝑝, 𝑦 − 𝑦𝑞)𝑒−𝑗𝑘𝑥0𝑥𝑝−𝑗𝑘𝑦0𝑦𝑞 (3.89)

Then, by using an equivalent 2D expression as the one in equation (3.85), equation (3.90) is ob-
tained where 𝑘𝑦 is the wavenumber along the y-axis.

ℎ̃(𝑘𝑥, 𝑘𝑦) = 1
4𝜋2

∞
∑

𝑝=−∞

∞
∑

𝑞=−∞
𝑒−𝑗𝑘𝑥0𝑥𝑝−𝑗𝑘𝑦0𝑦𝑞 ∫

∞

−∞
∫

∞

−∞
𝑓(𝑥 − 𝑥𝑝, 𝑦 − 𝑦𝑞)𝑒𝑗𝑘𝑥𝑥+𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦 (3.90)
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Using the Fourier shift theorem and the Dirac delta equivalence for an infinite sum of periodic func-
tions as in equation (3.87), the expression in equation (3.91) is obtained, showing that “the Fourier
spectrum for ℎ(𝑥, 𝑦) exists only at discrete points in the 𝑘𝑥𝑘𝑦-plane” [3, p. 69]. The spectrum of the dif-
ferent Floquet points defined in equation (3.91) is shown in figure 3.4 as a periodic lattice where each
of the points is a Floquet mode, being the one centred at the origin the fundamental one with 𝑝 = 𝑞 = 0.

ℎ̃(𝑘𝑥, 𝑘𝑦) = ̃𝑓(𝑘𝑥, 𝑘𝑦) ∑
𝑝

∑
𝑞

𝑒𝑗𝑥𝑝(𝑘𝑥−𝑘𝑥0)+𝑗𝑦𝑞(𝑘𝑦−𝑘𝑦0) (3.91a)

ℎ̃(𝑘𝑥, 𝑘𝑦) = 4𝜋2

̃𝑎 ̃𝑏
̃𝑓(𝑘𝑥, 𝑘𝑦) ∑

𝑝
∑

𝑞
𝛿′ (𝑘𝑥 − 𝑘𝑥0 − 2𝑝𝜋

̃𝑎 ) 𝛿′ (𝑘𝑦 − 𝑘𝑦0 − 2𝑞𝜋
̃𝑏

) (3.91b)

Figure 3.4: Floquet spectral points for a two-dimensional array. Figure retrieved from Bhattacharyya [3, p. 70]

To conclude the theoretical part on Floquet series, the series representation of ℎ(𝑥, 𝑦) is given in
equation (3.92) where the elements 𝑘𝑥𝑝 and 𝑘𝑦𝑞 are defined in equation (3.93).

ℎ(𝑥, 𝑦) = 4𝜋2

̃𝑎 ̃𝑏
∑

𝑝
∑

𝑞
̃𝑓(𝑘𝑥𝑝, 𝑘𝑦𝑞)𝑒−𝑗𝑘𝑥𝑝𝑥−𝑗𝑘𝑦𝑞𝑦 (3.92)

𝑘𝑥𝑝 = 𝑘𝑥0 + 2𝑝𝜋
̃𝑎 𝑘𝑦𝑞 = 𝑘𝑦0 + 2𝑞𝜋

̃𝑏
(3.93)

Antenna array application
Floquet series can be applied to an antenna array as follows. Consider a linear array composed by
infinite dipoles oriented parallel to the 𝑦-axis in the 𝑥𝑦-plane at 𝑧 = 0 with surface current excitation 𝐈
defined by equation (3.94).

𝐈 = �̂�
∞

∑
𝑝=−∞

𝑓(𝑥 − 𝑝 ̃𝑎)𝑒−𝑗𝑝�̃� (3.94)

Disregarding any coupling between the dipole antennas, a TM𝑦 field is produced and, using the
Lorentz gauge condition, the current density along the y-axis 𝐽𝑦 is obtained as a function of themagnetic
vector potential 𝐀 = �̂�𝐴𝑦, together with its representation as a function of the current excitation 𝐈 from
equation (3.94) in equation (3.95a). Furthermore, this can also be expressed in terms of Floquet series
by using equation (3.88) in equation (3.95a) as shown in equation (3.95b).

𝛁2𝐴𝑦 + 𝑘2𝐴𝑦 = −𝐽𝑦 = −𝛿′(𝑧)
∞

∑
𝑝=−∞

𝑓(𝑥 − 𝑝 ̃𝑎)𝑒−𝑗𝑝�̃� (3.95a)

𝛁2𝐴𝑦 + 𝑘2𝐴𝑦 = −𝐽𝑦 = −𝛿′(𝑧)2𝜋
̃𝑎

∞
∑

𝑝=−∞
̃𝑓 (2𝑝𝜋 + �̃�

̃𝑎 ) 𝑒− 𝑗
�̃� (2𝑝𝜋+�̃�)𝑥 (3.95b)

After an inspection of the right-hand side of equation (3.95b), a solution of 𝐴𝑦 can have the form of
equation (3.96) where 𝐹𝑝(𝑧) is the 𝑝-solution of 𝐴𝑦.
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𝐴𝑦 =
∞

∑
𝑝=−∞

𝐹𝑝(𝑧)𝑒− 𝑗
�̃� (2𝑝𝜋+�̃�)𝑥 (3.96)

For each term 𝑝 of 𝐹𝑝(𝑧), the solution of equation (3.95b) can have the form specified in equa-
tion (3.97) where the terms 𝑘𝑥𝑝 and 𝑘𝑧𝑝 are specified in equation (3.98).

𝜕2𝐹𝑝(𝑧)
𝜕𝑧2 + 𝑘2

𝑧𝑝𝐹𝑝(𝑧) = −𝛿′(𝑧)2𝜋
̃𝑎

̃𝑓(𝑘𝑥𝑝) (3.97)

𝑘𝑥𝑝 = 2𝑝𝜋 + �̃�
̃𝑎 𝑘2

𝑧𝑝 = 𝑘2 − 𝑘2
𝑥𝑝 (3.98)

A solution of 𝐹𝑝(𝑧) that satisfies equation (3.97) is given in equation (3.99) for positive values of 𝑧.

𝐹𝑝(𝑧) = 𝜋
𝑗 ̃𝑎𝑘𝑧𝑝

̃𝑓(𝑘𝑥𝑝)𝑒−𝑗𝑘𝑧𝑝𝑧 ∀ 𝑧 > 0 (3.99)

Equation (3.99) can be replaced in equation (3.96) to obtain the final expression for the magnetic
vector potential in equation (3.100).

𝐴𝑦 = 𝜋
𝑗 ̃𝑎

∞
∑

𝑝=−∞

̃𝑓(𝑘𝑥𝑝)
𝑘𝑧𝑝

𝑒−𝑗𝑘𝑥𝑝𝑥−𝑗𝑘𝑧𝑝𝑧 ∀ 𝑧 > 0 (3.100)

By using Maxwell’s equations and the definition of magnetic vector potential as in equation (3.101),
the electric field is obtained where 𝐸𝑥 = 𝐸𝑧 = 0 and its 𝑦-component is specified in equation (3.102)
where the time dependency has been added. The exponential term in the summation is the Floquet
modal function, which is associated to a plane wave. The propagation direction of the Floquet mode 𝐤
is shown in equation (3.103).

𝐇 = 𝛁 × (�̂�𝐴𝑦) 𝐄 = 1
𝑗𝜔𝜖0

𝛁 × 𝐇 (3.101)

𝐸𝑦(𝑥, 𝑦, 𝑧, 𝑡) = −𝜋𝜔𝜇0
̃𝑎

∞
∑

𝑝=−∞

̃𝑓(𝑘𝑥𝑝)
𝑘𝑧𝑝

𝑒𝑗𝜔𝑡−𝑗𝑘𝑥𝑝𝑥−𝑗𝑘𝑧𝑝𝑧 ∀ 𝑧 > 0 (3.102)

𝐤(𝑝) = �̂�𝑘𝑥𝑝 + ̂𝐳𝑘𝑧𝑝 (3.103)

For the case in which the surface current varies in two dimensions with the x and y-axes, the deriva-
tion results more complicated, but the result is similar to the one obtained in equation (3.103) and it
is given by equation (3.104) where 𝑘𝑥𝑝𝑞 and 𝑘𝑦𝑝𝑞 have been already defined in equation (3.93) and
𝑘2

𝑧𝑝𝑞 = 𝑘2 − 𝑘2
𝑥𝑝𝑞 − 𝑘2

𝑦𝑝𝑞.

𝐤(𝑝𝑞) = �̂�𝑘𝑥𝑝 + �̂�𝑘𝑦𝑞 + ̂𝐳𝑘𝑧𝑝𝑞 (3.104)

These results show that the direction of propagation of a Floquet mode is determined by the value
of 𝐤(𝑝𝑞). The Floquet mode corresponding to 𝑝 = 0 is defined as the dominant mode because it radiates
in the direction that the array’s antennas are oriented according to their phase shift 𝑘𝑥0 and 𝑘𝑦0. Fur-
thermore, an evanescent Floquet mode arises when 𝑘𝑧𝑝𝑞 is imaginary. That is, when 𝑘2

𝑥𝑝𝑞 + 𝑘2
𝑦𝑝𝑞 > 𝑘2

which produces an evanescent wave that decays along the z-direction.
It was already referred in the surface waves subsection that, whenever there is a transition between

a relatively high refractive media to a low refractive one in angles beyond the critical angles, a surface
wave would appear characterized by an exponential decaying electric field along z-direction as shown
in equation (3.12). This is analogous to having an imaginary 𝑘𝑧𝑝 value in equation (3.102) because the
electric field would also decay in positive z-direction. Therefore, it can be concluded that, if a Floquet
mode that is exponentially decaying in z-direction arises in an antenna array plane with higher refractive
index than the one in free-space, it will produce a surface wave along its plane. This can occur in an
array of microstrip antennas or in a metasurface antenna.
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(a) Metasurface patch antennas example. Source: [40] (b) Metasurface aperture antenna example. Source: [20]

Figure 3.5: Metasurface patch and aperture antennas examples found in literature. At the left, the patch type metasurfaces
are shown where the metal cladding is represented in red, whereas at the right an aperture type metasurface design is

shown with the metal cladding represented in yellow.

3.2. Metasurface antennas
In this section, the needed theory regarding metasurfaces to design an antenna is treated. The basic
principles of metasurfaces are explained, followed by a proposed procedure in [40] to design a meta-
surface antenna starting with an objective current distribution. Next, the unit cell concept is described
together with all the assumptions and the most relevant methods used to model them. Finally, the
modulation technique that uses adiabatic Floquet waves is explained in a practical step-by-step form
to apply it to the antenna design.

3.2.1. Basic principles
Metasurfaces are composed of sub-wavelength elements arranged in a 1D- or 2D-arrays which col-
lectively are capable of changing the phase, amplitude, polarization and leakage parameters of the
propagating radiation throughout the structure. Some examples of applications are polarizers, cloak-
ing devices, lenses and antennas [19]. As this last application is the one that is most useful for this
research project, it will be discussed thoroughly, with particular emphasis in examples with frequencies
between 2GHz and 27GHz.

A metasurface antenna can have either a linear, rectangular or circular shape, composed of smaller
unit cell elements. Examples of circular and rectangular arrays are shown in figure 3.5. The central
feeding system can always be assumed to launch an azimuthally symmetric surface wave [23] which
is either converted into leaky-wave radiation by using patch-type sub-wavelength unit cells, or radiated
by small apertures by using aperture-type sub-wavelength unit cells. Both layouts are shown in fig-
ure 3.6 with the representation of the electric and magnetic currents in the left and right bottom images
respectively. In the first case, a surface wave propagates throughout the structure with a wavefront
that is modulated by the patches on top. In the second, electrical modes propagate within the meta-
surface in a similar manner as in a parallel-plate waveguide for a two-dimensional metasurface, and
as in a microstrip for a one-dimensional metasurface in which the apertures on top scatter the incident
radiation. Properties of these unit cells such as resonance, given by the 𝑄-number, and impedance
are dependent on the orientation of the axes of symmetry of the unit cell with respect to the incident
wave, the shape of the metal patch or aperture on top, the thickness and the electric permittivity of
the substrate laying underneath. Different shapes of unit cell patches or apertures have been tested
by many authors with satisfactory results [35, 9, 43]. As an example, in figure 3.5a, the first two an-
tennas on the right represent a “coffee beam” patch consisting of a circular patch with a “thin slit cut
along their diameter” [36], the one on the left has elliptical patches, and in figure 3.5b the aperture
shape is called complementary electric-inductive-capacitive (cELC) resonator and is mainly found in
aperture-type patches. In the presented work, all the simulations and models have been performed
with patch-type unit cells because the used methods where based on this type of configuration.

Furthermore, it is important to classify the size of the analysis region in terms of wavelength 𝜆 be-
cause, for each different domain size, a different analysis method would be used either for simulations,
impedance/resonance calculations or antenna modulation. A good example is indicated in figure 3.7
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Figure 3.6: Example of metasurface unit cell layout. At the left, the patch-type unit cell is shown with the representation of
its electric currents in a discretised mesh. At the right, the aperture-type unit cell is shown with the representation of its

magnetic currents in a discretised mesh. Source: [24]

Figure 3.7: Metasurface analysis regions separated by sizes. Source: [40]

where the scales from left to right are the macroscopic, mesoscopic, molecular and atomic [40]. The
atomic scale has an approximate size of 𝜆/50 and is regularly used as a basic unit in numerical simu-
lations. That is, numerical simulations often calculate the electric and magnetic fields in each of these
units. Following, the molecular scale (𝜆/10) contains the unit cell, which impedance or resonance val-
ues are obtained through numerical simulations by evaluating the aggregate effects of the electric and
magnetic fields of the contained atomic units. Next, the mesoscopic level (𝜆) has the dimensions of
the wavelength propagating in the structure and is used to modulate the emitted radiation by using the
impedance/resonance values obtained from the molecular level. Results from this level usually come
from antenna modulation, but in more simple cases, like in a one-dimensional antenna, a full-wave sim-
ulation with commercial software can still be made. Finally, the macroscopic level contains the whole
antenna structure and is usually prohibitive for full-wave simulations. Therefore, analytical models have
been made that manage to capture all the relevant phenomena by making assumptions that reduce
the computational efforts when inserted again in a numerical model [30].

3.2.2. Design methodology
A general methodology that synthesizes all the parts of a metasurface antenna design is given in fig-
ure 3.8 [40], which is the first step to answer the first research question of this thesis project. Therefore,
its general steps are followed in chapter 4, but using in some parts alternative methods which reasoning
is explained in that same chapter. The design starts with obtaining the aperture field that would result
in a desired far-field pattern. There are several methods to perform this part, but the authors suggest
to use the approach in [5] which is based on phased arrays antennas. Ideally, the discrete results from
this synthesis process would be interpolated to obtain the electric field distribution in the metasurface.
Other alternative is to use the inverse Fourier transform of the desired far-field pattern to obtain the
field distribution in the aperture, which is documented in [1] specifically for continuous sources. Prior
this procedure, the desired antenna pattern, the excitation frequency and the antenna size are needed.

The next part is the continuous reactance synthesis, which method is explained in section 3.2.4.
This consists on using the electric field in the aperture obtained in the previous step to get a continuous
reactance distribution. Other metasurface antenna parameters must be selected prior this procedure,
such as the dielectric thickness and relative permittivity, as the resulting reactance is the one of the patch
cladding at the metasurface interface. This part is followed by a check of the continuous impedance
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Figure 3.8: Block diagram of the process to design a metasurface antenna. Source: [40]

using a technique based on the MoM and basis functions that drastically reduce the computation effort
[13].

Following, the pixel (or unit cell) modelling is performed which consists on obtaining the reactance
values of each unit cell configuration with a full-wave simulation of each individual term. The reactance
is a function of the patch shape, its size relative to the unit cell, the input frequency, the propagation
direction of the surface wave, and the patch angle in the unit cell. Because a discrete number of
simulations are performed, as a last step an interpolation can be applied to the obtained results to have
a continuous distribution of these values. It is important to note that this process is performed after
the synthesis because the range of reactance values are known, and the patches dimensions can be
easily tuned to enclose the whole range. Section 3.2.3 provides a general description on how this part
is performed.

Next, once the desired impedance distribution is known (section 3.2.4) and the relation of each unit
cell shape with impedance values is also known (section 3.2.3), these two are matched to produce
an antenna layout. As it is difficult that the database contains all the required impedance values, an
optimization process is performed that minimizes the difference between the reactance of the chosen
patch geometry and the one required from the synthesis process.

Finally, a full-wave simulation is performed of the antenna with all of its unit cells in place to verify
that it gives actually the desired pattern. This process can be time-consuming for commercial software,
therefore other methods can be used to approach this problem in an efficient manner. The author
in [40] suggests “grouping Rao-Wilton-Glisson functions on singular value decomposition basis and
incorporating them in an adaptive integral method” [40, p. 3908].

3.2.3. Unit cell modelling
As it was described on previous lines, a metasurface antenna is composed by unit cell elements that
modify the wavefront of propagating waves. This is possible because an impedance or resonance value
can be associated to each unit cell configuration that would either facilitate or hinder the propagation
of surface waves within the structure. It then results necessary to know in detail how design choices
at a macroscopic, mesoscopic, molecular and atomic scales would affect the impedance associated
to these unit cells. Therefore, the objective of this subsection is to describe the available methods to
calculate the reactance of different unit cell configurations (molecular and atomic levels) of the patch-
type metasurface while explaining the assumptions and the theoretical background in which these are
based. It is important to note that all of these methods rely in a big or small measure in software capable
of performing full-wave simulations.

Macroscopic assumptions
Macroscopic assumptions are considered to simplify the analysis of a unit cell structure and to gen-
eralize it to the entire antenna. In most of the literature reviewed, the relative permittivity and the
thickness of the dielectric is constant throughout the whole structure. The impedance, on the other
side, is expressed as a function of the position vector in a two-dimensional metasurface antenna as
𝝆 = 𝜌 cos𝜙�̂� + 𝜌 sin𝜙�̂� where 𝜌 is the position radius, 𝜙 is the azimuthal angle in the antenna, and �̂�, �̂�
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(a) Metasurface unit cell in the xy-plane (b) Metasurface unit cell in the xz-plane

Figure 3.9: Metasurface unit cell reference coordinate system.

are the unit vectors of the Cartesian coordinates within the metasurface antenna. The relation of the
patch shape and orientation with the previously defined constant parameters and the frequency of the
incident wave results in the impedance value for that specific unit cell configuration.

In the context of the holographic principle, which main ideas are carefully explained in the next sub-
section, unit cells are assumed to be arranged to the incident electromagnetic radiation such that the
difference between the scattering from two consecutive unit cells does not variate drastically. If there
would be sudden variations in the shape of consecutive unit cells, additional modes could be gener-
ated that would undermine the antenna performance. As a consequence of this unit cell placement
restriction, small changes in terms of shape and orientation in consecutive unit cells can be observed
in the designs that are based on the holographic principle. Another reason to avoid sudden changes
in consecutive unit cells is because they are sub-wavelength elements which impedance for a specific
configuration is calculated by using periodic boundary conditions in one unit cell to simulate EM radia-
tion incident to an infinite array of unit cells. The obtained impedance value is subsequently associated
to the unit cell characterized by its shape parameters and orientations but, as its impedance is calcu-
lated by simulating an infinite structure, similar conditions must be present in the resulting metasurface
to ensure consistency between measurements and the final design. Therefore, as stated before, the
impedance of a metasurface can be precisely modulated provided that small changes in shape param-
eters in consecutive unit cells are present. One important effect of this choice is that all unit cells will
have the same length and width (𝑑) in both x and y-axes, which results convenient for subsequent parts
to fit in the antenna.

It is often found in literature that the relative permittivity and the thickness (ℎ) is constant throughout
the metasurface. Considering this assumption facilitates the simulation procedure, as two additional
degrees of freedomare limited. However, asmodulation is possible by changing the orientation and size
of the metal patch on top of the unit cell, it could be also possible by changing the dielectric constant and
the thickness of the metasurface, with the consequences of possibly introducing additional modes and
increasing the dispersion of the propagating waves, which are similar to the consequences of varying
the shape parameters of the top metallic patch. The problem of using a metasurface antenna entirely
based on one of these parameters is that the polarization control is limited. An example in literature is
found in one of the first papers dedicated to design a metasurface antenna where the thickness of the
grounded dielectric slab is varied to obtain a beam-shaped radiation pattern [39].

Next, it is assumed that no ohmic losses are present in the unit cell. Therefore, its impedance can be
modelled directly with the unit cell’s reactance value which is equal to the impedance’s imaginary part.
This is an accurate assumption because, even though dielectric losses are dominant in the metasurface
for the analysed frequency range, these are relatively small compared to the propagating wave [34,
p. 1538].

Finally, the coordinate system is defined. Square unit cells are used because these are the most
common in literature and they give a smooth spatial variation between them. Their length and width is
represented by 𝑑 and they are presented in figure 3.9 in both the 𝑥𝑦- and 𝑥𝑧-planes.
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Transmission line representation
Considering the spectral lattice defined in figure 3.4 and the reference system used in unit cell analysis,
the wavevector in terms of Floquet modes propagating through an infinite array of unit cells can be
defined as a variation of equation (3.104) for a surface wave propagating in the xy-plane where 𝐤𝑡
represents the fundamental Floquet mode, as it is shown in equation (3.105).

𝐤𝑞 = 𝐤𝑡 + 2𝜋𝑞𝑥
𝑑 �̂� + 2𝜋𝑞𝑦

𝑑 �̂� ∀ 𝑞𝑥, 𝑞𝑦 = 0, ±1, ±2, ... (3.105)

Then, the average tangential fields on the metasurface at 𝑧 = 0+ are defined using the fundamental
Floquet mode as a phasing term in the spectral plane as shown in equation (3.106) where𝐄𝑡 and𝐇𝑡 are
the average tangential electric and magnetic fields, 𝐞𝑡 and 𝐡𝑡 are the “surface tangential components
of the total electric and magnetic fields on the surface”, 𝝆 = 𝑥�̂� + 𝑦�̂� is the position vector in Cartesian
coordinates, and 𝐤𝑡 = 𝑘𝑥�̂� + 𝑘𝑦�̂� is the transverse wavevector [28, p. 5]. Furthermore, as stated in
section 3.1.4, |𝐤𝑡|2 > 𝑘2 to ensure an exponentially decaying propagation in z-direction and a surface
wave propagating in the xy-plane.

[𝐄𝑡
𝐇𝑡

] = 1
𝑑2 ∫

𝑑/2

−𝑑/2
∫

𝑑/2

−𝑑/2
[𝐞𝑡(𝝆′, 𝐤𝑡)
𝐡𝑡(𝝆′, 𝐤𝑡)

] 𝑒𝑗𝐤𝑡⋅𝝆′𝑑𝑥′𝑑𝑦′ (3.106)

The Floquet modes representation in equation (3.105) can be expressed in a multiple port model.
In theory, this model would consist of an infinite number of Floquet modes which could be represented
by a network with an infinite number of ports. However, due to the thickness of the dielectric substrate,
only the fundamental TM and TE modes are accessible to the ground plane while the other modes are
evanescent, as they decay exponentially from the metasurface interface with free-space [28, p. 7]. This
makes possible to simplify the analysis of an infinite-port network to a two-port network containing only
the fundamental modes.

Furthermore, it is important to make the distinction between isotropic and anisotropic patches for
the metasurface unit cell structure. An isotropic patch is defined as a type of patch with regular shape
such as a circle or square, whereas an anisotropic patch has additional features like slots or grooves
and two orthogonal symmetry axes [28, p. 2].

The isotropic metasurface was treated in detail in the research paper of Maci, Minatti, Casaletti
and Bosiljevac [25] where the unit cell was approximated to a TM polarized transmission line, which is
the dominant polarization at big and medium wavelength sizes. In this definition of the TM mode, the
electric field is aligned with the direction of propagation of the surface wave, and the magnetic field is
perpendicular to it, as shown in figure 3.10b. Regarding the transmission line representation of the unit
cell, a diagram is shown in figure 3.10a where it is illustrated that patches in a metasurface change
the wavefront of a propagating surface wave with wavevector 𝐤𝑡 to go from one point 𝝆1 to 𝝆2 while
emitting leaky radiation. Furthermore, the transmission line model on top is illustrated, where the TM
impedance of the free-space transmission line 𝑍𝑇 𝑀

0 with characteristic impedance 𝜁 ends in a reactive
load 𝑗𝑋(𝝆) where 𝑋(𝝆) is the metasurface reactance.

The plot in figure 3.10a represents the reactance in the metasurface at macroscopic dimensions, as
this varies as a function of the position within the metasurface 𝝆, which is the result of the modulation
procedure. However, in this section the interest lies in the reactance at a molecular level, which is
dependent on both the frequency 𝜔 and on the transverse wavevector 𝐤𝑡 that is incident to the unit cell.
Nevertheless, in the isotropic case, the direction of the wavevector is not important due to the symmetry
of the surface patch, so the transverse wavenumber 𝑘𝜌 = √𝐤⊤

𝑡 ⋅ 𝐤𝑡 is used instead of the wavevector.
Furthermore, the impedance is represented only by a reactance scalar term due to the small periodicity
of the unit cell with respect to the incident surface wave wavelength, as “Larger periodicities may instead
cause transfer of energy to higher order Floquet modes that may be effectively interpreted as a loss”
[27, p. 85]. Also it is assumed that neither the dielectric nor the metal in the metasurface cause ohmic
losses, which is an acceptable assumption for the employed frequency range, and allows to represent
the impedance of the metasurface as a pure reactance.

The transverse resonance condition described in section 3.1.2 is used for the unit cell impedance
𝑗𝑋(𝜔, 𝑘𝜌) and the free-space TM impedance 𝑍𝑇 𝑀

0 (𝜔, 𝑘𝜌). This can be done by considering that the
structure’s impedance matches the one of free-space, so there are only reactances at both sides of
the transmission line and there are no active power sources, as it was shown in figure 3.2. The result
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(a) Transmission line representation of isotropic unit cell. Figure taken
from Maci et.al. [25, p. 1500]

(b) TM and TE polarization in a metasurface antenna for a radially
propagating surface wave

Figure 3.10: Transmission line representation of a metasurface with the polarization definition.

is shown in equation (3.107) where the transverse wavenumber is expressed as a function of the unit
cell reactance.

𝑋(𝜔, 𝑘𝜌) = 𝜁
𝑘√𝑘2𝜌 − 𝑘2 ⟹ 𝑘𝜌 = 𝑘√1 + (𝑋(𝜔, 𝑘𝜌)

𝜁 )
2

(3.107)

The metasurface reactance can be also expressed in terms of average tangential electric and
magnetic fields, which results in the impedance boundary condition. Consider 𝐄𝑡 and 𝐇𝑡 from equa-
tion (3.106). The metasurface impedance can then be expressed in terms of the these values as stated
in equation (3.108) at the interface of the top layer with free-space. This representation is helpful to
illustrate the relation between electric field, magnetic field and the unit cell reactance just derived.

𝐄𝑡|𝑧=0+ = 𝑗𝑋(𝜔, 𝑘𝑡) [ ̂𝐳 × 𝐇𝑡]𝑧=0+ (3.108)

Although the impedance of isotropic metasurfaces looks very simple to calculate, its disadvantage
is that it exhibits a rather high circular cross-polarization level when used for metasurface antennas
[38, p. 1294]. Therefore, many recent papers are devoted to expand on the theory of anisotropic
metasurfaces. Martini, Mencagli and Maci proposed using a representation similar to a two-port model,
and therefore treating the reactance value in equation (3.108) as a matrix with components indicating
the reactance relative to TM (�̂�𝑡�̂�𝑡) and TE (�̂�⊥

𝑡 �̂�⊥
𝑡 ) electromagnetic waves, and the cross-diagonal

reactance term (�̂�𝑡�̂�⊥
𝑡 ) in dyadic form [28].

Figure 3.11a shows this transmission line model with reactance 𝐗 defined as the opaque reactance,
which represents a parallel circuit between the reactance of the patch cladding, also called transparent
reactance, 𝐗𝑠 and the one of the short circuit ground connection 𝐗𝑐𝑐 [28, p. 6]. On the other side,
figure 3.11b shows the equivalent transmission line network model when decomposing the parallel
circuit representation of the opaque reactance into the transparent metasurface reactance and the
short circuit reactance, which contains the effect of the dielectric under the patch cladding, the finite
length and the perfect electric conductor (PEC) at the ground plane.

It can also be assumed that losses are not present in the anisotropic unit cell, making the impedance
purely imaginary (𝐙 = 𝑗𝐗 and 𝐙𝑠 = 𝑗𝐗𝑠). Furthermore, when the metal patch has two symmetry axes,
the reactance matrices 𝐗 and 𝐗𝑠 are real, symmetric, and possess real eigenvalues and orthogonal
eigenvectors [28, p. 6].

As stated before, all reactances in the anisotropic model are composed by matrices representing
dyads. The opaque reactance is shown in equation (3.109) where𝑋𝑒𝑒 is the reactance when the source
is TM polarized, 𝑋ℎℎ is the reactance when the source is TE polarized and 𝑋𝑒ℎ is the cross-diagonal
reactance. That is, when the source is either TE or TM polarized and the scattered wave is TM or TE
polarized respectively. In equation (3.110) the transparent reactance is also expressed in dyad notation,
where the components 𝑒𝑒, ℎℎ and 𝑒ℎ are TM, TE and cross-diagonal reactances respectively.

𝐗(𝜔, 𝐤𝑡) = 𝑋𝑒𝑒�̂�𝑡�̂�𝑡 + 𝑋ℎℎ�̂�⊥
𝑡 �̂�⊥

𝑡 + 𝑋𝑒ℎ(�̂�𝑡�̂�⊥
𝑡 + �̂�⊥

𝑡 �̂�𝑡) (3.109)
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(a) Opaque reactance transmission line model. Figure taken from
Martini et.al. [28, p. 6]

(b) Transparent reactance transmission line model

Figure 3.11: Opaque and transparent reactances for anisotropic metasurfaces. Figures taken from Martini et.al. [28, p. 6]

𝐗𝑠(𝜔, 𝐤𝑡) = 𝑋𝑒𝑒
𝑠 �̂�𝑡�̂�𝑡 + 𝑋ℎℎ

𝑠 �̂�⊥
𝑡 �̂�⊥

𝑡 + 𝑋𝑒ℎ
𝑠 (�̂�𝑡�̂�⊥

𝑡 + �̂�⊥
𝑡 �̂�𝑡) (3.110)

The use of anisotropic patches affects the impedance boundary conditions. For both the TM and
TE polarizations, the cross-diagonal terms from one mode has to be considered in the other. Therefore,
a matrix representation is adopted for the opaque reactance in equation (3.111) with a similar fashion
as in equation (3.108).

𝐄𝑡|𝑧=0+ = 𝑗𝐗(𝜔, 𝐤𝑡) ⋅ [ ̂𝐳 × 𝐇𝑡]𝑧=0+ (3.111)

As stated before, the transparent reactance is interpreted as the reactance of the patch cladding
in the interface between the metasurface and free-space. This causes a discontinuity in the average
tangential magnetic field in the interface of the metasurface with free-space (𝑧 = 0) [24, p. 363] that
can be expressed in terms of the impedance boundary conditions as in equation (3.112).

𝐄𝑡|𝑧=0+ = 𝑗𝐗𝑠(𝜔, 𝐤𝑡) ⋅ [ ̂𝐳 × 𝐇𝑡|𝑧=0+ − ̂𝐳 × 𝐇𝑡|𝑧=0− ] (3.112)

The transmission line impedance of free-space is characterized by −𝑗𝑋𝑇 𝑀
0 and 𝑗𝑋𝑇 𝐸

0 for TM and
TE polarizations respectively, as it was shown in figure 3.11. These components can be analytically
calculated as stated in equation (3.113) and subsequently represented in dyad form as is shown in
equation (3.114).

𝑋𝑇 𝑀
0 (𝜔, 𝐤𝑡) =

𝜁√𝑘2𝜌 − 𝑘2

𝑘 (3.113a)
𝑋𝑇 𝐸

0 (𝜔, 𝐤𝑡) = 𝑘𝜁
√𝑘2𝜌 − 𝑘2

(3.113b)

𝐗0(𝜔, 𝐤𝑡) = −𝑋𝑇 𝑀
0 �̂�𝑡�̂�𝑡 + 𝑋𝑇 𝐸

0 �̂�⊥
𝑡 �̂�⊥

𝑡 (3.114)

The transmission line impedance of the dielectric substrate is characterized by𝑍𝑇 𝑀
1 (𝑘𝜌) and𝑍𝑇 𝐸

1 (𝑘𝜌)
for the TM and TE modes respectively, and are given in equation (3.115). Then, considering the short
circuit at the ground plane caused by the PEC, the short circuit reactance 𝐗𝑐𝑐 can be represented as
in equation (3.116).

𝑍𝑇 𝑀
1 (𝜔, 𝐤𝑡) =

𝜁√𝜖𝑟𝑘2 − 𝑘2𝜌

𝜖𝑟𝑘 (3.115a)
𝑍𝑇 𝐸

1 (𝜔, 𝐤𝑡) = 𝜁𝑘
√𝜖𝑟𝑘2 − 𝑘2𝜌

(3.115b)

𝐗𝑐𝑐(𝜔, 𝐤𝑡) = (𝑍𝑇 𝑀
1 �̂�𝑡�̂�𝑡 + 𝑍𝑇 𝐸

1 �̂�⊥
𝑡 �̂�⊥

𝑡 ) tan(ℎ√𝜖𝑟𝑘2 − 𝑘2𝜌) (3.116)
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This system can be solved by using the same method than in the isotropic case, that is, applying
the transverse resonance condition to the free-space and opaque reactances. As both terms are in
matrix form, the system has to be solved for a zero determinant to obtain the non-trivial solution, shown
in equation (3.117). The term 𝑘𝜌𝑠𝑤 is the wavenumber of the surface wave, which is parallel to the
transverse wavenumber, and is the variable for which this equation system is solved. The surface wave
wavenumber is used to obtain the dispersion curves that compares this parameter with the excitation
frequency to illustrate the effect of the unit cell on the wavefront.

det [𝐗(𝜔, 𝐤𝑡) + 𝐗0(𝜔, 𝐤𝑡)]𝐤𝑡=�̂�𝑡𝑘𝜌𝑠𝑤
= 0

det{[𝐗𝑠(𝜔, 𝐤𝑡)−1 + 𝐗−1
𝑐𝑐 (𝜔, 𝐤𝑡)]

−1 + 𝐗0(𝜔, 𝐤𝑡)}
𝐤𝑡=�̂�𝑡𝑘𝜌𝑠𝑤

= 0
(3.117)

The values of𝐗𝑠 depend on the shape and size of the patch, orientation in the unit cell, the excitation
frequency and the direction at which the surface wave propagates. This last relation of 𝐗𝑠 with the
propagation angle 𝛼𝑠𝑤, determined by �̂�𝑡, can be analytically obtained by applying rotation matrices 𝐑
as stated in the work of Patel and Grbic [43] to the reactance matrix as shown in equation (3.118) such
that the rotation angle is the difference between the desired angle 𝛼𝑠𝑤,2 with the angle at which the
surface wave was oriented in the first place 𝛼𝑠𝑤,1. As 𝐗𝑠 and 𝐗 are symmetric matrices, they can be
diagonalized to find their eigenvalues and eigenvectors, which are orthogonal to each other, and can be
used to decouple equation (3.117). The diagonalized transparent reactance, that is, when the surface
wave is aligned with the eigenvector of the transparent reactance ̂𝐞1𝑠 is shown in equation (3.119) where

̂𝐞2𝑠 is the second eigenvector perpendicular to ̂𝐞1𝑠, and 𝑋1𝑠 and 𝑋1𝑠 are the eigenvalues associated to
the eigenvectors, which represent the TM and TE reactance [28, p. 7]. In this same research paper, it
was stated that on the transition region the eigenvectors coincide with the direction at which the patch
symmetry axes are oriented [28, p. 11].

𝐗′
𝑠 = 𝐑⊤(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) ⋅ 𝐗𝑠 ⋅ 𝐑(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) (3.118a)

𝐑(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) = [cos(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) − sin(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1)
sin(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) cos(𝛼𝑠𝑤,2 − 𝛼𝑠𝑤,1) ] (3.118b)

𝐗𝑠 = ̂𝐞1𝑠 ̂𝐞1𝑠𝑋1𝑠 + ̂𝐞2𝑠 ̂𝐞2𝑠𝑋2𝑠 (3.119)

The excitation frequency plays an important role in determining the practical aspects of a metasur-
face antenna. As the reader may have already noted, the size of the unit cell depends on the frequency
range in which the antenna will be used. Considering an infinite array of unit cells with a given size,
three frequency bands can be identified for the excitation frequency as presented in [28, p. 10-12].

1. Low-frequency band: In this band the eigenvalues of 𝐗𝑠 are approximately equal (𝑋1𝑠 ≈ 𝑋2𝑠 ≈
𝑋) [28, p. 10]. In practical terms, it means that the incident wave perceives an isotropic patch
shape even though they are anisotropic and that the wave is purely TM polarized.

2. Transition band: At these frequencies 𝑋1𝑠 ≠ 𝑋2𝑠, which means that the patch anisotropy starts
playing a role in the impedance matrix. The TM wave has a small TE contribution and the eigen-
vectors are aligned with the patch symmetry axes. However, the decoupled system of equa-
tion (3.117) can still only find a solution for the TM polarization.

3. Dynamic band: At these frequencies TM and TE solutions of equation (3.117) exist, meaning
that a dual-mode regime can arise or that a TM mode can switch to a TE abruptly because of
being close to the resonance condition [28, p. 12].

There is an important link between the size of the unit cell and the propagation of higher-order
Floquet modes. This size is chosen to ensure that only the fundamental Floquet mode propagates in
the infinite unit cell array and the others are evanescent. To achieve this, the unit cell has to fulfil the
condition given in equation (C.9) and which derivation is detailed in appendix C and in the references
therein.

3.2.4. Modulation technique: Adiabatic Floquet analysis
The adiabatic Floquet analysis, as most modulation techniques used for metasurfaces, has its origin
in the holographic principle. The holographic principle can be shortly defined as “... an interference
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pattern using two waves, and then using the interference pattern to scatter one wave to produce the
other” [11, p. 3214]. In the case of a metasurface antenna, this could be understood as the result of an
interference pattern between the electric current of a cylindrically-excited surface wave and the desired
current in its aperture, being the metasurface impedance distribution the result of this interference.
Therefore, to generate this electric field capable of emitting a particular far-field distribution, a surface
wave has to excite the metasurface with the same electric distribution as it was modelled in the first
place. This shows why excitations with surface waves of different frequencies would generate different
radiation distributions in a metasurface with passive unit cells, which explains their dispersive nature.

In the method presented in this subsection, adiabatic Floquet modes are used. This term is referred
as a “locally periodic interpretation of non-uniform boundary conditions” [37, p. 3897]. To explain why
boundary conditions are non-uniform, it is important to first describe the impedance distribution along
the metasurface antenna. This is semi-periodic and excites more than one Floquet mode to allow
propagation and radiation of surface waves, using the same principles as leaky-wave antennas. This
produces a well-defined radiation pattern in the far field caused by the electric field in the aperture,
which can be calculated with the impedance distribution in the antenna. However, to achieve far-field
radiation patterns different to the pencil beam, the impedance within the metasurface antenna must
have different periodicities as a function of both the azimuthal angle and the radial distance to the
centre, which makes the impedance distribution semi-periodic and imposes the need of using non-
uniform boundary conditions.

This method is developed in the publications of Minatti, Caminita, Martini, Sabbadini and Maci [37,
40]. Flat optics refers to a relatively new theoretical framework for “... light-wave manipulations through
a general type of penetrable or impenetrable metasurfaces” [29, p. 155] which consists on changing
the local boundary conditions to obtain a deformation of the surface wave wavefront [29]. In the afore-
mentioned research papers where the modulation method is explained [37, 40], it is stated that the
difference with the previous methods, which adapt the holographic principle to obtain different antenna
radiation patterns [36, 38], is that the metasurface is described in terms of transparent impedance
boundary conditions, which are known to be less dispersive, rather than using opaque impedance
boundary conditions [40, p. 3909]. The modulation methods explained in the consulted research act at
a macroscopic scale, that is at the antenna scale, by interpreting non-uniform boundary conditions of
the propagating surface waves as locally periodic in a mesoscopic scale, which is named as adiabatic
Floquet-wave analysis [37, p. 3896].

As a summary, the synthesis process will be presented in this subsection, which is completely based
on the work of Minatti et. al. [37, 40]. This is summarized in table 3.1 and it will be explained step by
step. The main requirement is to have the desired electric field aperture distribution 𝐄𝐴(𝝆) because the
impedance distribution in the antenna is, according to the holographic principle, a direct consequence
of this parameter.

1. The working frequency 𝑓 , the permittivity of the dielectric substrate 𝜖𝑟 and the thickness of the
dielectric slab ℎ is also a requirement for the following antenna synthesis. The radius 𝑎 is also
a requirement which depends on the required antenna gain. The free-space wavenumber is
determined from the frequency 𝑓 .

2. The surface wave propagation constant 𝛽𝑠𝑤 is set in between the values of 1.3 − 1.4𝑘 across the
whole antenna as a first initial guess.

3. At this step, it is important to introduce the reactance representation across the antenna. This is
first stated, as in the unit cell case, by the transparent impedance boundary condition represen-
tation in equation (3.120) which is the same condition as in equation (3.112).

𝐄𝑡 = 𝑗𝐗𝑠 ⋅ ̂𝐳 × (𝐇𝑡|0+ − 𝐇𝑡|0−) = 𝑗𝐗𝑠 ⋅ 𝐉 (3.120)

The reactance is given by equation (3.121a) in dyad formwhere the unit vectors ̂𝝆 and ̂𝝓 represent
the radial and azimuthal directions respectively. Each of the transparent reactance components
is subsequently defined in equations (3.121b) to (3.121d) where 𝑚𝜌,𝜙 is the modulation index,
𝐾𝑠(𝝆) is a fast-varying phase factor that provides the majority of the interaction with the surface
wave and Φ𝜌,𝜙 is a slow-varying phase factor which impacts the polarization control.

𝐗𝑠 = ̂𝝆 ̂𝝆𝑋𝑠,𝜌𝜌 + ( ̂𝝆 ̂𝝓 + ̂𝝓 ̂𝝆)𝑋𝑠,𝜌𝜙 + ̂𝝓 ̂𝝓𝑋𝑠,𝜙𝜙 (3.121a)



3.2. Metasurface antennas 37

Table 3.1: Synthesis process of metasurface antennas using adiabatic Floquet analysis. Table obtained from Minatti et. al.
[40, p. 3913]

# Input Step Description Output Eq.
Setting the initial values

1 𝑓 , 𝜖𝑟, ℎ Set 𝑘 and the radius 𝑎 of the antenna on the basis of the
operating frequency

𝑘, 𝑎 -

2 𝑘 Set 𝛽𝑠𝑤 randomly in the range 𝛽𝑠𝑤/𝑘 ∈ [1.1, 1.8]. It is easy to
synthetize 𝛽𝑠𝑤 through patches in this range. The suggested

initial value for 𝛽𝑠𝑤 is therefore 1.3 − 1.4𝑘

𝛽𝑠𝑤 -

3 𝛽𝑠𝑤 Find �̄�𝑠,𝜌 �̄�𝑠,𝜌 3.123
4 �̄�𝑠,𝜌 Set the initial value of �̄�𝑠,𝜙 equal to �̄�𝑠,𝜌 �̄�𝑠,𝜙 -
5 - Set 𝜂𝑒𝑓𝑓 = 𝑃𝑟𝑎𝑑/𝑃𝑠𝑤(0) (initial values can be 80%-90%) 𝜂𝑒𝑓𝑓 -
6 Δ𝛽 =

0
Set Δ𝛽 = 0 and find 𝐾𝑠(𝝆) 𝐾𝑠(𝝆) 3.126

7 𝐞𝐴 Evaluate 𝑆(𝝆) 𝑆(𝝆) 3.127
8 𝑆(𝝆) Set 𝛼(𝝆) 𝛼(𝝆) 3.130
9 𝐾𝑠(𝝆) Find (-1) wavenumber as 𝜷(−1) = 𝛽𝑠𝑤 ̂𝝆 − 𝐾∇𝑡𝑠(𝝆) 𝜷(−1) 3.134
10 𝑘, 𝜖𝑟,

ℎ, 𝛽𝑠𝑤,
𝑃𝑠𝑤(0)

Set the initial value of 𝐣(0) = 𝐽 (0)
𝜌 ̂𝝆 + 𝐽 (0)

𝜙 ̂𝝓 equal to 𝐽0 ̂𝝆 𝐣(0) 3.136

Iterative loop
11 𝐄𝐴 Impose 𝐄𝐴 = 𝐄(−1) through its equivalent form and then find the

solution 𝐦 at the iterative step 0
𝐦 3.148

3.149
3.150

12 𝐦 Find an updated value of 𝐽 (0)
𝜙 with the obtained value of 𝐦 to

update the ratio 𝜒𝜙𝜌/𝜒𝜙𝜙 and then 𝐣(0)
𝐽 (0)

𝜙 3.144
3.147

13 𝝌 Solve for det(𝝌) = 0, update the values of 𝛼 and Δ𝛽 𝛼, Δ𝛽 3.146
14 𝛼 Update the value of 𝐽 (0)

𝜌 (and therefore of 𝐣(0)) using 𝛼 found at
step #13 as a preset value, update �̃�(0) and �̃� using 𝛽𝑠𝑤 + Δ𝛽 in

place of 𝛽𝑠𝑤, update the value of 𝐐

𝐽 (0)
𝜌 ,

�̃�(0), �̃�,
𝐐

3.123
3.131
3.154

15 Iterate steps #11-14 until the value of 𝐦 does not change any more

𝑋𝑠,𝜌𝜌 = �̄�𝑠,𝜌[1 + 𝑚𝜌(𝝆) cos(𝐾𝑠(𝜌) + Φ𝜌(𝝆))] (3.121b)

𝑋𝑠,𝜌𝜙 = �̄�𝑠,𝜌𝑚𝜙(𝝆) cos(𝐾𝑠(𝜌) + Φ𝜙(𝝆)) (3.121c)

𝑋𝑠,𝜙𝜙 = �̄�𝑠,𝜙[1 + 𝑚𝜌(𝝆) cos(𝐾𝑠(𝜌) + Φ𝜌(𝝆))] (3.121d)

For convenience, these equations can be arranged in terms of three contributions as shown in
equation (3.122). In these expressions, the reactance matrix 𝐗𝑠 is assumed to have an average
value 𝐗(0)

𝑠 throughout the whole metasurface, whereas the elements 𝐗(∓1)
𝑠 represent the reac-

tance variation as a function of the modulation indices, the slow- and fast-varying parameters.

𝐗𝑠 = 𝐗(0)
𝑠 + 𝐗(−1)

𝑠 + 𝐗(+1)
𝑠 (3.122a) 𝐗(0)

𝑠 = �̄�𝑠,𝜌 ̂𝝆 ̂𝝆 + �̄�𝑠,𝜙 ̂𝝓 ̂𝝓 (3.122b)

𝐗(∓1)
𝑠 = 𝑒±𝑗𝐾𝑠

2 [𝑚𝜌(�̄�𝑠,𝜌 ̂𝝆 ̂𝝆 − �̄�𝑠,𝜙 ̂𝝓 ̂𝝓)𝑒±𝑗Φ𝜌 + 𝑚𝜙�̄�𝑠,𝜌( ̂𝝆 ̂𝝓 + ̂𝝓 ̂𝝆)𝑒±𝑗Φ𝜙 ] (3.122c)

From these equations, the interest in this step is to calculate �̄�𝑠,𝜌. As a first approximation, this
value can be assumed to be the average reactance because the surface wave propagates namely
in radial direction. Then, when using the transverse resonant condition from equation (3.117)
but for an isotropic metasurface and solving for the transparent reactance, equation (3.123) is
obtained as an initial value of �̄�𝑠,𝜌.
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�̄�𝑠,𝜌 = 𝜁 [ 1
√𝛽2𝑠𝑤/𝑘2 − 1

− 𝜖𝑟 cot(𝑘ℎ√𝜖𝑟 − 𝛽2𝑠𝑤/𝑘2)
√𝜖𝑟 − 𝛽2𝑠𝑤/𝑘2 ]

−1

(3.123)

4. The initial value of �̄�𝑠,𝜙 is set to �̄�𝑠,𝜌 also as an initial approximation as the previously calculated
value is associated with the average reactance value.

5. The efficiency 𝜂𝑒𝑓𝑓 , which is equal to the ratio of the power radiated 𝑃𝑟𝑎𝑑 to the power delivered
by the feeder in the form of a surface wave at the antenna origin 𝑃𝑠𝑤(0), is set as a pre-defined
value. Initial estimations can be between 80%-90%.

6. The wavenumber equation throughout the entire metasurface of the zero-mode is given by equa-
tion (3.124) where 𝛽𝑠𝑤 is the previously calculated propagation constant or average wavenumber,
Δ𝛽(𝝆) is its variation throughout the metasurface, and 𝛼(𝝆) is the attenuation parameter, which
accounts for the energy transfer between the 0- and the -1- mode during propagation, being this
last mode related to the leaky-wave radiation. This assumes that the wavefront related to the
0-mode is cylindrical, as the value is assumed to be aligned in ̂𝝆.

𝑘(0)(𝝆) = 𝛽𝑠𝑤 + Δ𝛽(𝝆) − 𝑗𝛼(𝝆) (3.124)

On the other side, the electric field aperture, which is a requirement for the modulation process,
can be expressed as in equation (3.125) where 𝐸0 is the amplitude of the electric field, 𝑙(𝝆) is
the average phasing factor, 𝑈𝐴 is the step function equal to one for values within the antenna
aperture and otherwise, and 𝑒𝜌(𝝆), 𝑒𝜙(𝝆), 𝛾𝜌(𝝆) and 𝛾𝜙(𝝆) are weak variables that determine the
electric field local variations in radial and azimuthal directions.

𝐄𝐴 = 𝐸0𝑒−𝑗𝑘𝑙(𝝆) [𝑒𝜌(𝝆)𝑒𝑗𝛾𝜌(𝝆) ̂𝝆 + 𝑒𝜙(𝝆)𝑒𝑗𝛾𝜙(𝝆) ̂𝝓] 𝑈𝐴 (3.125)

The electric field in the aperture 𝐄𝐴 can be identified with the radiation mode of the transverse
electric field 𝐄(−1). By considering what has been described until now and other equations and
explanations given in [37, 40], an expression for a first estimation of the fast-varying parameter
𝐾𝑠(𝝆) can be obtained as shown in equation (3.126). More details about this derivation are
explained in section 4.2.2.

𝐾𝑠(𝝆) = 𝛽𝑠𝑤 + ∫
𝜌

0
Δ𝛽(𝝆′)𝑑𝜌′ − 𝑘𝑙(𝝆) (3.126)

7. The radiated power density per unit surface of the aperture 𝑆(𝝆) can be approximated by “inter-
preting the local phase in equation (3.125) as the local transverse wavevector” [40, p. 3912] given
by 𝐊𝑡. This approximation is given in equation (3.127), which presents a first estimate for this
parameter.

𝑆(𝝆) ≈ 𝐸2
0

2𝑘𝜁 [𝐾𝑧|𝐞𝐴|2 + |𝐊𝑡 ⋅ 𝐞𝐴|2
𝐾𝑧

] (3.127a)

𝐊𝑡 = 𝑘∇𝑙(𝝆) (3.127b)
𝐞𝐴 = 𝐄𝐴

𝐸0
(3.127c) 𝐾𝑧 = √𝑘2 − 𝐊𝑡 ⋅ 𝐊𝑡 (3.127d)

8. A first estimation of 𝛼(𝝆) can be obtained by using the radiation per unit area obtained in the
previous step and other derivations that are detailed next. These start by first considering the
surface wave power density per unit azimuthal angle 𝑝𝑠𝑤, which is related to the radiation per unit
area shown in equation (3.128) in both integral and differential forms.

𝑝𝑠𝑤(0) − 𝑝𝑠𝑤(𝝆) = ∫
𝜌

0
𝑆(𝝆′)𝜌′𝑑𝜌′ (3.128a) − 𝑑

𝑑𝜌𝑝𝑠𝑤(𝝆) = 𝜌𝑆(𝝆) (3.128b)

Following, it is assumed that “the power radiated by an increment 𝑑𝜌 is proportional to the local
power density through 2𝛼(𝝆)” [40, p. 3917], as the value 2𝛼 is contained in the Poynting vector in
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the electric and magnetic fields. This results ultimately in equation (3.129) also in both differential
and itegral forms.

𝑑
𝑑𝜌𝑝𝑠𝑤(𝝆) = −2𝛼(𝝆)𝑝𝑠𝑤(𝝆) ⟹ 𝑝𝑠𝑤(𝝆) = 𝑝𝑠𝑤(0)𝑒−2 ∫𝜌

0 𝛼(𝝆′)𝑑𝜌′
(3.129)

When solving for 𝛼(𝝆), equation (3.130) is obtained, which is the approximate expression for 𝛼
at this synthesis stage.

𝛼(𝝆) = 𝜋𝜌𝑆(𝝆)𝜂𝑒𝑓𝑓

∫𝑎
0 ∫2𝜋

0 𝑆(𝝆′)𝜌′𝑑𝜌′𝑑𝜙′ − 2𝜋 ∫𝜌
0 𝑆(𝝆′)𝜌′𝑑𝜌′

(3.130)

9. To obtain the propagation constant vector 𝜷 with index −1, the global phase �̃�(0)(𝝆)𝜌, the phase
shift from the origin to the reference point 𝝆, has to be obtained. This is defined as in equa-
tion (3.131).

�̃�(0)(𝝆)𝜌 = ∫
𝜌

0
𝑘(0)(𝝆′)𝑑𝜌′ = 𝛽𝑠𝑤𝜌 + ∫

𝜌

0
[Δ𝛽(𝝆′) − 𝑗𝛼(𝝆′)]𝑑𝜌′ (3.131)

Following, the current density 𝐉(𝑞) can be decomposed in the adiabatic Floquet wave current
basis as stated in equation (3.132). Furthermore, “it has been seen that only three terms of the
expansion are sufficient when only the -1 mode falls in the radiation (visible) region” [40, p. 3910].
Each of these elements can be subsequently expressed as a function of their basis function
𝐣(𝑞) = 𝐽 (𝑞)

𝜌 ̂𝝆 + 𝐽 (𝑞)
𝜙 ̂𝝓 which denotes the slowly-varying part of the 𝑞 current mode, and the Hankel

function of the second kind and first order 𝐻(2)
1 . This is show in equation (3.133), which contains

too the fast-varying part in 𝐾𝑠(𝝆).

𝐉 ≈ 𝐉(0) + 𝐉(−1) + 𝐉(+1) (3.132)

𝐉(𝑞) = 𝐣(𝑞)𝑒−𝑗𝑞𝐾𝑠(𝝆)𝐻(2)
1 (�̃�(0)𝜌) = (𝐽 (𝑞)

𝜌 ̂𝝆 + 𝐽 (𝑞)
𝜙 ̂𝝓)𝑒−𝑗𝑞𝐾𝑠(𝝆)𝐻(2)

1 (�̃�(0)𝜌) 𝑞 = 0, ±1 (3.133)

Then, considering the dependency of the adiabatic current density with the mode number, each
of these modes should have an independent curvilinear wavefront 𝜷(𝑞) when the asymptotic form
of the Hankel function is used, which is valid for distances greater than a wavelength. Then,
𝜷(𝑞) is given by equation (3.134) considering the cylindrical wavefront for the 0-mode and the
dependency on the fast-varying term in the higher-order modes.

𝜷(𝑞) = Re∇𝑡[�̃�(0)𝜌 + 𝑞𝐾𝑠(𝝆)] = (𝛽𝑠𝑤 + Δ𝛽) ̂𝝆 + 𝑞𝐾∇𝑡𝑠(𝝆) (3.134)

It is important to note that, in order to make only the -1 mode radiate, the propagation constants
for the presented modes have to satisfy equation (3.135).

|𝜷(𝑞)| > 𝑘 ∀𝑖 = {0, 1} and |𝜷(−1)| < 𝑘 (3.135)

10. A first estimation of the current fundamental basis is required. As stated before, as the current is
directed in radial positive direction, this initial approximation can be directed parallel to ̂𝝆 which
would yield 𝐣(0) = 𝐽0 ̂𝝆 where 𝐽0 is the current density magnitude associated with a purely propa-
gating TM surface wave. This value can be approximated with equation (3.136) to obtain a first
estimation of this parameter.

𝐽0 =
√√√
⎷

𝑃𝑠𝑤(0)𝜁
�̄�2𝜌𝑘 [ 2𝜖𝑟

ℎ(𝜖𝑟𝑘2 − 𝛽2𝑠𝑤)2 + 1
(𝛽2𝑠𝑤 − 𝑘2)3/2 ]

−1
(3.136)
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11. In this step a first approximation of the modulation vector 𝐦 is obtained. To understand how
this is done, the adiabatic Floquet wave expression of the current density 𝐉 has to be used to
calculate the electric field in terms of the Floquet modes relevant to this problem. To obtain this
expression, the spectral GF 𝐙(𝑞)

𝐺𝐹 of the grounded slab at the local wavevector 𝜷(𝑞) is used as in
equation (3.137).

𝐄𝑡(𝝆) =
1

∑
𝑞=−1

𝐄(𝑞) ≈
1

∑
𝑞=−1

𝐙(𝑞)
𝐺𝐹 ⋅ 𝐉(𝑞) where 𝐄(𝑞) ≈ 𝐙(𝑞)

𝐺𝐹 ⋅ 𝐉(𝑞) (3.137)

The spectral GF is composed by the elements 𝐗0(𝜷(𝑞)) and 𝐗𝑐𝑐(𝜷(𝑞)), which are analogous to
equation (3.113) and to equation (3.115), but for multiple Floquet modes and they do not neces-
sarily have to be aligned with the transverse wavevector. They can be obtained as a function of
𝜷(𝑞) as shown in equation (3.138) which states that the spectral GF represents the metasurface
impedance for each evaluated mode in terms of the one of free-space 𝐗0 and the dielectric slab𝐗𝑐𝑐.

𝐙(𝑞)
𝐺𝐹 = 𝑗𝐗𝐺𝐹 (𝜷(𝑞)) = −𝑗[𝐗−1

0 (𝜷(𝑞)) + 𝐗−1
𝐺 (𝜷(𝑞))]−1 (3.138)

Equations (3.139) and (3.140) show how to calculate these reactance terms, which is the same
as the approach shown in equations (3.113) to (3.116). These dyads are aligned with the trans-
verse wavevector 𝜷(𝑞), while all the previous equations are expressed in cylindrical coordinates.
Therefore, if necessary a matrix rotation should be performed when changing from one reference
frame to the other. It is important to note that, if only the mode -1 is radiating, the term 𝐙(𝑞)

𝐺𝐹 will
be real for 𝑞 = [0, 1] and it will be complex for 𝑞 = −1.

𝐗0(𝐤𝑡) = 𝑋𝑇 𝑀
0 �̂�𝑡�̂�𝑡 + 𝑋𝑇 𝐸

0 �̂�⊥
𝑡 �̂�⊥

𝑡 (3.139)

𝐗𝑐𝑐(𝐤𝑡) = [𝑍𝑇 𝑀
1 �̂�𝑡�̂�𝑡 + 𝑍𝑇 𝐸

1 �̂�⊥
𝑡 �̂�⊥

𝑡 ] tan(ℎ√𝜖𝑟𝑘2 − 𝑘2𝜌) (3.140)

By using equations (3.120), (3.122a), (3.132) and (3.137), equation (3.141) can be obtained,
which relates Green’s function with the transparent boundary conditions for every Floquet mode.

𝐄𝑡(𝝆) =
1

∑
𝑞=−1

𝐙(𝑞)
𝐺𝐹 ⋅ 𝐉(𝑞) = 𝑗(𝐗(0)

𝑠 + 𝐗(−1)
𝑠 + 𝐗(+1)

𝑠 ) ⋅ (𝐉(+1) + 𝐉(0) + 𝐉(−1)) (3.141)

Following, it can be proven that equation (3.141) can be split into equations (3.142) and (3.143).
This can be concluded by equating the fast-varying terms of 𝐗(𝑞)

𝑠 and 𝐉(𝑞). More details about
how this is obtained are found in section 4.2.2. 𝝌 is obtained as shown in equation (3.144) where
the term 𝐳(±1) is detailed in equation (3.145).

𝐉(±1) = 𝑗[𝐙(±1)
𝐺𝐹 − 𝑗𝐗(0)

𝑠 ]−1 ⋅ 𝐗(±1)
𝑠 ⋅ 𝐉(0) (3.142)

𝑗𝝌 ⋅ 𝐉(0) = 0 (3.143)

𝑗𝝌 = (𝐙(0)
𝐺𝐹 − 𝑗𝐗(0)

𝑠 ) + 𝐳(+1) + 𝐳(−1) (3.144)

𝐳(±1) = 𝐗(∓1)
𝑠 ⋅ [𝐙(±1)

𝐺𝐹 − 𝑗𝐗(0)
𝑠 ]−1 ⋅ 𝐗(±1)

𝑠 (3.145)

Equation (3.143) admits non-trivial solutions if and only if a complex value of 𝑘(0) can be found
that satisfies equation (3.146).
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det[𝝌(𝝆)] = 0 (3.146)

Equation (3.146) is the local 𝝆-dependent adiabatic dispersion equation that relates the local
wavenumber with the adiabatic expansion in Floquet modes. By solving the second row in equa-
tion (3.143) for 𝐣(0) = 𝐽 (0)

𝜌 ̂𝝆 + 𝐽 (0)
𝜙 ̂𝝓, equation (3.147) can be obtained. It is important to note that,

for initial modulation values, 𝐽 (0)
𝜌 can be approximated to 𝐽0, which is specified in equation (3.136).

𝐣(0) = 𝐽 (0)
𝜌 ( ̂𝝆 − 𝜒𝜙𝜌

𝜒𝜙𝜙
̂𝝓) (3.147)

Furthermore, when using equations (3.137) and (3.142), equation (3.148) is obtained, which is
also equivalent with the electric field on the aperture in equation (3.125), as the −1 mode is the
only one that radiates.

𝐄(−1)(𝝆) = 𝑗𝐙(−1)
𝐺𝐹 ⋅ [𝐙(−1)

𝐺𝐹 − 𝑗𝐗(0)
𝑠 ]−1 ⋅ 𝐗(−1)

𝑠 ⋅ 𝐣(0)𝐻(2)
1 (�̃�(0)𝜌) = 𝐄𝐴(𝝆) (3.148)

When solving equation (3.148) for the modulation variables, equation (3.149) is obtained, where
the coefficient term �̃� is shown in equation (3.150a), the one that links GF with the average reac-
tance is in equation (3.150b), the components of the modulation vector are in equation (3.150c),
the components of the electric field in the aperture are in equation (3.150d) and the 𝑄-matrix is
shown in equation (3.150e). In this step, as a summary, equation (3.149) is solved for 𝐦 by using
equation (3.150) where, subsequently, all of its elements have been discussed in this step.

𝐦 = �̃�𝐐−1 ⋅ 𝐏 ⋅ 𝐞 (3.149)

�̃� = 2𝐸0
𝑗𝐽 (0)

𝜌 |𝐻(2)
1 (�̃�(0)𝜌)|

(3.150a) 𝐏 = 𝟏 − 𝑗𝐗(0)
𝑠 ⋅ (𝐙(−1)

𝐺𝐹 )−1 (3.150b)

𝐦 = 𝑚𝜌𝑒𝑗Φ𝜌 ̂𝝆 + 𝑚𝜙𝑒𝑗Φ𝜙 ̂𝝓 (3.150c) 𝐞 = 𝑒𝜌𝑒𝑗𝛾𝜌 ̂𝝆 + 𝑒𝜙𝑒𝑗𝛾𝜙 ̂𝝓 (3.150d)

𝐐 = �̄�𝑠,𝜌( ̂𝝆 ̂𝝆 + ̂𝝓 ̂𝝓) − 𝜒𝜌𝜙
𝜒𝜙𝜙

(�̄�𝑠,𝜌 ̂𝝆 ̂𝝓 − �̄�𝑠,𝜙 ̂𝝓 ̂𝝆)
(3.150e)

12. In this step, the new value of 𝐦 is used to obtain the values of 𝝌 by using equation (3.144).
Subsequently, the azimuthal term of equation (3.147) can be obtained, which is equal to 𝐽 (0)

𝜙 as
shown in equation (3.133).

13. Solve equation (3.146) for 𝑘(0) to obtain updated values of Δ𝛽 and 𝛼. This expression is replaced
only in 𝐙(𝑞)

𝐺𝐹 to define 𝝌 as in equation (3.144). The elements 𝐗(±1)
𝑠 are updated after obtaining

𝐦 in equation (3.149).
14. For this step, the Poynting vector has to be revisited. As stated before, the −1 mode is the only

radiating mode. Therefore, the Poynting vector would have the form of equation (3.151).

𝑆(𝝆) = −1
2Re{𝐉(−1)∗ ⋅ 𝐄(−1)} (3.151)

Equation (3.151) can be expressed as equation (3.152) by considering the derivation found in
the work of Minatti et.al. [37, p. 3901] which states that 𝐉(−1)∗ ⋅ 𝐄(−1) = 𝐉(0)∗ ⋅ 𝐳(−1)† ⋅ 𝐉(0) where
† represents the transpose conjugate. Also, the asymptotic approximation of the Hankel function
is used for 𝐉(0).

𝑆(𝝆) = −1
2Re{𝐉(0)∗ ⋅ 𝐳(−1)† ⋅ 𝐉(0)} = −1

2Re{𝐣(0)∗ ⋅ 𝐳(−1)† ⋅ 𝐣(0)} 2𝑒−2 ∫𝜌
0 𝛼(𝝆′)𝑑𝜌′

𝜋𝜌𝛽𝑠𝑤
(3.152)

On the other side, equations (3.128b) and (3.129) can be used to obtain equation (3.153), which
uses the relation between the leakage distribution 𝛼(𝝆) and the radiated power 𝑝𝑠𝑤(0) − 𝑝𝑠𝑤(𝝆).
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𝑆(𝝆) = 2𝛼(𝝆)𝑃𝑠𝑤(0)
2𝜌𝜋 𝑒−2 ∫𝜌

0 𝛼(𝝆′)𝑑𝜌′
(3.153)

Subsequently, equations (3.152) and (3.153) are used to obtain equation (3.154), which can be
used to calculate an updated value of 𝐽 (0)

𝜌 .

𝛼(𝝆) = − |𝐽 (0)
𝜌 |2

𝑃𝑠𝑤(0)𝛽𝑠𝑤
Re{( ̂𝝆 −

𝜒∗
𝜙𝜌

𝜒∗
𝜙𝜙

̂𝝓) ⋅ 𝐳(−1)† ⋅ ( ̂𝝆 − 𝜒𝜙𝜌
𝜒𝜙𝜙

̂𝝓)} (3.154)

Following, the value of �̃�(0) can be updated by using the obtained value of 𝛽𝑠𝑤 + Δ𝛽 in the pre-
vious step and replacing it in equation (3.131), and the value of 𝐾𝑠(𝝆) can be updated by using
equation (3.126).

15. Finally, the obtained value of 𝐦 is evaluated with respect to the one obtained previously. If the
change in this parameter is consider negligible, then the algorithm can be stopped and the final
values of 𝐗𝑠 and 𝐉 retrieved. Otherwise, another run can be performed and this evaluated once
more.

In the iterative part no update of �̄�𝑠,𝜌, �̄�𝑠,𝜙 nor 𝛽𝑠𝑤 has been performed. Therefore, it is suggested
to update them at the end of the last step by calculating their average value in the metasurface as pre-
sented in equation (3.155) using equation (3.121b) and equation (3.121d). Next, 𝛽𝑠𝑤 can be obtained
by solving implicitly equation (3.123) with the updated value of �̄�𝑠,𝜌.

�̄�𝑠,𝜌 = 1
𝐴 ∬

𝐴
𝑋𝑠,𝜌𝜌𝑑𝐴 (3.155a) �̄�𝑠,𝜙 = 1

𝐴 ∬
𝐴

𝑋𝑠,𝜙𝜙𝑑𝐴 (3.155b)

3.3. FDTD simulations
In this section, the principles of FDTD simulations are explained with special focus on the basic con-
cepts. The intention of this section is not to expand the FDTD theory, but to clarify the basics for
electromagnetic modelling of periodic structures. Furthermore, this method is chosen because it is the
one used by the software Lumerical, which is the one made available by TNO for this project. Other
methods may be suitable for this type of analysis and their applicability should be evaluated for each
specific case.

3.3.1. Basic principles
FDTD stands for finite-difference time-domain, which consists namely on discretize the spatial and time
domain to solve Maxwell’s equation for the given problem. Consider Maxwell’s equations in differential
form as stated in equation (3.156) where 𝐃 = 𝜖𝐄 = 𝜖0𝜖𝑟𝐄 and 𝐁 = 𝜇𝐇 = 𝜇0𝜇𝑟𝐇, 𝜇0 and 𝜖0 are the
permeability and permittivity of free-space respectively, and 𝜇𝑟 and 𝜖𝑟 are the relative permeability and
permittivity respectively. Furthermore, 𝜎 is the electric conductivity and 𝜎∗ is the equivalent magnetic
loss [15, p. 68]

𝜕𝐁
𝜕𝑡 = −𝛁 × 𝐄 − 𝜎∗𝐇 (3.156a) 𝜕𝐃

𝜕𝑡 = 𝛁 × 𝐇 − 𝜎𝐄 (3.156b)

𝛁 ⋅ 𝐃 = 0 (3.156c) 𝛁 ⋅ 𝐁 = 0 (3.156d)

After some manipulations on equation (3.156a) and equation (3.156b), the set contained in equa-
tion (3.157) can be derived, which will be used to solve Maxwell’s equations in time domain.

𝜕𝐻𝑥
𝜕𝑡 =− 1

𝜇[𝜕𝐸𝑧
𝜕𝑦 − 𝜕𝐸𝑦

𝜕𝑧 ]− 𝜎∗

𝜇 𝐻𝑥 (3.157a)
𝜕𝐻𝑦
𝜕𝑡 =− 1

𝜇[𝜕𝐸𝑥
𝜕𝑧 − 𝜕𝐸𝑧

𝜕𝑥 ]− 𝜎∗

𝜇 𝐻𝑦 (3.157b)

𝜕𝐻𝑧
𝜕𝑡 =− 1

𝜇[𝜕𝐸𝑦
𝜕𝑥 − 𝜕𝐸𝑥

𝜕𝑦 ]− 𝜎∗

𝜇 𝐻𝑧 (3.157c) 𝜕𝐸𝑥
𝜕𝑡 = 1

𝜖 [𝜕𝐻𝑧
𝜕𝑦 − 𝜕𝐻𝑦

𝜕𝑧 ]− 𝜎
𝜖𝐸𝑥 (3.157d)

𝜕𝐸𝑦
𝜕𝑡 = 1

𝜖 [𝜕𝐻𝑥
𝜕𝑧 − 𝜕𝐻𝑧

𝜕𝑥 ]− 𝜎
𝜖𝐸𝑦 (3.157e)

𝜕𝐸𝑧
𝜕𝑡 = 1

𝜖 [𝜕𝐻𝑦
𝜕𝑥 − 𝜕𝐻𝑥

𝜕𝑦 ]− 𝜎
𝜖𝐸𝑧 (3.157f)
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Figure 3.12: Construction of Yee cell in a three-dimensional mesh. Source: [7, p. 748]

3.3.2. Yee cell
To solve these equations, the space coordinates are discretized in blocks called “Yee cells”, which name
comes from the author’s last name Kane S. Yee, who in 1966 proposed this method as an approach
to solve Maxwell’s equations in the time domain [15]. First, the simulation domain’s length, width and
height is discretized in cubes with size Δ𝑥, Δ𝑦 and Δ𝑧 respectively. Subsequently, consider as an
example the representation of the electric field in this mesh such that its 𝑥, 𝑦, and 𝑧 components are
aligned with the middle of the edges of each cell as described in equation (3.158a), equation (3.158b)
and equation (3.158c). In contrast, the magnetic field components have an offset of (1/2)Δ𝑥, (1/2)Δ𝑦
and (1/2)Δ𝑧 in all its elements as shown in equation (3.158d), equation (3.158e) and equation (3.158f).
In equation (3.158) the values of 𝑝, 𝑞 and 𝑤 are integers such that (Δ𝑥)𝑝, (Δ𝑦)𝑞 and (Δ𝑧)𝑤 are con-
tained in the spatial domain of the simulation region. This method is illustrated in figure 3.12 where the
arrows and the elements of the electric and magnetic fields are directed and positioned as described
in equation (3.158).

𝐸𝑥(𝑥, 𝑦, 𝑧) = 𝐸𝑥 [Δ𝑥 (𝑝 + 1
2) , (Δ𝑦)𝑞, (Δ𝑧)𝑤] (3.158a)

𝐸𝑦(𝑥, 𝑦, 𝑧) = 𝐸𝑦 [(Δ𝑥)𝑝, Δ𝑦 (𝑞 + 1
2) , (Δ𝑧)𝑤] (3.158b)

𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝐸𝑧 [(Δ𝑥)𝑝, (Δ𝑦)𝑞, Δ𝑧 (𝑢 + 1
2)] (3.158c)

𝐻𝑥(𝑥, 𝑦, 𝑧) = 𝐻𝑥 [Δ𝑥(𝑝 + 1), Δ𝑦 (𝑞 + 1
2) , Δ𝑧 (𝑤 + 1

2)] (3.158d)

𝐻𝑦(𝑥, 𝑦, 𝑧) = 𝐻𝑦 [Δ𝑥 (𝑝 + 1
2) , Δ𝑦(𝑞 + 1), Δ𝑧 (𝑤 + 1

2)] (3.158e)

𝐻𝑧(𝑥, 𝑦, 𝑧) = 𝐻𝑧 [Δ𝑥 (𝑝 + 1
2) , Δ𝑦 (𝑞 + 1

2) , Δ𝑧(𝑤 + 1)] (3.158f)

This configuration of the electric and magnetic fields allows to calculate equation (3.157) with more
precision because each of the derivatives with respect to time will be a function of the same value
and of the adjacent terms of the magnetic or electric field that are oriented in orthogonal directions.
Whenever this meshing technique is used, it is necessary to use a second order representation of the
partial derivatives as in equation (3.159) where the origin is assumed to be the bottom left corner in
figure 3.12.

𝜕𝐸𝑦
𝜕𝑧 ∣

(0, Δ𝑦
2 , Δ𝑧

2 )
=

𝐸𝑦 (0, Δ𝑦
2 , Δ𝑧) − 𝐸𝑦 (0, Δ𝑦

2 , 0)
Δ𝑧 + 𝒪(2) (3.159)
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In the time domain, the electric and magnetic fields are never calculated for the same time step
during the simulation. As in the case of the spatial domain, in the time domain there is also an offset
of (Δ𝑡)/2 between the electric and magnetic field, which is used to calculate the time derivatives with
a second order precision. This integration method is known as “leapfrog method” [15, p. 70]. By
considering this approach and the Yee cell arrangement in figure 3.12, the equation needed to calculate
𝐻𝑥 in the time step (𝑡𝑠 + 1

2 )Δ𝑡 following equation (3.157a) is given in equation (3.160). This same
procedure can be followed for the other elements of the electric and magnetic fields to solve integrate
Maxwell’s equations in the time domain.

𝐻 (𝑡𝑠+ 1
2 )Δ𝑡

𝑥 = 1
1

Δ𝑡 + 𝜎∗
2𝜇

⎡⎢
⎣

( 1
Δ𝑡 − 𝜎∗

2𝜇)𝐻 (𝑡𝑠− 1
2 )Δ𝑡

𝑥 −
𝐸𝑡𝑠(Δ𝑡)

𝑧|+ Δ𝑦
2

− 𝐸𝑡𝑠(Δ𝑡)
𝑧|− Δ𝑦

2

𝜇(Δ𝑦) +
𝐸𝑡𝑠(Δ𝑡)

𝑦|+ Δ𝑧
2

− 𝐸𝑡𝑠(Δ𝑡)
𝑧|− Δ𝑧

2

𝜇(Δ𝑧)
⎤⎥
⎦
(3.160)

Finally, it is important to mention the Courant-Friedrich-Levy stability condition, which uses the wave
equation for a plane wave to obtain an upper limit of the time-step and expresses it in terms of the space
grid resolution. This is done by considering the wave velocity in the given media and the needed time
resolution to represent its propagation in a stable manner. This criteria is stated in equation (3.161)
and its derivation can be consulted by the reader in the work of Natalia K. Nikolova [41, p. 19-24].

Δ𝑡 ≤ Δ𝑡𝑚𝑎𝑥 = 1

𝑐√( 1
Δ𝑥 )2 + ( 1

Δ𝑦 )2 + ( 1
Δ𝑧 )2

(3.161)

3.3.3. Boundary conditions
The FDTD method has to perform the simulation in a finite space and time. Therefore, boundary
conditions should be used to limit the simulated space considering that a space and time relatively
large to the mesh size would consume more computational resources. The most important boundary
conditions used for FDTD simulation and particularly for this project are Perfectly Matched Layer (PML)
and periodic boundary conditions.

PML boundary conditions are used to absorb ideally all the incident field in the delimited boundaries.
The idea behind them is to “replace the infinite space that surrounds a finite computational domain” [2,
p. 2] by simulating in the PML boundary a material with anisotropic conductivities that permits transmis-
sion in the PML media from a wave with variable incident angle, and no subsequent field reflection due
to its absorbing properties. This boundary conditions is usually implemented as multiple material layers
to increase gradually the conductivity and minimize reflections [48, p. 186]. In the metasurface unit cell
simulation, PML boundary conditions are used to represent free-space in the positive z-direction.

Periodic boundary conditions are used to simulate large structures that have a repeating pattern
in one or more axes. These structures are approximated to infinite structures along the axis where
the repeating pattern occurs by imposing periodic boundary conditions. This is done because it results
computationally cheaper, as only one small part of the structure is simulated. For example, for the case
of calculating the average reactance of a metasurface unit cell, periodic boundary conditions are set in
x- and y-axes that would simulate an infinite planar structure.

To understand how periodic boundary conditions work, it results helpful to take the example of an
infinite propagating plane wave in 2D with periodic boundary conditions along its y-axis as it is shown
in figure 3.13. In this case, at some point in time, a plane wave is propagating in negative-y direction
close to the simulation region boundary for minimum y-values. Then, in a subsequent point in time,
the contribution of this propagating wave is added to the values close to the boundary with maximum-y
values as it is shown with the electric field in figure 3.13. This summarizes how the periodic boundary
conditions work, which could be easily extrapolated to the 3D metasurface case where the periodic
boundary conditions are in the x- and y-axes.
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Figure 3.13: Electric field when using periodic boundary conditions in a 2D simulation

When using periodic boundary conditions, it is important to be careful with how the source is injected
and what does that imply for the boundary conditions. The most simple case is when a single-frequency
plane wave source is injected such that it propagates perpendicular to the boundary condition’s plane
normal. However, when this plane wave is injected at an angle, a phase shift term has to be applied to
the electric and magnetic field values that go through the periodic boundaries, which is proportional to
the frequency of the injected wave and to the simulation region dimensions.



4
Metasurface antenna design

In this chapter, the whole process of the antenna design is specified and applied to the case of the SAR
antenna presented in chapter 2. The first section is centred in the unit cell database representation,
where a method for obtaining this database is derived. Next, the Adiabatic Floquet analysis explained
in section 3.2.4 is applied to this antenna design. Finally, the antenna layout is obtained by associating
a patch shape from section 4.1 to the required reactance obtained in section 4.2 with an optimization
procedure.

The order proposed for the design methodology in section 3.2.2 is modified. The unit cell database
is obtained before the antenna synthesis because the concepts that imply this first part are easier to
implement than the second. The author notes that this in not optimal for subsequent designs, but it
reduces the implementation effort for the first time this is modelled.

4.1. Unit cell impedance database
As it was presented in section 3.2.3, the reactance database is obtained by performing full-wave simu-
lations of unit cells with periodic boundary conditions. In this section, the motivations for the dimensions
common to all unit cell are explained, together with the method used for calculating their reactance.

4.1.1. Physical properties of the unit cell
As it was explained in section 3.2.1, a metasurface antenna is composed of unit cells arranged in a
square lattice. Each of these unit cells has a patch in the middle with at least two symmetry planes that
can collectively control the propagating surface wave in terms of phase and direction. Furthermore, as
one of the requirements of a metasurface antenna is that there has to be a slight variation between
adjacent patches, only one particular patch shape is used in each antenna design and the patch’s
dimensions and orientations are changed slightly in contiguous unit cells.

Patch shape
The patch shape was the first parameter that was chosen because it determines the shape parameters
that would be varied in the simulations. This was chosen considering the reported performances in
[9], the available literature for verification purposes, and the use of a square mesh to represent the
geometry. The performances are reported in figure 4.1 and are shown for five patch shapes. When
comparing these, it can be concluded directly that the “coffee bean” shape does not offer any additional
benefits compared with the “grain of rice” (or elliptical shape, which is how it is going to be referred from
now on). The four patch shapes remaining highlight individually in any of the remaining performance
parameters or in their combination, thus they will be evaluated in terms of literature available and its
representation in FDTD simulations.

Regarding the presence in literature of the remaining four patches, research articles including how
the reactance changes with the shape of these geometries and excitation frequency are considered.
The elliptical patches are included in two research papers [32, 35], where particularly the first one
treats this geometry in detail, providing information about singularities in their current distribution and
quasi-analytical models. The other patch that has been a subject of research in literature is the slotted
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Figure 4.1: Patch shapes performances in metasurface antennas. Source: [9, p. 4]

patch. There is one research paper that treats the design of a dual circularly polarized broadside beam
antenna that contains information that can be used to compare its calculated reactance, where the
dispersion is only considered for an elliptical patch instead of the circular patch described in figure 4.1
[50, p. 2950], providing more degrees of freedom that can be varied to contain the whole reactance
range that would result from the synthesis process. The other two patch configurations, the double
anchor and the double 𝜋, do not have an impedance database representation in literature as far as the
author knows, so they are discarded from the analysis.

Finally, the geometric representation of the remaining two patches is compared in terms of easiness
to represent them in a square mesh such as in FDTD simulations. In the elliptical patches case, its
representation would certainly not be exact because a square mesh is used to represent the curvature
of these patches. However, by using a fine mesh and high ratio of minor and major axes (𝑎′/𝑏′), these
circular shapes can be reasonably represented. In the slotted patch case, the presence of straight
elements could decrease the simulation accuracy in the case when these are not parallel to the square
mesh used in the simulations. Consequently, there is not a clear favourite between these two geome-
tries after a first round of choices. However, when looking again at figure 4.1, the slotted configuration
is superior to the elliptical configuration only in one parameter and by one level, whereas the elliptical
configuration is superior in two parameters by two levels in each case. Therefore, the elliptical patch
configuration is finally chosen for this metasurface antenna.

Unit cell permittivity and size
The physical parameters common to all the unit cells in the metasurface antenna are the relative per-
mittivity (𝜖𝑟), thickness (ℎ), and length and width, which are assumed to be equal (𝑑). The relative
permittivity is chosen based on the value presented in [32], which is 𝜖𝑟 = 9.8. In contrast with [35], the
value from [32] is based on the material Arlon AR-1000 accredited for space flight [36].

The thickness and length of the unit cell are chosen so that only the fundamental mode propagates
in the periodic unit cell array. Even though the obtained reactance can contain the contribution of higher
order modes and still be correct because full-wave simulations are performed, it has been chosen to
avoid this because it would not be possible to isolate the value of the transparent reactance, which is
needed for the antenna synthesis process and for verification purposes. Themethod used to make sure
that only the fundamental mode propagates in the periodic unit cell array is based on a MoM impedance
representation and is summarized in appendix C [32]. From the chosen value of the relative permittivity
and using equations (C.9) and (C.10), ℎ/𝑑 > 0.123 and 𝜆/𝑑 > 7.65.

Some examples of unit cell initial properties have been retrieved from the available literature in
table 4.1. The first important aspect is that all of them have the same value of 𝜖𝑟, which makes the
analysis easier. Next, the ratio ℎ/𝑑 is much bigger than the minimum required value of 0.123. Having
a higher thickness than the minimum required increases the range of values that the short circuit reac-
tance spans as shown in equation (3.116), but at the expense of having a heavier antenna. Finally, the
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Table 4.1: Literature examples of unit cell physical properties compared with chosen design (grey).

Minatti et.al. Mencagli et.al. Martini et.al. Current
2012 [36] 2015 [32] 2020 [26] design

𝜖𝑟 [-] 9.8 9.8 9.8 9.8
𝑑 [mm] 4 3 1.25 10
ℎ [mm] 1.575 1 0.508 4
𝜆 [mm] 34.86 27.25 11.53 93.69
𝑓 [GHz] 8.6 11 26 3.2
Type Coffee bean Elliptical Elliptical Elliptical
𝜆/𝑑 [-] 8.715 9.083 9.224 9.369
ℎ/𝑑 [-] 0.39 0.33 0.4064 0.4

𝜆/𝑑 value is much closer to the minimum of 7.65 in the three cases because, close to that boundary, is
the point where the patch anisotropy plays a bigger role in the surface wave propagation without the
contribution of the band-gap or higher order modes excitation [28, p. 11]. Being further to the minimum
value of 𝜆/𝑑 means that a smaller patch with respect to the wavelength is used, locating the unit cells
in the low-frequency band where the anisotropic effects are negligible, as explained in section 3.2.3.

For the case of the current metasurface antenna design, 𝑓 =3.2GHz and 𝜆 =93.69mm. To simplify
the units, integer number in the order of millimetres have been chosen due to the longer wavelength,
in contrast with the examples in table 4.1. In order to have comparable units to the examples cited in
table 4.1 and keeping in the boundaries of ℎ/𝑑 and 𝜆/𝑑, the values chosen for 𝑑 and ℎ are 10mm and
4mm respectively, yielding 𝜆/𝑑 = 9.369 and ℎ/𝑑 = 0.4. These are compared with the literature values
in table 4.1.

Varying patch parameters
The parameters that define the elliptical patch configuration in the unit cell are defined in figure 4.2,
where 𝑎′ and 𝑏′ are the major and minor axes respectively, 𝛿 is the angle of the major axis with respect
to the 𝑥-axis, and 𝜓 is the difference between the surface wave propagation angle 𝛼𝑠𝑤 and 𝛿.

As it was explained in section 3.2.4, a cylindrical wave is excited on a metasurface antenna, which
will be incident to all the unit cells in every angle making 𝛼𝑠𝑤 ∈ [0, 2𝜋]. Subsequently, the reactance
response to different values of 𝛼𝑠𝑤 can be analytically obtained as it was shown in equation (3.118)
with rotation matrices. Therefore, the only parameters of the unit cell that are needed to be varied in
this configuration are 𝑎′, 𝑏′ and 𝛿, as the reactance response of 𝛼𝑠𝑤 can be analytically obtained. To
simplify the units of 𝑎′ and 𝑏′, 𝑎′ can be defined as the ratio 𝑎′/𝑑 and 𝑏′ as 𝜂 = 𝑏′/𝑎′. Due to the
definition of minor and major axes and to the symmetry of an elliptical patch, 𝜂 ∈ (0, 1] and 𝛿 ∈ [0, 𝜋],
but the domain of 𝑎′/𝑑 cannot be defined so easily. The patch area cannot go beyond the boundaries of
the unit cell because then, due to the periodic boundary conditions, the part of the ellipse that exceeds
the boundaries would be placed contiguous to the complementary boundary, which makes the patch
non-symmetric. Furthermore, the patch cannot touch other adjacent patch because then they would
be short circuited, which in terms of reactance represents an abrupt change between contiguous unit
cells. For the case in which the patches are either oriented horizontally or vertically, axiom 4.1 can
be adopted as the lower boundary of the maximum value that 𝑎′/𝑑 can take. On the contrary, 𝑎′/𝑑
can be greater if 𝛿 and 𝜂 are varied, reaching the maximum value of 𝑎′/𝑑(𝜂 → 0+, 𝛿 = 𝜋/4) = (

√
2)−.

These are theoretical values that have the limitation of being subjected to an FDTD simulation, but it is
important to recall the dependency of the domain of 𝑎′/𝑑 on 𝛿 and 𝜂.

Axiom 4.1 For elliptical patches, the following condition applies:

𝑎′

𝑑 < 1 ∀ (𝛿 = 𝑚𝜋
2 ∀𝑚 ∈ ℤ)

4.1.2. Scattering method
The method adopted to obtain the impedance database is based on the work of Patel and Grbic [42],
which has been generalized for an anisotropic unit cell with two symmetry axes. In this subsection
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(a) Shape parameters that define the elliptical patch in a unit cell. (b) Angles with respect to the propagating surface wave in the unit cell.

Figure 4.2: Elliptical patch configuration for the unit cell.

the derived method to construct the impedance database is explained, the verification methods and
outcomes are presented, and its results for the antenna design introduced in section 2.2.2 are shown.

Method description
This method consists on using scattering simulations of a plane wave normally incident to a periodic
array of particular unit cell configurations to obtain the electric field’s phase shift, intensity and polar-
ization given in the far-field, which can be used to obtain the input impedance as described by Patel
et.al. [42, p. 2091], which is equivalent to the concept of opaque impedance treated in section 3.2.3.
As explained in section 4.1.1, there are three shape parameters (𝜂, 𝑎′/𝑑 and 𝛿) that define the reac-
tance response of a unit cell, which means that a full database must have every possible combination
of these parameters. However, to simplify the analysis, the full-domain of 𝑎′/𝑑 was not included and it
was considered only up to 1 to avoid unrealistic patch shapes.

The main idea behind this method is to analyse the unit cell response to an incident plane wave with
the same method as the one used to derive the scattering matrix (𝐒) of a two-port network, where the
two ports represent the two different types of polarized surface waves that the metasurface supports
(TM and TE). However, a unit cell array with a ground plane as this type of metasurface does not strictly
have a transmission mode to support the 𝑆12 or 𝑆21 parameters. Therefore, to avoid any confusion, the
scattering matrix is renamed as reflection matrix (𝚪) where the Γ11 and Γ22 are the reflection coefficients
of the TM and TE polarized injected waves respectively, and Γ12 and Γ21 are the reflection coefficients
of the incident TM wave that is reflected as TE and the incident TE wave reflected as TM respectively.
It is important to note that this renaming is figurative and used only to avoid confusions because all
the concepts of the scattering matrix defined in section 3.1.2 can still be applied to this model. As the
metasurface does not have any active elements and higher order modes are avoided, it is modelled
with lossless materials, and the network can be considered reciprocal and lossless which makes 𝚪
symmetric and unitary.

As it was explained in section 3.2.3, the dyadic model of the reactance assumes that in the TMmode
the electric field is aligned with the direction of propagation (�̂�𝑡), whereas in the TE it is perpendicular
but still tangent to the surface (�̂�⊥

𝑡 = �̂�𝑡 × ̂𝐳) [28, p. 7]. This definition of polarization can be applied to
the scattering model by performing two simulations for each shape configuration. The first one defines
the propagation direction �̂�𝑡 parallel to the electric field direction of the injected plane wave (TM mode),
whereas the second one is injected with the electric field aligned with �̂�⊥

𝑡 (TE mode). It is important
to note that the direction of the TM mode is defined arbitrarily in the simulations, but it is translated to
the reactance database by defining 𝛼𝑠𝑤 as the angle between �̂�𝑡 and the 𝑥-axis. Furthermore, rotation
matrices can be applied to change the surface wave angle of incidence to the one that will be evaluated.

One important detail that must not be ignored is that the plane wave is injected at broadside direction,
meaning that there is no transverse wavevector propagating on the metasurface plane. The simulation
then assumes |𝐤𝑡| = 𝑘𝜌 = 0, but the unit vector �̂�𝑡 exists because it is defined with the electric field
polarization. The assumption of making 𝑘𝜌 = 0 is used because it has been noted in some publications
that the spatial dispersion from the patch cladding is negligible in low frequencies and in the transition
region when compared to the one of the dielectric slab, which can be expressed analytically as in
equations (3.115) and (3.116) [12, 33].
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(a) Unit cell xy-plane. The blue arrow is aligned with the patch
major axis.

(b) Unit cell yz-plane. Denser Yee-cell region are located
close to the material interfaces.

(c) Unit cell
perspective view

Figure 4.3: Mesh (orange squares) in the unit cell planes for 𝜂 = 0.8, 𝑎′/𝑑 = 0.9 and 𝛿 = 20∘. The green arrow represents
the magnetic field, the blue arrow the electric field and the purple the propagation direction. The lightblue region indicates
the dielectric substrate slab, the green ellipse the patch and the dark region free-space. The thick orange lines represent
the simulation region, the darker blue lines the periodic boundary conditions, the yellow lines the monitor where the data is

recorded, and the transparent grey area the plane where the plane wave is injected.

For a particular patch shape, the transparent reactance can be retrieved as follows:

1. Create the simulation environment: The program used is Lumerical FDTD, where a plane
wave is injected at broadside direction from the unit cell. Periodic boundary conditions in the
𝑥- and 𝑦-directions are used to simulate an infinite array, which is analogous to the use of the
Floquet theorem described in section 3.1.4. In the negative 𝑧-direction, a PEC layer is placed in
the boundary underneath the lossless dielectric substrate to simulate the ground plane and, in the
positive direction, a PML boundary is used to absorb the incident radiation. Subsequently, the
measurements are taken between the injected plane wave and the metasurface interface with
free-space, at a distance of 𝑧 = 𝜆/2 considering 𝑧 = 0 as the interface of the patch cladding
with free-space, as it was shown in figure 3.9b. This distance is chosen because the evanescent
modes should decay before reaching the measurement monitor so that the far-field projection
considers only visible modes. Subsequently, it was chosen to align the polarization of the TM
mode with the ellipse major axis because then �̂�𝑡 will be aligned to one of the eigenvectors,
which decouples the system in only two transparent reactance terms (𝑋1𝑠 and 𝑋2𝑠) as it was
shown in section 3.2.3. Finally, the mesh is discretized in cubic cells on an FDTD simulation as it
was explained in section 3.3.2. In order to represent with greater accuracy the dynamics of the
electromagnetic phenomena concerning irregularities that interfere with the propagating waves, a
finer mesh is used in the interface between two materials with different electrical properties such
as PEC, dielectric and free-space layers as it is shown in figure 4.3 where these are represented
with orange lines that are denser close to these regions. Particularly, in figure 4.3b it is shown in
the interface of the dielectric with the ground plane (bottom) and with free-space (top).
The patch interface with the dielectric substrate at 𝑧 = 0 has a particular importance because the
currents at the ellipse edges exhibit a singularity when they are approximated with Rao-Wilton-
Gilsson (RWG) functions [32], which occurs due to stronger field variations than in other simulation
regions. Therefore, it would be advantageous in terms of simulation time and precision to use
a finer mesh on the area occupied by the patch and in its vicinity than in other parts of the unit
cell. This is particularly important for patches with relatively low 𝜂 value and with 𝛿 close to 0°, 90°
and 180°, because they occupy a relatively small square area in the unit cell which can be further
refined by making coarser its surroundings. Furthermore, as a large number of simulations are
made, it would be advantageous to have them last a similar time and consume similar computer
resources. These issues made imperative the need of an adaptive algorithm that would keep
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(a) Unit cell mesh for elliptical patch with 𝜂 = 0.95. (b) Unit cell mesh for elliptical patch with 𝜂 = 0.05.

Figure 4.4: Unit cell mesh after implementing the adaptive mesh refinement for two different 𝜂 values, 𝛿 = 10∘ and
𝑎/𝑑 = 0.9. Thick orange lines surround the region where the mesh is refined.

constant the number of Yee cells that surround the patch when the shape parameters are changed,
so that smaller Yee cells are used when the patch has a highly elongated shape extending through
the x- and y-axes, and a coarser mesh is used when the patch occupies a higher square area.
The author notes that this would result in a coarser mesh for patches with low values of 𝜂 which
are oriented close to diagonal angles.
Consider Δ𝑥0 and Δ𝑦0 the reference mesh size in x- and y-directions, corresponding to an initial
refinement of an arbitrary patch shape. Following, themeshed patch circumference hasmaximum
values in the x- and y-planes denoted as 𝑥𝑚𝑎𝑥 and 𝑦𝑚𝑎𝑥 respectively. Furthermore, a number of
Yee cell layers 𝑁𝑌 are added to the area with finer mesh to account for the interface between
the patch and the surrounding dielectric. Equation (4.1) sets equal the number of Yee cells in
both cases, the reference mesh and the desired mesh for a particular patch shape, and can be
solved for Δ𝑥 and Δ𝑦 considering that Δ𝑥 = Δ𝑦 as shown in equation (4.2). An example of
the modelling with this adaptive mesh is shown in figure 4.4, where figure 4.4a shows the mesh
refinement for a patch with 𝜂 = 0.95 and figure 4.4b shows this for 𝜂 = 0.05.

𝑑2

Δ𝑥0 ⋅ Δ𝑦0
= 4𝑥𝑚𝑎𝑥𝑦𝑚𝑎𝑥

Δ𝑥Δ𝑦 + 2𝑁𝑌 ⋅ Δ𝑥 ⋅ 2 ⋅ 𝑦𝑚𝑎𝑥
Δ𝑥Δ𝑦 + 2𝑁𝑌 ⋅ Δ𝑦 ⋅ 2 ⋅ 𝑥𝑚𝑎𝑥

Δ𝑥Δ𝑦 (4.1)

(Δ𝑥, Δ𝑦) = 2Δ𝑥0Δ𝑦0
𝑑2 [𝑁𝑌 (𝑥𝑚𝑎𝑥 + 𝑦𝑚𝑎𝑥) + √𝑁2

𝑌 (𝑥𝑚𝑎𝑥 + 𝑦𝑚𝑎𝑥)2 + 𝑑2

Δ𝑥0Δ𝑦0
𝑥𝑚𝑎𝑥𝑦𝑚𝑎𝑥] (4.2)

2. Obtain the electric field: The electric field components are obtained using a normalized far-
field projection of the incident and scattered waves. In the simulations, the incident wave is
injected in negative z-direction and the scattered field is reflected in positive z-direction. This is not
aligned with the definition of incident and reflected fields, which should be in positive and negative
directions respectively. Therefore, the complex conjugate has to be taken from the obtained
far-field projections. Furthermore, these projections are aligned with the Cartesian coordinate
system, but they are injected with polarization angles 𝛿 that are aligned with the ellipse major
and minor axes. Thus, a rotation matrix has to be applied in the z-axis to the resulting fields
to define them in a 𝛿-rotated coordinate system, defined by 𝑥′, 𝑦′ and 𝑧′ such that the 𝑥′- and
the 𝑦′-axes are aligned with the TM and TE modes respectively. Figure 4.5 shows an schematic
of the simulation set-up with the rotated reference frame where the sub-indices ̄𝑖 and ̄𝑠 are the
incident and reflected fields respectively. Moreover, as the incident field is propagating in negative
direction, the correction is performed by rotating the result by 𝛿, whereas for the reflected field is
corrected by rotating by −𝛿 as shown in equation (4.3).
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(a) Unit cell response with TM polarized wave. (b) Unit cell response with TE polarized wave.

Figure 4.5: Incident and reflected TM and TE plane waves in the rotated unit cell reference system.

𝐄 ̄𝑖,′ = 𝐑(𝛿) ⋅ 𝐄 ̄𝑖 (4.3a) 𝐄 ̄𝑠,′ = 𝐑(−𝛿) ⋅ 𝐄 ̄𝑠 (4.3b)

3. Obtain the reflection matrix: The reflection matrix 𝚪 can be obtained with the ratio of the scat-
tered and the incident electric field far-field projections as shown in equation (4.4). As it was
explained in the previous step, the complex conjugate is obtained to represent an incident and
scattered wave propagating in positive and negative directions respectively. Furthermore, the
cross-diagonal components are multiplied by 𝑒𝑗𝜋 = −1 because the incident field is projected in
the negative direction, whereas the scattered in positive direction. Therefore, these two fields
have to be placed in a common coordinate system, which is done by applying a phasing term of
𝜋 to one of these terms. As it was shown in equation (3.49), in a reciprocal network Γ12 = Γ21.
However, it is important to note that these two values come from two different simulations sub-
jected to different numerical errors. Therefore, even though they should be equal it is expected
that they would be slightly different from each other.

Γ11 = (𝐸 ̄𝑠,𝑥′

𝐸 ̄𝑖,𝑥′
)

∗

𝑇 𝑀
(4.4a) Γ22 = (𝐸 ̄𝑠,𝑦′

𝐸 ̄𝑖,𝑦′
)

∗

𝑇 𝐸
(4.4b)

Γ21 = − (𝐸 ̄𝑠,𝑦′

𝐸 ̄𝑖,𝑥′
)

∗

𝑇 𝑀
(4.4c) Γ12 = − (𝐸 ̄𝑠,𝑥′

𝐸 ̄𝑖,𝑦′
)

∗

𝑇 𝐸
(4.4d)

4. Obtain the impedance matrix: The impedance matrix 𝐙 can be obtained with equation (3.50)
where 𝑍0 represents the impedance of free-space 𝜁, and the reflection matrix is used in place
of the scattering matrix. As the unit cell infinite array can be considered as a reciprocal loss-
less network, it is expected that the resulting matrix 𝐙 would be purely imaginary and symmetric.
Furthermore, the result is a 2 × 2 dyad which diagonal elements are aligned with �̂�𝑡 and �̂�⊥

𝑡 re-
spectively.

5. Obtain the opaque reactance matrix: The opaque reactance matrix can be obtained directly by
taking the imaginary values from 𝐙, such that 𝐙 = 𝑗𝐗. As it was mentioned in the method’s gen-
eral description, the simulations are made such that the magnitude of the transverse wavenumber
is zero. Therefore, the obtained opaque reactance is a function of the polarization direction given
by �̂�, the transverse wavenumber 𝑘𝜌 = 0, and the radial frequency 𝜔 of the free-space plane
wave.

6. Obtain the transparent reactancematrix: The transparent reactancematrix𝐗𝑠 can be obtained
by solving equation (4.5) where 𝐗𝑐𝑐 is the short circuit reactance given by equations (3.115)
and (3.116) for 𝑘𝜌 = 0. Finally, given the fact that the transparent reactance spatial dispersion is
small compared to the short circuit one [12, 33], axiom 4.2 can be formulated, which results in
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the transparent reactance for a particular patch configuration.

𝐗𝑠(𝜔, �̂�𝑡, 𝑘𝜌 = 0) = [𝐗−1(𝜔, �̂�𝑡, 𝑘𝜌 = 0) − 𝐗−1
𝑐𝑐 (𝜔, �̂�𝑡, 𝑘𝜌 = 0)]−1

(4.5)

Axiom 4.2 The transparent reactance spatial dispersion can be assumed negligible within the
low frequency and transition bands.

𝐗𝑠(𝜔, �̂�𝑡, 𝑘𝜌 = 0) ≈ 𝐗𝑠(𝜔, 𝐤𝑡)

7. Iterate for different patch configurations: The same procedure described above is done for
different patch configurations, such as different 𝛿 angle with respect to the unit cell, different
major axis ratio to the unit cell size 𝑎′/𝑑 and different minor axis ratio to the major axis 𝜂. The
author notes that it results easier to perform all simulations in one batch job in a high-performance
computer cluster, and then analyse separately the data in multidimensional matrices with iterative
loops.

Verification
The presented procedure has been verified mainly by using the unit cell design described in the re-
search paper of Mencagli, Martini and Maci [32] specified in table 4.1 (𝜖𝑟 = 9.8, 𝑑 =3mm, ℎ =1mm,
𝑎′/𝑑 = 0.9 and 𝑓 =11GHz), and comparing the obtained reactance with the results of the authors. To
this end, 1,406 simulations have been performed by using 2 injected waves orthogonal polarizations,
19 different 𝜂 values (from 0.05 to 0.95 in steps of 0.05), and 37 different angles (from 0∘ to 180∘ in steps
of 5∘). Other intermediate steps for verification have been done, which will be described next.

The first step was to verify that the simulation set-up was representing accurately the reactance
values (step 1). This was done by simulating the shape of 𝜂 = 0.95 at 𝛿 = 𝛼𝑠𝑤 = 0, so the anisotropy of
the metasurface is still being represented. It was then found that the parameters that influence the most
the resulting reactance were the mesh size in all the three axes. The length of a Yee cell in z-direction
(Δ𝑧0) is given by the accuracy level in the simulation, which is a parameter defined automatically by
the FDTD environment. It has a value from 1 to 8 being 1 the coarser mesh and 8 the finest mesh
“ensuring that numerical dispersion is a negligible contribution to errors in virtually all situations”1. On
the other side, the length of the Yee cell in 𝑥- and 𝑦-directions (Δ𝑥0 and Δ𝑦0) has been changed
manually because, as it directly affects the patch geometry, it has a greater influence on the final result
than Δ𝑧. Furthermore, considering that the patch is being continuously rotated in different simulations,
Δ𝑥0 is kept equal to Δ𝑦0 to keep the same influence under different angles. The resulting transparent
TM reactance is shown in figure 4.6 for different values of mesh refinement as a ratio of the wavelength.
From figure 4.6b it appears that 𝑋(𝑒𝑒)

𝑠 is close to converge when Δ𝑧0 ≈ 𝜆/35, which is the maximum
refinement level suggested by the FDTD software. Therefore, this value was used in the simulation
for the Δ𝑥0 and Δ𝑦0 mesh components. Figure 4.6a shows the refinement for the components in the
elliptical patch plane, which starts to converge at Δ(𝑥0, 𝑦0) ≈ 𝜆/550 and fully converges at Δ(𝑥0, 𝑦0) ≈
𝜆/1,300. Even though the obtained values of Δ𝑥0, Δ𝑦0 and Δ𝑧0 are calculated for only one patch
configuration, these are already a good starting point for the following simulations because they offer
a realistic view of the required mesh for reasonable accurate results. The effect of using this shape
for the mesh calibration will be assessed later in this same subsection. For the following steps, the
accuracy of 8 for Δ𝑧 is used and the accuracy of Δ𝑥0 and Δ𝑦0 will be specified.

The second step is verified, which consisted on obtaining the far-field projections of the electric fields
and then rotate them by 𝛿 and−𝛿 so that the resulting field is aligned with the patch eigenvector directed
towards the major axis. A good method to verify that this step is done correctly is by obtaining the cross-
polarized reflected field for any of the waves injected. If this result is not equal to zero, then the injected
wave is not aligned with the eigenvector or numerical errors are affecting the outcome. Figure 4.7a
shows |𝐸 ̄𝑠,𝑦′ |𝑇 𝑀 , which results exhibit a cross-polarized field being reflected from the unit cell infinite
array at 𝛿 ≠ 𝜋𝑝

4 ∀𝑝 ∈ ℤ. To discard numerical errors, the same combination of different patch shapes
and angles was simulated but with a finer mesh (Δ𝑥0 = Δ𝑦0 = 𝜆/1,300). The results of |𝐸 ̄𝑠,𝑦′ |𝑇 𝑀 are
shown in figure 4.7b, which exhibit a decrease in magnitude of this parameter . However, this is not
proportional to the imposed mesh refinement, which suggests that the major axes of the patches are

1Understanding the non-uniform mesh in FDTD - Ansys optics. https://optics.ansys.com/hc/en-us/articles/
360034382634-Understanding-the-non-uniform-mesh-in-FDTD Retrieved on 06-10-2022.

https://optics.ansys.com/hc/en-us/articles/360034382634-Understanding-the-non-uniform-mesh-in-FDTD
https://optics.ansys.com/hc/en-us/articles/360034382634-Understanding-the-non-uniform-mesh-in-FDTD
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Figure 4.6: Mesh size refinement for 𝑎′/𝑑 = 0.9, 𝜂 = 0.95, 𝛼𝑠𝑤 = 𝛿 = 0∘, 𝜖𝑟 = 9.8, 𝑑 =3mm, ℎ =1mm, and 𝑓 =11GHz.
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(a) |𝐸�̄�,𝑦′ |𝑇𝑀 results for mesh with (Δ𝑥0, Δ𝑦0) = 𝜆/550.
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(b) |𝐸�̄�,𝑦′ |𝑇𝑀 results for mesh with (Δ𝑥0, Δ𝑦0) = 𝜆/1,300.

Figure 4.7: Reflected far-field projection of cross-polarized electric field component for different mesh refinements.

actually not aligned with the eigenvectors. Even though themagnitudes suggest a small degree of cross
polarization (2 % at most), these appear in regular periods for 𝛿 and they are maximum when 𝜂 is close
to the unity. One possible cause of this misalignment is the unit cell square lattice. It was reported in [32]
that the square lattice clearly affects the surface wave wavenumber in the dynamic band. Therefore, it is
possible that its influence is visible in the transition band too, specially in smaller quantities. Figures 4.8a
and 4.8b show the case where the wavevectors are aligned with the symmetry axes of the square lattice
and of the patch at 𝛿 = 0∘ and 𝛿 = 45∘ respectively. In both cases, the wavefront perceives a clear period
on the infinite unit cell array in both its propagation and perpendicular direction. However, in figures 4.8c
and 4.8d this is not the case, where the wavefront perceives an asymmetry due to the misalignment
of the patch and the square lattice, which could cause the appearance of a cross-polarized reflected
component as it was seen in figure 4.6.

The third step, which consists on obtaining the reflection matrix, can be verified by looking to its prop-
erties in a reciprocal and lossless network. The reciprocal network condition given in equation (3.49),
which can be summarized to Γ12 = Γ21, is plotted in figure 4.9a for all the analysed unit cell configura-
tions. It is worth noting that Γ12 and Γ21 were calculated in different simulations, each of them subjected
to the same degree of numerical errors. Therefore, when both elements are subtracted, it is expected
that the outcome would be subjected to the same degree of numerical error. These are show in relative
terms in figure 4.9b suggesting that, even though there are numerical errors in the simulation making
the network not perfectly reciprocal, these represent at most 5% of the cross-polarized reflection coef-
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(a) Surface wave in periodic unit cell array for 𝛿 = 0∘. (b) Surface wave in periodic unit cell array for 𝛿 = 45∘.

(c) Surface wave in periodic unit cell array for 𝛿 = 30∘. (d) Surface wave in periodic unit cell array for 𝛿 = 60∘.

Figure 4.8: Incident surface wave for different 𝛿 patch orientations. The smaller angle between the symmetric axis of the
square lattice and the patch is shown when this is different than zero.
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(a) 𝚪 = 𝚪⊤ in absolute terms.
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(b) 𝚪 = 𝚪⊤ in relative terms.

Figure 4.9: Evaluation of the reciprocal network condition (Γ12 − Γ21 = 0) for (Δ𝑥0, Δ𝑦0) = 𝜆/1,300. Thick red lines in
figure 4.9b represent 𝛿-values at which the cross-polarization is close to zero.
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ficient, which was regarded as an acceptable error to continue with the design. This further confirms
that there is cross-polarization when the wave is injected with its electric field parallel to the major and
minor axes of the unit cell because both Γ12 and Γ21 values are consistent with each other.

The condition for a lossless network given in equation (3.57) (𝚪⊤ ⋅ 𝚪∗ = 𝐔) can be verified by
subtracting the right side to the left side of equation (3.57) to see how close they are from zero. By
expressing the results in terms of the components of 𝚪, equation (4.6) is obtained and plotted in equa-
tion (4.6) where the component 2,1 is not plotted due to redundancy with component 1,2 because they
are the complex conjugate of each other. The fact that figures 4.10a and 4.10b are much smaller than
figure 4.10c is evident when equation (4.7) is analysed, which expresses each component of equa-
tion (4.6) in terms of the simulation output. Equations (4.7a) and (4.7b) are obtained from just one
simulation each (either TM or TE respectively), and as the far-field components are already normal-
ized, the ratio between the scattered and incident fields is almost one. The difference, which is a term
of nine orders of magnitude smaller than 1 in the worst cases, is caused by the reflection on the PML
of the cross-polarized scattered term that is incident to the monitor in negative direction. On the other
side, equation (4.7c) depends on both TM and TE simulations, which makes the error term closely pro-
portional to the one of the far-field projections of each simulation, which was already discussed when
figure 4.9 was examined.

𝚪⊤ ⋅ 𝚪∗ − 𝐔 = [|Γ11|2 + |Γ21|2 − 1 Γ∗
12Γ11 + Γ21Γ∗

22
Γ∗

21Γ22 + Γ12Γ∗
11 |Γ22|2 + |Γ12|2 − 1] = 𝟎 (4.6)

|Γ11|2 + |Γ21|2 = ( |𝐄 ̄𝑠,′ |
|𝐸 ̄𝑖,𝑥′ |)

2

𝑇 𝑀
(4.7a) |Γ22|2 + |Γ12|2 = ( |𝐄 ̄𝑠,′ |

|𝐸 ̄𝑖,𝑦′ |)
2

𝑇 𝐸
(4.7b)

Γ∗
12Γ11 + Γ21Γ∗

22 = (Γ∗
21Γ22 + Γ12Γ∗

11)∗ = −(𝐸 ̄𝑠,𝑥′)𝑇 𝑀(𝐸 ̄𝑠,𝑥′)∗
𝑇 𝐸 + (𝐸 ̄𝑠,𝑦′)𝑇 𝑀(𝐸 ̄𝑠,𝑦′)∗

𝑇 𝐸
(𝐸 ̄𝑖,𝑥′)𝑇 𝑀(𝐸 ̄𝑖,𝑦′)𝑇 𝐸

(4.7c)

To conclude the verification of the third step, the deviations from the lossless and reciprocal net-
works, even though they exist, they are comparatively small with respect to the ideal conditions and ap-
pear mostly due to numerical errors from the simulations. This has been shown in figures 4.9 and 4.10
where the difference with the ideal case is at most in the order of 10−3.

The effects of these numerical errors can be easily evaluated with the impedance matrix, which
is the fourth implementation step. This can be calculated directly by using equation (3.50) as it was
explained when this step was described. The results for the example case are shown in figure 4.11
where the resistance matrices obtained from the simulations are illustrated for each patch configuration,
which ideally should be zero because this is a lossless structure. These results, which are in line with
the ones shown previously in figures 4.9 and 4.10, quantify the impact of the simulation errors in terms
of losses that the infinite array would have. As in figures 4.7, 4.9 and 4.10, the biggest deviations are
focused on shapes around 𝜂 ≈ 0.8 and at angles multiples of 𝛿 = 45∘. This can be attributed to the
fact the cross-polarization is maximum at those angles (figure 4.7), which increases the differences
between Γ12 and Γ21, and therefore affects the lossless and reciprocal network conditions.

In order to assess if the magnitude of the obtained resistance could have any important conse-
quence in the rest of the model, figure 4.11 has to be compared against the reactance 𝐗(𝜔, �̂�𝑡, 𝑘𝜌 = 0)
which is obtained from the fifth step of the derived method to obtain the transparent reactance database.
This consists on obtaining the imaginary term from 𝐙 and is plotted in figure 4.12. Apparently, the influ-
ence of the resistance in the impedance magnitude can be regarded as small, certainly in the terms 𝑍11
and 𝑍22 where is at least five orders of magnitude smaller. In the case of the cross-diagonal terms, the
ratio of reactance against the impedance magnitude is shown in figure 4.13, where it is clear that this
is at most 3% and therefore can be considered to be small. Given the fact that the obtained maximum
values of 𝑅12 are five times greater than 𝑅21, the ratio of this value against the impedance magnitude
would be greater for the first case, as the reactance does not vary much between both cross-diagonal
components, which is illustrated in figure 4.12d.

The sixth and last step consists on obtaining the transparent reactance 𝐗𝑠(𝜔, 𝐤𝑡) from 𝐗(𝜔, �̂�𝑡, 𝑘𝜌 =
0), which spatial dispersion is assumed negligible in the transition band as it was stated in axiom 4.2.
The reduced expression of the short circuit reactance for 𝑘𝜌 = 0 is shown in equation (4.8), which
has been derived from equation (3.116), and is used in equation (4.5) to accelerate calculations. The
final transparent reactance database is shown in figure 4.14 where each of the transparent reactance
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(a) 1,1 matrix component for lossless condition.
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(b) 2,2 matrix component for lossless condition.
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(c) 1,2 matrix component for lossless condition.

Figure 4.10: Conditions for lossless network obtained from equation (4.6) for (Δ𝑥0, Δ𝑦0) = 𝜆/1,300.

components is shown, together with the relative error of the cross-diagonal components, which again
does not go beyond 3.5%. One important remark, and consideration to further verify the results, is that
in figure 4.14b appears to be a singularity at low values of 𝜂. It results particularly useful to analyse
this with circuit theory. Consider figure 3.11 where the equivalent circuit model of the metasurface
unit cell was presented. As the transparent reactance and the grounded slab are represented with a
parallel circuit model, the fact that the first one has a singularity is equivalent to state that is an open
circuit, which means that this term would be invisible for the impinging current. As this occurs for the
TE case, where the electric field is oriented parallel to the patch minor axis, and it has been assumed
in axiom 4.2 that the surface wave propagates in that direction, then this can be interpreted as the case
in which a current is propagating perpendicular to metal cables separated by the unit cell size 𝑑. This is
due to the fact that elliptical patches are becoming thinner, therefore the distance between them in the
direction of their major axis decreases and the one in the direction of their minor axis increases. As a
consequence, the surface wave tends to encounter an open circuit in the TE mode, which means that
the only contribution to the opaque reactance would be the one of the short circuit reactance.

𝐗𝑐𝑐(𝜔, �̂�𝑡, 𝑘𝜌 = 0) = 𝜁√𝜖𝑟
tan (𝑘ℎ√𝜖𝑟) (�̂�𝑡�̂�𝑡 + �̂�⊥

𝑡 �̂�⊥
𝑡 ) (4.8)

As a further verification, the obtained results can be compared with the research article of Mencagli
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(a) Simulated resistance 𝑅𝑒(𝑍11).
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(b) Simulated resistance 𝑅𝑒(𝑍12).
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(c) Simulated resistance 𝑅𝑒(𝑍21).
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(d) Simulated resistance 𝑅𝑒(𝑍22).

Figure 4.11: Obtained resistance matrix components 𝑅𝑒(𝐙) (or 𝐑) after processing the reflection matrix 𝚪 for an incident
surface wave with 𝑘𝜌 = 0 and the simulation mesh (Δ𝑥0, Δ𝑦0) = 𝜆/1,300.

et.al. [32], which initial unit cell parameters were obtained from. The first task was to reproduce
the equivalent impenetrable metasurface reactance 𝑋𝑠,𝑒𝑞, which is equivalent to the reactance in the
isotropic case represented by equation (3.107). This is shown in figure 4.15b for a surface wave angle
of 𝛼𝑠𝑤 = 0 and varying patch orientations 𝛿, expressing this in terms of 𝜓. Therefore, the first step
was to align the obtained results with this propagation angle by rotating the transparent reactance ma-
trix by −𝛿 degrees as it was explained in equation (3.118). Next, the surface wave wavenumber 𝑘𝜌𝑠𝑤
is obtained by solving the transverse resonant equation from equation (3.117) for a coupled system,
since the cross-diagonal terms in 𝐗𝑠 do exist. Following, the equivalent impenetrable metasurface
reactance 𝑋𝑠,𝑒𝑞 is calculated and linearly interpolated in figure 4.15a which visually resembles the one
in figure 4.15b.

The next task consisted on verify the robustness of axiom 4.2 for broadband simulations. To this
end, the simulations were performed for a broad range of frequencies keeping a similar amount of
computation effort, which is an advantage of time-domain simulation methods presented in section 3.3
compared to frequency-domain methods. As it was mentioned before, it is expected that the approxi-
mations done with the derived model would work in the low frequency and transition bands. Figure 4.16
shows these results for the cases in which 𝛿 = 0∘ and 𝛼𝑠𝑤 varies (figures 4.16a to 4.16c), and in which
𝛼𝑠𝑤 = 0 and 𝛿 varies (figure 4.16d). It is important to note that figures 4.16a to 4.16c are the results of
two simulations (TE and TM modes for a given shape and orientation), and for each plot the resulting
transparent reactance value 𝐗𝑠 has been rotated according to the required 𝛼𝑠𝑤 using equation (3.118),
from which the 𝑘𝜌𝑠𝑤 value was finally obtained by solving equation (3.117) and plotted for different
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(a) Simulated reactance 𝑋11(𝜔, �̂�𝑡, 𝑘𝜌 = 0).
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(b) Simulated reactance 𝑋22(𝜔, �̂�𝑡, 𝑘𝜌 = 0).
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(c) Simulated reactance 𝑋12(𝜔, �̂�𝑡, 𝑘𝜌 = 0).
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(d) Relative reactance difference of 𝑋21(𝜔, �̂�𝑡, 𝑘𝜌 = 0) with
𝑋12(𝜔, �̂�𝑡, 𝑘𝜌 = 0).

Figure 4.12: Opaque reactance matrix components considering 𝑘𝜌 = 0 obtained from the simulation mesh
(Δ𝑥0, Δ𝑦0) = 𝜆/1,300.

0.2 0.4 0.6 0.8

2 [-]

0

50

100

150

/
 [d

eg
]

0

0.5

1

1.5

2

2.5

3

- - -R 12 jZ
12

j- - -[%
]

(a) Relative resistance 𝑅12 in terms of the impedance magnitude
|𝑍12|.
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(b) Relative resistance 𝑅21 in terms of the impedance magnitude |𝑍21|

Figure 4.13: Cross-diagonal resistance evaluated in terms of the magnitude of the cross-diagonal impedance for the
simulation mesh (Δ𝑥0, Δ𝑦0) = 𝜆/1,300.
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(a) Transparent reactance 𝑋(𝑒𝑒)
𝑠 .
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(b) Transparent reactance 𝑋(ℎℎ)
𝑠 .
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(c) Transparent reactance 𝑋(𝑒ℎ)
𝑠 .
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(d) Relative difference between 𝑋(ℎ𝑒)
𝑠 and 𝑋(𝑒ℎ)

𝑠 .

Figure 4.14: Obtained transparent reactance database 𝐗𝑠 from the simulation mesh (Δ𝑥0, Δ𝑦0) = 𝜆/1,300. The values
for 𝜂 = 1 have been added.
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(a) Linearly interpolated 𝑋𝑠,𝑒𝑞 obtained from simulations. (b) 𝑋𝑠,𝑒𝑞 from the research paper of Mencagli et.al. [32, p. 3000].

Figure 4.15: Equivalent impenetrable metasurface reactance linearly interpolated from simulations compared to the
verification plot. The 𝜓 angle is used in the vertical axis keeping 𝛼𝑠𝑤 = 0 and 𝜓 = 𝛿.
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frequencies. When equation (3.117) is solved at high frequencies, a second solution may arise that
represents the TE solution which indicates that, for a given excitation frequency, two surface waves
can propagate with two different wavenumbers and different polarizations, leading to a dual mode
regime. These two solutions appear for 𝛼𝑠𝑤 = 70∘ and 𝛼𝑠𝑤 = 90∘, and are plotted in figures 4.16b
and 4.16c. However, when considering the inaccuracies at higher frequencies due to the role of higher
order Floquet modes, which are not considered in the presented model, these results may give only a
rough approximation. This is specially visible at frequencies beyond 17GHz on figures 4.16a and 4.16d,
where a clear deviation from the verification example arises.
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(a) Dispersion curve for 𝛼𝑠𝑤 = 0∘.
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(b) Dispersion curve for 𝛼𝑠𝑤 = 70∘.
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(c) Dispersion curve for 𝛼𝑠𝑤 = 90∘.
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(d) Dispersion curve for different 𝛿 angles. The inset shows a close-up to the low
frequency and transition bands.

Figure 4.16: Dispersion curves for different values of 𝛼𝑠𝑤 keeping 𝛿 = 0∘ (top row), and for different values of 𝛿 keeping
𝛼𝑠𝑤 = 0 (bottom plot). For all cases 𝜂 = 0.5. Example data used from Mencagli et.al. [32].

The last part in the verification process of the method for deriving the reactance database corre-
sponds to the calculation of the Isofrequency Dispersion Curves (IDC), which shows the frequency and
direction at which the dominant surface wave propagates in the spectral plane for a given excitation
frequency. The results are shown in figure 4.17 where the results obtained from the simulations are
shown on the left-side an the ones from literature on the right-side. The results match with the verifi-
cation plots up to 17GHz, which is even beyond the frequency where the TE mode starts appearing.
Furthermore, one other form in which the limit of the transition band with the dynamic band can be
identified is to obtain the frequency at which the IDC is significantly deformed [28, p. 11], which is ac-
cording to figures 4.17a and 4.17b at 15GHz, which also is the same frequency at which the TE mode
starts appearing in figure 4.16c. In conclusion, it has been verified that the reactance obtained with the
derived method would be reliable up until the boundary of the transition and dynamic bands. After this
boundary, these results should be used considering that the further they are from this boundary, the
less precise they would be.

Results
The method described previously was applied to the patch configuration specified in table 4.1. Simula-
tions were done for different combinations of 𝛿 ∈ [0∘, 180∘] with Δ𝛿 = 5∘, and 𝜂 ∈ [0.05, 1] with Δ𝜂 = 0.05.
Considering that two simulations for each shape had to be done for TM and TE polarizations, the total
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(a) Calculated IDC for elliptical patch with 𝛿 = 0∘. (b) IDC for elliptical patch with 𝛿 = 0∘ obtained from Mencagli et.al.
[32].
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(c) Calculated IDC for elliptical patch with 𝛿 = 30∘. (d) IDC for elliptical patch with 𝛿 = 30∘ obtained from Mencagli et.al.
[32].

Figure 4.17: IDC for two different patch configurations obtained with the presented simulation method (left) compared
against results in literature (right). The color bar on the plots of the right represent the frequency in GHz.

number of simulations was 1,480 with 37 different angles and 20 different shapes. Ultimately, the initial
simulation mesh used was of (Δ𝑥0, Δ𝑦0) = 𝜆/1,500, which is in a similar order of magnitude as in
the verification example. It is important to note that the contribution of 𝑎′/𝑑 was maintained fixed at
𝑎′/𝑑 = 0.9 because results were not found in the consulted literature that would allow to compare the
effects of changing this parameter in the presented model. However, it was later found that varying this
parameter allows to have a wider reactance amplitude range that would span all the required values
for the antenna synthesis. This topic is treated in more detail in section 4.2.2.

The obtained database is shown in figure 4.18 in terms of𝑋(𝑒𝑒)
𝑠 ,𝑋(ℎℎ)

𝑠 , and𝑋(𝑒ℎ)
𝑠 for 3.2GHz, and the

relative difference between the cross-polarized terms. There is a close resemblance with figure 4.14,
specially in the𝑋(𝑒𝑒) term shown in figure 4.18a. The other reactancematrix terms, 𝑋(ℎℎ)

𝑠 and𝑋(𝑒ℎ)
𝑠 , are

not as similar because in the case of figure 4.14 they go over the singularity that defines these values
as open circuits, whereas in figure 4.18 they are just below, in the capacitance region. Furthermore,
figure 4.18d shows that the difference between the cross-diagonal reactance term is around 4%, which
is a similar value as in figure 4.14d. The only visible difference was in the patches with 𝜂 = 0.05, which
shows mixed capacitive and inductive behaviours for each 45∘ segment, together with relatively small
𝑋(𝑒ℎ)

𝑠 values causing high relative differences for values close to 𝛿 = 45∘.
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Figure 4.18: Resulting database for the patch configuration specified in table 4.1 for 𝛼𝑠𝑤 = 𝛿, 𝑎/𝑑 = 0.9 and 𝑓 =3.2GHz.

These results were verified by asking to the authors of [27] if they could provide numerical simula-
tions that would replicate the data obtained in figure 4.18 with the method that was developed by one
of them in [24], which is based on the MoM approach specified in appendix C. The authors agreed
and they sent the required database that was used to verify the results obtained by the previously de-
scribed method. The transparent reactance database sent by the authors, referred as 𝐗′

𝑠, is shown in
figures 4.19a to 4.19c for each of the matrix components. These are compared with the ones obtained
in figure 4.18 (after applying a linear interpolation to match the elements in 𝜂 and 𝛿) in figures 4.19d
to 4.19f. The most important difference is the one illustrated in figure 4.19e where it reaches up to
almost 90% for patches with low 𝜂. This is because, when the patches have this elongated shape, they
approximate to the open circuit boundary which was explained in the verification part of this section
when figure 4.14b was described. As there is a singularity, the reactance tends to diverge, causing a
loss in precision in the calculated 𝑋(ℎℎ)

𝑠 . Therefore, it is advised to avoid using those values for the final
antenna unless thorough testing has been done beforehand, assessing the precision close to the open
circuit limit. Nevertheless, the bottom inset on figure 4.19e shows that there is a error of the order of
5% for 𝜂 > 0.7, which matches the one of figure 4.19d and the error term predicted in figure 4.18. On
the contrary, this is not the case for the cross-diagonal term 𝑋(𝑒ℎ)

𝑠 , which absolute difference is shown
in figure 4.19f, indicating a deviation of 2.5 Ω in a region where the maximum amplitude of (𝑋′

𝑠)(𝑒ℎ) is
10 Ω. When looking at the boundaries that separate positive and negative values in this cross-diagonal
term, figure 4.18c shows that this is in all cases in values of 𝛿 multiples of 45∘, whereas in figure 4.19d
occurs at 0∘ and 90∘, but tends to vary with the patch shape at around 50∘, which is the same angle
where the maximum difference of 2.5 Ω is found. However, this magnitude represents between 0.5%
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and 1% of (𝑋′
𝑠)(𝑒𝑒) and (𝑋′

𝑠)(ℎℎ), so its influence in the overall 𝐗𝑠 precision would be marginal.
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(a) (𝑋′

𝑠)(𝑒𝑒) verification database.
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(b) (𝑋′
𝑠)(ℎℎ) verification database.
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(c) (𝑋′
𝑠)(𝑒ℎ) verification database with black lines indicating the
boundaries between positive and negative values.
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Figure 4.19: Transparent reactance matrix components of the verification dataset for 𝛼𝑠𝑤 = 0, 3.2GHz, 𝑎/𝑑 = 0.9, and
varying 𝛿 (figures 4.19a to 4.19c). Next, figures 4.19d to 4.19f show the relative difference between the obtained values in

figure 4.18 with the verification database. The insets focus on the ambiguous image sections.

In conclusion, the method used to derive the reactance database using FDTD simulations, which is
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available in commercial software, has been described, verified and implemented in the case described
on chapter 2. The presented method is an adaptation of the one described in Patel and Grbic in [42] for
anisotropic patches, using the properties explained in [28]. The method has been verified for elliptical
patches using the plots found in [32], but the underlying principles would apply to any shape with two
symmetry axes. The results show a deviation of at most 5% for few shapes that are sufficiently far from
the open circuit reactance, which causes a singularity that would require a finer simulation method to
accurately predict.

4.2. Antenna synthesis
In this subsection, the antenna synthesis procedure implementation is explained. First, the used tar-
get field is presented for the SAR antenna which requirements are specified in chapter 2. Next, the
antenna synthesis procedure, which is based on the method presented in section 3.2.4, is verified and
implemented.

4.2.1. Target field
In this part, the target field in the antenna aperture is derived. This is represented by 𝐄𝐴, which ele-
ments were explained when equation (3.125) was presented. The antenna requirements from table 2.1
that influence directly the required far-field are the frequency, radius, directivity and HPBW, given the
fact that the design will focus on the antenna central frequency. There are no requirements for the
sidelobe level or polarization, but they will be still reported for the completeness of the final design and
implemented if possible.

The target field of a circular metasurface antenna such as the ones presented in figure 3.5a can be
approximated to the one of a circular aperture. From the book of Antenna Theory of Balanis [1, p. 419],
three general target distributions can be obtained which performance is reported in table 4.2 for the
objective antenna radius and frequency, where FNBW is the first-null beam width, and FSLM is the first
side lobe maximum with respect to the main lobe.

Table 4.2: Antenna parameters for different aperture distributions. Formulas obtained from [1].

Uniform Radial taper Radial taper squared

Distribution 𝐸0 𝐸0 [1 − ( 𝜌
𝑎 )2]

1
𝐸0 [1 − ( 𝜌

𝑎 )2]
2

HPBW [deg] 2.74 3.41 3.94
FNBW [deg] 6.55 8.75 10.9
FSLM [dB] −17.6 −24.6 −30.6
Directivity [dB] 36.53 35.28 34.01

The first distribution in table 4.2, the uniform distribution, is an ideal case for a leaky-wave antenna
because having a uniform current in the aperture ending abruptly at the boundary implies that all the
power is dissipated only there, meaning that there is no leakage and therefore that this distribution
cannot be used for this case. The other two, the radial taper and radial taper squared, have a maxi-
mum at the antenna centre and then the current decreases as it approaches to the boundaries, which
resembles the case of a leaky-wave antenna. Therefore, the radial taper distribution will be used for
the final antenna design because, given the directivity requirement of 36dB and the HPBW of 3.2°, is
the distribution that comes closer to these values.

Regarding the polarization, there are no requirements in the available SwarmSAR literature. How-
ever, there are multiple advantages that can be traced to polarimetric SAR applications. As examples,
van Zyl and Kim report the use of the backscattered vertically and horizontally polarized radiation to
measure the soil moisture [51], whereas Zhang, Li, Liang and Tsou report a good performance when
using circularly-polarized signals for marine remote sensing applications such as oil spill classification
[55]. The inconvenience of using polarimetric SAR is that the antenna must receive the signal in two dif-
ferent polarizations in the basic dual-mode configuration [51], which would require at least two feeding
points able to identify them. An approach that would address this topic is using different polarizations
in different satellites, but that would be against the requirement of exchangeable nodes in the Swarm-
SAR mission. Therefore, for the simplicity of this case, it has been decided to use a linearly polarized
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antenna because it does not have a phasing term in the aperture [40, p. 3914], which simplifies the
design procedure. Furthermore, if a metasurface antenna with polarimetric SAR capabilities is required
at any future point in time, this design could be escalated to achieve that objective by using more than
one feeding point as it is detailed in [14, 50].

Finally, equation (4.9) can be derived, which shows the required electric field in the aperture to fulfil
the far-field requirements for a horizontally-polarized broadside radiation pattern with radial tapering
in the aperture. Whereas the first term in brackets show the radial tapering, the second shows the
required direction of the electric field in the aperture for a linearly-polarized radiation pattern, which in
this case it has been aligned arbitrarily to the 𝑥-axis.

𝐄𝐴 = 𝐸0 [1 − (𝜌
𝑎)

2
] [cos (𝜙) ̂𝝆 − sin (𝜙) ̂𝝓] 𝑈𝐴 (4.9)

4.2.2. Adiabatic Floquet analysis implementation
In this subsection, the verification and implementation of the method presented in section 3.2.4 are
explained. First, these two parts are preceded by a brief method description focused on giving more
details on the mathematical derivation of the method presented in section 3.2.4. Next, an example
case is used for the verification of this method implementation. As the exact distributions used for this
example case are not known by the author, a guess of these values was tried, where some deviations
can be identified but the main behaviour is similar to the one used by the authors. At the end, the
antenna synthesis is applied to the SAR antenna described in chapter 2.

Method description
The method used in this part has already been explained step-by-step in section 3.2.4. However, there
are some parts of the derivations that are worth to bring in detail now because they depend on steps
that were explained in subsequent points.

One example is step 6, which explanation ended up in equation (3.126). This equation can be
derived by rearranging equation (3.148) into the form of equation (4.10). Then, using only the real part
of the fast-varying periodic terms which are −𝑘𝑙(𝝆) from 𝐄𝐴, 𝐾𝑠(𝝆) in 𝐗(−1)

𝑠 , and 𝛽𝑠𝑤𝜌 + ∫ 𝛽Δ(𝝆′)𝑑𝜌′

on 𝐉(0), equation (3.126) is obtained.

{𝐔 − 𝑗𝐗(0)
𝑠 ⋅ [𝐙(−1)

𝐺𝐹 ]
−1

} ⋅ 𝐄𝐴(𝝆) = 𝑗𝐗(−1)
𝑠 ⋅ 𝐉(0) (4.10)

The second case is step 11, particularly the derivation of equation (3.142). This can be demon-
strated for a general case by considering negligible all the modes above 𝑁 and below −𝑁 . Then,
equation (3.141) becomes equation (4.11).

𝐄𝑡(𝝆) =
𝑁

∑
𝑞=−𝑁

𝐙(𝑞)
𝐺𝐹 ⋅ 𝐉(𝑞) = 𝑗(𝐗(0)

𝑠 + 𝐗(−1)
𝑠 + 𝐗(+1)

𝑠 ) ⋅ 𝐉(𝑞) (4.11)

From equation (4.11) the terms with the same rapid phase variation 𝑞𝐾𝑠(𝝆) are grouped together,
which are related to 𝐄(𝑞) by equation (4.12).

𝐄(𝑞) = 𝑗 [𝐗(0)
𝑠 ⋅ 𝐉(0) + 𝐗(−1)

𝑠 ⋅ 𝐉(𝑞+1) + 𝐗(+1)
𝑠 ⋅ 𝐉(𝑞−1)] (4.12)

Following, using equation (3.137) to replace𝐄(𝑞), equation (4.13) is obtained relating the transparent
boundary condition with the Floquet modes and the spectral GF.

[−𝐙(𝑞)
𝐺𝐹 + 𝑗𝐗(0)

𝑠 ] ⋅ 𝐉(𝑞) + 𝑗𝐗(−1)
𝑠 ⋅ 𝐉(𝑞+1) + 𝑗𝐗(+1)

𝑠 ⋅ 𝐉(𝑞−1) = 0 (4.13)

Replacing 𝑞 by±𝑁 , one of the terms of equation (4.13) can disappear because it would be regarded
as negligible, leading to a difference equation for 𝐉±𝑁 expressed in equation (4.14a) where 𝐘±𝑁 is
defined in equation (4.14b).

𝐉(±𝑁) = 𝐘(±𝑁) ⋅ 𝑗𝐗(±1)
𝑠 ⋅ 𝐉(±𝑁∓1) (4.14a) 𝐘(±𝑁) = [𝐙(±𝑁)

𝐺𝐹 − 𝑗𝐗(0)
𝑠 ]

−1
(4.14b)

This difference equation can be obtained for the next term 𝐉±𝑁∓1 as shown in equation (4.15).
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𝐉(±𝑁∓1) = 𝐘(±𝑁∓1) ⋅ 𝑗𝐗(±1)
𝑠 ⋅ 𝐉(±𝑁∓2) (4.15a)

𝐘(±𝑁∓1) = [𝐙(±𝑁∓1)
𝐺𝐹 − 𝑗𝐗(0)

𝑠 + 𝐗(∓1)
𝑠 ⋅ 𝐘(±𝑁) ⋅ 𝐗(±1)

𝑠 ]
−1

(4.15b)

This result can be generalized for the 𝑝 − 1 term, which is shown in equation (4.16).

𝐉(±𝑁∓𝑝±1) = 𝐘(±𝑁∓𝑝±1) ⋅ 𝑗𝐗(±1)
𝑠 ⋅ 𝐉(±𝑁∓𝑝) (4.16a)

𝐘(±𝑁∓𝑝±1) = [𝐙(±𝑁∓𝑝±1)
𝐺𝐹 − 𝑗𝐗(0)

𝑠 + 𝐳(±𝑁∓𝑝±1)]
−1

(4.16b)

𝐳(±𝑁∓𝑝±1) = 𝐗(∓1)
𝑠 ⋅ 𝐘(±𝑁∓𝑝±2) ⋅ 𝐗(±1)

𝑠 (4.16c)

Setting 𝑝 = 𝑁 , a closed-form expression for 𝐉(±1) can be obtained as presented in equation (4.17).

𝐉(±1) = 𝑗𝐘(±1) ⋅ 𝐗(±1) ⋅ 𝐉(0) (4.17)

When using equation (4.17) in equation (4.13) for 𝑞 = 0 and grouping the remaining terms in 𝝌
𝑁
,

equation (4.18) is obtained, where 𝝌
𝑁
is defined in equation (4.19). Equation (4.18) is analogous to

equation (3.143), whereas equation (4.19) is to equation (3.144). The only difference is the dependency
on 𝑁 , which is directly related to the number of Floquet modes evaluated. In fact, in the method pre-
sented in section 3.2.4, it has been assumed that 𝑁 = 1 because it already gives a good approximation
for a reactance range of �̄�/𝜁 ∈ [0.5, 1.5] [37, p. 3902]. Equation (4.19), on the other side, includes the
dependency on higher-order Floquet modes in 𝐘(±1) because this term is calculated recursively from
𝑁 to 1 with equation (4.16b).

𝑗𝝌
𝑁

⋅ 𝐉(0) = 0 (4.18)

𝑗𝝌
𝑁

= [𝐙(0)
𝐺𝐹 − 𝑗𝐗(0)

𝑠 ] + 𝐗(−1)
𝑠 ⋅ 𝐘(+1) ⋅ 𝐗(+1)

𝑠 + 𝐗(+1)
𝑠 ⋅ 𝐘(−1) ⋅ 𝐗(−1)

𝑠 (4.19)

Finally, equation (3.146) can be solved for the 𝑁 terms in the adiabatic Floquet expansion by only
including the 𝐘(±1) obtained from considering the higher-order terms. With the obtained results, the
higher order terms of 𝐉 and 𝐄 can be calculated to obtain a more precise final expression.

Other practicalities that are important to mention regarding this method’s implementation is that the
cylindrical coordinate system is used in the simulations, whereas for plotting a linear interpolation is
performed to transform these results to the Cartesian plane. This interpolation is used for illustration
purposes only because it makes the results compatible with the plotting functions. Furthermore, to
perform step 13, the built-in optimization algorithm function from MATLAB® is used to solve the non-
linear system of equation (3.146). Later, in the verification step, the convergence of this algorithm
applied to this problem is evaluated. The initial parameter used for 𝛽𝑠𝑤 in the verification and results
parts is 𝛽𝑠𝑤 = 1.5𝑘, and the radiation efficiency is of 𝜂𝑒𝑓𝑓 = 0.9.

Verification
In this section, two verification levels are being carried out for a linearly-polarized antenna with 𝜖𝑟 = 9.8,
ℎ =0.5mm, 𝑓 =26.25GHz, and 𝑎 = 10𝜆, which is the fourth example in the research publication where
this method was derived from [40, p. 3913-3916]:

1. Verification of single steps: To this end, a simplified distribution will be used for the verification
of steps 8 and 11, which involve numerical integration. This is specified in equation (4.20), which
only has a radial component. An example function with only the azimuthal component is not
evaluated because most equations at this first stage only deal with integration along the radial
direction like equations (3.130) and (3.131). Next, for step 13, an example given in [37, p. 3902]
to obtain 𝛼 and 𝛽Δ for a broadside circularly-polarized beam is reproduced.

𝐄𝐴(𝝆) = 𝐸0 [1 − (𝜌
𝑎)

2
] ̂𝝆𝑈𝐴 (4.20)

Only these steps are verified because their implementation is more difficult than the rest, which in
the majority of cases only require to do simple arithmetic operations. Furthermore, the analytical
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derivation could only be obtained up until step 12 because solving equation (3.146) in step 13
requires an equation solving algorithm because of the non-linearity of the problem.

2. Verification of the complete algorithm: It is attempted to replicate the example presented in
[40], which requires the execution of the complete algorithm. The main inconvenience of using
this example is that the distribution used for 𝐄𝐴 is not reported in the source, which makes impos-
sible to obtain a perfect comparison. Hence, multiple distributions were tried to obtain the one
that would fit best, which was found to be the radial distribution presented in equation (4.9) with
𝐸0 =285V/m. Furthermore, as the far-field radiation pattern is obtained with the electric field in
the aperture, the one obtained from the synthesis process 𝐄(−1) can be compared against the
objective 𝐄𝐴 in the far-field as a more precise verification procedure. Whereas in the first case it
would be expected to have a similar behaviour between the verification example and the obtained
from the synthesis pattern, in the second case the far-field distributions can be used as an actual
verification to assess the precision of this algorithm.

To verify step 8, first 𝑆(𝝆) has to be initially estimated with equation (3.127). Considering that
𝑙(𝝆) = 0, 𝐊𝑡 = 0 and 𝐾𝑧 = 𝑘. Therefore, equation (4.21) can be obtained.

𝑆(𝜌) = |𝐄𝐴|2
2𝜁 (4.21)

The next step is calculating the radiated power, which is obtained by integrating 𝑆(𝝆) throughout
the metasurface area, which is the first element in the denominator of equation (3.130). The result of
this calculation is given in equation (4.22).

𝑃𝑟𝑎𝑑 = 𝜋(𝑎𝐸0)2

6𝜁 (4.22)

Following, the second element in the denominator of equation (3.130), which represents the az-
imuthal averaged radiated power, is calculated. This is presented in equation (4.23) where the primes
indicate the integration variables.

2𝜋 ∫
𝜌

0
𝑆(𝜌′)𝜌′𝑑𝜌′ = 𝜋𝐸2

0
6𝑎4𝜁 (3𝑎4𝜌2 − 3𝑎2𝜌4 + 𝜌6) (4.23)

To finalize step 8, the initial estimation of the leakage parameter 𝛼 is calculated analytically in equa-
tion (4.24).

𝛼(𝜌) = 3𝜂𝑒𝑓𝑓𝑎4𝜌|𝐞𝐴|2
𝑎6 − 3𝜌2𝜂𝑒𝑓𝑓𝑎4 + 3𝜌2𝜂𝑒𝑓𝑓𝑎2 − 𝜌6𝜂𝑒𝑓𝑓

(4.24)

The cylindrical coordinate system used required the discretisation of the radial and azimuthal di-
rections, which was set to 𝑎/(Δ𝜌) = 800 ∀𝜌 ∈ [10−10, 𝑎], to avoid a singularity with the zero, and
2𝜋/(Δ𝜙) = 361 ∀𝜙 ∈ [0, 2𝜋], to facilitate conversion from radians to degrees. The integration function
used was the trapezoidal and its results are shown in figure 4.20 compared to the analytical solution.
Given the satisfactory level of agreement between the numerical and analytical results (< 0.001%), it
was decided to continue to the next steps.

In step 11, a first estimation of the modulation vector is obtained. The modulation is performed in
both ̂𝝆 and ̂𝝓 directions. However, given that there is no azimuthal component of 𝐞 in equation (3.150d)
because equation (4.20) lacks of it, 𝑚𝜙 = 0 and the modulation vector is reduced to the modulation
coefficient 𝑚𝜌 exp (𝑗Φ𝜌). Obtaining this parameter from the retrieved value of 𝛼 involves integrating
once more to obtain �̃�(0)(𝝆)𝜌 in equation (3.131), using this value in a Bessel function to obtain �̃� as
described in equation (3.150a), and using the resulting coefficient to obtain the modulation coefficient
value. The derivation of the analytical solution of 𝛼 integral is shown in equation (4.25), which is used
in the analytical model. The comparison between the numerical and analytical results of the real and
imaginary results are shown in figure 4.21, which illustrates a similar agreement level as in figure 4.20,
which suggests that the integration algorithm is performing the calculations at a satisfactory agreement
level.
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Figure 4.20: Difference between the numerically and analytically obtained 𝛼 in step 8 of the modulation algorithm.

∫
𝜌

0
𝛼(𝝆′)𝑑𝜌′ = 3 ln(𝑎) − 1

2 ln (𝑎6 − 3𝜂𝑒𝑓𝑓𝜌2𝑎4 + 3𝜂𝑒𝑓𝑓𝜌4𝑎2 − 𝜂𝑒𝑓𝑓𝜌6) (4.25)
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(a) Real part of the modulation radial coefficient.
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(b) Imaginary part of the modulation radial coefficient.

Figure 4.21: Difference between the numerically and analytically obtained radial modulation coefficient in step 13 of the
algorithm.

Before performing the verification of the whole algorithm, step 13 can be verified with an example
presented in [37, p. 3902]. Equation (4.26) shows the transparent reactance distribution for a circularly-
polarized metasurface antenna with a broadside radiation beam. This can be written in terms of the
varying phase contributions as in equation (4.27) considering 𝑚𝜌 = 𝑚𝜙.

𝑋𝑠,𝜌𝜌
𝜙𝜙

= �̄�𝑠,𝜌 [1 ± 𝑚𝜌 cos (𝛽𝑠𝑤𝜌 + 𝜙)] (4.26a)

𝑋𝑠,𝜌𝜙 = �̄�𝑠,𝜌 [𝑚𝜌 sin (𝛽𝑠𝑤𝜌 + 𝜙)] (4.26b)

𝐗(0)
𝑠 = �̄�𝑠,𝜌𝐔 (4.27a)

𝐗(±1)
𝑠 = 𝑚𝜌�̄�𝑠,𝜌

2 𝑒∓𝑗(𝛽𝑠𝑤𝜌+𝜙) [( ̂𝝆 ̂𝝆 − ̂𝝓 ̂𝝓) + 𝑒± 𝜋
2 ( ̂𝝆 ̂𝝓 + ̂𝝓 ̂𝝆)] (4.27b)

Next, as the interest of this example is examining the range of �̄�/𝜁 in which using 𝑁 = 1 in equa-
tion (4.18) would be acceptable, the average transparent reactance �̄�𝑠,𝜌 is set in terms of the ratio of
the average opaque reactance and the free-space impedance �̄�/𝜁. To achieve this, it can be assumed
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that the propagating surface wave has, on average, a cylindrical wavefront at a sufficient distance of
the origin. This aligns the expressions in dyadic form �̂�𝑡�̂�𝑡 and �̂�⊥

𝑡 �̂�⊥
𝑡 with ̂𝝆 ̂𝝆 and ̂𝝓 ̂𝝓. Next, when

the eigenvectors of 𝐗𝑠 are aligned with the propagation direction, equation (3.117) can be solved for
a decoupled system, where the solution corresponding to ̂𝝆 ̂𝝆 represents the one with the TM polariza-
tion, which is the dominant propagation mode. Then, given the fact that the current density excited by
a dipole source only has a radial component, the current density can be approximated on average to
equation (4.28), where the surface wave propagation constant represents the magnitude of the trans-
verse wavevector 𝛽𝑠𝑤 = 𝑘𝜌. This can be used to obtain the relation between the average opaque
reactance and the transverse wavevector, which coincides with the one for an isotropic metasurface
presented in equation (3.107). Finally, solving the transverse resonance condition of equation (3.117)
for the TM mode, the relation between the average transparent and opaque reactance is obtained in
equation (4.29).

𝐉0 = 𝐽0𝐻(2)
1 (𝛽𝑠𝑤𝜌) ̂𝝆 (4.28)

�̄�𝑠,𝜌
𝜁 = �̄�

𝜁

⎧{{
⎨{{⎩

1 − �̄�
𝜁

𝜖𝑟 cot[𝑘ℎ√𝜖𝑟 − 1 − ( �̄�
𝜁 )

2
]

√𝜖𝑟 − 1 − ( �̄�
𝜁 )

2

⎫}}
⎬}}⎭

−1

(4.29)

Next, the wavevectors 𝜷(𝑞) are obtained considering the 𝑁 used, where the only radiating mode
would be the −1. Equation (3.134) is used considering that 𝐾𝑠(𝝆) is defined by comparing equa-
tions (3.121) and (4.26), where it can be concluded that 𝐾𝑠(𝝆) = 𝛽𝑠𝑤𝜌. Furthermore, as this vector is
used to solve the non-linear system defined by equation (3.146) for 𝛽Δ and 𝛼, the effect of 𝛼 has to
be included in equation (3.134), which results in equation (4.30). This equation is then used instead of
equation (3.134) for solving equation (3.146) and obtain 𝐤(0).

𝐤(𝑞) = (𝛽𝑠𝑤 + Δ𝛽 − 𝑗𝛼) ̂𝝆 + 𝑞𝐾∇𝑡𝑠(𝝆) (4.30)

Equation (4.30) is used in the spectral GF approximation of the Floquet modes 𝐙(𝑞)
𝐺𝐹 , particularly

by replacing it with the transverse wavenumber by [𝐤(𝑞)]⊤ ⋅ 𝐤(𝑞) = 𝑘2
𝜌. As 𝐤(𝑞) can be complex, special

care has to be taken with the complex square roots that arise from equations (3.113) to (3.116), as
the algorithm to calculate them can cause some discontinuities because of angle wrapping effects.
The results of this step’s verification are shown in figure 4.22 where the obtained calculations are
compared against the example data from [37, p. 3902]. The optimization algorithm of MATLAB® was
used, showing convergence on every result. A very good agreement is observed between these results,
except for �̄�/𝜁 = 0.7 and �̄�/𝜁 = 1.3 corresponding to 𝛽Δ in figure 4.22b which appear to be shifted.
This could be a mistake from the source paper, as the results obtained match for all the other cases.

Next, the second verification level is performed, which consists on attempting to reproduce the
results of example 4 from [40], which is of a linearly polarized radiation beam in broadside direction
with the antenna parameters described at the beginning of the verification part. To this end, the whole
algorithm is executed and its similarity with the plots from [40] is evaluated. First, the convergence level
is assessed with the change in 𝐦 between consecutive iterations as specified in equation (4.31). When
this value changes less than a threshold in simulation 𝑝, then it can be concluded that the algorithm
has converged to a solution for the objective transparent reactance 𝐗𝑠 and current density 𝐉.

(Δ𝑚)𝑎𝑣𝑔 = 1
𝜋𝑎2 ∬

𝐴

|𝑚𝜌,𝑝(𝝆) − 𝑚𝜌,𝑝−1(𝝆)| + |𝑚𝜙,𝑝(𝝆) − 𝑚𝜙,𝑝−1(𝝆)|
2 𝑑𝐴 (4.31)

For this case, the threshold has been set empirically to (Δ𝑚)𝑎𝑣𝑔,𝑜𝑏𝑗 = 10−4 which represents the
objective average difference of the slow-varying modulation parameter 𝐦 between consecutive iter-
ations. The results are shown in figure 4.23, where the convergence is achieved at the eighth step,
which is within the boundary of five to ten steps needed for convergence suggested by the authors in
[40, p. 3912], and validates the convergence of MATLAB® optimization algorithm.
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(a) 𝛼/𝑘 as a function of the modulation parameter.
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(b) 𝛽Δ/𝑘 as a function of the modulation parameter.

Figure 4.22: 𝛼/𝑘 and 𝛽Δ/𝑘 as a function of the modulation parameters for different values of �̄�/𝜁 considering 𝑁 = 1 for a
circularly-polarized antenna radiating a broadside beam. Example data obtained from Minatti et.al. [37].
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Figure 4.23: Convergence of the modulation index 𝐦 as a function of the number of iterations in the algorithm for the
verification antenna parameters.

The first results that can be compared are the ones of the Poynting vector magnitude 𝑆(𝝆) in fig-
ures 4.24a and 4.24b, and the leakage parameter 𝛼(𝝆) in figures 4.24c and 4.24d. When compar-
ing figures 4.24a and 4.24b it can be noted that the verification example (figure 4.24a) has a power
distribution that decays to a value close to zero much before than the simulated one (figure 4.24b).
Furthermore, as a consequence, the leakage parameter in figure 4.24d spreads over a greater area
because the propagating surface wave keeps its energy over a longer radial distance, making its am-
plitude relatively smaller than the one in figure 4.24c which leaks most of its radiation over a smaller
radial distance.

Next, the current density aligned with the x-axis is compared with the verification example. In the
verification example, the currents “have been normalized in amplitude to match the average of the MoM
currents” [40, p. 3913], which is the method that the authors used to verify their own implementation.
For the obtained results, the normalization has been executed by using the average of the currents
itself 𝐽𝑎𝑣𝑔, which is obtained as specified in equation (4.32). The main plot in figure 4.25 shows that the
ratio |𝐽𝑥/𝐽𝑎𝑣𝑔| is greater than the one obtained by the authors in almost every case. Nevertheless, the
slope is preserved and the obtained oscillatory pattern preserves at least one frequency component
of the verification example. This occurs because the number of Floquet modes used by the authors
of the verification example is greater than one (𝑁 > 1), which adds more frequency components in
the final 𝐉, and therefore more oscillations. Even though this affects the current distribution, it is not
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(a) Poynting vector magnitude.
Source: [40, p. 3914]
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Figure 4.24: Comparison of leakage parameters and Poynting vector magnitudes from the verification research publication
[40, p. 3914] and the results after the implementation of this algorithm.
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Figure 4.25: Comparison between the normalized total current density aligned with the x-axis |𝐽𝑥| obtained from the
implementation of this algorithm and the one resulting from the implementation of a MoM algorithm in the consulted

research publication [40]. Right inset shows the x-aligned current distribution in the verification example, whereas the one
on the left shows this same parameter for this implementation.

expected to affect the far-field results because the calculation of these higher-order modes affects only
the near-field results, as these decay exponentially in the z-positive direction.

𝐽𝑎𝑣𝑔 = 1
𝜋𝑎2 ∬

𝐴
|𝐉|𝑑𝐴 (4.32)

Subsequently, the far-field results are compared with the verification example from [40] and with the
initial objective distribution. Given that the only radiating mode is the −1 mode, which was specified
when equation (4.30) was described, the far-field contribution is obtained only by evaluating 𝐄(−1) in
the results, and 𝐄𝐴 in the target distribution. In the main plot of figure 4.26 the results of the presented
CP procedure are compared against the data retrieved from [40] at the diagonal plane 𝜑 =45°, which is
where the XP level is higher. In the first place, this makes evident that a different distribution has been
used for the verification example, as the maximum directivity and nulls (local minima between lobes
where the directivity tends to zero) are different. This is a direct consequence of what was observed in
figures 4.24a and 4.24b, as in the first case the power is radiated in a smaller antenna area than in the
second case, resulting in a smaller maximum directivity. In contrast, when the results are compared with
the objective distribution (left inset), the maximum difference of −5 dB indicates that the implementation
produces the desired aperture patterns within that range, which given the antenna directivity represents
a negligible deviation. Furthermore, the XP level is evaluated in the right inset, showing that its level is
much smaller compared to the one of the CP radiation pattern.

Finally, the CP directivity is plotted in the (𝑢, 𝑣)-plane in figure 4.27b and compared against the
results from the verification example in figure 4.27a. It is clearly shown that, in contrast with the ver-
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Figure 4.26: Main part: comparison between the resulting far-field CP pattern with the CP verification example (red solid
line) and the XP (dotted line), obtained from Minatti et.al. [40, p. 3916]. Left inset: Difference between the resulting and the

objective CP far-fields. Right inset: XP results. All the results are in the plane 𝜑 =45°.

(a) CP directivity verification
example in decibels. Source: [40,

p. 3916].
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Figure 4.27: Directivity evaluated in the (𝑢, 𝑣)-plane for the verification case.

ification example, the side lobe level in the results is underneath −10dB in most of the (𝑢, 𝑣)-plane,
which is in agreement with the results obtained in figure 4.26. Next, the difference between the objec-
tive pattern and the results is plotted in figure 4.27c, which shows a small difference comparable with
the left inset in figure 4.26. The XP directivity is plotted in figure 4.27d, where it is clearly visible that
its maximum level is negligible compared with the CP level, and it is achieved in the diagonal plane, at
𝜑 =45°.

In conclusion, the verification of the antenna synthesis algorithm shows a good agreement between
the example from [40] and the obtained results, even though the distributions used are different. This
is further verified by comparing the far-field results of the obtained radiation pattern with the objective
pattern, where the differences are negligible.

Results
Figure 4.28 shows the far-field results when using equation (4.9) as the aperture field distribution for
the metasurface antenna. The maximum achieved directivity reaches 35.28dB and the HPBW is 3.41°,
just as predicted in table 4.2 but not fulfilling the antenna requirements for the SwarmSAR mission in
table 2.1 of 𝐷𝐶𝑃 =36dB and HPBW=3.2°. However, the author notes that the difference is relatively
small and adjusting the exponent of the first expression between brackets in equation (4.9) to a value
between zero and one would be enough to fill the required gap. This is because a bigger part of the
aperture would be used, approaching the antenna to a diffraction limited system with uniform electric
field distribution. Nevertheless, this would cause a higher side lobe level (FSLM), which requirement
was not reported in table 2.1 but it increases the ambiguity level in measurements. The left inset in
figure 4.28 shows a similar small negligible with the objective field as in figure 4.26, and the right inset
shows the XP level, which is also negligible when compared with the main distribution.

Figure 4.29 shows the far-field CP and XP distributions in the (𝑢, 𝑣)-plane, together with the dif-
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Figure 4.28: Main part: CP far-field radiation pattern of SAR antenna design. Left inset: Difference between the resulting
and the objective CP far-fields. Right inset: XP results. All the results are in the plane 𝜑 =45°.
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Figure 4.29: Directivity of SAR antenna evaluated in the (𝑢, 𝑣)-plane.

ference of the CP with the objective. The resulting CP pattern in figure 4.29a shows an azimuthally
symmetric behaviour up to −25dB and a main beam in broadside direction, which corresponds with
figure 4.28. Next, figure 4.29b shows a maximum difference of 5dB with respect to the objective, which
is still a negligible quantity given the beam directivity of 35.28dB. The XP level in figure 4.29c shows
again that its maximum is at the diagonal plane (𝜑 =45°) and its magnitude is also relatively small
compared to the main beam and the side lobe level.

The final result of this synthesis procedure is the metasurface antenna reactance distribution, shown
in figure 4.30. It is evident the periodic nature of this dyadic expression, which arises from the exponen-
tial function of 𝐗(±1)

𝑠 in equation (3.122c), particularly from 𝐾𝑠(𝝆) which represents the rapid periodic
variation. Furthermore, 𝐗𝑠 varies in the azimuthal direction, reaching amplitude maximums at values
multiples of 𝜙 = 𝜋/2. At 𝜙 =0 ° and 𝜙 =180 °, 𝑋𝑠,𝜌𝜙 = 0 and 𝑋𝑠,𝜌𝜌 and 𝑋𝑠,𝜙𝜙 have a periodic distribution
along 𝝆 with maximum amplitude, whereas at 𝜙 =90 ° and 𝜙 =270 °, 𝑋𝑠,𝜌𝜌 = 𝑋𝑠,𝜙𝜙0 and 𝑋𝑠,𝜌𝜙 has max-
imum amplitude in radial direction. This is shown in figure 4.31 where figures 4.31a and 4.31b illustrate
the first and second case respectively. In these two plots, it can be easily retrieved that the average
reactance of 𝑋𝑠,𝜌,𝜌 and 𝑋𝑠,𝜙,𝜙 is �̄�𝑠,𝜌 = �̄�𝑠,𝜙 =−146.89 Ω, varying ±37.75 Ω for the case where 𝜙 =0°.
On the other side, 𝑋𝑠,𝜌,𝜙 has an average value of 0° and varies ±37.4 Ω at 𝜙 =90°.

4.3. Patch matching
In this subsection, the resulting transparent reactance of the antenna synthesis procedure obtained
in section 4.2.2 is matched with the unit cell database in section 4.1.2 to obtain the final metasurface
antenna design.

4.3.1. Method description
It can be easily concluded that the reactance database obtained in figure 4.18 and the verification
database from figures 4.19a to 4.19c would not have the required reactance range to provide a solu-
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Figure 4.30: Final transparent reactance dyad in the metasurface antenna.
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Figure 4.31: Transparent reactance at 𝜙 =0° and 𝜙 =90° for the metasurface SAR antenna.

tion for the reactance distribution obtained from the synthesis process in figure 4.31. This is because,
from figure 4.31a at 𝜙 = 0 (equivalent to having 𝛼𝑠𝑤 = 0), the maximum reactance value is 𝑋𝑠,𝜌𝜌 =
𝑋𝑠,𝜙𝜙 =−109.14 Ω, which is not contained in any of the reactance databases of 𝑋(𝑒𝑒)

𝑠 nor 𝑋(ℎℎ)
𝑠 pre-

sented in section 4.1.2. Even more, the maximum value of these databases is 𝑋(𝑒𝑒)
𝑠 = 𝑋(ℎℎ)

𝑠 ≈−150 Ω,
which is close to the average reactance value obtained in the synthesis process. Therefore, it is evident
that the reactance database needs to be expanded in another dimension to cope with this insufficient
amplitude range.

The other ellipse shape parameter that can be varied is the ratio 𝑎′/𝑑 which represents the patch
size in the unit cell. Considering 𝑋(𝑒𝑒)

𝑠 and 𝑋(ℎℎ)
𝑠 are negative in every case, the transparent reactance,

representing the patch cladding at the surface, is a capacitive surface. Therefore, to decrease the
capacitive value and obtain the objective reactance range, the patch size must increase towards its
short-circuit value of 𝑋(𝑒𝑒)

𝑠 = 𝑋(ℎℎ)
𝑠 =0 Ω. To decrease the computation time and facilitate this last part,

this new database was provided by the authors of [27] for 𝑎′
𝑑 ∈ [0.9, 1], keeping 𝛿 and 𝜂 varying with the

same values as in section 4.1.2.
The steps to perform this part are as follows:

1. Discretise the antenna: This step is performed in two dimensions considering the antenna radius
𝑎 and the unit cell width and length 𝑑. It is important that all unit cells fit within the antenna, so
blank spaces should be left when this condition is not fulfilled. Furthermore, a blank circular space
has to be left in the antenna centre for its feeding mechanism, which the author chose arbitrarily
to have a radius of ̄𝑎 =5 cm. Next to that, the 𝑥− and 𝑦−axes pass through the boundaries
of neighbouring unit cells, which is convenient to define the antenna surface area in Cartesian
coordinates in four quadrants with an equal number of unit cells in each of them, and each unit
cell belonging to only one quadrant.
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The antenna is then finally discretised in a finite number of elements where each of these corre-
sponds to a unit cell on the antenna surface. These unit cells can be associated to a particular
position in the 𝑥𝑦-plane, which corresponds to its centre. The surface wave propagation angle
𝛼𝑠𝑤, which in this case is the same as the azimuthal angle 𝜙 as the surface wave propagates in
radial direction, can be easily calculated with the atan2 function, returning the angle 𝛼𝑠𝑤 ∈ [0, 2𝜋]
from a two-dimensional vector. Finally, a transformation from polar to Cartesian coordinates of
figure 4.30 is obtained to associate the final reactance requirement to each unit cell. Then, the
remaining problem can be summarized as associating an elliptical patch shape to a required
transparent reactance dyad �̃�𝑠(𝑥, 𝑦) given a propagation angle 𝛼𝑠𝑤(𝑥, 𝑦) for the whole set of unit
cells discretised in the metasurface antenna.

2. Align 𝛼𝑠𝑤 with the database: A propagation angle 𝛼𝑠𝑤(𝑥, 𝑦) and a reactance dyad 𝐗𝑠(𝑥, 𝑦)
can be associated to each unit cell. In counterpart, the database can be expressed either with
a constant 𝛼𝑠𝑤 as in figure 4.15, or with 𝛼𝑠𝑤 = 𝛿, which varies in a fixed manner together with
the patch orientation angle 𝛿. This is because, as it was mentioned in section 4.1.1, the effect of
varying the surface wave propagation angle can be analytically addressed with rotation matrices
as shown in equation (3.118) because 𝐗𝑠 is a diagonalizable matrix. Therefore, two paths can
be taken to reconcile the different surface wave propagation angle between each unit cell and the
reactance database: either rotate all the dyads in the database by 𝛼𝑠𝑤(𝑥, 𝑦) for each evaluated
unit cell, or rotate all the unit cells to one reference angle which is aligned with the database. Cer-
tainly, the first one would be more computationally expensive as the number of rotations equals
the number of unit cells times the number of elements in the database, whereas in the second
case the number of rotations equals just the number of unit cells. However, the disadvantage in
the second approach is that the obtained solution has to be rotated back to the original surface
wave propagation angle associated to the unit cell 𝛼𝑠𝑤(𝑥, 𝑦). This would not pose a problem if the
solution would be exactly found. On the contrary, if this is not the case, there would be an error
introduced that would expand to the other elements in the transparent reactance dyad when this
is rotated back, potentially causing a suboptimal patch distribution in the metasurface antenna.
Nevertheless, as it is expected that the reactance database would contain the whole range of the
required reactance, this second approach of rotating the unit cell reactance dyads was chosen.
The procedure to perform this step can be summarized as follows. Consider the objective trans-
parent reactance dyad distribution in the metasurface antenna �̃�𝑠(𝑥, 𝑦) and the transparent re-
actance database aligned with 𝛼𝑠𝑤 =0°. Then, �̃�𝑠(𝑥, 𝑦) has to be rotated as described in equa-
tion (4.33) so that the resulting objective transparent reactance distribution in the metasurface
antenna �̃�𝑠,𝑟𝑜𝑡(𝑥, 𝑦), which is now expressed relatively to the same surface wave propagation
angle as the database, can be matched to the transparent reactance of an elliptical patch shape.

�̃�𝑠,𝑟𝑜𝑡(𝑥, 𝑦) = 𝐑⊤ [−𝛼𝑠𝑤(𝑥, 𝑦)] ⋅ �̃�𝑠(𝑥, 𝑦) ⋅ 𝐑 [−𝛼𝑠𝑤(𝑥, 𝑦)] (4.33)

3. Minimize the difference between the required and the chosen shape reactance for each
unit cell: For each unit cell, before starting the optimization itself, an initial patch configuration
has to be found to ensure that the optimization algorithm would converge with high probability
to the global minimum. Given that the database is sampled relatively finely, each of the dyads
contained in it can be subtracted by the objective dyad �̃�𝑠(𝑥, 𝑦), and the minimum difference from
this operation, together with the corresponding shape variables 𝜂, 𝑎′

𝑑 and 𝜓, can be subsequently
found, serving as a starting point. Then, the optimization algorithm task is just refining this partial
solution by using a linear interpolation function that evaluates a continuous range of 𝜂, 𝑎′

𝑑 and 𝜓 in
the vicinity of this point. The resulting shape for the unit cell is given by 𝜂(𝑥, 𝑦), 𝑎′

𝑑 (𝑥, 𝑦) and 𝜓(𝑥, 𝑦),
which corresponds to the transparent reactance solution found �̂�𝑠,𝑟𝑜𝑡(𝜂, 𝑎′

𝑑 , 𝜓) in equation (4.34).

𝜂(𝑥, 𝑦), 𝑎′

𝑑 (𝑥, 𝑦), 𝜓(𝑥, 𝑦) = argmin
𝜂∈[0.05,1]
𝑎′
𝑑 ∈[0.9,1]
𝜓∈[0,2𝜋[

[1 1] ⋅ ∣�̃�𝑠,𝑟𝑜𝑡(𝑥, 𝑦) − �̂�𝑠,𝑟𝑜𝑡 [𝜂, 𝑎′

𝑑 , 𝜓(𝛼𝑠𝑤 = 0)]∣ ⋅ [1
1] (4.34)
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Figure 4.32: Discretisation results of objective transparent reactance and propagating angle of unit cells in the metasurface
antenna.

To finalize, the obtained transparent reactance dyad �̂�𝑠,𝑟𝑜𝑡 is rotated back 𝛼𝑠𝑤 to obtain �̂�𝑠(𝑥, 𝑦)
as in equation (4.35), which represents the final reactance distribution in the antenna.

�̂�𝑠(𝑥, 𝑦) = 𝐑⊤ [𝛼𝑠𝑤(𝑥, 𝑦)] ⋅ �̂�𝑠,𝑟𝑜𝑡(𝑥, 𝑦) ⋅ 𝐑 [𝛼𝑠𝑤(𝑥, 𝑦)] (4.35)

4.3.2. Verification
As the previously presented method was developed by the author and in literature there is no available
example of patch matching with a given reactance database, this cannot be verified with a literature
example, making the verification rely only on unit tests. This is useful for step 1 to ensure that the
discretisation is done correctly. However, for steps 2 and 3, this can be interpreted as redundant
because step 2 involves just a matrix multiplication, and after performing step 3 the result can be found.
Therefore, the verification is only centred in step 1 and, in the results part, the outcome of step 3 is
evaluated against the objective reactance distribution �̂�𝑠,𝑟𝑜𝑡.

To verify step 1, figures 4.32a to 4.32c shows the objective reactance distribution, which is the
discretised version of figure 4.30 in 30,928 unit cells. It is clearly visible that figures 4.32a to 4.32c
resembles precisely figure 4.30. The other argument used is the propagation angle 𝛼𝑠𝑤 which plot
shown in figure 4.32d illustrates the azimuthal angle in the metasurface antenna, which coincides with
the incident surface wave angle.

4.3.3. Results
The result of the optimisation function presented in equation (4.34) and rotated back with equation (4.35)
is shown in figure 4.33 in absolute and percentage terms, evaluated relatively to the absolute sum of all
the dyadic elements. These results show that there is an important deviation from the objective values
at angles between [𝜋/4, 3𝜋/4] and [5𝜋/4, 7𝜋/4], with maximum deviation at angles close to 𝜙 =90°. To
get a better insight on where the problem is, the difference between each element of the transparent
reactance dyadic representation is shown in figure 4.34 in absolute and percentage values. It is first
interesting to appreciate that the elements 𝑋𝑠,𝜌𝜌 and 𝑋𝑠,𝜙𝜙 have almost a perfect fit at 𝜙 =90°, which
deteriorates rapidly until angles close to 𝜙 =45°. On the contrary, the worst fit in 𝑋𝑠,𝜌𝜙 is at 𝜙 =90°, and
it improves when this angle changes. The cause of this behaviour can be tracked down to figure 4.31,
which shows the two extreme cases for the reactance distribution. The first one in figure 4.31a, when
𝜙 =0°, is matched with the reactance database as the error shown in this region in figure 4.33 is
negligible. On the contrary, the second one in figure 4.31b is not matched with the database as that
is precisely the region where the error is. When comparing figures 4.31b and 4.34 it is clear that
the average reactance values of �̂�𝑠,𝜌𝜌 and �̂�𝑠,𝜙𝜙 are matched, and the varying part of �̂�𝑠,𝜌𝜙 is not.
Furthermore, given these results at 𝜙 =90°, the mismatch in �̂�𝑠,𝜌𝜌 and �̂�𝑠,𝜙𝜙 close to 𝜙 =90° can be
attributed to the effects of rotating back to the real surface wave propagation angle 𝛼𝑠𝑤 after obtaining
the optimisation result because the error, which is initially in �̂�𝑠,𝜌𝜙, expands to other dyadic components
after this rotation matrix is applied.

The percentage differences in figures 4.34d to 4.34f show that the deviation between �̂�𝑠 and �̃�𝑠 is
not negligible, reaching values up to 40 % for the cross-diagonal component at angles close to 𝜙 =90°.
A close look at this angle is shown in figure 4.35, where the reactance difference and the shape param-
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(b) Percentage difference between �̃�𝑠(𝑥, 𝑦) and �̂�𝑠(𝑥, 𝑦).

Figure 4.33: Absolute and percentage difference of the partial results between �̃�𝑠(𝑥, 𝑦) and �̂�𝑠(𝑥, 𝑦) aligned with 𝛼𝑠𝑤.
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(f) Percentage difference between �̃�𝑠,𝜌𝜙(𝑥, 𝑦)
and �̂�𝑠,𝜌𝜙(𝑥, 𝑦).

Figure 4.34: Absolute and percentage difference of the partial results between the dyadic components of �̃�𝑠(𝑥, 𝑦) and
�̂�𝑠(𝑥, 𝑦) aligned with 𝛼𝑠𝑤.

eters of the unit cells in the first Cartesian quadrant adjacent to the 𝑦-axis are plotted. These results
show additional insight on what can be done to address the reactance mismatch obtained by compar-
ing per unit cell its shape parameters with the parts where the biggest reactance differences are. As
explained before, the biggest differences are caused by the cross-diagonal component and these are
where 𝜂 ≈ 0.82 and 𝑎′

𝑑 ≈ 1. As 𝜂 ∈ [0.05, 1] and 𝑎′
𝑑 ∈ [0.9, 1], the results in figure 4.35 suggest that

increasing the value of 𝑎′
𝑑 beyond one could decrease the reactance difference obtained. This is fur-

ther confirmed by examining figure 4.36, which shows the reactance database as a function of 𝜂 and
𝑎′
𝑑 for 𝜓 =45°, where the black lines indicate the required reactance values for maximum amplitude at
𝜙 =90°. The shape parameters values obtained from the optimization algorithm for 𝜙 =90° at maximum
amplitude coincide with the intersection point of the black lines in figures 4.36a and 4.36b with 𝑎′

𝑑 = 1,
showing that the algorithm was obtaining the ideal values for �̃�𝑠,𝜌𝜌 and �̃�𝑠,𝜙𝜙, as it was already shown
in figure 4.35. However, as the black lines in figure 4.36 do not intersect in any single point, then there
is no solution in the database that could match the required reactance. Given that the line of maximum
amplitude in figure 4.36c has a bigger slope than the ones in figures 4.36a and 4.36b and is situated
at lower values of 𝜂, it would be expected that, for a sufficiently large value of 𝑎′

𝑑 , these two lines of
maximum amplitude would intersect each other, reaching then a solution that would match the required
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Table 4.3: Elliptical patch shapes simulated for the database expansion. Gray cells show the shape simulated as a function
of 𝛿 (rows) and 𝑎′

𝑑 (columns) for 𝜂 ∈ [0.72, 0.8].

1.01 1.02 1.03 1.04 1.01 1.02 1.03 1.04
20° 110°
25° 115°
30° 120°
35° 125°
40° 130°
45° 135°
50° 140°
55° 145°
60° 150°
65° 65°
70° 70°

reactance at maximum amplitude directed along 𝜙 =90°.
Considering axiom 4.1 presented in section 4.1.1, 𝑎′

𝑑 can only be increased beyond one if the major
axis of the elliptical patch is not aligned neither with the unit cell 𝑥- or 𝑦-axes. When examining 𝛿 in
figure 4.37, which represents the major axis angle with the 𝑥-axis, it can be concluded that when the
surface wave propagates parallel to the 𝑦-axis, the patch is oriented at angles of 𝛿 =45° and 𝛿 =135°,
which are the angles at which 𝑎′

𝑑 can be increased the most, up to
√

2 for 𝜂 → 0+. Therefore, it can be
concluded that an increase in 𝑎′

𝑑 is possible and necessary to obtain a better fit between �̃�𝑠 and �̂�𝑠.
More entries were added to the database to increase the range of 𝑎′

𝑑 for a range of 𝛿 and 𝜂 that could
still fit in a unit cell. By extrapolating the black lines for values of 𝑎′

𝑑 greater than one in figure 4.36, it
was estimated that their intersection point would be at around 𝑎′

𝑑 = 1.04 and 𝜂 = 0.72. This was taken
as a reference point for 𝛿 =45° and 𝛿 =135°, which was then scaled down in terms of 𝑎′

𝑑 for angles
further away from the unit cell diagonal. The additional performed unit cell simulations are shown in
table 4.3, where the gray cells indicate that the given shape was added to the database. Table 4.3
is shown as a function of 𝛿 (rows) and 𝑎′

𝑑 (columns) where Δ𝛿 =5°, Δ 𝑎′
𝑑 = 0.01, 𝜂 ∈ [0.72, 0.8], and

Δ𝜂 = 0.02.
The results after repeating the previously presentedmethodology are shown in figure 4.38 where the

maximum error between �̃�𝑠,𝜌𝜌 and �̂�𝑠,𝜌𝜌 has decreased from 12 % in figure 4.33 to 5 %. Furthermore,
when comparing these two plots, a less dense error distribution is observed in figure 4.38, indicating
that the error is present in less regions within the antenna. However, an error term is still present again
close to 𝜙 =90°, which is worth analysing in detail.

Figure 4.39 shows the reactance error distribution in absolute and in percentage terms for all the
elements of the transparent reactance dyad. As in figure 4.34, the biggest contribution to the error
is caused by the cross diagonal term 𝑋𝑠,𝜌𝜙 at angles close to 𝜙 =90°, and a small contribution at
𝜙 =20°. However, the percentage error in this same term has been reduced from 40 % to 12 %, and in
the diagonal elements from 12 % to 5 %. Therefore, it can be concluded that there is an improvement
in the antenna performance after adding the elliptical patch shapes from table 4.3.

To obtain a more clear impression on what has to be done to improve the results from figure 4.39,
figure 4.40 was obtained, which is analogous to figure 4.35 which compares the error in reactance per
dyadic element with 𝜂 and 𝑎′

𝑑 from the optimisation results. It results clear from this plot that again
the outliers of the cross-diagonal reactance error are caused by a the range of 𝑎′

𝑑 , which reaches its
maximum at the limit of the database, that is at 𝑎′

𝑑 = 1.04. Therefore, to further improve the fit the
range of 𝑎′

𝑑 has to be further increased to greater values. However, as this has already been done with
positive results, it will not be performed again because of redundancy.

For completeness, the final shape parameters are reported in figure 4.41. Figure 4.41a shows the
patch angle with the 𝑥−axis, which behave as expected. When the surface wave propagates hori-
zontally (𝜙 =0° or 𝜙 =180°) there is no cross-diagonal reactance term, as it was shown in figure 4.31a.
Therefore, the patch at these angles has either an orientation angle of 𝛿 =0° or 𝛿 =90°. On the contrary,
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Figure 4.35: Reactance difference per dyadic component of the partial results compared with shape parameters 𝜂 and 𝑎′
𝑑

for a surface wave propagating approximately in vertical direction.
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Figure 4.36: Reactance database 𝐗𝑠 for 𝜓 =45°. The black lines indicate the reactance values for maximum amplitude at
𝜙 =90°.

y [m]

x [m]

/ [deg]

-1 0 1
-1

0

1

0

45

90

135

180

Figure 4.37: Patch orientation angle 𝛿 of the partial results with respect to the 𝑥-axis in the metasurface antenna.
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Figure 4.38: Absolute and percentage difference of final results between �̃�𝑠(𝑥, 𝑦) and �̂�𝑠(𝑥, 𝑦) aligned with 𝛼𝑠𝑤.
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(f) Percentage difference between �̃�𝑠,𝜌𝜙(𝑥, 𝑦)
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Figure 4.39: Absolute and percentage difference of final results between the dyadic components of �̃�𝑠(𝑥, 𝑦) and �̂�𝑠(𝑥, 𝑦)
aligned with 𝛼𝑠𝑤.
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Figure 4.40: Reactance difference per dyadic component of final results compared with shape parameters 𝜂 and 𝑎′
𝑑 for a

surface wave propagating approximately in vertical direction.
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(c) Final 𝛿(𝑥, 𝑦) in the metasurface antenna.

Figure 4.41: Final shape parameters in the metasurface antenna.

when the surface wave propagates vertically (𝜙 =90° or 𝜙 =270°), the patch is oriented at either 𝛿 =45°
or 𝛿 =135° to obtain maximum cross-diagonal reactance. In the case of 𝜂 and 𝑎′

𝑑 not much more extra
analysis can be made, only that 𝜂 has high values and 𝑎′

𝑑 low when the surface wave is close to the
radial boundaries because the reactance amplitude tends to be low, which approximates the patch to
have a circular shape with a relatively high reactance, which makes 𝑎′

𝑑 relatively low.
Finally, the shape parameter distributions can be used to obtain the final antenna layout by using

the data from figure 4.41 and the definition of each one of the shape parameters mentioned in figure 4.2.
This results in the antenna design, which is shown in figure 4.42 and have been plotted in the 𝑥𝑦-plane
to illustrate the patch distribution. A detailed view of the patches that surround 𝜙 =0° and 𝜙 =90° is
shown in figure 4.43, which illustrates the different elliptical shapes that correspond to the reactance of
figure 4.31a and figure 4.31b respectively.
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Figure 4.42: Final SAR metasurface antenna layout in the 𝑥𝑦-plane. Areas 1 and 2 are shown in more detail in figure 4.43.
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Figure 4.43: Metasurface SAR antenna detail views of figure 4.42.



5
Results and discussion

The outline of this chapter is as follows. In the first section, a first-level mass estimation is performed,
which is followed by the comparison of the design results of the SAR metasurface antenna obtained in
chapter 4 with the requirements for an individual SwarmSAR node stated in chapter 2. Next, to also
finalize the report, the conclusions and recommendations are stated.

5.1. Design results
The last required figure of merit is the antenna mass. The first step is obtaining the dielectric mass,
which is shown in equation (5.1) where 𝑉 = 𝜋/250 represents the antenna volume for a circular area
of 1m radius and a thickness of 4mm, and ̄𝜌𝜖 =2840 kgm−3 is the density of the dielectric AR-10001.

�̄�𝜖 = ̄𝜌𝜖𝑉 = 2840 𝜋
250 ≈ 36 kg (5.1)

Next, the mass of the remaining elements can be estimated. These are composed by the patch
cladding in the dielectric surface, the ground plane and the structural parts that would keep the antenna
fixed. A design concept has been proposed by Minatti et.al. where the metasurface is mounted over
a multilayer structure composed of a top and a bottom layer of carbon fibre and a quartz honeycomb
layer in between [38]. This sketch is shown in figure 5.1, which has been reported to have a total mass
of 2.26 kg for an antenna of 27 cm radius, and 1.575mm dielectric thickness, using the Roger TMM10i
dielectric which has a density of 2761.69 kgm−3 [38]2. From this reported antenna, the mass of 1 kg
representing the contribution of the dielectric substrate can be subtracted, which results in 1.26 kg as
the remaining mass of the patch cladding, the ground plane and the antenna support structure. Using
these results, a lower and a upper bound for a first weight estimation of the synthesized antenna is
obtained as follows:

• Lower bound: This can be interpreted as extending the dimensions of the ground plane, the sup-
port structure and the patch cladding from the example in [38] to the final design obtained in chap-
ter 4. The surface density can be extracted from this example, which results in ̄𝜌𝑟 =5.5 kgm−2.
Subsequently, this is multiplied by the antenna area of 𝐴 =3.14m2, which results in an added
mass of 17 kg and a total mass of 53 kg. This is considered to be an underestimation because
the mass is increasing only considering the increase in area, ignoring the additional weight of the
dielectric, which now is thicker (4mm) and therefore concentrates more mass per squared meter.

• Upper bound: This value can be calculated by extrapolating the ratio 1.26 obtained by dividing
the structure mass (1.26 kg) by the dielectric mass (1 kg) from the example antenna to the one
obtained in chapter 4. This results in an added mass of 45 kg and a total mass of 81 kg.

A summary of the presented antenna capabilities is shown in table 5.1, which can be compared
against the antenna requirements presented in section 2.2.2 as follows:

1Typical Properties: AR-1000. http://www.agssales.com/ar1000.pdf Retrieved on 04-11-2022.
2TMM® 10i Laminates - Rogers Corporation. https://www.rogerscorp.com/advanced-electronics-solutions/

tmm-laminates/tmm-10i-laminates Retrieved on 04-11-2022.
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Figure 5.1: Metasurface antenna mounting configuration. Source: [38]

Table 5.1: Metasurface SAR antenna design main characteristics.

Parameter Value
Frequency 3.2GHz
Surface area 3.1m2

Directivity 35.28dB
XP level −30dB
HPBW 3.41°
Side lobe level 11dB
Polarization Linear
Dielectric mass 36 kg
Total mass 53 kg - 81 kg
Surface weight ratio 0.04m2/kg - 0.06m2/kg

• SwarmSAR-SYS-Sub-PL-Ant-01, which fixes the central antenna frequency, is fulfilled but the
broadband response has still to be evaluated.

• SwarmSAR-SYS-Sub-PL-Ant-02, which sets the bandwidth size, can only be evaluated when
obtaining the antenna broadband response.

• SwarmSAR-SYS-Sub-PL-Ant-03, which limits the maximum antenna size, is fulfilled as this re-
striction has been considered in the first part of the modulation.

• SwarmSAR-SYS-Sub-PL-Ant-04, which indicates the target directivity, is not yet fulfilled because
the target value is 36dB and the one obtained is 35.28dB. The author notes that this difference
requires one more iteration to be fulfilled because the exponent of the first expression in brackets
in equation (4.9), which defines the electric field amplitude in the aperture, has to be adjusted to
reach the objective value.

• SwarmSAR-SYS-Sub-PL-Ant-05, which shows the target value of 3.2° of the HPBW, as in the
previous requirement is not yet fulfilled because the HPBW that the designed antenna reaches is
just above it, with 3.41°. As in the previous case, this just requires one more iteration that adjusts
the amplitude of the electric field in the aperture.

• SwarmSAR-SYS-Sub-PL-Ant-06, which proposes a minimum transmitted power, has not yet
been evaluated as the feeding design is not included in this methodology.

• The same applies to SwarmSAR-SYS-Sub-PL-Ant-07, which sets a maximum variation of the
pulse length, as it is part of the feeding system.

• SwarmSAR-SYS-Sub-PL-Ant-08, which indicates the antenna’s maximum mass, is not met as
this requirement aims for a value of 1m2/kg and the one that is obtained with this design is
between 0.04m2/kg and 0.06m2/kg. This cannot be easily solved without changing other re-
quirements because the difference is approximately a factor of twenty.

The comparison between the antenna requirements and the final result from applying the proposed
methodology shows that, even though these requirements for the single-frequency case are mostly
met (or require one more iteration), the mass is still an important restriction for the implementation of
these type of structures when it is so constrained as in this case. For such cases, structures as the
reference case presented in section 2.3 could perform better because they achieve easily SwarmSAR-
SYS-Sub-PL-Ant-08. When this requirement is mentioned in the original research of Iannini et.al. [17],
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the authors acknowledge that it is a challenging requirement for large antennas in mini satellites and
that their baseline is a “reflector-based antenna with a circular dish, illuminated by a single feed” [17]. If
it would be needed to fulfil SwarmSAR-SYS-Sub-PL-Ant-08 independently from the other requirements
with a metasurface antenna, the value of 1m2/kg can be achieved by shifting to a higher frequency
where ℎ ̄𝜌𝜖 <1m2/kg, only considering the mass of the dielectric substrate. This demands a thickness,
for the AR-1000 dielectric substrate, of 0.35mm, which can be achieved with the presented method
only by using a higher central frequency to avoid higher-order mode propagation. Another form to
come closer to the required mass value is by using a different material for the dielectric layer, which
has to be less dense and suitable for the production of printed circuit boards, which is the method used
to fabricate metasurface antennas. For this exercise, the material AR-1000 has been used because it is
cited in the metasurface antenna literature as being similar to others used for space [36, 12]. However,
a better option could be looked for with a smaller mass density value.

On the other side, this does not excludes metasurface antennas from space applications. The fact
that the final structure has only one feeding point, whereas the antenna presented for comparison has
256 radiating elements, makes this methodology suitable when only one radiating mode is required as
it reduces the system complexity and possible failure points. Applications are not only limited to SAR,
but also can be used for satellite communications in the 𝐾𝑎-band as presented in the work of Minatti
et.al. [38]. It is important to recall that nowadays laser satellite communication is being intensively
developed for all type of satellites. However, given its obvious advantages of high bandwidth and low
possibility of intercepting and jamming a signal, there are still challenging obstacles such as the weather
interference [52], the dispersive effect of the atmosphere [49], and the high accuracy needed for the
attitude determination and control subsystem, which are not a problem for communication in the radio
spectrum. In the case where laser satellite communication would replace traditional communication
antennas, they can be added to a platform for redundancy if there is a problem with the optical link
between the transmitter and the receiver optical terminals. Furthermore, different radiation patterns
can be obtained with the presented modulation procedure that could be used to communicate to more
than one terminal at the same time, which is not achievable with one laser satellite communication
transmitter. To obtain these different radiation patterns it is precise to change only the patch cladding in
the interface, which simplifies the qualification and acceptance procedures for the antenna design [38].
There are other methods that could be integrated in the developed methodology in case it is needed
to expand the number of radiating modes. One of them uses multiple feeding points to receive from
multiple areas in the spherical plane [14], whereas another transmits and receives in both right-hand
and left-hand circular polarizations [50].

Another interesting comparison is the one of the metasurface antenna with a reflector dish antenna,
as the second one is characterized by a more simple design for a pencil-beam radiation pattern as
it consists of a curved metallic dish with a horn antenna used as a feeding point. However, when a
different radiation pattern is used, the reflector dish needs to be shaped such that the desired radiation
characteristics are obtained, which ends up slowing down the spacecraft design, qualification and ac-
ceptance processes. In contrast, a metasurface antenna has a rather standard printing circuit board
procedure to obtain different radiation patterns saves time in these processes. Next to that, having a
planar antenna helps to its deployment in comparison with a curved dish, which ends up occupying
more volume in the satellite. Therefore, a metasurface antenna can be regarded as a trade-off be-
tween a phased-array antenna, which can generate many radiation patterns but it is more complex and
generally heavier, and a reflector dish antenna, which is generally simpler and applied for high-gain
radiation patterns.

5.2. Conclusion and recommended further work
A procedure to design a metasurface antenna has been presented in this thesis report, which used as
starting point the work of previous authors and adapted it to available commercial tools for EM simula-
tion to reduce the implementation time. This work has been presented in the context of the design of an
antenna for space-based SAR in the S-band (SwarmSAR constellation) which, even though its mass
cannot fit within the design requirements, its central frequency performance satisfies them. To answer
the first research question formulated in chapter 1, the proposed methodology starts by obtaining a
reactance database for a particular patch shape, followed by obtaining the reactance distribution in the
antenna, and finally matching both distributions to end up with an antenna layout for a predetermined
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radiation pattern. The reactance database has been derived using scattering data obtained from full-
wave simulations performed with the commercial software Lumerical® FDTD. It has been shown that
these values have negligible deviations when compared to the verification examples. Next, the an-
tenna synthesis has been performed using adiabatic Floquet analysis with satisfactory results. Finally,
the result of these two parts are matched using an optimization algorithm that minimizes the devia-
tion between the objective reactance and the one from the database to find the best possible shape
for a particular unit cell. In the SAR case, the antenna is composed out of 30,928 unit cells, which is
the aggregate result of scattering simulations and optimization procedures to deliver a device that can
generate a given radiation pattern. The reader then can use this methodology to design printed circuit
boards masks that, when connected to a feeding point at its centre that launches azimuthally symmetric
surface waves (e.g. monopole), would work as an antenna with a predefined radiation pattern.

It is important to note that a non-conventional and very advanced antenna design was used to
answer the second research question. This design, specified in section 2.3, consists of a low-mass
blanket with multiple patch antennas that effectively work as a phased-array antenna. Even though it
has been shown that in terms of mass, the reference case outperforms the metasurface antenna, in
terms of complexity it does not. The metasurface antenna has only one feeding point, whereas the
phased-array used in the example has 256, which are additional possible failure points. Furthermore,
to have different radiation patterns in a metasurface antenna, only the patch distribution on its surface
would have to change to achieve this functionality, consequently saving design, qualification and ac-
ceptance times. Next to that, the weight estimation has been done considering the standard material
AR-1000, widely cited in literature for being used for metasurface antenna fabrication. However, a
different material with similar electrical properties and lower mass density could be used to reduce the
antenna mass.

There are multiple parts in the design that have not been addressed and are encouraged for future
work. The first one and most important is to perform a full-wave simulation of the antenna to verify that
the actual patch distribution produces the adequate far-field radiation pattern in the intended broadband
frequency range. This can be performed by relying in a MoM formulation that uses an adequate set of
basis functions to evaluate the patch distribution over the antenna. Next, an expression to represent
the distance between the elliptical patches in adjacent unit cells, dependent on the patch inclination
angle and the minor axis ratio with the major axis, should be derived. In the presented work, this was
represented with the ratio of major axis against unit cell size, which was restricted to a maximum value
of 1 because in the worst case scenario this was the value that would make the minimum distance
between adjacent patches equal to zero. However, it was shown in section 4.3.3 that extending this
beyond one for some inclination angle and minor axis ratio combinations could increase the reactance
range of the database, meeting the requirements for the antenna synthesis. Next, a method to ob-
tain the exact dimensions of the feeding system should be implemented, which can rely in iterative
optimization to avoid reflections between the waveguide that launches the surface wave and the meta-
surface antenna. Subsequently, an assessment on the losses in the antenna should be performed,
which could be integrated in the full-wave simulation by considering actual material losses. Finally, the
manufacturability of the antenna has to be addressed by integrating the tolerances of the printed circuit
manufacturing technology into a statistical process to obtain the error distribution in the far-field pattern
after the antenna is manufactured. The author suggests using a Montecarlo scheme with the full-wave
antenna simulation.

The next step to make this technology accessible and more attractive for more types of missions
is making the antenna deployable. As this antenna is planar and can be easily manufactured, it would
be attractive for CubeSat missions operating in a higher frequency range where the dielectric does not
contribute much to the whole antenna mass. As a deployable concept would imply dividing the antenna
in segments, further studies should be performed to address how the discontinuities in the structure
would impact the antenna performance, and how to reduce them.

Another interesting application is using these antennas for compressive sensing applications. The
idea would consist on taking advantage of the metasurface dispersive nature to generate pseudo-
random radiation patterns with a high degree of orthogonality between each other in a narrow frequency
range. Then, sampling a wide field of view at these different frequencies would generate orthogonal
responses, which could be used to reconstruct it with a sub-Nyquist sampling scheme avoiding aliasing
effects. Some comparisons of using metasurface antennas in compressive sensing with other sampling
schemes can be found in [45, 46].
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A
Reciprocity theorem

This section contains Pozar’s derivation of the reciprocity theorem [44, p. 41] and is used to give more
details in the derivation of the impedance for reciprocal networks in section 3.1. Considering Faraday’s
and Ampere-Maxwell’s equations in equation (3.1c) and equation (3.1d) respectively, they can be used
to represent two independent sources (1 and 2) in a volume 𝑉 enclosed by surface 𝑠.

𝛁 × 𝐄1 = −𝑗𝜔𝜇𝐇1 − 𝐌1 (A.1a) 𝛁 × 𝐇1 = −𝑗𝜔𝜖𝐄1 − 𝐉1 (A.1b)
𝛁 × 𝐄2 = −𝑗𝜔𝜇𝐇2 − 𝐌2 (A.1c) 𝛁 × 𝐇2 = −𝑗𝜔𝜖𝐄2 − 𝐉2 (A.1d)

Consider for the equations above 𝛁 ⋅ (𝐄1 × 𝐇2 − 𝐄2 × 𝐇1)⊤ which can be reduced with vector
identities to the expression in equation (A.2).

𝛁⊤ ⋅(𝐄1×𝐇2−𝐄2×𝐇1)=(𝛁×𝐄1)⊤ ⋅𝐇2−(𝛁×𝐇2)⊤ ⋅𝐄1−(𝛁×𝐄2)⊤ ⋅𝐇1+(𝛁×𝐇1)⊤ ⋅𝐄2
= 𝐉⊤

1 ⋅ 𝐄2 − 𝐉⊤
2 ⋅ 𝐄1 + 𝐌⊤

2 ⋅ 𝐇1 − 𝐌⊤
1 ⋅ 𝐇2

(A.2)

Furthermore, integrating both sides over the volume 𝑉 and using the divergence theorem results in
equation (A.3), which is the general form of the reciprocity theorem.

∭
𝑉 ′

𝛁⊤ ⋅ (𝐄1 × 𝐇2 − 𝐄2 × 𝐇1)𝑑𝑉 = ∯
𝐴

(𝐄1 × 𝐇2 − 𝐄2 × 𝐇1)⊤ ⋅ 𝑑𝐀

= ∭
𝑉 ′

(𝐉⊤
1 ⋅ 𝐄2 − 𝐉⊤

2 ⋅ 𝐄1 + 𝐌⊤
2 ⋅ 𝐇1 − 𝐌⊤

1 ⋅ 𝐇2)𝑑𝑉
(A.3)

Considering the case where no sources or active devices are in volume 𝑉 , equation (A.3) becomes
equation (A.4) because 𝐉1 = 𝐉2 = 𝐌1 = 𝐌2 = 0.

∯
𝐴

(𝐄1 × 𝐇2)⊤ ⋅ 𝑑𝐀 = ∯
𝐴

(𝐄2 × 𝐇1)⊤ ⋅ 𝑑𝐀 (A.4)
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B
Method of stationary phase

The method of stationary phase is used to make an asymptotic approximation of the values of 𝑘𝑥 and
𝑘𝑦 in the evaluation of the far-field radiation pattern. The detailed explanation of this method can be
found in the book of Balanis [1] and is summarized in this section.

Consider the problem of calculating 𝐼(𝑘) such as in equation (B.1) with 𝑘 and 𝑓(𝑥, 𝑦) real, and 𝐹(𝑥, 𝑦)
that may be complex. Obtaining a final result for 𝐼(𝑘) can be a complicated task for rapidly oscillating
values of the exponential term between −1 and +1. Therefore, the function 𝑓(𝑥, 𝑦) is evaluated only
near its stationary points (𝑥𝑠, 𝑦𝑠) given by equation (B.2).

𝐼(𝑘) = ∫
𝑏

𝑎
∫

𝑑

𝑐
𝐹(𝑥, 𝑦)𝑒𝑗𝑘𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦 (B.1)

𝜕𝑓
𝜕𝑥 ∣

𝑥 = 𝑥𝑠
𝑦 = 𝑦𝑠

= 𝑓 ′
𝑥(𝑥𝑠, 𝑦𝑠) = 0 (B.2a)

𝜕𝑓
𝜕𝑦 ∣

𝑥 = 𝑥𝑠
𝑦 = 𝑦𝑠

= 𝑓 ′
𝑦(𝑥𝑠, 𝑦𝑠) = 0 (B.2b)

It is assumed that 𝐹(𝑥, 𝑦) varies much more slowly than 𝑓(𝑥, 𝑦), making negligible its contributions
to the fast-varying parts of equation (B.1). Therefore, this term can be taken out of the integral as in
equation (B.3).

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠) ∫
+∞

−∞
∫

+∞

−∞
𝑒𝑗𝑘𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦 (B.3)

Next, a second degree Taylor expansion of 𝑓(𝑥, 𝑦) at its stationary points (𝑥𝑠, 𝑦𝑠) is done in equa-
tion (B.4) considering that 𝑓 ′

𝑥(𝑥𝑠, 𝑦𝑠) = 𝑓 ′
𝑦(𝑥𝑠, 𝑦𝑠) = 0. The elements that define this expansion are

then replaced by ̄𝐴 = 1
2 𝑓″

𝑥𝑥(𝑥𝑠, 𝑦𝑠), �̄� = 1
2 𝑓″

𝑦𝑦(𝑥𝑠, 𝑦𝑠), ̄𝐶 = 𝑓″
𝑥𝑦(𝑥𝑠, 𝑦𝑠), 𝜉 = 𝑥 − 𝑥𝑠, and 𝜅 = 𝑦 − 𝑦𝑠. The

resulting expression is then replaced in equation (B.3), where the exponential function is defined by
the second degree polynomial expansion of 𝑓(𝑥, 𝑦).

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥𝑠, 𝑦𝑠) + 1
2(𝑥 − 𝑥𝑠)2𝑓″

𝑥𝑥(𝑥𝑠, 𝑦𝑠) + 1
2(𝑦 − 𝑦𝑠)2𝑓″

𝑦𝑦(𝑥𝑠, 𝑦𝑠) + (𝑥 − 𝑥𝑠)(𝑦 − 𝑦𝑠)𝑓″
𝑥𝑦(𝑥𝑠, 𝑦𝑠)

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥𝑠, 𝑦𝑠) + ̄𝐴𝜉2 + �̄�𝜅2 + ̄𝐶𝜉𝜅
(B.4)

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) ∫
+∞

−∞
∫

+∞

−∞
𝑒𝑗𝑘( ̄𝐴𝜉2+�̄�𝜅2+ ̄𝐶𝜉𝜅)𝑑𝜉𝑑𝜅 (B.5)

Next, the polynomial expansion defined in equation (B.4) can be diagonalized to the expression
aligned with its eigenvectors. This can be done by defining its eigenvalues as ̄𝐴′ and �̄�′ and solving
for them as in equation (B.6). Finally, the quadratic equation is now a function of 𝜗 and 𝜄, and is aligned
with its eigenvectors.
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∣
̄𝐴 − ( ̄𝐴′, �̄�′) ̄𝐶/2

̄𝐶/2 �̄� − ( ̄𝐴′, �̄�′)∣ = 0

( ̄𝐴′, �̄�′) = 1
2 [( ̄𝐴 + �̄�) ± √( ̄𝐴 + �̄�)2 − (4 ̄𝐴�̄� − ̄𝐶2)]

̄𝐴𝜉2 + �̄�𝜅2 + ̄𝐶𝜉𝜅 = ̄𝐴′𝜗2 + �̄�′𝜄2

(B.6)

Equation (B.6) can be used to decouple the exponential part of equation (B.5) as in equation (B.7)
where the coefficients ̄𝐴′ and �̄�′ are placed within absolute values because the effect of their sign is
expressed explicitly in the ± term at the beginning of the exponential function.

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) ∫
+∞

−∞
∫

+∞

−∞
𝑒𝑗𝑘( ̄𝐴′𝜗2+�̄�′𝜄2)𝑑𝜗𝑑𝜄

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) ∫
+∞

−∞
𝑒±𝑗𝑘| ̄𝐴′|𝜗2𝑑𝜗 ∫

+∞

−∞
𝑒±𝑗𝑘|�̄�′|𝜄2𝑑𝜄

(B.7)

The integral of equation (B.7), now defined as 𝐼″(𝑘), can be simplified with its symmetry properties
as shown in equation (B.8), where the coefficients ̄𝐴′, �̄�′ and the quadratic terms 𝜗, 𝜄 are expressed
explicitly and can be interchanged with each other.

𝐼″(𝑘) = ∫
+∞

−∞
𝑒±𝑗𝑘| ̄𝐴′,�̄�′|(𝜗,𝜄)2𝑑(𝜗, 𝜄) = 2 ∫

+∞

0
𝑒±𝑗𝑘| ̄𝐴′,�̄�′|(𝜗,𝜄)2𝑑(𝜗, 𝜄) (B.8)

Next, the variable 𝜏 is used to simplify equation (B.8) by replacing the exponential part with the
expression defined in equation (B.9a). Next, this element and its derivative in equation (B.9b) are used
to replace equation (B.8), resulting in equation (B.10) which contains an integral element, called the
Fresnel integral, with a well-known closed-form representation.

𝑘| ̄𝐴′, �̄�′|(𝜗, 𝜄)2 = 𝜋
2 𝜏2 (B.9a) 𝑑(𝜗, 𝜄) = √ 𝜋

2𝑘| ̄𝐴′, �̄�′| 𝑑𝜏 (B.9b)

𝐼″(𝑘) = 2√ 𝜋
2𝑘| ̄𝐴′, �̄�′| ∫

∞

0
𝑒±𝑗 𝜋

2 𝜏2𝑑𝜏 = √ 𝜋
𝑘| ̄𝐴′, �̄�′| 𝑒

±𝑗 𝜋
4 (B.10)

Subsequently, equation (B.10) is used to replace equation (B.7), resulting in equation (B.11) in which
the signs of the exponential functions at its end are defined by the signs of ̄𝐴′ and �̄�′ as shown by 𝛿𝑐.

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) 𝜋
𝑘√| ̄𝐴′||�̄�′|

𝑒±𝑗 𝜋
4 𝑒±𝑗 𝜋

4 = 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) 𝑗𝜋𝛿𝑐

𝑘√| ̄𝐴′||�̄�′|

where 𝛿𝑐 =
⎧{
⎨{⎩

+1 ̄𝐴′ > 0 ∨ �̄�′ > 0
−1 ̄𝐴′ < 0 ∨ �̄�′ < 0
−𝑗 ̄𝐴′�̄�′ < 0

(B.11)

The coefficients ̄𝐴′ and �̄�′ in equation (B.11) can be expressed as ̄𝐴 and �̄� by obtaining ̄𝐴′�̄�′ from
the second line of equation (B.6), resulting in equation (B.12a) which can be replaced in equation (B.11)
to obtain equation (B.13). Next, considering equation (B.12b), table B.1 can be elaborated by relating
the signs of each coefficient with equation (B.12), which results in defining 𝛿𝑐 for ̄𝐴 and �̄�. The final
result is shown in equation (B.13), which represents the approximation of equation (B.1).

̄𝐴′�̄�′ = 4 ̄𝐴�̄� − ̄𝐶2

4 (B.12a) ̄𝐴′ + �̄�′ = ̄𝐴 + �̄� (B.12b)
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Table B.1: Sign of ̄𝐴′ and �̄�′ considering the values of ̄𝐴 and �̄�.

4 ̄𝐴�̄� > ̄𝐶2 4 ̄𝐴�̄� < ̄𝐶2

�̄� > 0 �̄� < 0 �̄� > 0 �̄� < 0
̄𝐴 > 0 ̄𝐴′ > 0 ∨ �̄�′ > 0 ̄𝐴′�̄�′ < 0
̄𝐴 < 0 ̄𝐴′ < 0 ∨ �̄�′ < 0 ̄𝐴′�̄�′ < 0

𝐼(𝑘) ≈ 𝐹(𝑥𝑠, 𝑦𝑠)𝑒𝑗𝑘𝑓(𝑥𝑠,𝑦𝑠) 𝑗2𝜋𝛿𝑐

𝑘√|4 ̄𝐴�̄� − ̄𝐶2|

where 𝛿𝑐 =
⎧{
⎨{⎩

+1 4 ̄𝐴�̄� > ̄𝐶2 ∨ ̄𝐴 > 0
−1 4 ̄𝐴�̄� > ̄𝐶2 ∨ ̄𝐴 < 0
−𝑗 4 ̄𝐴�̄� < ̄𝐶2

(B.13)



C
Method of Moments (MoM) impedance

representation
Many derivations and calculations presented in this report are based on an impedance representation
using the Method of Moments (MoM). The approach presented in this appendix is a summary based on
the method presented in [32]. The reader is encouraged to consult that article if further doubts remain.

A spectral Galerkin MoM approach is used to obtain the impedance MoMmatrix 𝐙𝑀𝑜𝑀 as a function
of the fundamental Floquet mode 𝐤𝑡 and of the excitation frequency 𝑓 = 𝑘𝑐/(2𝜋) in terms of 𝑁 Floquet
modes ̄𝑞. Such representation is possible because an infinite array of identical unit cells is assumed
in the simulation region, which ultimately can be expressed as a single unit cell with periodic boundary
conditions. The Floquet wavevectors 𝐤 ̄𝑞 are defined as in equation (3.105) in a reciprocal lattice of the
form of figure 3.4 with 𝑁 nodes centred in the fundamental wavevector 𝐤𝑡. 𝑀 basis functions are used
to represent the equivalent currents in the spectral domain given by 𝐽𝑇 𝑀

𝑝 , which is the basis function
𝑝 aligned with 𝐤 ̄𝑞, and 𝐽𝑇 𝐸

𝑞 , which is the basis function 𝑞 aligned to ̂𝑧 × �̂� ̄𝑞. The components of the
MoM matrix are given in in equation (C.1) [32], which results in 𝐙𝑀𝑜𝑀 having a size of 𝑀 × 𝑀 . The
elements 𝑍𝐺𝐹 (𝜔, 𝐤 ̄𝑞) are specified in equation (C.2) [32] and are spectral representations of the GF
aligned either with the TM or TE modes at a given excitation frequency and at the ̄𝑞 Floquet mode. 𝑋0
and 𝑍1 can be traced back to equation (3.113) and equation (3.115) respectively, with the difference
that the expressions in section 3.2.3 are applied only to the fundamental Floquet mode, whereas the
ones presented here are generalized to all the Floquet modes.

𝑍𝑀𝑜𝑀
𝑝𝑞 (𝜔, 𝐤 ̄𝑞) =

𝑁
∑

̄𝑞=0
[𝑍𝑇 𝑀

𝐺𝐹 (𝜔, 𝐤 ̄𝑞)𝐽𝑇 𝑀
𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝑀∗

𝑞 (𝐤 ̄𝑞) + 𝑍𝑇 𝐸
𝐺𝐹 (𝜔, 𝐤 ̄𝑞)𝐽𝑇 𝐸

𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝐸∗
𝑞 (𝐤 ̄𝑞)] (C.1)

𝑍𝑇 𝑀
𝐺𝐹 (𝜔, 𝐤 ̄𝑞)=𝑗𝑋𝑇 𝑀

𝐺𝐹 (𝜔, 𝐤 ̄𝑞) = 𝑗 {[𝑋𝑇 𝑀
0 (𝜔, 𝐤 ̄𝑞)]−1+[𝑍𝑇 𝑀

1 (𝜔, 𝐤 ̄𝑞)]−1cot(ℎ√𝜖𝑟𝑘2−𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞)}

−1
(C.2a)

𝑍𝑇 𝐸
𝐺𝐹 (𝜔, 𝐤 ̄𝑞)=𝑗𝑋𝑇 𝐸

𝐺𝐹 (𝜔, 𝐤 ̄𝑞) = 𝑗 {[−𝑋𝑇 𝐸
0 (𝜔, 𝐤 ̄𝑞)]−1+[𝑍𝑇 𝐸

1 (𝜔, 𝐤 ̄𝑞)]−1cot(ℎ√𝜖𝑟𝑘2−𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞)}

−1
(C.2b)

Consider the asymptotic case for higher-order Floquet modes where 𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞 ≫ 𝜖𝑟𝑘, and 𝜖𝑟 > 1

for practical applications. The asymptotic GF impedance is given by 𝑍𝑇 𝑀,𝑇 𝐸
∞ in equation (C.3) after

approximating √𝑘2 − 𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞 → −𝑗√𝐤⊤

̄𝑞 ⋅ 𝐤 ̄𝑞 and √𝜖𝑟𝑘2 − 𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞 → −𝑗√𝐤⊤

̄𝑞 ⋅ 𝐤 ̄𝑞 [32].

𝑍𝑇 𝑀
∞ (𝜔, 𝐤 ̄𝑞) =

𝜁√𝐤⊤
̄𝑞 ⋅ 𝐤 ̄𝑞

𝑗𝑘(𝜖𝑟 + 1) (C.3a)
𝑍𝑇 𝐸

∞ (𝜔, 𝐤 ̄𝑞) = 𝑗𝜁𝑘
2√𝐤⊤

̄𝑞 ⋅ 𝐤 ̄𝑞
(C.3b)

Next, the MoM impedance can be represented by the sum of three terms as in equation (C.4): the
one related to the zero-order Floquet mode 𝐙𝑠𝑙𝑎𝑏, equation (C.5), the low-frequency contribution that
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represents the spectral asymptotic GF 𝐙𝐿𝐹 , equation (C.6), and the one related to the dynamic band𝐙𝑑𝑦𝑛, equation (C.7) [32].

𝐙𝑀𝑜𝑀 = 𝐙𝑠𝑙𝑎𝑏 + 𝐙𝑑𝑦𝑛 + 𝐙𝐿𝐹 (C.4)

(𝐙𝑠𝑙𝑎𝑏)
𝑝𝑞

= 𝑍𝑇 𝑀
𝐺𝐹 (𝜔, 𝐤𝑡)𝐽𝑇 𝑀

𝑝 (𝐤𝑡)𝐽𝑇 𝑀∗
𝑞 (𝐤𝑡) + 𝑍𝑇 𝐸

𝐺𝐹 (𝜔, 𝐤𝑡)𝐽𝑇 𝐸
𝑝 (𝐤𝑡)𝐽𝑇 𝐸∗

𝑞 (𝐤𝑡) (C.5)

(𝐙𝐿𝐹 )
𝑝𝑞

=
𝑁

∑
̄𝑞=1

{𝑍𝑇 𝑀
∞ (𝜔, 𝐤 ̄𝑞)𝐽𝑇 𝑀

𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝑀∗
𝑞 (𝐤 ̄𝑞) + 𝑍𝑇 𝐸

∞ (𝜔, 𝐤 ̄𝑞)𝐽𝑇 𝐸
𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝐸∗

𝑞 (𝐤 ̄𝑞)} (C.6)

(𝐙𝑑𝑦𝑛)
𝑝𝑞

=
𝑁

∑
̄𝑞=1

{[𝑍𝑇 𝑀
𝐺𝐹 (𝜔, 𝐤 ̄𝑞) − 𝑍𝑇 𝑀

∞ (𝜔, 𝐤 ̄𝑞)] 𝐽𝑇 𝑀
𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝑀∗

𝑞 (𝐤 ̄𝑞)

+ [𝑍𝑇 𝐸
𝐺𝐹 (𝜔, 𝐤 ̄𝑞) − 𝑍𝑇 𝐸

∞ (𝜔, 𝐤 ̄𝑞)] 𝐽𝑇 𝐸
𝑝 (𝐤 ̄𝑞)𝐽𝑇 𝐸∗

𝑞 (𝐤 ̄𝑞)}
(C.7)

When considering the condition of accessibility of only the dominant Floquet mode to the ground
slab, |𝐙𝐿𝐹 |𝑝𝑞 ≫ |𝐙𝑑𝑦𝑛|𝑝𝑞 because the low-frequency contribution can be approximated by the asymp-
totic GF impedance. The condition is fulfilled if equation (C.8) is satisfied for the closest higher-order
Floquet mode to the fundamental Floquet mode, which is given by the expression of

√
𝐤⊤ ⋅ 𝐤 [32].

∣𝑍
𝑇 𝑀,𝑇 𝐸
𝐺𝐹 (𝐤, 𝜔) − 𝑍𝑇 𝑀,𝑇 𝐸

∞ (𝐤, 𝜔)
𝑍𝑇 𝑀,𝑇 𝐸

𝐺𝐹 (𝐤, 𝜔)
∣ ≪ 1 for

√
𝐤⊤ ⋅ 𝐤 = ∣√𝐤⊤

𝑡 ⋅ 𝐤𝑡 − 2𝜋
𝑑 ∣ (C.8)

Considering the application to practical cases where 𝜆/2 < 𝜆𝑠𝑤 < 𝜆 and 𝜖𝑟 > 1, a second-order
approximation of equation (C.8) can be obtained, leading to the results in equation (C.9). The first
condition equation (C.9a) is more restrictive when ℎ/𝑑 > 𝜏 , and the second equation (C.9b) when
ℎ/𝑑 < 𝜏 . 𝜏 is specified in equation (C.10) [32].

𝜋√ 𝜖2𝑟 + 1
2(𝜖𝑟 + 1) + 1 < 𝜆

𝑑 (C.9a) 𝑑 < ℎ
0.23 + 2ℎ

𝜆
(C.9b)

𝜏 = 0.23 √2(𝜖𝑟 + 1) + 𝜋√𝜖2𝑟 + 1
√2(𝜖𝑟 + 1) + 2𝜋√𝜖2𝑟 + 1

(C.10)
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